The Fairy-Ring Dance:
Password Authenticated Key Exchange in a Group

Speaker: Feng Hao

School of Computing Science
Newcastle University, UK

ASIACCS 1oTPTS'15, Singapore

Acknowledgment

Joint work with:
e Xun Yi (RMIT University, Australia, UK)
@ Liqun Chen (HP Labs, UK)
e Siamak F. Shahandashti (Newcastle University, UK)

Internet of Things

TERNET
e e

All communications via (insecure) Internet

Motivation

Secure Group Communication

@ The need for secure group communication
e One group key is easier to manage than many pairwise keys
@ Where to bootstrap the trust?

o Not from PKI, as we want to avoid it
o Instead, from a common (low-entropy) password

@ In practice, one enters a short code to each device

o No pre-installed certificates or secrets required

Related work

Password Authenticated Key Exchange

Enter code: 432 Enter code: 432
10-bit No Public Key Infrastructure 10-bit

o Extensively studied since 1992
@ Several solutions available: EKE, SPEKE, SRP-6, J-PAKE

Related work

Group PAKE

@ A natural extension from two-party to multi-party
@ However, not a trivial extension

e Group PAKE is more difficult to design than two-party PAKE
o Very few studies on Group PAKE so far

@ However, loT may prove a killer app for Group PAKE

Related work

Challenge in designing Group PAKE

@ Security requirements have been well undrestood

o Similar to two-party PAKE
@ One practical challenge is to make it round-efficient

o Computation improves rapidly over time (Moore's law)
e Communication improves only modestly
e The rounds always stay the same

@ The overall latency is mainly determined by the slowest

responder

Related work

Round efficiency

e Many Group PAKE protocols require O(n) rounds

@ Best round efficiency so far: constant 4 rounds (Abdalla et al,
PKC'06)

@ Here, we show how to achieve 2 rounds (theoretical best)

Our solution

The topology of group communications

@ Previous designs generally assume a circle

o A participant only talks to two neighbors (left and right)
e Essentially, following the same topology as Burmester-Desmedt
(Eurocrypt’95)

@ But we will use a different topology: fully-connected graph

e No increase in the communication complexity
o All data is broadcasted in the public

Our solution

Fairy-Ring Dance

(Source: YouTube)

@ A traditional Scottish dance
@ Men and women form a circle, and dance in rotation
@ Everyone dances with everyone else

Our solution

A more technical view

@ Run two processes in parallel

o Pairwise PAKE sessions (inner dash lines)
o One group session establishment (outer circle)

Our solution

Two concrete instantiations

e SPEKE+

e Use SPEKE for pairwise PAKE sessions
o Use (modified) Burmester-Desmedt for group session

o J-PAKE+

o Use J-PAKE for pairwise PAKE sessions
o Use (modified) Burmester-Desmedt for group session

Our solution

First Group PAKE scheme: SPEKE+

@ Combining SPEKE and BD with optimal round-efficiency
e SPEKE
e Proposed by Jablon in 1996

e Standardized in IEEE P1363.2 and ISO/IEC 11770-4.
o Used in commercial applications (Blackberry)

e BD

e Proposed by Burmester and Desmedt in 1995
e Almost universally used in group key exchange schemes
e But it's unauthenticated

Our solution

SPEKE protocol [Jablon'96]

Alice Bob
1. Z X =g Verify X € [2,p—2
2. Verif XYER 2q 2] v gy Y €[ij |
. erify Y € [2,p—2] =g YE€ERZq
k=H(Y*)=H(g?) k= H(XY)=H(g")

Explicit key confirmation (optional) ‘

@ Use a safe prime p=2g+1
o Use a password-derived generator: g = s2 (later changed to
g=H(s)*)

Our solution

BD protocol [Burmester-Desmedt'95]

Every participant P; selects y; €g [0,q — 1] and broadcasts g*i.

Everyone can compute g% = g¥i+1 /g¥i-1,

Every participant P; broadcasts (g%)Y:.

Group session key:

K; = (g}’i—l)n')’i . (gziyl‘)nfl . (g2i+1yl'+1)n*2 ... (gzi—zyi-z)
— g}/1-}’2+}/2'y3+~~+yn~y1

Our solution

SPEKE+ (Two rounds with key confirmation)

Every participant P; selects x; €g [1,q—1], y; €r [0,g— 1] and
broadcasts gi, g¥i together with ZKP for y;.

Everyone can compute g% = g¥i+1 /g¥i-1.

Round 2

Every participant P; broadcasts (g%)"" and a ZKP for proving
Log,-(g%)" = Log,g%. Furthermore, P; computes two pairwise
keys with each of the rest participants: 1)

KIMAC = H(gs V|| "MAC"); 2) k5 = H(gs"" || “KC"). The 1st key
is used to authenticate the group key while the 2nd key is used for
key confirmation in pairwise PAKE sessions. (more details in paper)

K; = (g}’f—l)”')’i . (gzi)’i)"*l . (gzi+1)/i+1)”*2 ... (ngfzyifz)
— gy1~yz+y2~y3+~~+yn-y1

Our solution

Second Group PAKE scheme: J-PAKE+

e J-PAKE [Hao, Ryan, 2008]

o Included in open source libraries (OpenSSL, Bouncycastle,
NSS)
o Used in commercial applications (Firefox, Palemoon, Nest)
o Accepted by ISO/IEC 11770-4 standard (in process)
e J-PAKE+ (our new contribution)

e A group variant of J-PAKE

Our solution

J-PAKE+

@ Original two-party J-PAKE

e Two rounds with implicit key confirmation
o Three rounds with explicit key confirmation

e Multi-party J-PAKE+

Combining J-PAKE and BD with optimal round-efficiency
Three rounds with explicit key confirmation

Based on the same Fairy-Ring Dance construction
Protocol details omitted in this talk (see paper)

Implementations

Implementation of SPEKE+ and J-PAKE+

Implemented both protocols in pure Java

Used only the standard Biglnteger class for all the modular
exponentiations

Chose the 2048-bit group setting

Source code available at:
https://github.com/FairyRing/SourceCode

https://github.com/FairyRing/SourceCode

Implementations

Comparing latency between SPEKE+ and J-PAKE+

Latecny measurement in SPEKE+ Latency measurement in J-PAKE+

[Cost of computation in round 1
[Cost of verification after round 1
[Cost of computation in round 2
[Cost of verification after round 2
[Cost of computation in round 3
[Cost of verification after round 3
[Cost of computation of group key

3000(| [Cost of verification after round 2 3000
[Cost of computation of group key

__ 2500 __ 2500
2000

1500 1500
1000 1000

= 55555
2 4 6 8 10 2 2 4 6 8 10 12 14 16

14 16 18 20
Number of the participants i the group Number of the participants in the group

Tested on 2.93 GHz PC with 4 GB RAM running 64-bit Windows 7

[Cost of computation in round 1
35001 | [Cost of verification after round 1
[Cost of computation in round 2

3500

Latency (ms)
o
8
g
8
Latency (ms)

3

3
@
3
3

Implementations

Breakdown of costs in SPEKE+

Cost breakdown Complexity No of exponentiations
1 Computation in R1 O(1) 3
2 Verification after R1 O(n) (n—1)x2.215
3 Computation in R2 O(n) 3+(n—-1)x1
4 Verification after R2 O(n) (n—1)x3.25
5 Compute group key 0(1) 1
Cost breakdown in SPEKE+
2500 T T T T T T T T T
Cost of computation in round 1
Cost of verification after round 1
2000 Cost of computation in round 2 q

Cost of verification after round 2
Cost of computation of group key

1500

Latency (ms)

1000 -

2 4 6 8 10 12 14 16 18 20
Number of the participants in the group

Breakdown of costs in J-PAKE+

Implementations

Cost breakdown

Complexity

No of exponentiations

Computation in R1
Verification after R1
Computation in R2
Verification after R2

O(n)

2+(n—1)x4
(n—1)x9
(n—1)x2
(n—1)x4

O(n
o(

(

(54+(n—1)x2
(n (n—1)x5
0(1) 1

Cost breakdown in J-PAKE+
800 T T T T T T T T T

o
Computation in R3 (o]
Verification after R3 o
Compute group key

)
n)
n)
n)

)

NoohWNNKH

Cost of computation in round 1
Cost of verification after round 1
Cost of computation in round 2
Cost of verification after round 2 9
Cost of computation in round 3
Cost of verification after round 3
Cost of computation of group key

700

600 -

500

400

Latency (ms)

300

200

100

2 4 6 8 10 12 14 16 18 20
Number of the participants in the group

Implementations

Security properties of SPEKE+ and J-PAKE+

@ Off-line dictionary attack resistance

e Reducible to the underlying PAKE

@ known-session security
e Reducible to the underlying PAKE

e Forward secrecy
e Reducible to the underlying PAKE

@ On-line dictionary attack resistance

e Reducible to the underlying PAKE

o However, the number of guesses increases to a x (n— a)
where o is the number of legitimate participants and n is the
total number of participants

Implementations

The Good and Bad about Fairy-Ring Dance

@ The Good

o Preserves the round efficiency in the optimal way
o Allows us to achieve better round efficiency than previous

works
o Pushes the known best result to 2 rounds (theoretical best)

@ The Bad

e More than one password guesses in on-line attack: ideally,
should be exactly one
o O(n) computation per participant: ideally, should be O(1)

@ However, need to put the “Bad” into a practical perspective

e Not any serious concern for a small-medium sized group
e Overall, a worthwhile trade-off

Conclusion

Conclusion

@ Research on two-party PAKE started from 1990s

o Extensively studied in the past 20 years
e Practical deployment of PAKE only takes off in recent years

@ Research multi-party Group PAKE has been lagging far behind

o Very few studies in this area
o No Group PAKE has been used in any practical applications
o However, the loT may change the landscape

e We contribute two Group PAKEs

e Both are are sufficiently efficient for practical use
e Open source implementations available

Conclusion

Thank youl

For more technical details, see
https://eprint.iacr.org/2015/080.pdf

https://eprint.iacr.org/2015/080.pdf

	Motivation
	Related work
	Our solution
	Implementations
	Conclusion

