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Summary 

 

In recent years, Public Key Infrastructure (PKI) has emerged as co-existent with the 

increasing demand for digital security. A digital signature is created using the existing 

public key cryptography technology. This technology permits commercial 

transactions to be carried out across un-secure networks without fear of tampering or 

forgery. The relative strength of digital signatures relies on the access control over the 

individual’s private key. The private key storage, which is usually password-

protected, has long been a weak link in the security chain. In this project, we propose 

a novel and feasible system: BioPKI cryptosystem, which dynamically generates 

private keys from user’s on-line handwritten signatures. The BioPKI cryptosystem 

eliminates the need of private key storage. The system is secure, reliable, convenient 

and non-invasive. In addition, it ensures non-repudiation to be addressed on the maker 

of the transaction instead of the computer where the transaction occurs. 

 

The working mechanism of the BioPKI cryptosystem is based on the fact that certain 

features in the human handwritten signature are relatively consistent. From those 

consistent features, the same private key can be generated from each of the genuine 

signatures. The system comprises three processing stages: shape matching, feature 

coding and private key generation. In the shape matching stage, it exams the static 

shapes of sample signatures and rules out simple forgeries. In the feature coding 

stage, it extracts a common set of dynamic features and generates an all-bits-correct 

code string. It will further filter out skilled forgeries. Finally in the private key 



 

iii 

generation stage, a private key is derived from the code string, by following the well-

established public key algorithms, e.g. RSA and DSA.  

 

A database comprising 25 users and 1000 signature samples, collected at one-month 

interval, has been built to evaluate the system performance. The Equal Error Rate 

(EER) for the BioPKI cryptosystem is 11.77%. The false alarm is maintained at a 

reasonable level. A user may need to try on average 1.4 times to derive an authentic 

private key. Nevertheless it is worth paying a bit more effort on signing so as to enjoy 

the great convenience of not bringing around any smart card or memorizing any 

password. Because the private key is dynamically generated from a familiar and 

natural way of human behavior – hand signing. 
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Chapter 1 Introduction 

 

1.1 Background 

 

1.1.1 History of Biometrics 

The term “biometrics” is derived from the Greek words bio (life) and metric (to 

measure) [1]. In the IT (Information Technology) environment, it is the technology 

that automates the identification of a person by analysing their physical or behavioural 

traits [2].  

 

Long before the creation of automated biometric technology, human had already 

learnt to use biometric features under various circumstances. Some biometric features, 

e.g. face, voice, and figure, were often used to identify acquaintance or even unmet 

people. Other biometric features, such as fingerprint and handwritten signature, were 

commonly adopted to enforce legal binding between a person and agreements. In 

ancient Babylon, fingerprints were used on clay tablets for business transaction. In 

ancient China, thumbprints were found on clay seals [2]. Similar to fingerprint, 

handwritten signatures have long been regarded as unique-to-person. In many 

countries, the practice that people sign their names to signify their assent to business 

or official documents has been used for thousands of years [3]. Today it is still widely 

used in daily transactions across the world. 

 

In the new electronic era, computers are becoming commonly found in households 

and the Internet connections are growing explosively. The e-documents have replaced 

traditional paper documents in many modern offices. The replacement of the 
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traditional ink-on-the-paper signatures (e.g. handwritten signature) by the electronic 

signatures for those e-documents is a hot research topic [3], which is also the focus of 

the work in this thesis. 

 

1.1.2 Major Biometrics Methods 

Based on the characteristics to be measured, biometrics can be grouped into two 

categories: physical biometrics and behavioural biometrics. Physical biometrics 

measures an individual’s congenital physical characteristics while behavioural 

biometrics measures the acquired behavioural characteristics. 

 

Physical biometrics – fingerprint, hand geometry, facial recognition, iris, retina, etc 

Behavioural biometrics – handwritten signature, keystroke, etc 

 

In addition to various types of biometrics mentioned above, voice recognition is an 

example that is a hybrid of the two categories [3]. Other varieties of biometrics 

proposed include thermal facial recognition with infrared cameras, ear or lip shape, 

knuckle creases, body odour, and even DNA [2]. A detailed introduction of each type 

of biometrics can be found in [1][2][3]. According to Biometric Market Report 2003 

[4], released by International Biometric Group (IBG), the total biometric revenue was  

$523.9m in 2001 and is expected to reach $1.9b by 2005. The report summarized the 

market shares of various biometric technologies in 2001 (see Figure 1-1). 
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Figure 1-1: 2001 Market Shares By Biometric Technology 

 

From Figure 1-1, it shows that fingerprint is by far the most widely adopted biometric 

technology and will remain very important in the coming future [4]. Facial 

recognition has replaced hand geometry and become the second to fingerprint in the 

market share. Middleware products, like smart cards, data storage servers etc, 

continue to grow as a critical technology [4]. One may notice that signature 

verification accounts for only 2.7% in the market share. However it has some 

distinguished advantages, which make it a suitable choice to use in our project. It will 

be illustrated in details in Section 3.2. 

 

1.1.3 Pros and Cons of Biometrics 

 

The main use of biometrics is, by far, replacing passwords and access cards in 

authentication. In general, there are three methods to authenticate an individual. They 

are through procession (what you have), knowledge (what you know) and biometrics 

(who you are), as shown in Figure 1-2. 
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Figure 1-2: Authentication Methods - Knowledge, Possession and Biometrics 

 

The difference between physical biometrics and behavioural biometrics is on whether 

the features extracted are static or dynamic. Behavioural biometrics, e.g. on-line 

signatures, requires the individual to be present and actively participate in the 

authenticating process. The features extracted are hence dynamic and not easily 

recorded.  

 

As compared to traditional ways of authentication involving access cards, tokens, 

passwords or PIN numbers, biometrics has seductive advantages. Access cards may 

be lost or stolen. Passwords and PIN numbers may be forgotten or guessed. On the 

other hand, biometrics identifies a person’s identity based on his/her physiological or 

behavioural characteristics. Those characteristics are inherent with the person. They 

are very unlikely to be lost or forgotten. Simply said, the use of biometrics is more 

convenient, secure and reliable than other ways [2]. 

 

However biometrics also has its drawbacks. Firstly, it is not foolproof. Though 

fingerprint, iris can achieve very low error rate, they are still not 100% foolproof and 

none of others are [3]. Secondly, there are no commonly accepted industrial standards 

Authentication Methods 
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e.g. password 
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on biometrics system interface and data format yet [2]. Lack of standards hinders 

interoperability between systems from different vendors. Thirdly it is likely to 

compromise individual’s privacy. Since the way biometrics works is to compare a 

biometric test sample with a stored biometric reference sample, people may regard the 

biometric storage as an invasion of privacy and reluctant to accept it [2]. 

 

The above explains the pros and cons of biometrics in general. A more specific 

comparison for different biometric technologies is given in Table 1-1. The table was 

compiled from [2] and [3]. Note that the public acceptance of dynamic (or on-line) 

signature is very high. This adds the advantage on the use of dynamic signature from 

social aspect. 

 

Technology Accuracy 
Privacy 

invasiveness
Ease of 

use 
Cost 

Public 
Acceptance

Dynamic 
signature Average Very low Average Low Very high 

Fingerprint High High Easy Average Average 
Face 

recognition Average Average Easy Average Average 

Hand 
geometry Average Average Average Average Average 

Iris scan Very high Very high Easy High Low 
Retina scan Very high Very high Average High Very low 

Voice 
recognition Low Low Easy Low High 

 

Table 1-1: A Comparison for Different Biometric Technologies 

 

1.1.4 Digital Signature 

A digital signature is completely different from a handwritten signature [9]. It is a 

checksum which depends on all the bits of the transmitted e-document, and also on a 

secret (or private) key, but which can be checked without knowledge of the secret key 
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[16]. With digital signature, one would be able to authenticate the identity of the 

sender of a message or the signer of a document, and ensure that the original content 

of the message or document after being sent is not tampered with [16]. Digital 

signature has been with us since 1976, when Diffie and Hellman introduced the digital 

signature as an application of public key cryptography in their classic paper [11]. 

Since then, there has been a great deal of public interest shown in applying the idea to 

solve security problems.  

  

In June 2000, the former US President Bill Clinton signed the Electronic Signatures in 

Global and National Commerce Act (E-Sign) into law [13]. Under the act, digital 

signatures are placed in the same legal category as pen-on-paper signatures, meaning 

individuals and businesses can now be legally bound to agreements verified over the 

web. This act induces a big boost in web transactions with the industry acceptance. 

Digital signature is increasingly accepted within US and in other parts of the world. 

 

Beside public key cryptography, there are a number of techniques for generating 

digital signatures, e.g. symmetric cryptography, trapdoor, tamper-resistant modules 

[12]. Among these proposed implementations of digital signatures, public key 

cryptography is the most popularly used because of its better security [12]. When 

public key cryptography is adopted to implement digital signature, an individual has a 

pair of keys: a private key and a public key. The private key is for signing the 

documents to generate the digital signature while the public key is for verification. 

The signing and verification process is illustrated in Figure 1-3. 
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Figure 1-3: Digital Signature Signing and Verification 

 

Because the public-key algorithms are often too inefficient to sign long documents, a 

one-way hashing algorithm is often implemented in digital signature generation to 

save time [16]. In Figure 1-3, a one-way hash code is firstly obtained by applying a 

hashing algorithm function, e.g. Secure Hashing Algorithm (SHA-1) [16]. Then the 

sender would encrypt the hash with his private key, thereby signing the document. 

Thus a digital signature is obtained and will be transmitted with the original data to 

the receiver. Upon getting the data and the digital signature, the receiver will use 

sender’s public key to decrypt the signature and obtain the hash code. In parallel, the 

receiver obtains another hash code of the received data by following the same hashing 

algorithm (e.g. SHA-1). If the two hash codes are identical, the digital signature has 

been verified. The receiver can be convinced that the data are indeed originated from 

the sender and unchanged during transmission.  

 

1.2 Motivation 

 

1.2.1 Vulnerability of Private Key Storage 

The most popular public key algorithms accepted by industries to implement digital 

signature are RSA (Rivest Shamir Adleman) and DSA (Digital Signature Algorithm) 
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[16]. For a private key, whose key-length is 1024-bit or above, it is considered safe 

for both RSA and DSA. The fact that it takes millions of years to hack the key thwarts 

most of the hackers [16].  

 

However a study has shown that the vast majority of security failures are due to 

blunders in implementation and management, and essentially independent of the 

strength of the underlying cryptographic algorithms [5]. In particular, the private key 

storage is a vulnerable link in the security chain of digital signature applications [6]. 

Private keys are usually stored in a smart card or a disk and protected by passwords. 

The 1024-bit private key can stand against strong attacks [16]. But when it comes to 

storage, the security strength drastically reduces to a 6-to-8-character password. It is 

well known that password is an insecure way of authentication [2]. An individual may 

use the same passwords for his e-mail account, network logon, on-line banking, office 

access PIN, etc. When one is compromised, all passwords are compromised. In 

addition, he may write down the passwords on a piece of note, which could be peeped 

at. He may choose his alias or date of birth as passwords, which could be guessed by 

someone close to him. Hence a person authenticated to the access of a private key 

only means that he has the knowledge of the password but does not necessarily mean 

that he is the right person. In our thesis, we will solve this problem by incorporating 

biometrics for the storage of the private keys. 

 

1.2.2 Synergy of Biometrics and PKI 

The research works on biometrics are mainly for the purpose of authentication [2]. 

When complemented with Public Key Infrastructure (PKI), a straightforward way is 

to use biometrics to protect the private keys instead of passwords. For example, CIC 
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Corporation develops a system that uses signature dynamics in place of passwords to 

protect the stored private keys [8]. 

 

Though using biometrics to replace passwords is easy to implement and provides 

better security, the private key still needs to be physically stored in some mediums. 

The mediums, e.g. the disk or the smart card, still have to be carried with the person 

and the danger of these items being lost or stolen remains. In our project, we propose 

a different way of synergizing the two technologies, which overcomes the weakness 

mentioned above. Instead of using biometrics to protect the private keys, we propose 

to dynamically generate the private keys from biometrics. In this way, there is no need 

to stored the private keys in any physical mediums. Instead they are stored in a 

person’s natural physiques or behaviors. 

 

The concept of Generating Private Keys from Biometrics (GPKB) was first seen in 

Pawan’s paper [7]. He proposed an idea to derive a private key from a biometric 

sample and used the private key to sign an e-document. The implementation of GPKB 

comprises two parts: 

 

1. To obtain highly consistent biometric sample data 

2. To derive a private key from the sample data  

 

To date, there are no reports of achievements on the first part [7]. Thus no successful 

implementations of such application have been seen in the past literature. The 

difficulty for the first part is that all the bits in the biometric sample should be 

“exactly” correct. Pawan’s paper [7] only addressed the second part. He gave a 
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conceptual example of using iris biometrics and presumed that a 256-byte iris sample 

had been obtained without a single bit error. Based on the sample, a private key could 

be derived by following some well-established public key algorithms, e.g. RSA or 

DSA. However when one’s iris image is captured, it is extremely unlikely that every 

bit in the 256-byte sample is “correct”. If it is, then it is most likely an attack [3]. 

 

Our research fills the gap in the first part. We propose a low-cost, reliable and feasible 

implementation based on on-line signatures, a common form of behavioral biometrics. 

There are reasons why we choose on-line signature and not other types of biometrics. 

The reasons will be explained in Section 3.2. 

 

1.3 Project Overview: BioPKI Cryptosystem 

BioPKI cryptosystem is the working system we propose in this project. It comprises 

three processing stages: shape matching, feature coding and private key generation. In 

the first stage, a check of the signature shape will be performed to filter out simple 

forgeries. In the second stage, the dynamic features of the on-line signature are used 

to generate an all-bits-correct data string. In the last stage, a private key will be 

derived from the all-bits-correct data string. Though our system is based on on-line 

handwritten signatures, the concept of the system design can be applied to other types 

of biometrics.  

 

1.4 Summary of Contributions 

In this research report, the followings will be the contributions of the author. 
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• Design and development of a novel and feasible BioPKI cryptosystem based on 

on-line handwritten signatures. The system introduces an innovative way to 

combine biometrics and PKI. 

• Design of a new warping algorithm, Extreme Points Warping (EPW), to replace 

the conventional Dynamic Time Warping (DTW) algorithm. The new algorithm 

should be more suitable than DTW in the field of signature verification and yields 

better results. 

• Design of a new coding scheme to obtain an all-bits-correct string from dynamic 

features of an on-line signature. The scheme can also be used for signature 

identification applications.  

 

1.5 Organization of the Thesis 

In the first chapter, we have introduced some background knowledge, explained the 

motivation of carrying out this project and provided an overview of the work done. A 

literature review of the research works and the techniques used in the related field is 

presented in Chapter 2. Some of the techniques will be applied to our project. Chapter 

3 provides an overview of the system and explain the system design requirements. As 

mentioned before, the system will comprise three processing stages. Chapter 4 and 5 

explain the first two stages of the BioPKI Cryptosystem. Details of the processing at 

the third stage have been covered in some papers (see [7]). It is not the emphasis of 

our research. However for completeness, a brief explanation of the third stage will be 

included in Section 5.5 in Chapter 5. Chapter 6 addresses the evaluation of system 

performance and the security issues. Finally Chapter 7 presents the conclusion and 

recommendations for future research. 

 



                                                       Chapter 2 State-of-the-Art in Signature Verification 

12 

Chapter 2 State-of-the-Art in Signature Verification 

 

2.1 Overview 

 

There is an old Chinese saying “signature reflects a person”. The way that a person 

signs his/her signature is unique. A person’s writing habit, literacy, even personal 

characters can be deduced from his signature. Because the handwritten signature is 

unique to a person, it has been adopted as a legal proof for the signed documents for 

thousands of years. The long history of practice makes handwritten signature one of 

the most non-invasive biometrics. Today it is still widely used in various fields, e.g. 

medical records, doctor prescriptions, receipt acknowledgement, legal contracts, 

banking agreements, credit card bills, government documents and official 

announcements. 

 

Inspired by many practical applications in real life, the research in signature 

verification is very active. In recent years, with the advancement of hardware 

technology, the interest in this area has shifted from off-line to on-line signature 

verification. The classification of off-line and on-line is based on the data acquisition 

method. An off-line signature is a static signature image obtained from either a 

camera or a scanner. On the other hand, an on-line signature is usually obtained from 

a tablet. It contains not only the spatial information of a signature but also a rich set of 

dynamic information, e.g. pressure, speed, altitude and azimuth. Though off-line 

verification still has practical importance in some up-to-date applications, e.g. bank 

cheque automatic checking, the on-line verification is increasingly implemented in 
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many computer and web related applications.  An important reason for the rising 

interest is that signature verifications based on on-line signatures have so far yielded 

superior results over off-line signatures [36]. 

 

For an on-line signature verification system, it not only checks what a signature looks 

like but also the process how it is generated. The working for such a system relies on 

the hypothesis that the production of a signature is a ballistic action, rather than a 

deliberate action [55]. It is called ballistic because when the brain sends commands 

through the nerve system to sign, the hand muscles execute the commands 

spontaneously with little visual feedback for confirmation. It is a learned, practiced 

and perfected action over many years. Hence, not surprisingly, it shows a high level 

of consistency in both shape and dynamics. Through not scientifically proven, it is an 

observed phenomenon and has been confirmed by many experiments results [14]. 

 

For the prior art in the area of on-line signature verification, there are several classic 

paper reviews that are frequently cited. In [25], Plamondon presented a 

comprehensive review of the state-of-the-art techniques in signature verification and 

writer identification before 1988. The paper [36] is a follow up to the previous paper 

[25]. It summarized the research activities from 1989 to 1993 and highlighted new 

advancements in automatic signature verification. In addition to these two, Nalwa’s 

paper [38] provided an insightful explanation on the context of signature verification 

problem. However at the time of writing, no systematic reviews after 1994 are found 

in the past literature. Appendix A is the author’s contribution, which presents a 

summary and a comparative review of various projects reported from 1994 to 2002. 

The scope of the work is limited to on-line signature verification only, without 
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covering off-line verification, on-line (or off-line) signature recognition and on-line 

(or off-line) signature identification. This is because the on-line signature verification 

techniques are closely relevant to the research work. In addition, the review is intent 

to cover only typical systems. For example, in a series of works done by Wan-Suck et 

al. to seek improvements [33][34][35], only the most recent one, i.e. [35], is included 

in Appendix A.  

  

Plamondon summarized in [25] that an on-line signature verification system included 

a number of stages: data acquisition, preprocessing, feature extraction, comparison 

and performance evaluation. These stages are shown in Figure 2-1.   

 

 

 

 

 

Figure 2-1: Five Stages in Signature Verification 

 

The following sections in this chapter will be arranged in the sequence of these stages. 

In Appendix A, the techniques used in each stage, except the first stage, are 

summarized from the recently reported projects. The first stage, acquisition, is not 

included because it involves only the hardware set-ups.   

 

2.2 Data Acquisition 

 

Signature verification starts with data acquisition. However due to the lack of a 

standard database, most of the works listed in Appendix A required the researchers to 

Acquisition Preprocessing Feature 
 Extraction 

Comparison Performance 
evaluation 
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collect their own databases for performance evaluation. This makes direct comparison 

of the results very difficult, as it will be further explained in Section 2.6.   

 

Unlike off-line signatures, on-line signatures are collected through a specialized 

hardware, i.e. a tablet. A typical tablet and the data extracted are shown in Figure 2-2.  

 

Figure 2-2: A Typical Tablet Hardware and Data Extracted 

 

The tablet is able to capture timestamps, x, y coordinates, pressure, altitude and 

azimuth angles during signing (i.e. t, x, y, p, al, az). Apart from using commercial 

tablets, researchers in [30][31] used the self-built hardware, e.g. a SmartPen tablet.  

The SmartPen tablet is able to capture 3-D forces exerted at the tip of the pen.  

 

2.3 Preprocessing 

 

Signature data need to be preprocessed after the data acquisition. The preprocessing 

includes normalization, smoothing and re-sampling. In [25], Plamondon included 

segmentation as part of the preprocessing. However considering that the purpose of 

preprocessing is to trim data rather than process data, we include segmentation under 

the feature extraction phase in the thesis. 

 

2.3.1 Normalization 

The raw data obtained from the tablets need to be normalized firstly. The 

normalization can be explicit or implicit. The explicit approach performs translation, 
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size and orientation normalizations on raw data before feature extraction [25]. On the 

other hand, the implicit approach chooses those features, which are location, size or 

orientation invariant [25]. Translation is to re-assign the coordinate origin, e.g. to the 

signature centroid point. Size and orientation normalizations are to reduce the natural 

variations in size and orientation angle.  

 

Among the three, orientation normalization is the most difficult one. The difficulty 

relies on finding a reliable reference angle. It is not easy to define the reference angle 

given the variant nature of the handwritten signature. In [47], all the computed look-

up angles along the curve are normalized with respect to the first angle. We argue that 

the first angle is certainly not a reliable reference. Away from the difficulty of finding 

a reference angle, a simple yet reliable solution is adopted in [45][51] by drawing a 

horizontal reference line for users to self-adjust orientation. Thus it exempts the need 

of spending computing power for the orientation normalization. From the results, it 

seems that this method works well [45][51].  

 

In addition to the three normalizations, some systems also perform duration 

normalization [29][37][48]. The duration of the signature writing is normalized to be 

the same for all the genuine samples. However it is not generally adopted because the 

variation of the signing duration is by itself an important feature of the signature.  

 

2.3.2 Re-sampling 

Two types of re-sampling are usually done in preprocessing: temporal re-sampling 

and spatial re-sampling. The first type usually involves uniformly re-sampling 

temporal signals, e.g. x(t), y(t), at equi-distant points by using interpolation. This is 
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needed because in most of the cases the tablet’s sampling rate is not constant. On the 

contrary, Sakamoto [40] defined a non-uniform re-sampling technique in order to 

preserve sharp corners. The second type involves re-sampling signature curve at equi-

distant points. It is a common method used for describing the signature’s static shape 

[35][37][38]. 

 

2.3.3 Smoothing 

In [37][39], researchers applied spline-smoothing differentiation algorithm to 

compute velocity and acceleration. However the majority of projects adopt a simple 

and efficient method to compute the approximate values of velocity and acceleration 

[26][40][48][53][54]. The approximation is reasonably based on the closeness of the 

adjacent sample points, and there is not much difference from the observed results of 

these two methods [39].  

 

2.4 Feature Extraction 

 

2.4.1 Features from On-line Signature 

During the preprocessing, the data are trimmed to remove some noise and variations. 

After trimming, the features are extracted from the signature. A typical commercial 

tablet, e.g. Wacom ArtZ II [32], is able to capture 5 sets of data along the time axis. 

They are x, y coordinates, pressure, altitude, azimuth or x(t), y(t), p(t), al(t) and az(t) 

respectively. These data can be grouped into two types of features: static shape and 

dynamics. Static shape contains x, y trajectories only. Dynamics comprise the time 

information, pen angle and pressure - those transparent and dynamic features. These 

two types of features have somehow complementary roles in distinguishing the valid 
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signatures from the forgeries. It is because the more the forgers try to match every 

detail of a signature’s shape, the less likely they are to match the dynamics. Hence it 

is suggested in [18] that a reliable dynamic signature verification system should 

consider shape as well as dynamics of the signature.  

 

In signature verification, the features, either shape-related or dynamics-related, can be 

complete signals or derived parameters. The five basic sets of data themselves, i.e. 

x(t), y(t), p(t), al(t), az(t), can be treated as five features. In addition, speed in either 

horizontal or vertical directions can be computed as new features. The look-up angle, 

computed from x and y, along the curve is a feature used in [47]. In recent research, 

Ma Mingming [26] applied Discrete Furier Transform (DFT) to find the spectrums of 

x, y signals and used as features.  

 

Besides using the complete signals as features, statistical features or parameters are 

frequently used. They are group into two types: local and global parameters [23]. As 

the name suggests, local parameters describe values at local points, e.g. maximum or 

minimum values of data signals, starting direction, ending speed etc. On the other 

hand, global parameters are computed globally, e.g. total time, number of strokes, 

means and standard deviations, number of zero crossings, etc. 

 

2.4.2 Segmentation 

Segmentation is part of the feature extraction process. It results in an improvement in 

performance. This has been reported in several papers [27][47][42][54]. The reason is 

that segmentation helps to extract more features and it facilitates the comparison of 

the two signatures based on the stable segments instead of the whole signatures. Wirtz 
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[42] used each natural writing stroke as a segment. Brault [49] evaluated curvatures 

along the length of a signature and found perceptually important points for 

segmentation. In [27], Schmidt searched for extreme points (i.e. peaks and valley) on 

the x, y signals and used those points for segmentation. In [33][34][35], segments are 

defined in such a way that each segment comprises fixed number of points. Recently 

Rhee [52] proposed a more robust segmentation technique called model-guided 

segmentation. The proposed method ensures the same number of segments, which 

easily enables segment-to-segment matching [52].  

 

2.4.3 Feature Selection 

With segmentation, more features can be defined. However the problem of selecting 

the right set of features is not trivial [25]. In general, three types of features can be 

defined, as shown in Figure 2-3. The feature selection undergoes two steps. Firstly a 

common set of parameters is selected from a pool of parameters. Secondly an 

optimum set of parameters for each individual, i.e. a personalized set, is selected from 

the common set. 

 

 

 

  

 

Figure 2-3: Three Types of Parameters in Feature Selection 

 

There is a pool of parameters, which can be computed from signals in various ways. 

However not all the computed parameters are useful. Only those non-redundant and 

discriminating features are selected into the common set [41]. To select non-

Pool of parameters 

 

Common set 

Personal set
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redundant features, Bauer [41] performed correlation computation to remove 

redundant or correlated features. Kim [44] used the forward method to define a 

common set. He selected 23 features from 76. Several other methods, e.g. Karhumen-

Loeve transform, neural nets and jacknife statistics are introduced in [45] to remove 

redundant features. To select discriminating features, the most common way is by 

evaluating the weighted Euclidean distance metric [45]. In a recent research, Ma 

Mingming [26] defined a Discriminating Power (DP) function. The function 

computes the DP value for each feature. Those features with largest DP values are to 

be included into the common set. Overall there seems no consensus on what is the 

best common set. 

 

Among the common set of parameters, the importance of each parameter is different 

for each individual. Hence a personalized set comprising relatively more important 

parameters is needed. The set reflects the individuality of each user. Crane and 

Obsteam [24] first proposed to use personalized parameters for each user. The 

improvement in system performance is observed in the subsequent experiments 

[26][41][45][53]. The most common way to define a personalized set is through 

computing the Euclidean distance metric, as outlined in [26][41][45]. Neural Network 

is often applied for feature selection [25]. Wijesoma [53] proposed a new selection 

method based on Genetic Algorithms (GA). An initial set of features is encoded into a 

population of genes or chromosomes. Through a process of genetic evolution, an 

optimized subset of features is obtained for each individual. In a comparison to his 

previous work [26] using the Euclidean distance, it is found that GA selection 

algorithm yields an improvement of around 8% in terms of error rates.  
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In theory, the personalized sets of parameters obtained from the above methods are 

unlikely the optimum sets. The optimum set is hardly attainable practically. For 

example in [44], to select the optimum 23 features from 76, 1.7 * 1019 possibilities 

need to be evaluated. It would be very impractical to exhaustively try out every 

combination within a short time using a common PC. Hence usually only a 

suboptimal set can be achieved [26][41][45][53]. Aware of this problem, Kim [44] 

avoided using a personalized parameter set. Instead, he proposed to use a common set 

of parameters with personalized weights to reflect individuality of different users. He 

also tried the usual method to define a personalized feature set with the forward 

method. It turns out that the new method reduces Equal Error Rate (EER) from 5.5% 

to 4.28% [44]. 

 

2.5 Comparison 

 

After the features extraction stage, the signature passes on to the comparison stage 

(see Figure 2-1). It compares the extracted features with the reference values stored in 

the template. The two common comparison methodologies in signature verification 

are: functional approach and parametric approach. In the functional approach, 

complete signals (x(t), y(t), v(t), etc) directly or indirectly constitute the feature set. 

Signal values at a series of sampled points are compared point-to-point between the 

test signature and the reference signature. In the parametric approach, only the 

computed parametric features are compared [23]. In addition to these two approaches, 

Rhee [52] proposed an approach based on segment-to-segment comparison. For each 

segment, eleven parameters were extracted and compared [52]. It is noted that 

segmentation helps to extract more parameters and the comparison is still based on 
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the parameters. Hence we group the segment-to-segment comparison into the 

parametric approach in this review. 

 

2.5.1 Functional Approach 

Functional approach compares complete signals point-to-point. The complete signal 

can be either a spatial function, e.g. x, y along the curve [38][47], or a temporal 

function, e.g. x, y along the time axis [29][30][40][41][46]. To compare the two 

signals, a straightforward method is to use a linear correlation [23], but a direct 

computation of the correlation coefficient is not valid due to the following two 

problems: 

 

1. Difference of overall signal durations 

2. Existence of non-linear distortions within signals 

 

For either spatially functional signal or temporally functional signal, it is unlikely that 

the signal duration is the same for different samples even from the same signer. In 

addition, for both signals, distortions occur non-linearly within the signal. To correct 

the distortion, a non-linear alignment needs to be performed before comparison. For a 

temporal signal, the most common method used is Dynamic Time Warping (DTW) 

[30][47]. To warp a spatial signal, Nalwa [38] used a method called Length Warping. 

However the two types of warping differ only in the notation, as they adopt the same 

approach based on the Dynamic Programming (DP) matching algorithm [38]. From a 

different viewpoint, we can regard the length axis of a spatial signal as the pseudo-

time axis. For convenience, we will use DTW to refer to both types of warping for the 

rest of this thesis. 
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A detailed explanation of DTW will be presented in Section 4.3. The warped signal 

after DTW is obtained by following a defined warping path. The point-to-point 

Euclidean distance between the warped signal and the reference signal can be 

computed [29][40][46]. Alternatively the correlation coefficient can be computed, as a 

measure of their similarity [38].  

 

It is evident that each point on the warped signal has different importance or weight. 

The more stable the value at this point is, the more important it will be. Hence by 

assigning different weight to each point based on its stability, the comparison will be 

more meaningful. An improvement in performance is reported in [27][38][46].  

 

Besides the warped signal, the warping path can also be used as an important measure 

to differentiate the forgeries from the genuine signatures. The two linear-correlated 

signals will have a warping path of linear curve. The less linear-correlated for the two 

signals, the less linear the warping curve will be. Sato defined the motion measure 

based on the warping path [50]. The motion measure is also used in [27][30][41]. 

 

Besides the mainstream of using DTW for the functional approach, there are other 

warping methods. Wu [43] proposed a split-and-merge matching algorithm. Firstly 

the signal is split into 4 equal-length segments by 3 points. The best segment-to-

segment matching between the sample and the reference is determined based on the 

Euclidean distance. If several segments of one signal match to one segment of the 

other signal, then the segments merge into one segment. The process continues to 
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further spit-and-merge the corresponding segments. The iteration occurs for pre-

defined depth times. It turns out that depth=1 yields the optimum result [43].  

 

Yang [47] proposed the use of Hidden Markov Model (HMM) in the functional 

approach. A reference HMM model is constructed from 8 prototype signatures. By 

defining a left-to-right transition model with 6 states, the probability that a sample 

signature is generated from the HMM reference model is computed. From the 

probability with respect to the defined threshold, the genuineness of the sample 

signature can be judged [47].  

 

2.5.2 Parametric Approach 

In distinguishing two sets of parameters, say one from a genuine signature and the 

other from a forgery, Euclidean distance is the most straightforward and commonly 

used measure [41][44][45][46][52]. First a reference set of parameters is defined from 

several prototype signatures. After the same set of parameters is extracted from a 

sample signature, then the authenticity of the test sample can be decided based on the 

Euclidean distance to the reference set.  

 

Apart from using Euclidean distance, there are several other methodologies for 

parametric comparison. Kiran [51] proposed a probabilistic feature model to compute 

a score from a common set of ten features. The model fits a Gaussian density function 

to the values of each feature. To verify a test sample, a probability score (PS) is 

computed for each feature. The accumulation of ten probability scores will be 

compared to a threshold to make a decision. Dolfing [48] applied Left-to-Right 
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Hidden Markov Model in the parametric approach. The final decision is based on the 

log likelihood between a sample model and a reference model [48].  

 

Applying Neural Network to the parametric comparison is proposed in [36]. It is also 

seen in [35][54] with quite impressive results (refer to Appendix A). Wijesoma [53] 

adopted a fuzzy logic for parametric comparison. The same logic is also used in [26]. 

The fuzzy logic resembles the way our brain works toward verifying a signature. The 

computation is based on the Degree Of Authenticity (DOA) [26][53] rather than the 

Boolean logic (“true” or “false”, 1 or 0) on which the modern computer is based. A 

number of partial authenticities, i.e. DOA, for each feature are aggregated. If the 

aggregation exceeds a threshold, then the signature is judged as a genuine one 

otherwise a forgery. 

 

2.6 Performance Evaluation 

 

After comparing the features, error rates are the indicators of the system performance. 

Two types of error rates are often used. They are False Rejection Ratio (FRR) and 

False Acceptance Ratio (FAR). The two curves vary with respect to the threshold 

settings, as shown in Figure 2-4.  

 

 

Figure 2-4: FRR and FAR Curves 
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Equal Error Rate (EER) is commonly used as the indicator of the error rate 

performance in comparison with other systems. It is the point where the FRR curve 

intersects with the FAR curve (see Figure 2-4). The EER values for recently proposed 

systems are tabulated in Appendix A.  

 

However a direct comparison of results among different systems is of little value due 

to a lack of standardized database [38]. Researchers build their own database to 

evaluate the system performance (refer to Appendix A). The qualities of collected 

signatures are likely to differ due to different hardware set-up, the mood of users 

when signing, racial group and education background of users. For example, in [48] 

and [52], tablets with LCD display on board were used. It is expected to produce more 

“genuine” signatures than those from blind signing on normal tablets. Normally 

voluntary users are encouraged to mimic each other to produce forgeries, e.g. in 

[43][47]. In some researchers, cash awards are offered to hire forgers to produce 

skilled forgeries [26][53]. A different type of forgery is seen in [30][56], where other 

users’ genuine signatures are used as forgeries for a particular user. The forgeries are 

called random forgeries or zero-effort forgeries [25]. The different types of forgeries 

make the comparison of the system performance very difficult. 

 

In despite of the database problem, we are able to evaluate the effectiveness of the 

system and the newly proposed techniques. Comparative analysis is a very important 

method to evaluate the performance [20]. A system or a new technique can be 

compared with others based on the same set of database with all other conditions held 

the same. This method is adopted in [44][52][53].  
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2.7 Summary 

 

In this chapter, the five stages in a signature verification system are described: data 

acquisition, preprocessing, feature extraction, comparison and performance 

evaluation. We have reviewed a range of techniques used in each of the stages. They 

are mainly summarized from research works in the recent ten years. The main purpose 

of this chapter is not to identify problems in this area, but to review the useful 

techniques that can be applied to our research problem, i.e. generating private keys 

from signatures. However we are able to make contribution to this field by proposing 

a new warping algorithm for the functional approach at the comparison stage. The 

new warping algorithm is called Extreme Points Warping, which will be explained in 

details in Chapter 4. In the next Chapter, we will introduce the BioPKI cryptosystem 

and its features.  
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Chapter 3 BioPKI Cryptosystem 

 

3.1 Overview 

 

The BioPKI cryptosystem is the solution we propose to address the problem of the 

private key storage. It is implemented based on on-line signatures. We will explain 

the reasons why choose on-line signatures instead of other types of biometrics in 

Section 3.2. The system comprises three processing stages: shape matching, feature 

coding, and private key generation. We will explain the features and functions at each 

of the stages in details. In addition, issues like data acquisition, database collection 

and date preprocessing will also be introduced in this chapter. 

 

3.2 Why Choose On-line Signature 

 

One may ask why on-line signature is chosen instead of other types of biometrics. 

There are three main reasons for that. Firstly, handwritten signature is more 

acceptable by the public. It has been adopted as a legal proof for paper documents in 

business transactions for thousands of years. A natural transformation in the new e-

commerce environment is to use on-line signatures to sign e-documents.  

 

Secondly, as compared to other types of biometrics (e.g. iris, fingerprint), it is 

relatively easier to revoke a written signature once it is compromised. A person can 

easily abandon the compromised signature by changing a different signing style. 
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However it would be infeasible to abandon the fingerprint or iris, since they are 

inherent with the person.  

 

Thirdly, it is more secure to use on-line signatures than other types of biometrics. 

Although fingerprint (or iris) is currently more widely used than handwritten 

signature (see Section 1.1.2), it is static-image based. It is possible to obtain one’s 

fingerprint (or iris) sample even without the person’s awareness. For example, a 

person would leave fingerprints on the keyboard while typing on it. A hidden camera 

is able to capture a person’s iris image even one meter away [3]. With the fingerprint 

or iris image, an attacker knows the biometric secret of a person and is able to derive 

an authentic private key. In our proposed cryptosystem, the private key generation is 

based on the dynamic properties of a person’s on-line handwritten signature. Those 

dynamic properties are unique-to-person, consistent and transparent. They have to be 

captured through a specialized hardware, i.e. the tablet. In addition, it requires the 

signer’s intent and commitment to provide genuine signatures. Hence it is much more 

difficult for an attacker to “cache” the dynamic properties of a signature without the 

person’s awareness. Nevertheless an attacker (e.g. a Mafia-shop owner) can still 

possibly deceive a user to sign on a board and cache the “hidden” dynamics. But it 

would be much more difficult than obtaining a fingerprint (or iris) image. It is at the 

user’s discretion to supply his on-line signature only in a safe environment. The same 

argument also applies for the usage of credit card, cash card, and ATM card. 

 

3.3 An Overview of BioPKI Cryptosystem 
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We propose a BioPKI cryptosystem with private key generation from the dynamic 

properties of on-line signature. The cryptosystem merges the merits of both 

biometrics and Public Key Infrastructure (PKI). Figure 3-1 shows a block diagram of 

the proposed BioPKI cryptosystem. This cryptosystem consists of three stages: shape 

matching, feature coding, and private key generation. 

 

 
 

Figure 3-1: A Block Diagram of the BioPKI Cryptosystem 
 

3.3.1 First Processing Stage: Shape Matching 

The Shape Matching Stage is to filter out the simple forgeries by examining the shape 

of a test sample. Firstly the characteristic functions describing the signature shape are 

defined. Subsequently these functional signals are compared with the reference 

signals. A decision – genuine or forged - will be made based on the similarity between 

the two signals. Because of natural variations of the signature shape, a warping 

process need to be performed before comparison. It is to remove the positional 

variations of the shape function. The commonly adopted technique is Dynamic Time 

Warping (DTW). A detailed explanation of DTW will be presented in Chapter 4. 

Some problems associated with the application of DTW in signature verification will 

be identified and analysed. To address those problems, a new warping technique – 

Extreme Time Warping (ETW) – will be proposed and implemented at this stage. One 

may refer to Chapter 4 for more details about this processing stage. 
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3.3.2 Second Processing Stage: Feature Coding 

The Feature Coding Stage is to obtain an all-bits-correct string from a set of dynamic 

features. Firstly a list of features is defined. Those features are unique-to-person, 

consistent and transparent. Because of the natural variation of human behaviour, it is 

impossible for a person to sign twice with identical dynamic features. At this stage, 

we will propose a new coding scheme to perform feature coding. Under the scheme, a 

feature code is computed from each of the dynamic features. Then all the feature 

codes are concatenated to form a code string. Despite the variations of feature values, 

an all-bits-correct string can be obtained. One may refer to Chapter 5 for more 

detailed explanations about this stage. 

 

3.3.3 Third Processing Stage: Private Key Generation 

An all-bits-correct string is obtained from the feature coding stage. Finally the Private 

Key Generation Stage takes the code string as the input and generates the individual’s 

private key. The operation follows the well-established public key algorithms, e.g. 

DSA and RSA. In Section 5.5, we will use DSA as an example to demonstrate how 

the private key is generated.  

 

3.3.4 The Role of the Template 

As shown in Figure 3-1, the template is involved in the first two processing stages. It 

stores a reference shape, which will be retrieved to compare with a test sample. In 

addition, it stores information as how the feature coding will be done. One of our 

goals in designing the three processing stage is to diminish the sensitivity of the 

template. In other words, the private key can’t be deduced from the template alone. 
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The template could be a target of attack. Here we can’t presume that the template is 

always safe. Under some circumstances, it may be compromised, e.g. it is stolen or 

revealed. In that case the private key, should still remain secret. For this reason, we 

only write the static shape into the template. The shape will be used as the reference 

in the shape matching stage. The private key will only be derived from the dynamic 

features of a signature after the feature coding stage. The template stores only the 

guiding information as how feature coding is done for each dynamic feature. But the 

values of the dynamic features will not be contained or even deduced from the 

template. In Chapter 5 we will explain how it can be achieved by using our proposed 

coding scheme. To sum up, in the proposed BioPKI cryptosystem, templates are 

useless if they are stolen. An authentic private key would only be derived from a 

combination of the data from the template and a live signature sample. 

  

3.4 Two Phases of Operation 

The BioPKI cryptosystem has two phases of operation: enrolment and testing (see 

Figure 3-2). During the enrolment phase, a pair of keys: a private key K1 and a public 

key K2, are derived from a reference signature. The private key is then discarded 

while the public key is kept. During the testing phase, the person provides a written 

test sample. After being processed by the three stages, another pair of keys - K1’ and 

K2’, is generated. If K1 = K1’, the generated private key is authentic and will be used 

to digitally sign an e-document. Otherwise it will be considered invalid and rejected. 
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Figure 3-2: Two Operating Phases - Enrolment and Testing 

 

Since K1 is discarded, we can’t directly compare K1 and K1’. However we can 

determine whether K1 = K1’ through some other ways. In one way, the generated 

private key K1’ is used to encrypt a pseudo-random message M. If the encrypted 

message can be decrypted successfully by the public key K2, namely DK2(EK1’(M))=M, 

the key K1’ is authentic. In another way, the two public keys K2 and K2’ are 

compared. If K2 = K2’, then the corresponding private keys are also equal, i.e. K1 = 

K1’. The mathematical relationship between the public and the private key can be 

found in [16].  

 

3.5 Security Aspects of the BioPKI Cryptosystem 

The possible attacks of the system are mainly from two aspects: forging and hacking. 

An attacker mimics the genuine person’s signature and provides a forged signature to 

deceive the system. A professional forger is likely to forge the signatures well enough 

to gain entry into the system. In this project, participants are asked to mimic each 

other’s signatures. The performance of the system against forging will be measured in 
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terms of False Acceptance Ratio (FAR) and False Rejection Ratio (FRR), as outlined 

in Section 6.2. 

 

Another form of attack is through hacking. Since the private key is derived from a 

code string (refer to Section 3.3.2), a brute-force attack may be launched to search for 

the code string bit by bit. The effort of the brute-force attack is exponentially 

proportional to the bit-length of the code string (see [16]). Hence the security strength 

against hacking will be evaluated in terms of the average bit-length of the code 

strings, which will be presented in Section 6.2. 

 

3.6 Data Acquisition  

We use a Wacom ArtZ II tablet [32] to capture the written signature. It has an active 

area of 8 x 6 inch2 with an average sampling rate of 50 Hz. The hand-signature 

capture program was written in Java to obtain the data from the tablet and to build up 

the database. 

 

As shown in Figure 3-3, as the user signs within the Java frame, six sets of data are 

captured in the background and displayed on the DOS console window. During the 

actual signing process, the console window is turned off. The data captured are 

timestamp, x coordinate, y coordinate, pressure, altitude and azimuth. A detailed 

explanation on the Hand-signature capture program can be found in [10]. 
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Figure 3-3: Six Sets of Data Captured by a Java Program 

 

For the data captured, the pressure is expressed as the quantised pressure levels, 

ranging from 0 to 1024. For the altitude the range is from 26o to 90o, and for the 

azimuth is from 0o to 359o. The definitions of altitude and azimuth angles can be 

referred to Figure 2-2 in Chapter 2. 

 

3.7 Database Collection 

A signature database has been built, which comprises 25 users. For each user, the 

signatures are collected at two phases at one-month interval. The one-month interval 

is to take into account the short-term effect of signature evolution. Investigation on 

the long-term effect, which takes for years, is beyond our scope of study. During 

Phase I, each user signs 20 signatures. The first 10 samples are used to derive the 

user’s template. The next 10 samples are stored as the authentic samples. During 

Phase II, each user provides another 10 authentic samples and 10 forged signatures. 

The collection activity is summarized in Table 3-1. 
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Phase I Phase II 

1. Sep ~ 30. Sep 2001(Per user) 1. Nov ~ 30. Nov 2001(Per user) 

10 template samples 10 authentic samples 10 authentic samples 10 forgeries 

 

Table 3-1: A Summary of Database Collection Activity 

 

For the collection of the forgeries, we encourage participants to mimic each other’s 

signature as closely as possible. The forger is allowed to view the static images of all 

the authentic samples and practise for several minutes before providing the forgeries. 

A summary of the signatures in the database is tabulated in Table 3-2. Overall 1,000 

signatures have been collected and stored in the database. Some signature examples 

can be referred at Appendix B. 

 

No of users During enrolment Genuine samples Forgeries 

25 10 20 10 

Total 250 500 250 

 

Table 3-2: A Summary of Signatures in the Database 

 

3.8 Preprocessing 

 

3.8.1 Normalization 

As shown in Figure 3-3, a horizontal baseline is drawn in the signing area to assist 

users to self-adjust the orientation during signing. By studying users’ signing 

behaviour during database collection, we notice that in most cases the users can orient 

their signatures consistently with reference to the baseline. However the location and 
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size are beyond users’ control. In general, the user signs with no prior-knowledge 

where and what size they signed the previous signatures. Hence we apply the location 

and size normalizations, while the orientation normalization is not necessary in the 

presence of a baseline.  

 

We assign the coordinate origin (0, 0) to the signature’s controid point. The new 

coordinates after the location normalization, or translation, can be obtained as: 

 

x( j ) = x( i ) – 1/N ∑x( i )          (3.1) 

y( j ) = y( i ) – 1/N ∑y( i )     (3.2) 

 

where i (i=1,2,…N) is the serial No before translation and j (j=1,2, …N) is the serial 

No after translation. Subsequently the size normalization will be performed. The 

following formulas are found to be suitable for size normalization.  

 

         x( k ) = x( j ) * ∑ |X( j )| / ∑ |x( j )|         (3.3) 

         y( k ) = y( j ) * ∑ |Y( j )| / ∑ |y( j )|        (3.4) 

 

where j (j=1,2,…N) is the serial No before the size normalization while k (k=1,2, 

…N) is the serial No after the size normalization. The X(j) and Y(j) are coordinates 

for the reference signature.  

 

3.8.2 Re-sampling Shape 

After normalization, the x, y signals are obtained by re-sampling the shape at equi-

arc-length intervals. Mohankrishnan [35] conducted a power spectral analysis of the 
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signatures and concluded that 256 samples points were sufficient to represent all 

salient curve characteristics. Hence we choose 256 points for re-sampling in the 

project. Figure 3-4 (a) and (b) display the signature shape before and after re-

sampling, respectively.  

 

 

 
Figure 3-4: Pre- and Post- Re-sampling at Equal Distance 

 

3.8.3 Speed Computation 

Speed, either horizontal or vertical, is an important feature in signature verification 

[25]. It is defined as the first derivative of displacement. Since the inter-point distance 

is quite small, the velocities can be calculated as the followings: 

 

Vx(k) =  ( x(k+1) - x(k) ) / ( t(k+1) - t(k)  ) pix/ms    (3.5) 

Vy(k) =  ( y(k+1) - y(k) ) / ( t(k+1) - t(k)  ) pix/ms   (3.6) 

 

To facilitate computation, we re-sample the speed signals in time domain at equi-

time-distance of 20 ms, i.e. t(k+1) - t(k)  = 20 ms. Hence the formulas in (3.5) and (3.6) 

can be simplified as: 

 



                                                                                      Chapter 3 BioPKI Cryptosystem 

39 

Vx(k) = ( x(k+1) - x(k) )/20  pix/ms             (3.7) 

Vy(k) = ( y(k+1) - y(k) )/20  pix/ms    (3.8) 

 

3.9 Template Generation 

 

During the enrolment, a user provides ten samples. Among the ten, one sample is 

selected as the reference signature and its static information (i.e. the signature shape) 

will be written into the template. The selection process goes in this way. Firstly, we 

take a sample as the reference. Then we warp the x, y data ( [x(k), y(k)], k=1, 2…N ) 

of the rest nine samples against the reference though Dynamic Time Warping (DTW). 

A warping cost will be obtained for each DTW operation (one may refer to Section 

4.3 for a detailed description of the DTW operation). Hence a summation of the nine 

warping costs will be obtained. As the procedure repeats for each of the ten samples, 

the sample with the minimum summation of the warping costs will be selected as the 

reference signature and written into the template.   

 

3.10 Summary 

 

This chapter gives an overview of the BioPKI cryptosystem we propose in the 

research. This cryptosystem comprises three processing stages: shape matching, 

feature coding and private key generation. In this chapter we have explained matters 

on system design and set-up. The chapter includes defining the function of each stage, 

introducing the hand-signature capturing software, data collection and pre-processing. 

The detailed explanations on each of the three stages will be presented in the 

following chapters.   
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Chapter 4 Shape Matching Stage 

 

4.1 Overview 

 

Shape matching is the first processing stage in the proposed BioPKI cryptosystem. It 

examines the static shapes of the input sample signatures and rules out simple 

forgeries. To compare the shapes of two signatures, the two common methodologies 

are: functional approach and parametric approach. The former uses the complete 

signals (e.g. x(t), y(t)) as the features while the later uses the parameters abstracted 

from the complete signals. We will adopt the functional approach at this stage as the 

functional approach usually results in better error rate performance than the 

parametric approach [25]. 

 

In this chapter, we will first introduce several characteristic functional signals, which 

describe the signature shape. As a nature of human signing behaviour, deviations of 

shape positions are common. Hence the functional signal needs to be warped before 

comparison. From a survey of the recent researches in the field (see Appendix A), the 

mainstream warping technique used is Dynamic Time Warping (DTW) [57]. DTW is 

to apply Dynamic Programming (DP) matching algorithm to non-linearly warp a 

discrete signal with respect to a template [57]. To address some of the limitations of 

DTW, we will propose a new warping technique, named as Extreme Points Warping 

(EPW). A detailed description of the EPW algorithm will be introduced in Section 

4.4. Instead of warping every point on the signal as DTW does, EPW warps selective 

extreme points (EPs), i.e. the peak points and the valley points. The new technique 
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results in better performance than DTW in terms of error rate and speed. A 

comparative evaluation between EPW and DTW will be presented in Section 4.5.  

 

4.2 Characteristic Functions of Shape 

 

A robust characteristic function of signature should be insensitive to intra-signer 

difference while sensitive to inter-signer difference [38].  To describe the signature 

shape, the x, y trajectories along the curve are often used as characteristic functions 

for comparison [27][29][47][43]. Nalwa [38] proposed the use of torque as a robust 

characteristic function to describe the shape. Besides torque, Center of Mass (CoM) 

functions were also introduced in [38] to describe the shape. In our research, we will 

comparatively evaluate the five signals: x, y, CoM of x, CoM of y and torque. 

  

4.2.1 Center of Mass (CoM) 

A Gaussian window, defined in [38], is used to compute the CoM. The window 

function, ignoring a scale factor, is given in [38] as: 

 

G(λ)=exp(-λ2/2α2)     (4.1) 

 

Where the ‘α’ is a constant. The Gaussian window is a bell-shaped curve, as shown in 

Figure 4-1 (a). Figure 4-1 (b) shows how the CoM is computed, as the Gaussian 

window sides along the signature curve. 
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Figure 4-1: The Sliding Gaussian Window 

 

The computation of the CoM is based on the discrete points as shown in Figure 4-1 

(b). However a discrete Gaussian function expression is not explicitly given in [38]. 

We will derive the Gaussian window function in its discrete form in the followings. 

We let n = λ and m = 2α, then the Gaussian window function in equation (4.1) can be 

expressed in its discrete form: 

 

 )/2exp()( 22 mnnG −=     (4.2) 

 

where m is an integer variable, indicating the window width. Nalwa [38] defined the 

Gaussian window width as the length of the signature curve, which the sliding 

window spans over. The window width in our case will be 2mL, where L is the inter-

point distance on the signature curve. Finally we normalize the Gaussian function to 

have a unit integral over the width of the window. We obtain the normalized window 

function as: 
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where n is within [-m, m]. Outside this range, g(n)=0. With regard to the window’s 

weight, a window with the Gaussian-weight curve is better than the one with a 

uniform-weight curve [38]. This is because the Gaussian window well serves the goal 

of gradually phasing in and phasing out the center of attention along the length of the 

signature as we slide the window along the curve [38]. 

 

The purpose of using a Gaussian window sliding along the signature curve is to 

smooth the signal noise. The broader the width, the more net effect of noise is 

suppressed. However at the same time more characteristic variations are also 

smoothed out. A suitable window width is found to be 8L through experiments and it 

is used in our project. A plot of the normalized Gaussian window with the width 8L is 

shown in Figure 4-2.  

 

 

Figure 4-2: A Normalized Gaussian Window with Width 8L 

 

We assume the signature has unit mass per unit length. Thus for the small segment 

confined by the Gaussian window, the coordinates of the Center of Mass (CoM) are 

defined as: 
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where k is the serial No of the point. The definitions of (4.4) and (4.5) are the same as 

those defined in [38] except that they are now expressed in the discrete forms. One 

may refer to [38] for more explanations of CoM.  

 

4.2.2 Torque 

The torque is computed within a sliding coordinate frame in [38]. Figure 4-3 shows 

how a sliding coordinate frame is defined.  

 

 

Figure 4-3: A Sliding Coordinate Frame 

 

When the Gaussian window spans a section of the curve, the CoM can be computed in 

the way introduced in Section 4.2.1. After locating the CoM, as shown in Figure 4-3, 

the point with the position coordinate (-x0 ,-y0) relative to the CoM will be defined as 

the origin of the new coordinate frame. The coordinates of every point on the 

signature will be translated with respect to the new origin. In our project, we choose 

x0=y0=1/25 of the signature curve length.  
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Within a coordinate frame, the torque T exerted by a vector v, which is located at 

position p, the torque with respect to the origin is T= v x p. Nalwa has come out with 

an expression of torque in [38] as: 
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where )(lT , )(lx , )(ly  are continuous functions along the curve and )(λg  is also 

continuous in the span of L± . Again we rewrite equation (4.6) in the discrete form 

expression. 
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Torque is a robust characteristic function to describe the shape and it is more 

indicative of forgeries as separated from genuine signatures. This is demonstrated in 

Figure 4-4.  

 

 

Figure 4-4: X, Y and Torque Signals 
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In Figure 4-4, the top two rows display the x, y and torque signals for two genuine 

signatures, while the bottom two rows are for two forgeries. It is noted that the torque 

signal is more distinguishable between the genuine signatures and the forgeries as 

compared to the x, y signals. Detailed explanations on the definition of the torque can 

be found in [38]. 

 

4.3 Dynamic Time Warping 

 

4.3.1 Introduction to DTW Algorithm 

DTW (Dynamic Time Warping) has been extensively used in speech recognition [57]. 

In the past decade, it has also become a major technique in signature verification to 

warp functional signals [38][40]. DTW applies the DP (Dynamic Programming) 

technique to find the best-matching path, in terms of the least global cost, between an 

input and a template [57]. Figure 4-5 shows the time alignment path during the DTW 

process. 

 

 
 

Figure 4-5: The Time-Alignment Path in DTW 
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In Figure 4-5, the points 1, 2 … m … I are from the template while the points 1, 2, … 

n … J are from the input. We define d(m, n) as the local distance between the mth 

template point and the nth input point. It is usually computed as the Euclidean distance 

between the two points [62]. We define D(m, n) as the global distance, which is the 

partial summation of the local distances from (1, 1) to (m, n). The warping process 

using DTW (refer to Figure 4-5), can be explained in the followings: 

 

1) Initial condition 

)1,1()1,1( dD =         (4.8) 

2) Monotonicity and continuity conditions 

0 ≤ ik - ik-1 ≤ 1, 0 ≤ jk - jk-1 ≤ 1      (4.9) 

3) Boundary condition 

i=1, j=1, i=1, j=i-I0, j=i+J0      (4.10) 

4) Global cost calculation 
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The warping process stopes when i=I and j=J. As a result, the warping cost is obtained 

by S = D(I, J) / I. For more details about the DTW process, one may refer to [57]. 

 

4.3.2 Application of DTW 

In signature verification, researchers apply DTW to align a waveform from a test 

sample with the respective reference one [40][46]. The warping process is non-linear 

and changes the sample waveform in two aspects: 
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1. The end of the test waveform will be aligned with that of the reference one. 

2. Peaks and valleys will be shifted to align with those of the reference one. 

 

When the x, y signals are captured from a tablet, the duration of the signals is unlikely 

the same for different signings. Figure 4-6 shows the signal waveforms from two 

different signings, where x, y data are sampled from the tablet every 20 ms. 

 

 

Figure 4-6: Waveforms before and after DTW 

 

In Figure 4-6, the top two graphs (a, b) are drawn from the reference signature. The 

middle two graphs (c, d) are from the sample signature before DTW, while the bottom 

two graphs (e, f) are from the DTW-warped sample signature. Both x and y are 

independently warped through DTW. The graphs on the left panel (a, c, e) show 

signatures in x - y coordinates while the graphs on the right panel (b, d, f) show the x, 

y data along the point serial No. From graphs (b), (d) and (f), one may notice that  the 

peaks and valleys of the sample waveforms are shifted to align with those of the 

reference waveforms. Some of such shifts of peaks and valleys have been highlighted 

in graphs (b), (d) and (f) of Figure 4-6. 
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4.3.3 Problems with DTW 

DTW was originally used in speech recognition in the 1980s [58]. Since it was 

applied into the field of signature verification, few adaptations have been made [30]. 

DTW has two main drawbacks when applied in signature verification, including: i) 

heavy computational load, ii) warping on forgeries.  

 

The former drawback is a known problem in speech recognition. DTW performs non-

linear warping on the signal. As compared to linear warping, the computational load 

of DTW is heavy and the execution time is relatively long [58]. The execution time is 

proportional to the square of the signal size (refer to Figure 4-5). There are some 

measures to deal with this problem. One is by defining boundaries to reduce 

computations as in equation (4.10). With the definition of boundaries, computations 

outside the boundaries (i.e. in the shaded areas in Figure 4-5) can be skipped. 

However the resultant computation time is still relatively long. It takes on average 

around 0.4s, as we will explain it in Section 4.5.4. Other measures include adopting 

the parallel processing algorithm and specially designed DSP hardware as to optimise 

the warping computation [20].  

 

The second drawback, however, is not well documented in the past literature. When 

used in speech recognition, DTW searches a best way to trim the voice signal to be 

more recognizable. However in signature verification, in the presence of forgeries, 

forgery signals also undergo DTW to be trimmed so as to become more “authentic”. 

Hence some adaptations of the algorithm in the field of signature verification need to 

be made. The problem can be implicitly addressed by the use of a motion measure 
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defined by Sato in [50]. The motion measure accounts for the deviations of the 

warping path. If the warping path is straight, it means few trimming changes are done 

to the signal, and hence the signal is more likely to be authentic [50]. That is to say, 

both the warped output and the warping path need to be involved in the comparison. 

Sato defined the former as the shape measure and the later as the motion measure 

[50]. However the inclusion of the motion measures adds to the complexity of data 

classification and decision-making, and it is not used in many recent researches 

[38][40][46].  

 

In our project, we will introduce a simple solution, without using the motion measure, 

to adequately address this problem. Considering the fact that the DTW process warps 

every point on the signal, we propose a new warping technique to warp only selective 

important points on the signal. Section 4.4 will give a detailed explanation of the new 

technique. 

 

4.4  A New Matching Technique : Extreme Points Warping 

 

During the DTW process, every point is involved in the matching process [57]. The 

proposed new matching technique is called Extreme Points Warping (EPW). As the 

name suggests, the new technique warps only the extreme points (EPs) instead of the 

whole signal. The EPW warping process comprises three steps: EPs marking, EPs 

matching and segment warping. Firstly, the EPs, i.e. the peaks and the valleys, are 

marked on the signal. Secondly, the Dynamic Programming technique is applied to 

non-linearly align those EPs on the sample signal to the EPs on the reference signal. 

Lastly, segments between the consecutive EPs will be warped linearly. 
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4.4.1 EPs Marking 

Along a signal, the peaks and valleys can be identified alternating. Here we define the 

Extreme Points (EPs) as those important peaks and valleys, precluding the small 

ripples. An example of ripples, peaks and valleys is shown in Figure 4-7. A ripple is 

formed when a peak and a nearby valley are close to each other. Small ripples are not 

considered as the EPs, because they are unreliable most of the time. In our matching 

algorithm, too many ripples will increase the chance of error matching, as we will 

explain in Section 4.4.4. 

 

Figure 4-7: A Demonstration of Extreme Points and Ripples 

 

In the following, we will define an EPs marking algorithm to identify the EPs. We 

first define a rise-distance, denoted by ‘r’, as the amplitude from a valley to the 

following peak. In addition, we define a drop-distance, denoted by ‘d’, as the 

amplitude from a peak to the following valley. For any peak (or valley), a rise-

distance can be computed at one side of the curve while a drop-distance can be 

computed at the other side of the curve. A peak or valley is marked as an EP only if 

the rise-distance and the drop-distance are both larger than a defined threshold, h0. 

 

00 , hdhr ≥≥      (4-12) 
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Choosing a large value of h0 may miss out some of the import peaks and valleys. On 

the other hand, a too small value of h0 introduces unwanted ripples and makes the 

subsequent matching difficult. Through experiments, an appropriate trade-off value is 

chosen as h0=1 pixel in our project. Our simple EPs marking algorithm can filter 

small ripples in the definition of the EPs. However the two consecutive EPs may still 

form a ripple when the two EPs are close to each other. In Section 4.4.2, we will 

demonstrate how to match the two sets of EPs correspondingly, given the presence of 

ripples.  

 

4.4.2 EPs Matching 

After marking the EPs along the sample and the reference signals, the corresponding 

EPs need to be matched. The matching of the EPs helps to remove the position 

variations. Through studying the variation phenomena from the collected database, we 

can summarize the three types of variations: 

 

1. Non-synchronicity for the start point – the first EPs of two signals may not 

synchronously start from a peak (or a valley) 

2. Existence of ripples – one or more ripples may be found at the start, between a 

consecutive peak/valley pair, and at the end 

3. Non-synchronicity for the end point – the last EPs of two signals may not 

synchronously end up with a peak (or a valley). 

 

Figure 4-8 shows an example of two sets of EPs. In Figure 4-8, the graph (a) displays 

the torque signal from a reference signature while the graph (b) displays the torque 

signal from a genuine signature. The EPs on both signals are marked with ‘*’. Non-
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synchronicities are observed both at the start and the end. In addition, an extra ripple 

appears on the signal in Figure 4-8 (a). 

  

 

Figure 4-8: A Demonstration of Extremes Points From Two Torque Signals 

 

We will define a matching algorithm to identify the matching pairs of the 

corresponding EPs despite the variations mentioned above. The EPs matching 

algorithm is based on the Dynamic Programming (DP) matching technique [57]. In a 

typical DP matching process [29], one point on one signal can be matched to any 

point on the other signal. However in our case, the EPs are peaks and valleys 

alternating. Hence the corresponding matching pairs of EPs have to be peak-peak or 

valley-valley matching. We need to introduce some new rules in the DP algorithm to 

suit the application.  

 

In the EPs matching process, an EP-EP matrix is first established as in Figure 4-9 (a). 

In the matrix, the EPs on the reference signal form the horizontal axis and the EPs on 

the sample signal form the vertical axis. Note in the matrix, the two sets of the EPs 

need to synchronously start with a peak (or a valley). The global costs at the elements 
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within the unshaded region in Figure 4-9 (a) are to be computed. The warping path is 

defined by following the least-global-cost path from (1, 1) to (I, J). 

 

 

Figure 4-9: The Warping Path of EPW 

 

In Figure 4-9 (b), it shows three local warping paths at the element (m, n). That is to 

say, if we assume that (m, n) is a matching pair (i.e. the mth EP on the reference signal 

is matched to the nth EP on the sample signal), the next matching pair can be one of 

the three: (m+1, n+1), (m+1, n+3) and (m+3, n+1). The (m+1, n+3) means that the 

two EPs right after the nth EP on the sample signal are regarded as a ripple, and hence 

skipped in the matching. Similarly the matching at (m+3, n+1) means that the two 

EPs after the mth EP on the reference signal are regarded as a ripple and hence 

skipped in the matching. Whenever a pair of EPs is skipped, a skipping cost S(k, k+1) 

is incurred. It is defined as the City Block distance [62] between the kth and the 

(k+1)th EPs on the signal. 

 

The EPs on the reference signal can be expressed as two-dimensional data (xi, yi), 

where the ‘xi’ is the horizontal position of the EP and the ‘yi’ is the vertical amplitude 

of the EP. Similarly the EPs on the sample signal are expressed as (xj, yj). The values 

for both xi and xj range from 1 to N, where N is the total number of points on the 
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signal. Since we choose to re-sample shape with 256 points in the project, N = 256. 

The amplitude value, yi or yj, are expressed in terms of pixels. A matching pair of EPs 

on the input signal and the reference signal should have close values in both the 

position and the amplitude. The position and the amplitude are considered equally 

important to determine the matching between the two EPs. Hence we normalize the 

reference signal EP position (xi) and the input signal EP position (xj) in the equations 

(4.14) and (4.15) respectively. The normalization factor ρ0 is obtained from equation 

(4.13).  

 

 
N

yy ii )min()max(
0

−
=ρ     (4.13) 

  0' ρ×= ii xx      (4.14) 

0' ρ×= jj xx      (4.15) 

 

After normalization, the position and amplitude values will have the same unit (i.e. 

pixel) and roughly the same range. They will be equally important to influence the 

decision of matching between the two EPs. In the process of EPW, the local distance 

d(i, j) is defined as the City Block distance [62] between the two EPs. 

 

d(i, j)=| xi – xj | + | yi – yj |    (4.16) 

 

Note the City Block distance is adopted instead of the Euclidean distance [62]. This is 

to avoid the situation when a big difference in position or amplitude may over-

influence the final decision. If we assume synchronicity for the first EPs of the two 

signals, the matching process of ETW can be explained in the followings: 
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1) Initial condition 

D(1, 1)=d(1, 1), D(1, 3)=d(1, 3), D(3, 1)=d(3, 1)   (4.17) 

2) Monotonicity and continuity conditions 

1 ≤ ik - ik-1 ≤ 3, 1 ≤ jk - jk-1 ≤ 3, ik - ik-1≠2 and jk - jk-1≠2  (4.18) 

3) Boundary condition 

If synchronicity at end: j=3i, j=1/3 i, j-J=3(i-I) - 2, j-J=-1/3 (i-I+2) (4.19) 

Else:     j=3i, j=1/3 i, j-J=3(i-I) -3, j-J=-1/3 (i-I+3) (4.20) 

4) Global cost calculation 
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In equation (4.21), the ‘ρs’ is defined as the skipping factor. As different from the 

normal DTW process [29], we introduce a skipping cost into the global cost 

computation. The skipping cost is usually very small when skipping a ripple in the 

matching, however it would be much larger if a pair of important peak and valley is 

misinterpreted as a ripple and skipped. A skipping factor ρs, as shown in equation 

(4.21) is to adjust the influence of the skipping cost on the decision of matching. 

Through fine-tuning, ρs = 2 is found to be appropriate. 

 

We will show an example by applying the algorithm to match correspondingly the 

two sets of the EPs (see Figure 4-8). Firstly an EP-EP matrix is established in Figure 

4-10, where the EPs on the reference signal form the horizontal axis while the EPs on 

the sample signal form the vertical axis. 
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Figure 4-10: An Example of Using Extreme Points Matching 

 

As we have explained, the matrix assumes synchronicity of the two sets of EPs. 

Hence the first EP (an extra valley) on the reference signal is removed, so that two set 

of EPs start synchronously with a peak point. One may also remove the first EP (a 

peak) on the sample signal to make two sets of EPs synchronously start with a valley. 

Though it is not proper from the visual inspection (see Figure 4-8), it will still from a 

valid EP-EP matrix. But the much higher costs incurred at elements of the second 

matrix will indicate that it is not the correct matrix. 

 

In Figure 4-10, the circled cells (include the dotted cells) within the defined 

boundaries indicate possible matchings. The global costs are to be computed for all 

the circled cells. The dotted cells indicate the correct matchings, which follow the 

least-global-cost path. A dotted cell at (i, j) will indicate that the ith EP on the 

reference signal is matched to the jth EP on the input signal.  
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During initialization, the global costs at (1, 1), (1, 3) and (3, 1) are computed as equal 

to the corresponding local costs, i.e. d(1, 1), d(1, 3) and d(3, 1). The circle at (1, 1) 

indicates that the 1st EP of the reference is matched with the 1st EP of the input. On 

the other hand, the circle at (1, 3) indicates that the 1st EP of the reference is matched 

with the 3rd EP of the input. It indicates that the first two EPs of the input are a pair of 

ripple so they are skipped in the matching process. Similarly, the circle at (3, 1) means 

that the first two EPs of the reference are a pair of ripple and are hence skipped. 

 

As explained in Section 4.4.2, one common variation in EPs matching is non-

synchronicity for the end EPs between the two signals.  Figure 4-11 shows how 

synchronicity and non-synchronicity at end will make a difference in the EP-EP 

matrix.  

 

 

Figure 4-11: Two Cases for Matching the End Extreme Points 

 

In Figure 4-11 (a), the end EPs of the reference and input signals are synchronous and 

hence matched. However there is a possibility that they are not matched if a ripple 

exists at the end of either signal, which will be explained later in this section. Figure 

4-11 (b) shows the case when the end EPs are not synchronous. In such a case, either 

the reference signal has an extra end EP or the input signal has an extra end EP. The 

two possibilities are reflected in the two immediate adjacent circled cells respectively: 
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cell 1 and cell 2. The correct matching will be at one of the cells with the lower global 

cost. Similarly there is a possibility that neither cell indicates the correct matching if a 

ripple exists at the end of either signal. We will explain this later in this section. 

 

After establishing the EP-EP matrix as shown in Figure 4-10, we will compute the 

global cost at each of the circled cells progressively by following equation (4.21). The 

warping process starts from (1, 1) and continues until the last corner-cell. The corner-

cell is defined as the cell at the corner of the matrix in the end of the matching 

process.  Referring to Figure 4-11, one may find that there are two such corner-cells if 

non-synchronous for end EPs while only one corner cell if synchronous for end EPs. 

Figure 4-12 is an example, showing the case of the non-synchronicity at end EPs. We 

will illustrate how the global cost is computed at one of the two corner-cells (i.e. cell 

1). The global cost at the other corner-cell (i.e. cell 2) is computed in the same way as 

at cell 1.  

 

Figure 4-12: Local Warping Paths for the Last Corner-Cell in EPW 

 

The computation of the global cost at the corner-cell 1 is given as: 
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  (4.22) 

 

As shown in Figure 4-12, there are additional two warping paths, i.e. path 0 and path 

4, to reach the corner cell. These two paths cater for the two cases respectively: i) a 

ripple exists at the end of the input signal, and ii) a ripple exists at the end of the 

reference signal. We will use an example to illustrate this. Assume the cell 1 is 

reached via path 0 following equation (4.22). It means that after removing the extra 

EP at the end of an input signal, the last peak/valley pair is a ripple on the input signal 

and is subsequently skipped in matching.  Hence the last matching pair of EPs will be 

the Ith EP on the reference signal and the (J-3)th EP on the input signal (see Figure 4-

12). 

 

Finally by following the least-global-cost path, we will be able to determine the 

correct matching of EPs between two signals. Figure 4-13 shows the result after the 

matching process, where the matching pairs are ordered in sequence. 

 

 

Figure 4-13: A Demonstration of Correct Matchings of Extreme Points 
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4.4.3 Segment Warping 

After determining the correct matching pairs of the two EPs sets, we will warp the 

segments between the EPs linearly. Figure 4-14 shows the segments of the two 

signals.  

 

 

  

 

 

 

 

Figure 4-14: Matching Segments Based on Extreme Points 

 

Figure 4-15 shows two corresponding segments. The point (xj, yj) is an arbitrary point 

on the segment of a sample signal. 

 

 

 

 

 

Figure 4-15: Linearly Warping the Matching Segments 

 

In the segment warping process, the sample segment will be linearly stretched to align 

with the reference segment. The stretching only changes the position of a point (i.e. 

x), without changing the magnitude (i.e. y). After segment warping, we have: 
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xn’= Xn, xn+1’= Xn+1     (4.23) 
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Referring to the two torque signals in Figure 4-8, we have applied a new warping 

technique – Extreme Points Warping – to warp the sample signal against the reference 

signal. Figure 4-16 shows the result of the warping using EPW. Figure 4-16 (a) shows 

the sample signal before EPW while Figure 4-16 (b) shows after EPW. It is observed 

that by warping a set of selective extreme points, we are able to achieve the goal of 

warping the whole signal. The correlation coefficient between the sample signal and 

the reference signal is increased from 34.8% to 91.7% after the warping process. 

 

 

Figure 4-16: Sample Signals Before and After EPW 

 

4.4.4 Other Examples of Using EPW 

Figure 4-17 and Figure 4-18 are two more examples to demonstrate the warping 

results using EPW.  
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Figure 4-17: Example of EPW (1) - Showing the Correct Matching at Start 

 

 

Figure 4-18: Example of EPW (2) - Showing Correct Matching at End 

 

In Figure 4-17, the sample signal is non-synchronous with the reference signal at start 

as it has an extra valley and a ripple. Our matching algorithm is able to remove the 
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extra valley and the ripple in the matching process (see Figure 4-17). Similarly in 

Figure 4-18, the ripple at the end of the sample signal is removed.  

 

The two figures, Figure 4-17 and 4-18, demonstrate the correct matchings when 

ripples exist at the start or the end of the signal. Besides, it is also noted from the two 

figures that the ripples within the signals are correctly handled as well. The three 

types of the variations described in Section 4.4.2 are adequately addressed and 

handled in our matching algorithm.  

 

However the EPs matching algorithm is not without limitations. Figure 4-19 shows an 

example of mismatching using EPW. While most of the EPs are matched correctly, 

the two EPs, both marked with ‘3’, are mismatched. 

  

 

Figure 4-19: Example of EPW (3) – Showing the Mismatching 

 



                                                                                     Chapter 4 Shape Matching Stage 

65 

In Figure 4-19, the EP ‘3’ (a valley) on the sample signal is matched with the EP ‘3’ 

(a valley) on the reference signal. However from visual inspection, the correct 

matching should be the next valley after EP ‘3’ on the sample signal that matches 

with the EP ‘3’ on the reference signal. The mismatching reflects the limitation of the 

EPs matching algorithm. Referring to Figure 4-10, if we use (i j) to represent the ith 

point on the reference signal matching to the jth point on the sample signal, our 

algorithm will find the next matching pair from (i+1, j+1), (i+1, j+3) or (i+3, j+1). 

While the algorithm enjoys the simplicity and reliability, it can identify and hence 

remove at maximum only one ripple between EPs. Mismatching occurs when there 

are more than one ripples between the EPs, which is the case shown in Figure 4-19 

(b).  

 

This problem can be alleviated, by choosing an appropriate value of h0 (see equation 

4.12). Though there is no fixed range for h0 except h0 > 0, an appropriate value of h0 

is very important. The value of h0 controls the number of ripples. A too small value of 

h0 will introduce many unwanted ripples, while a large value of h0 will miss some 

important EPs. Through experiments, a suitable trade-off value, h0 = 1 pixel, is found 

to be appropriate. With this value, the occurrence of two or more ripples is rare 

between the genuine signal and the reference signal. In fact, the occasional 

mismatching may not have a devastating effect on the judgement of the signature 

genuineness. In Figure 4-19, in the presence of mismatching, the resultant warped 

signal still achieves a correlation coefficient with the reference signal as high as 

95.6%.   

 

4.4.5 Warping Forged Signals using EPW 
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To evaluate the performance of the EPW process, we will warp the forged signals 

exactly in the same way as the genuine signals. The difference only lies on the results 

from warping. Most of the time, the EPs of the genuine signal are matched correctly 

to the corresponding EPs of the reference signal. However because of ripples and 

deviation, mismatch occurs more frequently for forged signals. For a genuine signal, a 

high correlation coefficient can be obtained after EPW. For a forged signal, a much 

lower correlation coefficient is obtained even after all its EPs are aligned correctly to 

the reference positions. Figure 4-20 shows examples of a genuine torque and a forged 

torque before and after the EPW process.  

 

 

Figure 4-20: A Comparison of Using EPW for Genuine and Forged Signals 

 

Figure 4-20 (a) and (b) show a genuine torque signal and a forged torque signal before 

EPW, respectively. The correlation coefficients in the two cases are approximately the 

same, around 70%. Figure 4-20 (c) and (d) show the genuine torque signal and the 

forged torque signal after EPW, respectively. After EPW, the correlation coefficient 

for the former is about 95.6%, while for the later is only 81.4%. This is because EPW 
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only warps extreme points while preserving local curvatures between the extreme 

points. It is different from DTW, which warps every point on the signal and hence 

destroys the local curvatures. A systematic comparison of performance between DTW 

and EPW will be introduced in Section 4.5. 

 

4.5 Evaluation of the New Technique 

 

To evaluate the proposed new technique, we perform a comparative analysis between 

EPW and DTW. We will evaluate the performance in two aspects: error rate and 

speed. The results from EPW will be compared to those from DTW, based on the 

same database and under the same test conditions. The test conditions include 

threshold definition and classification decision. These will be introduced in Section 

4.5.1. The result of error rate will be expressed in terms of Equal Error Rate (EER), 

which is a key indicator of system performance in signature verification. The result of 

speed will be expressed in terms of the computation time in milliseconds. 

  

4.5.1 Testing Conditions 

To measure the similarity of the two signals, computing the correlation coefficient is 

the most straightforward way [26][38]. The correlation coefficients for the genuine 

signatures and the forged signatures form two clusters of data. Classification of the 

two clusters is based on a threshold. Besides the correlation coefficient, some 

researchers use the Euclidean distance between two signals [27][29][31][46]. We will 

present the comparative analysis using these two measures. If  Γxy is used to denote 

the similarity of the two signals x and y, it can be computed in the following ways: 
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Correlation coefficient: 
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Euclidean distance: 

∑ −−=Γ yxxy      (4.26) 

 

Note that the Euclidean distance is a measure of dissimilarity. Hence in equation 

(4.26), a minus sign is added to make the result be consistent with the definition of 

similarity.  

 

During the enrolment phase, the user provides ten samples for registration. One of the 

samples is selected as the reference. The similarities between the remaining nine 

samples and the reference can be obtained as [Γ1, Γ2, … Γ9]. The unbiased estimate of 

standard deviation for these values is denoted as stdΓ, which is expressed as: 
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where M=9, which indicates the No of samples. When a test sample is to be verified, 

Γt is obtained by either equation (4.25) or equation (4.26). The decision of acceptance 

is based on the condition below: 

 

( ) stda  t Γ×−Γ≥Γ     (4.28) 
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where ‘a’ is a variable, which is used to adjust the threshold in the shape matching 

stage. The FRR and the FAR curves will be plotted by changing the value of ‘a’ and 

the EER can be determined by finding the intersection of the two curves. 

  

4.5.2 Error Rates for DTW and EPW 

To compare the error rates between DTW and EPW, we will use the five 

characteristic functional signals and the two similarity measures. The results in terms 

of EER are obtained by adopting the two warping techniques: DTW and EPW. Table 

4-1 presents the results of the comparison. 

 

 Euclidean distance Correlation coefficient 

Signal X Y X_C Y_C Torque Ave X Y X_C Y_C Torque Ave

DTW 30.5 34.4 29.5 35.1 35.2 33.0 33.5 36.0 33.2 34.8 37.4 35.0 

EPW 23.6 26.3 25.5 26.4 25.4 25.4 27.3 27.8 30.6 28.4 24.2 27.7 

 

Table 4-1: Equal Error Rates for EPW and DTW (%) 

 

It is noted from Table 4-1 that under the same test conditions, the equal error rate of 

EPW shows improvement over DTW. When the Euclidean distance is used, the 

average EER of the five signals is 33.0% for DTW and 25.4% for EPW, an 

improvement of 22.8%. When the correlation coefficient is used, the average EER is 

35.0% for DTW and 27.7% for EPW, an improvement of 20.8%. Overall, using EPW 

shows an improvement of around 20% in terms of equal error rate as compared with, 

using DTW. 

 



                                                                                     Chapter 4 Shape Matching Stage 

70 

4.5.3 Improved Error Rates with Weight for EPW 

A shape signal is constituted by a series of discrete points. In the above, we compute 

the correlation coefficient and the Euclidean distance between the discrete points 

using the equations (4.25) and (4.26) respectively. In the two equations, each of the 

signal points is treated equally, hence carries the same weight. In [31][37][38], 

researchers find that assigning different weights over the signal helps to improve the 

equal error rate. 

 

Different weights are assigned to the points along the signal so as to reflect the 

stability at that point [37]. Those points, which are highly stable among genuine 

samples, should be more important and carry more information. On the other hand, 

those unstable points are less important and carry less information. So the weight for 

each of the points on the signal can be computed based on the stability at that position 

among several prototype signatures. By assigning different weights over the signal, 

the comparison between signals will be more meaningful, and an improvement in 

EER is expected [37]. In the following, we will show an improvement of the EER 

obtained from EPW with the added weights. The weights for the points along the 

signal are computed from the following: 

 

  (i)]s , (i),s (i),[s1/stdw(i) 1021
n …=    (4.29) 

 

N , 2, 1,i where …= . The N is the length of the signal. In equation (4.29), the weight 

for the ith point is computed as the inverse of the n-ordered standard deviation among 

the corresponding points of the ten enrolled signature samples. With the definition of 

the weights, the two similarity measures can be re-defined as: 
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Weighted correlation coefficient: 
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Weighted Euclidean distance: 
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In the researches at [26][38], the order ‘n’ in equation (4.29), is taken as n=1. In [42], 

Wirtz defined several values for n and the best result was obtained when n=2. In our 

research, we will set n, ranging from 1 to 5. Table 4-2 shows the experiment results. 

Note that n=0 (i.e. no weights) is also added in the table for the comparison purpose. 

 

 Euclidean distance Correlation coefficient 
Order X Y X_C Y_C Torque X Y X_C Y_C Torque

0 23.55 26.3 25.53 26.36 25.43 27.31 27.83 30.6 28.43 24.23 
1 22.59 27.27 26.40 27.33 22.33 24.51 30.35 25.51 28.13 20.23 
2 22.29 28.67 25.73 28.56 17.87 24.25 32.37 27.66 31.85 22.03 
3 23.51 27.02 29.08 27.73 20.80 26.96 30.68 26.66 33.20 23.68 
4 25.12 26.14 29.96 29.94 23.81 28.30 32.59 30.00 34.16 27.60 
5 26.10 28.59 30.06 31.16 26.36 29.04 34.57 32.26 34.50 29.66 

 

Table 4-2: Equal Error Rates for EPW with Added Weight (%) 

 

From Table 4-2 it is noted that in general with the added weights, it shows an 

improvement of EER. In particular, the improvement is most obvious for the torque 

signals. However for some signals, e.g. Y, Y_C (y of Centre of Mass), a slight setback 

of the error rate is observed. The cause of the phenomenon is mainly because those 

signals are not as robust as the torque signals. As a result, the stability information 
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derived from the prototype samples may not be consistent with that among the test 

samples. An illustration of the robustness of the torque signals, as compared to others, 

can be found in [38]. 

 

In addition, it is observed from Table 4-2 that, an over-ordered (i.e. n>2) weighting 

function will in general worsen the result. The best result obtained for the torque 

signal is by using the Euclidean distance measure, and setting the weight order ‘n’ 

equal to 2. In this case, the Equal Error Rate (EER) achieved is 17.87%. Figure 4-21 

shows the error rate curves. The operating points on the curves are chosen at a=10. 

When a=10, the FRR (False Rejection Ratio) is 7.4% while the FAR (False 

Acceptance Ratio) is 47.6%. In other words, in the shape matching stage, over half of 

the forged signatures (52.4%) are successfully rejected. It is done at a small cost that 

less than one among ten genuine signatures are falsely rejected. 

 

 

Figure 4-21: The Point of Operation for Shape Matching 

 

4.5.4 Computation Time for EPW 

Besides error rate, speed is another attribute used to compare the performance 

between DTW and EPW. The speed will be expressed in terms of computation time in 
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milliseconds. The simulation is done using Matlab 6.1 on a Pentium IV 1.9 GHz PC 

with 256 MB RAM, running Windows 98.  

 

The computation time recorded for DTW is the time of the non-linear warping 

process for a signal. The computation time recorded for EPW includes the three steps: 

marking the extreme points, matching the extreme points and linearly warping the 

segments. The simulation is performed for all the 25 users, using the five 

characteristic signals outlined in Section 4.2. The simulation results are tabulated in 

Appendix C. Table 4-3 summarizes the averaged computation time of the five signals 

for each user. 

 

Users 1 2 3 4 5 6 7 8 9 10 
DTW 415.9 414.5 414.5 416.0 416.8 415.2 415.2 416.3 416.3 416.0 
EPW 15.8 17.9 17.2 44.0 50.8 28.7 71.1 41.2 30.4 60.8 

 

Users 11 12 13 14 15 16 17 18 19 20 
DTW 415.1 416.6 414.2 416.5 416 417 417 415.1 416.4 414.7 
EPW 51.5 23.3 13.4 39.6 18.2 49.8 49.8 15.5 50.9 24.7 

 

Users 21 22 23 24 25   Ave 
DTW 414.5 415.5 415.8 415.2 416.7 415.7 
EPW 22.4 21.0 48.2 23.6 95.1 37.0 

 

Table 4-3: Computation Times using DTW and EPW for All Users (ms) 

 

The data in Table 4-3 are plotted in Figure 4-22. It is noted from Figure 4-22 that the 

computation time using DTW is quite constant. That is because the number of points 

involved in each of the DTW process is the same. The number of points is fixed at 

256 points. On the other hand, the computation time using EPW is variant among 

users. This is because the computation time is mainly determined by the number of 
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the extreme points involved in the EPs matching process. Because of the natural 

difference of the signature complexity, the number of extreme points identified is 

different for different users. The more complex a signature, the more extreme points 

identified and hence the longer the computation time. In fact, for the same user, the 

warping of the torque signal using EPW requires longer time, as the toque signal is 

more complex than other signals like x, y, etc (see Appendix C). In Table 4-3, the 

average computation time among the 25 users using DTW is 415.7 ms, while using 

EPW is only 37.0 ms, with an improvement of the factor of 11. From 0.4s to 0.037s, 

one may not be able to perceive the difference in the real-time applications. However 

the improvement would be most evident if it runs on a slower PC and deals with 

multiple users’ requests simultaneously. 

 

 

Figure 4-22: A Comparison of Speed between DTW and EPW 

 

4.6 Summary  

 

In this chapter, we propose a new warping technique called Extreme Points Warping 

(EPW). We compare EPW with the conventional technique DTW (Dynamic Time 
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Warping), using five characteristic shape signals and two similarity measures. The 

comparison has been done in two aspects: equal error rate and speed. It can be 

concluded that with the adoption of EPW, the equal error rate has improved by 20% 

and the speed has improved by a factor of 11.  
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Chapter 5: Feature Coding Stage 

 

5.1 Overview 

 

In the previous shape matching stage, we have examined the static shapes of the 

sample signatures to ensure that only good-quality signatures proceed to the feature- 

coding stage. The purpose of the feature-coding stage is to generate a 1-D bit-string 

from the dynamic features of the handwritten signature. The string should be unique 

and able to identify a person. Based on the bit-string, a private key is derived. As we 

have explained in Section 3.3, the bit-string has to be all-bits-correct. In this chapter, 

we will first illustrate that the existing signature identification schemes fail to achieve 

the requirement of all-bits-correctness. Hence we will define a new coding scheme to 

meet the requirement. We will then explain how to select the dynamic features for use 

in the system. Finally we will introduce how a private key can be generated. The 

private key generation is at the final processing stage in the BioPKI cryptosystem. We 

will include a brief explanation on the private key generation process in Section 5.5. 

  

5.2 Feature Coding and Signature Identification 

 

There are two different types of signature applications: signature verification and 

signature identification [61]. In simple terms, the former determines one-to-one 

matching while the later determines one-to-many matching [61]. We have explained 

the signature verification in Chapter 4. For signature identification, the system has no 

prior knowledge about who the user is. The system identifies the user by finding the 
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best match of the signature to a group of signatures. Detailed explanations on the 

difference between signature verification and signature identification can be found in 

[61].  

 

The purpose of the feature coding stage is to generate a string from a signature. The 

string should be unique to the user. In other words, it should be able to identify the 

user from a group of users. So the idea of feature coding is very similar to signature 

identification except it has two additional requirements. Firstly the features used for 

identification must be dynamic. It is one of the system design requirements, which 

were described in Section 3.3. Secondly, the identifiable string has to be all-bits-

correct. As we will explain the private key generation process in Section 5.5, the 

string will first be hashed using a hashing algorithm, e.g. SHA-1 [16]. One of the 

properties of a good hashing algorithm states that a single bit error at the input will 

cause the hashed output to be completely different (see [16]). So in order to generate 

the same private keys for the different genuine samples, the string obtained from each 

sample has to be all-bits-correct. 

 

Signature identification is not as commonly used as compared to signature 

verification [61]. In the following, we will present a brief review of the signature 

identification systems proposed in recent researches. It should be noted that none of 

the existing signature identification schemes fulfil the two requirements mentioned 

above, especially the all-bits-correctness.  

 

Pottier developed an automatic system in [59] to identify off-line handwritten 

signatures, using a connectionist approach. He first applied the image processing 
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techniques to extract the significant parameters from the signature images. Based on 

the extracted parameters, a signature was identified to belong to one individual by a 2-

layer perceptron neural network. The neural network was trained to recognize the 

parameters with tolerance [59].  The extracted parameters don’t have to be constant as 

the neural network can tolerate the variations.  

 

Ke Han proposed an identification system in [60], which used a set of geometric and 

topologic features to characterize each signature. The system mapped each signature 

into two strings of finite symbols. Because the strings varied for different signatures, a 

local associate indexing scheme was then used to match part of the string to that of the 

reference [60]. The features are static and the string of symbols is not constant. 

 

In Paulik’s work [61], he transformed a signature into a 1-D spatial stochastic 

sequence. An Autoregressive Hidden Markov Model was then employed to describe 

the evolution of sequence changes.  

 

In [18], Gupta proposed to represent a waveform by a complete tree. A single text 

string was obtained from two positional profiles, which were x, y signals versus time. 

The method could be extended to other dynamic signals, like velocity, acceleration 

etc. However the text string can hardly be exactly the same as variations are 

unavoidable in the tree representation [18].   

 

In view of the existing signature identification techniques outlined above, none of 

them extract features that are all-bits-correct. They are not meant to design in this 

way. Hence the existing identification techniques can’t be directly applied to our 
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feature coding stage. Instead, we propose a new coding scheme in Section 5.3. The 

new scheme provides a mechanism to achieve all-bits-correctness with a trade-off of 

the error rates.  

 

5.3 The Proposed Coding Scheme 

 

The coding scheme encodes a dynamic feature value into a decimal number, which is 

defined as the feature code for that feature. A set of dynamic features will be defined 

in Section 5.4. Later the feature codes of all the defined features will be concatenated 

together to form a code string. We will use one feature, i.e. pen-down time, as an 

example to demonstrate how the scheme works.  

 

 
(a) The histogram for all pen-down time values 

 
(b) A skeleton view of the histogram 

 

Figure 5-1: A Demonstration of Feature Coding for Pen-Down Time 

 

Figure 5-1 (a) shows the histogram for the pen-down time values of 750 authentic 

samples in our database. Figure 5-1 (b) is a skeleton view of Figure 5-1 (a). In Figure 
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5-1 (b), three boundaries are defined: whole boundary, database boundary and user 

boundary. The whole boundary includes all possible values for a feature. For 

example, the whole boundary range for the pen-down time is between 0 and infinity. 

The database boundary includes values collected from the database. The user 

boundary includes values for a particular user. The user boundary is defined as: 

 

User boundary = ( )TT TT stdb ,stdb ×+×−       (5.1) 

 

where ‘T ’ is the mean of the ten feature values computed from the ten enrolled 

signatures samples. The ‘stdT’ is the standard deviation of those ten values. The user 

boundary is flexible and its range is adjusted by the variable ‘b’. A bigger value of ‘b’ 

corresponds to more error tolerance and on the other hand, easier barrier for forgeries. 

 

In the defined scheme, the whole boundary will be divided into several segments as 

shown in Figure 5-1 (b). Each segment will be assigned with a decimal number 

starting from 0. The segmentation takes place in the following order. First a user 

boundary is defined with a chosen value ‘b’. Then the same boundary is unfolded to 

both ends before exceeding the database boundary. Finally the superfluous portion at 

either end would be extended into the whole boundary and becomes one segment. The 

two Superfluous Segments in Figure 5-1 (b) are No 0 and 6. The boundaries for all the 

segments will be defined in a template. The system would first extract a particular 

feature value, fit it into a segment and obtain the feature code, i.e. the sequence No. 

After processing all the features, the feature codes are concatenated to output a binary 

code string, as shown in Table 5-1. 
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Feature No 1 2 3 4 … n-1 N 
Feature Code 101 100 01 11 … 101 010 

 

Table 5-1: Concatenation of Feature Codes into a Code String 

 

We will use µ to denote the number of segments defined over the database boundary 

for a feature. For the feature of pen-down time, µ = 5 (see Figure 5-1 (b)), which 

excludes the 0th and 6th segments as they are superfluous. Hence the bit-information of 

this feature can be obtained as below: 

 

µλ 2log=      (5.2) 

 

The total bit-information, κ, for one person’s signature is the summation of λ for each 

of the defined features.  

 ∑= λκ      (5.3) 

 

The total number of bits varies from person to person. In general, the more consistent 

the user’s signature is, the bigger value of λ will be obtained and hence the more bit-

information will be added. The average bit-information for 25 users in the database is 

around 40 bits, which will be explained in Section 6.2. 

 

The template includes only the boundary definitions, without containing any hint on 

which particular segment a feature will fit in. It doesn’t release any information about 

the feature code nor arise any privacy concern as usually people have for the 

biometric storage. In the following section, we will explain the features used in the 

scheme. 
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5.4 Selection of Feature Parameters 

 

5.4.1 A Common Feature Set 

Ideally, for each feature used in the scheme, the histogram of the feature should be 

flat. A flat histogram is important because it will generate diversified feature codes for 

users. A diversified feature code for each feature helps to ensure the uniqueness of the 

concatenated feature string. Hence in the feature selection process, the features with 

relatively flat histograms are preferred. In addition, only the dynamic features should 

be included for feature coding. The rationale for this is that the dynamic features, 

unlike the static features, are transparent to users. Visually it does not give any hint 

about the feature codes even with the knowledge of all boundary definitions.  

 

Table 5-2 summarise a common set of 43 features. Most of these features are cited 

from [45]. Note that the shape-related static features defined in [45] are not included 

in the table. The defined 43 dynamic features can be grouped into five types: 

horizontal velocity related, vertical velocity related, altitude related, azimuth related 

and pen-down time related. In the table, peaks and valleys of a signal are identified by 

the EPs marking algorithm, as we have explained in Section 4.4.1. The Al+ and Az+ 

refer to part of the signal above the mean of the altitude and azimuth respectively, 

while the Al- and Az- are below the mean. The pressure-related features are not used, 

as the pressure data are quite vibrant and not consistent. In our project, we use the 

pressure signal only as the on-off signal to detect pen-down and pen-up. 
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1 Std of |Vx| 12 RMS of Vy- 23 Max Al 34 Mean of Az 

2 RMS of Vx+ 13 
Skewness of 

|Vy| 24 Min Al 35 Median of Az 

3 
Skewness of 

|Vx| 14 
Max forward 

Vy 25 Mean of Al peaks 36 
Mean of Az 

peaks 

4 Mean of Vx 15 
Max backward 

Vy 26 
Mean of Al 

valleys 37 
Mean of Az 

valleys 

5 Std of Vx 16 
Time of Vy 

last peak 27 
Amplitude of Al 

first peak 38 
Amplitude of 
Az first peak 

6 RMS of Vx 17 
Time of Vy 
last valley 28 

Amplitude of Al 
first valley 39 

Amplitude of 
Az first valley 

7 
Max forward 

Vx 18 
Skewness of 

Vy 29 
Amplitude of Al 

last valley 40 
Amplitude of 
Az last valley 

8 
Max 

backward Vx 19 RMS of Al+ 30 
Time of Al last 

peak 41 
Time of Az 

last peak 

9 
Time of Vx 

last peak 20 RMS of Al- 31 
Time of Al last 

valley 42 
Time of Az 
last valley 

10 
Time of Vx 
last valley 21 Mean of Al 32 RMS of Az+ 43 Pen down time 

11 
Skewness of 

Vx 22 Median of Al 33 RMS of Az-   
 

Table 5-2: A Common Set of 43 Features 

 

The histogram for each of the 43 features can be referred in Appendix D. As 

uniformly distributed features can hardly be found, we choose features with relatively 

flat data distributions. Figure 5-2 shows two such examples. Figure 5-2 (a) shows the 

histogram of the time of the Vx signal’s last peak, while Figure 5-2 (b) shows the 

histogram of the time of the Vy signal’s last peak.  

 

(a) Time of Vx last peak (b) Time of Vy last peak 

Figure 5-2: Features with Relatively flat Data Distributions 
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However, some features are not selected into the common feature set because of the 

data distribution lumped (much higher probability) in certain regions. Figure 5-3 

shows the data distributions of the two unselected features: standard deviation of Vy 

and max Az.  

 

 

(a) Std of Vy 

 

(b) Max Az 

Figure 5-3: Unselected Features with Lumped Data Distributions 

 

After the definition of the common set of features, we will introduce how to select a 

personalized feature set in Section 5.4.2.  

 

5.4.2 A Personalized Feature Set 

A personalized feature set reflects the individuality of each user [45]. In our project, 

we adopt a simple and effective selection algorithm used in [45] to select the 

personalized features for each user. In [45], the selection is based on the distance 

measure between the genuine signature and the forged signature. The distance 

measure for the ith feature defined in [45] is expressed as: 

 

),(),(

),(),(
22 ifia

ifmiam
di

σσ +

−
=      (5.4) 
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where m(a, i) and σ2(a, i) are the sample mean and the sample variance of the ith 

feature computed from the genuine signatures, respectively. Similarly, the m(f, i) and 

σ2(f, i) are the sample mean and sample variance computed from the forged 

signatures. The most important feature for a user will be the feature with the 

maximum distance measure. A top-down list of the features with importance in 

descending order can be obtained for each user. A personalized n-feature set will be 

the top n features on the list [45]. In Chapter 6, we will compare the overall 

performance using the entire 43 features and personalized feature sets.  

 

5.5 Private Key Generation Stage: An Example of DSA 

 

The Private Key Generation Stage is part of our BioPKI cryptosystem, but not the 

focus of the research work. We will, however, give a brief explanation of the 

operation at this stage. 

 

Pawan explained in details in [7] on how to generate a private key from a string. He 

used a conceptual example of iris sample and presumed that an all-bits-correct string 

had been obtained from the biometric sample.  In our project, we propose a feasible 

and realistic real-time application to output an all-bits-correct string from an on-line 

signature. Reader can refer to [7] for the private key generation process in details. 

 

To derive a private key from the code string, Digital Signature Algorithm (DSA) is 

preferred over Rivest Shamir Adleman (RSA) [7]. With DSA, the private key and the 

public key can be computed in the steps below. 
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1. Computation of p, q and g 

p=512~1024 bit prime number 

q=160 bit prime factor of (p-1) 

g=h(p-1)/q mod p, where h<(p-1) and h(p-1)/q mod p>1 

 

2. Generation of the private key 

Compute SHA1-hash [16] of code string obtained. The hash value is a 160-bit private 

key, denoted by x. 

 

3. Generation of the public key 

Compute y=gx mod p. ‘y’ is a p-bit public key. 

 

From step 2, one may appreciate the importance of all-bits-correctness since a hash 

function is involved. A single bit difference at the input would results in very big 

difference at the hashed output [16]. More explanations on DSA and the mathematical 

proof can be found in [17]. 

 

5.6 Summary 

 

In this chapter, we have explained the process at the feature coding stage of the 

BioPKI cryptosystem. In order to obtain an all-bits-correct code string from a set of 

dynamic features, we define a new coding scheme. In the scheme, each feature will 

output a feature code. The code string is formed, by concatenating all the feature 

codes. We have defined 43 dynamic features at this stage. The algorithm to select a 

personalized subset is presented. In addition, we have briefly summarized the steps 
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involved in the third processing stage: private key generation. An example of using 

DSA to derive a private key from the code string is described. The following chapter 

will describe the system performance for the BioPKI cryptosystem.  
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Chapter 6 Performance Evaluations 

 

6.1 Overview 

 

In the previous two chapters, we have covered all the processing stages of the 

proposed BioPKI cryptosystem. In this chapter, we will present an analysis of the 

system performance. The performance will be evaluated in two aspects: error rate and 

the average bit-length of the coding string. The average bit-length measures the 

robustness against brute-force attack [16]. The performance using the common set of 

features will be evaluated first. It will then be compared with using a subset of 

features. In addition, the uniqueness of the private key, its security strength and 

suggested remedies for practical applications are also introduced in this chapter. 

 

6.2 Analysis of Overall Performance 

 

The overall performance combines the results from both the shape matching and the 

feature coding. The accepted signatures are those, which not only pass the shape 

matching stage, but also achieve all-bits-correctness in the feature coding stage. The 

error rates will be expressed in terms of False Rejection Ratio (FRR) and False 

Acceptance Ratio (FAR) versus threshold. The intersection between FRR and FAR is 

defined as the Equal Error Rate (EER).  

 

We will evaluate the system performance in two aspects: EER and average bit-length. 

The EER is an important indicator of the error rate performance. The average bi-
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length indicates the length of the generated code string. A large bit-length value 

ensures the uniqueness of the code string and robustness against the brute-force 

attack. We will first show the performance using the entire 43 features. Then we will 

show how a personalized feature set can affect the performance of the BioPKI 

cryptosystem. 

 

6.2.1 Performance Using 43 Features 

When the entire 43 features are used for feature coding, the overall error rates are 

shown in Figure 6-1. The FRR and FAR are plotted versus the variable ‘b’. The 

variable ‘b’ has been defined in equation (5.1) to adjust the user boundary. 

 

 

Figure 6-1: The Error Curves for Overall Performance 

 

The initial results are encouraging. The EER is only 11.77%. The FAR indicates the 

percentage that a legal private key would be generated from a forgery. A low FAR is 

desired because it would give people high confidence about the legal validity of the 

private key generated from the BioPKI cryptosystem. As an example, we choose b=5 

as the operating point for practical applications. When b=5, the FRR is 31% and the 

FAR is only 0.8%.   
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An interesting note is on the 31% FRR, which may alleviate some people’s concern 

on the false alarm. From common perception, a string of all-bits-correct biometric 

data is difficult to obtain as the biometric features vary from time to time. It may be 

done at the expense of a high false alarm. However from our implementation using 

on-line signatures, the false alarm is at a reasonable level. Each user may try 1.4 times 

on average to get the correct private key from the signature, which is not too annoying 

to most of the people. It is worth paying a bit more effort on signing so as to enjoy the 

great convenience of not bringing around any smart card or remembering any 

passwords. 

 

When ‘b’ is chosen as 5, the bit-length of the code string for each user can be obtained 

from equation (5.3). The average bit-length for 25 users is 42.5 bits. The error rates 

and bit-length for each of the 25 users are tabulated in Table 6-1. 

 

User No. FRR (%) FAR (%) Bit-length κ 
1 35 0 50.09 
2 0 0 63.31 
3 15 10 56.96 
4 25 0 47.30 
5 40 0 51.30 
6 10 0 45.71 
7 50 0 44.21 
8 65 0 36.02 
9 10 0 2.58 

10 35 0 26.92 
11 20 0 26.81 
12 65 0 28.08 
13 70 0 53.13 
14 50 0 47.85 
15 15 0 38.58 
16 15 0 15.34 
17 15 10 32.54 
18 15 0 48.49 
19 45 0 25.92 
20 15 0 65.38 
21 30 0 74.00 
22 35 0 39.45 
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23 40 0 55.07 
24 35 0 47.75 
25 25 0 38.79 

Ave 31.0 0.8 42.5 
 

Table 6-1: The Error Rates and Bit-lengths for 25 Users 

 

In Table 6-1, it is noted that the bit-length for User 9 is only 2.58. This is undesirable 

although his FRR and FAR are quite low, which also suggests the big difference from 

conventional signature verification systems. In such a case, it remains secure against 

‘forging’, however appears very vulnerable to brute-force attack. An attacker may 

easily find out the code string by trying out bit-by-bit. This happens duo to the large 

deviations in the enrolled ten samples. This shows that the system is not suitable for 

those, whose signatures are not consistent.  

 

6.2.2 Performance Using a Personalized Feature Set 

In the second experiment, instead of using the entire 43 features, we choose a 

personalized subset for feature coding. The algorithm in selecting the best n features 

into the subset has been introduced in Section 5.4.2. We selected n=30, 20, 10 to form 

the personalized feature subset. The trade-off curve, i.e. FAR Vs FRR, for each of the 

‘n’ values is shown in Figure 6-2. 
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Figure 6-2: Trade-off Curves Using Personalized Features 

 

In Figure 6-2, an improvement in error rate with the use of personalized features is 

observed, which is also evident in [26][45][53]. Figure 6-3 shows the error curves and 

the operating points for the different three subsets. The operating point for each case 

is chosen on the curve, where the FAR is close to 1%. 

 

 
(a) n=10  

 

 
(b) n=20 

 
 

 
(c) n=30 

 
Figure 6-3: Error Curves Using Personalized Features 
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Corresponding to the operating points on the curves, the values of ‘b’ are all equal to 

5. By following equation (5.3), the bit-length for each user is computed. Table 6-2 

summarizes the error rates and average bit-length when different numbers of features 

are defined. 

 

Operating Point No of 
Features 

EER 
(%) b FRR (%) FAR (%) Ave tries 

Average 
bit-length 

43 11.77 5 31.0 0.8 1.44 42.5 
30 10.9 5 27.4 0.8 1.37 30.5 
20 9.32 5 22.8 0.8 1.29 20.9 
10 8.57 5 14.4 0.8 1.16 10.4 

 

Table 6-2: Error Rates and Bit-lengths for Different Numbers of Features 

 

When different numbers of features are defined, i.e. n = 43, 30, 20, 10, the EER 

improves gradually. The EER is reduced from 11.77% to 8.57%, an improvement of 

27.2%. At the operating points, while the FAR remains constant at 0.8%, the FRR is 

reduced from 31.0% to 14.4%.  Because of the reduced percentage of the FRR, the 

average successful tries to generate an authentic private key from handwritten 

signature are reduced from 1.44 to 1.16 times. 

 

However, in contrast to the improvement of the error rates, the average bit-length 

decreases dramatically from 42.5 bits to 10.4 bits, a 75.5% drop. This is because as 

fewer features involved in the feature coding, fewer feature codes are concatenated to 

form the code string. In conclusion, with the use of the personalized feature subset, 

the improvement of 27.2% in the EER is achieved at the expense of 75.5% drop in the 

average bit-length. Hence the personalized feature set is not recommended in the 

proposed BioPKI cryptosystem. In fact, we recommend to include more features into 
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the system to make the bit-length even longer, as we will explain this in details in 

Section 6.4. 

 

6.3 Uniqueness and Security Strength of the Private Key 

 

By nature, handwritten signatures may not be as unique as other types of biometrics, 

i.e. fingerprint, iris, and retina. When all the 43 features are used, the bit-information 

for an individual’s signature is on average around 40 bits. Ideally if the data 

distributions of all the defined features are uniform, the uniqueness of a signature is 1 

in 240. However the ideal uniformity is impossible and we could only choose features 

with relatively flat data distributions. Hence the actual uniqueness may be far less 

than 1 in 240. 

 

Besides the problem of uniqueness, a 40-bit string may not be strong enough against 

brute-force attack if someone tries different combinations, i.e. one bit by bit. A binary 

string or a key with 40 bit key length is considered weak in cryptography. For a 

comparison, the symmetric encryption algorithm - DES (Digital Encryption 

Standard), defines a key with 56-bit. But a 56-bit DES key is no longer regarded as 

secure against brute-force attack [16]. The latest encryption standard, AES (Advanced 

Encryption Standard) defines a key with 128-bit. A 128-bit key is commonly regarded 

as robust against any brute-force attack for some years ahead [16]. To enhance the 

security strength and improve the uniqueness, some suggestions are presented in 

Section 6.4.  
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6.4 Suggested Remedies 

 

In order to address the limitations on the uniqueness and the security strength, two 

remedies are suggested below: 

 

1. Include more features into the system 

The more features that are included, the more bit information will be added to the key 

length. In Table 6-2, we have used different numbers of features and achieved 

different key lengths. On average, the feature-to-bit-length ratio is about 1:1.01. If this 

ratio is preserved for the future selected features, we can tabulate the key lengths and 

the estimated numbers of features in Table 6-3, which will give us a guideline for 

future improvements. 

 

Key length (bit) 10.4 20.9 30.5 42.5 … 56 112 128 

No of features 10 20 30 43 … 55 111 127 

 

Table 6-3: Key Length and the Estimated Number of Features 

 

As shown in Table 6-3, to achieve the 128-bit strong security, a total of 127 features 

are required. However one may expect the False Rejection Ratio (FRR) to be higher 

since it would be more stringent to achieve all-bits-correctness. 

 

2. Add padding information to the code string 

A more feasible solution is by adding padding information. Before the 40-bit code 

string is hashed with SHA-1, it is attached with some padding information. The 
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padding information could be obtained from two methods: i) user’s keying in, or ii) 

the template. For the former, the padding information will be the user name and pass 

phase. For the later, the template may save the timestamp (in milliseconds) of user’s 

first-time registration, which is unique to each user. By either method, the uniqueness 

of the private key can be guaranteed. A more secure and reliable solution is the 

adoption of both methods. 

 

6.5 Summary 

 

In this chapter, we evaluate the system performance of the BioPKI cryptosystem. As 

far as the bit-length of the code string is concerned, the use of the entire 43 features 

instead of a personalized subset is recommended. The EER of the system is only 

11.77%. The false alarm is at a reasonable level. A user may try on average 1.4 times 

to generate a correct private key. However, the system is relatively vulnerable to 

brute-force attack, because the average bit-length of the code string is only about 40 

bits.  To improve the uniqueness and robustness against the brute-force attack, we 

have suggested two remedies of the system for practical applications.  
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Chapter 7 Conclusions and Recommendations 

 

7.1 Conclusions 

 

A novel BioPKI cryptosystem, which dynamically generates the private keys from on-

line handwritten signatures, has been implemented and evaluated. The system is an 

innovative way to combine biometrics and public key infrastructure (PKI). One 

particular application under the PKI is the use of digital signature. A sender needs a 

private key to sign an e-document and obtain a digital signature. The recipients will 

use the sender’s public key to verify the digital signature. The private key has to be 

kept securely with the sender. Usually it is stored in a smart card or a PC and 

protected by a password. The proposed BioPKI cryptosystem offers a more secure 

and reliable way for the private key storage. In addition, it facilitates a user with great 

convenience for the use of the private key. The user doesn’t need to bring around any 

smart card or memorize any password, since the private key can be derived 

dynamically from the hand signature. The success of the system is based on the fact 

that certain features for human handwritten signature are consistent. 

 

The BioPKI cryptosystem comprises three processing stages: shape matching, feature 

coding and private key generation. In the shape matching stage, it exams the signature 

shapes and rules out poor-quality signatures. A new warping technique, Extreme 

Points Warping (EPW), has been proposed at this stage. A comparative evaluation 

shows that it is more effective than the conventional warping technique, Dynamic 
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Time Warping (DTW). With the use of EPW, the Equal Error Rate (EER) has been 

improved by 20% and the computation time has been reduced by a factor of 11.  

 

In the second processing stage: feature coding, it extracts dynamic features to 

generate an all-bits-correct string. To achieve all-bits-correctness, we have proposed a 

new feature-coding scheme. Under the scheme, a dynamic feature is transformed into 

a feature code. A code string is formed, by concatenating the feature codes for all the 

defined dynamic features. We have defined 43 dynamic features at this stage. The 

data distribution is an important factor when considering the feature selection. 

Features with lumped data distributions are carefully excluded in the feature set. At 

this stage, a personalized feature subset proves to improve the EER. However, it is not 

recommended as it reduces the bit-length of the code string. A code string with short 

bit-length is vulnerable to brute-force attack. In the third processing stage: private key 

generation, it generates a private key based on the code string. The key generation 

follows some well-established public algorithms, e.g. RSA and DSA. The DSA has 

been used as an example to illustrate the generation process. 

 

The overall system performance is encouraging. The EER is only 11.77%. At a 

chosen operating point on the error curve, the False Acceptance Ratio (FAR) is 0.8% 

and the False Rejection Ratio (FRR) is 31.0%. The 31.0% FRR shows that the false 

alarm is at a reasonable level. A user may need to try on average 1.4 times in order to 

get the authentic private key. The average bit-length of the code string is about 40 

bits. A 40-bit code string may not be long enough to ensure uniqueness for a large 

number of users. In addition, the relatively short code string is not strong enough 

against the brute-force attack, in which an attacker tries out the code string bit by bit. 
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Hence for practical applications, we have proposed two remedies to improve the 

uniqueness and enhance the security strength against the brute-force attack. 

 

7.2 Recommendations for Future Research 

 

Three possible aspects of future research are suggested: 

1. Inclusion of more dynamic features 

To improve the uniqueness and the security strength, more dynamic features can be 

included at the feature coding stage. In our project, we didn’t make use of the pressure 

signal. This is mainly because the tablet used in this project is too responsive to the 

pressure changes. As a result, the captured pressure signal is quite vibrant, which 

makes it unsuitable for use in the feature coding. With the advancement of the tablet 

hardware technology, the new-model tablet is likely to capture the stable pressure 

signals. Thus the features extracted from the pressure signal can be included into the 

feature coding, e.g. the mean, standard deviation, maximum, number of peaks and 

valleys of the pressure signal.  

 

2. Segmentation of the signature signals 

In the feature coding stage, the dynamic features are abstracted from the complete 

signature signals. In fact, the stabilities vary for the sampled points along the signals. 

Some parts of the signal may have large intra-personal variability, which will have 

some effect on the global features extracted from the signal. Hence it is suggested that 

a signature signal can be segmented based on the stabilities. The features will be 

extracted from the stable segments on the signal. In this way, the global features 

should be more consistent.  
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3. Investigation of signing in different environments 

In the research, we had the users provide their signatures in the same environment. In 

other words, a user provides his/her signature samples in the same place using the 

same tablet. To deploy the BioPKI cryptosystem for an on-line application, e.g. e-

commerce, one may expect that users sign from different places and use different 

tablets. In the future research, some additional preprocessing steps need to be 

investigated to deal with the difference in tablet size, resolution, data sampling rate, 

capture screen size and monitor resolution.  

 

4. Adoption of other types of biometrics 

In this project, we have mainly explored one type of biometrics: on-line signatures. 

There are also other types of biometrics, e.g. fingerprint, iris, keystroke, speech etc. 

Each type has the potential to implement Generating Private Keys from Biometrics 

(GPKB) applications. An enhanced BioPKI cryptosystem is likely based on the 

multimodal biometrics [63], which involves more than one type of biometrics.  
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• Hao Feng, Chan Choong Wah, “Private Key Generation from On-line 
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Appendix A: A Summary of On-line Signature Verification 

Projects During 1994~2002 

 

 

Database 
Authors Preprocess 

Feature 
Extraction 

Gen. For. 

Functional 
Comp 

Parametric 
Comp 

Error 
Rate 

Ref 

A.K. Jain 
(2002) 

Smoothing, 
Re-sampling 

F: δx, δy, sinα, cosα 
v 

P: stroke No. 
520 60 Weighted Eucli-

dist after DTW Eucli-dist FRR=2.8% 
FAR=1.6% [46] 

Z. D. 
Lejtman 
(2001) 

Re-sampling, 
Size 

P: 80 coefs from 
Wavelet transform 922/2 922/2 – 

3-layer back-
propagation 

neural network 

FRR=0.0% 
FAR=0.08% [54] 

G.V. Kiran 
(2001) NA P: 10 features NA NA – 

Accumulation 
of probabilistic 

scores 

FRR=0% 
FAR=5% [51] 

D. 
Sakamoto 

(2001) 

Corner-preserving 
Re-sampling  F: θ, length, p, Al, Az 861 1921 Eucli-dist etc 

after DTW – EER=3.0% [40] 

T.H. Rhee 
(2001) 

Re-sampling, 
Size 

P: 6 and 5 features 
for skilled and 

random forgery in 
each segment 

1000 1000 – Eucli-dist EER=3.4% [52] 

W.S. 
Wijesoma 

(2000) 

Translation, 
Orientation 

P: Use GA to select a 
personal set from10 

static and 14 dynamic 
features 

1230 410 – Fuzzy logic 
classifier EER=4.45% [53] 

M.M Ma 
(2000) 

Translation, 
Orientation 

F: DFT of x, y 
P: Use DP function 
to select 10 personal 

features from 24  

1230 410 Weighted 
correlation 

Fuzzy logic 
classifier EER=4.6% [26] 

S. Hangai 
(2000) 

Translation, 
Duration 

F: 3D-v 
X, y, p 600 480 Eucli-dist after 

DTW – EER=0% [29] 

N. Mohan-
krishnan 
(1999) 

256-point spatial re-
sampling  

P: segmentation by 
DTW , 16 AR coffs + 

2 features for each 
segment 

2400 1920 – 16-neuron 
neural network 

FRR=0.78% 
FAR=1.6% [35] 

Q.Z. Wu 
(1998) 

Size, 
Re-sampling 

P: Log FFT coefs for 
each of frames 

270 
560 650 – 

Dynamic 
similarity 

function as 
classifier 

FRR=1.4% 
FAR=2.8% [19] 

J.G.A 
Dolfing 
(1998) 

Duration 

P: segmentation by 
Vy=0, 32-feature 
vector for each 

segment 

1530 
240 
1530 
1470 

– Log likelihood 
from HMM 

EER= 
1.0~1.9% [48] 
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Database 
Authors Preprocess 

Feature 
Extraction 

Gen. For. 

Functional 
Comp 

Parametric 
Comp 

Error 
Rate 

Ref 

R. Martens 
(1997) 

Smoothing, 
Re-sampling, 
Orientation, 

F: 3 forces, Al, Az 360 Ran. 

Shape and 
motion 

measures after 
asymmetric 

DTW 

– EER=8% [30] 

V.S Nalwa 
(1997) 

Size, 
Orientation 

F: x, y, torque and 
moments of inertia 1452 1150 

Weighted 
correlation 
after DTW 

– EER=3.6% [38] 

Q.Z. Wu 
(1997) NA F: x, y, Vx, Vy 200 246 

Eucli-dist after 
split-merge 
matching 

– FRR=13.5% 
FAR=2.8% [43] 

P. Zhao 
(1996) 

Duration, 
Translation, 

Orientation, Size 
and 256-point Re-

sampling 

F: x, y, p 300 300 

Shape and 
motion 

measures with 
weight after 

DTW 

– EER=1.3% [37] 

L.L. Lee 
(1996) NA 

P: use Euclid-dist 
and K-L to select 
personal features 

from 49 

5603 1148 – 

Majority 
classifier 
based on 
Eucli-dist 

EER=2.5% [45] 

B. Wirtz 
(1995) Re-sampling F: x, y 6000 6000 

Shape 
measure after 
stroke-based 

DTW 

– EER=9.9% [42] 

F. Bauer 
(1995) NA 

F: x, y, p 
P: Redundancy and 

Fisher’s F test to 
select 84 common 
features from 300 

644 669 

Shape and 
motion 

measures after 
DTW 

– EER=6.6% [41] 

L. Yang 
(1995) 

Orientation, 
Size 

F: directional angle 
along length 496 Ran 

Probability 
that a sample 
is from a ref 

HMM 

– FRR=1.75% 
FAR=4.44% [47] 

S.H. Kim 
(1995) NA 

P: User forward 
method to select 

23 common 
features from 76 

1080 1080 – 
Eucli-dist with 

personal 
weights 

EER=4.28% [44] 

M. J. 
Paulik 
(1994) 

Translation, 
512-point re-

sampling, 
Remove end points 

P: Vector AR 
model coefs for 

each of 8 segments 
100 Ran – 

Distance 
between coef 

matrices 

Best 
EER=2.87% [56] 

L.L. Lee 
(1994) 

Duration,  
Size  

P: Use Eucli-dist 
to select 15 

personal features 
from 42 or 49 

5603 4762 – 

Majority 
classifier 
based on 
Eucli-dist 

EER≈10% [15] 
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Appendix B: Some Signature Examples in the Database 
 
 

Ref 

 

User No. 1 

  
Genuine sample 

1-5 

     

6-10 
     

11-15 

     

16-20 
     

Forgeries 

1-5 

     

6-10 
     

 
 
 
 

Ref 
 

User No. 2 

  
Genuine sample 

1-5 
     

6-10 
     

11-15 
     

16-20 

     
Forgeries 

1-5 
     

6-10 
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Ref 

 

User No. 9 

  
Genuine sample 

1-5 
     

6-10 
     

11-15 
     

16-20 
     

Forgeries 

1-5 
     

6-10 
     

 
 
 
 
 

Ref 

 

User No. 10 

  
Genuine sample 

1-5 
     

6-10 
     

11-15 
     

16-20 

     
Forgeries 

1-5 
     

6-10 
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Ref 

 

User No. 19 

  
Genuine sample 

1-5 
     

6-10 
     

11-15 
     

16-20 
     

Forgeries 

1-5 
     

6-10 
     

 
 
 
 
 
 
 

Ref 

 

User No. 20 

  
Genuine sample 

1-5 
     

6-10 
     

11-15 
     

16-20 
     

Forgeries 

1-5 
     

6-10 
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Appendix C: Execution time using DTW and EPW 

 
DTW (ms) 
 
Users 1 2 3 4 5 6 7 8 9 10 

X 420.6 418.1 420.7 429.7 424.2 422.6 419.4 428.6 428 420.6 
Y 424.7 421.7 420.3 423.7 427.6 425.3 427.7 425.9 420.6 426.4 

X_C 409.4 408.7 411.3 403.7 411.1 408.3 406.7 408.1 410.1 412.1 
Y_C 411.7 405.8 407.3 413.8 407.9 410.2 412.2 410.6 405.8 405.4 

Torque 412.9 418.4 413.1 409.2 413 409.6 410.2 408.2 416.8 415.4 
Ave 415.9 414.5 414.5 416.0 416.8 415.2 415.2 416.3 416.3 416.0 

 
Users 11 12 13 14 15 16 17 18 19 20 

X 419.6 426.2 423.4 425.4 428.1 422.9 421.8 425.9 427 422.9 
Y 418 422.9 417.8 422.6 418.8 424.9 429.2 426.7 427.6 423.6 

X_C 417.3 412.3 410.6 413.1 413.4 412.4 412.1 402.3 405.4 404.4 
Y_C 407.1 407 407.6 408.3 403.7 409 413.6 415.2 412.4 413.6 

Torque 413.4 414.8 411.7 413 416 415.6 408.2 405.3 409.6 408.9 
Ave 415.1 416.6 414.2 416.5 416 417 417 415.1 416.4 414.7 

 
Users 21 22 23 24 25 

X 422.9 423.2 427.3 422.1 420.8
Y 423.3 422.2 424.4 425.9 428.3

X_C 406.3 412.1 409.7 407.9 412.9
Y_C 408.4 409.9 406.6 412.8 409.2

Torque 411.7 410 410.8 407.1 412.3
Ave 414.5 415.5 415.8 415.2 416.7

 
EPW (ms) 
 
Users 1 2 3 4 5 6 7 8 9 10 

X 10 19.1 16.4 46.8 48 24.3 74.3 37.4 19.9 22.6
Y 18.3 12.2 14 38.6 36.3 30.1 78.1 37.4 54.2 104.6

X_C 7.9 8.4 13.8 26.8 37.6 19.6 41.2 30 13 16.7
Y_C 16.2 12.7 14.7 36.6 26.2 27.7 53.7 21.8 26 66.2

Torque 26.8 36.9 27.3 71.4 106 41.7 108.1 79.4 38.9 93.9
Ave 15.8 17.9 17.2 44.0 50.8 28.7 71.1 41.2 30.4 60.8

 
Users 11 12 13 14 15 16 17 18 19 20 

X 44.7 17.1 13.7 43.7 14.2 37.9 27 14.3 51.3 25.9
Y 47.6 26.3 8.7 31.1 20.2 69.7 90.8 13.6 55.3 17.8

X_C 19.6 10.4 8.3 37.2 9.1 18.9 18.6 10.9 24.4 16.4
Y_C 41.9 19.9 12.3 18.6 15.9 52 24.9 12.7 48.1 19.3

Torque 103.6 42.6 24 67.6 31.4 70.6 87.7 26.2 75.3 44.1
Ave 51.5 23.3 13.4 39.6 18.2 49.8 49.8 15.5 50.9 24.7

 
Users 21 22 23 24 25 

X 18.9 20.6 42.7 21.8 112.1
Y 10.9 19.9 55 16.2 88.1

X_C 12.8 12.6 29.9 20.4 50.2
Y_C 14 23.3 32.9 19.2 45

Torque 55.2 28.7 80.4 40.4 180.3
Ave 22.4 21.0 48.2 23.6 95.1
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Appendix D: Histograms of the 43 Features 
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Time of 
Vx last 
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Appendix E: Technical Terms Used in the Thesis 

 

Biometrics: A technology that automates the identification of a person by 

analysing their physical or behavioural traits 

BioPKI: The cryptosystem we proposed in the research, which 

dynamically generate private keys from the on-line handwritten 

signature 

Digital signature: A checksum which depends on all the bits of transmitted e-

document, and also on a secret (or private) key, but which can 

be checked without knowledge of the secret key 

DSA: Digital Signature Algorithm 

DTW:   Dynamic Time Warping 

EER:   Equal Error Rate 

EPW: Extreme Points Warping – a new warping technique proposed 

in the research to replace Dynamic Time Warping 

EP:   Extreme Point 

EPs:   Extreme Points 

FAR:   False Acceptance Ratio 

FRR:    False Rejection Ratio 

PKI:   Private Key Infrastructure 

SHA-1:  Secure Hashing Algorithm 


