
Background Problem Our proposal Conclusion

On the Trust of Trusted Computing in the
Post-Snowden Age

Feng Hao

School of Computing Science

Newcastle University, UK

Workshop on Analysis of Security APIs
13 July, 2015



Background Problem Our proposal Conclusion

Acknowledgment

Based (partly) on the following paper
Feng Hao, Dylan Clarke, Avelino Zorzo, “Deleting Secret Data
with Public Verifiability,” accepted by IEEE Transactions on
Dependable and Secure Computing, 2015, in press.



Background Problem Our proposal Conclusion

Trusted Computing

A broad term to refer to hardware-based security solutions
Mainly driven by IT companies

1999, started by Trusted Computing Platform Alliance
(Compaq, HP, IBM, Intel and Microsoft)
2003, succeeded by Trusted Computing Group (AMD, HP,
IBM, Intel, Microsoft, etc)

Initial focus on PCs
Now increasing emphasis on mobile devices



Background Problem Our proposal Conclusion

The Difference Between Being ’Trusted’ and ’Trustworthy’

“Rupert Murdoch ... referred consistently to his pride in
the Sun as ‘a trusted news source.’ Trusted is the word
he used, not trustworthy. We know the Sun is not
trustworthy and so does he. He uses the word ‘trusted’
deliberately. Hitler was trusted, it transpired he was
not trustworthy. He also said of ...”

– Russell Brand, in the Guardian, on Murdoch, the Sun, and the
miserable state of the news industry



Background Problem Our proposal Conclusion

Different terminologies

Microsoft renamed “Trusted Computing” to “Trustworthy
Computing” (TC)
But IBM and Intel stick to “Trusted Computing” (TC)
Free Software Foundation calls “Treacherous Computing” (TC)
In the end, the term “Trusted Computing” sinks in and is
widely used



Background Problem Our proposal Conclusion

Controversies around Trusted Computing

Many arguments against TC
Users lose control on privacy
Customer lock-in
Hinder free and open source software movement

Like any other technology, TC can be used for good and bad
In this talk, we focus only on technical aspects of TC



Background Problem Our proposal Conclusion

Essence of Trusted Computing

Tamper-resistance
Tamper-resistant hardware with embedded CPU, secure
memory

Secure key storage
Secret keys always kept inside secure memory

Key management
Via a set of APIs (most difficult part in the design)



Background Problem Our proposal Conclusion

Embodiments of Trusted Computing

Trusted Computing Base (TCB), Trusted Platform Module
(TPM), Hardware Security Module (HSM), Smart Card
(contact/contactless, USB), Secure Element



Background Problem Our proposal Conclusion

A simple API example

Encryption
Host !TPM: m
TPM !Host: c = Ek(m)

Decryption
Host !TPM: c = Ek(m)
TPM !Host: m



Background Problem Our proposal Conclusion

How to ensure if the implementation is correct?

The industrial practice
Unit testing
Test vectors

The intuitive reasoning
If decryption always correctly recovers the original plaintext,
the implementation should be correct.

We argue this is not sufficient in face of state-funded
adversaries.



Background Problem Our proposal Conclusion

A trapdoor attack

TPM compresses the message before encryption, and adds a
trapdoor block to make equal length

Trapdoor block is the decryption key wrapped under a
trapdoor key

Assume encryption schemes are semantically secure
Ciphertext is indistinguishable from random
The attack is undetectable



Background Problem Our proposal Conclusion

Why would any TPM manufacturer do that?

Incentive
Manufacturers appears to have no incentive to compromise
security of their own products
But a state-funded adversary may have the incentive to
coerce/bribe manufacturers to do that

Revelations from Snowden
NSA has been trying to insert trapdoors to security products
Actually, any state-funded adversary would do just the same



Background Problem Our proposal Conclusion

Trapdoor in Trusted Computing - truth or rumor?

How can you possibly tell?
No access to internal software thanks to tamper resistance



Background Problem Our proposal Conclusion

Learning from the history

Similar trust crisis on electronic voting
DRE records votes and announces the winner
Voters have to trust the outcome, but can’t verify
Public outcry as no way to check internal software

Solution: trust-but-verify
“Software Independence” (Ron Rivest, John Wack)
Verify the integrity of voting software by checking its output,
not its source code
Underpinning 20 years research on verifiable e-voting



Background Problem Our proposal Conclusion

Our proposal: apply Trust-but-Verify to redesign TC API

In the post-Snowden age
The threat of state-funded adversary cannot be ignored

Apply “trust-but-verify” principle
Many existing APIs need to be re-designed



Background Problem Our proposal Conclusion

An example: data encryption

Suppose we build TPM-based disk encryption
Using Diffie-Hellman Integrated Encryption Scheme (DHIES)

DHIES
Abdalla, Bellare and Rogaway (CT-RSA, 2001)
Included in standards of ANSI X9.63, IEEE P1363a and SECG



Background Problem Our proposal Conclusion

Overview of DHIES



Background Problem Our proposal Conclusion

System architecture

API calls
Key Generation
Encryption
Decryption

Other APIs omitted (e.g., authentication, key revocation)



Background Problem Our proposal Conclusion

Key Generation

Key generation:

Host ! TPM : 1k , C
TPM : Generate PrvCi := dCi

TPM ! Host : PubCi := dCi ·G , Ci



Background Problem Our proposal Conclusion

Encryption/Decryption

Encryption:

Host ! TPM : Ci , m
TPM ! Host : Qh := dh ·G , H(kc), EAuth

kh
(m)

Decryption:

Host ! TPM : Ci , Qh , H(kc), EAuth
kh

(m)

TPM ! Host : m



Background Problem Our proposal Conclusion

State-funded adversary

This design is trivially subject to the trap-door attack
A state-funded adversary is able to read all encrypted traffic



Background Problem Our proposal Conclusion

Applying trust-but-verify

Audit:

Host ! TPM : Ci , Qh , H(kc)
TPM ! Host : dCi ·Qh , . . .

ZKPh [logGdCi ·G = logQhdCi ·Qh ]

Explicitly verify if encryption was done properly
Based on Chaum-Pedersen ZKP
More details in the paper



Background Problem Our proposal Conclusion

Implementation

Full implementation on a resource-constrained Java Card
A non-trivial implementation challenge
Java Card code published in public domain (see paper)



Background Problem Our proposal Conclusion

Outlook: small step, long journey

We started a small step, but it will be a long journey.
Many research questions remain: e.g.,

How to ensure if the random number is generated correctly



Background Problem Our proposal Conclusion

Summary

Existing assumptions about Trusted Computing
Either complete trust or totally distrust (i.e., black/white)
However, neither captures realistic requirements

We propose “trust but verify”
A well accepted principle in 20 years e-voting research
But almost entirely neglected in the field of Trusted Computing

Future work
Re-design existing TPM APIs based on the new principle
Many open research problems, e.g., random number generation



Background Problem Our proposal Conclusion

From Trusted Computing to Trust-but-Verify Computing

Thank you!

For more technical details, see
https://eprint.iacr.org/2014/364.pdf

https://eprint.iacr.org/2014/364.pdf

	Background
	Problem
	Our proposal
	Conclusion

