

Abstract—In a distributed virtual environment interest
management schemes attempt to ensure virtual world objects
exchange messages only if they are interacting. This provides
an opportunity to allow such systems to scale to support many
hundreds, even thousands, of virtual world objects by reducing
the need to send and process unnecessary messages. However,
arriving at the optimum configuration for the interest
management scheme is a challenging and complex problem.
The customary approach is to configure parameters in an ad-
hoc manner (supported by experience). However, such an
approach is unlikely to yield optimum system performance.
Here we propose a means of finding optimal parameter values
by way of a simulation tool equipped with evolutionary
optimization capabilities. We provide a series of experiments
that indicate that our simulator can aid in configuring interest
management schemes to gain better system performance.

I. INTRODUCTION
EVELOPMENT of scalable distributed virtual
environments (DVEs) is a significant research

challenge. Such environments must be engineered so as to
be able to support many hundreds and thousands of users
while satisfying requirements for timely performance
(preserving responsiveness in virtual worlds) and
consistency (ensuring participants view events in a mutually
consistent fashion). With message exchange being the only
way to propagate events that occur in the virtual world to a
geographically dispersed network of users, care must be
taken to achieve these requirements in a manner that avoids
exhaustion of available networking and processing
resources.

Interest management is an approach to building scalable
DVEs (e.g. [1-4]) by making best use of available
networking and processing resources via targeted message
exchange (in contrast to a general broadcast mechanism).
Messages are sent only to recipients that may be interested
in them (e.g., messages are only sent between those objects
that are interacting within the virtual world). The sending of
messages is delegated across bounded areas within the

Manuscript received March 13, 2007. This work was funded by UK

EPSRC Grant GR/S63199 and UK EPSRC Grant GR/S04529/01.
Simon E. Parkin is with the School of Computing Science, Newcastle

University, Newcastle upon Tyne, NE1 7RU, UK (e-mail:
s.e.parkin@ncl.ac.uk).

Peter Andras, is with the School of Computing Science, Newcastle
University, Newcastle upon Tyne, NE1 7RU, UK (e-mail:
peter.andras@ncl.ac.uk).

Graham Morgan, is with the School of Computing Science, Newcastle
University, Newcastle upon Tyne, NE1 7RU, UK (e-mail:
graham.morgan@ncl.ac.uk).

virtual world (i.e., a virtual world object should be in the
area to which a message is deemed applicable in order to
receive that message). These areas are commonly termed
areas of influence, and an object is expected to exert
influence (i.e., send messages) to all other objects that exist
in its area of influence.

Restricted message passing in a DVE based on areas of
influence may lead to what are termed missed interactions:
objects that should interact do not due to a lack of messages
exchanged between them. Missed interactions occur because
the degree on inconsistency in a DVE is sufficient to allow
an object’s traversal of an area of influence to go
undetected, partially or fully, by an interest management
scheme. Such inconsistency arises from the fact that delays
in propagating events throughout a DVE are inherent due to
networking and processing resource limitations (e.g.,
network latency). The missed interaction problem may be
considered an interest management oriented view of the
consistency-throughput trade-off described by Singhal and
Zyda [5].

Assuming that networking and processing resources may
not be easily altered by a developer of a DVE, there are
three parameters within a DVE that may be manipulated to
minimize the occurrence of missed interactions: (1)
frequency of message exchanges; (2) object velocities; (3)
sizes of areas of influence.

Earlier work [6] has shown that a tool capable of
simulating a DVE allows a developer to experiment with a
number of different parameter values to determine how best
to minimize missed interactions while avoiding
unnecessarily high message exchange frequencies
(inhibiting scalability). However, such a tool is manually
based and requires a developer to change parameters
incrementally and run numerous individual experiments to
gain an indication as to what parameter values may be
appropriate. In addition, given that such a tool allows for the
modeling of a wide variety of virtual world types (e.g.,
different styles of object movement, varying message
exchange frequencies, and varying sizes of areas of
influence) there are too many experimental combinations to
run manually in a reasonable amount of time.

In this paper we describe how evolutionary optimization
techniques have been employed to aid in deriving suitable
parameters for governing a DVE. We take as the starting
point the existing, manually based, DVE simulator tool [6].
We enrich the DVE simulator with an evolutionary
optimization component that can determine optimized

Evolutionary Optimization of Parameters for Distributed Virtual
Environments

Simon E. Parkin, Peter Andras, and Graham Morgan

D

settings for parameters that govern the functionality of a
DVE. The results that we present confirm the applicability
of our tool to the design of DVEs and shows that
evolutionary optimization can be applied successfully to find
optimum values for configuration parameters within a DVE.

The rest of the paper is structured as follows: In Section II
we describe the role of interest management in designing
scalable DVEs and the missed interaction problem
associated with these techniques; Section III provides an
overview of the DVE simulator; Section IV discusses the
use of evolutionary optimization in the context of finding
optimal parameters for DVEs. Section V describes a series
of experiments that evaluate the evolutionary component of
the simulator and in Section VI we draw the conclusions of
our work.

II. BACKGROUND AND RELATED WORK
In this section we describe the missed interactions that

may be possible given different approaches to interest
management. Such a discussion is presented in more detail
in [6]. However, we present an abridged version to ensure
the reader’s understanding of the work presented here. After
discussing missed interactions with respect to different
approaches to interest management, a brief introduction to
evolutionary optimization is presented. Although this field
of research is well known to many and has been actively
researched by many over a long period of time, it was
thought beneficial to introduce the reader to this technique
as some members of this paper’s target audience (DVE
researchers and developers) may not be familiar with
evolutionary techniques. Finally, this section concludes with
justification as to why an evolutionary approach to
determining DVE parameters is desirable. This conclusion
identifies the contribution of the paper.

A. Interactions and Interest Management
Interest management is the term used to describe how

influence and interest exerted by objects in a virtual world
translates to object interaction. Origins of interest
management can be traced back to the early 1990’s [1, 2],
with a comprehensive introduction to the area provided by
Singhal & Zyda [5]. There are many different ways of
identifying areas of influence and interest in a virtual world
for use in interest management (many examples given in
[5]). Rather than provide a description of the many different
approaches to interest management available, we shall
concentrate on the two basic categories of interest
management from which all others are derived. We deem
this appropriate as a starting point for tackling the missed
interaction problem in order to make our work sufficiently
generic as to be applicable to past, as well as recent,
approaches to interest management solutions (e.g., [3,4]).

All interest management schemes originate in region
based or aura based approaches to defining areas of
influence. In the region based approach (e.g., [2]) the virtual

world is divided into regions of equal size and shape that
remain static within the world. Messages are only exchanged
between objects if they share the same, or neighboring,
regions. In the aura based approach (e.g., [1]) each object
has an aura associated with it (typically a sphere) that
defines an area of the virtual world over which the object
may exert influence. An object communicates its actions
only to objects that fall within its aura or, possibly, with
those objects that share aura overlap (e.g. [7]).

a

b

c

d
e

a

b

c
d

e

1

2

3

4
f f

(i) Region (ii) Aura

Fig.1. Areas of influence.

Identifying which objects are interacting at any one time
in the region based approach can be achieved via a server
that identifies which region participants are in and forwards
messages appropriately. Alternatively, a communications
subsystem capable of identifying multiple recipients of a
message may be used. For example, each region may be
assigned an IP-multicast address. If an object, say Obja,
traverses a region boundary, say region 1 to region 2, Obja
will subscribe as a sender/receiver for region 2’s IP-
multicast address and unsubscribe from region 1’s IP-
multicast address. Objects need only be aware of which
region they are in to enable message passing to occur. There
is no need for individual objects to contact each other
directly to determine message recipients.

Due to the lack of static regions in the aura based
approach, identifying message recipients is via the objects
themselves (peer-to-peer) or via a server. In a peer-to-peer
approach all objects must exchange messages periodically to
realize when aura influence is exerted over objects. Such
messages are commonly termed heartbeat messages and
occur infrequently to avoid exhausting available bandwidth
and message processing resources. Once aura influences
have been determined, via a heartbeat message, then high
frequency message exchange between objects may be
enacted. In the peer-to-peer approach this is commonly
achieved independently between two objects: if an object,
say Obja, receives a heartbeat message from Objb, and
determines that Objb is influencing Obja then Obja will make
it known that it is interested in receiving Objb’s high
frequency messages. In the server approach to aura based
interest management all objects send high frequency
messages to a server, which assumes responsibility for
determining interaction via aura influences. Once a server
determines the appropriate influences then high frequency
messages may be relayed between objects via the server.

Missed interactions may manifest themselves in a number
of ways depending on the type of deployment scenario

(server or peer-to-peer) and the type of interest management
scheme used (region or aura). We consider a period of
unbroken interaction between objects to be a session.
Missed interactions may be complete (throughout a session
no messages were exchanged as expected) or partial
(throughout a session a smaller number of messages were
exchanged than expected). A server must inform objects of
sessions taking place before missed interaction occur. As all
messages are sent between objects and a server at a high
frequency (irrelevant of region or aura based approaches),
missed interactions relate to the speed (scalability) of the
server in determining interaction.

In a peer-to-peer based solution missed interactions in the
region based approach are related to the time taken for
objects to realize within which area of influence they are in
and the frequency within which they send messages.
Avoiding missed interactions in a peer-to-peer deployment
using aura based interest management is most challenging as
the additional issue of regulating heartbeat message intervals
needs to be considered: too infrequent and too many missed
interactions will occur, too frequent and too many messages
may exhaust available processing and networking resources.

B. Evolutionary Optimization
Evolutionary optimization [8,9] is a popular approach for

solving complex problems for which it is difficult or
impossible to find a reasonable solution through analysis.

Evolutionary optimization proceeds by creating
successive generations of problem solutions, and improving
the quality of solutions within consecutive generations
through directed adaptation and selection of solution
parameters. The quality of a given solution is determined by
its fitness. This measure is determined by applying a fitness
function to each candidate solution, resulting in a value that
gives an indication as to how well the solution solves a
given problem. With each problem that is to be assessed, the
fitness function that is to be applied must be specifically
tailored, so as to take into account all of the factors that
contribute to the appropriateness of candidate solutions in
providing a solution to a problem. The application of fitness
functions to complex problem spaces then allows for the
computational evaluation of potentially multi-parameter
functions: functions wherein a number of contributing
factors (or outputs) would need to be balanced when
attempting to find an optimum solution, and for which an
ideal solution is not intuitively apparent.

Candidate solutions within a problem space can be altered
with successive generations. Progressive adaptation from
one generation of candidate solutions to the next happens
through evolutionary operators like crossover (the exchange
of parts of the encoding of prospective solutions) or
mutation (random alterations to the encoding of solutions).
The selection operators simulate natural style evolution by
identifying the fittest individuals and having them
reproduce, passing components of their encoding

(commonly termed genes in keeping with the evolutionary
flavor of the context) to the next generation. As has already
been stated, finding appropriate parameter values for a given
DVE is a complex problem without a clear analytical
solution, which makes it a good candidate for the application
of evolutionary optimization techniques.

III. SIMULATOR
This section describes our simulator. Only a brief

description of the simulator is provided for completeness
(described in detail in [6]). Detail has instead been afforded
to the descriptions of the evolutionary component of the
simulator with a detailed description of how the
evolutionary technique is applied in section IV.

In developing our simulator we chose a peer-to-peer aura
based interest management approach as this provides the
most challenging environment when satisfying missed
interaction and scalability requirements (see description in
sub-section II.A).

A. Virtual World Model
We want to simulate an environment that is similar to a

virtual world supported by a DVE application. This requires
simulating objects that are capable of movement within a
three dimensional space. We assume that there are distinct
classes of objects residing within a virtual world, and that a
particular object’s movement is dependent on its object type
with respect to these classes.

In terms of modes of movement, we define four types of
object: Direct – objects move, without stopping, along a
linear path at a fixed velocity; Indirect – objects move
along a linear path at a fixed velocity, but may periodically
deviate from their paths; Stuttering – objects move along a
linear path at a fixed speed (when moving), but may pause
for periods of time; Static – objects do not move.

In our simulations there are no obstacles, allowing objects
to roam freely without hindrance. This aspect of our
simulation ensures that measurements do not reflect any
constraints that would otherwise have been imposed by the
virtual environment itself (such as space limitations due to
obstacles). The measurements gained from experiments
using the simulator give a clear indication of the occurrence
of missed interactions due to networking and processing
constraints, neglecting any influence that virtual world
obstacles would otherwise have had. Although including
obstacles may give rise to interesting avenues for research in
DVEs and have been explored in the real world (e.g., [10,
11]), such research is beyond the scope of this paper.

The simulator includes a virtual world parameter interface
that allows the control of a subset of parameters on the basis
of object class: lower and upper velocity bounds and the
percentage of objects in the simulation that will be of a
particular object type. Other parameters may also be set that
relate to the virtual world as a whole: world size, number of
objects within the world, the frequency of high frequency

and heartbeat message exchange, and values associated to
networking resources (e.g., latency, jitter, bandwidth,
processing availability).

We simulate meaningful (i.e., directed) movement of
objects within the virtual world via the positioning of
targets. Objects are assigned a target to move towards at
random, and may change the target to which they are
traveling towards in a similarly unpredictable manner. Given
that the number of targets is controlled so as to be less than
the size of the object population, with suitable constraints
placed on the degree of randomness inherent in target
reselection, objects will appear to cluster and disperse
throughout the simulation.

The configuration information for a particular simulation
can be stored to a data file which can be subsequently
loaded back into the simulator for the purpose of
reevaluating stored sets of parameters.

As we do not want resources of the machine actually
running the simulator to influence our results we base time
on the number of iterations progressed in a simulator. For
example, if message latency is set to 3, then this indicates
latency will last for 3 iterations of the simulation.

B. Evolutionary Component
The simulator supports the derivation of optimized

simulation parameters by the use of evolutionary
optimization techniques. Such techniques are applied to a
fixed size population of simulated DVEs configured with a
full range of static parameters (shared across the entire DVE
population) and variable parameters (unique to each DVE in
the population). As the evolutionary component of the
simulator proceeds new generations of DVEs are created
from the existing population using a range of genetic
operators (crossover, mutation, and elitism). These operators
are used to inform the process of selecting most promising
candidate solutions. This optimization process stops when
the optimum solution is discovered or after the generation of
a user specified number of solution populations.

The evolutionary optimization component provides a
visual representation of the evolutionary process in terms of
charts displaying the performance measures and parameter
values resulting from simulation runs. This data can aid the
DVE developer in directing the search for optimized
parameters in domains of the solution space where the
desired level of performance is more likely to be achievable.
After a specified number of solution generations have been
created and evolved (or an optimum solution has been
found), the simulator stops running simulations and
compiles the results into a pair of linked charts.

In Figure 2 each dot represents a candidate solution
(unique simulation). A point is positioned based on the
heartbeat interval and aura size parameter values that were
used during a simulation. The quality of the candidate
solution is also illustrated: the darker the point, the better the
associated parameters are at reducing the occurrence of

missed interactions while keeping message exchange at a
minimum (more accurately satisfying the fitness function).
Due to printing limitations variable darkness is not clearly
discernable in this paper. However, these graphs are
presented to give the reader an indication of how the
simulator works and what type of interfaces the simulator
provides to users. The darkness (i.e., quality) of each point
is determined with respect to all other simulations in the
series, and may not necessarily be an ‘ideal solution’. These
charts are used to provide developers with a comparison for
quick evaluation to aid in judging the success of an
experiment.

Fig.2. Aura size against heartbeat interval

In Figure 3 each dot represents the number of missed
interactions that occurred during the simulation and the
number of messages produced during the simulation.

Fig.3. Missed interactions against messages

Figures 3 and 4 are linked, in that when a user highlights
a specific point in either chart, the associated point in the
adjoining chart is also highlighted. This allows a developer
to identify which solution they want to use based simply on
its quality (i.e., the darkness of the associated point), but
also on its levels of message production or performance with
respect to avoidance of missed interactions. This is
especially applicable in situations where the demands of the
developer vary. For example, a developer may be running a
DVE application across a high performance network of
nodes wherein the number of messages produced is less
critical to system performance than the occurrence of missed
interactions. This approach reduces the need for a developer
to continually adjust the fitness function to suite their
requirements (allowing quick and easy use of the tool for
developers not familiar with evolutionary techniques).

IV. EVOLUTIONARY OPTIMISATION
In this section we describe how we have applied

evolutionary optimization in our simulator. An overview is
provided that describes a typical execution of the simulator

using the optimization component. This is followed by
descriptions that highlight how functions and operators
associated to the evolutionary component are managed in
the simulator.
A. Overview

The simulator searches for optimum solutions by
initializing a set of simulated DVEs with a complete set of
configuration parameters. Heartbeat message interval and
aura size (across all objects) for each DVE simulation are
then modified in the search for optimum solutions. Each
individual DVE simulation is run to completion, with
performance observed with respect to missed interactions
and the number of messages exchanged. The performance
data from the simulation is evaluated by a fitness function to
determine the effectiveness of the values used for aura size
and heartbeat message interval. This concept of fitness also
influences how subsequent generations of simulated DVEs
are formed from the existing DVE set. We assume that the
virtual world parameters relating to velocity, number of
objects, size of virtual world and different types of objects
remain the same throughout the series of experiments: given
a particular virtual world we are attempting to determine the
optimal settings for aura size and heartbeat message
exchange.

Candidate solutions are encoded as individual
chromosomes (common terminology for describing
solutions in evolutionary optimization). These chromosomes
include value encoded representations of the heartbeat
message interval and aura size value pair to be trialed in
each simulation. There is no need to encode any other values
into the chromosomes as all other parameters are global in
nature (i.e., shared by all simulations across all generations).

B. Fitness Function
As each complete set of simulation parameters is

assessed, the effectiveness of specific parameter values at
reducing the occurrence of missed interactions is evaluated
using a specialized fitness function. This function is given
as:

F = 1/3(1-C) + 1/3(1-P) + 1/3(A/E)
F is the overall fitness of the candidate solution; C is the
percentage of missed interactions that occurred; P is the
percentage of partially missed interactions that occurred; A
is the number of messages sent during the simulation; E is
the number of messages that it is estimated would have been
sent during the simulation if no missed interactions had
occurred.

The fitness function attempts to balance the number of
missed interactions against the number of messages
exchanged. If this were not the case and missed interactions
were considered alone, it would be feasible to give
preference to a DVE within which no missed interactions
occurred. This may result in an unacceptably high number of
heartbeat messages (hindering scalability). Using this
function the closer F (the result of the fitness function) gets

to a value of 1.00 the better the candidate solution is in
striking the necessary balance between missed interactions
and the number of messages exchanged. A simulation can
only achieve a fitness of 1.00 if no missed interactions
(complete or partial) occur, and the number of messages
exchanged during the simulation is equal to the predicted
number of messages that would have been exchanged by the
system had no missed interactions occurred.

A developer may alter the fitness function. As already
mentioned, the fitness function described here balances
scalability (number of messages exchanged) against missed
interactions (partial and complete). However, a small change
to the fitness function may be made by a developer to ensure
complete missed interactions are avoided at the expense of
partial missed interactions. Alternatively, different
parameters may be incorporated into the fitness function to
determine how many different types of a particular object
may influence missed interactions and/or scalability.
Tailoring of the fitness function in this manner is not
without complications (e.g., may gain misleading results)
and requires a developer who understand fully how
evolutionary techniques may be applied in the context of
DVEs.

C. Crossover, Mutation, Elitism
With the fitness of each candidate solution derived, the

mating potential of each chromosome can be determined
with relation to all other candidates in a generation. This is
achieved, in our approach, by comparing fitness values
across the population in conjunction with the standard
deviation of all the fitness values. The most promising
chromosomes are more likely to mate (i.e., blend their
characteristics into a hybrid offspring) or alternatively live
on into the next generation.

Selected pairs of candidate solutions are chosen to mate as
each new generation in the optimization process develops,
thereby blending their characteristics into an offspring
chromosome. This is achieved primarily by use of the
crossover technique. Using this technique two solutions are
chosen based on their mating potential. Heartbeat message
interval and aura size parameters are randomly selected from
one or either of the two parent solutions, forming a single
composite offspring (with the hope that mating two good
chromosomes will produce a better one). Furthermore, in
order to maintain a certain level of variety in the overall set,
there is a chance that random, small mutations (of varying
but bounded magnitude) are created in the offspring
chromosomes. This may or may not contribute to better
candidate solutions in the following generation(s).

In order to preserve candidate solutions which show the
most promise (in as far as them being prospective parents in
subsequent generations), all chromosomes with a fitness
value above the average within the existing population are
allowed to ‘live on’ into the next generation. This is one
form of elitism, wherein the best chromosomes are chosen to

outlive the rest of the generation. Elitism prevents the loss of
good solutions once they are found and helps the speed-up
of the evolutionary optimization process [12].

A small subset of the new population is generated from
heavily mutated offspring spawned by chromosomes from
the previous generation that were deemed below average in
quality. This is an additional step taken to ensure that the
solution space does not go stale, by essentially giving a
second chance to those chromosomes that wouldn’t have
lived on. This step also affords the capacity to quickly
search out candidate solutions in other parts of the solution
space as a whole (by mutating offspring chromosomes away
from any refined solution spaces currently under
investigation). If this heavy mutation was excluded from our
simulation it may be quite conceivable that an ideal solution
may go undetected as the solution space narrows through
subsequent generations.

V. PERFORMANCE
In this section we describe a series of experiments that

were carried out to evaluate the evolutionary component of
the simulator. The main focus of the experiments was to
determine how variations in the evolutionary techniques
themselves would contribute to determining optimum
parameters. To this end, in the majority of our experiments
virtual world parameters were left unchanged. This allowed
comparisons to be made when altering evolutionary related
settings (e.g., how soon is an optimum value reached).

A. Simulator Settings
We assessed the usefulness of our simulator using a base

set of global configuration parameters, detailed as follows:
World size – 5 000; No. of iterations – 500; No. of objects –
50; No. of targets – 2; Generation limit – 100; Networking
latency – 2; Processing latency – 1. We also maintained a
base set of parameter values across all object classes for all
simulations: Object class quotient – 25; Lower velocity
bound – 10; Upper velocity bound – 20; High frequency
interval – 5. We carried out a series of experiments to
evaluate various aspects of the simulator (see sub-sections
below). To calculate the average values we run each
experiment 50 times with random initialization for each
setting of the investigated parameter.

To ascertain whether the simulator was effective a set of
measurements from the experiments was recorded: average
fitness and variance of all the chromosomes in each
generation. These measurements show how the solution set
changes over time, arriving at an optimum set of parameter
values. In essence, we are concerned with not only the
suitability of the optimized solution, but how long it took to
derive and the variability present in the candidate solutions.

B. Population Size
The simulator was tested with a small set of different

population sizes, specifically 10, 30, 50, 70 and 90
chromosomes. The results for these tests are shown in

Figures 5 and 6.

Fig.4. Generations against average fitness of chromosomes for different

population sizes
Figure 4 shows that for all population sizes the simulator

quickly starts to converge on higher quality solutions, and
for the most part is able to pursue these promising solutions.
At least with respect to our own DVE environment,
increasing the population size above 30 chromosomes does
not necessarily affect the capacity to retain viable solutions,
as the average fitness remains relatively uniform in such
instances. However, a population size as low as 10
chromosomes shows frequent and sizeable fluctuations in
the average fitness of the population, suggesting that a
population this small would be unsuitable for retaining
promising candidate solutions.

Fig.5. Generations against variance across chromosomes for different

population sizes
Figure 5 shows how the variance in the solution set for all

instances is quickly reduced as each instance progresses.
This illustrates that the simulator is able to focus on
promising solutions to increase the quality of the population
in general and is able to maintain this level of quality
throughout each run. The results for all population sizes
show infrequent spikes in variance, attributed to the
simulator searching out new solution spaces using heavily
mutated offspring; it is noted, however, that despite these
spikes the general level of variance is kept constant, which
again proves that the simulator is able to refine the solution
space and maintain improvements made to the solution set
as a whole.

C. Mutation
Mutation allows the examination of specific solution

spaces by essentially fine tuning the solution set with minor
mutations (in the case of offspring created from elite
chromosomes), or alternatively quickly search out other
promising solutions through the heavy mutation of offspring
generated from non-elite chromosomes. Different levels of
mutation in the elite offspring were examined, to determine
how such alterations affect the ability to find and improve
upon promising solutions. The level of mutation is
determined by both the probability of mutation occurring
and the maximum achievable extent of any mutations that
occur (represented as a quotient of the overall parameter
range). As such, we examined a small set of mutation levels:
probability of 5% with a bound of 1%; probability of 15%
with a bound of 1/75th; probability of 25% with a bound of
2%; probability of 40% with a bound of 5%; and finally a
probability of 50% with a bound of 10%. The results of
these tests are shown in Figures 7 and 8.

Fig.6. Generations against average fitness of chromosomes for different

levels of mutation
Figure 6 shows that for a mutation level of 5% with a 1%

bound the average fitness quickly converges on a set of
promising solutions. However these values result in the
simulator been slow to fine tune the solution set, steadily
increasing the average fitness albeit with no dips in overall
quality. With the two most extreme levels of mutation it is
evident that the solution set in general suffers lasting (if not
necessarily severe) dips in fitness, which may affect an
ability to retain and fine tune promising solutions.
Therefore, at least for the DVE problem we are solving, it
appears that a chance of mutation of around 15-25%, with a
bound of 1/75th-1/50th of the parameter range is the most
suitable choice.

Figure 7 shows that for the lesser three mutation levels
variance is kept relatively low (once the values have quickly
converged upon a minimum), but that for the two most
severe levels of mutation the variance gradually becomes
pronounced in its fluctuation. This suggests that the ability
of the simulator to retain and fine tune its solution set is
hampered by the chosen levels of mutation in these cases.
The mutation levels otherwise help the simulator to augment
the candidate solutions in other cases. Considering this
outcome, it is again recommended that mutation levels are

kept relatively low.

Fig.7. Generations against variance across chromosomes for different levels

of mutation

D. High Frequency Message Interval
In order to test the simulator’s capacity to find optimum

solutions given variability in one of the fitness functions
parameters, we simulated DVEs with the same base world
parameters but with varying high frequency messaging
intervals. The specific test set ranged across high frequency
messaging intervals of: 1 iteration; 2 iterations; 5 iterations;
and 8 iterations.

Fig.8. Generations against average fitness of chromosomes for different

high-frequency messaging intervals
From the average fitness chart for high-frequency

messaging intervals (Figure 8), it is evident that the
simulator is capable of quickly converging on promising
solutions across the different scenarios. In addition, the
graph indicates that the simulator is able to find more
promising solutions as the high frequency interval is
decreased. For intervals of 1 and 2 iterations the average
fitness is relatively equal, with the same being said for the
pairing of 5 and 8 iteration intervals. For the smaller pair of
values in this test set, these results suggest that the simulator
is capable of balancing message production with the
occurrence of missed interactions as the capacity for lower
message frequencies did not necessarily yield better results
with respect to the tests for 1 and 2 iteration high frequency
messaging intervals.

Fig.9. Generations against variance across chromosomes for different high-

frequency messaging intervals
Figure 9 shows how the simulator quickly fine tunes the

solution set for all instances that are investigated and
maintains a relatively consistent level of variance throughout
each run. There is minimum difference between the various
intervals measured with respect to variance. This indicates
that high frequency message exchange probably plays a
lesser role in overall messages exchanged compared to
heartbeat messages. This was also clear in our previous
experiments (described in [6]).

VI. CONCLUSIONS
Distributed virtual environments play an increasingly

important role in networked computer games, persistent
virtual worlds, and advanced scenario training (such as
military simulations). Handling the consistency throughput
tradeoff is critical in such environments, and interest
management is a key approach to delivering effective and
efficient system.

We have presented (as an extension to our existing suite
of DVE applications) a novel optimization tool, in the form
of a DVE simulator, that allows the experimental evaluation
of candidate configuration parameters for DVEs. The
simulator builds a simulation of the proposed DVE and uses
evolutionary optimization to find optimal values for the
parameters that mostly influence a DVEs consistency
(minimizing missed interactions) and scalability (minimizing
message exchange). The experiments described in this paper
indicate that evolutionary optimization techniques do
provide appropriate solutions for DVEs in a manner that
would be either extremely time consuming or impossible to
achieve manually.

We expect that our work will facilitate the systematic
addressing of problems arising in the context of DVE
development. The simulator allows for the analysis of the
impact upon DVE performance of particular sets of
configuration parameters. Incorporating evolutionary
optimization makes it entirely possible to deal with the
highly nonlinear and complex problem of determining
optimal values for DVE parameters (not simply consistency
and scalability as described here). We believe that the
combination of simulation and evolutionary optimization to

be the way forward for the objective development and
assessment of DVE designs.

Our next step is to incorporate our middleware monitoring
software [13] into the simulation tool presented here. In
addition we aim to provide appropriate changes to our DVE
simulator parameters to accommodate changes in
networking and processing resources and virtual world
properties during runtime.

The complete suite of DVE simulation tools may be found
at: homepages.cs.ncl.ac.uk/graham.morgan. The middleware
monitoring software is also accessible through this website.

REFERENCES
[1] Greenhalgh, C., Benford, S., “MASSIVE: a distributed virtual reality

system incorporating spatial trading”, Proceedings IEEE 15th
International Conference on distributed computing systems (DCS 95),
Vancouver, Canader, June 1995

[2] Zyda, M. J., Pratt, D. R., “NPSNET: A 3D visual simulator for virtual
world exploration and experience”, in Tomorrow’s Realities Gallery,
Visual Proceedings of SIGGRAPH 91, (1991) pp. 30

[3] Knutsson, B. , Lu, H., Xu, W., Hopkins, B., “Peer-to-Peer Support for
Massively Multiplayer Games”, The 23rd Conference of the IEEE
Communications Society, 2004

[4] Bharambe, A., Pang, J., Seshan, S., “A Distributed Architecture for
Interactive Multiplayer Games”, In CMU CS Technical Report
Number CMU-CS-05-112, 2005

[5] Singhal, S., Zydra, M., “Networked Virtual Environments, Design and
Implementation”, Addison Wesley, 1999

[6] Parkin, S. E., Andras, P. , Morgan, G., “Managing Missed Interactions
in Distributed Virtual Environments”, in the Proceedings of the 12th
Eurographics Symposium on Virtual Environments, Lisbon, Portugal,
8th - 10th, ACM pp. 27 - 34, May 2006

[7] Morgan, G., Lu, F., “Predictive Interest Management: An Approach to
Managing Message Dissemination for Distributed Virtual
Environments”, In Proceedings of the First International Workshop on
Interactive Rich Media Content Production: Architectures,
Technologies, Applications, Tools (Richmedia2003) 2003

[8] Fogel, D. B.: An Introduction to Simulated Evolutionary
Optimization. IEEE Trans. on Neural Networks: Special Issue on
Evolutionary Computation, Vol. 5, No. 1, pp. 3-14, 19

[9] Goldberg, D. E., “Genetic Algorithms in Search, Optimization and
Machine Learning”, Addison-Wesley Longman Publishing Co, 1989

[10] Brocklehurst, D., Bouchlaghem, D., Pitfield, D., Palmer, G. and Still,
K., “Crowd circulation and stadium design: low flow rate systems”,
Structures & Buildings, Volume 158, Issue: 5, October 2005

[11] Helbing, D., Buzna, L., Johansson, A., and Werner, T., “Self-
Organized Pedestrian Crowd Dynamics: Experiments, Simulations,
and Design Solutions”, Transportation Science, Vol. 39, No. 1,
February 2005, pp. 1-24

[12] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II”, IEEE
Transactions on Evolutionary Computation, Vol.6., No.2, pp.182-197.

[13] Morgan, G., Parkin, S. E., Molina-Jimenez, C., Skene, J., “Monitoring
Middleware for Service Level Agreements in Heterogeneous
Environments”, In the Proceedings of the fifth IFIP conference on e-
Commerce, e-Business, and e-Government (I3E 2005), IFIP Volume
189 pp. 79-93, 2005

