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Abstract—In a two-server password-authenticated key exchange (PAKE) protocol, a client splits its password and stores two shares of

its password in the two servers, respectively, and the two servers then cooperate to authenticate the client without knowing the

password of the client. In case one server is compromised by an adversary, the password of the client is required to remain secure. In

this paper, we present two compilers that transform any two-party PAKE protocol to a two-server PAKE protocol on the basis of the

identity-based cryptography, called ID2S PAKE protocol. By the compilers, we can construct ID2S PAKE protocols which achieve

implicit authentication. As long as the underlying two-party PAKE protocol and identity-based encryption or signature scheme have

provable security without random oracles, the ID2S PAKE protocols constructed by the compilers can be proven to be secure without

random oracles. Compared with the Katz et al.’s two-server PAKE protocol with provable security without random oracles, our ID2S

PAKE protocol can save from 22 to 66 percent of computation in each server.

Index Terms—Password-authenticated key exchange, identity-based encryption and signature, Diffie-Hellman key exchange, decisional

Diffie-Hellman problem
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1 INTRODUCTION

TO secure communications between two parties, an
authenticated encryption key is required to agree on in

advance. So far, two models have existed for authenticated
key exchange. One model assumes that two parties already
share some cryptographically-strong information: either a
secret key which can be used for encryption/authentication
of messages, or a public key which can be used for encryp-
tion/signing ofmessages. These keys are random and hard to
remember. In practice, a user often keeps his keys in a per-
sonal device protected by a password/PIN. Another model
assumes that users, without help of personal devices, are only
capable of storing “human-memorable” passwords.

Bellovin and Merritt [4] were the first to introduce pass-
word-based authenticated key exchange (PAKE), where
two parties, based only on their knowledge of a password,
establish a cryptographic key by exchange of messages. A
PAKE protocol has to be immune to on-line and off-line dic-
tionary attacks. In an off-line dictionary attack, an adversary
exhaustively tries all possible passwords in a dictionary in
order to determine the password of the client on the basis of
the exchanged messages. In an on-line dictionary attack, an

adversary simply attempts to login repeatedly, trying each
possible password. By cryptographic means only, none of
PAKE protocols can prevent on-line dictionary attacks. But
on-line attacks can be stopped simply by setting a threshold
to the number of login failures.

Since Bellovin and Merritt [4] introduced the idea of
PAKE, numerous PAKE protocols have been proposed. In
general, there exist two kinds of PAKE settings, one
assumes that the password of the client is stored in a single
server and another assumes that the password of the client
is distributed in multiple servers.

PAKE protocols in the single-server setting can be classi-
fied into three categories as follows.

Password-only PAKE: Typical examples are the
“encrypted key exchange” (EKE) protocols given by Bello-
vin and Merritt [4], where two parties, who share a pass-
word, exchange messages encrypted by the password, and
establish a common secret key. The formal model of security
for PAKE was firstly given in [3], [8]. Based on the security
model, PAKE protocols [1], [2], [5], [10], [11], [16], [20], [22]
have been proposed and proved to be secure.

PKI-based PAKE: PKI-based PAKE protocol was first given
by Gong et al. [17], where the client stores the server’s public
key in addition to share a password with the server. Halevi
andKrawczyk [18]were the first to provide formal definitions
and rigorous proofs of security for PKI-based PAKE.

ID-based PAKE: ID-based PAKE protocols were proposed
by Yi et al. [32], [33], where the client needs to remember a
password in addition to the identity of the server, whereas
the server keeps the password in addition to a private key
related to its identity. ID-based PAKE can be thought as a
trade-off between password-only and PKI-based PAKE.

In the single-server setting, all the passwords necessary
to authenticate clients are stored in a single server. If the
server is compromised, due to, for example, hacking or
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even insider attacks, passwords stored in the server are all
disclosed. This is also true to Kerberos [12], where a user
authenticates against the authentication server with his
username and password and obtains a token to authenticate
against the service server.

To address this problem, themulti-server setting for PAKE
was first suggested in [15], [19], where the password of the cli-
ent is distributed in n servers. PAKE protocols in the multi-
server setting can be classified into two categories as follows.

Threshold PAKE: The first PKI-based threshold PAKE
protocol was given by Ford and Kaliski [15], where n serv-
ers, sharing the password of the client, cooperate to authen-
ticate the client and establish independent session keys with
the client. As long as n� 1 or fewer servers are compro-
mised, their protocol remains secure. Jablon [19] gave a pro-
tocol with similar functionality in the password-only
setting. MacKenzie et al. proposed a PKI-based threshold
PAKE protocol which requires only t out of n servers to
cooperate in order to authenticate the client. Their protocol
remains secure as long as t� 1 or fewer servers are compro-
mised. Di Raimondo and Gennaro [26] suggested a pass-
word-only threshold PAKE protocol which requires fewer
than 1/3 of the servers to be compromised.

Two-server PAKE: Two-server PKI-based PAKE was first
given by Brainard [9], where two servers cooperate to
authenticate the client and the password remains secure if
one server is compromised. A variant of the protocol was
later proved to be secure in [27]. A two-server password-
only PAKE protocol was given by Katz et al. [23], in which
two servers symmetrically contribute to the authentication
of the client. The protocol in the server side can run in paral-
lel. Efficient protocols [21], [29], [30], [31] were later pro-
posed, where the front-end server authenticates the client
with the help of the back-end server and only the front-end
server establishes a session key with the client. These proto-
cols are asymmetric in the server side and have to run in
sequence. Yi et al. gave a symmetric solution [34] which is
even more efficient than asymmetric protocols [21], [29],
[30], [31]. Recently, Yi et al. constructed an ID2S PAKE pro-
tocol with the identity-based encryption scheme (IBE) [35].

In this paper, we will consider the two-server setting for
PAKE only. In two-server PAKE, a client splits its password
and stores two shares of its password in the two servers,
respectively, and the two servers then cooperate to authenti-
cate the client without knowing the password of the client.
Even if one server is compromised, the attacker is still unable
to pretend any client to authenticate against another server.

A typical example is the two-server PAKE protocol given
by Katz et al. [23], which is built upon the two-party PAKE
protocol (i.e., the KOY protocol [22]), where two parties, who
share a password, exchangemessages to establish a common
secret key. Their basic two-server protocol is secure against a
passive (i.e., “honest-but-curious”) adversary who has
access to one of the servers throughout the protocol execu-
tion, but cannot cause this server to deviate from its pre-
scribed behavior. In [23], Katz et al. also showed how to
modify their basic protocol so as to achieve security against
an active adversary who may cause a corrupted server to
deviate arbitrarily from the protocol. The core of their proto-
col is the KOY protocol. The client looks like running two
KOY protocols with two servers in parallel. However, each

server must perform a total of roughly 80 exponentiations
(i.e., each server’s work is increased by a factor of roughly six
as compared to the basic protocol [23]).

In [35], a security model for ID2S PAKE protocol was
given and a compiler that transforms any two-party PAKE
protocol to an ID2S PAKE protocol was proposed on the
basis of the Cramer-Shoup public key encryption scheme
[13] and any identity-based encryption scheme, such as the
Waters’ scheme [28].

Our contribution. In this paper, we propose a new com-
piler for ID2S PAKE protocol based on any identity-based
signature scheme (IBS), such as the Paterson et al.’s scheme
[25]. The basic idea is: The client splits its password into
two shares and each server keeps one share of the password
in addition to a private key related to its identity for signing.
In key exchange, each server sends the client its public key
for encryption with its identity-based signature on it. The
signature can be verified by the client on the basis of the
identity of the server. If the signature is genuine, the client
submits to the server one share of the password encrypted
with the public key of the server. With the decryption keys,
both servers can derive the same one-time password, by
which the two servers can run a two-party PAKE protocol
to authenticate the client.

In addition, we generalize the compiler based on IBE in
[35] by replacing the Cramer-Shoup public key encryption
scheme with any public key encryption scheme. Unlike the
compiler based on IBS, the compiler based on IBE assumes
that each server has a private key related to its identity for
decryption. In key exchange, the client sends to each server
one share of the password encrypted according to the identity
of the server. In addition, a one-time public key encryption
scheme is used to protect the messages (containing the pass-
word information) from the servers to the client. The one-time
public key is generated by the client and sent to the servers
alongwith the password information in the first phase.

In the identity-based cryptography, the decryption key
or the signing key of a server is usually generated by a Pri-
vate Key Generator (PKG). Therefore the PKG can decrypt
any messages encrypted with the identity of the server or
sign any document on behalf of the server. As mentioned in
[7], using standard techniques from threshold cryptogra-
phy, the PKG can be distributed so that the master-key is
never available in a single location. Like [35], our strategy is
to employ multiple PKGs which cooperate to generate the
decryption key or the signing key for the server. As long as
one of the PKGs is honest to follow the protocol, the decryp-
tion key or the signing key for the server is known only to
the server. Since we can assume that the two servers in two-
server PAKE never collude, we can also assume that at least
one of the PKGs do not collude with other PKGs.

Based on this assumption, we provide a rigorous proof of
security for our compilers. The two compilers do not rely on
the random oracle model as long as the underlying primi-
tives themselves do not rely on it. For example, by using the
KOY protocol [22] and the Paterson et al.’s IBS scheme [25]
and the Cramer-Shoup public key encryption scheme [13],
the compiler based on IBS can construct an ID2S PAKE pro-
tocol with provable security in the standard model. By
using the KOY protocol [22] and the Waters IBE scheme [28]
and the Cramer-Shoup public key encryption scheme [13],
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the compiler based on IBE can construct an ID2S PAKE pro-
tocol with provable security in the standard model.

We also compare our ID2S PAKE protocols with the Katz
et al.’s two-server PAKE protocol [23] with provable secu-
rity in the standard model. The Katz et al.’s protocol is pass-
word-only, where the client needs to remember the
password only and refer to common public parameters, and
each server, having a public and private key pair, and keeps
a share of the password. Our protocols are identity-based,
where the client needs to remember the password in addi-
tion to the meaningful identities of the two servers, and
refer to common public parameters, including the master
public key, and each server, having a private key related to
his identity, keeps a share of the password.

In terms of the setting and the client performance, the
Katz et al.’s protocol is superior to our protocols. However,
in the Katz et al.’s protocol, each server performs approxi-
mately six times the amount of the work as the KOY proto-
col, whereas in our protocols, each server performs the
same amount of work as the KOY protocol in addition to
one identity-based decryption (or signature) and one public
key encryption (or decryption).

We have implemented our ID2S PAKE protocols. Our
experiments show that our protocols save from 22 to 66 per-
cent of computation in each server, compared with the Katz
et al.’s protocol. The server performance is critical to the
performance of the whole protocol when the servers pro-
vide services to a great number of clients concurrently. In
addition, our experiments show that less than one second is
needed for the client to execute our protocols.

Organization. In Section 2, we describe the security model
for ID2S PAKE protocol given in [35]. In Section 3, we pres-
ent our new ID2S PAKE compilers. After that, in Section 4, a
rigorous proof of security for our protocols is provided. In
Section 5, we analyze the performance of our protocols and
compare them with the Katz’s protocol by experiments. We
conclude this paper in Section 6.

2 DEFINITIONS

A formal model of security for two-server PAKE was given
by Katz et al. [23] (based on the MacKenzie et al.’s model
for PKI-based PAKE [24]). Boneh and Franklin [7] defined
chosen ciphertext security for IBE under chosen identity
attack. Combining the two models, a model for ID2S PAKE
protocol was given in [35] and can be described as follows.

Participants, initialization and passwords. An ID2S PAKE
protocol involves three kinds of protocol participants: (1) A
set of clients (denoted as Client), each of which requests
services from servers on the network; (2) A set of servers
(denoted as Server), each of which provides services to cli-
ents on the network; (3) A group of Private Key Generators,
which generate public parameters and corresponding pri-
vate keys for servers.

We assume that ClientServerTriple is the set of triples of
the client and two servers, where the client is authorized
to use services provided by the two servers, ClientT
Server ¼ ;, User ¼ Client

S
Server, any PKG 62 User, and

ClientServerTriple � Client� Server� Server.
Prior to any execution of the protocol, we assume that an

initialization phase occurs. During initialization, the PKGs
cooperate to generate public parameters for the protocol,

which are available to all participants, and private keys for
servers, which are given to the appropriate servers. The user
may keep the public parameter in a personal device, such as
a smart card or a USB flash drive. When the PKGs generate
the private key for a server, each PKG generates and sends a
private key component to the server via a secure channel.
The server then derives its private key by combining all pri-
vate key components from all PKGs. We assume that at least
one of PKGs is honest to follow the protocol. Therefore, the pri-
vate key of the server is known to the server only.

For any triple ðC;A;BÞ 2 ClientServerTriple, we assume
that the clientC chooses its password pwC independently and
uniformly at random from a “dictionary” D ¼ fpw1; pw2;� � � ;
pwNg of sizeN , where D � Zq, N is a fixed constant which is
independent of any security parameter, and q is a large prime.
The password is then split into two shares pwC;A and pwC;B

and stored at the two servers A and B, respectively, for
authentication. We assume that the two servers never collude to
determine the password of the client. The client C needs to
remember pwC to log into the serversA andB.

For simplicity, we assume that each client C shares its
password pwC with exactly two servers A and B. In this
case, we say that servers A and B are associated with C. A
server may be associated with multiple clients.

Execution of the protocol. In the real world, a protocol deter-
mines how users behave in response to input from their envi-
ronments. In the formal model, these inputs are provided by
the adversary. Each user is assumed to be able to execute the
protocol multiple times (possibly concurrently) with differ-
ent partners. This is modeled by allowing each user to have
unlimited number of instances (please refer to [3])withwhich
to execute the protocol. We denote instance i of user U as Ui.
A given instance may be used only once. The adversary is
given oracle access to these different instances. Furthermore,
each instancemaintains (local) state which is updated during
the course of the experiment. In particular, each instanceUi is
associated with the following variables, initialized as NULL
or FALSE (as appropriate) during the initialization phase.

- sidiU ; pid
i
U and skiU are variables containing the session

identity, partner identity, and session key for an

instance Ui, respectively. Computation of the session
key is, of course, the ultimate goal of the protocol. The
session identity is simply a way to keep track of the
different executions of a particular user U . Without
loss of generality, we simply let this be the (ordered)
concatenation of all messages sent and received by
instance Ui. The partner identity denotes the identity

of the user with whom Ui believes it is interacting. For

a client C, skiC consists of a pair (skiC;A; sk
i
C;BÞ, which

are the two keys shared with servers A and B,
respectively.

- acciU and termi
U are boolean variables denoting

whether a given instance Ui has been accepted or ter-
minated, respectively. Termination means that the
given instance has done receiving and sending mes-
sages, acceptance indicates successful termination. In
our case, acceptance means that the instance is sure
that it has established a session key with its intended

partner; thus, when an instance Ui has been accepted,

sidiU , pid
i
U and skiU are no longerNULL.
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- stateiU records any state necessary for execution of

the protocol by Ui.
- usediU is a boolean variable denoting whether an

instance Ui has begun executing the protocol. This is
a formalism which will ensure each instance is used
only once.

The adversary A is assumed to have complete
control over all communications in the network
(between the clients and servers, and between serv-
ers and servers) and the adversary’s interaction with
the users (more specifically, with various instances)
is modelled via access to oracles. The state of an
instance may be updated during an oracle call, and
the oracle’s output may depend upon the relevant
instance. The oracle types include:

- SendðC; i; A;B;MÞ – This sends message M to a cli-

ent instance Ci, supposedly from two servers A and

B. Assuming termi
C ¼ FALSE, this instance runs

according to the protocol specification, updating

state as appropriate. The output of Ci (i.e., the mes-
sage sent by the instance) is given to the adversary,

who receives the updated values of sidiC; pid
i
C; acc

i
C ,

and termi
C . This oracle call models the active attack

to a protocol. If M is empty, this query represents a
prompt for C to initiate the protocol.

- SendðS; i; U;MÞ – This sends message M to a server

instance Si, supposedly from a user U (either a client

or a server). Assuming termi
S ¼ FALSE, this instance

runs according to the protocol specification, updating

state as appropriate. The output of Si (i.e., themessage
sent by the instance) is given to the adversary, who

receives the updated values of sidiS; pid
i
S; acc

i
S , and

termi
S . If S is corrupted, the adversary also receives the

entire internal state of S. This oracle call also models
the active attack to a protocol.

- ExecuteðC; i; A; j; B; kÞ – If the client instance Ci and

the server instancesAj andBk have not yet been used
(where ðC;A;BÞ 2 ClientServerTriple), this oracle
executes the protocol between these instances and
outputs the transcript of this execution. This oracle
call represents passive eavesdropping of a protocol
execution. In addition to the transcript, the adversary
receives the values of sid, pid, acc, and term for client
and server instances, at each step of protocol execu-
tion. In addition, if S 2 fA;Bg is corrupted, the
adversary is given the entire internal state of S.

- CorruptðSÞ – This sends the private key of the server
S in addition to all password information stored in
the server S to the adversary. This oracle models
possible compromising of a server due to, for exam-
ple, hacking into the server.

- CorruptðCÞ – This query allows the adversary to
learn the password of the client C, which models the
possibility of subverting a client by, for example, wit-
nessing a user typing in his password, or installing a
“Trojan horse” on his machine.

- RevealðU;U 0; iÞ – This outputs the current value of ses-
sion key skiU;U 0 held by instance Ui if acciU ¼ TRUE,

where U 0 2 pidiU . This oracle call models possible

leakages of session keys due to, for example, improper
erasure of session keys after use, compromise of a host
computer, or cryptanalysis.

- TestðU;U 0; iÞ – This oracle does not model any real-
world capability of the adversary, but is instead used

to define security. Assume U 0 2 pidiU , if acciU ¼
TRUE, a random bit b is generated. If b ¼ 0, the adver-

sary is given skiU;U 0 , and if b ¼ 1 the adversary is given

a random session key. The adversary is allowed only
a single Test query, at any time during its execution.

Partnering. Let ðC;A;BÞ 2 ClientServerTriple. For the cli-

ent instanceCi, let sidiC ¼ ðsidiC;A; sidiC;BÞ, where sidiC;A (resp.,

sidiC;BÞ denotes the ordered sequence of messages sent to /

from the client C and the server A (resp., server B). For the

server instance Aj, let sidjA ¼ ðsidjA;C; sidjA;BÞ, where sidjA;C
denotes the ordered sequence of messages sent to / from the

server A and the client C, and sidjA;B denotes the ordered

sequence of message sent to / from the server A and the

serverB. We say that instances Ci and Aj are partnered if (1)

sidiC;A ¼ sidjA;C 6¼ NULL and (2) A 2 pidiC and C 2 pidjA. We

say that instances Aj and Bk are partnered if (1)

sidjA;B ¼ sidkB;A 6¼ NULL and (2)A 2 pidkB andB 2 pidjA.

Correctness. To be viable, a key exchange protocol must
satisfy the following notion of correctness: If a client instance

Ci and server instancesAj andBk run an honest execution of
the protocol with no interference from the adversary, then

acciC ¼ accjA ¼ acckB ¼ TRUE, and skiC;A ¼ skjA;C , skiC;B ¼
skkB;C and skiC;A 6¼ skiC;B. Note that a correct protocol may not

be secure. The security of a protocol is defined as follows.
Freshness. To formally define the adversary’s success we

need to define a notion of freshness for a session key, where
freshness of a key is meant to indicate that the adversary
does not trivially know the value of the session key. We say

a session key skiU;U 0 is fresh if (1) both U and U 0 are not cor-
rupted; (2) the adversary never queried RevealðU;U 0; iÞ; (3)
the adversary never queried RevealðU 0; U; jÞ where Ui and

U 0j are partnered.
Advantage of the adversary. Informally, the adversary

succeeds if it can guess the bit b used by the Test oracle.
We say an adversary A succeeds if it makes a single

query TestðU; U 0; iÞ to a fresh instance Ui, with acciU ¼
TRUE at the time of this query, and outputs a single bit
b0 with b0 ¼ b (recall that b is the bit chosen by the Test
oracle). We denote this event by Succ. The advantage of
adversary A in attacking protocol P is then given by

AdvPAðkÞ ¼ 2 � Pr½Succ� � 1, where the probability is taken

over the random coins used by the adversary and the
random coins used during the course of the experiment
(including the initialization phase).

An adversary can always succeed by trying all passwords
one-by-one in an on-line impersonation attack. A protocol is
secure if this is the best an adversary can do. The on-line
attacks correspond to Send queries. Formally, each instance
for which the adversary hasmade aSend query counts as one
on-line attack. Instances with which the adversary interacts
via Execute are not counted as on-line attacks. The number of
on-line attacks represents a bound on the number of pass-
words the adversary could have tested in an on-line fashion.

3690 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016



Definition 1. Protocol P is a secure ID2S PAKE protocol if, for
all dictionary size N and for all PPT adversaries A making at
most QðkÞ on-line attacks, there exists a negligible function

"ð�Þ such that AdvPAðkÞ 	 QðkÞ=N þ "ðkÞ:

3 ID2S PAKE PROTOCOLS

In this section, we present two compilers transforming any
two-party PAKE protocol P to an ID2S PAKE protocol P 0

with identity-based cryptography. The first compiler is built

on identity-based signature and the second compiler is
based on identity-based encryption.

3.1 ID2S PAKE Based on IBS

3.1.1 Protocol Description

We need an identity-based signature scheme as our crypto-
graphic building block. A high-level description of our com-
piler is given in Fig. 1, in which the client C and two servers
A and B establish two authenticated keys, respectively. If

Fig. 1. ID2S PAKE protocol P 0 based on IBS.
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we remove authentication elements from our compiler, our
key exchange protocol is essentially the Diffie-Hellman key
exchange protocol [14]. We present the protocol by describ-
ing initialization and execution.

Initialization. Given a security parameter k 2 N (the set
of all natural number), the initialization includes:

Parameter Generation: On input k, (1)m PKGs cooperate to

run SetupP of the two-party PAKE protocol P to generate

system parameters, denoted as paramsP. (2)m PKGs cooper-

ate to run SetupIBS of the IBS scheme to generate public sys-

tem parameters for the IBS scheme, denoted as paramsIBS

(including a subgroupG of the additive group of points of an

elliptic curve), and the secret master-keyIBS. (3) m PKGs
choose a public key encryption scheme E, e.g., [13], whose
plaintext group is a large cyclic groupGwith a prime order q
and a generator g and select two hash functions,
H1 : f0; 1g
 ! Z


n, where n is the order of G, and

H2 : f0; 1g
 ! Z

q , from a collision-resistant hash family. The

public system parameters for the protocol P 0 is

params ¼ paramsP;IBS;E
S fðG; q; gÞ; ðH1;H2Þg and the secret

master-keyIBS is secretly shared by the PKGs in a manner

that any coalition of PKGs cannot determine master-keyIBS

as long as one of thePKGs is honest to follow the protocol.

Remark 1. Taking the Paterson-Schuldt IBS scheme [25] for
example, m PKGs agree on randomly chosen G;G2 2 G

and each PKG randomly chooses ai 2 Zp and broadcast
Gai with a zero-knowledge proof of knowing ai and a sig-

nature. Then we can set G1 ¼ G
P

i
ai as the public master

key and the secretmaster-keyIBS ¼ G
P

i
ai

2 . The secret mas-
ter key is privately shared among m PKGs and unknown
to anyone even ifm� 1 PKGsmaliciously collude.

Key Generation: On input the identity S of a server S 2
Server, paramsIBS, and the secretly sharing master-keyIBS,

PKGs cooperate to run ExtractIBS of the IBS scheme and gen-
erate a private (signing) key for S, denoted as dS , in a manner
that any coalition of PKGs cannot determine dS as long as one
of thePKGs is honest to follow the protocol.

Remark 2. In the Paterson-Schuldt IBS scheme with m
PKGs , each PKG computes one component of the private

key for a server S, i.e., ðGai
2 HðSÞri ;GriÞ, where H is the

Waters’ hash function, and sends it to the server via a
secure channel. Combining all components, the server

can construct its private key dS ¼ ðG
P

i
ai

2 HðSÞ
P

i
ri ;

G
P

i
riÞ, which is known to the server only even if m� 1

PKGs maliciously collude. In addition, the identity of a
server is public, meaningful, like an e-mail address, and
easy to remember or keep. Anyone can write down the
identity of a server on a note.

Password Generation: On input a triple ðC;A;BÞ 2
ClientServerTriple, a string pwC , the password, is uniformly
drawn from the dictionary D ¼ fpw1; pw2;. . . ; pwNg by the
client C, and randomly split into pwC;A and pwC;B such that

pwC;A þ pwC;B ¼ pwCðmod qÞ. gpwC;A and gpwC;B are stored in

the servers A and B, respectively. We implicitly assume
that N < minðn; qÞ, which will certainly be true in practice.

Protocol Execution. Given a triple ðC;A;BÞ 2
ClientServerTriple, the client C (knowing its password pwC)
runs the protocol P 0 with the two servers A (knowing gpwC;A

and its private key dA) and B (knowing gpwC;B and its private
key dB) to establish two session keys, respectively, as shown
in Fig. 1.

At first, the client C randomly chooses an integer rc from
Z

q and computes Wc ¼ grc and broadcasts msg ¼ hC;Wci to

the servers A and B.

Remark 3. To facilitate the communications between the
client and two servers, a gateway may be used to forward
messages between the client and the two servers. In this
case, the client needs to communicate with the gateway
only.

After receiving msg from the client, the server X (either
A or B) randomly generates a public and private key pair
(pkx; skx) (where x is either a or b) for the public key encryp-
tion scheme E, and randomly chooses an integer rx from Z


q

and computes

Wx ¼ grx ; hx ¼ H1ðX;Wx;C;Wx; pkxÞ; Sx ¼ Signðhx; dXÞ;

where Sx denotes an identity-based signature of X on hx.
Then the server X replies to the client C with msgX ¼
hX;Wx; pkx; Sxi.
Remark 4. The public and private key pair for the public

key encryption scheme E can be generated once only and
used repeatedly.

When getting the responsesmsgA;msgB from the servers
A and B, the client C computes

h0
a ¼ H1ðA;Wa; C;Wc; pkaÞ; h0

b ¼ H1ðB;Wb; C;Wc; pkbÞ;
and verifies the two signatures Sa; Sb on the basis of the
identities of the servers A and B. If

ðVerifyðh0
a; Sa; AÞ ¼ TRUEÞ ^ ðVerifyðh0

b; Sb; BÞ ¼ TRUEÞ;

the client C sets accC ¼ TRUE and computes two session
keys skC;A ¼ Wrc

a ; skC;B ¼ Wrc
b :

Furthermore, the client C randomly chooses pw1 from Z

q

and computes

pw2 ¼ pwC � pw1ðmod qÞ

h1 ¼ H2ðC;Wc;A;WaÞ; h2 ¼ H2ðC;Wc;B;WbÞ:
Next, according to the public keys pka; pkb from the servers
A and B, the client C performs the public key encryptions

Ea ¼ Eðgpw1h
�1
1 ; pkaÞ; Eb ¼ Eðgpw2h

�1
2 ; pkbÞ;

where E denotes the encryption algorithm. Then, the cli-
ent sends msg1 ¼ hC;Eai and msg2 ¼ hC;Ebi to the two
servers A and B, respectively.

After receivingmsg1 from C, the server A computes

h0
1 ¼ H2ðC;Wc;A;WaÞ;va ¼ DðEa; skaÞh

0
1=gpwC;A ;

where D denotes the decryption algorithm.
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After receivingmsg2 from C, the server B computes

h0
2 ¼ H2ðC;Wc;B;WbÞ;vb ¼ gpwC;B=DðEb; skbÞh

0
2 :

Because pwC ¼ pwC;A þ pwC;Bðmod qÞ and pwC ¼ pw1þ
pw2ðmod qÞ, we have va ¼ gpw1�pwC;A ¼ gpwC;B�pw2 ¼ vb.

Using va and vb as one-time password, the servers A and
B run a two-party PAKE protocol P to establish a session
key. If the server A accepts the session key as an authenti-

cated key according to P (i.e., accPA ¼ TRUE), the server A
sets accA ¼ TRUE and computes the session key
skA;C ¼ Wra

c : If the server B accepts the session key as an

authenticated key according to P (i.e., accPB ¼ TRUE), the
server B sets accB ¼ TRUE and computes the session key

skB;C ¼ W
rb
c :

3.1.2 Correctness

Assume that a client instance Ci and server instances Aj and

Bk run an honest execution of the protocol P 0 with no inter-
ference from the adversary and the two-party PAKE P has
the correctness property.

With reference to Fig. 1, we have h0
a ¼ ha; h

0
b ¼ hb and the

signatures are genuine. Therefore, the client C computes
two session keys, i.e., skC;A ¼ Wrc

a ; skC;B ¼ Wrc
b , and lets

acciC ¼ TRUE.

With reference to Fig. 1, the server instances Aj and Bk

are able to derive the same one-time password va (¼ vb).
Because P has the correctness property, after running P

based on va and vb, the server instances Aj and Bk accept
the established session key as an authenticated key. This
indicates that the client C has provided a correct password

pwC . Next, the server instances Aj and Bk compute the ses-
sion keys with the client C, i.e., skA;C ¼ Wra

c and skB;C ¼
W

rb
c , and let accjA ¼ TRUE and acckB ¼ TRUE.

Since Wc ¼ grc ;Wa ¼ gra ;Wb ¼ grb , we have skC;A ¼
Wrc

a ¼ grarc ¼ Wra
c ¼ skA;C and skC;B ¼ Wrc

b ¼ grbrc ¼ W
rb
c ¼

skB;C . In addition, because ra; rb are chosen randomly, the
probability of skC;A ¼ skC;B is negligible. Therefore, our pro-
tocol has the correctness property.

3.1.3 Explicit Authentication

By verifying the signatures Sa; Sb with the identities of the
servers A and B, the client C can make sure that its intended
servers A and B are authentic and the computed session
keys skC;A ¼ Wrc

a ; skC;B ¼ Wrc
b are authentic.

By running the two-party PAKE protocol P based on
wa (derived by pwC;A) and wb (derived by pwC;B), the

two servers A and B can verify if the client C provides a
password pwC such that pwC ¼ pwC;A þ pwC;Bðmod qÞ.
This shows that when accjA ¼ TRUE, the server A knows

that its intended client C and server B are authentic.
Our protocol achieves the implicit authentication. Using
the hash function like [6], [35], however, it is easy to add
explicit authentication to any protocol achieving implicit
authentication.

Remark 5. After the execution of our protocol, the pass-
word in the client cache must be deleted like SSL-based
Internet banking.

3.2 ID2S PAKE Based on IBE

3.2.1 Protocol Description

A high-level description of our compiler based on identity-
based encryption is given in Fig. 2. We present the protocol
by describing initialization and execution.

Initialization. Given a security parameter k 2 N, the ini-
tialization includes:

Parameter Generation: On input k, (1)m PKGs cooperate to

run SetupP of the two-party PAKE protocol P to generate

system parameters, denoted as paramsP. (2) m PKGs coop-

erate to run SetupIBE of the IBE scheme to generate public
system parameters for the IBE scheme, denoted as

paramsIBE, and the secret master-keyIBE. Assume that G is a
generator of IBE plaintext group G with an order n. (3) m
PKGs choose a public key encryption scheme E, e.g., [13],
whose plaintext group is a large cyclic groupGwith a prime
order q and a generator g and select two hash functions,

H1 : f0; 1g
 ! Z

n and H2 : f0; 1g
 ! Z


q , from a collision-

resistant hash family. The public system parameters for the

protocol P 0 is params ¼ paramsP;IBE;E
S fðG;G; nÞ; ðG; q; gÞ;

ðH1; H2Þg and the secret master-keyIBE is secretly shared by
the PKGs in a manner that any coalition of PKGs cannot

determine master-keyIBE as long as one of the PKGs is hon-
est to follow the protocol.

Key Generation: On input the identity S of a server

S 2 Server, paramsIBE, and the secretly sharing

master-keyIBE, PKGs cooperate to run ExtractIBE of the IBE
scheme and generate a private (decryption) key for S,
denoted as dS , in a manner that any coalition of PKGs can-
not determine dS as long as one of the PKGs is honest to fol-
low the protocol.

Password Generation: On input a triple
ðC;A;BÞ 2 ClientServerTriple, a string pwC , the password,
is uniformly drawn from the dictionary D ¼ fpw1; pw2;. . . ;
pwNg by the client C, and randomly split into pwC;A and

pwC;B such that pwC;A þ pwC;B ¼ pwCðmod nÞ, and pw

C;A

and pw

C;B such that pw


C;A þ pw

C;B ¼ pwCðmod qÞ. (GpwC;A ,

g
pw


C;A ) and (GpwC;B , g
pw


C;BÞ are stored in servers A and B,
respectively. We implicitly assume that N < minðn; qÞ,
which will certainly be true in practice.

Protocol Execution. Given a triple ðC;A;BÞ 2
ClientServerTriple, the client C (knowing its password pwC)
runs the protocol P 0 with the two servers A (knowing

GpwC;A , g
pw


C;A and its private key dA) and B (knowing GpwC;B ,

g
pw


C;B and its private key dB) to establish two session keys,
respectively, as shown in Fig. 2.

At first, the client randomly chooses pw1 from Z

n and

computes pw2 ¼ pwC � pw1ðmod nÞ. Next the client C ran-
domly generates a one-time public and private key pair
(pk; sk) for the public key encryption scheme E, and ran-
domly chooses an integer rc from Z


q and computes

Wc ¼ grc ; h ¼ H1ðC;Wc; pkÞ:

Next, according to the identities of the two servers A
and B, the client C performs the identity-based
encryptions
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Ea ¼ IBEðGpw1h
�1
; AÞ; Eb ¼ IBEðGpw2h

�1
; BÞ:

Then, the client sends msg1 ¼ hC;Wc; pk; Eai and
msg2 ¼ hC;Wc; pk; Ebi to the two servers A and B,
respectively.

After receivingmsg1 from C, the server A computes

h0 ¼ H1ðC;Wc; pkÞ;va ¼ IBDðEa; dAÞh
0
=GpwC;A ;

where IBD denotes identity-based decryption.

After receivingmsg2 from C, the server B computes

h0 ¼ H1ðC;Wc; pkÞ;vb ¼ GpwC;B=IBDðEa; dBÞh
0
;

Because pwC ¼ pwC;A þ pwC;Bðmod nÞ and pwC ¼ pw1þ
pw2ðmod nÞ, we have va ¼ Gpw1�pwC;A ¼ GpwC;B�pw2 ¼ vb.

Using va and vb as one-time password, the servers A
and B run a two-party PAKE protocol P to establish a
session key. If the server X (either A or B) accepts the

Fig. 2. ID2S PAKE protocol P 0 based on IBE.
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session key as an authenticated key according to P (i.e.,

accPX ¼ TRUE), it randomly chooses an integer rx (where
x is either a or b) from Z


q and computes

Wx ¼ grx ; hx ¼ H2ðX;Wx; C;WcÞ;

E0
x ¼ Eðgpw


C;X
h�1
x ; pkÞ; skX;C ¼ Wrx

c ;

where skX;C is the session key between X and C and E0
x is

the encryption of g
pw


C;X
h�1
x . Then the server X sets accX ¼

TRUE and replies to the client C withmsgX ¼ hX;Wx;E
0
xi.

Finally, after receivingmsgA andmsgB, C computes

h0
a ¼ H2ðA;Wa;C;WcÞ; h0

b ¼ H2ðB;Wb; C;WcÞ;
and checks if DðE1; skÞh

0
aDðE2; skÞh

0
b ¼ gpwC : If so, the client

C sets accC ¼ TRUE and computes two session keys
skC;A ¼ Wrc

a ; skC;B ¼ Wrc
b :

Remark 6. Our IBE-based protocol needs less rounds of
communication than our IBS-based protocol. This can be
seen by comparing Figs. 1 and 2.

3.2.2 Correctness

Assume that a client instance Ci and server instances Aj and

Bk run an honest execution of the protocol P 0 with no inter-
ference from the adversary and the two-party PAKE P has
the correctness property.

With reference to Fig. 2, the server instances Aj and Bk

are able to derive the same one-time password va (¼ vb).
Because P has the correctness property, after running P

based on va and vb, the server instances Aj and Bk accept
the established session key as an authenticated key. This
indicates that the client C has provided a correct password

pwC . Next, the server instances Aj and Bk compute the ses-
sion keys with the client C, i.e., skA;C ¼ Wra

c and

skB;C ¼ W
rb
c , and let accjA ¼ TRUE and acckB ¼ TRUE.

With reference to Fig. 2, we have h0
a ¼ ha; h

0
b ¼ hb, and

DðE1; skÞh
0
1DðE2; skÞh

0
b ¼ ðgpw


C;A
h�1
a Þh0aðgpw


C;B
h�1
b Þh0b

¼ g
pw


C;A
þpw


C;B ¼ gpwC :

Therefore, the client instance Ci computes two session keys,

i.e., skC;A ¼ Wrc
a ; skC;B ¼ Wrc

b , and lets acciC ¼ TRUE. Since

Wc ¼ grc ;Wa ¼ gra ;Wb ¼ grb , we have skC;A ¼ Wrc
a ¼ grarc ¼

Wra
c ¼ skA;C and skC;B ¼ Wrc

b ¼ grbrc ¼ W
rb
c ¼ skB;C . In

addition, because ra; rb are chosen randomly, the probability
of skC;A ¼ skC;B is negligible. Therefore, our protocol has the
correctness property.

3.2.3 Explicit Authentication

By running the two-party PAKE protocol P based on wa

(derived by pwC;A) and wb (derived by pwC;B), the two

servers A and B can verify if the client C provides a pass-
word pwC such that pwC ¼ pwC;A þ pwC;Bðmod nÞ. In addi-

tion, by checking that DðE1; skÞh
0
aDðE2; skÞh

0
b ¼ gpwC

(involving pwC), the client C can verify if the two servers
provide two shares of the password, pw


C;A and pw

C;B,

such that pwC ¼ pw

C;A þ pw


C;Bðmod qÞ. This shows that

when accjA ¼ TRUE, the server A knows that its intended

client C and server B are authentic, and when

acciC ¼ TRUE, the client C knows that its intended servers

A and B are authentic. Our protocol achieves the implicit
authentication. Using the hash function like [6], [35], how-
ever, it is easy to add explicit authentication to any proto-
col achieving implicit authentication.

4 PROOF OF SECURITY

Based on the security model defined in Section 2, we provide
a rigorous proof of security for our compilers in this section.

4.1 Security of ID2S PAKE Protocol Based on IBS

Theorem 1. Assuming that (1) the identity-based signature
scheme is existentially unforgeable under an adaptive chosen-
message attack; (2) the public key encryption scheme E is secure
against the chosen-ciphertext attack; (3) the decisional Diffie-
Hellman problem is hard over ðG; g; qÞ; (4) the protocol P is a
secure two-party PAKE protocol with explicit authentication;
(5) H1; H2 are collision-resistant hash functions, then the pro-
tocol P 0 illustrated in Fig. 1 is a secure ID2S PAKE protocol
according to Definition 1.

Proof. Given an adversary A attacking the protocol, we
imagine a simulator S that runs the protocol for A.

First of all, the simulator S initializes the system by gen-

erating params¼ paramsP;IBS;E
S fðG; q; gÞ; ðH1;H2Þg and

the secret master-keyIBS. Next, Client, Server, and
ClientServerTriple sets are determined. Passwords for cli-
ents are chosen at random and split, and then stored at cor-
responding servers. Private keys for servers are computed

usingmaster-keyIBS.
The public information is provided to the adversary.

Considering ðC;A;BÞ 2 ClinetServerTriple, we assume
that the adversary A chooses the server B to corrupt and
the simulator S gives the adversary A the information
held by the corrupted server B, including the private key
of the server B, i.e., dB, and one share of the password of
the client C, gpwC;B . After computing the appropriate
answer to any oracle query, the simulator S provides the
adversaryAwith the internal state of the corrupted server
B involved in the query.

We view the adversary’s queries to its Send oracles as
queries to five different oracles as follows:

- SendðC; i; A;BÞ represents a request for instance

Ci of client C to initiate the protocol. The output
of this query ismsg ¼ hC;Wci.

- SendðA; j; C;msgÞ represents sending message

msg to instance Aj of the server A from C. The
output of this query ismsgA ¼ hA;Wa; pka; Sai.

- SendðC; i; A;B;msgAjmsgBÞ represents sending

the messagemsgAjmsgB to instanceCi of the client
C. The output of this query is either
msg1 ¼ hC;Eaijmsg2 ¼ hC;Ebi or?.

- SendðA; j; C;msg1Þ represents sending message

msg1 to instance Aj of the server A from C. The
output of this query is either accA ¼ TRUE or ?.

- SendP ðA; j; B;MÞ represents sending message M

to instance Aj of the server A, supposedly by the
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server B, in the two-party PAKE protocol P . The
input and output of this query depends on the
protocol P .

WhenA queries theTest oracle, the simulatorS chooses
a random bit b. When the adversary completes its execu-
tion and outputs a bit b0, the simulator can tell whether the
adversary succeeds by checking if (1) a single Test query

was made regarding some fresh session key skiU;U 0 , and (2)

b0 ¼ b. Success of the adversary is denoted by event Succ.

For any experiment P 0, we denote AdvP
0

A ¼ 2 � Pr½Succ� � 1,
where Pr½�� denotes the probability of an event when the
simulator interacts with the adversary in accordance with
experiment P 0.

We will use some terminology throughout the proof.
A given message is called oracle-generated if it was out-
put by the simulator in response to some oracle query.
The message is said to be adversarially-generated other-
wise. An adversarially-generated message must not be the
same as any oracle-generated message.

We refer to the real execution of the experiment, as
described above, as P0. We introduce a sequence of trans-
formations to the experiment P0 and bound the effect of
each transformation on the adversary’s advantage. We
then bound the adversary’s advantage in the final experi-
ment. This immediately yields a bound on the
adversary’s advantage in the original experiment.

Experiment P1: In this experiment, the simulator inter-
acts with the adversary as P0 except that the adversary
does not succeed, and the experiment is aborted, if any
of the following occurs: 1) At any point during the exper-
iment, an oracle-generated message (e.g., msg, msg1,
msg2,msgA, or msgB) is repeated; 2) At any point during
the experiment, a collision occurs in the hash function H1

or H2 (regardless of whether this is due to a direct action
of the adversary, or whether this occurs during the
course of the simulator’s response to an oracle query).

It is immediate that events 1 occurs with only negligi-
ble probability, event 2 occurs with negligible probability
assuming H1; H2 as collision-resistant hash functions.
Put everything together, we are able to see that

Claim 1. If H1 and H2 are collision-resistant hash func-

tions, jAdvP0A ðkÞ � Adv
P1
A ðkÞj is negligible.

Experiment P2: In this experiment, the simulator inter-
acts with the adversary A as in experiment P1 except that
the adversary’s queries to Execute oracles are handled
differently: in any ExecuteðC; i; A; j; B; kÞ, where the
adversary A has not queried corruptðAÞ, but may have

queried corruptðBÞ, the plaintext gpw1h
�1
1 in the public key

encryption Ea is replaced with a random element in G.
The difference between the current experiment and

the previous one is bounded by the probability that an
adversary breaks the semantic security of the public key
encryption E. More precisely, we have

Claim 2. If the public key encryption scheme E is

semantically secure, jAdvP1A ðkÞ � Adv
P2
A ðkÞj is negligible.

Remark 7. If a public key encryption scheme is secure against
the chosen-ciphertext attack (CCA), it is secure against
the chosen-plaintext attack (CPA) (i.e., it is semantically
secure).

Experiment P3: In this experiment, the simulator inter-
acts with the adversary A as in experiment P2 except
that: for any ExecuteðC; i; A; j; B; kÞ oracle, where the
adversary A has not queried corruptðAÞ, but may have
queried corruptðBÞ, the session keys skC;A and skA;C are
replaced with a same random element in the group G.

The difference between the current experiment and
the previous one is bounded by the probability to solve
the decisional Diffie-Hellman (DDH) problem over
(G; g; q). More precisely, we have

Claim 3. If the decisional Diffie-Hellman (DDH)
problem is hard over (G; q; g), jAdvP2A ðkÞ � Adv

P3
A ðkÞj is

negligible.
If jAdvP2A ðkÞ � Adv

P3
A ðkÞj is non-negligible, we show

that the simulator can use A as a subroutine to solve the
DDH problem with non-negligible probability as follows.

Given a DDH problem (ga; gb; Z), where a; b are ran-

domly chosen from Z

q and Z is either gab or a random

element z from G, the simulator replaces Wc with ga, and

Wa with gb, and the session keys skC;A, skA;C with Z.

When Z ¼ gab, the experiment is the same as the experi-
ment P2. When Z is a random element z in G, the experi-
ment is the same as the experiment P3. If the adversary
can distinguish the experiments P2 and P3 with non-neg-
ligible probability, the simulator can solve the DDH
problem with non-negligible probability. Assuming that
the DDH problem is hard, Claim 3 is true.

In experiment P3, the adversary’s probability of cor-
rectly guessing the bit b used by the Test oracle is exactly
1/2 when the Test query is made to a fresh client

instance Ci or a fresh server instance Aj invoked by an
Execute ðC; i; A; j; B; kÞ oracle, even if the adversary que-
ried corruptðBÞ (i.e., the adversary corrupted the server
B). This is so because the session keys skC;A and skA;C for
such instances in P3 are chosen at random from G, and
hence there is no way to distinguish whether the Test
oracle outputs a random session key or the “actual” ses-
sion key (which is just a random element, anyway).
Therefore, all passive adversaries cannot win the game,
even if they can query CorruptðBÞ oracles.

The rest of the proof concentrates on the instances
invoked by Send oracles.

Experiment P4: In this experiment, we modify the sim-
ulator’s responses to SendðC; i; A;B;msgAjmsgBÞ and
SendðA; j; C;msg1Þ queries.

Before describing this change we introduce some ter-
minology. For a query SendðC; i; A;B;msgAjmsgBÞ,
where msgAjmsgB is adversarially-generated, if

acciC ¼ TRUE, thenmsgAjmsgB is said to be valid. Other-

wise, it is said to be invalid. Similarly, for a query
SendðA; j; C;msg1Þ, where msg1 is adversarially-gener-

ated, if accjA ¼ TRUE, thenmsg1 is said to be valid. Other-

wise, msg1 is said to be invalid. Informally, valid
messages use correct passwords while invalid messages
do not. Given this terminology, we continue with our
description of experiment P4. When the adversary makes
oracle query SendðC; i; A;B;msgAjmsgBÞ, the simulator
examines msgAjmsgB. If the message is adversarially-

generated and valid, the simulator halts and acciC is

assigned the special value r. In any other case, (i.e.,
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msgAjmsgB is oracle-generated, or adversarially-gener-
ated but invalid), the query is answered exactly as in
experi-ment P3. When the adversary makes oracle query
SendðA; j; C; msg1Þ, the simulator examines msg1. If it is
adversarially-generated and valid, the simulator halts

and accjA is assigned the special value r. In any other

case, (i.e., msg1 is oracle-generated, or adversarially-gen-
erated but invalid), the query is answered exactly as in P3.

Now, we change the definition of the adversary’s suc-
cess in P4. At first, we define that a client instance Ci is
fresh if the adversary has not queried CorruptðCÞ and a

server instance Aj is fresh if the adversary has not que-
ried CorruptðAÞ. If the adversary ever queries
SendðC; i; A;B; msgAjmsgBÞ oracle to a fresh client

instance Ci with acciC ¼ r or SendðA; j; C;msg1Þ oracle
to a fresh server instance Aj with accjA ¼ r, the simula-
tor halts and the adversary succeeds. Otherwise the
adversary’s success is determined as in experiment P3.

The distribution on the adversary’s view in experi-
ments P3 and P4 are identical up to the point when the
adversary queries SendðC; i; A;B;msgAjmsgBÞ oracle to

a fresh client instance with acciC ¼ r or SendðA;
j; C;msg1Þ oracle to a fresh server instance with

accjA ¼ r. If such a query is never made, the distribu-
tions on the view are identical. Therefore, we have

Claim 4. Adv
P3
A ðkÞ 	 Adv

P4
A ðkÞ.

Experiment P5: In this experiment, the simulator inter-
acts with the adversary A as in experiment P4 except that
the adversary’s queries to SendðA; j; C;msg1Þ oracles are
handled differently: in any SendðA; j; C;msg1Þ, where
the adversary A has not queried corruptðAÞ, but may

have queried corruptðBÞ, the plaintext gpw1h
�1
1 in Ea is

replaced with a random element in the group G.
As we prove Claims 2, we can prove
Claim 5. If the public key encryption scheme E is

semantically secure, jAdvP4A ðkÞ � Adv
P5
A ðkÞj is negligible.

In experiment P5,msg1 from Execute and Send oracles
become independent of the password pwC used by the cli-
ent C in the view of the adversary A, even if A may
require CorruptðBÞ. In addition, although the adversary
who has corrupted the server B is able to obtain gpw2 ,
gpwC;B , they are independent of the password pwC in the
view of the adversary because the referencemsg1 is inde-
pendent of the password in the view of the adversary. In
view of this, any off-line dictionary attack cannot succeed.

The adversary A succeeds only if one of the following
occurs: (1) the adversary queries SendðC; i;A;B;
msgAjmsgBÞ oracle to a fresh client instanceCi for adversa-

rially-generated and valid msgAjmsgB, that is, acc
i
C ¼ r

(let Succ1 denote this event); (2) the adversary queries

SendðA; j;C;msg1Þ oracle to a fresh server instance Aj for

adversarially-generated and valid msg1, that is, acc
j
A ¼ r

(let Succ2 denote this event); (3) neither Succ1 nor Succ2
happens, the adversary wins the game by a Test query to a

fresh instanceCi or a server instanceAj.
Claim 6. If the identity-based signature scheme is exis-

tentially unforgeable under an adaptive chosen-message
attack and the hash function H1 is collision-resistant,
Pr½Succ1� is negligible.

msgA contains a signature Sa of the server A on
H1ðA;Wa;C;Wc; pkaÞ. If the adversary A is able to findW 0

a

(6¼ Wa) or pk0a (6¼ pka) such that H1ðA;W 0
a; C;Wc; pk

0
aÞ ¼

H1ðA;Wa;C;Wc; pkÞ for givenWc, he may make acciC ¼ r
with the same Sa. However, this probability is negligible
because we assume that the hash function H1 is collision-
resistant. If the adversary can forge a new signature S0

a of
the server A on H1ðA;W 0

a; C;Wc; pk
0
aÞ for chosen W 0

a

(6¼ Wa) or pk
0
a (6¼ pka), he may also make acciC ¼ r. How-

ever, this probability is also negligible because we assume
that the identity-based signature scheme is existentially
unforgeable under an adaptive chosen-message attack.
Therefore, Claim 6 is true.

Claim 7. If (1) P is a secure two-party PAKE protocol
with explicit authentication; (2) the public key encryption
E is secure against the chosen-ciphertext attack; (3) H2

is collision-resistant hash functions, then Pr½Succ2� 	
QðkÞ=Nþ "ðkÞ, where QðkÞ denotes the number of on-line
attacks and "ðkÞ is a negligible function.

To evaluate Pr½Succ2�, we assume that the adversary A
has corrupted the server B and consider three cases as
follows.

Case 1. If the adversary A is able to find W 0
c (6¼ Wc)

such that H2ðC;W 0
c; A;WaÞ ¼ H2ðC;Wc;A;WaÞ for given

Wa, he may make accjA ¼ r with the same Ea in msg1.

However, this probability is negligible because we
assume that the hash functionH2 is collision-resistant.

Case 2. If the adversary A is able to replace the plain-

text gpw1h
�1
1 in Ea with gpw1h



1
�1

(like homomorphic

encryption), where h

1 6¼ h1, he may make accjA ¼ r with

E0
a transformed from Ea. However, this probability is

negligible because we assume that the public key encryp-
tion E is secure against the chosen-ciphertext attack.

Case 3. The adversary A forges msg0 ¼ hC;W 0
ci and

msg01 ¼ hC;E0
ai where E0

a ¼ Eðgpw

1
h

1
�1
; pkaÞ and h


1 ¼ H2

ðC;W 0
c; A;WaÞ and pw


1 is chosen by the adversary. After

receiving msg01, the server A derives va ¼ gpw


1
�pwC;A ¼

gpw


1
þpwC;B�pwC ¼ gpw



1
þpwC;B=gpwC and then runs two-party

PAKE protocol P with the server B (controlled by the
adversary) on the basis of va. In the view of the adver-

sary, va can be anyone of fgpw

1
þpwC;B=gpwjpw 2 Dg even if

he knows pw

1 þ pwC;B. Without knowing va, this proba-

bility of accPA ¼ TRUE is less thanQP ðkÞ=N þ "ðkÞ, where

QP ðkÞ denotes the number of on-line attacks in the proto-
col P , because we assume that P is a secure two-party
PAKE protocol with explicit authentication.

In experiment P5, the adversary’s probability of suc-
cess when neither Succ1 nor Succ2 occurs is 1/2. The
preceding discussion implies that

Pr
P6
A ½Succ� 	 QðkÞ=N þ "ðkÞ þ 1=2 � ð1�QðkÞ=N � "ðkÞÞ;

and thus the adversary’s advantage in experiment P5

Adv
P5
A ðkÞ ¼ 2Pr

P5
A ½Succ� � 1

	 2QðkÞ=N þ 2"ðkÞ þ 1�QðkÞ=N � "ðkÞ � 1

¼ QðkÞ=N þ "ðkÞ;
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for some negligible function "ð�Þ. The sequence of claims
proved above show that

Adv
P0
A ðkÞ 	 Adv

P5
A ðkÞ þ "ðkÞ 	 QðkÞ=N þ "ðkÞ;

for some negligible function "ð�Þ. This completes the
proof of the theorem. tu

4.2 Security of ID2S PAKE Protocol Based on IBE

Theorem 2. Assuming that (1) the identity-based encryption
scheme is secure against the chosen-ciphertext attack; (2) the
public key encryption scheme E is secure against the chosen-
ciphertext attack; (3) the decisional Diffie-Hellman problem is
hard over (G; g; q); (4) the protocol P is a secure two-party
PAKE protocol with explicit authentication; (5)H1; H2 are colli-
sion-resistant hash functions, then the protocol P 0 illustrated in
Fig. 2 is a secure ID2S PAKE protocol according to Definition 1.

Proof. Given an adversary A attacking the protocol, a
simulator S runs the protocol for A. First of all, the
simulator S initializes the system by generating

params ¼ paramsP;IBE;E
S fðG;G; nÞ; ðG; q; gÞ; ðH1; H2Þg and

the secret master-keyIBE. Next, Client, Server, and
ClientServerTriple sets are determined. Passwords for cli-
ents are chosen at random and split, and then stored at
corresponding servers. Private keys for servers are com-

puted usingmaster-keyIBE.
The public information is provided to the adversary.

Considering ðC;A;BÞ 2 ClinetServerTriple, we assume
that the adversary A chooses the server B to corrupt and
the simulator S gives the adversary A the information
held by the corrupted server B, including the private key
of the server B, i.e., dB, and one share of the password of

the client C, GpwC;B and g
pw


C;B . After computing the appro-
priate answer to any oracle query, the simulator S pro-
vides the adversary A with the internal state of the
corrupted serverB involved in the query.

We view the adversary’s queries to its Send oracles as
queries to four different oracles as follows:

- SendðC; i; A;BÞ represents a request for instance

Ci of client C to initiate the protocol. The output
of this query is msg1 ¼ hC;Wc; pk; Eai and
msg2 ¼ hC;Wc; pk; Ebi.

- SendðA; j; C;msg1Þ represents sending message

msg1 to instance Aj of the server A. The output of
this query is eithermsgA ¼ hA;Wa;E1i or ?.

- SendðC; i; A;B;msgAjmsgBÞ represents sending

the message msgAjmsgB to instance Ci of the cli-

ent C. The output is either acciC ¼ TRUE or ?.

- SendP ðA; j;B;MÞ represents sending message M

to instance Aj of the server A, supposedly by the
server B, in the two-party PAKE protocol P . The
input and output of this query depends on the
protocol P .

We refer to the real execution of the experiment, as
described above, as P0.

Experiment P1: In this experiment, the simulator inter-
acts with the adversary as P0 except that the adversary
does not succeed, and the experiment is aborted, if any
of the following occurs:

1) At any point during the experiment, an oracle-
generated message is repeated.

2) At any point during the experiment, a collision
occurs in the hash functionH1 orH2

Claim 1. If H1 and H2 are collision-resistant hash func-

tions, jAdvP0A ðkÞ � Adv
P1
A ðkÞj is negligible.

Experiment P2: In this experiment, the simulator inter-
acts with the adversary A as in P1 except that the
adversary’s queries to Execute oracles are handled dif-
ferently: in any ExecuteðC; i; A; j; B; kÞ, where the adver-
sary A has not queried corruptðAÞ, but may have queried

corruptðBÞ, (1) the plaintext Gpw1h
�1

in Ea is replaced with

a random element in G; (2) the plaintext g
pw


C;A
h�1
a in E0

a is

replaced by a random element in G; (3) the session keys
skC;A and skA;C are replaced with a same random ele-

ment in G.
Claim 2. If (1) the identity-based encryption scheme

is secure against the chosen-ciphertext attack; (2) the
public key encryption scheme E is secure against
the chosen-ciphertext attack; (3) the decisional Diffie-

Hellman problem is hard over (G; g; q), jAdvP1A ðkÞ �
Adv

P2
A ðkÞj is negligible.
Experiment P3: In this experiment, we modify the sim-

ulator’s responses to SendðA; j; C;msg1Þ and
SendðC; i; A;B; msgAjmsgBÞ queries. If the adversary
ever queries SendðA; j; C;msg1Þ oracle to a fresh server

instance Aj with an adversarially-generated and valid

msg1 (denoted as accjA ¼ r) or SendðC; i; A;B;msgAj
msgBÞ oracle to a fresh client instance Ci with an
adversarially-generated and valid msgAjmsgB (denoted

as acciC ¼ r), the simulator halts and the adversary suc-

ceeds. Otherwise the adversary’s success is determined
as in experiment P2.

Claim 3.AdvP2A ðkÞ 	 Adv
P3
A ðkÞ:

Experiment P4: In this experiment, the simulator inter-
acts with the adversary A as in experiment P3 except that
the adversary’s queries to SendðA; j; C;msg1Þ and
SendðC; i; A;B;msgAjmsgBÞ oracles are handled differ-
ently: in any SendðA; j; C;msg1Þ or SendðC; i; A;B;
msgAjmsgBÞ oracles where the adversary A has not que-
ried corruptðAÞ, but may have queried corruptðBÞ, the
plaintext Gpw1h

�1
in Ea is replaced with a random element

in G and the plaintext g
pw


C;A
h�1
a in E0

a (if any) is replaced

with a random element in G.
Claim 4. If both the IBE scheme and the public key

encryption scheme E are semantically secure, jAdvP3A ðkÞ�
Adv

P4
A ðkÞj is negligible.
The adversary A succeeds only if one of the following

occurs: (1) the adversary queries SendðA; j; C;msg1Þ ora-
cle to a fresh server instance Aj with accjA ¼ r (let Succ1
denote this event); (2) the adversary queries
SendðC; i; A;B; msgAjmsgBÞ oracle to a fresh client

instance Ci with acciC ¼ r (let Succ2 denote this event);

(3) neither Succ1 nor Succ2 happens, the adversary wins

the game by a Test query to a fresh instance Ci or a

server instance Aj.
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To evaluate Pr½Succ1� and Pr½Succ2�, we assume that
the adversary A has corrupted the server B and consider
two as follows.

Case 1. The adversary A forges msg01 ¼ hC;W 0
c; pk

0; E0
ai

where E0
a ¼ IBEðGpw


1
h
�1

; AÞ; h
 ¼ H1ðC;W 0
c; pk

0Þ, W 0
c; pk

0;
pw


1 are chosen by the adversary, and sends msg01 to the

server A. After receiving msg01, the server A derives

va ¼ Gpw

1
�pwC;A ¼ Gpw


1
þpwC;B�pwC ¼ Gpw


1
þpwC;B=GpwC and

then runs two-party PAKE protocol P with the server B
(controlled by the adversary) on the basis of va. In the

view of the adversary, va can be anyone of fGpw

1
þpwC;B

=Gpwjpw 2 Dg. If P is a secure two-party PAKE protocol

with explicit authentication, Pr½Succ1� 	 QP ðkÞ=N þ"ðkÞ.
Case 2. Given C;Wc, for X ¼ A or B, x ¼ a or b, the

adversary A forges msg0X ¼ hX;W 0
x; E

0
xi, where E0

x ¼
Eðgpw


xh


x
�1
; pkÞ, h


x ¼ H2ðX;W 0
x; C;WcÞ, and W 0

x; pw


x are

chosen by the adversary. Then A sends msg0Ajmsg0B to
the client. In this case, the event Succ2 occurs if and only

if pw

a þ pw


b ¼ pwC . Therefore, Pr½Succ2� 	 QCðkÞ=N ,

where QCðkÞ denotes the number of on-line attacks to the

client instance Ci.
The above discussion shows that
Claim 5. If (1) P is a secure two-party PAKE protocol

with explicit authentication; (2) the IBE scheme and the
public key encryption scheme are secure against the cho-
sen-ciphertext attack; then Pr½Succ1 _ Succ2� 	 QðkÞ=
N þ "ðkÞ, where QðkÞ denotes the number of on-line
attacks.

In P4, the adversary’s probability of success when nei-
ther Succ1 nor Succ2 occurs is 1/2. This implies that

Pr
P4
A ½Succ� 	 QðkÞ=N þ "ðkÞ þ 1=2 � ð1�QðkÞ=N � "ðkÞÞ;

and thus the adversary’s advantage in experiment P0

Adv
P0
A ðkÞ 	 Adv

P4
A ðkÞ þ "ðkÞ 	 QðkÞ=N þ "ðkÞ;

for some negligible function "ð�Þ. This completes the
proof. tu

5 PERFORMANCE ANALYSIS

The efficiency of the compiled protocols using our com-
pilers depends on performance of the underlying protocols.

In our IBS-based protocol, if we use the KOY two-party
PAKE protocol [22], the Paterson et al.’s IBS scheme [25]
and the Cramer-Shoup public key encryption scheme [13]
as cryptographic building blocks, the performance of our
IBS-based protocol can be shown in Table 1. In our IBE-
based protocol, if we use the KOY two-party PAKE protocol
[22], the Waters IBE scheme [28] and the Cramer-Shoup
public key encryption scheme [13] as cryptographic build-
ing blocks, the performance of our IBE-based protocol can
also be shown in Table 1. In addition, we compare our pro-
tocols with the Katz et al. two-server PAKE protocol [23]
(secure against active adversary) in Table 1. In Table 1, exp.,
Sign. and Pair for computation represent the computation
complexities of a modular exponentiation over an elliptic
curve, a modular exponentiation over Zp, a signature gener-
ation and a pairing, respectively, and Exp., exp. and Sign. in
communication denote the size of the modulus and the size
of the signature, and KOY stands for the computation or
communication complexity of the KOY protocol.

In Table 1, different operations are computed in different
protocols. For example, some modular exponentiations in
our protocols are over an elliptic curve group, while the
modular exponentiations in the Katz et al.’s protocol are
over Zp only. Our protocols need to compute pairings while
the Katz et al.’s protocol does not. In order to further com-
pare their performance, we implement our two protocols.

To realize the modular exponentiation Gx over an elliptic
curve group G and the pairing map e : G� G ! GT in our
protocols, we build our implementation on top of the PBC
pairing-based cryptography library,1 whereas the multipli-
cative group over the prime integer p is based on the GNU
MP library.2 Moreover, the elliptic curve we use is the A512
ECC in which the first two groups are the same, i.e., a sym-
metric pairing. Another library mbed TLS3 is adopted due
to the invocations of AES and SHA-512 for the one-time sig-
nature in KOY. All the experiments were conducted in

TABLE 1
Performance Comparison of Katz et al. Protocol and Our Protocols

Katz et al. Protocol [23] Our IBS-based Protocol Our IBE-based Protocol

Public Keys Client: None Client: None Client: None
Sever A: Public Key pkA Server A: A Server A: A
Sever B: Public Key pkB Server B: B Server B: B

Private Keys Client: pwC Client: pwC Client: pwC

Sever A: pwC;A, Private Key skA Server A: gpwC;A ; dA Server A: GpwC;A ; g
pw


C;A ; dA

Sever B: gpwC;B , Private Key skB Server B: gpwC;B ; dB Server B: GpwC;B ; g
pw


C;B ; dB
Computation Client: 21(exp.)+1(Sign) Client: 23(Exp.)+6(Pair) Client: 23(Exp.)
Complexity Server: about 6(KOY) Server: about 1(KOY)+9(Exp) Server: about 1(KOY)+2(Pair)+9(Exp.)
Communication Client/Server: 27(exp.)+1(Sign) Client/Server: 22(Exp.) Client/Server: 24(Exp.)
Complexity Server/Server: about 2(KOY) Server/Server: about 1(KOY) Server/Server: about 1(KOY)

TABLE 2
Execution Time of Protocols (in Milliseconds)

Katz et al.
Protocol [23]

Our IBS-based
Protocol

Our IBE-based
Protocol

Client 1.26 5.26 7.08
Server A 5.31 4.14 2.08
Server B 5.31 3.82 1.76

1. https://crypto.stanford.edu/pbc/download.html
2. https://gmplib.org/
3. https://tls.mbed.org/
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Ubuntu 14.04 running on a computer equipped with an
Intel i7-4770HQ CPU and 16 GBytes of memory. When
implementing our protocols, we also performed optimiza-
tion when applicable. For example, we compute the Waters’
hash function by parallel computation.

The execution time of our two protocols compared with
the Katz et al.’s protocol can be shown in Table 2. From
Table 2, we can see that the client performance in Katz et al.’
s protocol is better than our protocols, but the execution
times for client in the three protocols are all less than 10 ms.
The server performance in our protocols is better than the
Katz et al.’s protocol, saving from 22 to 66 percent of com-
putation. When the servers provide services to a great num-
ber of clients concurrently, the server performance is critical
to the performance of the whole protocol. For example,
assume that Servers A and B provide services to 100 clients
concurrently and there is no communication delay, the lon-
gest waiting time with respect to a client for our IBE-based
protocol is around 7.08+208+176=391.08 ms while the Katz
et al.’s protocol takes about 1.26+531+531=1,063.26 ms. The
difference is 672.18 ms.

In terms of communication complexity, the size of a group
element over elliptic curve (denoted as Exp.) in our protocols
can be 512 bits, while the size of a group element over Zp in
the Katz et al.’s protocol [23] has to be 1,024 bits. From
Table 1, we can see that the communication complexity of
our protocols is about a half of the Katz et al.’s protocol [23].
For a more comprehensive comparison between ours and
Katz et al.’s protocol, please refer to our supplementary
material for further details.

6 CONCLUSION

In this paper, we present two efficient compilers to trans-
form any two-party PAKE protocol to an ID2S PAKE pro-
tocol with identity-based cryptography. In addition, we
have provided a rigorous proof of security for our com-
pilers without random oracle. Our compilers are in partic-
ular suitable for the applications of password-based
authentication where an identity-based system has already
been established. Our future work is to construct an iden-
tity-based multiple-server PAKE protocol with any two-
party PAKE protocol.
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