
 
 

 

  

Abstract—In a distributed virtual environment interest 
management schemes attempt to ensure virtual world objects 
exchange messages only if they are interacting. This provides 
an opportunity to allow such systems to scale to support many 
hundreds, even thousands, of virtual world objects by reducing 
the need to send and process unnecessary messages. However, 
arriving at the optimum configuration for the interest 
management scheme is a challenging and complex problem. 
The customary approach is to configure parameters in an ad-
hoc manner (supported by experience). However, such an 
approach is unlikely to yield optimum system performance. 
Here we propose a means of finding optimal parameter values 
by way of a simulation tool equipped with evolutionary 
optimization capabilities. We provide a series of experiments 
that indicate that our simulator can aid in configuring interest 
management schemes to gain better system performance. 

I. INTRODUCTION 
EVELOPMENT of scalable distributed virtual 
environments (DVEs) is a significant research 

challenge. Such environments must be engineered so as to 
be able to support many hundreds and thousands of users 
while satisfying requirements for timely performance 
(preserving responsiveness in virtual worlds) and 
consistency (ensuring participants view events in a mutually 
consistent fashion). With message exchange being the only 
way to propagate events that occur in the virtual world to a 
geographically dispersed network of users, care must be 
taken to achieve these requirements in a manner that avoids 
exhaustion of available networking and processing 
resources. 

Interest management is an approach to building scalable 
DVEs (e.g. [1-4]) by making best use of available 
networking and processing resources via targeted message 
exchange (in contrast to a general broadcast mechanism). 
Messages are sent only to recipients that may be interested 
in them (e.g., messages are only sent between those objects 
that are interacting within the virtual world). The sending of 
messages is delegated across bounded areas within the 
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virtual world (i.e., a virtual world object should be in the 
area to which a message is deemed applicable in order to 
receive that message). These areas are commonly termed 
areas of influence, and an object is expected to exert 
influence (i.e., send messages) to all other objects that exist 
in its area of influence. 

Restricted message passing in a DVE based on areas of 
influence may lead to what are termed missed interactions: 
objects that should interact do not due to a lack of messages 
exchanged between them. Missed interactions occur because 
the degree on inconsistency in a DVE is sufficient to allow 
an object’s traversal of an area of influence to go 
undetected, partially or fully, by an interest management 
scheme. Such inconsistency arises from the fact that delays 
in propagating events throughout a DVE are inherent due to 
networking and processing resource limitations (e.g., 
network latency). The missed interaction problem may be 
considered an interest management oriented view of the 
consistency-throughput trade-off described by Singhal and 
Zyda [5].  

Assuming that networking and processing resources may 
not be easily altered by a developer of a DVE, there are 
three parameters within a DVE that may be manipulated to 
minimize the occurrence of missed interactions: (1) 
frequency of message exchanges; (2) object velocities; (3) 
sizes of areas of influence.  

Earlier work [6] has shown that a tool capable of 
simulating a DVE allows a developer to experiment with a 
number of different parameter values to determine how best 
to minimize missed interactions while avoiding 
unnecessarily high message exchange frequencies 
(inhibiting scalability). However, such a tool is manually 
based and requires a developer to change parameters 
incrementally and run numerous individual experiments to 
gain an indication as to what parameter values may be 
appropriate. In addition, given that such a tool allows for the 
modeling of a wide variety of virtual world types (e.g., 
different styles of object movement, varying message 
exchange frequencies, and varying sizes of areas of 
influence) there are too many experimental combinations to 
run manually in a reasonable amount of time.  

In this paper we describe how evolutionary optimization 
techniques have been employed to aid in deriving suitable 
parameters for governing a DVE. We take as the starting 
point the existing, manually based, DVE simulator tool [6]. 
We enrich the DVE simulator with an evolutionary 
optimization component that can determine optimized 
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settings for parameters that govern the functionality of a 
DVE. The results that we present confirm the applicability 
of our tool to the design of DVEs and shows that 
evolutionary optimization can be applied successfully to find 
optimum values for configuration parameters within a DVE. 

The rest of the paper is structured as follows: In Section II 
we describe the role of interest management in designing 
scalable DVEs and the missed interaction problem 
associated with these techniques; Section III provides an 
overview of the DVE simulator; Section IV discusses the 
use of evolutionary optimization in the context of finding 
optimal parameters for DVEs. Section V describes a series 
of experiments that evaluate the evolutionary component of 
the simulator and in Section VI we draw the conclusions of 
our work.  

II. BACKGROUND AND RELATED WORK 
In this section we describe the missed interactions that 

may be possible given different approaches to interest 
management. Such a discussion is presented in more detail 
in [6]. However, we present an abridged version to ensure 
the reader’s understanding of the work presented here. After 
discussing missed interactions with respect to different 
approaches to interest management, a brief introduction to 
evolutionary optimization is presented. Although this field 
of research is well known to many and has been actively 
researched by many over a long period of time, it was 
thought beneficial to introduce the reader to this technique 
as some members of this paper’s target audience (DVE 
researchers and developers) may not be familiar with 
evolutionary techniques. Finally, this section concludes with 
justification as to why an evolutionary approach to 
determining DVE parameters is desirable. This conclusion 
identifies the contribution of the paper. 

A. Interactions and Interest Management  
Interest management is the term used to describe how 

influence and interest exerted by objects in a virtual world 
translates to object interaction. Origins of interest 
management can be traced back to the early 1990’s [1, 2], 
with a comprehensive introduction to the area provided by 
Singhal & Zyda [5]. There are many different ways of 
identifying areas of influence and interest in a virtual world 
for use in interest management (many examples given in 
[5]). Rather than provide a description of the many different 
approaches to interest management available, we shall 
concentrate on the two basic categories of interest 
management from which all others are derived. We deem 
this appropriate as a starting point for tackling the missed 
interaction problem in order to make our work sufficiently 
generic as to be applicable to past, as well as recent, 
approaches to interest management solutions (e.g., [3,4]).  

All interest management schemes originate in region 
based or aura based approaches to defining areas of 
influence. In the region based approach (e.g., [2]) the virtual 

world is divided into regions of equal size and shape that 
remain static within the world. Messages are only exchanged 
between objects if they share the same, or neighboring, 
regions. In the aura based approach (e.g., [1]) each object 
has an aura associated with it (typically a sphere) that 
defines an area of the virtual world over which the object 
may exert influence. An object communicates its actions 
only to objects that fall within its aura or, possibly, with 
those objects that share aura overlap (e.g. [7]). 
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Fig.1.  Areas of influence. 

Identifying which objects are interacting at any one time 
in the region based approach can be achieved via a server 
that identifies which region participants are in and forwards 
messages appropriately. Alternatively, a communications 
subsystem capable of identifying multiple recipients of a 
message may be used. For example, each region may be 
assigned an IP-multicast address. If an object, say Obja, 
traverses a region boundary, say region 1 to region 2, Obja 
will subscribe as a sender/receiver for region 2’s IP-
multicast address and unsubscribe from region 1’s IP-
multicast address. Objects need only be aware of which 
region they are in to enable message passing to occur. There 
is no need for individual objects to contact each other 
directly to determine message recipients. 

Due to the lack of static regions in the aura based 
approach, identifying message recipients is via the objects 
themselves (peer-to-peer) or via a server. In a peer-to-peer 
approach all objects must exchange messages periodically to 
realize when aura influence is exerted over objects. Such 
messages are commonly termed heartbeat messages and 
occur infrequently to avoid exhausting available bandwidth 
and message processing resources. Once aura influences 
have been determined, via a heartbeat message, then high 
frequency message exchange between objects may be 
enacted. In the peer-to-peer approach this is commonly 
achieved independently between two objects: if an object, 
say Obja, receives a heartbeat message from Objb, and 
determines that Objb is influencing Obja then Obja will make 
it known that it is interested in receiving Objb’s high 
frequency messages. In the server approach to aura based 
interest management all objects send high frequency 
messages to a server, which assumes responsibility for 
determining interaction via aura influences. Once a server 
determines the appropriate influences then high frequency 
messages may be relayed between objects via the server. 

Missed interactions may manifest themselves in a number 
of ways depending on the type of deployment scenario 



 
 

 

(server or peer-to-peer) and the type of interest management 
scheme used (region or aura). We consider a period of 
unbroken interaction between objects to be a session. 
Missed interactions may be complete (throughout a session 
no messages were exchanged as expected) or partial 
(throughout a session a smaller number of messages were 
exchanged than expected). A server must inform objects of 
sessions taking place before missed interaction occur. As all 
messages are sent between objects and a server at a high 
frequency (irrelevant of region or aura based approaches), 
missed interactions relate to the speed (scalability) of the 
server in determining interaction.  

In a peer-to-peer based solution missed interactions in the 
region based approach are related to the time taken for 
objects to realize within which area of influence they are in 
and the frequency within which they send messages. 
Avoiding missed interactions in a peer-to-peer deployment 
using aura based interest management is most challenging as 
the additional issue of regulating heartbeat message intervals 
needs to be considered: too infrequent and too many missed 
interactions will occur, too frequent and too many messages 
may exhaust available processing and networking resources. 

B. Evolutionary Optimization  
Evolutionary optimization [8,9] is a popular approach for 

solving complex problems for which it is difficult or 
impossible to find a reasonable solution through analysis.  

Evolutionary optimization proceeds by creating 
successive generations of problem solutions, and improving 
the quality of solutions within consecutive generations 
through directed adaptation and selection of solution 
parameters. The quality of a given solution is determined by 
its fitness. This measure is determined by applying a fitness 
function to each candidate solution, resulting in a value that 
gives an indication as to how well the solution solves a 
given problem. With each problem that is to be assessed, the 
fitness function that is to be applied must be specifically 
tailored, so as to take into account all of the factors that 
contribute to the appropriateness of candidate solutions in 
providing a solution to a problem. The application of fitness 
functions to complex problem spaces then allows for the 
computational evaluation of potentially multi-parameter 
functions: functions wherein a number of contributing 
factors (or outputs) would need to be balanced when 
attempting to find an optimum solution, and for which an 
ideal solution is not intuitively apparent. 

Candidate solutions within a problem space can be altered 
with successive generations. Progressive adaptation from 
one generation of candidate solutions to the next happens 
through evolutionary operators like crossover (the exchange 
of parts of the encoding of prospective solutions) or 
mutation (random alterations to the encoding of solutions). 
The selection operators simulate natural style evolution by 
identifying the fittest individuals and having them 
reproduce, passing components of their encoding 

(commonly termed genes in keeping with the evolutionary 
flavor of the context) to the next generation. As has already 
been stated, finding appropriate parameter values for a given 
DVE is a complex problem without a clear analytical 
solution, which makes it a good candidate for the application 
of evolutionary optimization techniques. 

III. SIMULATOR 
This section describes our simulator. Only a brief 

description of the simulator is provided for completeness 
(described in detail in [6]). Detail has instead been afforded 
to the descriptions of the evolutionary component of the 
simulator with a detailed description of how the 
evolutionary technique is applied in section IV.  

In developing our simulator we chose a peer-to-peer aura 
based interest management approach as this provides the 
most challenging environment when satisfying missed 
interaction and scalability requirements (see description in 
sub-section II.A). 

A. Virtual World Model  
We want to simulate an environment that is similar to a 

virtual world supported by a DVE application. This requires 
simulating objects that are capable of movement within a 
three dimensional space. We assume that there are distinct  
classes of objects residing within a virtual world, and that a 
particular object’s movement is dependent on its object type 
with respect to these classes.  

In terms of modes of movement, we define four types of 
object: Direct – objects move, without stopping, along a 
linear path at a fixed velocity; Indirect – objects move 
along a linear path at a fixed velocity, but may periodically 
deviate from their paths; Stuttering – objects move along a 
linear path at a fixed speed (when moving), but may pause 
for periods of time; Static – objects do not move. 

In our simulations there are no obstacles, allowing objects 
to roam freely without hindrance. This aspect of our 
simulation ensures that measurements do not reflect any 
constraints that would otherwise have been imposed by the 
virtual environment itself (such as space limitations due to 
obstacles). The measurements gained from experiments 
using the simulator give a clear indication of the occurrence 
of missed interactions due to networking and processing 
constraints, neglecting any influence that virtual world 
obstacles would otherwise have had. Although including 
obstacles may give rise to interesting avenues for research in 
DVEs and have been explored in the real world (e.g., [10, 
11]), such research is beyond the scope of this paper. 

The simulator includes a virtual world parameter interface 
that allows the control of a subset of parameters on the basis 
of object class: lower and upper velocity bounds and the 
percentage of objects in the simulation that will be of a 
particular object type. Other parameters may also be set that 
relate to the virtual world as a whole: world size, number of 
objects within the world, the frequency of high frequency 



 
 

 

and heartbeat message exchange, and values associated to 
networking resources (e.g., latency, jitter, bandwidth, 
processing availability).  

We simulate meaningful (i.e., directed) movement of 
objects within the virtual world via the positioning of 
targets. Objects are assigned a target to move towards at 
random, and may change the target to which they are 
traveling towards in a similarly unpredictable manner. Given 
that the number of targets is controlled so as to be less than 
the size of the object population, with suitable constraints 
placed on the degree of randomness inherent in target 
reselection, objects will appear to cluster and disperse 
throughout the simulation. 

The configuration information for a particular simulation 
can be stored to a data file which can be subsequently 
loaded back into the simulator for the purpose of 
reevaluating stored sets of parameters. 

As we do not want resources of the machine actually 
running the simulator to influence our results we base time 
on the number of iterations progressed in a simulator. For 
example, if message latency is set to 3, then this indicates 
latency will last for 3 iterations of the simulation. 

B. Evolutionary Component 
The simulator supports the derivation of optimized 

simulation parameters by the use of evolutionary 
optimization techniques. Such techniques are applied to a 
fixed size population of simulated DVEs configured with a 
full range of static parameters (shared across the entire DVE 
population) and variable parameters (unique to each DVE in 
the population). As the evolutionary component of the 
simulator proceeds new generations of DVEs are created 
from the existing population using a range of genetic 
operators (crossover, mutation, and elitism). These operators 
are used to inform the process of selecting most promising 
candidate solutions. This optimization process stops when 
the optimum solution is discovered or after the generation of 
a user specified number of solution populations. 

The evolutionary optimization component provides a 
visual representation of the evolutionary process in terms of 
charts displaying the performance measures and parameter 
values resulting from simulation runs. This data can aid the 
DVE developer in directing the search for optimized 
parameters in domains of the solution space where the 
desired level of performance is more likely to be achievable. 
After a specified number of solution generations have been 
created and evolved (or an optimum solution has been 
found), the simulator stops running simulations and 
compiles the results into a pair of linked charts. 

In Figure 2 each dot represents a candidate solution 
(unique simulation). A point is positioned based on the 
heartbeat interval and aura size parameter values that were 
used during a simulation. The quality of the candidate 
solution is also illustrated: the darker the point, the better the 
associated parameters are at reducing the occurrence of 

missed interactions while keeping message exchange at a 
minimum (more accurately satisfying the fitness function). 
Due to printing limitations variable darkness is not clearly 
discernable in this paper. However, these graphs are 
presented to give the reader an indication of how the 
simulator works and what type of interfaces the simulator 
provides to users. The darkness (i.e., quality) of each point 
is determined with respect to all other simulations in the 
series, and may not necessarily be an ‘ideal solution’. These 
charts are used to provide developers with a comparison for 
quick evaluation to aid in judging the success of an 
experiment. 

 

 
Fig.2.  Aura size against heartbeat interval 

In Figure 3 each dot represents the number of missed 
interactions that occurred during the simulation and the 
number of messages produced during the simulation. 

 
Fig.3.  Missed interactions against messages 

Figures 3 and 4 are linked, in that when a user highlights 
a specific point in either chart, the associated point in the 
adjoining chart is also highlighted. This allows a developer 
to identify which solution they want to use based simply on 
its quality (i.e., the darkness of the associated point), but 
also on its levels of message production or performance with 
respect to avoidance of missed interactions. This is 
especially applicable in situations where the demands of the 
developer vary. For example, a developer may be running a 
DVE application across a high performance network of 
nodes wherein the number of messages produced is less 
critical to system performance than the occurrence of missed 
interactions. This approach reduces the need for a developer 
to continually adjust the fitness function to suite their 
requirements (allowing quick and easy use of the tool for 
developers not familiar with evolutionary techniques). 

IV. EVOLUTIONARY OPTIMISATION 
In this section we describe how we have applied 

evolutionary optimization in our simulator. An overview is 
provided that describes a typical execution of the simulator 



 
 

 

using the optimization component. This is followed by 
descriptions that highlight how functions and operators 
associated to the evolutionary component are managed in 
the simulator. 
A. Overview 

The simulator searches for optimum solutions by 
initializing a set of simulated DVEs with a complete set of 
configuration parameters. Heartbeat message interval and 
aura size (across all objects) for each DVE simulation are 
then modified in the search for optimum solutions. Each 
individual DVE simulation is run to completion, with 
performance observed with respect to missed interactions 
and the number of messages exchanged. The performance 
data from the simulation is evaluated by a fitness function to 
determine the effectiveness of the values used for aura size 
and heartbeat message interval. This concept of fitness also 
influences how subsequent generations of simulated DVEs 
are formed from the existing DVE set. We assume that the 
virtual world parameters relating to velocity, number of 
objects, size of virtual world and different types of objects 
remain the same throughout the series of experiments: given 
a particular virtual world we are attempting to determine the 
optimal settings for aura size and heartbeat message 
exchange.  

Candidate solutions are encoded as individual 
chromosomes (common terminology for describing 
solutions in evolutionary optimization). These chromosomes 
include value encoded representations of the heartbeat 
message interval and aura size value pair to be trialed in 
each simulation. There is no need to encode any other values 
into the chromosomes as all other parameters are global in 
nature (i.e., shared by all simulations across all generations). 

B. Fitness Function 
As each complete set of simulation parameters is 

assessed, the effectiveness of specific parameter values at 
reducing the occurrence of missed interactions is evaluated 
using a specialized fitness function. This function is given 
as: 

F = 1/3(1-C) + 1/3(1-P) + 1/3(A/E) 
F is the overall fitness of the candidate solution; C is the 
percentage of missed interactions that occurred; P is the 
percentage of partially missed interactions that occurred; A 
is the number of messages sent during the simulation;  E is 
the number of messages that it is estimated would have been 
sent during the simulation if no missed interactions had 
occurred. 

The fitness function attempts to balance the number of 
missed interactions against the number of messages 
exchanged. If this were not the case and missed interactions 
were considered alone, it would be feasible to give 
preference to a DVE within which no missed interactions 
occurred. This may result in an unacceptably high number of 
heartbeat messages (hindering scalability). Using this 
function the closer F (the result of the fitness function) gets 

to a value of 1.00 the better the candidate solution is in 
striking the necessary balance between missed interactions 
and the number of messages exchanged. A simulation can 
only achieve a fitness of 1.00 if no missed interactions 
(complete or partial) occur, and the number of messages 
exchanged during the simulation is equal to the predicted 
number of messages that would have been exchanged by the 
system had no missed interactions occurred.  

A developer may alter the fitness function. As already 
mentioned, the fitness function described here balances 
scalability (number of messages exchanged) against missed 
interactions (partial and complete). However, a small change 
to the fitness function may be made by a developer to ensure 
complete missed interactions are avoided at the expense of 
partial missed interactions. Alternatively, different 
parameters may be incorporated into the fitness function to 
determine how many different types of a particular object 
may influence missed interactions and/or scalability. 
Tailoring of the fitness function in this manner is not 
without complications (e.g., may gain misleading results) 
and requires a developer who understand fully how 
evolutionary techniques may be applied in the context of 
DVEs. 

C. Crossover, Mutation, Elitism 
With the fitness of each candidate solution derived, the 

mating potential of each chromosome can be determined 
with relation to all other candidates in a generation. This is 
achieved, in our approach, by comparing fitness values 
across the population in conjunction with the standard 
deviation of all the fitness values. The most promising 
chromosomes are more likely to mate (i.e., blend their 
characteristics into a hybrid offspring) or alternatively live 
on into the next generation. 

Selected pairs of candidate solutions are chosen to mate as 
each new generation in the optimization process develops, 
thereby blending their characteristics into an offspring 
chromosome. This is achieved primarily by use of the 
crossover technique. Using this technique two solutions are 
chosen based on their mating potential. Heartbeat message 
interval and aura size parameters are randomly selected from 
one or either of the two parent solutions, forming a single 
composite offspring (with the hope that mating two good 
chromosomes will produce a better one). Furthermore, in 
order to maintain a certain level of variety in the overall set, 
there is a chance that random, small mutations (of varying 
but bounded magnitude) are created in the offspring 
chromosomes. This may or may not contribute to better 
candidate solutions in the following generation(s). 

In order to preserve candidate solutions which show the 
most promise (in as far as them being prospective parents in 
subsequent generations), all chromosomes with a fitness 
value above the average within the existing population are 
allowed to ‘live on’ into the next generation. This is one 
form of elitism, wherein the best chromosomes are chosen to 



 
 

 

outlive the rest of the generation. Elitism prevents the loss of 
good solutions once they are found and helps the speed-up 
of the evolutionary optimization process [12]. 

A small subset of the new population is generated from 
heavily mutated offspring spawned by chromosomes from 
the previous generation that were deemed below average in 
quality. This is an additional step taken to ensure that the 
solution space does not go stale, by essentially giving a 
second chance to those chromosomes that wouldn’t have 
lived on. This step also affords the capacity to quickly 
search out candidate solutions in other parts of the solution 
space as a whole (by mutating offspring chromosomes away 
from any refined solution spaces currently under 
investigation). If this heavy mutation was excluded from our 
simulation it may be quite conceivable that an ideal solution 
may go undetected as the solution space narrows through 
subsequent generations. 

V. PERFORMANCE 
In this section we describe a series of experiments that 

were carried out to evaluate the evolutionary component of 
the simulator. The main focus of the experiments was to 
determine how variations in the evolutionary techniques 
themselves would contribute to determining optimum 
parameters. To this end, in the majority of our experiments 
virtual world parameters were left unchanged. This allowed 
comparisons to be made when altering evolutionary related 
settings (e.g., how soon is an optimum value reached).  

A. Simulator Settings 
We assessed the usefulness of our simulator using a base 

set of global configuration parameters, detailed as follows: 
World size – 5 000; No. of iterations – 500; No. of objects – 
50; No. of targets – 2; Generation limit – 100; Networking 
latency – 2; Processing latency – 1. We also maintained a 
base set of parameter values across all object classes for all 
simulations: Object class quotient – 25; Lower velocity 
bound – 10; Upper velocity bound – 20; High frequency 
interval – 5. We carried out a series of experiments to 
evaluate various aspects of the simulator (see sub-sections 
below). To calculate the average values we run each 
experiment 50 times with random initialization for each 
setting of the investigated parameter. 

To ascertain whether the simulator was effective a set of 
measurements from the experiments was recorded: average 
fitness and variance of all the chromosomes in each 
generation. These measurements show how the solution set 
changes over time, arriving at an optimum set of parameter 
values. In essence, we are concerned with not only the 
suitability of the optimized solution, but how long it took to 
derive and the variability present in the candidate solutions. 

B. Population Size 
The simulator was tested with a small set of different 

population sizes, specifically 10, 30, 50, 70 and 90 
chromosomes. The results for these tests are shown in 

Figures 5 and 6. 
 

 
Fig.4.  Generations against average fitness of chromosomes for different 

population sizes 
Figure 4 shows that for all population sizes the simulator 

quickly starts to converge on higher quality solutions, and 
for the most part is able to pursue these promising solutions. 
At least with respect to our own DVE environment, 
increasing the population size above 30 chromosomes does 
not necessarily affect the capacity to retain viable solutions, 
as the average fitness remains relatively uniform in such 
instances. However, a population size as low as 10 
chromosomes shows frequent and sizeable fluctuations in 
the average fitness of the population, suggesting that a 
population this small would be unsuitable for retaining 
promising candidate solutions. 

 
Fig.5.  Generations against variance across chromosomes for different 

population sizes 
Figure 5 shows how the variance in the solution set for all 

instances is quickly reduced as each instance progresses. 
This illustrates that the simulator is able to focus on 
promising solutions to increase the quality of the population 
in general and is able to maintain this level of quality 
throughout each run. The results for all population sizes 
show infrequent spikes in variance, attributed to the 
simulator searching out new solution spaces using heavily 
mutated offspring; it is noted, however, that despite these 
spikes the general level of variance is kept constant, which 
again proves that the simulator is able to refine the solution 
space and maintain improvements made to the solution set 
as a whole. 



 
 

 

C. Mutation 
Mutation allows the examination of specific solution 

spaces by essentially fine tuning the solution set with minor 
mutations (in the case of offspring created from elite 
chromosomes), or alternatively quickly search out other 
promising solutions through the heavy mutation of offspring 
generated from non-elite chromosomes. Different levels of 
mutation in the elite offspring were examined, to determine 
how such alterations affect the ability to find and improve 
upon promising solutions. The level of mutation is 
determined by both the probability of mutation occurring 
and the maximum achievable extent of any mutations that 
occur (represented as a quotient of the overall parameter 
range). As such, we examined a small set of mutation levels: 
probability of 5% with a bound of 1%; probability of 15% 
with a bound of 1/75th; probability of 25% with a bound of 
2%; probability of 40% with a bound of 5%; and finally a 
probability of 50% with a bound of 10%. The results of 
these tests are shown in Figures 7 and 8. 

 
Fig.6.  Generations against average fitness of chromosomes for different 

levels of mutation 
Figure 6 shows that for a mutation level of 5% with a 1% 

bound the average fitness quickly converges on a set of 
promising solutions. However these values result in the 
simulator been slow to fine tune the solution set, steadily 
increasing the average fitness albeit with no dips in overall 
quality. With the two most extreme levels of mutation it is 
evident that the solution set in general suffers lasting (if not 
necessarily severe) dips in fitness, which may affect an 
ability to retain and fine tune promising solutions. 
Therefore, at least for the DVE problem we are solving, it 
appears that a chance of mutation of around 15-25%, with a 
bound of 1/75th-1/50th of the parameter range is the most 
suitable choice. 

Figure 7 shows that for the lesser three mutation levels 
variance is kept relatively low (once the values have quickly 
converged upon a minimum), but that for the two most 
severe levels of mutation the variance gradually becomes 
pronounced in its fluctuation. This suggests that the ability 
of the simulator to retain and fine tune its solution set is 
hampered by the chosen levels of mutation in these cases. 
The mutation levels otherwise help the simulator to augment 
the candidate solutions in other cases. Considering this 
outcome, it is again recommended that mutation levels are 

kept relatively low. 

 
Fig.7.  Generations against variance across chromosomes for different levels 

of mutation 

D. High Frequency Message Interval 
In order to test the simulator’s capacity to find optimum 

solutions given variability in one of the fitness functions 
parameters, we simulated DVEs with the same base world 
parameters but with varying high frequency messaging 
intervals. The specific test set ranged across high frequency 
messaging intervals of: 1 iteration; 2 iterations; 5 iterations; 
and 8 iterations. 

 
Fig.8.  Generations against average fitness of chromosomes for different 

high-frequency messaging intervals 
From the average fitness chart for high-frequency 

messaging intervals (Figure 8), it is evident that the 
simulator is capable of quickly converging on promising 
solutions across the different scenarios. In addition, the 
graph indicates that the simulator is able to find more 
promising solutions as the high frequency interval is 
decreased. For intervals of 1 and 2 iterations the average 
fitness is relatively equal, with the same being said for the 
pairing of 5 and 8 iteration intervals. For the smaller pair of 
values in this test set, these results suggest that the simulator 
is capable of balancing message production with the 
occurrence of missed interactions as the capacity for lower 
message frequencies did not necessarily yield better results 
with respect to the tests for 1 and 2 iteration high frequency 
messaging intervals. 

 



 
 

 

 
Fig.9.  Generations against variance across chromosomes for different high-

frequency messaging intervals 
Figure 9 shows how the simulator quickly fine tunes the 

solution set for all instances that are investigated and 
maintains a relatively consistent level of variance throughout 
each run. There is minimum difference between the various 
intervals measured with respect to variance. This indicates 
that high frequency message exchange probably plays a 
lesser role in overall messages exchanged compared to 
heartbeat messages. This was also clear in our previous 
experiments (described in [6]). 

VI. CONCLUSIONS 
Distributed virtual environments play an increasingly 

important role in networked computer games, persistent 
virtual worlds, and advanced scenario training (such as 
military simulations). Handling the consistency throughput 
tradeoff is critical in such environments, and interest 
management is a key approach to delivering effective and 
efficient system. 

We have presented (as an extension to our existing suite 
of DVE applications) a novel optimization tool, in the form 
of a DVE simulator, that allows the experimental evaluation 
of candidate configuration parameters for DVEs. The 
simulator builds a simulation of the proposed DVE and uses 
evolutionary optimization to find optimal values for the 
parameters that mostly influence a DVEs consistency 
(minimizing missed interactions) and scalability (minimizing 
message exchange). The experiments described in this paper 
indicate that evolutionary optimization techniques do 
provide appropriate solutions for DVEs in a manner that 
would be either extremely time consuming or impossible to 
achieve manually. 

We expect that our work will facilitate the systematic 
addressing of problems arising in the context of DVE 
development. The simulator allows for the analysis of the 
impact upon DVE performance of particular sets of 
configuration parameters. Incorporating evolutionary 
optimization makes it entirely possible to deal with the 
highly nonlinear and complex problem of determining 
optimal values for DVE parameters (not simply consistency 
and scalability as described here). We believe that the 
combination of simulation and evolutionary optimization to 

be the way forward for the objective development and 
assessment of DVE designs. 

Our next step is to incorporate our middleware monitoring 
software [13] into the simulation tool presented here. In 
addition we aim to provide appropriate changes to our DVE 
simulator parameters to accommodate changes in 
networking and processing resources and virtual world 
properties during runtime. 

The complete suite of DVE simulation tools may be found 
at: homepages.cs.ncl.ac.uk/graham.morgan. The middleware 
monitoring software is also accessible through this website. 
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