
Load Balancing for Massively Multiplayer Online Games

Fengyun Lu

Newcastle University
School of Computing Science

UK

+44 191 2227105

Fengyun.Lu@ncl.ac.uk

Simon Parkin

Newcastle University
School of Computing Science

UK

+44 191 2226053

S.E.Parkin@ncl.ac.uk

Graham Morgan

Newcastle University
School of Computing Science

UK

+44 191 2227983

Graham.Morgan@ncl.ac.uk

ABSTRACT

Supporting thousands, possibly hundreds of thousands, of players

is a requirement that must be satisfied when delivering server

based online gaming as a commercial concern. Such a

requirement may be satisfied by utilising the cumulative

processing resources afforded by a cluster of servers. Clustering

of servers allow great flexibility, as the game provider may add

servers to satisfy an increase in processing demands, more

players, or remove servers for routine maintenance or upgrading.

If care is not taken, the way processing demands are distributed

across a cluster of servers may hinder such flexibility and also

hinder player interaction within a game. In this paper we present

an approach to load balancing that is simple and effective, yet

maintains the flexibility of a cluster while promoting player

interaction.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia

Information Systems - Artificial, Augmented, and Virtual

Realities C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
Massively Multiplayer Online Games (MMOGs) provide gaming

arenas within which hundreds of thousands of players participate.

There are a number of MMOGs that have gained commercial

success based on the premise of charging players to participate in

large scale persistent virtual worlds. In such virtual worlds players

may assume alternate identities and “live out” scenarios of their

own choosing while participating in game play regulated by

MMOG vendors. These types of MMOGs are commonly termed

massively multiplayer online role-playing games (MMORPGs).

MMORPG implementations are server based, allowing vendors to

regulate the provision of ever evolving alternate realities to

maintain player interest and, most importantly, restrict

participation to subscribed players. Player consoles connect to a

server which provides players access to a virtual world. As

revenue is generated on a per-player basis, the more players that

can be supported by a MMORPG the more revenue may be

generated. Therefore, scalability of a server, in terms of number of

players supported, is of great importance to ensure commercial

success.

To satisfy the demand for processing resources to provide scalable

MMORPGs, clusters of servers are employed to cumulatively

maintain game play by managing player interactions. The

additional processing resources required to support an increase in

player numbers is satisfied via the addition of servers to a cluster.

A major challenge in constructing scalable server side solutions

for MMORPGs is the need to provide players with mutually

consistent views of the gaming arena in a timely manner to allow

fair game play. However, when a virtual world contains hundreds

of thousands of players the required consistency cannot be

achieved in a timely manner without localised game play. By

identifying localised instances of game play the consistency of the

gaming arena becomes a more manageable problem of ensuring

consistency between subsets of interacting players.

The problem of satisfying the processing requirements of

localised game play over a number of servers in a cluster needs to

be tackled efficiently: load balancing techniques are required to

ensure processing resources are allocated within a cluster to make

best use of available servers. An ideal solution would be to ensure

such load balancing techniques allow: (i) equal distribution of

resources - prevent exhausting available processing resources on

one server while there is spare capacity on other servers; (ii)

flexible configuration - may afford the addition of servers during

runtime to accommodate additional players with minimum

disruption to game play; (iii) promotion of game play - does not

hinder game play by overly restricting player interaction within a

virtual world.

Our earlier work [1] demonstrated an approach to modelling

localised game play within a virtual world that does not hinder the

interaction requirements of players. This work was subsequently

implemented using a network of servers and was demonstrated to

be scalable [2]. In this paper we tailor our system for deployment

over a cluster of servers and present a series of experimental

results. We demonstrate that load may be efficiently balanced over

a server cluster. In addition, our approach uses standard load

balancing mechanisms common in many Internet based

applications, allowing improved consistency via the addition of

servers to handle increasing numbers of players with minimum

disruption to the gaming experience of players.

The paper continues with a description of server side solutions to

load balancing techniques that may be deployed in MMORPGs

that use clustering of servers to gain scalability. Section 3

provides an abridged description of our approach to

regionalisation, its implementation using server clustering and

how we economically make use of existing load balancing

techniques. A series of experiments and associated results

demonstrating the usefulness of our approach is presented in

section 4. Section 5 draws conclusions from our work and

indicates future directions we expect to take in this line of

research.

2. BACKGROUND
The technologies that combine to provide scalable online games

supported by server clustering are determined by design choices

made in the areas of virtual world regionalisation (with respect to

identifying instances of localised game play), server clustering,

and load balancing. Design choices made in each of these areas

cannot be considered in isolation. For example, the choice of how

to regionalise a virtual world will influence how server clustering

and load balancing is achieved. Alternatively, the design of a

server cluster will feedback into the manner with which

regionalisation of a virtual world may be achieved. In existing

literature one or more of these design choices are assumed,

resulting in a narrowing of the available solutions. Therefore, in

this section we afford a degree of detail we believe is a necessity

for gaining a clear understanding of the possible solutions

available to developers.

2.1 Regionalisation
There are two extremes when determining how to sub-divide a

virtual world for the purposes of modelling player interaction

(localised game play) and providing manageable consistency:

• Geographic – world divided into regions at initialisation

time to reflect the structure of a virtual world.

• Behavioural – virtual world sub-divided to reflect the

interaction patterns of players.

Geographic approaches are suited to virtual worlds that contain

barriers to interaction that do not look out of place. For example,

rooms in a building may be regions and only players that share a

room may influence each other. Behavioural approaches are

determined not by static virtual world constraints such as walls

and ceilings, but by the ability of a player to express influence and

other players to express interest. For example, a fighter aircraft

may exert a greater degree (area) of influence than a foot soldier.

When it is not convenient to use virtual world structures to define

regions of a virtual world for use in a geographic approach, a

behavioural approach is more appropriate.

Work on the regionalisation of a virtual world for attaining

scalability and manageable consistency finds its origins in

academic research commonly termed interest management.

Regionalisation of the virtual world for interest management was

first demonstrated in NPSNET, original version presented at

SIGGRAPH 1991 [3] with regionalisation added in 1993/4 [4].

NPSNET divided the virtual world into static geographic regions

of regular sizes (not necessarily reflecting structures in a virtual

world), restricting interaction between players that exist within the

same or neighbouring regions.

The aura/nimbus approach, used by MASSIVE in the mid 90s [5],

modelled influence on a per player basis [6]. An aura describes

the area of a virtual world a player may exert influence with a

nimbus identifying an area of the virtual world a player may

express interest. Although this approach is still reliant on the

notion that players interact if they are geographically close to each

other in a virtual world, more accurate modelling of interaction

between players is possible compared to the NPSNET approach.

However, the additional processing resources required to

determine each player influence individually made this approach

not as scalable as the region based approach [7] [8]. Attempts

have been made to reconcile the scalability of regions with the

accuracy of auras with some success [9, 10]. However, the

scalability required for commercial MMORPGs is not achieved by

such systems.

2.2 Server Clustering
Popular games in the MMORPG genre (e.g., EverQuest, Asher’s

Call, Ultima Online, City of Heroes, and Star Wars Galaxies) all

employ clustered server solutions to achieve scalability while

managing consistency. The techniques used to implement their

interest management solutions in a server cluster is not described

in detail in a published article for general viewing (which is to be

expected for a commercial enterprise in a competitive market).

However, there is an article describing EverQuest’s approach in

general terms: a mixture of regions and “duplicate worlds” with

each duplicate world supporting approximately two to three

thousand players with each world divided into regions based on

the geography of the virtual world [11]. As regionalisation is

associated to virtual world geography, this approach is closely

related to geographic virtual world sub-division schemes.

In EverQuest a duplicate world is itself supported by a cluster of

servers, with regions used to aid in allocating the processing

requests originated from player actions amongst such servers as

and when required. Due to the similarities in game play and the

existence of duplicate worlds; one may assume that all other

commercial MMORPGs approaches to implementation of interest

management are similar, conceptually, to that of EverQuest.

Duplicate worlds and geographic influenced regionalisation

present a three step approach to reducing the consistency problem

to a manageable size: (i) players do not interact across different

duplicate worlds; (ii) players do not interact across different

regions; (iii) Players interact intricately with other players they

specifically target (e.g., click on with mouse). This approach

provides two distinct forms of interaction: (i) a general, viewing

type style, where players can see the actions of others in their

region (assuming appropriate line of sight); (ii) an intricate

manner where players directly interact with each other in a user

directed way. The latter form of interaction requires consistency

to be greater as ordering of events are usually crucial in intricate

game play (the server must resolve player interaction). The

consistency can be weaker in the general style of interaction as

summary information could be propagated between players. For

example, in a fight between two players in a virtual world attacks

must be regulated (e.g., ordered, not lost in transit) between

engaged players (e.g., spells, hitting, shooting) to provide an

outcome (e.g., decreased health, loss of inventory). However, for

players watching a fight between other players there is only a need

to view a series of fighting moves and the end result (that may or

may not reflect the actual fight moves as enacted between the fight

participants).

Commercial MMORPGs aside, there are a number of other works

in the area of scalable server side solutions that may be

appropriate for MMORPGs. A notable contribution is work

carried out by IBM. IBM has produced region based services that

are capable of supporting MMORPGs [12] that attempt to make

use of standards such as Web/Grid services. Regions are again

used in this work, providing a platform that would allow a similar

approach to implementation that would be expected in the

commercial MMORPGs already discussed. Other works (e.g.,

RING [16]) do employ multiple servers, allocating regions of

virtual worlds to different servers, providing a similar approach to

scalability (regions to servers) as advocated in commercial

MMORPGs.

There are a large number of academic works that have advocated

the client/server approach to virtual world implementation that,

with tailoring, may be suited to MMORPGs. BrickNet [15] is an

example of academic work that employs a server side solution.

However, in such works scalability is limited without the ability

to support server clustering.

2.3 Load Balancing
Load balancing is a term used to describe an attempt to efficiently

distribute an application’s processing requirements across a

number of servers. Considering server clustering for MMORPGs,

there are two ways of achieving load balancing:

• Player – Players are allocated to different servers (or

mini-clusters of servers) as and when they join a game.

• Interaction – Servers manage allocation of processing

recourses based on the interaction patterns of players.

The player oriented approach to load balancing is similar to

standard load balancing techniques in many server based

applications found on the Internet (e.g., search engines, shopping

carts, and auctions). These approaches rely on a network address

translator (NAT), or software equivalent, to allocate clients to

servers efficiently using a number of load balancing techniques

(e.g., round robin). The NAT “remembers” which server a

particular client is attached to and directs all requests from a client

to the same server during the lifetime of a session. A session is

simply an application dependent classification of related client

requests. The term sticky session is used to describe how a session

should “stick” to the same server throughout its duration. In

MMORPG a session may be identified as a prolonged period of

unbroken game play of a player.

Using a NAT alone for load balancing is most viable given the

ability of a single server to satisfy all a client’s requests

(homogenous approach to server clustering). Using this approach

to load balancing allows servers in the cluster to be removed for

maintenance or added as and when required without hindering

players on other servers. In MMORPGs, allocation of players to

duplicate worlds (and associated mini-clusters) is a close relation

to this form of load balancing, apart from the fact that the players

themselves, not a NAT, chooses which duplicate world they will

visit.

Once players are allocated to a duplicate world, there is still a

need to balance load across the server cluster supporting such a

world. If players are allocated to servers, as in the player centric

approach to load balancing, there would be a need for servers to

inter-communicate as players hosted on different servers interact

with each other. This increase in server side message exchange

may exhaust available bandwidth and processing resources if an

attempt is not made to limit such message exchange. This is where

the use of interest management becomes pivotal in the role of load

balancing for MMORPGs: interest management may identify

interacting players and be used to limit inter-server

communications while still allowing player interaction to occur.

The geographic approach of virtual world duplication and

regionalisation found in MMORPGs lends itself to load balancing

as design time decisions can be made as to which servers may

satisfy the processing requirements of different regions of a virtual

world. In this approach there is no requirement for inter-server

communications to model player interactions as all players will be

located in the same region, and therefore, be on the same physical

server. In addition, convenient breaks in game play (e.g., set piece

animation of travelling through a tunnel) can be introduced to

hide the delay encountered when a player crosses geographic

boundaries and associated processing resources are handed over

to different servers.

Due to the ease with which the geographic approach to interest

management may be mapped to processing resources there has

been little interest in mapping the behavioural approach to

servers.

2.4 Crowding
Allocating processing resources to different geographic regions of

a virtual world can result in crowding. Crowding is a phenomenon

that occurs in online gaming when the number of players that

congregate in the same area of a virtual world inhibits the

successful execution of interest management in a timely manner.

The effects of crowding may be a slowdown in game play or, in

worst case scenarios, a complete inability to enact player

interaction. This may be considered the same problem of

consistency management that regionalisation is attempting to

alleviate: without regionalisation the virtual world itself (single

region) may become populated by a sufficiently large number of

players as to make the consistency problem unmanageable.

In the presence of server clustering, there is an opportunity to

alleviate the crowding problem by dynamically associating

processing requirements generated by player actions during

runtime. This takes the form of load balancing player activities

across servers with respect to regions. The literature provides a

number of solutions to load balancing across server clusters

suitable for MMORPGs. Regions may be reduced in size by sub-

dividing them further (allocating servers to these additional sub-

divisions) [17]. Other methods distribute responsibility for region

execution to a particular server at runtime based on the volume of

players in a region [18], while other methods dynamically resize

regions during runtime [19]. Such approaches may be fine tuned

further to ensure that the cost of moving responsibility for

execution to another server is minimised [20].

EverQuest also describes runtime allocation of resources from

within small clusters of servers responsible for a duplicate virtual

world. Although no great technical detail is provided on how this

is achieved [11], the premise of this approach appears to be player

driven: when player enacts a particular action (e.g., opening a

door, entering into battle) processing resources are allocated to

satisfy the increased processing requirements.

2.5 Discussion
We find a contradiction in the direction of research concerned

with the approach to server side load balancing in MMORPGs: (i)

is based on geographic regionalisation to minimise server side

inter-communications to promote scalability; (ii) requires inter-

server communications to alleviate process exhaustion due to

crowding.

The behavioural approach to interest management has been

overlooked as it did not lend itself to load balancing in the same,

obvious manner, as geographic approaches to interest

management. However, with the problem of crowding we

encounter the same need for inter-server communication, yet

without the intricate game play afforded by behavioural

approaches to interest management. In addition, the allocation of

server resources dependent on interactions in a virtual world

requires quite elaborate techniques compared to the traditional

NAT load balancing approaches that are commonplace, increasing

processing resources required for the load balancing mechanism.

We compare the geographic approach to load balancing using the

three points relating to an ideal solution for load balancing

described in the introduction of this paper:

(i) equal distribution of resources – crowding can exhaust

server resources on one server while other servers are

lightly loaded;

(ii) flexible configuration – as virtual world geography is

linked to server configuration, removing or adding servers

is not straightforward (even if no players exist, re-

allocation of server responsibilities regarding virtual

world geography is required within a cluster when servers

are added or removed).

(iii) promote game play - geographic regionalisation is not as
appropriate as behavioural approaches when modelling

player interaction. Requiring additional “highlight by

click” intervention of a player.

2.6 Contribution of Paper
We wish to clarify and simplify an approach to load balancing for

MMORPGs and other, similar, games that depend on clustered

server solutions for scalability. We believe that online games that

gain scalability from server clustering will inevitably require

communications between servers, irrelevant of what techniques

are used for load balancing. Therefore, deriving ever more

elaborate techniques for mapping geographic regionalisation to

server allocation in a bid to prevent inter-server communications,

we believe, is not the appropriate avenue to take. We make this

statement for two reasons: (i) geographic regionalisation does not

afford the greatest potential for game play (player interaction); (ii)

the eventual cost, in terms of processing overhead, of elaborate

techniques of allocating processing resources in this manner

comes at a high price (process intensive).

In previous work we developed behavioural type approaches to

interest management that can scale [1] and be implemented in a

distributed server model (where servers are geographically

separated) [2]. We now advance this work into the area of

clustered server solutions.

We disregard all load balancing techniques based on mapping

geographic regions to servers. Instead, we restrict ourselves to

only using standard, “off the shelf”, sticky session type load

balancing common with a NAT based infrastructure. This allows

our technique to be economically employed with existing load

balancing technologies. Furthermore, as our technique is

behaviourally based, it affords more opportunity for introducing

rich interaction into game play than a geographic approach to

interest management. This added bonus may improve game play

substantially as players can more naturally interact with each other

without having to point and click at other player/artefacts to

invoke intricate game play. We demonstrate that our approach is

scalable via a series of experiments.

An additional contribution this paper makes to the community is

to provide a comprehensive overview of the state of the art in

scalable load balancing techniques for MMORPGs (described in

this section). We do this by clarifying, via categorisations, the

topics of interest management and load balancing in MMORPGs.

These two topics are intricately linked, and a clear understanding

of both is a necessity for any researcher in this area.

3. IMPLEMENTATION
We now describe our approach to clustered server deployment of

our system. We start by describing our approach to load balancing

and then continue with descriptions of our interest management

and server clustering implementation. We provide descriptions in

this paper only in sufficient detail to understand how our

approach is deployed over a cluster of servers. Extended

descriptions of our interest management scheme and its

implementation may be found in [1] [2], only the changes that

have been made to accommodate server clustering are highlighted

here.

3.1 Load Balancing
Our approach to load balancing is typical in the area of clustered

server solutions and relies on the allocation of client machines

(player consoles) to servers. We allow servers to communicate

player actions to each other as and when required but do not move

responsibility for processing player actions from the server they

are initially allocated. The diagram in figure 1 describes our server

cluster implementation.

In figure 1 a player’s console (C1) connects to the server cluster

via a load balancer (NAT), and is then associated to a particular

server in the application tier (e.g., S1) for the duration of this

session of interaction (sticky session). The application tier

satisfies the runtime requirements of game play. Via the database

tier, an application server may gain access to persistent artefacts

that constitute a gaming arena (e.g., virtual world constructs,

players’ statistics). A load balancer may exist between the

application tier and the database tier, presenting a single “image”

of a database to the application tier, simplifying the

implementation of the application tier (no need for application tier

to be concerned with database load balancing).

S1

S2

S3

C1

Application

logic tier

Data store

tier

Load

balancer

(NAT)

Server

cluster

technologies

C2

Load

balancer

(NAT)

Figure 1 – Server clustering in n-tier systems

We assume that the load balancers that are present (client-to-

application and application-to-data) are standard “off the shelf”

NAT type load balancers. Any load balancing scheme may be

enacted, however, we assume a simple round robbin approach that

attempts to equally distributed players to servers.

3.2 Interest Management
Our interest management scheme, predictive interest

management, may be considered behavioural in its approach, as

player interactions are associated to player expressiveness as

apposed to static geographic regionalisation of the virtual world.

We use auras (as described in [5]) for determining when players

should exchange messages. For clarity, we describe predictive

interest management by describing inter-player interaction only.

For a more detailed description of predictive interest management

the reader is directed to [1] [21]. Our scheme does not rely on the

presence of a server (acting as an oracle) and is suitable for peer-

to-peer deployment. We use the term avatar to denote a player’s

representation in a virtual world.

The aura of an avatar describes an area of the virtual world

enclosed by a sphere (Figure 2). The radius of an aura is specified

on a per avatar basis and is fixed at avatar creation time. Avatars

have the ability to influence each other when their auras collide

via the exchange of messages.

A predicted area of influence (PAI) identifies the extent of an

avatar’s aura over a period of time given the distance an avatar

may travel in a straight line in any direction (assuming an

avatar’s maximum speed).

Based on how PAIs and auras are overlapping in the virtual world

we may regulate message exchange between avatars:

• Aura overlap – aura overlap indicates interacting

avatars requiring high frequency positional update

messages (PUMs) to be exchanged between them.

PUMs carry positional information of the sending

avatar, but may also carry other game dependent data.

• PAI overlap – if PAIs overlap but not auras then there

is a possibility that such avatars may interact in the near

future, requiring admin PUMs (APUMs) to be

exchanged between them at a frequency that relates to

the degree of PAI overlap witnessed.

• No aura or PAI overlap – avatars exchange APUMs at

a low frequency, allowing for possible PAI/aura overlap

in the future to be realised.

In summary, the more PAIs overlap (but not auras) the higher the

frequency of message exchange. This provides a model where

avatars increase their message exchange frequency gradually until

auras overlap, when they continue by exchanging high frequency

messages. Alternatively, avatars decrease their message exchange

frequency gradually until they only exchange low frequency

messages.

Obj

Aura at time tclt

Aura at time tclt+ft

Distance travelled

between tclt and tclt+ft

Predicted area

of influence

Figure 2 – Defining Predicted Area of Influence (PAI).

Two avatars may come close to each other over time in a virtual

world (resulting in increased APUM exchange), but never

encounter aura overlap. This message exchange overhead is

accepted by us as necessary to avoid missing when avatar auras

are overlapping. In effect, we spread the processing requirements

related to the detection of aura overlap over a longer period of

time to avoid non-detection of aura overlap and promote a more

realistic interaction.

3.3 Server Clustering Implementation
Our concern, for this paper, is on clustering technologies related

to predictive interest management. Therefore, we perceive the data

store as a commercial database (e.g., Oracle) that comes complete

with its own load balancing technologies and concentrate our

discussion on the application tier.

Player consoles (clients) periodically send PUMs to the load

balancer. As a client may manage multiple avatars (we provide

flexibility in our approach in that we do not limit a client to a

single player representation in the virtual world), a single message

may contain multiple PUMs. These messages are synchronous

calls (implemented as RPC), with the return part of the message

containing one or more PUMs relating to avatars that are hosted

on other clients. A server may send PUMs to clients that have not

sent PUMs for a substantial length of time (i.e., due to player

inactivity – timeout determined by client). Our approach to

client/server interaction eases client participation in a virtual

world as clients only need send PUMs, not APUMs: the burden of

interest management implementation is solely within the

application server tier.

Between servers individual APUMs are periodically combined

into single messages and distributed on a per-server basis.

Collision detector Message handler

Predictive interest

manager

Inter-Server Communications

Manager

Server instance

Message aggregator

PUMs

description

of interest

Figure 3 – Components of a server instance.

Figure 3 describes the main server components that contribute to

satisfying the interest management requirements:

• Message handler - receives and returns messages to load

balancer. If necessary, registering new player information

using data store tier.

• Predictive interest manager - uses predictive interest

management to construct appropriate APUM messages.

• Collision detector - identifies aura and PAI overlap to aid

predictive interest manager in constructing appropriate

APUM messages.

• Message aggregator - composes single messages from

multiple APUM messages for distribution to other servers.

• Inter-Server Communications Manager - supports

message exchange between servers.

The message handler receives PUMs from the load balancer and

returns to the load balancer descriptions relating to player

interests. The interest manager implements the predictive interest

management scheme and calls on the collision detector to identify

aura and PAI overlap. The collision detector implements a

collision detection algorithm that we specifically designed for use

with predictive interest management [22]. The interest manager

constructs APUMs and passes them to the message aggregator,

which in turn composes single messages from multiple APUMs on

a per server basis and passes such messages to the appropriate

servers via the inter-server communications manager

(implemented at socket level).

APUMs are received at a server’s message aggregator and are

passed to the predictive interest manager to aid in determining the

interest of avatars. Information relating to the interest of avatars is

passed to the message handler by the predictive interest manager.

The message handler then informs the load balancer of updated

avatar interests.

Our peer-to-peer approach to interest management has been

directly mapped to the application server tier in our clustering

solution. Message aggregation is used to conserve bandwidth

between servers, and so aid scalability.

4. Performance Analysis
In this section we present a series of experiments to determine the

suitability of our approach to load balancing and interest

management to satisfy the requirements of an MMORPG. The

requirement we are specifically interested in is that of scalability:

can our approach scale to a level similar to that found in

commercial MMORPGs while satisfying timely and consistency

requirements.

Typically, when a server nears exhaustion of its processing

resources due to excessive client induced load a slowdown in

server performance is witnessed. If client load is increased further

server failure will follow. As we have strict timely requirements

we wish to avoid such a slowdown in a server: it would be

misleading to indicate that a server is supporting many thousands

of players when such support is ineffective due to real-time

requirements not been met. Therefore, as soon as a server cannot

satisfy the real-time requirements of its clients a server fails.

Failure of a server is apparent in the graphs when a line stops

short of the maximum number of players supported (denoted by

the x axis).

We measure the percentage of messages dropped by a server and

place a finite size on a server’s message queues. In this approach,

a server may maintain real-time requirements at the expense of

dropping messages. The percentage of messages dropped by such

queues forms the basis of our measurements in the experiments

presented in this paper.

4.1 Testing Environment
This testing is based on 20 useable machines on the same LAN

segment. Each machine has a 2GHz Intel Xeon processor

(equivalent of 2x2GHz Pentium 4 processors with Hyper

Threading) with 1GB RAM running Red Hat Linux 7.2.

Servers are located on different machines on the same LAN

segment. Client (simulated player) machines are located on

different machines outside this server cluster (but connected via

100 Mb Ethernet to the LAN cluster). Using the client machines,

synthetic networking traffic for representing players is created.

Player numbers are increased in increments of 500 from 500 to

6000 (depending on experiment), with measurements taken at

each increment.

Each experiment’s duration was one hour to ensure the

initialisation overhead does not skew the results (e.g., player

registering and stream socket setup). Additionally, the machines

used for this experiment are a shared resource. As such, the

performance of the machines and the available network bandwidth

can vary considerably depending on the number and nature of the

processes running on each machine at the time each experiment.

4.2 Experiments
Four experiments have been conducted to test different aspects of

the system:

1. Single Server - The maximum number of players which

can be supported by one server;

2. Player Interaction - The upper bound of message

frequency a player console can send PUMs to the cluster;

3. Prediction Overhead - The overhead of APUM in the

predictive interest management scheme compared with a

traditional aura-based interest management scheme;

4. Scalability - The scalability of the system in terms of the

number of players that can be supported simultaneously.

5.

The first two experiments’ results can be used to assist game

developers to estimate appropriate system variables (PUM

frequency, number of servers, maximum number of players

supported) to provide acceptable performance. For example, given

a threshold maximum drop rate and a PUM transmission

frequency, the results of the first two experiments can be used to

estimate the number of servers required to achieve acceptable

performance for a given number of players.

As mentioned in section 3.2, predictive interest management is a

peer-to-peer approach and so relies on message exchange to

realise when aura overlap occurs. To ensure this is achieved in a

timely manner additional messages are sent when auras near

overlap, producing a message overhead beyond that of a simple

aura based approach. Experiment 3 determines the cost of such an

overhead. To encourage a like-for-like comparison we make use

of the same message aggregation techniques used in predictive

interest management for our standard aura approach (we simply

identify an avatar’s PAI to be the same size as an avatar’s aura).

The fourth and final experiment is to determine the overall

scalability of the system. Additional servers are added to

determine if player numbers can be maintained. In the EverQuest

article [11], individual clusters of servers may support 2500 –

3000 players. Therefore, we are seeking to surpass this figure. We

admit to not providing the detailed game play as EverQuest (we

are a proof of concept academic work), but we at least hope to

demonstrate scalability in the same league as commercial games.

4.3 Virtual World Simulation
To avoid the need to manually manipulate each individual player

avatar in a virtual world we simulate avatar movement. We

attempt to re-create the phenomena of periodic crowding

throughout an experiment to identify that our approach is suitable

in such scenarios. Deriving a suitable simulation of avatars to

exhibit the type of behaviour expected in a virtual world is not

documented in the literature. Therefore, we afford a reasonable

description of our technique to allow reproduction of our

experiments by others.

A program, called RandomWayPointWorld, is used to simulate

the movement of player’s avatars. A number of static points in the

virtual world are generated, markers, at virtual world creation

time. Each player’s avatar chooses a marker at random and moves

towards the marker for a random amount of time, termed marker

selection time (MST). During MST, the avatar’s position is

updated at the same frequency as the PUM messages sent to the

cluster of servers. Once the MST has been exceeded, an avatar

selects another marker at random, and continues the process. Each

marker remains at a position for a random amount of time, called

marker relocation time (MRT). Once MRT is exceeded a marker

relocates to a new position in the world. In order to determine the

MST and the MRT, four values are used to calculate the minimum

and maximum range of MST and MRT. As the x, y and z

dimensions are identical in a cubic world; the diagonal size of this

world can be calculated as:

23 sizedia WSize =

MRTlower is the lower bound of the MRT and it is defined as the

time taken for an avatar travelling with its maximum speed to

cover a distance equal to half the diagonal size of the world.

MRTupper is the upper bound of the MRT. Compared with the

MRTlower, MRTupper is the time taken for an avatar travelling a

distance, which is the same as the full diagonal size of the world,

with its top speed. These two variables are represented as the

formulas below:

)()
2

1
(topSpeedSizeMRT dialower ∗=

)(topSpeedSizeMRT diaupper =

MRT is a random time selected within the range [MRTlower,

MRTupper] and can be decided based on the formula below:

))(

()(()

lowerupper

lower

MRTMRT

RandomMRTeCurrentTimMRT

−∗

++=

CurrentTime() is a function to get the current time of the system;

Random() returns a decimal number uniformly distributed

between 0 and 1. After the previous selected MRT has passed, the

MRT is recalculated. The process will repeatedly occur during the

lifetime of an avatar. This selection ensures that the time a marker

remains in a given position is a sufficient time, with respect to the

size of the world, to avoid markers repositioning too frequently. If

markers reposition too frequently, the avatar’s movement towards

the markers exhibits strange behaviour: when the avatars are

initialised, they are uniformly distributed within the virtual world

but, as time passes, the majority of the avatars crowd together in

the centre of the world. This is because, once an avatar reaches the

centre of the world, the direction they travel changes sufficiently

rapidly that it is unlikely they will be able to move to the

extremities of the world before they change direction

MST is chosen within the range of [MSTlower, MSTupper]. MSTlower

and MSTupper should be less than MRTlower and MRTupper

respectively. Therefore, an avatar can trace one marker and

change to a different marker before the marker relocation happen.

MSTlower and MSTupper can be defined as below:

4)(upperlowerlower MRTMRTMST +=

2)(upperlowerupper MRTMRTMST +=

Based on the calculated MSTlower and MSTupper, MST can be

determined:

))(

()(()

lowerupper

lower

MSTMST

RandomMSTeCurrentTimMST

−∗

++=

As the same as the MRT, MST will dynamically change during the

lifetime of the avatar.

In order to simulate the movement of an avatar, the trajectory can

be predicted based on a set of formulas, which are used to

calculate the current position, velocity and acceleration of the

avatar according to the previous relevant information. Given a

fraction time (dt), if the distance (dis_marker_obj) between the

avatar and the marker is less than the distance (dis_travelled) an

avatar can travel based on the previous velocity, the position of

the avatar is set as the marker position and the velocity is set as 0.

The avatar will stay at the marker once its’ position is set as the

marker and it remains still until next marker is selected. This will

give an avatar variable speed before its speed reaches its

maximum speed. If dis_marker_obj is larger than dis_travelled,

the avatar is still moving towards the selected marker, the new

position and velocity of this avatar is required to be calculated. To

simplify the calculation process, the acceleration is set as a fixed

value, 10 meters per second in each dimension.

4.4 Single Server
This experiment is intended to determine the number of players

(represented as avatars) a server can support simultaneously. Due

to physical restrictions, such as CPU speed and the amount of free

memory, the number of players a server can support

simultaneously has a limit.

Single Server (3 Messages per Second)

0

10

20

30

40

50

60

500 1000 1500

Number of Players

P
e
rc
e
n
ta
g
e
 o
f
M
e
s
s
a
g
e
s

D
ro
p
p
e
d

1 Server

Figure 4 – Single server

According to Figure 4, the message drop rate increases steeply as

the number of players increases. As can be seen from the graph,

with 500 players, the drop rate was just 1.96%; with 1000 players,

the drop rate increases to 16.9%; with 1500 players, the drop rate

reaches 54.8%. The performance of the system sharply degrades.

The reason for this is that the server received more messages than

it can handle per second. Therefore, under the current test

conditions, the maximum number of players a server can support

is 1500 players. However, considering the percentage of dropped

messages, player numbers of less than 1000 would be more

appropriate.

4.5 Player Interaction
The frequency a client sends PUM messages to a server must be

limited to some extent to avoid intolerable drop rates. Therefore,

the purpose of this experiment is to determine the maximum

acceptable frequency a node can send PUMs to a server cluster

that is of a fixed size. We compare server cluster sizes consisting

of 1, 2 and 3 servers.

2 Messages per Second

0

5

10

15

20

25

30

35

40

500 1000 1500 2000 2500

Number of Players

P
e
rc
e
n
ta
g
e
 o
f
M
e
s
s
a
g
e
s

D
ro
p
p
e
d 1 Server

2 Servers

3 Servers

Figure 5 – 3 Servers, 2 messages per second

3 Messages per Second

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

P
e
rc
e
n
ta
g
e
 o
f
M
e
s
s
a
g
e
s

D
ro
p
p
e
d 1 Server

2 Servers

3 Servers

Figure 6 – 3 Servers, 3 messages per second

4 Messages per Second

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

P
e
rc
e
n
ta
g
e
 o
f
M
e
s
s
a
g
e
s

D
ro
p
p
e
d 1 Server

2 Servers

3 Servers

Figure 7 – 3 Servers, 4 messages per second

5 Messages per Second

0

10

20

30

40

50

60

70

500 1000 1500 2000 2500

Number of Players

P
e
rc
e
n
ta
g
e
 o
f
M
e
s
s
a
g
e
s

D
ro
p
p
e
d 1 Server

2 Servers

3 Servers

Figure 8 – 3 servers, 5 messages per second

As can be seen from Figures 5 through 8 inclusive, the message

drop rate increases when the PUM transmission frequency is

increased. In order to analyse the results, only the tests with the

largest number of players for each number of servers will be

discussed (1500, 2000 and 2500 players for 1, 2 and 3 servers

respectively):

• 1 Server: at 2 messages per second transmission rate, a

single server with 1500 players drops less than 40% of the

messages. At 3 messages per second, a single server was

observed to drop 53% of messages. At 4 messages per

second, the server was observed to drop 56% of messages.

At 5 messages per second, the server dropped 60% of

messages.

• 2 Servers: the average drop rate observed with two

servers and 2000 players were 24%, 33%, 31% and 36%

for 2, 3, 4 and 5 messages per second respectively. The

deviation between 3 and 4 message per second from the

expected trend can be attributed to variations in the

external processing demands on the test machines.

• 3 Servers: the trend in drop rate is obvious in the 3 server

tests. The message drop rates grow proportionally to the

frequency of message transmission. The drop rates were

12%, 20%, 23% and 29% for 2, 3, 4 and 5 messages per

second respectively.

We show that when more servers are present fewer messages are

dropped, irrelevant of the frequency of PUM message exchange.

However, there is an anomaly present with 2 servers exhibiting

similar drop rates for 3 and 4 messages per second. We put this

anomaly down to external machine usage when the series of

experiments was recorded for 2 servers.

4.6 Prediction Overhead
This experiment is designed to determine the overhead of APUM

message exchange. As mentioned previously, the difference

between the predictive interest management approach and a

traditional aura-based interest management system is predictive

interest management’s utilisation of an additional message,

APUM, to pre-empt detection of potential aura intersections.

However, this additional message exchange may degrade the

system’s performance. Therefore, it is necessary to determine to

what extent the additional message, APUM, affects performance.

Standard Aura (3 Messages per Second)

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

P
e
rc
e
n
ta
g
e
 o
f
M
e
s
s
a
g
e
s

D
ro
p
p
e
d 1 Server

2 Servers

3 Servers

Figure 9 – Standard aura, 3 messages per second

Predicted Interest Management (3 Messages per

Second)

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

P
e
rc
e
n
ta
g
e
 o
f
M
e
s
s
a
g
e
s

D
ro
p
p
e
d 1 Server

2 Servers

3 Servers

Figure 10 – Predictive Interest Management – 3 messages per second

Figure 9 and figure 10 present the results of standard aura and

predictive interest management respectively. In both approaches,

the drop rate decreases as server numbers increase. However,

compared with the aura-based system, the message drop rate in

predictive interest management is higher. This indicates that there

is an overhead in our approach to interest management compared

to when the standard aura approach is used. This overhead is

directly related to the servers assuming responsibility for

generating, sending, receiving and processing APUMs. The drop

rate differences between the two ranges (for minimum and

maximum player numbers recorded per server) are [0.9% to

5.18%] in the 1 server experiments, [1.77% to 10.13%] in the 2

servers experiments and [0.03% to 8.22%] with 3 servers.

In the single server scenario, as there are no inter-server

communications involved, one may assume the overhead arises

due to the processing required to determine PAI overlap and

identify the appropriate frequency of APUM exchange.

With 2 and 3 servers the overhead increases above that of the

single server, however, in the worst case scenario the additional

overhead incurred by predictive interest management (2 server

2000 players) overhead is only 10% for maximum number of

players supported.

The increase in the drop rate, compared with the traditional aura-

based interest management system, does appear detrimental to the

appropriateness of predictive interest management on first

inspection. The overhead is tolerable (it is not that great in that the

system is unusable) and the addition of servers can alleviate the

overhead (which is the purpose of clustering).

4.7 Scalability
According to the results displayed in the first experiment in this

section, the maximum number of players a server can support

simultaneously is 1500 under our test conditions. In the following

experiments, the number of players our system may support is

increased as more servers are made available.

Scalability (3 Messages per Second)

0

10

20

30

40

50

60

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

Number of Players

P
e
rc
e
n
ta
g
e
 o
f
M
e
s
s
a
g
e
s

D
ro
p
p
e
d

1 Server

2 Servers

3 Servers

4 Servers

5 Servers

6 Servers

7 Servers

8 Servers

9 Servers

10 Servers

Figure 11 - Scalability

Figure 11 shows the performance results for up to 6000 players on

10 servers. The ideal trend should show the following when

servers are added to a cluster: (i) the drop rate decreases or

remains constant for a specific number of players; (ii) additional

players may be supported. From observations of the graph shown

in figure 11 we can see that what we consider to be an ideal trend

has been achieved. With ten servers present our system can

support 6000 players with drop rates of less than 10%.

5. CONCLUSIONS AND FUTURE WORK
We have presented an approach to integrating behavioural style

interest management and off the shelf load balancing techniques

to provide an efficient approach to scalable online gaming using

clustered server solutions. By taking a behavioural approach to

load balancing we are affording a greater degree of interactivity

while minimising the problem of crowding commonly found when

geographic regionalisation is used for governing player

interaction. In addition, our approach is less complicated

(application dependent) than related works associated to mapping

load balancing to virtual world regionalisation. Our series of

experiments demonstrate that our approach is scalable while

maintaining real-time requirements.

Our discussion of interest management, clustered server solutions,

and load balancing provides a comprehensive description of how

different techniques and technologies combine to provide scalable

server side solutions for MMORPGs. We provide clarification of

the techniques available, how they relate to each other, and their

justification for use. As such, we believe such a discussion

provides clarity of understanding for researchers new to this area

by providing a focus of detail that is difficult to attain in any one

co-located piece of text. This in itself, we believe, is a

contribution to the research community.

There is a need to conduct much more research to derive ideal

load balancing techniques for use in clustered server solutions for

MMORPGs. Techniques that are based on geographic

regionalisation may appear an appropriate approach to allocating

processing resources/servers and have been explored at length.

However, we have demonstrated that there are other opportunities

available to achieve similar results without using geographic

regionalisation.

Our future work will concentrate on extending the use of

behavioural interest management techniques to derive greater

scalability. We acknowledge that geographic regionalisation is not

without its merits. Therefore, we intend to explore combining

geographic and behavioural techniques to provide a unified

approach to efficient load balancing, suitable for a wide range of

different online gaming scenarios.

6. ACKNOWLEDGMENTS
This work is funded by UK EPSRC EP/D037743/1 “Networked

Computing in Inter-Organisation Settings” and UK EPSRC Grant

GR/S04529/01: “Middle-ware Services for Scalable Networked

Virtual Environments”.

7. REFERENCES
[1] G. Morgan, F. Lu, “Predictive Interest Management: An

Approach to Managing Message Dissemination for

Distributed Virtual Environments”, Richmedia2003,

Switzerland, 2003.

[2] F. Lu, K. Storey, G. Morgan, “Message Oriented Middleware

Services for Networked Games”, In Proc. of the I3D 2005.

ACM Symposium on Interactive 3D Graphics and Games,

Washington DC, 2005

[3] M. J. Zyda and D. R. Pratt, “NPSNET: A 3D visual

simulator for virtual world exploration and experience”, In

Tomorrow’s Realities Gallery, Visual Proceedings of

SIGGRAPH 91, p. 30, USA, July 1991

[4] M. R. Macedonia, D. R Pratt, and M. J. Zyda, "A Network

Architecture for Large Scale Virtual Environments,"

Proceedings of the 19th Army Science Conference, Orlando,

Florida, June 1994.

[5] C. M. Greenhalgh, "Awareness Management in the

MASSIVE Systems", Distributed Systems Engineering, Vol

5, No 3, September 1998, pp. 129-137, IOP Publishing.

[6] C. Greenhalgh, S. Benford, “MASSIVE: a distributed virtual

reality system incorporating spatial trading”, In Proc.

International Conference on distributed computing systems

(DCS 95), Vancouver, 1995.

[7] S. Singhal and M. Zyda, “Networked Virtual Environments,

Design and Implementation”, Addison Wesley, 1999.

[8] S. E Parkin, P. Andras, G. Morgan, “Managing Missed

Interactions in Distributed Virtual Environments”, to appear

in Eurographics Symposium on Virtual Environments,

Portugal, May 2006

[9] J. W. Barrus, R. C. Waters, D, B. Anderson, “Locales:

Supporting Large Multiuser Virtual Environments”, IEEE

Computer Graphics and Applications, 16,6, p 50-57, Nov

1997.

[10] S. Han and M. Lim, "ATLAS-II: A Scalable and Self-

tuneable Network Framework for Networked Virtual

Environments," In Proc. The Second Young Investigator's

Forum on Virtual Reality (YVR’03), Kangwon Province,

Korea, 2003.

[11] D. Kushner, “Engineering Everquest”, IEEE Spectrum

Magazine, July 2005.

[12] A. Shaikh et al, “On Demand Platform for Online Games”,

IBM Systems Journal, Vol 45, No1, 2006

[13] A. Bharambe, J. Pang, S. Seshan, “A Distributed

Architecture for Interactive Multiplayer Games”, In CMU

CS Technical Report Number CMU-CS-05-112, 2005

[14] D. Bauer, S. Rooney, P. Scotton, “Network Infrastructure for
Massively Distributed Games”, In Proc. of the 1st workshop

on Network and system support for games, Germany p. 36 –

43, 2002

[15] G. Singh, et al., “BrickNet: Sharing object behaviors on the

net”, In Proc. of the IEEE Virtual Reality Annual

International Symposium, pp 19-25. Los Alamitos CA, IEEE

Computer Society Press

[16] T. A. Funkhouser, “RING: A Client-Server System for

Multi-User Virtual Environments”, Computer Graphics

(1995 SIGGRAPH Symposium on Interactive 3D Graphics),

pp 85-92, Monterey, CA, 1995

[17] B. De Vleeschauwer, et al., “Network and System Support

for Games”, Proc. of 4th ACM SIGCOMM workshop on

Network and system support for games, pp 1 – 7, Hawthorne,

NY, 2005

[18] T. Das, et al., “NEtEffect: A Network, Architecture for Large
Scale Multi-User Virtual Worlds”, Proc. ACM VRST, pp.

157-163, 1997.

[19] M. Hori, et al., “Scalability Issues of Dynamic Space

Management for Multiple-Server Networked Virtual

Environments”, Proc. IEEE Pacific Rim Conf. on

Communications, Computers and Signal Processing, pp.

200-203, 2001

[20] J. Chim, R. Lau, H.V. Leong, and Antonio Si, "CyberWalk:

A Web-based Distributed Virtual Walkthrough

Environment," IEEE Transactions on Multimedia, 5(4):503-

515, Dec. 2003.

[21] F. Lu, “Monitoring Middleware for Distributed Virtual

Environments”, PhD Thesis, May 2006, Newcastle

University

[22] K. Storey, F. Lu, and G. Morgan, “Determining Collisions

between Moving Spheres for Distributed Virtual

Environments”, In Proc. of the Computer Graphics

International (CGI '04), pp. 140-147, June 16-19, 2004

