
Motivation Related work Our solution Implementations Conclusion

The Fairy-Ring Dance:

Password Authenticated Key Exchange in a Group

Speaker: Feng Hao

School of Computing Science

Newcastle University, UK

ASIACCS IoTPTS’15, Singapore



Motivation Related work Our solution Implementations Conclusion

Acknowledgment

Joint work with:
Xun Yi (RMIT University, Australia, UK)
Liqun Chen (HP Labs, UK)
Siamak F. Shahandashti (Newcastle University, UK)



Motivation Related work Our solution Implementations Conclusion

Internet of Things

All communications via (insecure) Internet



Motivation Related work Our solution Implementations Conclusion

Secure Group Communication

The need for secure group communication
One group key is easier to manage than many pairwise keys

Where to bootstrap the trust?
Not from PKI, as we want to avoid it
Instead, from a common (low-entropy) password

In practice, one enters a short code to each device
No pre-installed certificates or secrets required



Motivation Related work Our solution Implementations Conclusion

Password Authenticated Key Exchange

Extensively studied since 1992
Several solutions available: EKE, SPEKE, SRP-6, J-PAKE



Motivation Related work Our solution Implementations Conclusion

Group PAKE

A natural extension from two-party to multi-party
However, not a trivial extension

Group PAKE is more difficult to design than two-party PAKE
Very few studies on Group PAKE so far

However, IoT may prove a killer app for Group PAKE



Motivation Related work Our solution Implementations Conclusion

Challenge in designing Group PAKE

Security requirements have been well undrestood
Similar to two-party PAKE

One practical challenge is to make it round-efficient
Computation improves rapidly over time (Moore’s law)
Communication improves only modestly
The rounds always stay the same

The overall latency is mainly determined by the slowest
responder



Motivation Related work Our solution Implementations Conclusion

Round efficiency

Many Group PAKE protocols require O(n) rounds
Best round efficiency so far: constant 4 rounds (Abdalla et al,
PKC’06)
Here, we show how to achieve 2 rounds (theoretical best)



Motivation Related work Our solution Implementations Conclusion

The topology of group communications

Previous designs generally assume a circle
A participant only talks to two neighbors (left and right)
Essentially, following the same topology as Burmester-Desmedt
(Eurocrypt’95)

But we will use a different topology: fully-connected graph
No increase in the communication complexity
All data is broadcasted in the public



Motivation Related work Our solution Implementations Conclusion

Fairy-Ring Dance

(Source: YouTube)

A traditional Scottish dance
Men and women form a circle, and dance in rotation
Everyone dances with everyone else



Motivation Related work Our solution Implementations Conclusion

A more technical view

Run two processes in parallel
Pairwise PAKE sessions (inner dash lines)
One group session establishment (outer circle)



Motivation Related work Our solution Implementations Conclusion

Two concrete instantiations

SPEKE+
Use SPEKE for pairwise PAKE sessions
Use (modified) Burmester-Desmedt for group session

J-PAKE+
Use J-PAKE for pairwise PAKE sessions
Use (modified) Burmester-Desmedt for group session



Motivation Related work Our solution Implementations Conclusion

First Group PAKE scheme: SPEKE+

Combining SPEKE and BD with optimal round-efficiency
SPEKE

Proposed by Jablon in 1996
Standardized in IEEE P1363.2 and ISO/IEC 11770-4.
Used in commercial applications (Blackberry)

BD
Proposed by Burmester and Desmedt in 1995
Almost universally used in group key exchange schemes
But it’s unauthenticated



Motivation Related work Our solution Implementations Conclusion

SPEKE protocol [Jablon’96]

Alice Bob
1. x 2R Zq X = g x

�����! Verify X 2 [2,p�2]
2. Verify Y 2 [2,p�2] Y = g y

 ����� y 2R Zq

k = H(Y x) = H(g xy ) k = H(X y ) = H(g xy )

Explicit key confirmation (optional)

Use a safe prime p = 2q+1
Use a password-derived generator: g = s2 (later changed to
g = H(s)2)



Motivation Related work Our solution Implementations Conclusion

BD protocol [Burmester-Desmedt’95]

Round 1
Every participant Pi selects yi 2R [0,q�1] and broadcasts g yi

.

Everyone can compute g zi = g yi+1/g yi�1 .

Round 2
Every participant Pi broadcasts (g zi )yi .

Group session key:
Ki = (g yi�1)n·yi · (g zi yi )n�1 · (g zi+1yi+1)n�2 · · ·(g zi�2yi�2)

= g y1·y2+y2·y3+···+yn·y1



Motivation Related work Our solution Implementations Conclusion

SPEKE+ (Two rounds with key confirmation)

Round 1
Every participant Pi selects xi 2R [1,q�1], yi 2R [0,q�1] and

broadcasts g xi
s , g yi

together with ZKP for yi .

Everyone can compute g zi = g yi+1/g yi�1 .

Round 2
Every participant Pi broadcasts (g zi )yi and a ZKP for proving

Loggzi (g
zi )yi = Loggg

zi
. Furthermore, Pi computes two pairwise

keys with each of the rest participants: 1)

kMAC

ij = H(g
xi xj
s k“MAC”); 2) kKC

ij = H(g
xi xj
s k“KC”). The 1st key

is used to authenticate the group key while the 2nd key is used for

key confirmation in pairwise PAKE sessions. (more details in paper)

Ki = (g yi�1)n·yi · (g zi yi )n�1 · (g zi+1yi+1)n�2 · · ·(g zi�2yi�2)
= g y1·y2+y2·y3+···+yn·y1



Motivation Related work Our solution Implementations Conclusion

Second Group PAKE scheme: J-PAKE+

J-PAKE [Hao, Ryan, 2008]
Included in open source libraries (OpenSSL, Bouncycastle,
NSS)
Used in commercial applications (Firefox, Palemoon, Nest)
Accepted by ISO/IEC 11770-4 standard (in process)

J-PAKE+ (our new contribution)
A group variant of J-PAKE



Motivation Related work Our solution Implementations Conclusion

J-PAKE+

Original two-party J-PAKE
Two rounds with implicit key confirmation
Three rounds with explicit key confirmation

Multi-party J-PAKE+
Combining J-PAKE and BD with optimal round-efficiency
Three rounds with explicit key confirmation
Based on the same Fairy-Ring Dance construction
Protocol details omitted in this talk (see paper)



Motivation Related work Our solution Implementations Conclusion

Implementation of SPEKE+ and J-PAKE+

Implemented both protocols in pure Java
Used only the standard BigInteger class for all the modular
exponentiations
Chose the 2048-bit group setting
Source code available at:
https://github.com/FairyRing/SourceCode

https://github.com/FairyRing/SourceCode


Motivation Related work Our solution Implementations Conclusion

Comparing latency between SPEKE+ and J-PAKE+

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000
Latecny measurement in SPEKE+

Number of the participants in the group

La
te

nc
y 

(m
s)

 

 

Cost of computation in round 1
Cost of verification after round 1
Cost of computation in round 2
Cost of verification after round 2
Cost of computation of group key

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000
Latency measurement in J−PAKE+

Number of the participants in the group

La
te

nc
y 

(m
s)

 

 

Cost of computation in round 1
Cost of verification after round 1
Cost of computation in round 2
Cost of verification after round 2
Cost of computation in round 3
Cost of verification after round 3
Cost of computation of group key

Tested on 2.93 GHz PC with 4 GB RAM running 64-bit Windows 7



Motivation Related work Our solution Implementations Conclusion

Breakdown of costs in SPEKE+

Cost breakdown Complexity No of exponentiations
1 Computation in R1 O(1) 3
2 Verification after R1 O(n) (n�1)⇥2.215
3 Computation in R2 O(n) 3+(n�1)⇥1
4 Verification after R2 O(n) (n�1)⇥3.25
5 Compute group key O(1) 1

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Number of the participants in the group

La
te

nc
y 

(m
s)

Cost breakdown in SPEKE+

 

 

Cost of computation in round 1
Cost of verification after round 1
Cost of computation in round 2
Cost of verification after round 2
Cost of computation of group key



Motivation Related work Our solution Implementations Conclusion

Breakdown of costs in J-PAKE+

Cost breakdown Complexity No of exponentiations
1 Computation in R1 O(n) 2+(n�1)⇥4
2 Verification after R1 O(n) (n�1)⇥9
3 Computation in R2 O(n) (n�1)⇥2
4 Verification after R2 O(n) (n�1)⇥4
5 Computation in R3 O(n) 5+(n�1)⇥2
6 Verification after R3 O(n) (n�1)⇥5
7 Compute group key O(1) 1

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

Number of the participants in the group

La
te

nc
y 

(m
s)

Cost breakdown in J−PAKE+

 

 

Cost of computation in round 1
Cost of verification after round 1
Cost of computation in round 2
Cost of verification after round 2
Cost of computation in round 3
Cost of verification after round 3
Cost of computation of group key



Motivation Related work Our solution Implementations Conclusion

Security properties of SPEKE+ and J-PAKE+

Off-line dictionary attack resistance
Reducible to the underlying PAKE

known-session security
Reducible to the underlying PAKE

Forward secrecy
Reducible to the underlying PAKE

On-line dictionary attack resistance
Reducible to the underlying PAKE
However, the number of guesses increases to a⇥ (n�a)
where a is the number of legitimate participants and n is the
total number of participants



Motivation Related work Our solution Implementations Conclusion

The Good and Bad about Fairy-Ring Dance

The Good
Preserves the round efficiency in the optimal way
Allows us to achieve better round efficiency than previous
works
Pushes the known best result to 2 rounds (theoretical best)

The Bad
More than one password guesses in on-line attack: ideally,
should be exactly one
O(n) computation per participant: ideally, should be O(1)

However, need to put the “Bad” into a practical perspective
Not any serious concern for a small-medium sized group
Overall, a worthwhile trade-off



Motivation Related work Our solution Implementations Conclusion

Conclusion

Research on two-party PAKE started from 1990s
Extensively studied in the past 20 years
Practical deployment of PAKE only takes off in recent years

Research multi-party Group PAKE has been lagging far behind
Very few studies in this area
No Group PAKE has been used in any practical applications
However, the IoT may change the landscape

We contribute two Group PAKEs
Both are are sufficiently efficient for practical use
Open source implementations available



Motivation Related work Our solution Implementations Conclusion

Q & A

Thank you!

For more technical details, see
https://eprint.iacr.org/2015/080.pdf

https://eprint.iacr.org/2015/080.pdf

	Motivation
	Related work
	Our solution
	Implementations
	Conclusion

