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Abstract  

Interest management aims to overcome limited network resources to provide a distributed virtual environment 
(DVE) that is scalable in terms of number of users and virtual world complexity (number of objects). Interest 
management limits interactions between objects in a virtual world by only allowing objects to communicate their 
actions to other objects that fall within their influence. An important aspect of any interest management scheme 
is the ability to identify when objects should be interacting and enable such interaction via message passing. 
Existing approaches to interest management are not suited to objects that may travel at greatly varying speeds 
and may only interact briefly. In such a scenario, the time taken by existing interest management schemes to 
resolve which objects influence each other may be too large to enable the desired interaction to occur.  

In this paper we present an approach to interest management based on the predicted movement of objects. Our 
approach determines the frequency of message exchange between objects on the likelihood that such objects will 
influence each other in the near future. Via this mechanism we aim to ensure a scalable DVE that may satisfy 
message exchange requirements of briefly interacting objects irrelevant of the speed such objects may traverse a 
virtual world. 
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1. Introduction 

A distributed virtual environment (DVE) provides a graphical representation of a virtual world that may be 
navigated by geographically dispersed users. Mechanisms are provided to enable users to interact with the virtual 
world, and each other, in real-time. A major challenge for the DVE research community is providing networked 
virtual environment services with qualities that ensure users share a mutually consistent view of a virtual world 
while enabling users to interact with each other in real-time. This is exemplified in some types of multiplayer 
networked games [7] [8], where the success of game play relies on modeling quite intricate user interaction in 
real-time (e.g., shooting an opponent). The scalability issues addressed by a DVE relate to both the number of 
users and their geographic location. An increase in the number of users leads to an increase in network traffic, 
placing greater demands on the underlying network. Furthermore, due to the heterogeneous nature of common 
public access networks (such as the Internet), message latency may vary on a per user basis, increasing the 
difficulty of satisfying the consistency and real-time requirements of users on slow connections (e.g., connected 
via a modem). 



 

Currently, approaches to increasing the scalability of DVE applications have been via the provision of services 
that use division of the virtual space and predictive modeling techniques. Both these techniques seek to lower the 
volume of message passing required to ensure consistency. A class of DVE applications, known as Collaborative 
Virtual Environments (CVE), has pioneered research into the division of virtual spaces (commonly termed 
interest management). These applications aim to support human collaboration and communication (possibly 
employing such techniques as video conferencing). Ideally, CVE applications limit interactions between objects 
in the virtual world by only allowing objects to communicate their actions to other objects that fall within their 
influence. Predictive modeling, based on dead reckoning has been used extensively in the production of military 
type simulations [5] [6], with Distributed Interactive Simulation (DIS) [9] applications an example of these types 
of DVEs. Dead reckoning refers to the use of predictive modeling techniques to allow the construction of an 
assumed view of the virtual world from limited data (stored on the local computer) in an effort to satisfy real-
time requirements (by removing the network latency element from state updates). DIS is suited to military 
simulations as movements of objects participating in a virtual world may be predicted with a reasonable amount 
of accuracy (e.g., flight of an aircraft). Furthermore, such objects may be traveling at high speeds comparative to 
objects participating in a CVE making CVE techniques difficult to apply to DIS type virtual worlds. 

In a modern day DVE there may be scalability benefits drawn from both CVE and DIS research. For example, a 
virtual world may contain objects of greatly varying types (e.g., foot soldiers and fighter aircraft) that exhibit 
different movement properties that do not lend themselves to existing approaches to virtual space division. This 
paper considers the problem of designing a DVE that may provide an interest management scheme suitable for 
applications that exhibit DIS and CVE type qualities. We base our scheme on the notion of predictability of 
object movement in such a way that when the possibility of interaction increases between objects (distance 
between objects decreases) the frequency of message exchange between such objects increases. We continue 
with a description of interest management in section 2, describe our approach to interest management in section 
3 followed by conclusions and future work in section 4. 

2. Interest Management 

We assume a DVE that represents a geographic space containing objects that may navigate such a space. The 
DVE is deployed across geographically separated nodes connected by an underlying network. Each node may 
host a number of objects, their local objects, with nodes responsible for informing each other of the actions (e.g., 
movement) of local objects via the exchange of messages across the network. 

Region and aura are two basic approaches used in virtual space division. We continue with descriptions of these 
two approaches and identify the problems each approach presents when aiming to satisfy real-time and 
consistency requirements of a DVE when objects of greatly varying speeds coexist within a virtual world. 

2.1. Region 

The Scalable Platform for Large Interactive Network Environments (SPLINE) [2] and DIstributed Virtual 
Environment (DIVE) [1] make use of virtual space division to promote scalability. The virtual world is divided 
into regions (locales in SPLINE and sub-hierarchies in DIVE). The recipient of a message is limited to only 
interested participants (i.e., reside within the same, or neighbouring, region as the sender). Nodes hosting objects 
participating in a virtual world identify which region their objects belong and send messages to a well known 
reference (possibly a server, group of servers, or a group address [13] representing a region) that supports 
message dissemination for that particular region.  

An important consideration in a region based approach is the size of the regions. A region must be of sufficient 
size as to ensure objects have the ability to purposely disseminate messages in one region before entering another 
region. When an object traverses a region boundary the DVE is required to update region membership (identify a 
region an object belongs to). If there is a possibility that an object can traverse a region in less time than it takes 
to realize regional membership changes then a node hosting such an object may be unable to disseminate 
messages effectively. When considering an object that represents a fighter aircraft we can see that the size of a 
region may be appropriately measured in kilometers. However, this size of region may not be suitable for all 
types of objects. For example, if region size is decided when considering the top speed of a fighter aircraft then 
the presence of soldiers traveling on foot may give rise to unnecessary message exchange between nodes that 
host foot soldier objects that are separated by a distance too great for such objects to influence each other. 
Furthermore, if region size is more suited to foot soldier objects then a fighter aircraft may traverse region 
boundaries with such frequency that region membership may not be resolved in a timely fashion. Therefore, 



 

when objects coexist within the same virtual world and can traverse the virtual world at greatly varying speeds, 
relying on a region based approach alone may not be appropriate. 

2.2. Aura 

Another approach to the division of the virtual space is illustrated by the work carried out by the Model, 
Architecture and System for Spatial Interaction in Virtual Environments projects [3] [4] (MASSIVE 1 & 2). 
MASSIVE uses an object’s view of the virtual world to aid in identifying the degree of interaction between 
objects. Ideally, objects would communicate their actions to only objects that fall within their influence as 
defined by their aura. An aura may be defined as an area of a virtual world with the owner of the aura potentially 
exerting influence over all other objects located in this area of the virtual world. The introduction of focus and 
nimbus allows the degree of awareness between objects to be identified. A focus specifies an object’s area of 
interest and a nimbus identifies an object’s level of prominence (as perceived from a viewing object).  

In the aura approach to interest management there is no need to regionalize a virtual world. However, there is a 
requirement for all nodes to exchange positional update information relating to the objects they host in order to 
identify when aura collision occurs. The frequency of these message exchanges must be sufficient to ensure that 
aura collision may be determined in a timely fashion to allow nodes to purposely disseminate messages as and 
when aura collision occurs. There is the possibility that aura collision may occur but objects are unaware of this 
as such a collision may not last for a sufficient amount of time to enable the DVE to ready the group membership 
details before objects move away from each other (aura collision no longer exists). Consider again the example 
of a fighter aircraft object and a foot soldier object. If the fighter aircraft flies over the position of the foot soldier 
and initiates an attack on the soldier’s position then the DVE must detect when aura collision occurs and enable 
message exchange between the appropriate objects. The aura of the fighter aircraft object may only collide with 
the aura of the foot soldier object for such a small period of time that it may not be possible to resolve the 
appropriate object group membership in a timely fashion. A solution to this would be to extend the fighter 
aircraft’s aura to enable such interaction. However, extending the aura may result in the fighter aircraft 
potentially influencing many more objects than is necessary and may result in scalability problems as the node 
hosting the fighter aircraft would be required to participate in redundant message exchange with many nodes. 

Solutions to interest management scalability that combine aura and region based approaches have been proposed 
[14]. However, there is still an issue as to what region sizes are appropriate and the ability to determine aura 
collision in a timely fashion is still a problem. 

3. Predictive Interest Management 

In this section we describe an interest management scheme based on predicted movement of objects in a virtual 
world. For simplicity we consider only an object’s aura and therefore an object’s potential influence. We refer 
only to an object’s aura throughout the remainder of the paper. However, our scheme does not exclude the 
support of the focus, nimbus and awareness model for further enhancing more detailed interest management 
schemes. 

3.1. Identifying Scope of Interest 

The aura of an object describes an area of the virtual world enclosed by a sphere (figure 1). The radius of an aura 
is specified on a per object basis and is fixed at object creation time, with each object having a single aura and 
the position vector of an object identifying the centre of its aura. Objects have the ability to influence each other 
when their auras collide. Objects exert their influence over each other via the exchange of messages. 
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Figure 1: Defining predicted Area of Influence (PAI) 

 

A predicted area of influence (PAI) identifies the extent of an object’s aura over a period of time given the 
distance an object may travel in a straight line in any direction (figure 1). The period of time used to identify a 
PAI is bounded by current local node time, say tclt, and some future time (tclt+ft, where ft is a positive number and 
is defined system wide). By this method the distance an object, say obj1, travels in a straight line identifies the 
radius of a sphere that encloses all the areas of a virtual space reachable by obj1 between tclt and tclt+ft with the 
position vector of obj1 at time tclt defining the centre of this sphere. Extending this radius by the radius of obj1’s 
aura defines a sphere that describes the PAI for obj1. When determining a PAI we assume an object is traveling at 
its highest speed (defined on a per object basis) in a straight line at time tclt and continues at this speed and 
direction until tclt+ft. This presents a PAI that is guaranteed to contain all possible auras of an object between tclt 
and tclt+ft irrelevant of an object’s velocity. Assuming the highest speed remains constant for an object throughout 
its lifetime allows a PAI to be calculated and fixed at object creation time. 

When the PAIs of two objects collide, but not their auras, there is a possibility that such objects may influence 
each other and subsequently exchange messages at some point in the near future. A period of time (window of 
collision) may be defined within which the auras of such objects may collide. The upper bound of a window of 
collision is infinity (as both objects may never move). However, assuming two objects are traveling towards 
each other in a straight line at their respective top speed (figure 2) provides an optimistic upper bound value 
(OUBV) as the value of ft. Due to the possibility that the auras associated to objects may be different in scope, 
the value of OUBV is specific between a pair of objects that share a collision window. 

 

Obj 

PAI 

Aura
Obj 

Defining OUBV

 
Figure 2 : Defining OUBV 

 

Using collision detection techniques based on the intersection of spheres we may identify if a collision window 
exists between two objects. This technique is computationally cheap compared to collision detection between 
polygons as we only need to determine if the distance that separates objects (sd) is less than twice the radius of 
the PAIs associated to the objects. Once a collision window has been established between two objects we may 
determine if their auras collide (the distance that separates two objects is less than the sum of the radii of each 
object’s aura). If a collision window exists between two objects then sd may be used to determine an 
approximate upper bound value (AUBV) indicating the time taken for the auras of these objects to collide 
assuming they are traveling towards each other in a straight line at their respective full speeds. This calculation 



 

for AUBV may be derived by first calculating the distance between the edges of two object’s auras and deducing 
the percentage value of sd when compared to this value. 

We can use values gained for AUBV to provide a basis for predicting the appropriate frequency for message 
exchange between two objects within a collision window. We now continue with a description of a scheme that 
may be used to initiate the exchange of messages to enable interest management. 

3.2. Message Exchange 

Each node is responsible for sending a positional update message (PUM), identifying the position vector of the 
objects that it hosts, at regular intervals to all other nodes. Only those objects that have changed position since 
the last PUM was sent will be included in the next PUM. Therefore, a PUM contains position information 
relating to a subset of all objects hosted by a node. PUM messages are sent frequently between nodes and form 
the basic mechanism for message exchange between nodes that host objects that influence each other. A PUM 
also carries the unique identifier of the node that sent it. 

In order to allow nodes to calculate if PAI’s overlap we must propagate additional information. Therefore, a node 
sends an admin PUM (APUM) that contains aura radius, PAI radius and vector position information for all the 
objects it hosts (an APUM also carries the unique identifier of the node that sent it). Nodes must exchange an 
APUM before they can exchange PUMs. APUMs are sent much less frequently than PUMs and form the basic 
mechanism for identifying when nodes should exchange PUMs and which nodes should receive them. 

We assume the existence of a publish/subscribe (messaging) service capable of providing reliable FIFO event 
channels for message dissemination between nodes. We consider the messaging service reliable because we 
assume a message published by a node (publisher) is eventually receivable by all interested nodes (subscribers). 
Messaging services may use the notion of event channels and filters [17] for disseminating messages. An event 
channel may be registered with the messaging service allowing publishers to place messages on event channels. 
Subscribers register to one or more event channels and receive messages placed on these event channels. The use 
of filtering allows publishers and subscribers to further refine the types of messages they are interested in.  

We register the following event channels in the messaging service:  

 
• Admin – Used to disseminate APUMs to all nodes. All nodes subscribe and publish to this event 

channel. 
• Local – Created on a per node basis to provide a mechanism for passing APUMs and PUMs between 

nodes without the need to publish such messages to all nodes. 
 

A node maintains a list relating to the subscription of nodes to its local event channel. Let us define this list as L 
and a node identifier defined as i with a subscript integer used to differentiate between nodes such that L = {i1, i2, 
…., in}. A local event channel contains a filter such that a number of nodes registered on the local event channel 
are prevented from receiving PUMs but not from receiving APUMs. This filter is used to differentiate those 
subscribed nodes that are known to host objects that are not within a local node’s influence but may come within 
the local node’s influence in the near future (i.e., PAIs of another node’s objects overlap with locally hosted 
objects but their auras do not overlap). We identify the nodes registered under this filter using the list identifier 
and a subscript pai such that Lpai = {i1, i2, …, in}. A logical clock LC is defined on a per node basis and is 
incremented immediately prior to the publishing of a message by a node and used to timestamp published 
messages. A published message is identified by the type of message and a timestamp written as a subscript (e.g., 
APUMts). The local LC is also used to identify when a node is added to L and is described by the timestamp 
presented as a superscript (e.g., i1

5 represents a node i1 added to L at time 5). When a node is no longer restricted 
by the filter Lpai we update the timestamp associated with the node to the current value of the local LC.  pubi(m) 
denotes the event of publishing message m by a node i, subi(m) denotes the event of subscribing to a message m 
by a node i and reci(m) denotes the event of node i receiving a message m. When the local host is publishing, 
subscribing or receiving we drop the subscript for clarity. The sender of a message is identified by its node 
identifier and appended to the message type as superscript (e.g., APUM3

ia identifies a message with timestamp 3 
issued by node ia).We may now clarify our descriptions relating to the validity of event channel subscription and 
what messages subscribers should receive: 

 
• If ib ∈ Lpai then ib ∈ L, a node that is registered under the filter Lpai is registered under the local event 

channel L. 



 

• If ib
x ∈ L then ∄ ic

y ∈ L such that b = c, a node may only be registered once in the local event channel 
L irrelevant of differences in timestamp identifiers.  

• If ib
x ∈ L and ib

x  ∉ Lpai then sub(PUMy) given that y ⋝ x, a node that is a member of the local event 
channel L but not inhibited by filter Lpai is subscribed to all PUMs  that are time stamped greater than 
the node’s timestamp as recorded in L. 

• If ib
x ∈ Lpai then sub(APUMy) given that y ⋝ x, a node that is a member of the local event channel L 

that is associated to filter Lpai is subscribed to all APUMs timestamped greater than the node’s 
timestamp as recorded in Lpai. 

 

A node maintains three local timers responsible for regulating the frequency it publishes APUMs on the admin 
channel (ta), APUMs on the local channel (tal) and PUMs on the local channel (tp) respectively. The time 
interval used to define the frequency a node publishes APUMs on the admin channel may be appropriately 
measured as a percentage of ft (20% of ft would be reasonable) and is described as tat. The time interval used to 
define the frequency a node publishes APUMs on the local channel is dependent on the AUBV times identified 
by the local node (this is explained in detail later) and is defined as talt. The time interval used to define the 
frequency a node publishes PUMs on its local channel is defined on a per node basis (left to developers 
discretion) and is defined as tpt. As mentioned previously, the publishing of PUMs is more frequent than the 
publishing of APUMs as PUMs are used as the message exchange mechanism between nodes hosting objects 
that influence each other. 

On receiving an APUM, say from ib, the receiving node, say ia, determines how to handle the APUM based on 
the existing message exchange scenario that exist between ia and ib. There are three scenarios that may exist: (1) 
ib is registered in L but not associated to filter Lpai; (2) ib is not registered in L; (3) ib is registered in L and is 
associated to filter Lpai. Irrelevant of scenario, ia receiving an APUM from ib results in ia calculating if there are 
any collision windows that exist between those objects described in the APUM and objects hosted by ia. If 
collision windows exist but auras do not overlap then the lowest AUBV value is identified (AUBVlow). We now 
describe the events that take place when ia receives an APUM from ib in each of these scenarios. 

 
(1) If registered in L but not associated to filter Lpai - 

a. If no collision windows exist then ib is unsubscribed from L. 
b. If one or more collision windows exist and auras overlap then the APUM is examined to determine 

if new objects have been introduced into the virtual world by ib since the last APUM sent by ib. 
c. If collision windows exist, auras don’t overlap and AUBVlow is greater than tat then ib is 

unsubscribed from L. If AUBVlow is less than tat then ib is associated to Lpai and talt is reevaluated to 
take into account AUBVlow. 

(2) If not registered in L - 
a. If no collision windows exist then the APUM is ignored.  
b. If collision windows exist and auras do overlap then ib is subscribed to L (but not associated to 

Lpai). Once subscribed, ia publishes an APUM on L ensuring that ib gains the latest information 
regarding object properties at ia before receiving any PUMs from ia.  

c. If collision windows exists, auras don’t overlap and AUBVlow is less than tat then ib is subscribed to 
L, associated to Lpai and talt is reevaluated to take into account AUBVlow. If AUBVlow is greater than 
tat then the APUM is ignored. 

(3) If registered in L and also associated to Lpai -  
a. If no collision window exists then ib is unsubscribed from L. talt is reevaluated to take into account 

that an earlier APUM that ib sent may have resulted in its current value. That is talt is only valid if 
derived from member nodes of Lpai. 

b. If collision windows exist and auras overlap then ib is disassociated from the filter Lpai and the 
APUM is examined to determine if new objects have been introduced into the virtual world by ib 
since the last APUM sent by ib. As in 3.a, this will require the reevaluation of talt.  

c. If collision windows exist, auras don’t overlap and AUBVlow is greater than tat then ib is 
unsubscribed from L. As in 3.a, this will require the reevaluation of talt. If AUBVlow is less than tat 
then talt is reevaluated to take into account AUBVlow and ib remains associated to Lpai. 

 

From our descriptions we can see that the receiving of an APUM may result in the initialization of PUM 
exchange between nodes, the suspension of PUM exchange between nodes or an increase or decrease in the 
frequency of APUM exchange between nodes (identified by the reevaluation of talt). We may now clarify our 



 

descriptions relating to the way a node manages local subscriptions and evaluates talt based on information 
received in an APUM: 

 
• If recia(APUMx

ib) ∧ ((AUBVlow of APUMx
ib) ⋜ ia

aura) then ib ∈ Lia ∧ ib ∉ Lpai
ia, a node that receives 

an APUM from ib that identifies overlapping auras requires ib to be subscribed to L but not associated 
to Lpai. 

• If recia(APUMx
ib) ∧ (ia

aura ⋜ (AUBVlow of APUMx
ib) ⋜ ia

tat) then ib ∈ Lia ∧ ib ∈ Lpai
ia, a node that 

receives an APUM from ib that identifies no overlapping auras but overlapping PAIs less than tat 
requires ib to be subscribed to L and associated to Lpai. 

• If recia(APUMx
ib) ∧ (AUBVlow of APUMx

ib) ⋝ ia
tat) then ib ∉ Lia, a node that receives an APUM from 

ib that identifies no overlapping PAIs less than tat requires ib not to be a member of L. 
• If recia(APUMx

ib) ∧ ((AUBVlow of APUMx
ib) ⋜ ia

talt) such that ib
y ∈ Lpai

ia ∧ y ⋜ x then ia
talt = 

AUBVlow, a node that receives an APUM from a member of Lpai that indicates an AUBVlow lower than 
the current value of talt then talt must be set to AUBVlow. 

3.3. Discussion 

Sending APUMs infrequently on the admin channel ensures that all nodes participating in a virtual world may 
eventually realize the objects hosted on other nodes. The frequency of sending APUMs (tat) on the admin 
channel needs to take into account approximated worst case message latency times between nodes and the need 
to ensure nodes are prepared for possible PUM message exchange in the near future. When distances between 
objects hosted on different nodes decreases the frequency of message exchanges between such nodes increases. 
Similarly, when the distance between objects hosted on different nodes increases then the frequency of message 
exchange decreases. This is a result of updating talt based on received APUM messages. Via this technique we 
may ensure that prior to objects influencing each other, our approach to interest management may prepare in 
advance for appropriate message exchange between nodes. 

Message exchange increases between nodes that host objects that move closer to each other in the virtual world. 
Such objects may move apart before their auras overlap. This may be viewed as unnecessary message exchange 
between nodes as such objects are not influencing each other. However, we accept this overhead to ensure that 
objects are prepared for message exchange if their auras eventually overlap.  

A difficult design decision is determining the frequency a node sends an APUM. We base our decision on 
AUBVlow. However, there may be nodes with a high AUBV compared to other nodes registered in Lpai. 
Unfortunately, these nodes will be sent APUMs at a frequency much higher than required. For example, node i1, 
node i2 and node i3 host objects that are participating in a virtual world. Both i2 and i3 are registered in i1’s Lpai. 
Assume the AUBV of i2 is 1 and the AUBV of i3 is 5. In our scheme i3 will be sent APUMs by i1 once per second 
when in fact a frequency of once every 5 seconds would be sufficient. A different design choice would be to 
send i2 and i3 messages independently of each other by i1 to match the different frequency requirements. This 
results in increasing the volume of messages sent and the processing required by i1 managing the sending of 
messages. This problem is not restricted to DVE development but is common to publish/subscribe systems in 
general (related to server side filters). The way publish/subscribe services attempt to solve such problems is via 
the management of message dissemination not at the sender but at the server (scalable publish/subscribe services 
are commonly deployed as an arrangement of servers). There are several works that are investigating scalable 
message dissemination for publish/subscribe services [10] [11] [12]. Message dissemination that takes into 
account varying AUBV values may be more appropriately achieved at the server side of a publish/subscribe 
system rather than the client side (i.e., not in i1, i2 and i3 in our example). 

4. Conclusions and Furture Work 

Our approach is primarily aimed at virtual worlds that share the same properties as DIS and CVE type 
applications. Objects within the virtual world may vary greatly in the properties they exhibit (such as speed) and 
the virtual world may represent a large geographic area. However, there is still a requirement to support intricate 
interactions between objects in a timely fashion. We have proposed a message exchange policy based on interest 
management and predictive modeling of object movements. Our approach aims to vary message exchange 
between nodes based on the likelihood that objects will influence each other in the near future. A node may 
determine the frequency of sending messages based on the top attainable speed and the proximity of objects. Our 



 

approach requires no regionalization of the virtual world and is suitable for virtual worlds that contain objects of 
greatly varying speeds. As such, we aim to avoid problems associated with missed interactions involving aura 
and regionalization by enabling the DVE to ensure message exchange occurs at an appropriate frequency before, 
during and after the collision of auras. Message exchange is enabled via a publish/subscribe service. We argue 
that existing research into publish/subscribe services provides appropriate avenues for ensuring message 
dissemination for DVEs and that DVEs should make use of such services in the future. 

Future work will concentrate on identifying our approach to interest management coupled with publish/subscribe 
services that may provide appropriate message dissemination. This approach is related to the aggregation 
techniques found in [15] [16] and is already highlighted as an appropriate approach to message dissemination 
[18] [19]. An implementation of our approach using Java 3D and the CORBA Notification service is in 
development. 
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