Anonymous Voting by 2-Round Public Discussion A decentralized solution to the e-voting problem

Speaker: Feng Hao

Thales E-Security, Cambridge, UK

WISSEC '09

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Acknowledgment

- Joint work with
 - Peter Ryan Faculty of Science, University of Luxembourg
 Piotr Zieliński Google Inc, UK
- F. Hao, P. Ryan, P. Zieliński, "Anonymous Voting by 2-Round Public Discussion," to appear on *IET Information Security*, 2010.

Problem statement	Past solutions	New solution	Conclusion
Outline			

2 Past solutions

New solution

Conclusion

A Crypto Puzzle

The chancellor is seeking re-election in the senate. Some delegates do not want to vote for him, but worry about the revenge. The dark-side force is strong; surveillance is everywhere. In addition, no trusted third parties exists. How to arrange a voting such that the voters' privacy will be best protected?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constraints in the scenario

• There are no private channels.

• All communication is public and traceable to the sender.

2 There are no trusted third parties.

• A TTP is someone who can break your security policy.

(ロ) (型) (E) (E) (E) (O)

Kiayias-Yung solution

- Kiayias and Yung first proposed a solution in 2002.
- The protocol executes in 3 rounds.
- Each voter publishes O(n) ephemeral public keys.
- And performs O(n) public key operations.
- System complexity $O(n^2)$: too complex.

Groth's solution

- Groth improved Kiayias-Yung's solution in 2004.
- His solution trades round efficiency off system complexity.
- Its system complexity O(n) vs Kiayias-Yung's $O(n^2)$.
- Its round efficiency O(n) vs Kiayias-Yung's 3.
- Too many rounds.

Our solution - Open Vote Network

- Generalization of Anonymous Veto Network (SPW'06).
- Only two rounds.
- Linear system complexity.
- As secure as Kiayias-Yung and Groth's.
- But much more efficient than both.

The Open Vote Network protocol: 2-round Referenda

Round-1 Every participant P_i publishes g^{x_i} and a zero knowledge proof for x_i , and computes:

$$g^{y_i} = \frac{\prod_{j < i} g^{x_i}}{\prod_{j > i} g^{x_i}}$$

Round-2 Every participant publishes $g^{x_i y_i} \cdot g^{v_i}$ and a zero knowledge proof showing that v_i is one of $\{1,0\}$.

$$v_i = \begin{cases} 1 & \text{for "yes"} \\ 0 & \text{for "no"} \end{cases}$$

To tally, anyone can compute $\prod_i g^{x_i y_i} g^{v_i} = \prod_i g^{v_i} = g^{\sum_i v_i}$.

New solution

Cancellation formula - the magic

Proposition

For the x_i and y_i as defined in the protocol, $\sum_i x_i y_i = 0$.

Proof.

By definition $y_i = \sum_{j < i} x_j - \sum_{j > i} x_j$, hence

$$\sum_{i} x_{i} y_{i} = \sum_{i} \sum_{j < i} x_{i} x_{j} - \sum_{i} \sum_{j > i} x_{i} x_{j}$$
$$= \sum_{j < i} x_{i} x_{j} - \sum_{i < j} x_{i} x_{j}$$
$$= \sum_{j < i} x_{i} x_{j} - \sum_{j < i} x_{j} x_{j}$$
$$= 0.$$

New solution

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Cancellation formula - an example

Example

Assume n = 4. $\sum_{i} x_{i}y_{i} = -x_{1}x_{2} - x_{1}x_{3} - x_{1}x_{4} + x_{2}x_{1} - x_{2}x_{3} - x_{2}x_{4} + x_{3}x_{1} + x_{3}x_{2} - x_{3}x_{4} + x_{4}x_{1} + x_{4}x_{2} + x_{4}x_{3} = 0.$

Security properties

Maximum ballot secrecy

• Each cast ballot is indistinguishable from random.

Self-tallying

• Anyone can tally the votes without external help.

Oispute-freeness

• Anyone can verify all voters act according to the protocol.

Comparison

Protocols	Year	Round	Exp	KP for	KP for	KP for
				ехр	equality	1 -of- <i>k</i>
Kiayias-Yung	2002	3	2n+2	n+1	п	1
Groth	2004	n+1	4	2	1	1
_	2009	2	2	1	0	1

- Our protocol requires only 2 rounds.
- One const public key operation per voter in each round.
- One const knowledge proof per voter in each round.
- Overall, the efficiency has been very close to the best possible.

ション ふゆ く 山 マ チャット しょうくしゃ

Centralized vs decentralized

• Decentralized e-voting, e.g., Open Vote Network

- No trusted parties
- Maximum protection of the voters' privacy
- However, weak against DoS attacks
- Suitable for small-scale election like boardroom

Centralized e-voting

- More robust against DoS attacks
- More scalable
- However, involve trusted third parties
- Suitable for large-scale election like countrywide

- - Presented the Open Vote Network protocol.
 - A decentralized solution to the e-voting problem.
 - It requires only two rounds.
 - Minimum computation load and bandwidth usage.
 - Compared favorably to past solutions.
 - Close to the best efficiency possible.

