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Abstract—Nuisance or unsolicited calls and instant messages come at any time in a variety of different ways. These calls would not
only exasperate recipients with the unwanted ringing, impacting their productivity, but also lead to a direct financial loss to users and
service providers. Telecommunication Service Providers (TSPs) often employ standalone detection systems to classify call originators
as spammers or non-spammers using their behavioral patterns. These approaches perform well when spammers target a large
number of recipients of one service provider. However, professional spammers try to evade the standalone systems by intelligently
reducing the number of spam calls sent to one service provider, and instead distribute calls to the recipients of many service providers.
Naturally, collaboration among service providers could provide an effective defense, but it brings the challenge of privacy protection
and system resources required for the collaboration process. In this paper, we propose a novel decentralized collaborative system
named privy for the effective blocking of spammers who target multiple TSPs. More specifically, we develop a system that aggregates
the feedback scores reported by the collaborating TSPs without employing any trusted third party system, while preserving the privacy
of users and collaborators. We evaluate the system performance of privy using both the synthetic and real call detail records. We find
that privy can correctly block spammers in a quicker time, as compared to standalone systems. Further, we also analyze the security
and privacy properties of the privy system under different adversarial models.

Index Terms—Privacy Preservation, Telephony Spam, Decentralized Collaboration, Secure Multi-party Computation

F

1 INTRODUCTION

N EW technologies bring many advantages and benefits
to the society and business organizations that employ

them but unfortunately at the same time have attracted
criminals and scammers for fraud and criminal activities.
Fraudsters can adopt various ways to reach their targets,
e.g., via social networks (Facebook, Twitter, on-line blogs
etc.), email and the telephony (VoIP, Fixed landline, and Mo-
bile). During the past few years, telephone networks have
become one of the most preferred media for doing business
and personal communication all over the world. However,
the unprecedented growth of telephony has also attracted
advertisers, criminals and fraudsters to use this medium
for marketing products and defrauding users [1]. Recent
statistics on the telephony frauds and scams show that
subscribers and telecommunication companies lose about
$38.1 billion to the fraudsters annually. Further, answering
unwanted calls would result in an estimated waste of 20
million man hours and a loss of $475 million annually [2].

Researchers have proposed many standalone techniques
for detecting spammers in the telecommunication and
VoIP (Voice over Internet Protocol) networks [3]. These
approaches are mainly based on the white and black lists
[4], analyzing speech content exchanged between the calling
and the called parties [5], [6], based on analyzing the social
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behaviour of user towards others in the network [7]–[10],
and sender verification through CAPTCHA (Completely
Automated Public Turing test to tell Computers and Hu-
mans Apart) and Turing test [11]. The standalone solu-
tions could also be implemented as multistage systems [8],
[12] where multiple independent modules could collaborate
internally for the effective detection. Standalone systems
normally use information from the single service provider,
hence are prone to evade by the sophisticated spammers
by simply controlling the number of spam calls per service
provider. However, for a high financial gain, spammers
target large number of subscribers suppressed across many
service providers. This makes collaborative systems a natu-
ral choice for the timely detection of intelligent spamming
users [13],[14],[15], [16], whereby a set of telecommunication
service providers share their information about the behav-
ior of their user in their networks, respectively. However,
TSPs are not comfortable in sharing information of their
customers to another entity because they are concerned
about privacy of their customers, and their own network
configurations. Other challenges a collaborative system has
are, the decentralization (having collaboration without any
third party trusted system) and the overheads required for
the collaboration.

In recent years, several collaborative systems have been
proposed to enable service providers to share their pri-
vate data to the trusted centralized systems for statistics
aggregation and meaningful decisions [17]–[20] [21]. These
systems rely on a centralized trusted third party for the
aggregation and analysis of the feedback submitted by the
collaborating TSP, thereby prone to be attack by the adver-
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sary at the centralized system for the sensitive and private
information. However, service providers want a complete
control over the private data of their customers and are
not willing to share this data with the trusted centralized
system because of privacy concerns and regulatory affairs
[22]. The alternative decentralized solutions such as [14],
[23], [24] [13] are not dependent on the trusted centralized
authority for statistics aggregation but these systems require
a set of pre-trusted users for protecting the privacy of others.
Furthermore, these systems do not consider trust weights of
collaborators and have high system resources. We believe
that service providers would agree on the collaboration
process if collaboration process ensures privacy of collab-
orator’s data under an honest but curious and a malicious
adversary models in a fully decentralized way.

In this paper, we proposed a novel privacy preserving
decentralized collaborative system named privy, where the
service provider wants to compute the aggregated statistics
from the feedback values provided by collaborating partici-
pants without learning the feedback values of collaborating
TSPs. The proposed approach allows each collaborating TSP
to publish the encrypted feedback values on the append
only public bulletin board (BB). Service providers or end-
users having access to the BB would only learning the
aggregated weighted sum of the feedback score submitted
scores, without inferring any other information submitted
by collaborators. Participants would only learn the final
weighted aggregated score of the user, thus individual feed-
back scores remain anonymous to participants. The privy
system consists of two well-known entities: a public BB
and the participating service providers. The TSP monitors
the behavior of their customers using locally recorded data
(signaling or call record database, or collects direct feedback
from their users), computes the local aggregate score of the
user, and reports encryption of the score to the BB. The BB
is an append only table that contains the identity of the
user, the encrypted score assigned by the service provider,
and the non-interactive zero-knowledge (NIZK) proof to
ensure that the encrypted feedback score is indeed within
the prescribed range.

Our privy system ensures privacy preservation of collab-
orators and their customers. Specifically, the system protects
privacy of participants for the following adversarial models:

Privacy against curious participants : the curious par-
ticipants alone or in collusion with other participants would
learn nothing about the feedback of other participants or
target participant.

Ensure correctness against malicious participants: the
proposed system not only achieves full privacy protection,
but also operates correctly under malicious participants
through the use of efficient non-interactive zero-knowledge
proof.

This paper extends our previous work presented at
SAC’17 [25], which does not support weighted feedback,
i.e. all collaborators have equal impact on the final ag-
gregation. Weighted feedback can differentiate feedback of
collaborating TSPs by giving more weight to the directly
connected and trusted TSPs than other TSPs. To enable this,
the aggregation system needs to know the weights and
scores of collaborators secretly. For the weighted reputa-
tion aggregation, in this paper we introduce another phase

conducted by the trusted setup for the secure weighted
reputation aggregation without revealing weights as well
as the feedback scores of users assigned by the collaborat-
ing TSP. This paper also presents detailed security proofs
and privacy analysis. Further, it presents a proof-of-concept
implementation of cryptographic operations with detailed
performance evaluation.

In summary, this paper makes the following contribu-
tions.

• It presents a decentralized aggregation protocol
based on the secure multi-party computation that
provides aggregated statistics without revealing any
private information provided by the participants.
Specifically, a participating TSP publishes local feed-
back about his user to the BB and any other par-
ticipant can find the aggregate behavior of the user
by simply aggregating the encrypted score without
learning any individual score. In our protocol, we
do not trust any entity (BB or protocol setup) thus
achieve strong notions of privacy and security under
malicious and honest but curious models. Further,
the protocol has a small computation and communi-
cation overhead, and can easily handle a large num-
ber of participants and a large number of feedbacks.

• It presents a complete description of privacy and
security proofs. Further, it also describes a proof-of-
concept implementation, and reports the evaluation
results for different crypto operations.

• This paper evaluates performance of the collabora-
tive privy system on a realistic dataset that has been
generated using the probability distribution learned
from real anonymized call detail records. The results
demonstrate that our proposed system has a better
detection accuracy than the traditional stand-alone
systems.

The novelty of the privy system is based on its under-
lying cryptographic protocol. The underlying cryptographic
protocol of the privy system can be used in any multi-party
collaborative system with the intention to securely compute
weighted sum of feedback scores provided by the parties.
We applied the approach for detecting spammers in telecom
networks because of the following reasons. First, telecom
spams are increasing rapidly, and it is necessary to have a
mechanism that convinces service providers to collaborate
in achieving effective and early detection of spammers.
Second, it is possible to convince a large number of TSPs
for the collaboration because they are under the control
of one regulatory authority of the country. The proposed
approach can be used for aggregating rating and recommen-
dation in online marketplaces with a minor modification.
For example, changing the NIZK proof for handling the
ratings presented at the scale of 0-5 or 1 star to 5 stars. This
involves representing the NIZK proof to prove that users
have selected only one value out of all possible values.

The remainder of this paper is organized as follows.
Section 2 analyzes the related work; Section 3 presents the
motivation for this work and defines the problem; Section 4
describes an overview of privy system. Section 5 describes
the system architectures of privy system and its cryptog-
raphy operations. Section 6 analyzes the security and pri-
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vacy properties of the system. Section 7 presents prototype
implementation and methodology used for analyzing the
performance of the system. Section 8 shows results of our
experiments. Section 9 presents the deployment challenges
and limitations of the system. Section 10 concludes the
paper. The appendix (supplementary material) provides the
security proofs and assumptions considered in this paper.

2 STATE OF THE ART

To date, anti-SPIT (SPam over Internet Telephony) systems
have taken two main methods for identifying spammers:
1) content-based anti-SPIT systems [5], [6] and 2) identity-
based anti-SPIT systems [4], [7], [8], [26]–[28]. Content-
based systems process and analyze the speech content ex-
changed between callers and the callee for blocking ma-
licious callers involved in spreading unwanted content;
whereas the identity-based systems use the identity of the
user for characterizing the behavior of user towards others.
The identity-based systems can be further grouped into: a
black or white list [4], a reputation-based system [7], [8],
[26]–[29], caller authentication in the form of CAPTCHA
[11], and Honeynets [30], [31]. A standalone SPIT solution
can also be deploy by combining several individual systems
in the form of multistage systems [8], [12].

Very few works have been reported on the collabora-
tive spam detection in the VoIP and telecommunication
networks to improve the detection accuracy and the detec-
tion time. These approaches mainly carry out collaboration
among different standalone modules, in the form of multi-
stage systems [8], [12], [32]. However, collaboration among
multiple modules would considerably add delay in the call
setup time. The complete information about caller’s calling
behavior mostly resides in his home network and this infor-
mation could be exchanged to the service provider of callee
using SIP (Session Initiation Protocol) signaling tags [33] in
order to evaluate the performance of SPIT detection system
deployed in the home service provider of the caller. How-
ever, this system requires direct trust relationship between
TSPs and only rate detection system rather than end-users.
SPACEDIVE [34] performs collaborative intrusion detection
in the network domain by matching and correlating the local
and remote rules at the individual and across the different
components.

A distributed cooperative detection method has been
proposed in [35] for identifying the SPIT callers by having
internal collaboration among several VoIP servers within
a particular TSP, but the proposal has not provided any
mechanism for the collaboration between TSPs.

Several collaborative systems have been proposed for
detecting spammers and intruders in the email network and
the Internet domain. The collaborative email spam detection
systems identify spammers by sharing the message content
among the collaborators [36], [37] or relying on the trusted
third party centralized system for the aggregation of the
reputation and statistical scores [14], [17]–[20]. Both the
content-based and centralized trusted reputation systems
have access to the private information of collaborators thus
pose serious privacy concerns for the collaborators and their
customers. In [23], a privacy-aware data aggregation proto-
col is proposed for the anomaly detection where private data

from the multiple collaborators is exchanged to the semi-
trusted system which respond back the collaborators with
the aggregated statistics. In [13], a distributed decentralized
system is proposed that uses the semantics of secure multi-
party computation and secret sharing for aggregating the
security alerts and traffic logs among several collaborating
operators. The system is decentralized, but the collaborators
can collude with each other to breach the privacy of some
specific target collaborator. Furthermore, [13] did not con-
sider the effect of weights while aggregating the statistics. In
[16], a controlled data sharing protocol is proposed where
collaborators agreed on the set of information used for
the collaboration. The system requires trusted relationship
between collaborators and is prone to be circumvent by the
malicious collaborators.

Electronic cash (e-cash) based reputation protocols [38]–
[41] have also been proposed for computing the reputation
of users by using anonymous identities and imposing some
fee for posting the feedback. However, these systems require
trusted third parties for some operations: in particular, a
central bank for handling the transactions. For example,
Repcoin [39] requires a trusted third party and the repu-
tation providers for holding the reputation coins of every
user in the system. The user in the Repcoin system has to
choose either a public identity or the random pseudonym
for the communication.

The disadvantages of previous e-cash based anonymous
reputation systems are that they rely upon the trusted third
party systems, do not support both positive and negative
feedbacks and require anonymized identities. Further, the
use of anonymous credentials would not help in detecting
misbehaving users across multiple service providers. In
contrast, the privy system is completely decentralized in
its operations and does not require a set of anonymous
identities or channels to protect the privacy of its users.

3 MOTIVATION AND PROBLEM DEFINITION

In this section, we describe the motivation for this work and
define the problem this paper is addressing.

3.1 Motivation

The standalone systems are typically placed within the TSP
and consider locally recorded data of a TSP for analyzing
the behaviour of users and detecting malicious users. Since,
there is no cooperation among TSPs, no data is passed to
the other TSPs except call handling messages. Standalone
anti-SPIT systems may have a high false negative rate and
prolonged detection when spammers are making a very
low-rate spam calls to the recipients of several TSPs without
overwhelming any single TSP. Particularly, standalone sys-
tems could manage detecting the low-rate spammers over
the time (after receiving enough number of calls from the
caller), and when the number of spam calls from the same
source within a TSP spikes. However, this detection is too
late, as the spammer has already reached a large number of
subscribers in a TSP and across several TSPs. This prolonged
detection is because of unavailability of enough informa-
tion about behavior of the sender within the network. The
stand-alone systems could improve their detection rate and
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minimize detection time by combining several detection
approaches into a single multistage system or asking the
caller to solve the CAPTCHA challenge. However, these im-
plementations have following limitations. First, CAPTCHA
test involves the caller to solve the challenge, which is not
only resource demanding but is also intrusive to the caller.
Second, multistage systems require the call request to pass
through many detection components thus would increase
the call setup delay. Third, multistage systems still require
relatively large number of calls from the same source for the
final decision, which still allows spammers to reach many
subscribers.

Observing call patterns across several TSPs could im-
prove the detection accuracy and detection time but it
brings the challenge of privacy preservation that so far has
restrained TSPs from participating in the collaboration pro-
cess. The existing collaborative system [33] requires collabo-
ration between home and visiting SPs through the exchange
of message tags at the time of call initiation but it only
provides feedback about the capability of detection system
placed in the home network of the caller. Furthermore, this
system requires a pre-defined trust relationship between in-
volved parties. The effective collaborative detection systems
need to have following properties: 1) collaboration among
TSPs should be carried out without establishing a direct
trust relationships between collaborators, 2) information
exchanged between collaborators should not be resource
demanding regarding network and system resources, 3) the
sensitive information should be exchanged in such a way
that it should not be used by the adversary for inferring
private information not revealed, 4) the system should have
high true positive rate and small false positive rate, and
5) the system should be decentralized i.e. no trusted third
party employed for mediating the functions.

3.2 Problem Definition

There are N users U = {u1, u2, ..., uk} directly registered
with the TSP for the telecommunication services. Every user
Ui has a unique identity that he uses to make and receive
the call. The service provider has access to different type of
information when the user initiates or receives the call. This
information can be grouped into on-line information (signal-
ing or call setup messages) and the off-line information the
call detail record (CDR). The TSP logs every call transaction
of his customer in a CDR for user calling identity, and
normally use the CDRs for billing and network management
purposes. The CDR can also be used for other purposes
(user churn analysis [42], outbreak of diseases [43], detecting
criminals, spam detection etc.). A typical call detail record
includes following important fields: the identity of the caller,
identity of the callee, date and time of the call, a call duration
of the call etc. CDRs contain private information of users
such as who contact whom and who is a friend of whom,
thus has serious privacy concerns if not strongly protected.
Therefore, TSPs are not willing to exchange these private
records to any trusted third party, and held well protected
within their premises and under strong authentication and
anonymization. However, TSP want to participate in collab-
oration for effective spam detection without revealing any
private information. TSP could have collaboration with the

exchange of anonymized CDRs; however, exchanging CDRs
have following limitations. 1) The anonymized CDRs would
not provide the functions that TSP is looking for (e.g. spam
detection in our case) because of anonymized identity, 2)
communication overhead required for exchanging CDRs is
extensively very high, and 3) the exchanging CDRs to any
trusted entity are prohibited by law due to privacy concerns.

Normally, TSPs have a standalone detection system
that analyzes the calling behavior (legitimate or non-
legitimate) of the particular user using his call records
or in some cases gets the direct feedback (negative or
positive) from his called users. Assume that there are n
TSP = {TSP1, TSP2, . . . , TSPn} agreed on the collab-
oration and each of them is equipped with a standalone
detection system. They can locally rank caller within their
networks using CDR or direct feedback from called users
of the caller. The collaborating TSP could assign an input
score i ∈ {0, 1} such that i = 0 if the user in question is a
suspected spammer, and i = 1 if the user is not a spammer.
The TSPs wish to participate in collaboration without reveal-
ing their trust and weight scores. The privacy preserving
collaborative detection system would allow an aggregator
or Protocol Initiator (PI) 1(Specially designated TSP) to
securely compute a weighted sum of the scores assigned
to the user by all collaborating TSPs without learning the
individual scores. Let us assume there are n collaborating
TSPs and the score assigned by TSPi to a particular user is
si ∈ {0, 1}. The goal is to privately compute the weighted
average of scores reported by the collaborating entities as
A =

∑n
i=1 wisi/(

∑n
i=1 wi) where wi is the trust weight

of collaborating TSP, and si is the score of the user. Once
the aggregated score A is computed, the protocol initiator
uses it to decide whether the certain user is a spammer or
not. In privy system, the score si remain secret to the TSPs,
and the weights wi remain secret to the protocol initiator.
The protocol initiator only learns the aggregated value of
feedback scores.

4 PRIVACY GOALS AND ADVERSARIAL MODEL

We discuss privacy goals of the system and provide our
adversarial model.

4.1 Privacy Preservation Goals
The primary goal of privy system is to ensure the un-
linkability of feedback scores provided by the TSP and
the anonymity of the TSP. Let us assume there are
two service providers TSP1 and TSP2. They hold on
the call detail records and compute the reputation of
their clients/users. This can be represented as a vec-
tor i.e. TSP1 = {(u1, v1), (u2, v2), (u3, v3) . . . (un, vn)}
and TSP = {(u1, v1), (u2, v2), (u3, v3) . . . (un, vn)} respec-
tively, where u represents identity of the user, and v repre-
sents feedback value assigned to the user by the TSP. TSPs
would like to collaborate without revealing any information
about what score they have assigned to their users and
how they rated their fellow service providers. The privy
system ensures that the privacy of users and has following
properties: 1) the global scores are computed in such a

1. The terms protocol initiator and aggregator are Interchangeable.
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way that the feedback values provided by TSPs remain un-
linkable and anonymous through out the process, 2) the
design ensures that adversary would not be able to manip-
ulate the scores provided by TSPs, and 3) entities involve in
the collaboration would only learn the aggregate statistics
without knowing the individual statistics. The privy system
achieves these entire goals with the use of homomorphic
encryption and the publicly available bulletin board.

4.2 Adversarial Model

The privy system consists of three major components. The
end users, collaborating service providers and the public
bulletin board. The description of each component is pre-
sented in section 5.1. Here, we define adversarial model of
privy system by discussing the role of each component in
the system.

4.2.1 Users

We assume that users trust the service providers for record-
ing their call detail records and performing analysis on the
data. We assume that users are trustworthy in providing
feedback to the service providers if required.

4.2.2 Telecommunication Service Providers

We assume that TSPs are potentially malicious in providing
feedback to the public BB. This means that malicious TSPs
can send false reputation feedback to the BB to increase or
decrease aggregated reputation of the particular user. This
would possibly lead to an attack on the collaborative repu-
tation system by falsely increasing reputation of spammers.
We assume that the protocol setup and the initiator do not
collude with each other. The TSP may collude with either
the setup or the initiator but not with both at the same
time. Moreover, the TSP might also collude with a subset
of other TSPs except the TSP acting as the protocol initiator
(PI). The design mechanism of the privy system and the use
of non-interactive zero knowledge proofs have the ability to
mitigate the effect of these malicious behaviors. In terms of
TSPs protecting the user private data, we assume that TSPs
are honest in protecting the users private data and keeping
private data under strong authentication credentials.

4.2.3 Analyst or Aggregator

We assume that the analyst or aggregator having access to
the public BB is honest-but-curious (HBC); in other words,
it performs operations honestly, but may try to learn the
private information of service providers and their users dur-
ing the aggregation process. We assume that the aggregator
does not collude with the protocol setup, TSPs and clients.

We assume that all the communication between entities
is encrypted and carried out over a secure channel.

5 PRIVY SYSTEM DESIGN

In this section, we describe system architecture, work flow
and crypto operations of the privy system.

TSP n

U1 U2 U3 - - - Un

Feedback Scores of Users

PI/Aggregator/TSP

Public Bulletin Board

Encrypted (Scores)

Setup

Random Vector

TSP 3

U1 U2 U3 - - - Un

TSP 2

U1 U2 U3 - - - Un

TSP 1

U1 U2 U3 - - - Un

Fig. 1: Building Block of Decentralized Collaborative Aggre-
gation System.

5.1 privy System Architecture and Design

The privy system consists of three major components:
users, telecommunication service providers and the public
BB, each with their own role in the system. Additionally,
the system also has a setup phase. Figure 1 provides a
high-level overview of our construction.
Users (U) Users access services provided by the
telecommunication service providers. To enable access
they need a calling identity from the service provider that
can be either a unique IP address or a unique telephone
number. The users actions are recorded in the call detail
records that can be used to assign reputation scores to the
users. Users are assumed not to be always on-line while
their reputation scores are computed.
Telecommunication Service Provider (TSP) The service
provider allows users to perform transactions (provided
they supply the correct information and have enough
rights). The service provider records the transactions
of users in call detail records for billing and network
management, and apply strong authentication. A service
provider performs the following operations: 1) it computes
the reputation of a user using his past call transactions; 2) it
creates cryptograms and zero knowledge proofs of user’s
feedback values and publish those on the BB.
Public Bulletin Board (BB) The public BB holds the
information provided by the collaborating TSPs during the
course of collaboration. Specifically, it holds the identity
of the user, encrypted feedback assigned to the user by
the service provider, the public key of the service provider
and the zero knowledge proof to prove that the encrypted
feedback is indeed within the prescribed range. The public
BB is an append-only database and it ensures that the
analyst or collaborator gets the same information, and the
data posted to it cannot be modified or deleted.
Setup The setup builds a random square matrix of size
equal to the number of service providers, such that the
discrete logarithm of the elements of matrix is not known
to the protocol initiator. The setup also generates a special
vector of dimension equal to the number of TSPs. Based
on the matrix generated by the setup; the protocol initiator
generates the public matrix of parameters that are used
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by the other TSPs to compute the encrypted feedbacks.
Once the setup has provided the matrix and the vector to
the protocol initiator, its job finishes and it may go off-line
thereafter.
The privy could also have an analyst or an aggregator that
analyzes the information from BB and computes aggregated
scores on behalf of the TSP; however, it is not a necessary
component.

A typical privy session consists of several rounds of mes-
sages exchanged between BB and the TSPs. All participating
TSPs participate in these rounds.

Further detail on the event flow of system is provided in
a section 5.4.

We considered simple statistics that we called a repu-
tation score of a user in the TSP. Each TSP encrypts the
feedback value and posts it to the public BB. The collab-
orating TSP or the protocol initiator then homomorphically
computes the aggregated weighted average of the user from
the encrypted scores without learning scores provided by
the collaborating TSP. The TSP exchanges information with
the public BB in the following format [User-ID, ENC(LR),
NIZK,PKP ]. The User-ID is an identity of the user and
can be either an IP-address or a telephone number. The
ENC(LR) is an encrypted feedback value of the user. It can
be either zero or one. NIZK proof is a non-interactive zero
knowledge proof that serves to prove the well-formedness
of reported feedback and PKP is a public key of the
collaborator. We used the telephone number, as the identity
of that user as service providers do not support anonymous
identity. Whenever a TSP is uncertain about reputation of
a particular user, it would then initiate the collaborative
protocol for computing the aggregate global reputation of
that user with other collaborators. At the end of the aggre-
gation cycle, the TSP has the following information [User-
ID, GR], where GR is the aggregated weighted reputation of
the user. The TSP then uses this reputation score along with
a predefined or automated threshold to place the user in a
black or white list database.

5.2 Assumptions

We considered following assumptions in the design of privy
system: 1) we assume that the collaborating TSPs have stan-
dalone system for monitoring the behavior of its users, and
wish to have aggregated behavior of suspected user, 2) the
protocol setup is assumed to be honest but curious and does
not collude with the TSPs, 3) we assume that there exists
a group G of p elements in which the Decisional Diffie-
Hellman (DDH) assumption is intractable. All the security
properties of our scheme depend upon the intractability of
DDH problem in G. We shall establish in section 6 that the
scheme is privacy preserving only if DDH assumption holds
in G.

Assumption 1. [DDH assumption] Let G be a multiplicative
group of finite order. The DDH assumption says, given
g, ga, gb and a Ω ∈ {gab, R}, it is computationally hard
to decide whether Ω = gab or Ω = R.

Fig. 2: Workflow of privy System.

5.3 Notations

Notations used in our system are summarized in Table 1
and algorithmic flow is presented in an algorithm 1.

5.4 Algorithm Workflow

We now describe the workflow of privy system in detail.
The messages exchanged between BB, collaborators and the
protocol initiators is presented in a figure 2 and each step is
described as following.

1. Collaborating TSP would compute the secret and
the public keys. It keeps the secret key and publishes the
public key on the public BB. For submitting the encrypted
scores to the public BB, the collaborator first computes the
restructured key using the public keys of collaborating TSPs
published at the BB.

2. The collaborating TSP then generates the cryptograms
of its feedback score using his secret key and the restruc-
tured key. The information that is being posted on BB consist
of two parts: the cryptogram of the feedback score and the
zero-knowledge proof of well-formedness.

3. In the aggregation phase, the protocol initiator aggre-
gates the reputation of user by requesting the encrypted
values and NIZK proof from the public BB. The protocol
initiator first checks the validity of zero knowledge proof,
and then computes the final weighted aggregated reputa-
tion score of the user.

4. Finally, the protocol initiator or TSP compares the final
aggregated score with the fixed or automatic threshold to
place the user in the black or white list database.

5.5 privy Crypto Operations

With the system design in place, this section describes
crypto operations of the privy system. As stated, in privy
system, each collaborating TSP computes the weighted rep-
utation of users without revealing information about two
parameters: 1) the feedback scores assigned by the TSP, and
2) the trust weights of the collaborating TSP. The operations
of privy are completely decentralized, however there exist
a trusted setup for few operations. Specifically, the trusted
setup and the collaborator wishing to have aggregated score
performs the following functionalities:
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TABLE 1: Symbols and abbreviations used the in privy System.
Symbols Description
TSP1, TSP2, . . . , TSPn Telecommunication Service Providers
U1, U2, . . . , Uu Set of Users registered in a TSP
(x1i, x2i, . . . , xni) Secret key of TSPi
(gy1i , gy2i , . . . , gyni ) restructured key of TSPi
pubi public key of TSPi
TSPa Protocol Initiator or requester
G cyclic Group of p elements in which DDH problem is hard
M n× n matrix generated by setup
rij elements of M
N n× n matrix generated by TSPa using GM
ηij discrete logarithm of elements of N
K secret key chosen by TSPa
ω secret vector known to TSPa
si secret score of TSPi
wi weight assigned to the score of TSPi, 1 ≤ wi ≤ τ
αi random element generated by each TSPi for generating the encrypted feedback
τ max. weight assigned to the score of operators
NIZK non-interactive zero knowledge
[n] the set {1, 2, . . . , n}
ci encrypted score (feedback) of TSPi

Trusted Setup: The setup chooses G, a finite multiplica-
tive group of p elements. Let g be a random generator of
g. It computes a random full rank n × n matrix M = [rij ],
where, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n} and M ∈ Zn×np .
Since, the rank of M is n, there exists ω ∈ Znp , satisfying
ωTM = (1, 1, . . . , 1) mod p.

ω can be computed uniquely by solving
ωTM = (1, 1, . . . , 1) mod p. Let the solution be
ω = (ω1, ω2, . . . , ωn). The setup computes the power
matrix GM = gM = [grij ] (GM ∈ Gn×n) and a vector
gω = {gω1

1 , gω2
2 , . . . , gωn

n } and post them on the public BB,
where g1, g2, . . . , gn are n random generators of G. Finally,
the setup sends ω secretly to the protocol initiator.

Protocol Initiator:The protocol initiator selects a random
K ∈ Zp and publishes the matrix N = [gηij ] = [gKwirij ] on
the public BB:

N =


(gr11)Kw1 (gr12)Kw2 (gr13)Kw3 · · · (gr1n)Kwn

(gr21)Kw1 (gr22)Kw2 (gr23)Kw3 · · · (gr2n)Kwn

...
...

...
. . .

...
(grn1)Kw1 (grn2)Kw2 (grn3)Kw3 · · · (grnn)Kwn


(1)

In the above equation, wi is the weight assigned to TSPi
for all i ∈ [n]. The protocol initiator also publishes gK on
the BB. Later, we shall see that this step is necessary to
make it impossible for the setup to breach the privacy of
TSPs on its own. The protocol initiator also publishes a non-
interactive zero knowledge proof of well-formedness of N .
This proof shows that N = gKwirij , given gK , grij ,∀i, j ∈
{1, 2, . . . , n}. We assume that weights wi are less than some
constant τ . So, the NIZK proof should be constructed to
validate the fact thatNij = gηij ∈ {(gKrij )wi : 1 ≤ wi ≤ τ}.
The protocol initiator also publishes a NIZK proof of the fact
that g

∑n
i=1 ηijωi ∈ {gK , g2K , . . . , gτK},∀j ∈ {1, 2, . . . , n}.

We have discussed both the NIZK proofs in the Appendix.
Key Generation: In order to provide the encrypted

scores to the BB, the collaborating TSP has to generate
the secret and the public keys. Let G be a finite group
of p elements in which Decisional Diffie Hellman (DDH)
problem is hard and g be a random generator of G. For

each user uj , the TSP uniformly choses the random value x
from [1, p − 1] as his secret key and computes the public
key as following: Pubi=gxji :j ∈ {1, 2, . . . , n}. The value
of x is kept secret within the TSP, and the value of Pubi
is published to the BB. The TSP who wish to provide the
feedback first need to compute the restructured public key
yji using public keys from public BB as following:

gyji =

∏i−1
k=1 g

xjk∏n
k=i+1 g

xjk
(2)

We call it a restructured key because it is constructed by
multiplying all the public keys before i and dividing it from
all the public keys after i. Note that anyone can compute the
gyji based on the published values of Pubk, k ∈ [n].

Submitting Scores: Once the TSP has computed the
restructure key, the next step is encrypting the feedback
scores and posting it to the public BB. The feedback score is
si ∈ {0, 1} is encrypted by multiplying the exponentiations
of secret and restructured key with the exponentiations
of feedback score and assigned weights. The scores are
encrypted as following:

cji = gxjiyjigηji (si+αi) (3)

NIZK Proof of TSP Data Validity : The collaborating
TSP has to provide a non-interactive zero-knowledge proof
(NIZK) of knowledge that their provided encrypted reputa-
tion scores represent a valid input. Therefore, when a TSP
provides the encrypted feedback, it should also compute
and attach the NIZK of feedback correctness to public BB.
The use of NIZK ensures that reported encrypted scores
are not out of prescribe range without learning the score
value. The TSP i encrypts the score as (Ci, g

αi), where
Ci = (c1i, c2i, . . . , cni), cji = gxjiyjigηji(si+αi). The NIZK
proof should provide witness exactly one of the two follow-
ing statements is true.
1) c1i = gxjiyjigη1iαi ∧ c2i = gx2iy2igη2iαi ∧ · · · ∧ cni =
gxniynigηniαi .
2)c1i = gxjiyjigη1i(1+αi)∧c2i = gx2iy2igη2i(1+αi)∧· · ·∧cni =
gxniynigηni(1+α).
Our NIZK proofs use Sigma protocol. For simplicity, we
first present the well-formedness statement as in the form of
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logical ‘AND’ statements, and then for each sub-statement,
we generate a separate NIZK proof. The detailed description
of NIZK is presented in the Appendix.

Score Aggregation: As the values of gxjk , j ∈
{1, 2, . . . , n}, k ∈ {1, 2, . . . , n} are publicly available on the
BB, anyone (TSP or protocol initiator) can compute gyji ,
for any i and j, without having knowledge of yji. The ser-
vice providers TSPa can compute the weighted aggregated
score of any user as following:

C = (
n∏
j=1

c1j ,
n∏
j=1

c2j , . . . ,
n∏
j=1

cnj). (4)

Let’s denote C = (C1,C2, . . . ,Cn) Then,

Ci =
n∏
j=1

gyijxijgηij(sj+αj)

Now,
∏n
j=1 g

yijxij =
∏n
i=1(

∏j−1
k=1 g

xik/
∏n
k=j+1 g

xik)xij =

gφi (say)
where, φi =

∑n
j=1(

∑j−1
k=1 xik−

∑n
k=j+1 xik)xij = 0, accord-

ing to Proposition 1 [44].
Thus,

Ci = g
∑n

j=1 ηij(sj+αj),∀i ∈ {1, 2, . . . , n}.

C = (g
∑n

i=1 η1i(si+αi), g
∑n

i=1 η2i(si+αi), . . . , g
∑n

i=1 ηni(si+αi))

C = (gK
∑n

i=1 r1iwi(si+αi), gK
∑n

i=1 r2iwi(si+αi), . . . ,
gK

∑n
i=1 rniwi(si+αi)).

Now, TSPa computes the weighted product of the
elements of C as:

L =
n∏
k=1

(Ck)ωk (5)

=
n∏
k=1

(gK
∑n

i=1 rkiwi(si+αi))ωk (6)

= gK
∑n

k=1

∑n
i=1 ωkrkiwi(si+αi) (7)

Hence,
L = gK

∑n
i=1 wi(si+αi)

∑n
k=1 ωkrki (8)

As mentioned before, ωTM = (1)T then

L = gK
∑n

i=1 wi(si+αi)

=

(
gS

n∏
i=1

(gαi)wi

)K
So,

gS = L1/K/
n∏
i=1

(gαi)wi (9)

Since, values of gαi , i ∈ {1, 2, . . . , n} are public and
K,wi, 1 ≤ i ≤ n are known to TSPa, it can compute gS

from the weighted product L. From gS , a brute force search
would yield the value of S which can be used for computing
the weighted average reputation score by simply dividing S
by
∑n
i=1 wi.

Proposition 1. Let, x1, x2, . . . , xn ∈ Znp . Then∑n
i=1(

∑i−1
j=1 xj −

∑n
j=i+1 xj)xi = 0.

proof: ∑n
i=1(

∑i−1
j=1 xj −

∑n
j=i+1 xj)xi

=
∑n
i=1

∑i−1
j=1 xixj −

∑n
i=1

∑n
j=i+1 xixj

=
∑n
i=1

∑
j<i xixj −

∑n
i=1

∑
j>i xixj

=
∑n
j=1

∑
j>i xixj −

∑n
i=1

∑
j>i xixj .

as,
∑n
j=1

∑
j>i xixj =

∑n
j=1(x1 + x2 + . . .+ xj−1)xj

= x1
∑n
j=2 xj + x2

∑n
j=3 xj + · · ·+ xi−1

∑n
j=i+1 xj + · · ·+

xn−1xn
=
∑n
i=1

∑
j>i xixj

Hence,
∑n
i=1(

∑i−1
j=1 xj −

∑n
j=i+1 xj)xi = 0.

Algorithm 1 Weighted Reputation Aggregation and Detec-
tion.

1: INPUT: There are n collaborating TSPs, each having u users. The
TSPs assigned a feedback score to each user as si ∈ {0, 1},and
has a trust weight for other TSPs.

2: OUTPUT: Weighted Reputation Score (WRS) of the user Uκ, WRS=∑n
j=1 sjwj∑n
j=1 wj

3: Each Collaborating TSPi publishes scores to BB (lines 4-15):
4: procedure KEY GENERATION(G,p)
5: Pubi = gxji : j ∈ {1, 2, . . . , n} and xi ∈R [1, q − 1]
6: end procedure
7: procedure GENERATING RESTRUCTURED KEY ()
8: yji =

∑i−1
k=1 xjk −

∑n
k=i+1 xjk and si ∈ {0, 1}

9: end procedure
10: procedure ENCRYPTING AND PUBLISHING FEEDBACK SCORES ()
11: Encryptedscores(cji)= gxjiyjigηji (si+αi), where αi is a ran-

dom nonce
12: Generating NIZK proof that feedback score is either 0 or 1 as:
13: 1) c1i = gxjiyjigη1iαi ∧ c2i = gx2iy2igη2iαi ∧ · · · ∧ cni =

gxniynigηniαi .
14: 2) c1i = gxjiyjigη1i(1+αi) ∧ c2i = gx2iy2igη2i(1+αi) ∧ · · · ∧ cni =

gxniynigηni(1+α).
15: end procedure
16: The Protocol Initiator computes weighted aggregated score of

any user(Uk) as (lines 17-20):
17: procedure WEIGHTED REPUTATION

L = gK
∑n

i=1 wi(si+αi)

=
(
gS
∏n
i=1(g

αi )wi
)K

18: TSP computes S from the gS using brute force search
19: Finally TSP computes WRS by dividing S by the sum of all

weights.
20: end procedure
21: The Protocol Initiator/TSP classifies Uk as (lines 22-30):
22: procedure CLASSIFICATION AND DETECTION(TSP )
23: if WRS(Uκ) > Threshold then
24: Place Uκ in a White-list
25: else
26: if WRS(Uκ) < Threshold then
27: Place Uκ in a Black-list
28: end if
29: end if
30: end procedure

5.6 Protocol Summary
The important steps of the privy encryption are outlined
below:

1) Setup: The trusted setup computes n × n full
rank matrix M = [rij ], i ∈ {1, 2, . . . , n}, j ∈
{1, 2, . . . , n}, and M ∈ Zn×np . There exists ω ∈ Znp ,
such that ωTM = (1, 1, . . . , 1) mod p. If ω =
(ω1, ω2, . . . , ωn) and

∑n
i=1 ωirij = 1 mod p, ∀j ∈
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{1, 2, . . . , n} then ω can be uniquely computed be-
cause M is a full rank matrix. The setup computes
the power matrix GM = gM = [grij ], and GM ∈
Gn×n, and made it public, and secretly send vector
ω secretly to the protocol initiator. Further, the setup
also publishes a vector gω = {gω1

1 , gω2
2 , . . . , gωn

n } on
the public BB, where g1, g2, . . . , gn are n random
generators of G.

2) Initialization: The protocol initiator/aggregator se-
lects a random K ∈ Zp, publishes the matrix
N = [gηij ] = [gKwirij ], gK and a NIZK of well-
formedness of N . The NIZK proof shows that
N = gKwirij , given gK , grij ,∀i, j ∈ {1, 2, . . . , n}.
We assume that the weights wi are less than some
constant τ . The NIZK proof should be constructed
to validate the fact that Nij = gηij ∈ {(gKrij )wi :
1 ≤ wi ≤ τ}. The protocol initiator also pub-
lishes a NIZK proof of the fact that g

∑n
i=1 ηijωi ∈

{gK , g2K , . . . , gτK},∀j ∈ {1, 2, . . . , n}.
3) Phase I: In the first step, each service provider

TSPi, i ∈ {1, 2, . . . , n} publishes a public key
Pubi = (gx1i , gx2i , . . . , gxni) on the BB.

4) Phase II: Each collaborating TSPi computes a vec-
tor ci such that, cTi = (c1i, c2i, . . . , cni), where cji =
gxjiyjigηji (si+αi), and αi is a random nonce. TSPi
publishes {ci, gαi} and a NIZK of well formedness
of cji = gxjiyjigηji (si+αi) for each j ∈ {1, 2, . . . , n},
where si is the secret score of TSPi and yji =∑i−1
k=1 xjk −

∑n
k=i+1 xjk is the restructured key.The

NIZK proof should provide prove for the state-
ment cji ∈ {gxjiyjigηjiαi , gxjiyjigηji(1+αi)}. As the
values of gxji , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}
are public, anyone can compute gyji , for any val-
ues of i and j without having yji. This vec-
tor ci is uploaded to the public BB along with
gαi . Once all operator contributed and aggregation
cycle terminated, any TSPa can calculate C =
(
∏n
j=1 c1j ,

∏n
j=1 c2j , . . . ,

∏n
j=1 cnj).

5) Computing Weighted Average: Protocol initia-
tor computes L =

∏n
k=1(g

∑n
i=1 ηki(si+αi))ωk =

(gS
∏n
i=1(gαi)wi)K . From this it calculates gS =

L1/K/
∏n
i=1(gαi)wi . Then it finds S using brute

force search and compute the weighted average:
S∑n

i=1 wi
.

6 SECURITY AND PRIVACY ANALYSIS OF PRIVY

The collaborating TSP wishes that no entity taking part in
the collaboration would learn the information provided by
them. The privy system ensures privacy of collaborators and
their users with the use of encrypted scores published on the
BB. The aggregator would only learn the aggregate statistics
without learning any individual feedback score. As long as
the trusted setup does not collude with protocol initiator,
the privy system ensures the following security properties
that we proved in lemma 1 to 4:

• The setup alone is not able to compromise the pri-
vacy of TSPs. It is proved in a Lemma 1.

• The TSPs would not learn the values of the trust
weights assigned by the protocol initiator, hence

privacy of the protocol initiator remains preserved.
This property is proved in a Lemma 2.

• If two TSPs have the same trust weights and they
assign different scores to a user (one assign 1 and
other assign 0) then the protocol initiator would not
learn any scores. It is proved in a Lemma 3

• The weighted sum S =
∑n
i=1 wisi does not allow

protocol initiator to learn the scores of particular TSP
even after colluding with others. This is the most
crucial security property of the system and is proved
in a Lemma 4.

Lemma 1. The setup alone cannot compromise the privacy
of a TSP.

Proof 1. We prove that an adversary, who plays as the
setup, cannot distinguish between two BBs where the
same TSP (say TSPn) has provided two different scores
if the DDH assumption holds true. Let us assume that
the adversary has received the input gα, gK and a chal-
lenge Ω ∈ {gαK , gαKgK}. The adversary has to find
whether Ω = gαK or Ω = gαKgK . The adversary
performs the following operations: she computes the
matrix M ∈ Zn×np , GM = [grij ], and the vector ω
satisfying ωTM = (1, 1, . . . , 1). Then, she publishes
the n × n matrix N = [(gK)rij ], i, j ∈ [n]. For all
service provider TSPi, i ∈ [n], the adversary pub-
lishes Pubi = (gx1i , gx2i , . . . , gxni), and keeps the corre-
sponding secret key (gx1i , gx2i , . . . , gxni). The adversary
chooses suitable scores for all TSPs except TSPn. For all
TSPi, the adversary generates the scores as she knows
all secret keys and scores. Now, the adversary chooses
cn = (c1n, c2n, . . . , cnn), where cjn = gxjnyjnΩrjn ,∀j ∈
[n]. The adversary knows rjn, xji∀j, i ∈ [n] and yji =∑i−1
k=1 xjk −

∑n
k=i+1 xjk. Note that if Ω = gαK , cn

corresponds to the case: sn = 0 and if Ω = gαKgK ,
cn corresponds to the case: sn = 1. Now, if the setup
can identify the score sn from the bulletin board, the
adversary can identify the correct value of Ω.

Lemma 2. The service providers would not learn the secret
weights.

Proof 2. Let us assume there are two sets W = {wi :
i ∈ {1, 2, . . . , n}} and W ′ = {w′i : i ∈ {1, 2, . . . , n}}.
Let, N = [grijKwj ] and N ′ = [grijKw

′
j ], where 1 ≤

wi, w
′
i ≤ 3, i, j ∈ {1, 2, . . . , n}. Now, from Assumption

2, we can say (g, grij , gK , grijKwj )
c≈ (g, grij , gK , R)

c≈
(g, grij , gK , grijKw

′
j ). Thus, no Probabilistic Polynomial

Time (PPT) adversary can distinguish between N and
N ′.

Assumption 2. DDH assumption: Given g, ga, gb and a Ω ∈
{gab, R}, it is hard to decide whether Ω = gab or Ω = R.

Lemma 3. The protocol initiator TSPa cannot distin-
guish between two bulletin boards where two ser-
vice providers having equal weights interchange their
scores.

Proof 3. Let us assume that the two honest service providers
are TSPi and TSPj , i < j. We assume that the weights
assigned to both of them is w. The NIZK proofs do not
provide any useful information that can help TSPa to
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A B

g−x1ix1j (gη1i )1+αi , gx1ix1j (gη1j )αj g−x1ix1j (gη1i )αi , gx1ix1j (gη1j )1+αj

g−x2ix2j (gη2i )1+αi , gx2ix2j (gη2j )αj g−x2ix2j (gη2i )αi , gx2ix2j (gη2j )1+αj

g−x3ix3j (gη3i )1+αi , gx3ix3j (gη3j )αj g−x3ix3j (gη3i )αi , gx3ix3j (gη3j )1+αj

· · · · · ·
g−xnixnj (gηni )1+αi , gxnixnj (gηnj )αj g−xnixnj (gηni )αi , gxnixnj (gηnj )1+αj

TABLE 2: Protocol Initiator’s Two Possible Views of the BB as Mentioned in Lemma 3
.

distinguish between the two bulletin boards mentioned
above. Therefore, for the time being, we may assume
that the NIZK proofs need not be published to the
bulletin board. This assumption will not affect the adver-
sary’s ability to breach the privacy of TSPi and TSPj .
We assume that the public key vectors of these two
TSPs are given by Pubi = (gx1i , gx2i , . . . , gxni), Pubj =
(gx1j , gx2j , . . . , gxnj ). Also, let s be the score of TSPi
and the score of TSPj will be 1 − s. Hence, the
public bulletin board will contain a vector of cryp-
tograms (ci, g

αi) such that cTi = (c1i, c2i, . . . , cni),
cki = gxkiykigηkisgηkiαi ,∀k ∈ {1, 2, . . . , n}. Simi-
larly, the vector of cryptograms from TSPj will be
(cj , g

αj ) such that cTj = (c1j , c2j , . . . , cnj), ckj =

gxkjykjgηkj(1−s)gηkjαj ,∀k ∈ {1, 2, . . . , n}.
Now, we show that if there exists an adversary A that
can distinguish between two bulletin boards where the
scores of two honest TSPs TSPi and TSPj having the
same weight are interchanged. We assume all all TSPs
other than TSPi and TSPj reveal their secrets to the
protocol initiator TSPa. It is easy to see that if the honest
TSPs TSPi and TSPj have the same score, then TSPa
can trivially find out their scores. So, we assume that
their scores are different, that is, one of them is s and
the other one is 1 − s, s ∈ {0, 1}. Now the vector of
cryptograms published by TSPi will be (ci, g

αi), where
ci = (c1i, c2i, . . . , cni), cki = gxkiyki(gηki)s+αi ,∀k ∈
{1, 2, . . . , n}. Now, yki =

∑i−1
t=1 xkt −

∑n
t=i+1 xkt =∑i−1

t=1 xkt −
∑j−1
t=i+1 xkt − xkj −

∑n
t=j+1 xkt = λ1 − xkj ,

where λ1 =
∑i−1
t=1 xkt−

∑j−1
t=i+1 xkt−

∑n
t=j+1 xkt. Since,

all the TSPs excepting TSPi and TSPj have colluded,
we may assume λ1 is known to TSPa. Now the vector of
cryptograms published by TSPj will be (cj , g

αj ), where
cj = (c1j , c2j , . . . , cnj), ckj = gxkjykj (gηkj )1−s+αj . Now,
ykj =

∑j−1
t=1 xkt −

∑n
t=j+1 xkt =

∑i−1
t=1 xkt + xki +∑j−1

t=i+1 xkt −
∑n
t=j+1 xkt = λ2 + xki, where λ2 =∑i−1

t=1 xkt +
∑j−1
t=i+1 xkt −

∑n
t=j+1 xkt. Here too, we can

assume λ2 is known to TSPa.
With this we can rewrite each cki =
(gxki)λ1g−xkixkj (gηki)s+αi

and ckj = (gxkj )λ2gxkixkj (gηkj )1−s+αj ,∀k ∈
{1, 2, . . . , n}. All other cryptograms uploaded by
other dishonest TSPs are chosen by TSPa itself. Now,
TSPa can distinguish between the two cases: s = 0 and
s = 1 only if it can distinguish between the following
two distribution of the table 2. It can be observed that A
corresponds to the case s = 1 and B corresponds to the
case s = 0. So, if a distinguisher can distinguish between
the two cases, it can find whether s = 1 or s = 0.

Lemma 4. If there exist e + 1 honest TSPs,
TSPk1 , TSPk2 , . . . , TSPke , TSPke+1 , {kj : j ∈

[e]} ⊂ [n], who do not reveal their scores
and if there exist (s′k1 , s

′
k2
, . . . , s′ke) and

(s′′k1 , s
′′
k2
, . . . , s′′ke) ∈ {0, 1}e, s′kj , s

′′
kj
∈ {0, 1},∀j ∈ [e]

such that (s′k1 , s
′
k2
, . . . , s′ke) 6= (s′′k1 , s

′′
k2
, . . . , s′′ke) and∑e

j=1 s
′
kj
wkj = wke+1

+
∑e
j=1 s

′′
kj
wkj , then the score of

TSPke+1
cannot be compromised.

Proof 4. For ease of notation, let us assume that the first
e + 1 TSPs are honest, i.e ki = i,∀i ∈ [e + 1]. Also
assume that s′e+1 = 0 and s′′e+1 = 1. The n− e− 1 TSPs,
namely TSPe+2, TSPe+3, . . . , TSPn have colluded with
the P.I. The encrypted score of TSPi is of the form Ci =
(c1i, c2i, . . . , cni), where cji = gxjiyjigηji(si+αi), j ∈
[n]. The P.I. knows all the secrets of the collud-
ing TSPs. Since, g

∑n
i=1 xjiyji = 0, g

∑e+1
i=1 xjiyji =

1/
∏n
i=e+2 g

xjiyji . The P.I. can compute
∏n
i=e+1 g

xjiyji

and hence can compute g
∑e+1

i=1 xjiyji . Hence, the
P.I. can compute X̄j(e+1) = cj(e+1)/g

∑e+1
i=1 xjiyji =

gηj(e+1)(se+1+αe+1)/
∏e
i=1 g

xjiyji ,∀j ∈ [n]. We assume
that cji = c′ji,∀j ∈ [n],∀i ∈ [e + 1] if si = s′i and
cji = c′′ji,∀j ∈ [n],∀i ∈ [e + 1] if si = s′′i . Let us assume
X̄ji = c′ji = gxjiyjigηji(s

′
i+αi),∀j ∈ [n],∀i ∈ [e + 1]

and X̄ ′ji = c′′ji = gxjiyjigηji(s
′′
i +αi),∀j ∈ [n],∀i ∈

[e+ 1]. Again, φi = (X̄i1, X̄i2, . . . , X̄i(e+1)),∀i ∈ [n] and
φ′i = (X̄ ′i1, X̄

′
i2, . . . , X̄

′
i(e+1)),∀i ∈ [n]. Using Lemma ??

and Lemma ??, we can claim that (φ1, φ2, . . . , φn)
c≈

(φ′1, φ
′
2, . . . , φ

′
n). Hence, prove the result.

Note that, Lemma 4 proves that the adversary will not
be able to compromise the score of a TSP if the partial tally
of all the honest TSPs does not allow her to do so. The
protocol outputs the overall tally of all the TSPs and the
adversary knows the scores of all colluding TSPs. Hence,
she can compute the partial tally of all honest TSPs through
subtracting the former by the latter. Thus, we can say that
our protocol is secure in the sense that it does not allow
the adversary to know anything in addition to what she can
learn trivially from the intended output of the protocol, that
is, the weighted sum of scores S =

∑n
i=1 wisi.

7 IMPLEMENTATION

In this section, we discuss the evaluation methodology and
implementation of prototype.

7.1 Synthetic Data-Set
It is hard to obtain the real call records from multiple service
providers. Therefore, we verify the performance of the privy
system using the anonymized CDRs from one anonymous
service provider.

The anonymized dataset consists of around 1 million
unique users and more than 50 million call records. As
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(a) (b) (c)

Fig. 3: Statistics for Data-Set A) Cumulative distribution for Edge Degree of Users with average out-degree distribution
of 15; B) Cumulative distribution of total Call Duration for ten days with the average out-degree of 15, average call rate
of 3 calls and average call duration of 200 seconds per day; C) Cumulative distribution of Call-Rate for 10 days with the
average out-degree of 15, and call rate of 3 per day.

the data provided by the TSP is not labeled, therefore we
considered all users in the data set as the legitimate. Ana-
lyzing CDRs, we observed that legitimate users follow the
power law distribution for their in-degree and out-degree
distributions similar to what has been proved in previous
works [45]–[48]. Using these observations, we generated the
synthetic CDR’s for 6 service providers.

Specifically, first a Barabàsi-Albert (BA) graph model
G(V,E) has been generated and then its edges are labeled
with weights. We used the following settings for the degree
distribution, the call duration and the call rate. The average
degree distribution of the legitimate users follow power
law distribution with the average out-degree of 15 unique
callees, the exponential distribution is used for the call
duration with the average call duration of 200 seconds, and
the call rate of the user is modeled using Poisson distri-
bution with the mean value of 3.5 calls per day. For gen-
erating spammers, we used the following configurations.
The call duration of the spammer follows an exponential
distribution but with the average duration of 90 seconds
towards few callees, and the average duration of 40 seconds
with a large number of callees [49], [50], the out-degree of
the spammer is randomly chosen between 500 and 2000
unique callees and the average call rate is 1.5. We do not
have any information regarding how calls are distributed
among operators in anonymized CDRs. Therefore, calls are
distributed among all 6-service providers (70% calls made
by legitimate users to users registered on the same network
while remaining 30% are equally distributed among other
service providers). The number of legitimate users are fixed
(50K) in each TSP with 20% spammers. Each collaborating
TSP computes reputation score and classifies the caller as
a spammer (0) and non-spammer (1) using the approach
presented in [9]. We aggregated the reputation scores over
the period of one day and repeated the experiments for 10
times. The statistics for the different call features extracted
from the synthetic data of one service provider are presented
in a figure 3.

7.2 Crypto Implementation
To evaluate the computational and bandwidth overheads
of our scheme, we developed and tested the prototype im-
plementation in the Java programming language using the

TABLE 3: Collaborator and Aggregator microbenchmark of
timing and space.

Operation Time (msec) Space (Bytes)

Encryption (per Cryptogram) 10.1 87
NIZK-Proof (per NIZK proof) 59.17 589
Aggregation (100 Feedback) 57.32 -

(a) (b)

Fig. 4: Microbenchmark (Computation and Bandwidth
Overheard) evaluation of cryptographic operations for dif-
ferent number of users.

bouncy castle cryptographic library [51]. We implemented
only the cryptographic parts of the protocol with the NIST
elliptic curve P-256 standard. We ran all experiments on a
single core of an Intel Core i7 3.40 GHz with 8 GB memory
on a Windows 10 operating system. The implementation
consists of two major modules. The first module implements
the functionality of collaborating TSPs: i.e. generating the
secret, the public and the restructured key, generating the
cryptograms of the feedback scores, and generating the
associated zero knowledge proof. The second module im-
plements the functionality of the aggregator: i.e. checking
the NIZK proof of the provided feedback and then aggre-
gate them. The code can be optimize further and is easily
parallelizable. We tested the performance of the collaborator
and the aggregator using the same machine.

7.3 Microbenchmark
The timings of two important operations such as encryption
and NIZK proof of the protocol at the collaborator side, and
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the aggregation operation for 100 feedbacks are summarized
in a table 3. The computation time for both operations at the
collaborator is important for the scalability as cryptograms
and NIZK are generated for each feedback value. For a large
data size such 50K users, the collaborator could perform
encryption and NIZK proof in around 1800 seconds.

We now turn to the timings of basic operations of the
privy protocol for different number of users. We conducted
our experiments on a single thread of the processor. All
experiments were performed 10 times, and the results are
reported in the average of measurements. Figure 4.A shows
the computation time required for the four major opera-
tions: generating the public and the secret keys, computing
the restructure key, the encrypted response, and the NIZK
proof. The key generation and encryption operations are
very efficient, since it only involves simple exponentiations
and multiplication. On the contrary, the NIZK proof genera-
tion is more expensive, since it needs to generate a NIZK
proof non-interactively. As shown in the Figure 4.A the
computation time increases linearly with the number of
users. Specifically, for 50000 users, the collaborator needs
about 1800 seconds to generate the encrypted feedback and
its associated NIZK proof. The aggregator module can ag-
gregate the 500K responses from the bulletin board in about
210 seconds using one core of the machine. The aggregator
computation overhead increases linearly with the number
of responses.

The privy protocol scales well with the number of cores
in the CPU because all computation that grows linearly
with the number of users is parallelizable. On our eight
core machines, the computation time for each operation
considerably decreased to acceptable time: i.e. 270 seconds
for TSP and 30 seconds for the aggregator.

Figure 4.B shows the collaborators bandwidth for the
encrypted response and NIZK proof for the different num-
ber of users, respectively. The collaborator bandwidth over-
head for one user is less than a kilobyte for the encrypted
response and NIZK proof. Specifically, for 50K users, the
collaborator would consume about 29.5mb for the NIZK
proof and about 4.5mb for the encrypted responses. Most
bandwidth consumption is due to the non-interactive NIZK
proof; however, the overhead is still acceptable. We also
measured the storage requirement for the bulletin board. For
holding 500K responses from the collaborators, the bulletin
board requires the storage of about 0.361 GB.

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of privy for
two parameters: The true positive rate (TPR) and the false
positive rate (FPR). TPR is the ratio of correctly identified
spammers to the total number of spammers in the network,
and FPR is a total number of legitimate users misclassified
as the spammers to the total number of legitimate users in
the network. We investigate how TPR increases and FPR
decreases with the number of collaborators. For the classifi-
cation at the TSP level, we used the approach mentioned in
[9] and compared performance of the collaborative system
with standalone systems.

TABLE 4: True Positive Rate of privy System for differ-
ent number of equally trusted collaborators.Percentage of
Spammers is 20%.

System Day-1 Day-2 Day-3 Day-4 Day-5

3 Collaborators 58.47% 71.54% 92.74% 96.5% 99.72%
4 Collaborators 64.76% 78.26% 99.52% 99.85% 100.0%
5 Collaborators 73.17% 88.97% 99.92% 99.97% 100.0%
CallerREP [9]. 18.33% 25.34% 37.01% 43.19% 52.04%
CallRank [7]. 0.00% 0.00% 0.00% 14.14% 27.54%

TABLE 5: False Positive Rate of privy System for differ-
ent number of equally trusted collaborators.Percentage of
Spammers is 20%.

System Day-1 Day-2 Day-3 Day-4 Day-5

3 Collaborators 7.67% 7.18% 6.70% 6.31% 5.51%
4 Collaborators 7.29% 6.29% 6.18% 5.73% 4.41%
5 Collaborators 6.07% 3.59% 0.36% 0.00% 0.00%
CallerREP [9] 10.28% 8.68% 8.07% 7.91% 7.75%
CallRank [7] 22.52% 20.48% 20.19% 18.86% 14.24%

8.1 True Positive Rate

We evaluated the performance of privy system for two fea-
tures: 1) systems performance over the time, and 2) effect of
the number of collaborators on the detection performance.
The detection rate of system depends on the number of
collaborators, the more the number of collaborators higher
would be the detection rate. Table 4 demonstrates the results
for both parameters. It is clear from the table 4 that privy
system out-performs the non-collaborative systems in terms
of detection rate and is able to block all spammers within
3 days much earlier than the non-collaborative systems.
Specifically, with the 5 collaborators, the system achieves
a TPR of more than 80% on the first day, and further reaches
to 99% TPR within 3 days, and 100% in 5 days. On the other
hand, we observed that standalone system [9] is able to
detect the spammers only if spammers target a large number
of recipients of the same network.

8.2 False Positive Rate

Although TPR is important feature for evaluating the per-
formance of any detection system, however, the detection
system requires to have a zero FPR. A high FPR would not
only irritate legitimate callers and callees but would also
result in a revenue loss for the TSP because of blocking
legitimate callers. The privy system achieves 0% FPR over
the time and outperforms the non-collaborative systems as
shown in table 5. Specifically, privy achieves FPR of 0% in 3
days much earlier than the non-collaborative system which
suffers from a high FPR even after 5 days. The FPR also
decreases with the number of collaborators and with the 5
collaborators, it achieves a FPR of 0%, thus allowing all non-
spammers to use the network. The FPR of non-collaborative
systems is not acceptable they have FP rate of more than 5%
even after 5 days.

8.3 Effect of Trust Weights

In Sections 8.1, 8.2, we provided TPR and FPR for the
condition when collaborating TSP are equally trusted i.e.
they are not supporting any spam campaign and honest
in providing the feedback. Further, TSPs shows different
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(a) True Positive Rate (b) False Positive Rate

Fig. 5: privy performance when trust weights are assigned
to collaborators.(a) Trust Positive Rate, and (b) False Positive
Rate. The number spammers have been set to 20%.

trust level on other TSPs. They assign high trust score to
the TSP they have the bilateral agreement and assign small
trust score to TSP that are not directly connected with them
and send spam calls. TSPs require that trust weights on
other TSP should be consider while computing aggregate
reputation of the user. Figures 5 show the TPR and FPR
of the privy when different weights are assigned to the
collaborating TSPs. In a setup, we assigned a fixed weight
of 0.1 to non-trusted TSP and 1 to the trusted TSP. The true
positive rate decreases with the number of non-trusted TSPs
as shown in a Figure 5. The more the number of non-trusted
TSPs the more the spammers passed through the network.
The privy system with consideration of trust weights would
manage to have 100% TPR in 7 days, which is very late than
the fully trusted environment. The FPR is 10% on the first
day but reduces to zero within three days.

9 PRACTICAL DEPLOYMENT AND LIMITATIONS

In real practice, a telecommunication service provider may
have multiple call-handling servers but logs users transac-
tion on a single billing or call record database. The privacy
preservation property of privy system could convince a TSP
to participate in the collaboration process, and convincing
only a small number of TSP’s for collaboration would
greatly minimize detection time and increase detection rate.
A TSP computes local feedback score of the user explicitly
using recorded logs or implicitly asking their customers
for the feedback about others. The challenge in deploy-
ing the privy is setting the aggregation time. We suggest
aggregation cycle to be one day because it would have
small overheads on TSP side. Smaller or larger aggregation
cycles are also possible but it would either increase the
computation time and the communication load, or delay
the detection process. For the detection, the TSP either can
accept the recommendation of collaborators for blocking the
user or uses recommendation along with the local behavior
of users to him in the white, black or under observation list.

The proposed privy system assumes that the collabo-
rating TSP would perform two activities: 1) publish keys
to the bulletin board, and 2) report encrypted feedback to
the bulletin board. A malicious TSP could distort opera-
tions of system by simply reporting public keys and then
withholding the feedback scores. However, the protocol

initiator knows that a particular TSP have not provided
the scores. This limitation can be overcome in two ways: 1)
imposing some penalty on the TSP not providing scores, and
2) disgracefully removing such TSP by removing his public
keys with the help of trusted setup. In the privy system,
whenever a new TSP wishes to join or leave the collabo-
ration system, the TSP needs to compute the restructured
key again. This makes our system more appropriate for the
conditions where the number of collaborators remains static
over the time. However, as a part of future work we intend
to solve this limitation.

10 CONCLUSION

We believe that convincing only a few TSPs for the col-
laboration by ensuring privacy of their customers would
greatly minimize the frauds and spams over the telecom-
munication networks. In this paper, we have described
the privacy preserving decentralized collaboration system
for the effective spam detection without incurring high
overheads and trusted third party. The privy system is
based on the concept of decentralization and homomorphic
cryptography that securely aggregates the feedback scores
provided by the collaborators without learning value of
the feedback. Our extensive evaluation and analysis shows
that privy not only improves the detection rate but also
has a small communication and computational overhead.
Further, privacy and security analysis shows that privy
strongly protects private information of collaborators and
their customers under malicious and honest but curious
models. The system is easily scalable to handle large number
of users. Finally, the system can also be applied in other
domains such as private reputation aggregation on the
on-line marketplaces, network intrusion detection, and the
fraud and spam detection over social networks with minor
modifications.
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