# Password Authenticated Key Exchange by Juggling A key exchange protocol without PKI

#### Feng Hao

Centre for Computational Science University College London

Security Protocols Workshop '08



#### Outline

- Introduction
- 2 Related work
- Our Solution
- 4 Evaluation
- **5** Summary

### Password Authenticated Key Exchange

#### Definition

Password Authenticated Key Exchange (PAKE) studies how to establish a secure communication channel between two parties solely based on a shared low-entropy password.

#### A concrete example

- Alice and Bob share a four-digit code.
- Now Alice wants to send Bob a private message.
- But, eavesdropping is everywhere.
- And attackers may intercept a message, and change it at will.
- Bootstrap a high-entropy key from a low-entropy secret. Is it possible?

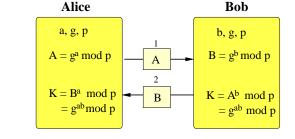


#### The PAKE problem

#### Research development

- In 1992, Bellovin and Merrit proposed EKE, a milestone.
- In 1996, Jablon designed SPEKE, another well-known scheme.
- In 2000, IEEE formed P1363.2 Working Group to standardize PAKE solutions. Still on-going ...

#### To date, the problem remains unsolved.


- Patent is one big issue; many schemes were patented.
- Also there are technical issues.



#### Patent is one big issue

- EKE (1992) was patented by Lucent.
- SPEKE (1996) was patented by Phoenix.
- SRP-6 (1998) was patented by Stanford.
- OPAKE (2005) was patented by DoCoMo.
- In practice, many applications have no choice but to use SSL/TLS, which relies on a PKI in place.

#### A Basic Diffie-Hellman protocol



- EKE modifies the protocol by encrypting A and B with a password, hence the name "Encrypted Key Exchange".
- SPEKE modifies the protocol by replacing g with a password-derived variable, say a hash of password.



### Reported Weaknesses with EKE

#### Practical attack

• An attacker can narrow down the password range [Jaspan'96].

#### Theoretical analysis

 Proving the EKE security requires a strong "ideal-cipher model" assumption [Bellare et al'00]

#### Efficiency

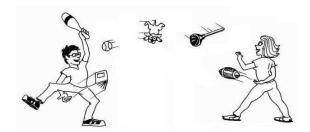
• EKE uses long exponents by definition.

### Reported Weaknesses with SPEKE

#### Practical attack

 An attacker can guess multiple passwords in one try [Zhang'04].

#### Theoretical analysis


 Proving the security of SPEKE requires relaxing the requirements – allow multiple guesses of password in on try [MacKenzie'01].

#### Efficiency

SPEKE uses long exponents by definition.



#### A New Approach – Public Key Juggling



- A technique first devised to solve the Dining Cryptographers problem [Hao, Zielinski'06], in a multi-party case.
- We apply the juggling technique to the two-party case.



### Password Authenticated Key Exchange by Juggling

#### Round 1:

- ① Alice sends  $g^{x_1}, g^{x_2}$  and Know-Proof  $\{x_1, x_2\}$ .
- ② Bob sends  $g^{x_3}, g^{x_4}$  and Know-Proof  $\{x_3, x_4\}$ .

#### Round 2:

- ① Alice sends  $A = g^{(x_1+x_3+x_4)\cdot x_2\cdot s}$  and Know-Proof  $\{x_2\cdot s\}$ .
- ② Bob sends  $\mathcal{B} = g^{(x_1 + x_2 + x_3) \cdot x_4 \cdot s}$  and Know-Proof  $\{x_4 \cdot s\}$ .

#### To get a common key:

- Alice compute  $K = (\mathcal{B}/g^{x_2 \cdot x_4 \cdot s})^{x_2} = g^{(x_1 + x_3) \cdot x_2 \cdot x_4 \cdot s}$ .
- Bob computes  $K = (A/g^{x_2 \cdot x_4 \cdot s})^{x_4} = g^{(x_1 + x_3) \cdot x_2 \cdot x_4 \cdot s}$ .
- In this juggling game, each public key is a ball.



### Why the Knowledge Proofs in the protocol?

#### The sixth principle in designing robust protocols

• "Do not assume that a message you receive has a particular form (such as  $g^r$  for known r) unless you can check this." [Anderson,Needham'95]

#### Schnorr's signature

- A well-established technique
- Non-interactive, efficient.
- It allows one to prove knowledge of r for  $g^r$  without leaking it.

| Item | Description                                               | No of Exp | Time (ms) |
|------|-----------------------------------------------------------|-----------|-----------|
| 1    | Compute $\{g^{x_1}, g^{x_2}\}$ and KPs for $\{x_1, x_2\}$ | 4         | 23        |
| 2    | Verify KPs for $\{x_3, x_4\}$                             | 4         | 24        |
| 3    | Compute $\mathcal{A}$ and KP for $\{x_2 \cdot s\}$        | 2         | 9         |
| 4    | Verify KP for $\{x_4 \cdot s\}$                           | 2         | 10        |
| 5    | Compute $\kappa$                                          | 2         | 9         |
|      | Total                                                     | 14        | 75        |

- It requires 14 exponentiations, while EKE and SPEKE only 2.
- But, both EKE and SPEKE require long exponents.
- One exp is 6-7 times more expensive than in J-PAKE for a typical p, q setting.
- Overall, the cost is actually about the same.



| Item | Description                                               | No of Exp | Time (ms) |
|------|-----------------------------------------------------------|-----------|-----------|
| 1    | Compute $\{g^{x_1}, g^{x_2}\}$ and KPs for $\{x_1, x_2\}$ | 4         | 23        |
| 2    | Verify KPs for $\{x_3, x_4\}$                             | 4         | 24        |
| 3    | Compute $\mathcal A$ and KP for $\{x_2 \cdot s\}$         | 2         | 9         |
| 4    | Verify KP for $\{x_4 \cdot s\}$                           | 2         | 10        |
| 5    | Compute $\kappa$                                          | 2         | 9         |
|      | Total                                                     | 14        | 75        |

- It requires 14 exponentiations, while EKE and SPEKE only 2.
- But, both EKE and SPEKE require long exponents.
- One exp is 6-7 times more expensive than in J-PAKE for a typical p, q setting.
- Overall, the cost is actually about the same.



| Item | Description                                               | No of Exp | Time (ms) |
|------|-----------------------------------------------------------|-----------|-----------|
| 1    | Compute $\{g^{x_1}, g^{x_2}\}$ and KPs for $\{x_1, x_2\}$ | 4         | 23        |
| 2    | Verify KPs for $\{x_3, x_4\}$                             | 4         | 24        |
| 3    | Compute $\mathcal{A}$ and KP for $\{x_2 \cdot s\}$        | 2         | 9         |
| 4    | Verify KP for $\{x_4 \cdot s\}$                           | 2         | 10        |
| 5    | Compute $\kappa$                                          | 2         | 9         |
|      | Total                                                     | 14        | 75        |

- It requires 14 exponentiations, while EKE and SPEKE only 2.
- But, both EKE and SPEKE require long exponents.
- One exp is 6-7 times more expensive than in J-PAKE for a typical p, q setting.
- Overall, the cost is actually about the same.



| Item | Description                                               | No of Exp | Time (ms) |
|------|-----------------------------------------------------------|-----------|-----------|
| 1    | Compute $\{g^{x_1}, g^{x_2}\}$ and KPs for $\{x_1, x_2\}$ | 4         | 23        |
| 2    | Verify KPs for $\{x_3, x_4\}$                             | 4         | 24        |
| 3    | Compute $\mathcal{A}$ and KP for $\{x_2 \cdot s\}$        | 2         | 9         |
| 4    | Verify KP for $\{x_4 \cdot s\}$                           | 2         | 10        |
| 5    | Compute $\kappa$                                          | 2         | 9         |
|      | Total                                                     | 14        | 75        |

- It requires 14 exponentiations, while EKE and SPEKE only 2.
- But, both EKE and SPEKE require long exponents.
- One exp is 6-7 times more expensive than in J-PAKE for a typical p, q setting.
- Overall, the cost is actually about the same.



| Item | Description                                               | No of Exp | Time (ms) |
|------|-----------------------------------------------------------|-----------|-----------|
| 1    | Compute $\{g^{x_1}, g^{x_2}\}$ and KPs for $\{x_1, x_2\}$ | 4         | 23        |
| 2    | Verify KPs for $\{x_3, x_4\}$                             | 4         | 24        |
| 3    | Compute $\mathcal{A}$ and KP for $\{x_2 \cdot s\}$        | 2         | 9         |
| 4    | Verify KP for $\{x_4 \cdot s\}$                           | 2         | 10        |
| 5    | Compute $\kappa$                                          | 2         | 9         |
|      | Total                                                     | 14        | 75        |

- It requires 14 exponentiations, while EKE and SPEKE only 2.
- But, both EKE and SPEKE require long exponents.
- One exp is 6-7 times more expensive than in J-PAKE for a typical p, q setting.
- Overall, the cost is actually about the same.



| Item | Description                                               | No of Exp | Time (ms) |
|------|-----------------------------------------------------------|-----------|-----------|
| 1    | Compute $\{g^{x_1}, g^{x_2}\}$ and KPs for $\{x_1, x_2\}$ | 4         | 23        |
| 2    | Verify KPs for $\{x_3, x_4\}$                             | 4         | 24        |
| 3    | Compute $\mathcal A$ and KP for $\{x_2 \cdot s\}$         | 2         | 9         |
| 4    | Verify KP for $\{x_4 \cdot s\}$                           | 2         | 10        |
| 5    | Compute $\kappa$                                          | 2         | 9         |
|      | Total                                                     | 14        | 75        |

- It requires 14 exponentiations, while EKE and SPEKE only 2.
- But, both EKE and SPEKE require long exponents.
- One exp is 6-7 times more expensive than in J-PAKE for a typical p, q setting.
- Overall, the cost is actually about the same.



| Item | Description                                               | No of Exp | Time (ms) |
|------|-----------------------------------------------------------|-----------|-----------|
| 1    | Compute $\{g^{x_1}, g^{x_2}\}$ and KPs for $\{x_1, x_2\}$ | 4         | 23        |
| 2    | Verify KPs for $\{x_3, x_4\}$                             | 4         | 24        |
| 3    | Compute $\mathcal A$ and KP for $\{x_2 \cdot s\}$         | 2         | 9         |
| 4    | Verify KP for $\{x_4 \cdot s\}$                           | 2         | 10        |
| 5    | Compute $\kappa$                                          | 2         | 9         |
|      | Total                                                     | 14        | 75        |

- It requires 14 exponentiations, while EKE and SPEKE only 2.
- But, both EKE and SPEKE require long exponents.
- One exp is 6-7 times more expensive than in J-PAKE for a typical p, q setting.
- Overall, the cost is actually about the same.



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | _             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | _             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | -             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | _             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | _             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | _             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | _             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | ı             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



| Modules      | Security property   | Attacker type            | Assumptions   |
|--------------|---------------------|--------------------------|---------------|
| Schnorr      | leak 1-bit: whether | passive/active           | DL and        |
| signature    | sender knows        |                          | random oracle |
|              | discrete logarithm  |                          |               |
| Password     | indistinguishable   | passive/active           | DDH           |
| encryption   | from random         |                          |               |
| Session      | incomputable        | passive                  | CDH           |
| key          | incomputable        | passive (know s)         | CDH           |
|              | incomputable        | passive (know other      | CDH           |
|              |                     | session keys)            |               |
|              | incomputable        | active (if $s' \neq s$ ) | CDH           |
| Key          | leak nothing        | passive                  | -             |
| confirmation | leak 1-bit          | active                   | CDH           |
|              | whether $s' = s$    |                          |               |



### Summary of J-PAKE security proofs

- Off-line dictionary attack resistance: It does not leak any password verification information to a passive attacker.
- 2. Known-key security: It prevents a disclosed session key from affecting the security of other sessions.
- Forward secrecy: It produces session keys that remain secure even when the password is later disclosed.
- On-line dictionary attack resistance: It strictly limits an active attacker to test only one password per protocol execution.

By comparison, EKE does not fulfill 1, and SPEKE does not fulfill 4.



### Comparison to the de facto standard SSL/TLS

Alice: "I know the password to Prince William's email."

Bob: "No, you don't."

Alice: "Yes, I do."
Bob: "Prove it"

DOD: Prove IL.

Alice: "All right, I tell you." (She whispers in Bob's ear)

Bob: "Interesting. Now I'm going to tell the *Daily Mirror*."

Alice: "Oops!"

#### Using J-PAKE: a Zero Knowledge Proof protocol

- Reveal only one-bit: whether or not one knows the password.
- Much more resistant against phishing attacks.
- In addition, it requires no PKI deployments \*\*\*



### Summary

#### We proposed the J-PAKE protocol

- Authenticate password? Let's play a game.
- If juggling successful, both sides obtain a session key.
- If failure, it leaks nothing more than "wrong password".
- Better security than EKE and SPEKE, with comparable efficiency.

#### Compare with SSL/TLS

- It prevents leaking passwords, say to a fake bank website.
- It requires no PKI developments.



## Thank you!