

MONITORING MIDDLEWARE FOR SERVICE
LEVEL AGREEMENTS IN HETEROGENEOUS
ENVIRONMENTS

Graham Morgan1, Simon Parkin1, Carlos Molina-Jimenez1, James Skene2

1School of Computing Science, University of Newcastle upon Tyne, UK; 2Department of
Computer Science, University College London, UK

Abstract: Monitoring of Service Level Agreements (SLAs) is required to determine if
the Quality of Service (QoS) provided by a service provider satisfies the
expectations of a service consumer. Although tools exist that can generate the
software required to evaluate SLAs from the SLA specifications themselves,
the code required to gather metric data is still predominantly coded by hand: a
time consuming task. In this paper we describe an SLA monitoring
implementation that can generate metric data gathering software directly from
machine readable SLAs. Assuming that an organisation specialising in SLA
monitoring and evaluation may not wish to be tied to any one particular
middleware platform and/or SLA language, we aim to provide generic
monitoring services that may be suitable for use in heterogeneous
environments. We demonstrate the flexibility of our approach by providing
monitoring solutions for observed systems implemented using Web Services
and Enterprise Java Bean (EJB) middleware using a third party SLA language.

Key words: monitoring, service level agreements, middleware

1. INTRODUCTION

Service Level Agreements (SLAs) specify the Quality of Service (QoS)
associated with the interaction between the provider of a service and a
service consumer. SLAs are gaining in importance as increasing numbers of
companies conduct business over the Internet (e.g., banking, auctions),
requiring the positioning of SLAs at organisational boundaries to provide a
basis on which to emulate the electronic equivalents of contract based
business management practices.

 G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene

Monitoring is required to collect statistical metrics about the performance
of a service to determine if the QoS agreed upon between provider and
consumer is realised. Third parties may assume responsibility for monitoring
SLAs to ensure the results of the evaluation process are trusted by both the
provider and consumer [2].

Our previous work on the monitoring of SLAs [13] presented an
architecture that covers the fundamental issues of SLA monitoring: SLA
specification, separation of the computation and communication
infrastructure of the provider, service points of presence, metric collection
approaches, measurement service and evaluation & detection service. As a
next step, we now turn our attention to the implementation of our
architecture. As in our previous work on design, we assume the viewpoint of
an organisation that is concerned with the provisioning of third party
monitoring for participants of SLAs. If such an organisation is to support
SLA monitoring for many different types of clients then an assumption that
only a single SLA language will suffice and all technologies are enabled via
a single middleware standard may not be realistic.

To facilitate the process of SLA evaluation, metric data must be gathered
by software components, possibly within the service provider domain, as
specified by an SLA. Hand coding such software on a per SLA basis is a
time consuming task, especially if an organisation specialising in SLA
monitoring must deal with many thousands of SLAs. The automated parsing
of machine readable SLAs by an SLA violation and detection tool-kit can
derive the software components required for SLA violation detection [14].
However, deriving the software components required for the monitoring of
metric data in a similar manner has not yet been addressed.

Building on our previous work on the design of an SLA monitoring
architecture, this paper presents an approach to SLA monitoring that requires
minor tailoring to work with different SLA languages and middleware
platforms. Our system is capable of deriving the appropriate metric gathering
software directly from machine readable SLAs. We demonstrate the
suitability of our approach by tailoring our system to work with an
application providing services across the Internet, governed by SLAs
described using an existing SLA language, deployed over Enterprise Java
Beans (EJB) and Web Service middleware.

This paper is organised as follows. Section 2 describes background and
related work, section 3 describes our implementation and section 4 provides
conclusions and future work.

Monitoring Middleware for Service Level Agreements

2. BACKGROUND & RELATED WORK

For completeness, and to clarify our approach to SLA monitoring, this
section continues with a description of our previous work on the
development of an SLA monitoring architecture. Via this description we
identify when it may be possible to ease the development of metric gathering
middleware via software automatically generated directly from SLAs. We
then present a discussion in which we determine the suitability of other
works in providing a general purpose SLA monitoring service for
heterogeneous environments (existence of different SLA languages and
middleware platforms).

2.1 SLA Monitoring Architecture

The architecture we proposed [13] for monitoring SLAs is shown in Fig.
1. For sake of simplicity, we assume that the provision of the service is
unilateral, that is, the service flows only from the provider to the service
consumer, as opposed to bilateral provisioning where the two interacting
parties provide services to each other; bilateral provisioning is a more
general scenario and may be represented by two complimentary unilateral
deployments. With unilateral service provisioning we need to monitor the
observance of only two contractual obligations: (i) the provider’s
obligations, dictating that the service must satisfy certain QoS requirements;
and (ii) the service consumer’s obligations, which dictate how the service
consumer is expected to use the service.

We assume that calculations relating to QoS are specified explicitly (e.g.,
maximum latency) in a computer readable format, allowing automated SLA
evaluation and violation detection.

Provider Consumer

Measurement Service
MeCo

ISP

probe calls
metric data

Violation
notification

Subscription
to SLA

violation
events

Evaluation and
detection service

MeCo

Fig. 1. Architecture for unilateral monitoring of QoS

The components shown in Fig. 1 assume responsibility for SLA
monitoring and evaluation:

 G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene

• Metric collector (MeCo) – Gathers metric data associated with the

performance and usage of the observed system.
• Measurement service – Measures a given list of metrics at specified

intervals.
• Evaluation and violation detection service – Inspects gathered metric

data to determine if SLA violation has occurred and informs
provider/consumer of such violations.

 The MeCos shown in the Fig. 1 gather metric data relating to the

provider’s obligations (MeCo in measurement service) and the consumer’s
obligations (MeCo in service provider). This scenario assumes a probing
style approach to service monitoring. That is, synthetic load is generated by
a simulated client (provided by measurement service) to determine if the
provider is satisfying SLAs [3] [9]. An alternative to probing would be to
have a MeCo co-located with the consumer and gather metric data associated
with actual client calls. We consider only the probing approach in this paper
as it may not be possible to deploy monitoring at the consumer side (as
consumers may not always agree to accept metric collection
responsibilities).

To ease the development costs of monitoring middleware solutions, the
automated production of MeCos from SLAs for use over a variety of
middleware platforms would be welcome. This is analogous to the
production of client/server stubs for easing the implementation of remote
procedure call (RPC) code: an interface specification is parsed to produce
the required code to enact communications across process space (possibly
between nodes on a network).

Once metric data has been received by the measurement service, the data
must be prepared in a suitable format for handling by the evaluation and
detection service. This should be straightforward as the SLA specifies
exactly what data is required and in what form. However, an organisation
specialising in SLA monitoring may utilise a number of SLA languages for
satisfying the different requirements found in a variety of application
domains. In this situation the measurement service must be capable of
interfacing with the evaluation and detection service via a number of
different SLA language standards, even though the measurement service’s
basic functionality remains unaltered. Therefore, an appropriate approach to
implementation would be to allow the measurement service to work with
arbitrary SLA languages with only the minimum of tailoring. As the SLA
identifies the types of metric data to be evaluated, the ability to automatically
generate code that provides translation of metric data to a format suitable for

Monitoring Middleware for Service Level Agreements

processing by an SLA evaluation tool (which is SLA language dependent) is
required.

We may summarise opportunities for automated code generation to ease
implementation in the following ways:

1. Ease the development of a MeCo using SLAs to automatically derive

metric gathering software for a number of varying middleware platforms.
2. Ease the development of software for enabling SLA language integration

into the measurement service by automatically deriving such software
from the SLAs themselves.

2.2 Implementation/Deployment Issues & Related Work

An approach to MeCo deployment is via the use of middleware
interceptors (e.g., [8]). Interceptors are middleware components that can be
placed between application components to provide additional functionality
(e.g., security, redirection). Interceptors provide an opportunity to implement
SLA monitoring with the minimum of modification to an observed system.
Popular implementations of middleware standards (i.e., CORBA, EJBs, Web
Services) provide interceptor type mechanisms. Therefore, the use of
interceptors is widely advocated as the appropriate way of providing SLA
monitoring for distributed applications. However, existing implementations
of MeCo type interceptors are middleware dependent (e.g., CORBA [5] [7],
Web Services [1] [4] [6]), making a single implementation unfit for
deployment over a number of middleware platforms. This homogeneous
approach makes existing metric data gathering solutions difficult to use in
heterogeneous environments (requiring a single implementation to be
substantially modified or combining different implementations).

There are a number of SLA languages proposed by the literature (e.g.,
Web Service Level Agreements (WSLA) [4], Quality Description Languages
(CDL) [5], Service Level Agreement Language (SLAng) [11]).
Unfortunately, no existing implementation allows the use of multiple SLA
languages.

The process of automated code generation from SLAs for the purposes of
SLA evaluation has been demonstrated (e.g., [6] [11]). However, using an
SLA to generate a MeCo (or equivalent) for gathering appropriate metric
data has not yet been realised. The related work that comes closest to
automated MeCo generation from SLAs is [6]. Via the use of business
management platform (BMP) agents the work presented in [6] concentrates
on the automation of SLA monitoring for Web Services. The distributed
nature of the approach described in [6] provides an opportunity to manage

 G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene

metric data collection at observed systems with the minimum of human
involvement. However, this peer-to-peer approach is not suitable for all
application types, and not suitable for an organisation delivering SLA
monitoring services using our architecture.

As demonstrated by [7] (QoS monitoring associated with network traffic
engineering), scalability may be a requirement for a practical deployment of
SLA monitoring. When delivering SLA monitoring services (even in an e-
commerce environment) scalability of message dissemination is desirable
(especially to a third party monitoring service that may have hundreds, or
thousands, of clients). [7] highlights the usefulness of message oriented
middleware (MOM) as an appropriate message dissemination medium for
metric data. An alternative to MOM would be to use a client/server approach
(e.g, RPC).

The client/server model requires clients and servers to record references
to each other to enable the initiation of bi-directional information flow. The
scalability of such a model is difficult to maintain when the number of
interconnected clients and servers may be appropriately measured in
hundreds or thousands. Furthermore, when using RPC the processing of
messages must be handled as and when messages are received by clients and
servers. The MOM model is considered suitable for large-scale data
dissemination as it tackles these two problems by presenting a weakly
coupled message passing environment. In the MOM model, information
flow is not based on the referencing of the sender and receiver, as in
client/server, instead information flow is based on the properties of a
message. Evidence provided by [7] indicates that propagation of metric data
and SLA violation notifications can be best served via the use of MOM
technologies.

In summary, the monitoring of SLAs in an environment consisting of
different SLA languages and different middleware platforms is not possible
using existing approaches. Furthermore, the automated generation of code
specifically for metric data gathering, although desirable and progressed by
[6] [7], is not realised. In addition, providing a messaging infrastructure
using MOM technologies is shown to be beneficial [7] when developing a
scalable metric gathering solution. However, this scalability issue appears
only to have been addressed in traffic engineering (as opposed to inter-
organisational middleware) solutions.

In the remainder of the paper we describe the implementation of our
monitoring architecture. The primary focus of the paper is the easing of the
development of SLA monitoring and evaluation software for heterogeneous
environments. A description of how we use MOM as a basis for our
messaging services to allow for scalability is provided for completeness.

Monitoring Middleware for Service Level Agreements

3. IMPLEMENTATION

As already mentioned in Section 2, our approach to SLA monitoring is
based on our earlier work described in [13], culminating in the architecture
shown in Fig. 1. For our SLA language we use SLAng [11]. SLAng
represents the product of work carried out at University College London
(UCL).

SLAng meets the needs of an SLA language to support the construction
of distributed systems and applications with reliable QoS characteristics. The
Unified Modeling Language (UML) is used to model the language,
producing an abstract syntax. This language model is embedded with an
object-oriented model of services, service consumers and their behaviour.
Constraints are defined formally using the Object Constraint Language
(OCL), providing the semantics. This approach permits natural and
economical modeling of design and analysis domains and the relationships
between them, supporting both manual and automatic analysis.

The monitoring system we have constructed uses metric collection as
defined in SLAng and uses the SLAng engine for automating SLA
evaluation. From an SLA defined using SLAng it is possible to automate the
production of the appropriate software components needed for SLA
evaluation (incorporated into the SLAng engine). It is worth noting that the
SLAng engine only checks a limited number of system performance metrics,
notably those related to request latency, service availability and percentage
of service usage (i.e., how many requests service consumers are issuing over
a period of time). We have developed a formal notation for describing
conventional contracts by means of Finite State Machines (FSMs) for
representing more application dependent QoS [17]. However, for brevity and
to demonstrate our work we only consider metrics as described using
SLAng.

We assume that the communications that are required to be monitored are
enacted over middleware technologies that support message interception.
This is a valid assumption as all major middleware vendors provide a
mechanism for message interception in their technologies (e.g., interceptors
in CORBA, handlers in SOAP, interceptors in EJB containers).

 G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene

Service Provider Service Consumer

Measurement Service

MeCo

MeCo ISP

SLAng
Engine

SOAP

JMS

probe calls

metric data

SLA
violations SLA

violations
SLA event

subscriptions

SLA event
subscriptions

Fig. 2. SLAs monitoring architecture with message oriented middleware

The architecture shown in Fig. 2 alters the architecture shown in Fig. 1 to
accommodate our approach to implementation. For completeness (some of
the descriptions deviate little to those presented in section 2) we provide
descriptions of the components in Fig. 2:

• Service provider MeCo - Intercepts service consumer requests (and

associated outgoing responses) and records measurements based upon a
service consumer’s usage of the service provider’s platform. These
measurements aid in determining if a service consumer is violating an
SLA by using a service inappropriately (excessively in our case study).

• Measurement service MeCo – Observes the performance of a service
provider by assuming the role of a service consumer. Periodic probing of
the service provider is enacted by the measurement service MeCo to gain
measurements relating to the performance of a service provider as viewed
by a service consumer. These measurements aid in determining if a
service provider is satisfying service consumers as specified in an SLA.

• Measurement service – Responsible for collecting the measurements
gathered from MeCos and informing SLA participants of SLA violations.

• SLAng engine – A sub-system of the measurement service that is
responsible for detecting SLA violations given metric data supplied by
the measurement service.

• Messaging service – Provides communication platform across which
metric data and SLA violation notifications are propagated.

The measurement service is within the domain of a trusted third party,

ensuring that service provider and consumer may abide by the decisions on
SLA violations generated by the SLAng engine.

In the following sections we describe the implementation of each
component and how different components collaborate to provide SLA
monitoring and SLA violation notification. Our implementation is based on
SLAng, EJB and Web Services. We state the type of tailoring that may be

Monitoring Middleware for Service Level Agreements

required to enable other SLA languages, including SLA engines, and
middleware platforms to work with our Java implementation.

3.1 Metric Collectors (MeCos)

MeCos are responsible for gathering metric data and propagating such
data to the measurement service for evaluation. Service providers have a
MeCo within their organisational domain for monitoring service consumer
usage. MeCos are suitable for use with arbitrary middleware platforms (and
associated protocols). Different middleware platforms may be supported
with the use of MeCo hooks. Irrelevant of middleware platform, MeCo
hooks determine what metric data to gather from loading classes (metric
data classes) from the class repository (classes generated directly from
SLAs). A wrapper class (platform wrapper) is required to allow integration
of the metric data classes into a specific platform (a MeCo hook is the
combination of platform wrapper classes and metric data classes).

A MeCo hook (specifically the platform wrapper component) is
middleware dependent and is responsible for the interception of consumer
request/reply messages and passing such messages through the MeCo. So
far, we have demonstrated the use of MeCo hooks for supporting Web
Services using SOAP and Enterprise Java Beans (EJBs) using Java Remote
Method Invocation (Java RMI). This combination was chosen as these two
approaches are combined in many vendor middleware products that provide
implementations of Java 2 Enterprise Edition (J2EE), a well known
architecture designed to ease the development of enterprise computing
solutions.

The specification of J2EE defines a platform for developing Web-
enabled applications using Java Server Pages (JSPs), Servlets and EJBs.
Application servers for Java components (also called J2EE servers) are
expected to provide a complete implementation of J2EE. Web Services
provide a presentation of services for inter-organisational communications
with the back end application logic implemented using EJBs. We used the
JBOSS application server [10] for our J2EE implementation.

Our SOAP MeCo hook implementation is based on Apache eXtensible
Interaction System (Axis) [15]. Axis provides handlers (Axis Handlers) that
may be chained together to provide a mechanism for interception, and
possible alteration of a SOAP message (e.g., add/remove headers,
manipulate the body), at different points during traversal of the protocol
stack (i.e., before request is processed by server side logic or before reply is
received by a client). Axis handlers provide an appropriate opportunity to
redirect SOAP messages to a MeCo (via MeCo hooks) for metric gathering.
The addition of Axis handlers does not require alterations to the application

 G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene

logic, therefore the introduction of monitoring at the service provider may be
achieved in a transparent manner. We use JBoss interceptors to implement
MeCo hooks suitable for interception of Java RMI invocations.

Axis Handler

JBOSS
Interceptor

MeCo Provider
Environment

soap

RMI

Server platform
EJB Container

SLAng
Manager

Metric
Notifier

Metric
Classloader

MeCo hooks Soap service

Fig. 3. Service Provider use of MeCos

Fig. 3 shows the architecture of MeCo deployment in the service
provider. The MeCo provider environment contains a number of components
that cumulatively satisfy the metric collection and dissemination (back to the
measurement service) requirements of our monitoring system (Fig. 2):

• SLAng Manager – Examines an SLA (as used by SLAng engine) to

determine the metric data that the MeCo is to observe. The product of
parsing an SLA is a Java class (metric data class) that may be used for
gathering the appropriate metric data. This metric data class is stored in a
class repository for later use. As there may be many SLAs that a MeCo is
responsible for monitoring at any one observed site, streamlining of the
monitoring may occur by avoiding duplicate monitoring requests. For
example, if SLA1 and SLA2 describe the upper bound latency for a client
invocation C1, then the message interception associated with C1 by a
single MeCo hook may satisfy the monitoring requirements of both SLA1
and SLA2.

• Metric Notifier – Based on the deduction of what to monitor made by the
SLAng manager, the metric notifier assumes responsibility for managing
the appropriate message passing between MeCo and measurement
service. This requires the lifecycle management of message channels
over which metric data will travel.

• Metric Classloader – Loads the metric data classes for implementing the
monitoring of the required data as specified by the SLAng manager.
Metric data classes are loaded from the class repository. Each class
represents a metric type as specified by an SLA used by the SLAng
engine (e.g., response time).

Monitoring Middleware for Service Level Agreements

The MeCo provider environment was developed in a modular fashion so
the minimum of tailoring is required to make a MeCo work with different
middleware platforms, and different SLA languages. The MeCo hooks, as
already discussed, allow different protocols and associated middleware
platforms to be supported (only the platform wrapper parts of the MeCo
hooks require tailoring on a per-middleware/protocol basis). For each SLA
language a different SLAng manager and class repository is required as SLA
parsing (by the SLAng manager) and different mechanisms for metric data
monitoring are required. This approach has the benefit of allowing SLA
language extensions to be incorporated into a MeCo as and when required.

The MeCo in the measurement service differs from the MeCo located in
the service provider in that the measurement service MeCo is employed to
periodically probe the service provider. Probing in this manner is carried out
to gain metric data relating to how service providers appear to be performing
as viewed by a service consumer (e.g., response time of service provider). A
tool suitable for producing synthetic load may be used (e.g., JMeter [16]), to
simulate the clients and implement the desired probing strategy.
Alternatively, a basic probing strategy may be created and enacted
automatically by the MeCo by parsing the appropriate SLAs. The probing
strategy enacted by the MeCo is sufficient for determining SLA violations.
Configuration relating to the probing of a service provider is located in a
Web Service Descriptor Language (WSDL) file. WSDL files are used to
describe how to communicate with a Web Service, and as such can be used
to configure the probe to send messages to the target server. The (Java)
classes required to enact probing are created via the parsing of additional
extensibility elements defined in the given WSDL file. These elements also
provide a realistic set of parameters to supplement this approach to probing.
As with the platform wrapper class in the service provider MeCo, a platform
wrapper class is used for implementing the probing for a specific
middleware platform (EJB/RMI or Web Services/SOAP).

 Once requests have been created and sent as part of a probing strategy,
they are intercepted by the measurement service MeCo in the manner
described previously (via MeCo hooks) with metric data passed from the
MeCo to the measurement service.

3.2 Messaging Service

The messaging service is responsible for passing metric data from the
service provider MeCo to the measurement service and passing SLA
violation detection messages from the measurement service to interested
parties of an SLA. The Java Messaging Service (JMS) [12] was chosen as
the message platform.

 G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene

The JMS specification does not indicate how the underlying system
implementation is achieved, resulting in a number of varying solutions
available from different vendors. A number of solutions that attempt to
provide scalability have been proposed (e.g., [18]). Therefore, our scalability
concerns are related to the way we use the standard JMS API (not the
underlying messaging implementation itself).

JMS supports point-to-point and publish/subscribe models of interaction.
Point-to-point is based on the notion of queues, with a queue identified as an
asynchronous mechanism for passing messages from suppliers to consumers.
Publish/subscribe is based on topics, with clients publishing and subscribing
to well defined topics. The topic acts as a mechanism for gathering and
distributing related messages (as perceived by an application) to clients and
allows subscribers and publishers to be unaware of each other’s existence.

The topic approach was chosen with the measurement service creating a
topic on a per operation basis (e.g., the name of a method associated with an
operation). We call such topics metric topics (in our approach each metric
topic relates to a clause in an SLA).

A MeCo disseminates metric data by publishing such data on a metric
topic. We found that this approach provided an opportunity to allow multiple
SLA engines (checkers) to be employed. A problem with existing SLA
engines is their lack of scalability when faced with checking increasing
numbers of SLAs [14]. Therefore, employing additional engines (via
additional measurement services) and so provide an opportunity to improve
scalability is desirable in an SLA monitoring implementation. Via this
method we may also allow different SLA languages to be used. The
introduction of additional measurement services (and associated SLA
engines) in this manner is straightforward: a measurement service registers
as a consumer for the metric data they are interested in (to enable SLA
violation detection). Additional measurement services may be added with
minimum disruption to the overall function of the monitoring infrastructure
(via subscription to appropriate metric topics). This approach may support
multiple third party measurement services: a service provider may provide
services to multiple consumers, with such consumers requiring different
third parties to govern their SLA violation detection mechanisms (requiring
different measurement services).

Propagating an SLA violation to SLA participants is achieved via a JMS
topic (SLA topics). Such topics are created on a per SLA basis, with
organisations assuming responsibility for registering as subscribers on the
SLAs they participate in. An SLA topic message consists of a metric ID
(associated with the metric that was violated) and the value that caused such
a violation.

Monitoring Middleware for Service Level Agreements

3.3 Measurement Service

The measurement service evaluates metric messages received from
metric topics and notifies organisations, via SLA topics, of SLA violations.
The measurement service contains a number of components (Fig. 4):

• SLAng Message Manager – Examines an SLA and determines which

metric and SLA topics are required. Metric and SLA topics are created
when required by the SLAng message manager. In addition, when an
SLA is withdrawn from use the SLAng message manager deletes the
appropriate SLA and metric topics (after determining that the metric
topics flagged for deletion are no longer required by other, active, SLAs).

• Metric Listener – Subscribes to the appropriate metric topics as instructed
by the SLAng message manager and assumes responsibility for
consuming metric topic messages and translating such messages to a
format suitable for acceptance by the SLAng engine.

• SLAng Engine – Receives messages from the metric listener and issues
SLA violation notification messages.

• Violation Notifier – Subscribes to the appropriate SLA topics as
instructed by the SLAng message manager and assumes responsibility for
translating violation notification messages received from the SLAng
engine to JMS messages and issuing such messages on SLA topics.

• Metric Manager – Generates appropriate Java classes for implementing
SLA language specific functions (e.g., providing metric data in suitable
format for evaluation by SLAng engine).

Measurement Service

SLAng
Message
Manager

Metric
Listener

Violation
Notifier

JMS

MeCo

SLAng
Engine Metric manager

Fig. 4. Measurement service

The metric listener must translate the metric data it receives from metric
topics into a suitable format for submission to the SLAng engine. This
requires a service usage message to be created. A service usage message is a
description of how a service was used and relates to the SLA clauses
governing service/consumer interaction. The SLAng engine examines
service usage messages to determine if SLA violation has occurred or if

 G. Morgan, S. Parkin, C. Molina-Jimenez, and J. Skene

service usage has been enacted within acceptable bounds. The violation
notifier includes in the violation message details relating to what caused the
SLA violation in the message issued to the appropriate SLA topic.

The service usage message is SLA language/engine dependent. However,
a class repository is used (in a manner similar to how a MeCo realises what
metric data to gather), to maintain a collection of Java classes that produce
service usage messages as and when required. Therefore, as the metric
manager is responsible for creating such classes, then a metric manager must
be developed on a per SLA-language basis. In addition to creating service
usage messages, there exists classes in the class repository that provide the
appropriate interface code required to communicate with an SLA engine.

4. CONCLUSION

We have described an implementation of SLA monitoring that, with
tailoring, provides an opportunity to monitor service provision over a
number of different middleware platforms with the possibility of using
different SLA languages. The software components required to gather metric
data may be automatically derived from SLAs, reducing the need to hand
code such components on a per-SLA basis from scratch. We have
demonstrated our implementation using a third party SLA language and
evaluation tool and gathered metric data from EJB and Web Service
components. The way in which MOM may be used as a basis on which to
create scalable SLA monitoring implementations is described.

Our future work, in the short term, is concerned with engineering tasks:
extending our system to cover additional middleware platforms (e.g.,
CORBA, .NET) and the inclusion of a variety of SLA languages. In the long
term we are seeking to extend our scope of applications to cover interactive
media (e.g., online games).

Acknowledgements

This work is part-funded by the UK EPSRC Grant GR/S63199: "Trusted

Coordination in Dynamic Virtual Organisations" and by the European Union
under Project IST-2001-34069: "TAPAS (Trusted and QoS-Aware Provision
of Application Services)".

Monitoring Middleware for Service Level Agreements

5. REFERENCES

1. M. Debusmann, A. Keller, “SLA-Driven Management of Distributed Systems Using the
Common Information Model”, in Proceedings of the 8th IFIP/IEEE IM, 2003

2. C. Overton, “On the Theory and Practice of Internet SLAs”, Journal of Computer Resource
Measurement 106, 32-45, Computer Measurement Group, 2002

3. A. Habib, S. Fahmy, S. R. Avasarala, V. Prabhakar, B. Bhargava, “On Detecting Service
Violations and Bandwidth Theft in QoS Network Domains”, Computer Communications,
Elsevier, Vol. 26 Issue 8, Pages 861-871, 2003

4. A. Keller, H. Ludwig, “The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services”, IBM Research Report, 2002

5. R. Schantz, J. Zinky, D. Karr, D. Bakken, J. Megquier, J. Loyall, “An Object-Level
Gateway Supporting Integrated-Property Quality of Service”, ISORC ’99, 1999

6. A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, F. Casati, “Automated SLA Monitoring for
Web Services”, HP-Labs Report HPL-2002-191, 2002

7. A. Asgari, P. Trimintzios, M. Irons, R. Egan, G. Pavlou, “Building Quality-of-Service
Monitoring Systems for Traffic Engineering and Service Management”, Journal of
Network and Systems Management, Vol. 11, No. 4, 2003

8. J. Pruyne, “Enabling QoS via Interception in Middleware”, HP-Labs Report HPL-2000-29,
February 2000

9. Keynote Systems, http://www.keynote.com, as viewed November 2004
10. JBoss project, http://www.jboss.org, as viewed September 2004
11. J. Skene, D. Lamanna, W. Emmerich, “Precise Service Level Agreements”, Proceedings

of the 26th International Conference on Software Engineering, Pg. 179 – 188, 2004
12. Sun Microsystems, Java Message Service (JMS) Specification,

http://java.sun.com/products/jms, Version 1.1, 2002
13. C. Molina-Jimenez, S. Shrivastava, J. Crowcroft, and P. Gevros, “On the Monitoring of

Contractual Service Level Agreements”, In Proceedings of the IEEE Conference on
Electronic Commerce CEC\04, San Diego, 2004

14. J. Skene and W. Emmerich, “Model Driven Performance Analysis of Enterprise
Information Systems”, Electronic Notes in Theoretical Computer Science, 82(6), 2003

15. R. Irani, S. J. Basha, “AXIS: Next Generation Java SOAP”, Peer Information; 1st edition,
2002.

16. K. H. Hanse, “Load Testing your Applications with Apache JMeter”, Java Boutique
Internet, http://javaboutique.internet.com/tutorials/JMeter/, as viewed November 2004

17. C. Molina-Jimenez, S. K. Shrivastava, E.Solaiman, J. P.Warne, “Contract Representation
for Run-time Monitoring and Enforcement”, In Proceedings of the IEEE International
Conference on E-Commerce (CEC 2003), California, USA, 24-27 June 2003

18. Arjuna Technologies, “Arjuna Messaging Service”,
http://www.arjuna.com/products/arjunams/index.html, as viewed November 2004.

	INTRODUCTION
	BACKGROUND & RELATED WORK
	SLA Monitoring Architecture
	Implementation/Deployment Issues & Related Work

	IMPLEMENTATION
	Metric Collectors (MeCos)
	Messaging Service
	Measurement Service

	CONCLUSION
	REFERENCES

