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Abstract—This paper discusses public-key authenticated key
agreement protocols. First, we critically analyze several authen-
ticated key agreement protocols and uncover various theoretical
and practical flaws. In particular, we present two new attacks
on the HMQV protocol, which is currently being standardized
by IEEE P1363. These attacks suggest the caution one should
take when interpreting theoretical results from a formal model.
We further point out that many of the protocol failures in
the past are caused by sidestepping an important engineering
principle, namely “Do not assume that a message you receive has
a particular form (such as gr for known r) unless you can check
this”. Constructions in the past generally resisted this principle on
the grounds of efficiency: checking the knowledge of the exponent
is commonly seen as too expensive. In a concrete example,
we demonstrate how to effectively integrate the zero-knowledge
proof primitive into the protocol design and meanwhile achieve
good efficiency. Our new key agreement protocol, YAK, has
comparable computational efficiency to the MQV and HMQV
protocols with clear advantages on security. Among all the related
techniques, our protocol appears to be the simplest so far. We
believe simplicity is also an important engineering principle.

I. INTRODUCTION

In a seminal paper in 1976, Diffie and Hellman started the
public key research era by presenting a remarkably simple key
agreement protocol based on the intractability of computing
discrete logarithm [1]. The protocol works as follows. Suppose
two users are Alice and Bob. Let p be a large prime, and α
a primitive root modulo p. The original scheme operates in
the whole cyclic group Z∗p . Alice chooses a random value
x ∈R [1, p− 1] and sends αx to Bob. Similarly, Bob chooses
y ∈R [1, p − 1] and sends αy to Alice. Finally, both parties
can compute a common key K = αxy .

Later, several changes are made to the original protocol to
improve security and efficiency. First, H(K) is used instead
of K as the session key where H is a one-way hash function.
This is to address the issue that some (least significant) bits
of K may be weaker than others [2]. The second change is
to move the key agreement operation from the whole group
Z∗p to a large subgroup of prime order q where q|p− 1. This
change is made to address the concern that an active attacker
may confine the value K to a small subgroup [24]. However,
as we will explain, this does not really solve the problem
because the protocol is unauthenticated per se. Finally, it is
increasingly popular to implement the Diffie-Hellman protocol
using the Elliptic Curve Cryptography (ECC) [10]. Using
ECC essentially replaces the underlying (multiplicative) cyclic

group with another (additive) cyclic group defined over some
elliptic curve. The essence of the protocol remains unchanged.

The acute problem with the Diffie-Hellman key agreement
is that it is unauthenticated [2]. While secure against passive
attackers, the protocol is inherently vulnerable to active attacks
such as the man-in-the-middle attack [6]. This is a serious
limitation, which since 1976 has been motivating researchers
to find a solution [3]–[5], [7], [9], [11], [13], [20].

To add authentication, we need to start with assuming
some shared secret. In general, there are two approaches.
The first one assumes Alice and Bob share a symmetric
secret: a memorable password. Research following this line
is commonly called Password Authenticated Key Exchange
(PAKE) [3]–[5]. The second approach assumes Alice and Bob
share some asymmetric secret: each party possesses a unique
private key and his public key is known by others. In the past
literature, protocols under this category are commonly called
Authenticated Key Exchange (AKE) [7], [9], [11], [13], [20].

In this paper, we focus on the second category. To better
differentiate it from the first category, we will call it Public
Key Authenticated Key Exchange (PK-AKE). In the following
section, we will review the state-of-the-art in this field.

II. PAST WORK

Before reviewing past techniques in detail, we start by
summarizing three general principles. These principles are
important because they can help explain most of the protocol
failures in the past.
• The sixth principle – Do not assume that a message you

receive has a particular form (such as gr for known r)
unless you can check this [22].

• The explicitness principle – Robust security is about
explicitness; one must be explicit about any properties
which can be used to attack a public key primitive, such
as multiplicative homomorphism, as well as the usual
security properties such as naming, typing, freshness, the
starting assumptions and what one is trying to achieve
[22].

• The extreme-adversary principle – Robust security is to
protect against an extremely powerful adversary, such that
the only powers he does not have are those that would
allow him to trivially break any PK-AKE protocol [13].

These principles are simple and intuitive. The first two are
time-honored guidance in designing robust cryptographic pro-
tocols, defined by Anderson and Needham back in 1995 [22].
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The third one is a theoretical principle that we summarize
from [13]. This principle is particularly important because it
provides the ultimate definition of the "security" of a protocol
[13]. In the following review, we will apply this extreme-
adversary principle to assess the actual robustness of key
exchange protocols.

There is one big family of PK-AKE protocols based on the
use of digital signatures [10]. The basic idea is to use a static
private key to digitally sign ephemeral public keys (together
with some auxiliary inputs such as identities), so that man-
in-the-middle attacks can be prevented. It was first described
by Diffie, Oorschot and Wiener in the design of the Station-
To-Station (STS) protocol [12]. Subsequent signature-based
protocols can be seen as variants of the STS protocol.

One well-known member in this family is the SIG-DH
protocol due to Canetti and Krawczyk [11]. This protocol is
notable for its provable security in a formal model, commonly
known as the Canetti-Krawczyk (CK) model. The CK model
defines a strong adversary who has the power to corrupt a
session and learn all session-specific transient secrets. The goal
is that a corrupted session must not impact the security of other
sessions.

The SIG-DH protocol is described in Figure 1. It operates
in a subgroup of Z∗p of prime order q. The g is a generator
(non-identity element) of the subgroup. The symbols Â, B̂
denote the user identities and ga, gb are the users’ respective
static public keys. The rest symbols are self-explanatory. More
details about the SIG-DH protocol can be found in [11].

The provable security of SIG-DH is however disputed by
LaMacchia et al [13]. The argument centers on the defini-
tion of the “session-specific transient secrets”. In [11], the
formal proofs only consider the session key and ephemeral
exponents as transient secrets. The SIG-DH protocol however
does not explicitly specify a digital signature scheme. In fact,
for common signature schemes, such as DSA, Schnorr or
ElGamal, the signing operation will introduce an additional
ephemeral secret (for randomization). If that randomization
secret is revealed in a corrupted session, then the static private
key will be disclosed. This will surely impact the security of
other sessions, thus invalidating the claim in [11]. The same
attack generally applies to signature-based PK-AKE protocols.

To address the above deficiency, LaMacchia et al proposed
an extended Canetti-Krawczyk (eCK) model [13]. The new
model assumes the attacker can learn all – instead of parts – of
the session specific secrets. Accordingly, the authors presented
a NAXOS protocol, and formally proved it secure under the
eCK model. Their protocol is shown in Figure 2.

The eCK model claims to be stronger than other formal
models such as the CK model [13]. However, this claim is
disputed by Cremers [15]. He compares the theoretical prop-
erties between the the CK and eCK models, and demonstrates
that a protocol proven secure in the eCK model may prove
insecure in the CK model and vice versa. In other words, the
two models are simply incompatible: neither one is stronger
than the other (also see [28]).

The problem in LaMacchia et al’s model is that the defini-
tion of “session specific secrets” is still ambiguous. Notice in
Figure 2, Alice uses H1(x, a) instead of x on the exponent –

a technique known as the “NAXOS trick” [28]. Similarly, Bob
uses H1(y, b) instead of y. The underlying assumption in the
NAXOS formal proofs is that the attacker has to steal both the
ephemeral secret x and the static private key a in order to learn
the exponent. This assumption plays a vital role in proving
security in the eCK model. However, one will naturally ask
whether H1(x, a) itself forms part of the “session specific
secrets”. Allowing a powerful attacker to learn one transient
secret x but denying him to learn another transient secret
H1(x, a) contradicts the extreme-adversary principle stated in
the NAXOS paper [13].

As stated in [13], there is a secondary reason for using
H1(x, a) instead of x in NAXOX. That is to address the
problem that “the random number generator of a party is
corrupted”. In that case, the ephemeral secret x will have low
entropy. Consequently, an attacker may be able to uncover x
say by exhaustive search. On the other hand, if the low-entropy
x is combined with a high-entropy private key a to form
H1(x, a), the exponent will have high entropy. As plausible
as this analysis may sound, it fails to consider the correlation
between the exponents. Figure 3 shows a replay attack if the
random number generator is corrupted. Assume in one past
session, Alice had transferred $1m to Charlie. Since x has
low entropy, with some non-negligible probability the same x
value may repeat in a future session. When that occurs, the
attacker simply replays the old values Y and M as in the past
session, to cause Alice to transfer money again.

This attack shows that hashing x together with a does not
really solve any problem. Even worse, it may provide a false
sense of security. In fact, if the end user’s random number
generator is corrupted, no PK-AKE protocols can guarantee
security under that setting. The NAXOS protocol is of course
no exception.

We now move on to study a different protocol: HMQV
(see Figure 4) [7]. The HMQV protocol is modified from
MQV [20] with the primary aim for provable security. The
modifications come in two flavors. First, HMQV uses a hash
function to derive d and e instead of a linear function as
defined in MQV. It also mandates the use of a hash function to
derive the session key. Second, HMQV provably drops some
mandated verification steps in MQV, including the verification
of the Proof of Possession (PoP) of the private key during the
CA registration and the prime-order validation check of the
ephemeral public key.

The changes in the second category are highly controversial
despite that they are backed up by a formal model and
full proofs [7]. Dropping the public key validations is the
direct cause of several attacks against HMQV [14], [17]. In
one example, Menezes and Ustaoglu demonstrated a small
subgroup confinement attack that could lead to the disclosure
of the user’s private key [14]. That attack assumes a corrupted
session where the attacker can learn the ephemeral exponent.
This assumption is allowed in the original adversarial model in
HMQV, hence the attack is valid. In the subsequent submission
to IEEE P1363 Working Group [8], Krawczyk revised the
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Alice ( Â, ga) Bob (B̂, gb)

1. x ∈R Zq Â, sid, gx
−−−−−−−−−−−−−−−−−−−−−−−−−→

2. Verify signature B̂, sid, gy, SIGB(B̂, sid, gy, gx, Â)
←−−−−−−−−−−−−−−−−−−−−−−−−−−

y ∈R Zq
3. Â, sid, SIGA(Â, sid, gx, gy, B̂)

−−−−−−−−−−−−−−−−−−−−−−−−−−→
Verify signature

Alice and Bob compute κ = H(gxy)

Figure 1. SIG-DH protocol. The session identifier sid is unique among all sessions owned by Â, the initiator.

Alice (Â, ga) Bob (B̂, gb)
1. x ∈R Zq X = gH1(x,a)

−−−−−−−−−−→
Verify X has prime order q

2. Verify Y has prime order q Y = gH1(y,b)

←−−−−−−−−−
y ∈R Zq

Alice and Bob compute κ = H2(ga·H1(y,b), gb·H1(x,a), gH1(y,b)·H1(x,a), Â, B̂)

Figure 2. NAXOS protocol. The H1 and H2 are two independent hash functions.

Alice (Â, ga) Attacker (pretend “Bob”)
1. x (repeat) X = gH1(x,a)

−−−−−−−−−−→
Detect same X as in the past

2. Verify Y has prime order q Y = gH1(y,b)

←−−−−−−−−−
Replay old Y

Pay Charlie $1m M = Eκ(“Transfer $1m to Charlie”)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Replay old M

Alice compute κ = H2(ga·H1(y,b), gb·H1(x,a), gH1(y,b)·H1(x,a), Â, B̂)

Figure 3. Replay attack on NAXOS protocol if x has low entropy

Alice (Â, ga) Bob (B̂, gb)
1. x ∈R Zq X = gx

−−−−−−→
Verify X 6= 0

2. Verify Y 6= 0 Y = gy
←−−−−−

y ∈R Zq
d = H̄(X, B̂), e = H̄(Y, Â)

Alice computes: κ = H((Y Be)x+da) = H(g(x+da)(y+eb))

Bob computes: κ = H((XAd)y+eb) = H(g(x+da)(y+eb))

Figure 4. HMQV protocol. H̄ and H are two independent hash functions.

HMQV protocol by adding the following check1: Alice verifies
the term Y Be has the correct prime order and Bob does the
same for XAd. This change prevents the attack reported in
[14], but decreases the claimed efficiency of HMQV. The
revised HMQV had been included into the IEEE P1363
standards draft (2009-06-30) [29].

However, the revised HMQV still has flaws. First, we
present a new “invalid public key attack” that exploits the lax
CA requirement in HMQV. In both the original and revised
versions of HMQV, CA is only required to check the submitted
public key is not 0. The attack works as follows. Assume Bob
(attacker) registers a small group element s ∈ Gw as the public
key where w|p − 1. Bob chooses an arbitrary value z ∈ Zq .
Let Y = gz · s′ where s′ is an element in the same small
subgroup Gw. Exhaustively, Bob tries every element s′ in Gw
such that Y Be = gz · s′ · se = gz . In other words, the small

1Actually, Krawczyk does not mandate this check in [8]. He specifies that
such a check is necessary to thwart a strong adversary and not necessary if the
adversary is less powerful. This is ambiguous. In this paper, we only analyze
the stronger (or more secure) version of the revised HMQV, in which the
additional check is in place.

subgroup elements s and s′ cancel each other out. Suppose
H̄ works like a random oracle as assumed in HMQV (see
Figure 4). Then, for each try of s′, the probability of finding
s′ · se = 1 is 1/w. It will be almost certain to find such s′

after searching all w elements in Gw (if not then change a
different z and repeat the procedure). Following the HMQV
protocol, Bob sends Y = gz · s′ to Alice. Alice checks Y Be

has the correct prime order and computes the session key
κ = H((Y Be)x+da) = H(gz·(x+da)). Because Bob knows
z, he can compute the same session key κ and successfully
authenticates himself to Alice. In fact, anyone can do the same
pre-computation as above and authenticate to Alice as “Bob”.

For any PK-AKE protocol, the basic goal of authentication
is to assure one party that the other party is the legitimate
holder of the supplied public key certificate – more technically,
someone who knows the private key [2]. However, in the
HMQV case, the private key does not even exist, but the
authentication is successful. This indicates a protocol design
error.

We now describe a different “wormhole attack” on HMQV.
This attack works when the two parties use the same certificate
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1. g
x
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y

5. Ek(“T
ransfer to me $1m”)

6. Ek(“Transfer to me $1m”)

2. gx

3. g y

wormhole

Alice 
(server)

Alice-1 
(attacker)

Alice-2 
(attacker)

Figure 5. Worm-hole attack on HMQV

for self-communication. Self-communication is considered a
useful application in [7]. For example, a mobile user and the
desktop computer may hold the same static private key (regis-
tering two public key certificates costs more). Krawczyk for-
mally proved that self-communication is “secure” in HMQV
[7]. However, the formal model in [7] only considers the user
talking to one copy of self, but neglects the possibility that
the user may talk to multiple copies of self at the same time.

The following attack works similar to a typical “wormhole
attack” in wireless networks where the attacker replicates the
identity from one place to another through a wormhole tunnel
[6]. Figure 5 illustrates the steps of the attack:

1) Alice initiates the connection to a copy of herself by
sending gx. The connection is intercepted by Mallory
who pretends to be Alice-1.

2) Mallory starts a separate session by pretending to be
Alice-2. He initiates the connection by sending to Alice
gx (this is possible because HMQV does not require the
sender to know the exponent).

3) Alice responds to Alice-2 by sending gy .
4) Mallory replays gy to Alice as Alice-1.
5) Alice derives a session key and sends an encrypted

message to Alice-1, say: “Transfer to me $1m”.
6) Mallory replays the encrypted message to Alice. (After

receiving money from Alice, Mallory disconnects both
connections.)

In the above attack, we only demonstrated the attack against
the two-pass HMQV (implicit authentication). For the three-
pass HMQV (explicit authentication), the attack works exactly
the same. Also, we have omitted the identities in the message
flows, because they are all identical (see [7]).

This attack is essentially an unknown key sharing attack.
Alice thinks she is communicating to a mobile user with the
same certificate, but she is actually communicating to herself.
The attacker does not hold the private key, but he manages to
establish two fully authenticated channels with Alice (server).
In a different attacking scenario, if Alice sends an encrypted
command “shutdown” to its mobile user in step 5, the same
command may be replayed back to Alice to shutdown the
system. This shows such an attack can be dangerous. The
same attack also applies to other PK-AKE schemes, including
NAXOS [13], KEA+ [9], CMQV [18], MQV [20], and SIG-
DH [11] etc.

III. THE YAK PROTOCOL

In this section, we explore a new approach to construct
the PK-AKE protocol. So far, almost all of the past PK-
AKE protocols [7], [9], [11], [13], [18] have sidestepped the
sixth robustness principle that we explained in Section II. The
reason has mainly been for the concern on efficiency: verifying
the knowledge on the exponent is considered too expensive
[7], [11]. In the following sections, we will demonstrate how
to effectively integrate the zero-knowledge primitive into the
protocol design and meanwhile achieve good efficiency.

Our new PK-AKE protocol is called YAK2. For simplicity,
we describe it in the DSA-like cyclic group setting [2], [10]
(the protocol works basically the same in the ECDSA-like
setting where an additive cyclic group over some elliptic curve
is used). Let G denote a subgroup of Z∗p with prime order q
in which the Computational Diffie-Hellman problem (CDH) is
intractable. Let g be a generator in G (any non-identity element
in G can be used as a generator). The two communicating
parties, Alice and Bob, both agree on (G, g).

A. stage 1: public key registration

In stage 1, Alice and Bob obtain an authentic copy of
each other’s static public key. A trivial method is that the
two meet in person and exchange public keys. However, this
is not scalable. Hence, a Public Key Infrastructure (PKI)
is normally needed to distribute authentic public keys: a
Certificate Authority (CA) certifies users’ public keys and
publishes the certificates that anyone can access.

CA Registration: Alice selects a random secret a ∈R Zq
as her private key and sends to the CA ga with a knowledge
proof for a. Similarly, Bob selects b ∈R Zq as his private key
and sends to the CA gb with a knowledge proof for b.

The CA needs, among several things, to verify the appli-
cant’s identity (Distinguished Name) and check the knowledge
proof to ensure the Proof of Possession (PoP) of the private
key. The PoP check is a mandatory requirement for the CA
in PKI standards such as PKCS#10 (see [19]). In practice, the
CA may delegate the responsibility of verifying the person’s
identity to a Registration Authority (RA). The user is normally
required to visit the RA in person with a passport or ID card
to prove his real identity.

During the registration, the applicant needs to demonstrate
the Proof of Possession (PoP) of the private key. There are
several ways to do this. One way is to use Zero Knowledge
Proof, which is a well-established primitive in cryptography
[10]. This technique allows the applicant to prove the knowl-
edge of the exponent without leaking it.

As an example, we can use Schnorr’s signature, which
is one of the most well-known non-interactive Zero Knowl-
edge Proof techniques. Let H be a publicly-known secure
hash function. To prove the knowledge of the exponent for
X = gx, one sends {SignerID, OtherInfo, V = gv , r =
v − x · h} where SignerID is the unique user identifier (also
called Distinguished Name [2]), OtherInfo includes auxiliary

2The yak lives in the Tibetan Plateau where environmental conditions are
extremely adverse.
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information to indicate this is a request for certifying a
static public key and may include other practical information
such as the name of the algorithm etc3, v ∈R Zq and
h = H(g, V,X,SignerID,OtherInfo). The receiver checks
that X lies in the subgroup of prime order q and verifies
that V = grXh (computing grXh requires roughly one
exponentiation using the simultaneous computation technique
[10]). We will assess the cost in more detail in Section VI.

B. stage 2: key agreement

Alice and Bob execute the following protocol to establish a
session key. For simplicity of discussion, we explain the case
that Alice and Bob have different certificates (a 6= b) and will
cover self-communication later.

YAK protocol: Alice selects x ∈R Zq and sends out gx

with a knowledge proof for x. Similarly, Bob selects y ∈ Zq
and sends out gy with a knowledge proof for y.

When this round finishes, Alice and Bob verify the re-
ceived knowledge proof to ensure the other party possesses
the ephemeral private key. As explained earlier, we can use
Schnorr’s signature to realize the knowledge proof. Both
parties also need to ensure the identity (i.e., SignerID) in
the knowledge proof must match4 the one in the public key
certificate.

Upon successful verification, Alice computes a session key
κ = H((gy · gb)x+a) = H(g(x+a)(y+b)). And Bob computes
the same key: κ = H((gx · ga)y+b) = H(g(x+a)(y+b)). The
protocol has the same round efficiency and symmetric property
as the original Diffie-Hellman protocol [1]. Figure 6 shows
how to implement the protocol in two passes, as one party
usually needs to initiate the connection.

The two-pass YAK protocol can serve as a drop-in re-
placement for face-to-face key exchange. This is equivalent
to Alice and Bob meeting in person and secretly agreeing a
common session key. After Alice and Bob depart, they can
use the session key to secure the communication. So far, the
authentication is implicit: Alice believes only Bob has the
same key and vice versa. In some applications, Alice and
Bob may want to perform an explicit key confirmation before
starting any communication just to make sure the other party
actually holds the same session key.

The method for explicit key confirmation is generally ap-
plicable to all key exchange protocols. Often, it is considered
desirable to use a different key from the session key κ for
key confirmation5, say use κ′ = H(K, 1). We summarize a

3This is similar to the existing practice in OpenSSL that generates a
Certificate Signing Request (CSR) for a new DSA key pair. The DSA private
key is used to sign the entire request. Verifying the signature is equivalent
to verifying the PoP of the private key. Here, we prefer Schnorr’s signature,
because it is simpler and has well-understood security proofs.

4By “match”, we mean the identity is identical to the one on the X.509
certificate, or the two have an unambiguous one-to-one mapping relationship.
The latter is useful to provide anonymity in key agreement: both parties use
pseudo-identities to prove the possession of the ephemeral exponents and they
know how to match the pseudo-identities to real ones at the two ends.

5Using a different key for key confirmation has a (subtle) theoretical advan-
tage that after the key confirmation, the session key is still indistinguishable
from random. However, this trick has limited practical significance and is not
used in for example [3], [4].

few methods here. A simple method is to use a hash function
as presented in [3]: Alice sends H(H(κ′)) to Bob and Bob
replies with H(κ′). Another straightforward way is to use κ′

to encrypt a known value (or random challenge) as explained
in [2]. Other approaches make use of MAC functions as
suggested in [7], [9]. Given that the underlying functions are
secure, these methods do not differ significantly in security.

IV. SECURITY ANALYSIS

In this section, we analyze the security of the YAK protocol
with rigorous security proofs. Many PK-AKE papers in the
past generally adopted the following steps to prove security
of a protocol [14].

1) Security model – To specify the capabilities of an
adversary and how it interacts with honest parties.

2) Security definition – To describe the goals of the adver-
sary.

3) Security proofs – To prove that breaking the protocol
would imply solving some computational problem that
is widely believed to be intractable.

However, the practical results have been less than being
satisfactory. An outstanding problem lies in how to define a
“right” security model in the first place. A right model should
specify a full set of the attacker’s capabilities, hence covering
attacking scenarios comprehensively. Although many formal
models have been proposed in the PK-AKE field, it is far
from clear which exact model is the “right” model [14], [15].

All the existing security models (such as CK, eCK, HMQV
etc models) aim to model an adversary in terms of what he
is capable of. This methodology evolves progressively over
the past two decades by adding more power to the attacker.
Still, the resultant models only cover a subset of the attacker’s
capabilities. In consequence, several protocols that have been
proven secure in a formal model turn out to be vulnerable to
some attacks [14]. In addition, different models are sometimes
found incompatible: a protocol proven secure in one model
may prove to be insecure in another model and vice versa
(see [15]).

Clearly, there is a gap between theory and practice in the
specification of a formal model. Bridging the gap has become
an active research topic in recent years [15].

In this section, we will attempt a new approach – instead
of defining what the attacker is capable of, we focus on what
the attacker is not capable of. The intuitive idea is to give the
fewest possible restrictions on what an attacker is able to do
(this idea was originally from LaMacchia et al in [13]). As
we will demonstrate, this new approach allows capturing the
crux of the extreme-adversary principle more directly.

First, we need to define what are the “session specific
secrets” in YAK. Simply put, they include all transient secrets
in a session. More specifically, the session specific secrets – for
Alice – include the ephemeral exponent x and the raw session
key K. This definition has covered the randomization factor v
in Schnorr’s signature since one can easily compute v from x
and r (the r is part of Schnorr’s signature). It has also covered
the session key κ, which can be computed from H(K). If the
attacker is powerful enough to access Alice’s session state,



6

Alice (Â,ga) Bob (B̂, gb)
1. x ∈R Zq gx,KP{x}

−−−−−−−−→
Verify KP{x}

2. Verify KP{y} gy,KP{y}
←−−−−−−−−

y ∈R Zq
Compute κ = H(g(x+a)(y+b)) κ = H(g(x+a)(y+b))

Figure 6. YAK protocol

we assume he can learn all of the transient secrets including
x and K.

In summary, a powerful attacker is able to learn all transient
secrets in a session, but he cannot learn the user’s private key.
Learning the private key would allow the attacker to trivially
break any PK-AKE protocol.

First, we formulate the following requirements for the PK-
AKE protocol.

1) Private key security: An attacker cannot learn the user’s
static private key even if he is able to reveal all session
specific secrets in any session.

2) Full forward secrecy: Session keys that were securely
established in the past uncorrupted sessions will remain
secure in the future even when both users’ static private
keys are disclosed.

3) Session key security: An attacker cannot compute the
session key if he impersonates a user but has no access
to the user’s private key.

These requirements summarize essential security properties
of a PK-AKE protocol. They even cover those that are missing
in the existing formal model definitions. The first requirement
is generally not covered by a formal model, but we think it
is crucially important. For example, both the SIG-DH [11]
and (original) HMQV [7] protocols have been formally proven
secure in the CK model. Yet attacks reported in [13] and [14]
show that in both protocols, an attacker is able to disclose the
user’s private key. In the second requirement6, we use “full”
to distinguish it from the “half” forward secrecy, which only
allows one user’s private key to be revealed (e.g., KEA+ [9]).
In the past literature it is common to add “perfect” before
“forward secrecy” [7], [9], [11]. However, we drop “perfect”
here because it has no concrete meaning [10], [20]. The third
requirement concerns both the secrecy and authenticity of
the session key. It has already covered the Key Compromise
Impersonation (KCI) attack [20]. The “invalid public key”
attack in Section II indicates that HMQV does not satisfy this
property.

The strategy of our design is to make the best use of well-
established techniques such as Schnorr’s signature. This allows
us to leverage upon the provable results of Schnorr’s signature
(see [10], [27]), and thus greatly simplify the security analysis.

First, Let us discuss the private key security. Without loss
of generality we assume Alice is honest. Unless mentioned
otherwise, this assumption will be made throughout the rest
of the analysis. As shown in Figure 7 (1), Mallory totally
controls Bob’s static and ephemeral private keys; additionally,
he has the extreme power that allows him to learn Alice’s

6It is essentially the same as the weak Perfect Forward Secrecy (wPFS)
defined in [7].

transient secrets in an arbitrary session. The only power that
he does not have is the access to Alice’s private key.

Theorem 1 (Private Key Security): An attacker can not
learn Alice’s static private key even if he is able to learn all
transient secrets in any of Alice’s sessions.
proof. As shown in Figure 7 (1), an extremely powerful
attacker completely corrupted Bob and has access to all of
the transient secrets in Alice’s session. The knowledge proofs7

defined in the YAK protocol prove that the attacker knows the
values of y and b (i.e., these variables are not correlated with
a). He also knows Alice’s public key ga. By revealing Alice’s
transient secrets in a session, he learns x and the raw session
key K = g(a+x)(b+y). But learning K does not give Mallory
any information, because he can compute it by himself from
{x, y, b, ga}. Since Mallory knows the values of {x, y, b, ga},
he can effectively simulate the same session all by himself
by defining arbitrary values of x, y, b. Clearly, he does not
learn any information about Alice’s private key from his own
simulations.

Intuitively, the above proof assumes an attacker simulating a
list of transcripts that include arbitrary values of {x, y, b}. By
corrupting any of Alice’s sessions, the attacker learns nothing
more than what he can possibly simulate.

On the other hand, the same simulation does not work in
NAXOS and HMQV. Take NAXOS as an example. Assume
Bob (the attacker) sends to Alice ga. By accessing Alice’s
transient items within the key derivation function, Bob learns
ga·a. Bob cannot simulate the session because he cannot
compute ga·a by himself. In another session, Bob can send
to Alice ga

2

and then learn ga
3

. Similarly, he can learn
ga

4

, ga
5

. . .. In other words, every corrupted session gives the
attacker new information that he cannot learn by simulation.
The same argument applies to HMQV.

The use of the knowledge proofs greatly simplifies the
analysis. Without the knowledge proofs, the simulation in
our proof will not work. We illustrate this with an example.
Assume there were no knowledge proof (i.e., no PoP check)
during the CA registration. Mallory can choose a small sub-
group element, e.g., s ∈ Gw where w|p− 1. He then registers
s/gy as his static public key. During the key agreement, Alice
will compute K = (s/gy × gy)x+a = sx+a. If Mallory
can also reveal Alice’s ephemeral secret x, he can compute
amodw. This is the same kind of the small subgroup attack
as reported against HMQV [14]. Note that in this case, the
simulation in the proof no longer works: Mallory does not
know the private key b; in fact, the value b does not even exist

7If Schnorr’s signature is used to realize the knowledge proof, we need to
add a random oracle assumption (i.e., a secure one-way hash function), as
Schnorr’s signature is provably secure in the random oracle model.



7

Figure 7. The oracle diagrams for the attacker. Alice is honest.

because the registered public key is a small subgroup element.
This example shows the importance of the sixth robustness
principle: “Do not assume the message you receive has a
particular form (such as gr for known r) unless you can check
this” [22].

Next, we discuss the full forward secrecy requirement.
In the definition, we specify that the past sessions must be
“uncorrupted”8, namely the session-specific transient secrets
must remain unknown to the attacker. In YAK, this means x,
y and K must remain unknown to the attacker. Obviously,
knowing K would have trivially broken the past session.
Also, if Mallory can learn any ephemeral exponent x or
y in the past session in addition to knowing both parties’
static private keys (see Figure 7 (2)), he has possessed the
power to trivially compromise any PK-AKE. This contradicts
the extreme-adversary principle. Therefore, in the following
analysis, we assume the attacker knows both Alice and Bob’s
private keys, but not any transient secrets in the past session.

Theorem 2 (Full Forward Secrecy): Under the Computa-
tional Diffie-Hellman (CDH) assumption, an attacker who
knows both parties’ static private keys but not transient secrets
in the past session cannot compute K.
proof. To obtain a contradiction, we assume the attacker can
compute K = g(a+x)(b+y). The attacker knows the values of
a, b (see Figure 7 (2)). The ephemeral public keys gx and gy

are public information. Therefore, he can compute gab, gay

and gbx. Now, we can solve the CDH problem as follows:
given gx and gy where x, y ∈R Zq , we use the attacker as an
oracle to compute gxy = K/(gab · gay · gbx). This, however,
contradicts the CDH assumption.

The above proof shows that the the raw key material K is
incomputable to the attacker. In practice, it is not appropriate to
directly use the raw K as a session key. A common approach
is to apply a key derivation function such as a hash function
to produce a key of the desired length, so the session key is
κ = H(K). This key derivation works exactly the same as in

8Krawczyk defines a weak Perfect Forward Secrecy (wPFS) and a strong
Perfect Forward Secrecy (sPFS) [7]. We observe that both definitions are based
on essentially the same assumption: the past sessions were uncorrupted. The
only difference is that the latter requires explicit assurance while in the former
definition the assurance is implicit. As shown in [7], any two-pass PK-AKE
protocol that fulfills wPFS also trivially satisfies sPFS by adding an explicit
key confirmation.

the original Diffie-Hellman protocol [2].
Finally, we study the session key security requirement. As

shown in Figure 7 (3), Mallory does not hold Bob’s private
key but he tries to impersonate Bob. We assume the powerful
Mallory even knows Alice’s private key a. The only power he
does not have is the access to Alice and Bob’s session states.
If Mallory can access Alice’s session state, he can impersonate
anyone to Alice – he just needs to “steal” the session key that
Alice computes in the transient memory. Similarly, if Mallory
can access Bob’s session state, he can impersonate Bob to
anybody by waiting until Bob computes the session key and
then stealing it.

Note in this case, the assumed attacker is less powerful
than the one described in Theorem 1. Previously, the attacker
was able to corrupt an arbitrary session of Alice’s or Bob’s.
He however had learned no useful information than what he
can simulate (see Theorem 1). On discussing the session key
security, we assume the attacker no longer has access to either
user’s session state. This change is necessary, and is consistent
with the extreme-adversary principle.

Theorem 3 (Session Key Security): Under the Computa-
tional Diffie-Hellman (CDH) assumption, an attacker who
impersonates Bob but does not have access to Bob’s static
private key can not compute K.
proof. The attacker does not possess Bob’s static private key,
or have access to either Alice or Bob’s session state. To
obtain a contradiction, we assume Mallory is able to compute
K = g(a+x)(b+y). Bob’s public key gb is public information.
Mallory knows Alice’s private key a. The knowledge proof in
the protocol proves that Mallory also knows the value y (see
Figure 7 (3)). Hence, he can compute gab, gay and gxy . Now,
we can solve the CDH problem as follows: given gb and gx

where x, b ∈R Zq , we use Mallory as an oracle to compute
gbx = K/(gab ·gay ·gxy). This, however, contradicts the CDH
assumption.

Again, the knowledge proofs are essential in the above
proof. We use an example to illustrate this. Let us assume
there were no knowledge proof required for the ephemeral
public key. Now, Mallory can send Y ′ = g−b to Alice and
successfully force the session key to be κ = H(1). The
removal of the knowledge proof gives the attacker unrestricted
freedom to fabricate a message of any form. Note validating
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the order of Y ′ does not prevent the attack, because Y ′ has
the correct prime order. Somehow, this example highlights the
limitation of the prime-order validation: it only checks whether
the message is within the designated group, but fails to check
whether it is correlated with other elements in the same group.
Using the knowledge proof restricts the attacker’s freedom
much more stringently, and defeats this attack.

V. SELF-COMMUNICATION

The user identity is an important parameter in the protocol
definition. In the past literature, almost all PK-AKE protocols
readily use the Distinguished Name (DN) in the user’s X.509
certificate as the user identity. Unfortunately, the practice of
conveniently using DN for the identity carries over to the
self-communication mode [7], which caused the “worm-hole”
attack in Section II. Self-communication is a special case and
should be handled differently.

To enable self-communication in YAK, we need to ensure
the SignerID in the Schnorr’s signature remains unique. This is
to prevent Bob from replaying Alice’s signature back to Alice
and vice versa. One solution is to simply attach an additional
identifier to the mobile stations using the same certificate. For
example, when Alice (server) is communicating to the nth
copy of herself (mobile station), Alice uses “Alice” as her
SignerID to generate the Schnorr’s signature and the nth copy
uses “Alice-n” as its SignerID. Thus, Alice-n cannot replay
Alice’s signature back to Alice and vice versa. This solution
is also generically applicable to fix the self-communication
problem in past protocols [7], [9], [11], [13], [20].

Though self-communication is considered a useful feature
[7], one should be careful to enable this feature only when
it is really needed. This is because, when enabled, it will
have negative impact on the theoretical security. In Section
IV, we have explained that, under normal operations (using
different certificates), an attacker cannot learn ga·a in any
case. However, if self-communication is enabled in YAK, we
essentially allow a = b, hence the attacker can learn ga·a from
a corrupted session. This implies we would need a stronger
assumption than CDH to prove the “session key security”.
This is undesirable, but to our best knowledge, no PK-AKE
protocol is reducible to the CDH assumption with the self-
communication enabled. In comparison, in NAXOS [13] and
HMQV [7], the attacker can learn ga·a from a corrupted
session regardless whether the self-communication is enabled
(and furthermore he can learn ga

3

, ga
4

, . . .) .

VI. COMPARISON

In this section, we compare YAK with past work. First of
all, we briefly explain why attacks that we described on past
PK-AKE schemes are not applicable to YAK. YAK follows a
completely different design from SIG-DH, and is not part of
the signature-based PK-AKE family. By design, it prevents the
disclosure of session-specific transient secrets from compro-
mising the long-term private key (see Theorem 1). In addition,
YAK is free from the two new attacks on HMQV. It resists the
invalid public key attack as it requires the Proof of Possession
of the private key during the CA registration (following the

PKI standards). As explained earlier, it thwarts the worm-hole
attack, because it explicitly requires the uniqueness of the user
identity even in the self-communication mode.

The resistance of YAK against all these attacks is largely
attributed to the use of the Zero Knowledge Proof primitive.
Actually, the importance of the ZKP in security protocols has
been known for over twenty years, why it has not been com-
monly applied in key exchange protocols? Many researchers
worry that ZKP is too computationally expensive and using it
in key exchange will make the protocol too inefficient. But,
we argue this worry is not justified, and we believe there is
no fundamental conflict between the protocol robustness and
efficiency. In the following sections, we will further illustrate
this point by comparing YAK with other schemes in detail in
terms of security and efficiency.

There are many PK-AKE protocols in the past literature.
However, we can only select a few; they include SIG-DH [11],
HMQV [7], MQV [20] and NAXOS [13]. These techniques
are representative for a comparative analysis. MQV has be
widely standardized and applied in practical applications. The
rest are all well-known PK-AKE schemes with formal proofs
under different formal models. Among them, HMQV is known
as the “most efficient” [7] and NAXOS as the “most secure”
[13]. Other PK-AKE schemes can be seen as variants of these
four.

Table I summarizes the comparison results. The cost is
evaluated by counting the number of exponentiations in a
DSA-like group setting or the number of multiplications in an
ECDSA-like group setting. In the former case, it takes a full
exponentiation to validate the prime order of a group element
while in latter, this operation is essentially free. This explains
the difference of one operation between the second and third
columns in Table I.

We also compare the symmetry property of the protocols.
The YAK protocol is completely symmetric. The symmetry
of a protocol is not any compulsory requirement, but it can
significantly simplify the protocol analysis. For example, the
proof that Alice’s session key is secure must apply to Bob
based on symmetry; this reduces the required proofs by half.

The SIG-DH protocol was described in [11] and formally
proven secure in the Canetti-Krawczyk (CK) model. However,
the paper does not explicitly specify a signature algorithm.
This makes it difficult to assert the exact cost and security as-
sumptions because they depend on the choice of the signature
algorithm. The attack presented in [13] indicates SIG-DH does
not fulfill the private key security requirement. Consequently,
it does not satisfy the session key security requirement (since
the private key security cannot be assured in the first place).
Another limitation with SIG-DH is that if the user’s digital
signature is captured, his real identity will be revealed.

The HMQV protocol is due to Krawczyk [7]. The pro-
tocol is revised in [8] to address the Menezes-Ustaoglu’s
small subgroup attack by adding a prime-order validation
step (otherwise, the protocol will fail the private key security
requirement). This revision makes the total number of expo-
nentiations be 3.5. The HMQV only requires the CA to check
the submitted public key is not zero. However, as shown in
[15], if the attacker is allowed to register “1” as his public
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Exp Mul assum- CA Pri-key Ses-key FFS Self Allow Symmetry
DL EC ptions chk sec sec com anonym

SIG-DH – – – PoP × × X × × ×
HMQV 3.5 2.5 GDH, RO not 0, 1 X × X × X X
MQV 3.5 2.5 N/A PoP X X X × X ×

NAXOS 5 (+1) 4 GDH, RO not 0 X X X × X ×
YAK 5 4 CDH, RO PoP X X X X X X

Table I
COMPARISON BETWEEN PK-AKE SCHEMES.

key, he can launch an unknown key-sharing attack against the
one-pass version of the HMQV protocol. So we add the check
that the public key is not “1” either. We need to caution that
even so, it is still not sufficient to prevent an unknown key-
sharing attack against the HMQV in the post model where
the responder’s identity is not pre-defined [17]. The “invalid
public key” attack shown in Section II indicates HMQV does
not fulfill the session key security requirement.

The MQV protocol was first designed by Menezes, Qu and
Vanstone [20]. The original MQV design includes the user
identities only in the explicit key confirmation stage. Thus,
the key confirmation not only serves to confirm the equality
of the session key, but also to confirm the identities of the
users who are engaged in the key agreement. This arrangement
has the drawback that a secure MQV would require 3 passes.
As shown by Kaliski, without key confirmation, the 2-pass
MQV is subject to an unknown key sharing attack [26].
In [14], Menezes revised the MQV protocol by including
the user identities into the key derivation function (similar
to HMQV). This change prevents the Kaliski’s attack and
improves the round efficiency as the 2-pass MQV can now
provide implicit authentication. Unfortunately, this change also
breaks the symmetry in the original design. Strictly speaking,
the modified MQV protocol is no longer one-round (due to
the need to determine the order of the two identities in the
key derivation function [14]).

The NAXOS protocol is formally proven secure in the
extended Canetti-Krawczyk model (eCK) model [13]. The
eCK claims to be the “strongest” formal model, but this claim
is disputed in [15]. In Section II, we also pointed out a subtle
flaw in the definition of the “session specific transient secrets”
in the NAXOS security proofs. The NAXOS protocol requires
5 exponentiations (see Figure 2). Same as in HMQV, the
protocol allows the CA to certify any non-zero binary strings
as public keys. However, NAXOS requires users to verify the
other party’s certified public key must lie in the correct prime-
order group before key agreement. This requires one extra
exponentiation, which is not counted in the NAXOS paper.
Hence, we add this extra cost (in the braces) in the table.

On the security side, which is our primary concern, the
YAK protocol has clear advantages. The security of the pro-
tocol (using two different certificates) rests on the Computa-
tional Diffie-Hellman (CDH) assumption in the random oracle
model. In comparison, the original Diffie-Hellman protocol
depends on the same CDH assumption. The random oracle is
needed since our protocol depends on the Schnorr’s signature.
The formal proofs of NAXOS and HMQV depend on a less
common Gap Diffie-Hellman (GDH) assumption. The GDH

assumes the attacker is unable to solve the CDH problem even
when he has access to a Decision Diffie Hellman oracle [7],
[13]. Clearly, it is a stronger assumption than CDH.

Finally, we study the efficiency of the protocol. In YAK,
Alice needs to perform the following exponentiations: one to
compute an ephemeral public key (i.e., gx), one to compute
the knowledge proof for x (i.e., gvx ), two to verify the
knowledge proof for y (i.e., Y q and gryY hy ) and finally one
to compute the session key (Y · B)x+a. Thus, that is five in
total: {gx, gvx , Y q, gryY hy , (Y ·B)x+a}.

Among these operations, some are merely repetitions. To
explain this, let the bit length of the exponent be L =
log2 q. Then, computing gx alone would require roughly 1.5L
multiplications which include L square operations and 0.5L
multiplications of the square terms. However, the same square
operations need not be repeated for other items with the com-
mon base. If we factor this in, it will take (1+0.5×3)L = 2.5L
to compute {gx, gvx , gry}, and another (1+0.5×2)L = 2L to
compute {Y q, Y hy} and finally 1.5L to compute (Y ·B)x+a.
Hence, that is in total 6L, which is equivalent to 6L/1.5L = 4
usual exponentiations. This is quite comparable to the 3.5
exponentiations in MQV (which cannot reuse the square terms
since the bases are all different).

VII. CONCLUSION

This paper presents a comprehensive investigation on the
subject of the key exchange protocols and is organized in
two parts. In the first part, several key exchange protocols are
critically analyzed. The analysis reveals a number of practical
flaws in the design as well as theoretical deficiencies in the for-
mal model. Two new attacks on the HMQV protocol are also
reported; both attacks indicate the basic authentication failure
in the protocol despite that HMQV has been “formally proven
secure”. The reported attacks are caused by sidestepping a
prudent engineering principle, namely the sixth principle. In
the second part, a new authenticated key agreement protocol,
called YAK, is presented. The new protocol follows the sixth
principle and is built on well-established cryptographic primi-
tives such as Schnorr signature. It robustly resists all currently
known attacks, meanwhile achieving comparable efficiency to
the MQV and HMQV protocols.
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