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ABSTRACT 

Supporting thousands, possibly hundreds of thousands, of players 

is a requirement that must be satisfied when delivering server 

based online gaming as a commercial concern. Such a 

requirement may be satisfied by utilising the cumulative 

processing resources afforded by a cluster of servers. Clustering 

of servers allow great flexibility, as the game provider may add 

servers to satisfy an increase in processing demands, more 

players, or remove servers for routine maintenance or upgrading. 

If care is not taken, the way processing demands are distributed 

across a cluster of servers may hinder such flexibility and also 

hinder player interaction within a game. In this paper we present 

an approach to load balancing that is simple and effective, yet 

maintains the flexibility of a cluster while promoting player 

interaction.  

Categories and Subject Descriptors 
H.5.1 [Information Interfaces and Presentation]: Multimedia 

Information Systems - Artificial, Augmented, and Virtual 

Realities C.2.4 [Distributed Systems]: Distributed Applications  

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
Keywords are your own designated keywords. 

1. INTRODUCTION 
Massively Multiplayer Online Games (MMOGs) provide gaming 

arenas within which hundreds of thousands of players participate. 

There are a number of MMOGs that have gained commercial 

success based on the premise of charging players to participate in 

large scale persistent virtual worlds. In such virtual worlds players 

may assume alternate identities and “live out” scenarios of their 

own choosing while participating in game play regulated by 

MMOG vendors. These types of MMOGs are commonly termed 

massively multiplayer online role-playing games (MMORPGs). 

MMORPG implementations are server based, allowing vendors to 

regulate the provision of ever evolving alternate realities to 

maintain player interest and, most importantly, restrict 

participation to subscribed players. Player consoles connect to a 

server which provides players access to a virtual world. As 

revenue is generated on a per-player basis, the more players that 

can be supported by a MMORPG the more revenue may be 

generated. Therefore, scalability of a server, in terms of number of 

players supported, is of great importance to ensure commercial 

success.  

To satisfy the demand for processing resources to provide scalable 

MMORPGs, clusters of servers are employed to cumulatively 

maintain game play by managing player interactions. The 

additional processing resources required to support an increase in 

player numbers is satisfied via the addition of servers to a cluster.  

A major challenge in constructing scalable server side solutions 

for MMORPGs is the need to provide players with mutually 

consistent views of the gaming arena in a timely manner to allow 

fair game play. However, when a virtual world contains hundreds 

of thousands of players the required consistency cannot be 

achieved in a timely manner without localised game play. By 

identifying localised instances of game play the consistency of the 

gaming arena becomes a more manageable problem of ensuring 

consistency between subsets of interacting players. 

The problem of satisfying the processing requirements of 

localised game play over a number of servers in a cluster needs to 

be tackled efficiently: load balancing techniques are required to 

ensure processing resources are allocated within a cluster to make 

best use of available servers. An ideal solution would be to ensure 

such load balancing techniques allow: (i) equal distribution of 

resources - prevent exhausting available processing resources on 

one server while there is spare capacity on other servers; (ii) 

flexible configuration - may afford the addition of servers during 

runtime to accommodate additional players with minimum 

disruption to game play; (iii) promotion of game play - does not 

hinder game play by overly restricting player interaction within a 

virtual world. 

Our earlier work [1] demonstrated an approach to modelling 

localised game play within a virtual world that does not hinder the 

interaction requirements of players. This work was subsequently 

 

 



implemented using a network of servers and was demonstrated to 

be scalable [2]. In this paper we tailor our system for deployment 

over a cluster of servers and present a series of experimental 

results. We demonstrate that load may be efficiently balanced over 

a server cluster. In addition, our approach uses standard load 

balancing mechanisms common in many Internet based 

applications, allowing improved consistency via the addition of 

servers to handle increasing numbers of players with minimum 

disruption to the gaming experience of players.  

The paper continues with a description of server side solutions to 

load balancing techniques that may be deployed in MMORPGs 

that use clustering of servers to gain scalability. Section 3 

provides an abridged description of our approach to 

regionalisation, its implementation using server clustering and 

how we economically make use of existing load balancing 

techniques. A series of experiments and associated results 

demonstrating the usefulness of our approach is presented in 

section 4. Section 5 draws conclusions from our work and 

indicates future directions we expect to take in this line of 

research.  

2. BACKGROUND 
The technologies that combine to provide scalable online games 

supported by server clustering are determined by design choices 

made in the areas of virtual world regionalisation (with respect to 

identifying instances of localised game play), server clustering, 

and load balancing. Design choices made in each of these areas 

cannot be considered in isolation. For example, the choice of how 

to regionalise a virtual world will influence how server clustering 

and load balancing is achieved. Alternatively, the design of a 

server cluster will feedback into the manner with which 

regionalisation of a virtual world may be achieved. In existing 

literature one or more of these design choices are assumed, 

resulting in a narrowing of the available solutions. Therefore, in 

this section we afford a degree of detail we believe is a necessity 

for gaining a clear understanding of the possible solutions 

available to developers.  

2.1 Regionalisation 
There are two extremes when determining how to sub-divide a 

virtual world for the purposes of modelling player interaction 

(localised game play) and providing manageable consistency:     

• Geographic – world divided into regions at initialisation 

time to reflect the structure of a virtual world.  

• Behavioural – virtual world sub-divided to reflect the 

interaction patterns of players. 

Geographic approaches are suited to virtual worlds that contain 

barriers to interaction that do not look out of place. For example, 

rooms in a building may be regions and only players that share a 

room may influence each other. Behavioural approaches are 

determined not by static virtual world constraints such as walls 

and ceilings, but by the ability of a player to express influence and 

other players to express interest. For example, a fighter aircraft 

may exert a greater degree (area) of influence than a foot soldier. 

When it is not convenient to use virtual world structures to define 

regions of a virtual world for use in a geographic approach, a 

behavioural approach is more appropriate.  

Work on the regionalisation of a virtual world for attaining 

scalability and manageable consistency finds its origins in 

academic research commonly termed interest management. 

Regionalisation of the virtual world for interest management was 

first demonstrated in NPSNET, original version presented at 

SIGGRAPH 1991 [3] with regionalisation added in 1993/4 [4]. 

NPSNET divided the virtual world into static geographic regions 

of regular sizes (not necessarily reflecting structures in a virtual 

world), restricting interaction between players that exist within the 

same or neighbouring regions.  

The aura/nimbus approach, used by MASSIVE in the mid 90s [5], 

modelled influence on a per player basis [6]. An aura describes 

the area of a virtual world a player may exert influence with a 

nimbus identifying an area of the virtual world a player may 

express interest. Although this approach is still reliant on the 

notion that players interact if they are geographically close to each 

other in a virtual world, more accurate modelling of interaction 

between players is possible compared to the NPSNET approach. 

However, the additional processing resources required to 

determine each player influence individually made this approach 

not as scalable as the region based approach [7] [8]. Attempts 

have been made to reconcile the scalability of regions with the 

accuracy of auras with some success [9, 10]. However, the 

scalability required for commercial MMORPGs is not achieved by 

such systems.  

2.2 Server Clustering 
Popular games in the MMORPG genre (e.g., EverQuest, Asher’s 

Call, Ultima Online, City of Heroes, and Star Wars Galaxies) all 

employ clustered server solutions to achieve scalability while 

managing consistency. The techniques used to implement their 

interest management solutions in a server cluster is not described 

in detail in a published article for general viewing (which is to be 

expected for a commercial enterprise in a competitive market). 

However, there is an article describing EverQuest’s approach in 

general terms: a mixture of regions and “duplicate worlds” with 

each duplicate world supporting approximately two to three 

thousand players with each world divided into regions based on 

the geography of the virtual world [11]. As regionalisation is 

associated to virtual world geography, this approach is closely 

related to geographic virtual world sub-division schemes.  

In EverQuest a duplicate world is itself supported by a cluster of 

servers, with regions used to aid in allocating the processing 

requests originated from player actions amongst such servers as 

and when required. Due to the similarities in game play and the 

existence of duplicate worlds; one may assume that all other 

commercial MMORPGs approaches to implementation of interest 

management are similar, conceptually, to that of EverQuest. 

Duplicate worlds and geographic influenced regionalisation 

present a three step approach to reducing the consistency problem 

to a manageable size: (i) players do not interact across different 

duplicate worlds; (ii) players do not interact across different 

regions; (iii) Players interact intricately with other players they 

specifically target (e.g., click on with mouse). This approach 

provides two distinct forms of interaction: (i) a general, viewing 

type style, where players can see the actions of others in their 

region (assuming appropriate line of sight); (ii) an intricate 

manner where players directly interact with each other in a user 

directed way. The latter form of interaction requires consistency 

to be greater as ordering of events are usually crucial in intricate 

game play (the server must resolve player interaction). The 

consistency can be weaker in the general style of interaction as 



summary information could be propagated between players. For 

example, in a fight between two players in a virtual world attacks 

must be regulated (e.g., ordered, not lost in transit) between 

engaged players (e.g., spells, hitting, shooting) to provide an 

outcome (e.g., decreased health, loss of inventory). However, for 

players watching a fight between other players there is only a need 

to view a series of fighting moves and the end result (that may or 

may not reflect the actual fight moves as enacted between the fight 

participants).   

Commercial MMORPGs aside, there are a number of other works 

in the area of scalable server side solutions that may be 

appropriate for MMORPGs. A notable contribution is work 

carried out by IBM. IBM has produced region based services that 

are capable of supporting MMORPGs [12] that attempt to make 

use of standards such as Web/Grid services. Regions are again 

used in this work, providing a platform that would allow a similar 

approach to implementation that would be expected in the 

commercial MMORPGs already discussed. Other works (e.g., 

RING [16]) do employ multiple servers, allocating regions of 

virtual worlds to different servers, providing a similar approach to 

scalability (regions to servers) as advocated in commercial 

MMORPGs. 

There are a large number of academic works that have advocated 

the client/server approach to virtual world implementation that, 

with tailoring, may be suited to MMORPGs. BrickNet [15] is an 

example of academic work that employs a server side solution. 

However, in such works scalability is limited without the ability 

to support server clustering.  

2.3 Load Balancing  
Load balancing is a term used to describe an attempt to efficiently 

distribute an application’s processing requirements across a 

number of servers. Considering server clustering for MMORPGs, 

there are two ways of achieving load balancing: 

 

• Player – Players are allocated to different servers (or 

mini-clusters of servers) as and when they join a game.  

• Interaction – Servers manage allocation of processing 

recourses based on the interaction patterns of players. 

 

The player oriented approach to load balancing is similar to 

standard load balancing techniques in many server based 

applications found on the Internet (e.g., search engines, shopping 

carts, and auctions). These approaches rely on a network address 

translator (NAT), or software equivalent, to allocate clients to 

servers efficiently using a number of load balancing techniques 

(e.g., round robin). The NAT “remembers” which server a 

particular client is attached to and directs all requests from a client 

to the same server during the lifetime of a session. A session is 

simply an application dependent classification of related client 

requests. The term sticky session is used to describe how a session 

should “stick” to the same server throughout its duration. In 

MMORPG a session may be identified as a prolonged period of 

unbroken game play of a player. 

Using a NAT alone for load balancing is most viable given the 

ability of a single server to satisfy all a client’s requests 

(homogenous approach to server clustering). Using this approach 

to load balancing allows servers in the cluster to be removed for 

maintenance or added as and when required without hindering 

players on other servers. In MMORPGs, allocation of players to 

duplicate worlds (and associated mini-clusters) is a close relation 

to this form of load balancing, apart from the fact that the players 

themselves, not a NAT, chooses which duplicate world they will 

visit. 

Once players are allocated to a duplicate world, there is still a 

need to balance load across the server cluster supporting such a 

world. If players are allocated to servers, as in the player centric 

approach to load balancing, there would be a need for servers to 

inter-communicate as players hosted on different servers interact 

with each other. This increase in server side message exchange 

may exhaust available bandwidth and processing resources if an 

attempt is not made to limit such message exchange. This is where 

the use of interest management becomes pivotal in the role of load 

balancing for MMORPGs: interest management may identify 

interacting players and be used to limit inter-server 

communications while still allowing player interaction to occur.  

The geographic approach of virtual world duplication and 

regionalisation found in MMORPGs lends itself to load balancing 

as design time decisions can be made as to which servers may 

satisfy the processing requirements of different regions of a virtual 

world. In this approach there is no requirement for inter-server 

communications to model player interactions as all players will be 

located in the same region, and therefore, be on the same physical 

server. In addition, convenient breaks in game play (e.g., set piece 

animation of travelling through a tunnel) can be introduced to 

hide the delay encountered when a player crosses geographic 

boundaries and associated processing resources are handed over 

to different servers. 

Due to the ease with which the geographic approach to interest 

management may be mapped to processing resources there has 

been little interest in mapping the behavioural approach to 

servers.  

2.4 Crowding 
Allocating processing resources to different geographic regions of 

a virtual world can result in crowding. Crowding is a phenomenon 

that occurs in online gaming when the number of players that 

congregate in the same area of a virtual world inhibits the 

successful execution of interest management in a timely manner. 

The effects of crowding may be a slowdown in game play or, in 

worst case scenarios, a complete inability to enact player 

interaction. This may be considered the same problem of 

consistency management that regionalisation is attempting to 

alleviate: without regionalisation the virtual world itself (single 

region) may become populated by a sufficiently large number of 

players as to make the consistency problem unmanageable.  

In the presence of server clustering, there is an opportunity to 

alleviate the crowding problem by dynamically associating 

processing requirements generated by player actions during 

runtime. This takes the form of load balancing player activities 

across servers with respect to regions. The literature provides a 

number of solutions to load balancing across server clusters 

suitable for MMORPGs. Regions may be reduced in size by sub-

dividing them further (allocating servers to these additional sub-

divisions) [17]. Other methods distribute responsibility for region 

execution to a particular server at runtime based on the volume of 

players in a region [18], while other methods dynamically resize 



regions during runtime [19]. Such approaches may be fine tuned 

further to ensure that the cost of moving responsibility for 

execution to another server is minimised [20]. 

EverQuest also describes runtime allocation of resources from 

within small clusters of servers responsible for a duplicate virtual 

world. Although no great technical detail is provided on how this 

is achieved [11], the premise of this approach appears to be player 

driven: when player enacts a particular action (e.g., opening a 

door, entering into battle) processing resources are allocated to 

satisfy the increased processing requirements.  

2.5 Discussion 
We find a contradiction in the direction of research concerned 

with the approach to server side load balancing in MMORPGs: (i) 

is based on geographic regionalisation to minimise server side 

inter-communications to promote scalability; (ii) requires inter-

server communications to alleviate process exhaustion due to 

crowding.  

The behavioural approach to interest management has been 

overlooked as it did not lend itself to load balancing in the same, 

obvious manner, as geographic approaches to interest 

management. However, with the problem of crowding we 

encounter the same need for inter-server communication, yet 

without the intricate game play afforded by behavioural 

approaches to interest management. In addition, the allocation of 

server resources dependent on interactions in a virtual world 

requires quite elaborate techniques compared to the traditional 

NAT load balancing approaches that are commonplace, increasing 

processing resources required for the load balancing mechanism.   

We compare the geographic approach to load balancing using the 

three points relating to an ideal solution for load balancing 

described in the introduction of this paper: 

 

(i) equal distribution of resources – crowding can exhaust 

server resources on one server while other servers are 

lightly loaded;  

(ii) flexible configuration – as virtual world geography is 

linked to server configuration, removing or adding servers 

is not straightforward (even if no players exist, re-

allocation of server responsibilities regarding virtual 

world geography is required within a cluster when servers 

are added or removed).  

(iii) promote game play - geographic regionalisation is not as 
appropriate as behavioural approaches when modelling 

player interaction. Requiring additional “highlight by 

click” intervention of a player. 

 

2.6 Contribution of Paper 
We wish to clarify and simplify an approach to load balancing for 

MMORPGs and other, similar, games that depend on clustered 

server solutions for scalability. We believe that online games that 

gain scalability from server clustering will inevitably require 

communications between servers, irrelevant of what techniques 

are used for load balancing. Therefore, deriving ever more 

elaborate techniques for mapping geographic regionalisation to 

server allocation in a bid to prevent inter-server communications, 

we believe, is not the appropriate avenue to take. We make this 

statement for two reasons: (i) geographic regionalisation does not 

afford the greatest potential for game play (player interaction); (ii) 

the eventual cost, in terms of processing overhead, of elaborate 

techniques of allocating processing resources in this manner 

comes at a high price (process intensive). 

In previous work we developed behavioural type approaches to 

interest management that can scale [1] and be implemented in a 

distributed server model (where servers are geographically 

separated) [2].  We now advance this work into the area of 

clustered server solutions.  

We disregard all load balancing techniques based on mapping 

geographic regions to servers. Instead, we restrict ourselves to 

only using standard, “off the shelf”, sticky session type load 

balancing common with a NAT based infrastructure. This allows 

our technique to be economically employed with existing load 

balancing technologies. Furthermore, as our technique is 

behaviourally based, it affords more opportunity for introducing 

rich interaction into game play than a geographic approach to 

interest management. This added bonus may improve game play 

substantially as players can more naturally interact with each other 

without having to point and click at other player/artefacts to 

invoke intricate game play. We demonstrate that our approach is 

scalable via a series of experiments.  

An additional contribution this paper makes to the community is 

to provide a comprehensive overview of the state of the art in 

scalable load balancing techniques for MMORPGs (described in 

this section). We do this by clarifying, via categorisations, the 

topics of interest management and load balancing in MMORPGs. 

These two topics are intricately linked, and a clear understanding 

of both is a necessity for any researcher in this area.  

3. IMPLEMENTATION 
We now describe our approach to clustered server deployment of 

our system. We start by describing our approach to load balancing 

and then continue with descriptions of our interest management 

and server clustering implementation. We provide descriptions in 

this paper only in sufficient detail to understand how our 

approach is deployed over a cluster of servers. Extended 

descriptions of our interest management scheme and its 

implementation may be found in [1] [2], only the changes that 

have been made to accommodate server clustering are highlighted 

here.  

3.1 Load Balancing 
Our approach to load balancing is typical in the area of clustered 

server solutions and relies on the allocation of client machines 

(player consoles) to servers. We allow servers to communicate 

player actions to each other as and when required but do not move 

responsibility for processing player actions from the server they 

are initially allocated. The diagram in figure 1 describes our server 

cluster implementation. 

In figure 1 a player’s console (C1) connects to the server cluster 

via a load balancer (NAT), and is then associated to a particular 

server in the application tier (e.g., S1) for the duration of this 

session of interaction (sticky session). The application tier 

satisfies the runtime requirements of game play. Via the database 

tier, an application server may gain access to persistent artefacts 

that constitute a gaming arena (e.g., virtual world constructs, 

players’ statistics). A load balancer may exist between the 

application tier and the database tier, presenting a single “image” 



of a database to the application tier, simplifying the 

implementation of the application tier (no need for application tier 

to be concerned with database load balancing). 
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Figure 1 – Server clustering in n-tier systems 

 

We assume that the load balancers that are present (client-to-

application and application-to-data) are standard “off the shelf” 

NAT type load balancers. Any load balancing scheme may be 

enacted, however, we assume a simple round robbin approach that 

attempts to equally distributed players to servers. 

3.2 Interest Management 
Our interest management scheme, predictive interest 

management, may be considered behavioural in its approach, as 

player interactions are associated to player expressiveness as 

apposed to static geographic regionalisation of the virtual world. 

We use auras (as described in [5]) for determining when players 

should exchange messages. For clarity, we describe predictive 

interest management by describing inter-player interaction only. 

For a more detailed description of predictive interest management 

the reader is directed to [1] [21]. Our scheme does not rely on the 

presence of a server (acting as an oracle) and is suitable for peer-

to-peer deployment. We use the term avatar to denote a player’s 

representation in a virtual world. 

The aura of an avatar describes an area of the virtual world 

enclosed by a sphere (Figure 2). The radius of an aura is specified 

on a per avatar basis and is fixed at avatar creation time. Avatars 

have the ability to influence each other when their auras collide 

via the exchange of messages. 

A predicted area of influence (PAI) identifies the extent of an 

avatar’s aura over a period of time given the distance an avatar 

may  travel in a straight line in any direction (assuming an 

avatar’s maximum speed).  

Based on how PAIs and auras are overlapping in the virtual world 

we may regulate message exchange between avatars: 

• Aura overlap – aura overlap indicates interacting 

avatars requiring high frequency positional update 

messages (PUMs) to be exchanged between them. 

PUMs carry positional information of the sending 

avatar, but may also carry other game dependent data. 

• PAI overlap – if PAIs overlap but not auras then there 

is a possibility that such avatars may interact in the near 

future, requiring admin PUMs (APUMs) to be 

exchanged between them at a frequency that relates to 

the degree of PAI overlap witnessed. 

• No aura or PAI overlap – avatars exchange APUMs at 

a low frequency, allowing for possible PAI/aura overlap 

in the future to be realised. 

In summary, the more PAIs overlap (but not auras) the higher the 

frequency of message exchange. This provides a model where 

avatars increase their message exchange frequency gradually until 

auras overlap, when they continue by exchanging high frequency 

messages. Alternatively, avatars decrease their message exchange 

frequency gradually until they only exchange low frequency 

messages. 
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Figure 2 – Defining Predicted Area of Influence (PAI). 

 

Two avatars may come close to each other over time in a virtual 

world (resulting in increased APUM exchange), but never 

encounter aura overlap. This message exchange overhead is 

accepted by us as necessary to avoid missing when avatar auras 

are overlapping. In effect, we spread the processing requirements 

related to the detection of aura overlap over a longer period of 

time to avoid non-detection of aura overlap and promote a more 

realistic interaction. 

3.3 Server Clustering Implementation 
Our concern, for this paper, is on clustering technologies related 

to predictive interest management. Therefore, we perceive the data 

store as a commercial database (e.g., Oracle) that comes complete 

with its own load balancing technologies and concentrate our 

discussion on the application tier.  

Player consoles (clients) periodically send PUMs to the load 

balancer. As a client may manage multiple avatars (we provide 

flexibility in our approach in that we do not limit a client to a 

single player representation in the virtual world), a single message 

may contain multiple PUMs. These messages are synchronous 

calls (implemented as RPC), with the return part of the message 

containing one or more PUMs relating to avatars that are hosted 

on other clients. A server may send PUMs to clients that have not 

sent PUMs for a substantial length of time (i.e., due to player 

inactivity – timeout determined by client). Our approach to 

client/server interaction eases client participation in a virtual 

world as clients only need send PUMs, not APUMs: the burden of 

interest management implementation is solely within the 

application server tier. 



Between servers individual APUMs are periodically combined 

into single messages and distributed on a per-server basis.  
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Figure 3 – Components of a server instance. 

Figure 3 describes the main server components that contribute to 

satisfying the interest management requirements: 

 

• Message handler - receives and returns messages to load 

balancer. If necessary, registering new player information 

using data store tier.  

• Predictive interest manager - uses predictive interest 

management to construct appropriate APUM messages.  

• Collision detector - identifies aura and PAI overlap to aid 

predictive interest manager in constructing appropriate 

APUM messages. 

• Message aggregator - composes single messages from 

multiple APUM messages for distribution to other servers. 

• Inter-Server Communications Manager - supports 

message exchange between servers. 

 

The message handler receives PUMs from the load balancer and 

returns to the load balancer descriptions relating to player 

interests. The interest manager implements the predictive interest 

management scheme and calls on the collision detector to identify 

aura and PAI overlap. The collision detector implements a 

collision detection algorithm that we specifically designed for use 

with predictive interest management [22]. The interest manager 

constructs APUMs and passes them to the message aggregator, 

which in turn composes single messages from multiple APUMs on 

a per server basis and passes such messages to the appropriate 

servers via the inter-server communications manager 

(implemented at socket level).  

APUMs are received at a server’s message aggregator and are 

passed to the predictive interest manager to aid in determining the 

interest of avatars. Information relating to the interest of avatars is 

passed to the message handler by the predictive interest manager. 

The message handler then informs the load balancer of updated 

avatar interests. 

Our peer-to-peer approach to interest management has been 

directly mapped to the application server tier in our clustering 

solution. Message aggregation is used to conserve bandwidth 

between servers, and so aid scalability.  

4. Performance Analysis 
In this section we present a series of experiments to determine the 

suitability of our approach to load balancing and interest 

management to satisfy the requirements of an MMORPG. The 

requirement we are specifically interested in is that of scalability: 

can our approach scale to a level similar to that found in 

commercial MMORPGs while satisfying timely and consistency 

requirements. 

Typically, when a server nears exhaustion of its processing 

resources due to excessive client induced load a slowdown in 

server performance is witnessed. If client load is increased further 

server failure will follow. As we have strict timely requirements 

we wish to avoid such a slowdown in a server: it would be 

misleading to indicate that a server is supporting many thousands 

of players when such support is ineffective due to real-time 

requirements not been met. Therefore, as soon as a server cannot 

satisfy the real-time requirements of its clients a server fails. 

Failure of a server is apparent in the graphs when a line stops 

short of the maximum number of players supported (denoted by 

the x axis). 

We measure the percentage of messages dropped by a server and 

place a finite size on a server’s message queues. In this approach, 

a server may maintain real-time requirements at the expense of 

dropping messages. The percentage of messages dropped by such 

queues forms the basis of our measurements in the experiments 

presented in this paper. 

4.1 Testing Environment 
This testing is based on 20 useable machines on the same LAN 

segment. Each machine has a 2GHz Intel Xeon processor 

(equivalent of 2x2GHz Pentium 4 processors with Hyper 

Threading) with 1GB RAM running Red Hat Linux 7.2. 

Servers are located on different machines on the same LAN 

segment. Client (simulated player) machines are located on 

different machines outside this server cluster (but connected via 

100 Mb Ethernet to the LAN cluster). Using the client machines, 

synthetic networking traffic for representing players is created. 

Player numbers are increased in increments of 500 from 500 to 

6000 (depending on experiment), with measurements taken at 

each increment.  

Each experiment’s duration was one hour to ensure the 

initialisation overhead does not skew the results (e.g., player 

registering and stream socket setup). Additionally, the machines 

used for this experiment are a shared resource. As such, the 

performance of the machines and the available network bandwidth 

can vary considerably depending on the number and nature of the 

processes running on each machine at the time each experiment. 

4.2 Experiments 
Four experiments have been conducted to test different aspects of 

the system: 

 

1. Single Server - The maximum number of players which 

can be supported by one server; 



2. Player Interaction - The upper bound of message 

frequency a player console can send PUMs to the cluster; 

3. Prediction Overhead - The overhead of APUM in the 

predictive interest management scheme compared with a 

traditional aura-based interest management scheme; 

4. Scalability - The scalability of the system in terms of the 

number of players that can be supported simultaneously. 

5.  

The first two experiments’ results can be used to assist game 

developers to estimate appropriate system variables (PUM 

frequency, number of servers, maximum number of players 

supported) to provide acceptable performance. For example, given 

a threshold maximum drop rate and a PUM transmission 

frequency, the results of the first two experiments can be used to 

estimate the number of servers required to achieve acceptable 

performance for a given number of players.  

As mentioned in section 3.2, predictive interest management is a 

peer-to-peer approach and so relies on message exchange to 

realise when aura overlap occurs. To ensure this is achieved in a 

timely manner additional messages are sent when auras near 

overlap, producing a message overhead beyond that of a simple 

aura based approach. Experiment 3 determines the cost of such an 

overhead. To encourage a like-for-like comparison we make use 

of the same message aggregation techniques used in predictive 

interest management for our standard aura approach (we simply 

identify an avatar’s PAI to be the same size as an avatar’s aura). 

The fourth and final experiment is to determine the overall 

scalability of the system. Additional servers are added to 

determine if player numbers can be maintained. In the EverQuest 

article [11], individual clusters of servers may support 2500 – 

3000 players. Therefore, we are seeking to surpass this figure. We 

admit to not providing the detailed game play as EverQuest (we 

are a proof of concept academic work), but we at least hope to 

demonstrate scalability in the same league as commercial games. 

4.3 Virtual World Simulation 
To avoid the need to manually manipulate each individual player 

avatar in a virtual world we simulate avatar movement. We 

attempt to re-create the phenomena of periodic crowding 

throughout an experiment to identify that our approach is suitable 

in such scenarios. Deriving a suitable simulation of avatars to 

exhibit the type of behaviour expected in a virtual world is not 

documented in the literature. Therefore, we afford a reasonable 

description of our technique to allow reproduction of our 

experiments by others. 

A program, called RandomWayPointWorld, is used to simulate 

the movement of player’s avatars. A number of static points in the 

virtual world are generated, markers, at virtual world creation 

time. Each player’s avatar chooses a marker at random and moves 

towards the marker for a random amount of time, termed marker 

selection time (MST). During MST, the avatar’s position is 

updated at the same frequency as the PUM messages sent to the 

cluster of servers.  Once the MST has been exceeded, an avatar 

selects another marker at random, and continues the process. Each 

marker remains at a position for a random amount of time, called 

marker relocation time (MRT). Once MRT is exceeded a marker 

relocates to a new position in the world. In order to determine the 

MST and the MRT, four values are used to calculate the minimum 

and maximum range of MST and MRT. As the x, y and z 

dimensions are identical in a cubic world; the diagonal size of this 

world can be calculated as:  

23 sizedia WSize =  

MRTlower is the lower bound of the MRT and it is defined as the 

time taken for an avatar travelling with its maximum speed to 

cover a distance equal to half the diagonal size of the world. 

MRTupper is the upper bound of the MRT. Compared with the 

MRTlower, MRTupper is the time taken for an avatar travelling a 

distance, which is the same as the full diagonal size of the world, 

with its top speed. These two variables are represented as the 

formulas below: 
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MRT is a random time selected within the range [MRTlower, 

MRTupper] and can be decided based on the formula below: 
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RandomMRTeCurrentTimMRT
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CurrentTime() is a function to get the current time of the system; 

Random() returns a decimal number uniformly distributed 

between 0 and 1. After the previous selected MRT has passed, the 

MRT is recalculated. The process will repeatedly occur during the 

lifetime of an avatar. This selection ensures that the time a marker 

remains in a given position is a sufficient time, with respect to the 

size of the world, to avoid markers repositioning too frequently. If 

markers reposition too frequently, the avatar’s movement towards 

the markers exhibits strange behaviour: when the avatars are 

initialised, they are uniformly distributed within the virtual world 

but, as time passes, the majority of the avatars crowd together in 

the centre of the world. This is because, once an avatar reaches the 

centre of the world, the direction they travel changes sufficiently 

rapidly that it is unlikely they will be able to move to the 

extremities of the world before they change direction 

MST is chosen within the range of [ MSTlower, MSTupper ]. MSTlower 

and MSTupper should be less than MRTlower and MRTupper 

respectively. Therefore, an avatar can trace one marker and 

change to a different marker before the marker relocation happen. 

MSTlower and MSTupper can be defined as below: 

4)( upperlowerlower MRTMRTMST +=  

2)( upperlowerupper MRTMRTMST +=  

Based on the calculated MSTlower and MSTupper, MST can be 

determined: 

))(
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As the same as the MRT, MST will dynamically change during the 

lifetime of the avatar.  



In order to simulate the movement of an avatar, the trajectory can 

be predicted based on a set of formulas, which are used to 

calculate the current position, velocity and acceleration of the 

avatar according to the previous relevant information. Given a 

fraction time (dt), if the distance (dis_marker_obj) between the 

avatar and the marker is less than the distance (dis_travelled) an 

avatar can travel based on the previous velocity, the position of 

the avatar is set as the marker position and the velocity is set as 0. 

The avatar will stay at the marker once its’ position is set as the 

marker and it remains still until next marker is selected. This will 

give an avatar variable speed before its speed reaches its 

maximum speed. If dis_marker_obj is larger than dis_travelled, 

the avatar is still moving towards the selected marker, the new 

position and velocity of this avatar is required to be calculated. To 

simplify the calculation process, the acceleration is set as a fixed 

value, 10 meters per second in each dimension. 

4.4 Single Server 
This experiment is intended to determine the number of players 

(represented as avatars) a server can support simultaneously. Due 

to physical restrictions, such as CPU speed and the amount of free 

memory, the number of players a server can support 

simultaneously has a limit.  
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Figure 4 – Single server 

 

According to Figure 4, the message drop rate increases steeply as 

the number of players increases. As can be seen from the graph, 

with 500 players, the drop rate was just 1.96%; with 1000 players, 

the drop rate increases to 16.9%; with 1500 players, the drop rate 

reaches 54.8%. The performance of the system sharply degrades. 

The reason for this is that the server received more messages than 

it can handle per second.  Therefore, under the current test 

conditions, the maximum number of players a server can support 

is 1500 players. However, considering the percentage of dropped 

messages, player numbers of less than 1000 would be more 

appropriate.  

4.5 Player Interaction 
The frequency a client sends PUM messages to a server must be 

limited to some extent to avoid intolerable drop rates. Therefore, 

the purpose of this experiment is to determine the maximum 

acceptable frequency a node can send PUMs to a server cluster 

that is of a fixed size. We compare server cluster sizes consisting 

of 1, 2 and 3 servers.  
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Figure 5 – 3 Servers, 2 messages per second 

 

3 Messages per Second

0

10

20

30

40

50

60

500 1000 1500 2000 2500

Number of Players

P
e
rc
e
n
ta
g
e
 o
f 
M
e
s
s
a
g
e
s
 

D
ro
p
p
e
d 1 Server

2 Servers

3 Servers

 

Figure 6 – 3 Servers, 3 messages per second 
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Figure 7 – 3 Servers, 4 messages per second 
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Figure 8 – 3 servers, 5 messages per second 

 

As can be seen from Figures 5 through 8 inclusive, the message 

drop rate increases when the PUM transmission frequency is 

increased. In order to analyse the results, only the tests with the 

largest number of players for each number of servers will be 

discussed (1500, 2000 and 2500 players for 1, 2 and 3 servers 

respectively): 

 

• 1 Server: at 2 messages per second transmission rate, a 

single server with 1500 players drops less than 40% of the 

messages. At 3 messages per second, a single server was 

observed to drop 53% of messages. At 4 messages per 

second, the server was observed to drop 56% of messages. 

At 5 messages per second, the server dropped 60% of 

messages. 

• 2 Servers: the average drop rate observed with two 

servers and 2000 players were 24%, 33%, 31% and 36% 

for 2, 3, 4 and 5 messages per second respectively. The 

deviation between 3 and 4 message per second from the 

expected trend can be attributed to variations in the 

external processing demands on the test machines. 

• 3 Servers: the trend in drop rate is obvious in the 3 server 

tests. The message drop rates grow proportionally to the 

frequency of message transmission. The drop rates were 

12%, 20%, 23% and 29% for 2, 3, 4 and 5 messages per 

second respectively. 

 

We show that when more servers are present fewer messages are 

dropped, irrelevant of the frequency of PUM message exchange. 

However, there is an anomaly present with 2 servers exhibiting 

similar drop rates for 3 and 4 messages per second. We put this 

anomaly down to external machine usage when the series of 

experiments was recorded for 2 servers.  

4.6 Prediction Overhead 
This experiment is designed to determine the overhead of APUM 

message exchange. As mentioned previously, the difference 

between the predictive interest management approach and a 

traditional aura-based interest management system is predictive 

interest management’s utilisation of an additional message, 

APUM, to pre-empt detection of potential aura intersections. 

However, this additional message exchange may degrade the 

system’s performance. Therefore, it is necessary to determine to 

what extent the additional message, APUM, affects performance. 
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Figure 9 – Standard aura, 3 messages per second 
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Figure 10 – Predictive Interest Management – 3 messages per second 

 

Figure 9 and figure 10 present the results of standard aura and 

predictive interest management respectively. In both approaches, 

the drop rate decreases as server numbers increase. However, 

compared with the aura-based system, the message drop rate in 

predictive interest management is higher. This indicates that there 

is an overhead in our approach to interest management compared 

to when the standard aura approach is used. This overhead is 

directly related to the servers assuming responsibility for 

generating, sending, receiving and processing APUMs. The drop 

rate differences between the two ranges (for minimum and 

maximum player numbers recorded per server) are [0.9% to 

5.18%] in the 1 server experiments, [1.77% to 10.13%] in the 2 

servers experiments and [0.03% to 8.22%] with 3 servers.  

In the single server scenario, as there are no inter-server 

communications involved, one may assume the overhead arises 

due to the processing required to determine PAI overlap and 

identify the appropriate frequency of APUM exchange.  

With 2 and 3 servers the overhead increases above that of the 

single server, however, in the worst case scenario the additional 

overhead incurred by predictive interest management (2 server 



2000 players) overhead is only 10% for maximum number of 

players supported. 

The increase in the drop rate, compared with the traditional aura-

based interest management system, does appear detrimental to the 

appropriateness of predictive interest management on first 

inspection. The overhead is tolerable (it is not that great in that the 

system is unusable) and the addition of servers can alleviate the 

overhead (which is the purpose of clustering).  

4.7 Scalability 
According to the results displayed in the first experiment in this 

section, the maximum number of players a server can support 

simultaneously is 1500 under our test conditions. In the following 

experiments, the number of players our system may support is 

increased as more servers are made available.  

 

Scalability (3 Messages per Second)

0

10

20

30

40

50

60

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

Number of Players

P
e
rc
e
n
ta
g
e
 o
f 
M
e
s
s
a
g
e
s
 

D
ro
p
p
e
d

1 Server

2 Servers

3 Servers

4 Servers

5 Servers

6 Servers

7 Servers

8 Servers

9 Servers

10 Servers

 

Figure 11 - Scalability 

 

Figure 11 shows the performance results for up to 6000 players on 

10 servers. The ideal trend should show the following when 

servers are added to a cluster: (i) the drop rate decreases or 

remains constant for a specific number of players; (ii) additional 

players may be supported. From observations of the graph shown 

in figure 11 we can see that what we consider to be an ideal trend 

has been achieved. With ten servers present our system can 

support 6000 players with drop rates of less than 10%. 

5. CONCLUSIONS AND FUTURE WORK 
We have presented an approach to integrating behavioural style 

interest management and off the shelf load balancing techniques 

to provide an efficient approach to scalable online gaming using 

clustered server solutions. By taking a behavioural approach to 

load balancing we are affording a greater degree of interactivity 

while minimising the problem of crowding commonly found when 

geographic regionalisation is used for governing player 

interaction. In addition, our approach is less complicated 

(application dependent) than related works associated to mapping 

load balancing to virtual world regionalisation. Our series of 

experiments demonstrate that our approach is scalable while 

maintaining real-time requirements.  

Our discussion of interest management, clustered server solutions, 

and load balancing provides a comprehensive description of how 

different techniques and technologies combine to provide scalable 

server side solutions for MMORPGs. We provide clarification of 

the techniques available, how they relate to each other, and their 

justification for use. As such, we believe such a discussion 

provides clarity of understanding for researchers new to this area 

by providing a focus of detail that is difficult to attain in any one 

co-located piece of text. This in itself, we believe, is a 

contribution to the research community. 

There is a need to conduct much more research to derive ideal 

load balancing techniques for use in clustered server solutions for 

MMORPGs. Techniques that are based on geographic 

regionalisation may appear an appropriate approach to allocating 

processing resources/servers and have been explored at length. 

However, we have demonstrated that there are other opportunities 

available to achieve similar results without using geographic 

regionalisation.  

Our future work will concentrate on extending the use of 

behavioural interest management techniques to derive greater 

scalability. We acknowledge that geographic regionalisation is not 

without its merits. Therefore, we intend to explore combining 

geographic and behavioural techniques to provide a unified 

approach to efficient load balancing, suitable for a wide range of 

different online gaming scenarios. 
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