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Abstract. Password-Authenticated Key Exchange (PAKE) studies how to establish secure com-

munication between two remote parties solely based on their shared password, without requiring

a Public Key Infrastructure (PKI). Despite extensive research in the past decade, this problem

remains unsolved. Patent has been one of the biggest brakes in deploying PAKE solutions in prac-

tice. Besides, even for the patented schemes like EKE and SPEKE, their security is only heuristic;

researchers have reported some subtle but worrying security issues.

In this paper, we propose to tackle this problem using an approach different from all past solutions.

Our protocol, Password Authenticated Key Exchange by Juggling (J-PAKE), achieves mutual au-

thentication in two steps: first, two parties send ephemeral public keys to each other; second, they

encrypt the shared password by juggling the public keys in a verifiable way. The first use of such a

juggling technique was seen in solving the Dining Cryptographers problem in 2006. Here, we apply

it to solve the PAKE problem, and show that the protocol is zero-knowledge as it reveals nothing

except one-bit information: whether the supplied passwords at two sides are the same. With clear

advantages in security, our scheme has comparable efficiency to the EKE and SPEKE protocols.
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1 Introduction

The username/password paradigm is the most commonly used authentication mechanism in security applica-

tions [3]. Alternative authentication factors, including tokens and biometrics, require purchasing additional hard-

ware, which is often considered too expensive for an application.

However, passwords are low-entropy secrets, and subject to dictionary attacks [3]. Hence, they must be protected

during transmission. The widely deployed method is to send passwords through SSL/TLS [36]. But, this requires

a Public Key Infrastructure (PKI) in place; maintaining a PKI is expensive. In addition, using SSL/TLS is subject

to man-in-the-middle attacks [3]. If a user authenticates himself to a phishing website by disclosing his password,

the password will be stolen even though the session is fully encrypted.

Since passwords are inherently weak, one logic solution seems to replace them with strong secrets, say, cryptograph-

ically secure private keys. This approach was adopted by the UK National Grid Service (NGS) to authenticate

⋆ This work was done while the authors worked on an EPSRC-funded project (EP/D051754/1).



users [4]. In the UK, anyone who applies to access the national grid computing resource must first generate a

private/public key pair of his own, and then have the public key certified by NGS. The authentication procedure

for the grid computing environments in the USA is similar [18]. However, developments in the past ten years

reveal that users – most of them are non-computer specialists – encounter serious difficulties in managing their

private keys and certificates [5]. This has greatly hindered the wider acceptance of the grid computing technology.

Hence, weak passwords are just a fact of life that we must face. Researchers have been actively exploring ways to

perform password-based authentication without using PKIs or certificates – a research subject called the Password-

Authenticated Key Exchange (PAKE) [9]. The first milestone came in 1992 when Bellovin and Merrit introduced

the EKE protocol [13]. Despite some reported weaknesses [22, 26, 29, 32], the EKE protocol first demonstrated

that the PAKE problem was at least solvable. Since then, a number of protocols have been proposed. Many of

them are simply variants of EKE, instantiating the “symmetric cipher” in various ways [9]. The few techniques

that claim to resist known attacks have almost all been patented – most notably, EKE was patented by Lucent

Technologies [15], and SPEKE by Phoenix Technologies [24]. As a result, the scientific community and the wider

security industry cannot readily benefit from the implementations of these techniques [16].

The security with the EKE and SPEKE protocols is only heuristic. Given the way the two techniques were

designed, formal security proofs seem unlikely without introducing new assumptions or relaxing requirements; we

will explain the details in Section 4. In the following section, we will introduce a different approach to solve the

PAKE problem, and show that our solution is free from the security issues reported with the EKE and SPEKE

protocols.

2 Protocol

2.1 Model

We assume the key exchange is carried out over an unsecured network. In such a network, there is no secrecy

in communication, so transmitting a message is essentially no different from broadcasting it to all. Worse, the

broadcast is unauthenticated. An attacker can intercept a message, change it at will, and then relay the modified

message to the intended recipient.

It is perhaps surprising that we are still able to establish a private and authenticated channel in such a hostile

environment solely based on a shared password – in other words, bootstrapping a high-entropy cryptographic key

from a low-entropy secret. First of all, we formulate the security requirements that a PAKE protocol should fulfill.

1. Off-line dictionary attack resistance – It does not leak any password verification information to a passive

attacker.

2. Forward secrecy – It produces session keys that remain secure even when the password is later disclosed.

3. Known-key security – It prevents a disclosed session key from affecting the security of other sessions.

4. On-line dictionary attack resistance – It limits an active attacker to test only one password per protocol

execution.



In our threat model, we do not consider the Denial of Service (DoS) attack [3], which is rare but powerful.

Since almost all PAKE protocols are built upon public key cryptography, they are naturally vulnerable to DoS

attacks, in which an attacker’s sole purpose is to keep a server performing expensive public key operations. When

this becomes a threat in some applications, there are well-established solutions – for example, we can add a

client-puzzle protocol [21] before engaging in any key exchange (also see [10]).

There are generally two types of PAKE protocols: balanced and augmented ones [34]. A balance scheme assumes

two communicating parties hold symmetric secret information, which could be a password, or a hashed password.

It is generic for any two-party communication, including client-client and client-server. On the other hand, an

augmented scheme is more customized to the client-server case. It adds the “server compromise resistance”

requirement – an attacker should not be able to impersonate users to a server after he has stolen the password

verification files stored on that server, but has not performed dictionary attacks to recover the passwords [14,23].

This is usually realized by storing extra password verification data – such as a (weak) public key derived from

the password – together with a hash of the password on the server [14].

By design an augmented scheme is more complex and requires more computing power, but the added benefits are

questionable. First, one may ask whether the threat of impersonating users to a compromised server is significantly

realistic in practice [30]. More importantly, none of the augmented schemes can provide any comforting assurance

once the server is indeed compromised – all passwords need to be revoked and updated anyway. Though it may be

the case that some passwords are stronger than others and are more resistant to off-line dictionary attacks (as said

in [23]), the “strongness” of a password is difficult to quantify, given that people often vary the same password

slightly for different applications and use date of birth or pet’s name as the password. If the presumption of a

“strong” password turns out incorrect, the so-called “server compromise resistance” might just provide a false

sense of security. To defend against the “server compromise” threat, a more proper solution is to apply a threshold

scheme to distribute the password verification data among a set of servers, as suggested in [17,31].

In this paper, we only consider the balanced case (there is a general method to convert any balanced scheme to an

augmented one if needed [19]). In the following section, we will propose a balanced PAKE protocol that satisfies

the outlined requirements.

2.2 Two-step exchange

Let G denote a subgroup of Z
∗

p with prime order q in which the Decision Diffie-Hellman problem (DDH) is

intractable [8]. Let g be a generator in G. The two communicating parties, Alice and Bob, both agree on (G, g).

Let s be their shared password3, and s 6= 0 for any non-empty password. Since s has low entropy, we assume the

value of s falls within [1, q − 1].

Alice selects two secret values x1 and x2 at random: x1 ∈R Zq and x2 ∈R Z
∗

q . Similarly, Bob selects x3 ∈R Zq and

x4 ∈R Z
∗

q . Note that since q is prime, Zq only differs Z
∗

q in that the later excludes ‘0’ [36]. Hence, x2, x4 6= 0; the

reason will be evident in security analysis.

3 Depending on the application, s could also be a hash of the shared password, so that it preserves some privacy
against an honest-but-curious server administrator.



Step 1 Alice sends out gx1 , gx2 and knowledge proofs for x1 and x2. Similarly, Bob sends out gx3 , gx4 and

knowledge proofs for x3 and x4.

The above communication can be completed in one step as neither party depends on the other. When this step

finishes, Alice and Bob verify the received knowledge proofs, and also check gx2 , gx4 6= 1.

Step 2 Alice sends out A = g(x1+x3+x4)·x2·s and a knowledge proof for x2 · s. Similarly, Bob sends out B =

g(x1+x2+x3)·x4·s and a knowledge proof for x4 · s.

When this step finishes, Alice computes K = (B/gx2·x4·s)x2 = g(x1+x3)·x2·x4·s, and Bob computes K = (A/gx2·x4·s)x4 =

g(x1+x3)·x2·x4·s. With the same keying material K, a session key can be derived κ = H(K), where H is a hash

function. Before using the session key, Alice and Bob may perform an additional key confirmation process as

follows: Alice sends H(H(κ)) to Bob, and Bob then replies H(κ). This process is the same as in [22]. It gives

explicit assurance that the two ends derived the same session key4.

In the protocol, senders need to produce valid knowledge proofs. The necessity of the knowledge proofs is motivated

by Anderson’s sixth principle in designing secure protocols [2]: “Do not assume that a message you receive has

a particular form unless you can check this.” Fortunately, Zero-Knowledge Proof (ZKP) is a well-established

primitive in cryptography; it can allow one to prove his knowledge of a discrete logarithm without revealing

it [36].

As one example, we could use Schnorr’s signature [37], which is non-interactive, and reveals nothing except the one

bit information: “whether the signer knows the discrete logarithm”. Let H be a secure hash function5. To prove

the knowledge of the exponent for gx, one sends {gv, r = v − xih} where v ∈R Zq and h = H(g, gv, gx, SignerID).

This signature can be verified by the receiver through checking whether gv and grgxh are equal. Adding the

SignerID into the hash function is to prevent replaying the signature. Since Alice and Bob’s SignerIDs are unique,

Alice cannot replay Bob’s signature back to Bob and vice versa.

In the second step of the protocol, Alice sends A = gx2·s
a to Bob, where ga = gx1+x3+x4 . Here, ga serves as a

generator. As the group G has prime order, any non-identity element is a generator [36]. So Alice could simply

check ga 6= 1 to ensure it is a generator. In fact, as we will explain in Section 3, (x1 + x3 + x4) is random over Zq

even in the face of active attacks. Hence, the probability for ga = 1 is extremely small – on the order of 2−160 for

160-bit q. Symmetrically, the same argument applies to the Bob’s case.

2.3 Implementation

Since our protocol involves several zero-knowledge proofs, one might concern about its cost. We now count the

number of exponentiations in the protocol and evaluate its computational efficiency. Note that for Schnorr’s

4 Actually, the explicit key confirmation process is not essential [35]. Alice and Bob can also start using the
session key straight away to encrypt data, which is called an implicit key confirmation process. In terms of
security, the difference between the two approaches is insignificant.

5 Schnorr’s signature is provably secure in the random oracle model, which requires a secure hash function.



Item Description No of Exp Time (ms)

1 Compute {gx1 , gx2} and KPs for {x1, x2} 4 23

2 Verify KPs for {x3, x4} 4 24

3 Compute A and KP for {x2 · s} 2 9

4 Verify KP for {x4 · s} 2 10

5 Compute κ 2 9

Total 14 75

Table 1. Computational cost for Alice in J-PAKE

signature, it requires one exponentiation in generation and two in verification. Hence, in our protocol, each party

would need to perform 14 exponentiations in total – including 8 in the first step, 4 in the second step, and 2 in

computing the session key.

To better assess the cost in real terms, we implement the protocol in Java on a 2.33-GHz laptop running Mac

OS X. The modulus p is chosen 1024-bit and the subgroup order q 160-bit. The cost for Alice is summarized in

Table 1; for Bob, it is the same. The results demonstrate that the protocol – executed only once in a session –

runs sufficiently fast. The total computation time is merely 0.075 sec. As compared to the time that the user keys

in his password, this latency is negligible at the client. However, the cost at the server may accumulate to be

significant if requests are dealt with simultaneously. Therefore, the threat of Denial of Service (DoS) attacks still

needs to be properly addressed in practical deployments (e.g., by using [21]).

3 Security analysis

In this section, we analyze the protocol’s resistance against both passive and active attacks. First, we consider a

passive attacker who eavesdrops on the communication between Alice and Bob. Alice’s ciphertext A contains the

term (x1 + x3 + x4) on the exponent. The following two lemmas show the security properties of (x1 + x3 + x4)

and A.

Lemma 1 Under the Discrete Logarithm (DL) assumption, Bob cannot compute (x1 + x3 + x4).

Proof. To obtain a contradiction, we reveal x2 to Bob. The knowledge proofs in the protocol show that Bob knows

x3 and x4. Hence, Bob knows {gx1 , x2, x3, x4} (based on which he can compute A, B). Assume Bob is able to

compute (x1 +x3 +x4). Then, he is able to compute x1. This, however, contradicts the DL assumption [36], which

states that one cannot compute x1 from g, gx1 . Therefore, even with x2 revealed, Bob is still unable to compute

(x1 + x3 + x4). ⊓⊔

Lemma 2 Under the Decision Diffie-Hellman (DDH) assumption, Bob cannot distinguish Alice’s ciphertext A =

g(x1+x3+x4)·x2·s from a random element in the group.

Proof. From Lemma 1, (x1 + x3 + x4) is a random value over Zq, unknown to Bob. Also, x2 · s is a random value

over Zq, unknown to Bob. Based on the Decision Diffie-Hellman assumption [8], Bob cannot distinguish A from

a random element in the group. ⊓⊔



Based on the protocol symmetry, the above two Lemmas can be easily adapted from Alice’s perspective – Alice

cannot compute (x1 + x2 + x3), nor distinguish B from a random element in the group. The following theorem

proves that our protocol fulfills the “off-line dictionary attack resistance” requirement (see Section 2.1).

Theorem 3 (Off-line dictionary attack resistance) Under the DDH assumption, the ciphertexts A = g(x1+x3+x4)·x2·s

and B = g(x1+x2+x3)·x4·s do not leak any information for password verification.

Proof. Lemma 2 implies that Bob cannot computationally correlate A to the ciphertext he can compute: B. From

Lemma 2, even Bob cannot distinguish A from a random value in G. Surely, a passive attacker cannot distinguish

A from a random value in G, nor can he computationally correlate A to B. Based on the protocol symmetry, the

passive attacker cannot distinguish B from a random value in G either. Therefore, to a passive attacker, A and B

are two random and independent values; they do not leak any useful information for password verification. ⊓⊔

While the above theorem shows that the password is secure against a passive attacker, we now show the session

key is secure too. In the following theorem, we consider a stronger attacker, who knows the disclosed s.

Theorem 4 (Forward secrecy) Under the Square Computational Diffie-Hellman (SCDH) assumption6, the

past session keys derived from the protocol remain secure even when the secret s is later disclosed.

Proof. After knowing s, the passive attacker wants to compute κ = H(K) given inputs: {gx1 , gx2 , gx3 , gx4 ,

g(x1+x3+x4)·x2 , g(x1+x2+x3)·x4}.

Assume the attacker is able to compute K = g(x1+x3)·x2·x4 from those inputs. For simplicity, let x5 = x1 + x3

mod q. The attacker behaves like an oracle – given the ordered inputs {gx2 , gx4 , gx5 , g(x5+x4)·x2 , g(x5+x2)·x4},

it returns gx5·x2·x4 . This oracle can be used to solve the SCDH problem as follows. For gx where x ∈R Zq,

we query the oracle by supplying {g−x+a, g−x+b, gx, gb·(−x+a), ga·(−x+b)}, where a, b are arbitrary values

chosen from Zq , and obtain f(gx) = g(−x+a)·(−x+b)·x = gx3
−(a+b)·x2+ab·x. In this way, we can also obtain

f(gx+1) = g(x+1)3−(a+b)·(x+1)2+ab·(x+1) = gx3+(3−a−b)·x2+(3−2a−2b+ab)·x+1−a−b+ab. Now we are able to compute

gx2

=
“

f(gx+1) · f(gx)−1 · g(−3+2a+2b)·x−1+a+b−ab
”1/3

. This, however, contradicts the SCDH assumption [6],

which states that one cannot compute gx2

from g, gx. ⊓⊔

We now consider the case when a session key is compromised (see the “known-key security” requirement in

Section 2.1). Compared with other ephemeral secrets xi (i = 1 . . . 4) – which can be immediately erased after the

key bootstrap phase – a session key lasts longer throughout the session, which might increase the likelihood of its

exposure. An exposed session key should not cause any global effect on the system [36].

In our protocol, a known session key does not affect the security of either the password or other session keys. From

an explicit key confirmation process, an attacker learns H(H(κ)) = H(H(H(K))) and H(κ) = H(H(K)). It is

obvious that learning κ = H(K) does not give the attacker any additional knowledge about K, and therefore, the

security of the password encrypted at that session remains intact. Also, the session key κ = H(g(x1+x3)·x2·x4·s) is

6 The SCDH assumption is provably equivalent to the Computational Diffie-Hellman (CDH) assumption – solving
SCDH implies solving CDH, and vice versa [6]



determined by the (fresh) ephemeral inputs from both parties in the session. Note that x2, x4 6= 0 by definition

and (x1 +x3) is random over Zq, hence the obtained session key is completely different from keys derived in other

sessions. Therefore, compromising a session key has no effect on other session keys.

Finally, we study an active attacker, who directly engages in the protocol execution. Without loss of generality,

we assume Alice is honest, and Bob is compromised (i.e., an attacker).

In the protocol, Bob demonstrates that he knows x4 and the exponent of gb, where gb = gx1+x2+x3 . Therefore, the

format of the ciphertext sent by Bob can be described as B′ = gb
x4·s

′

, where s′ is a value that Bob (the attacker)

can choose freely.

Theorem 5 (On-line dictionary attack resistance) Under the SCDH assumption, an active attacker cannot

compute the session key if he chose a value s′ 6= s.

Proof. After receiving B′, Alice computes

K′ = (B′/gx2·x4·s)x2 (1)

= gx1·x2·x4·s
′

· gx2·x3·x4·s
′

· gx2
2
·x4·(s

′
−s) (2)

To obtain a contradiction, we reveal x1 and s, and assume that the attacker is now able to compute K′. The

attacker behaves as an oracle: given inputs {gx2 , x1, x3, x4, s, s′}, it returns K′. Note that the oracle does

not need to know x2, and it is still able to compute A = g(x1+x3+x4)·x2·s and B′ = g(x1+x2+x3)·x4·s
′

internally.

Thus, the oracle can be used to solve the Square Computational Diffie-Hellman problem by computing gx2
2

=

(K′/(gx1·x2·x4·s
′

· gx2·x3·x4·s
′

))x4
−1(s′−s)−1

. Here7, x4 6= 0 and s′ − s 6= 0. This, however, contradicts the SCDH

assumption. So, even with x1 and s revealed, the attacker is still unable to compute K′ (and hence cannot perform

key confirmation later). ⊓⊔

The above theorem shows that our protocol is zero-knowledge. Because of the knowledge proofs, the attacker is

left with the only freedom to choose an arbitrary s′. If s′ 6= s, he is unable to derive the same session key as

Alice. During the later key confirmation process, the attacker will learn one-bit information: whether s′ and s

are equal. This is the best that any PAKE protocol can possibly achieve, because by nature we cannot stop an

imposter from trying a random guess of password. However, consecutively failed guesses can be easily detected,

and thwarted accordingly. The security properties of our protocol are summarized in Table 2.

4 Comparison

In this section, we compare our protocol with the two well-known balanced schemes: EKE and SPEKE. These

two techniques have several variants, which follow very similar constructs [9]. However, it is beyond the scope of

this paper to evaluate them all. Also, we will not compare with augmented schemes (e.g., A-EKE, B-SPEKE,

SRP, AMP and OPAKE [34]), as they have different design goals.

7 This explains why in the protocol definition we need x4 6= 0, and symmetrically, x2 6= 0



Modules Security property Attacker type Assumptions

Schnorr leak 1-bit: whether sender passive/active DL and
signature knows discrete logarithm random oracle

Password indistinguishable passive/active DDH
encryption from random

Session incomputable passive CDH
key incomputable passive (know s) CDH

incomputable passive (know other session keys) CDH
incomputable active (if s′ 6= s) CDH

Key leak nothing passive –
confirmation leak 1-bit: whether s′ = s active CDH

Table 2. Summary of J-PAKE security properties

The design principles underlying EKE and SPEKE are similar; both protocols can be seen as a slight modification

of the basic Diffie-Hellman (DH) key exchange protocol. However, in the protocol design, even the slightest

modification could cause profound effects. The EKE and SPEKE designs are no exception, as we explain below.

Bellovin and Merrit introduced two EKE constructs: using RSA (which was later shown insecure [29]) and DH.

Here, we only describe the later, which modifies a basic DH protocol by symmetrically encrypting the exchanged

items. Let α be a primitive root modulo p. In the protocol, Alice sends to Bob [αxa ]s, where xa ∈R Z
∗

p and [. . .]s

denotes a symmetric cipher using the password s as the key. Similarly, Bob sends to Alice [αxb ]s, where xb ∈R Z
∗

p.

Finally, Alice and Bob compute a common key K = αxa·xb . More details can be found in [13].

Apparently, a straightforward implementation of the above protocol is insecure [26]. Since the password is too

weak to be used as a normal encryption key, the content within the symmetric cipher must be strictly random.

But, for a 1024-bit number modulo p, not every bit is random. Hence, a passive attacker can rule out candidate

passwords by applying them to decipher [αxa ]s, and then checking whether the results fall within [p, 21024 − 1].

There are suggested countermeasures. In [13], Bellovin and Merrit recommended to transmit [αxa + r · p]s instead

of [αxa ]s in the actual implementation, where r ·p is added using a non-modular operation. The details on defining

r can be found in [13]. However, this solution was explained in an ad-hoc way, and it involves changing the protocol

of its existing form. Due to lack of a complete description of the final protocol, it is difficult to assess its security.

Alternatively, Jaspan suggested to address this issue by choosing p as close to a power of 2 as possible [26]. This

might alleviate the issue, but does not resolve it.

One implication of the above issues is that proving the security of an EKE is difficult. To address this, Bellare,

Pointcheval and Rogaway introduced an “ideal-cipher model”, and proved that an EKE is secure under that

model [7]. However, the “ideal cipher” was not concretely defined in [7]; it was later clarified by Boyd et al. in [9]:

the assumed cipher works like a random function in encryption, but must map fixed-size strings to elements of

G in decryption (also see [39]). Yet, no such ciphers are readily available in practice; indeed, several proposed

instantiations of such an “ideal cipher” were easily broken [39].

Another limitation with the EKE protocol is that it does not securely accommodate short exponents. The protocol

definition requires αxa and αxb be uniformly distributed over the whole group Z
∗

p [13]. Therefore, the secret keys

xa and xb must be randomly chosen from [1, p − 1], and consequently, an EKE must use 1024-bit exponents if

the modulus p is chosen 1024-bit. Unlike our protocol, an EKE cannot operate in groups with distinct features,



such as a subgroup with prime order – a passive attacker would then be able to trivially uncover the password

by checking the order of the decrypted item. Since the cost of exponentiation is linear with the bit-length of the

exponent [36], one exponentiation in an EKE is equivalent in cost to 6-7 exponentiations in a J-PAKE (for the

1024-bit p and 160-bit q setting). Hence, though an EKE only requires two exponential operations per user, the

computational cost is approximately the same as that of our protocol.

Jablon proposed a different protocol, called Simple Password Exponential Key Exchange (SPEKE), by replacing

a fixed generator in the basic DH protocol with a password-derived variable [22]. In the description of a fully

constrained SPEKE, the protocol defines a safe prime p = 2q + 1, where q is also a prime. Alice sends to Bob

(s2)xa where s is the shared password and xa ∈R Z
∗

q ; similarly, Bob sends to Alice (s2)xb where xb ∈R Z
∗

q . Finally,

Alice and Bob compute K = s2·xa·xb . The squaring operation on s is to make the protocol work within a subgroup

of prime order q.

Recently, Zhang pointed out the risk of using a password-derived variable as the base [38]. Since some passwords

are exponentially equivalent, an active attacker may exploit that equivalence to test multiple passwords in one go.

This problem is particularly serious if a password is a Personal Identification Numbers (PIN). One countermeasure

might be to hash the password before squaring, but that does not resolve the problem. Hashed passwords are still

confined to a pre-defined small range. There is no guarantee that an attacker is unable to formulate exponential

relationships among hashed passwords; existing hash functions were not designed for that purpose. Hence, at least

in theory, this reported weakness disapproves the original claim in [22] that a SPEKE only permits one guess of

password in one attempt.

Similar to the case with an EKE, a fully constrained SPEKE uses long exponents. For a 1024-bit modulus p, the

key space is within [1, q − 1], where q is 1023-bit. In [22], Jablon suggested to use 160-bit short exponents in a

SPEKE, by choosing xa and xb within a dramatically smaller range [1, 2160 − 1]. But, this would give a passive

attacker side information that the 1023 − 160 = 863 most significant bits in a full-length key are all ‘0’s. The

security is not reassuring, as the author later acknowledged in [25]. Therefore, for the same reason explained

earlier, the computational cost in a SPEKE is roughly the same as ours, despite that a SPEKE only requires two

exponentiations per user.

To sum up, an EKE requires changing the protocol in its existing form for a secure implementation. As for a

SPEKE, it has the drawback that an active attacker may test multiple passwords in one protocol execution.

Furthermore, neither protocol – in the original form – accommodates short exponents securely. Finally, neither

protocol is provably secure; formal security proofs seem unlikely without introducing new security assumptions [7]

or relaxing security requirements [33].

We choose to solve the PAKE problem using a different approach. The novelty of our design is that we encrypt

the password by juggling the public keys in a way that can be verified. As a result, our scheme is provably secure,

allows flexible use of short exponents, and strictly limits an active attacker to test only one password per protocol

execution. A similar use of this juggling technique was seen in solving the Dining Cryptographers problem8 in

2006 [20]. One difference is that [20] works in a multi-party setting, while ours in a two-party one. Yet both schemes

8 The Dining Cryptographers problem was first introduced by Chaum in 1988 [11]



use the same technique, which we call “public key juggling” – i.e., re-arranging the public keys in a particular way,

and encrypting data by introducing quadratic terms on the exponents in a verifiable way. To our best knowledge,

this construct is significantly different from all past PAKE protocols. In the area of PAKE research – which has

been troubled by many patent arguments surrounding existing schemes [16] – a new construct may be helpful.

5 Conclusion

In this paper, we proposed a protocol, called J-PAKE, which authenticates a password with zero-knowledge and

then subsequently creates a strong session key if the password is correct. We proved that the protocol fulfills the

following properties: it prevents off-line dictionary attacks; provides forward secrecy; insulates a known session key

from affecting any other sessions; and strictly limits an active attacker to guess only one password per protocol

execution. A Java implementation of the protocol demonstrates that the total computation time for the session-

key setup is merely 75 ms. As compared to the de facto internet standard SSL/TLS, J-PAKE is more lightweight

in password authentication with two notable advantages: 1). It requires no PKI deployments; 2). It protects users

from leaking passwords (say to a fake bank website).
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