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Abstract

Dragon�y is a password authenticated key exchange protocol that has

been submitted to the Internet Engineering Task Force as a candidate

standard for general internet use. We analyzed the security of this protocol

and devised an attack that is capable of extracting both the session key

and password from an honest party. This attack was then implemented

and experiments were performed to determine the time-scale required to

successfully complete the attack.

1 Introduction

Password authenticated key exchange protocols are used in a variety of situa-
tions to allow two parties to bootstrap a secure symmetric key (known as the
session key) from a shared low-entropy secret over insecure public channels.
This serves two purposes; �rstly, the two parties are mutually authenticated
based on whether they have the same passwords, and secondly, if the passwords
are the same, a strong session key will be derived and then used to protect the
subsequent communication between the two parties from eavesdropping and
alteration.

It follows that password authenticated key exchange protocols must be re-
sistant to two main threats; an adversary computing the session key that two
honest parties agree to, and an adversary computing the low entropy secret that
two honest parties share, either by eavesdropping on communications or inject-
ing special values into the protocol execution. The realization of the second
threat will then allow an adversary to impersonate either party to the other.
This not only compromises authentication; it also compromises the privacy and
integrity of subsequent communication, as the adversary can launch a man-in-
the-middle attack.
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Dragon�y is a password authenticated key exchange protocol speci�ed by
Dan Harkins for exchanging session keys with mutual authentication within
mesh networks [13]. Recently, Harkins submitted a variant of the protocol to
the Internet Engineering Task Force (IETF) as a candidate standard for general
Internet use1. We observe that both variants are essentially the same protocol,
though some implementation details are di�erent.

It is claimed that the Dragon�y protocol is �resistant to active attacks, pas-
sive attacks, and o�-line dictionary attacks� [11,13]. However, as acknowledged
by the author [13], no security proofs are given to support the claim. The lack of
security proofs has raised some concerns among members on the IETF mailing
list2. However, to the best of our knowledge, no one has presented concrete
attacks.

In this paper, we examine the security properties of the Dragon�y protocol.
Contrary to the author's claims, we show that both variants are vulnerable to
an attack that allows an adversary to compute the shared low-entropy secret by
injecting special values into the protocol execution and then performing o�-line
computations. We have implemented this attack and shown it to be a practical
threat.

In this paper, we base our analysis upon the original protocol speci�cation
as de�ned in a peer-reviewed paper [13]. However, the attack we present is
trivially applicable to the variant speci�ed in [11]. (The IETF draft has since
been changed to add a public key validation step to prevent the attack after we
noti�ed Harkins of our discovery [12].)

The rest of the paper is organized as follows. In Section 2, we explain
background about password authenticated key exchange protocols and focus
on explaining the SPEKE protocol since it is similar to Dragon�y. Then, we
present our attack, and experimentally evaluate its performance against imple-
mentations using �nite �elds and elliptic curve groups (Section 3). Next we
discuss methods for preventing this attack, and the e�ects this may have on the
protocol's performance (Section 4). Finally, Section 5 concludes the paper.

2 Background

We begin by introducing the concept of key exchange protocols (Section 2.1).
Next we discuss password authenticated key exchange protocols (Section 2.2).
Finally, we present the Dragon�y protocol (Section 2.3).

2.1 Key Exchange Protocols

Key exchange protocols were �rst introduced by Di�e and Hellman [8], as a
method by which two parties could agree on a secret key while communicating
over insecure channels. A secret key could be generated that was indistinguish-
able from a random key to an eavesdropper, without requiring any previous

1https://datatracker.ietf.org/doc/draft-irtf-cfrg-dragonfly/history/
2http://comments.gmane.org/gmane.ietf.irtf.cfrg/1786
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out-of-band communication between the two parties. The initial Di�e-Hellman
key exchange protocol was however vulnerable to man-in-the-middle attacks; an
attacker could perform a key exchange with each party and then forward their
messages as though they were communicating directly with each other.

The danger of man-in-the-middle attacks led to the need for authentication
of the parties taking part in the key exchange. This authentication could be
achieved either by using public key certi�cates [17, 19], or by using human-
memorable passwords [3, 14].

2.2 PAKE Protocols

Password Authenticated Key Exchange (PAKE) schemes provide mutual au-
thentication to the key exchange parties based on their shared password, which
is generally expected to have low entropy [3]. Since the entropy is low, it would
be possible to launch dictionary attacks in which every possible password is
tried until the correct one is found.

There are two types of dictionary attacks: on-line and o�-line attacks. In an
on-line dictionary attack, the attacker directly engages with the victim and tries
random guesses of password for each run of the protocol. By nature, no PAKE
protocol can prevent this kind of attack. However, a secure PAKE protocol
should limit such an on-line attacker to try only one password in each run of the
protocol. Consecutively failed attempts can be easily detected and any further
attempts can be stopped accordingly.

O�-line dictionary attacks are a far more serious threat. In an o�-line dic-
tionary attack, the attacker obtains one or more of the messages sent during
an execution of the protocol, and then uses these messages to eliminate values
from a dictionary of possible passwords. The messages can either be obtained
by eavesdropping on an execution of the protocol between two honest parties (in
which case the attacker is described as a passive attacker) or from the execution
of the protocol between the attacker and an honest party (in which case the
attacker is described as an active attacker and may inject special values into
the exchange to aid in the attack). A secure PAKE protocol must not leak
any information that would enable an attacker to eliminate likely passwords by
performing o�-line exhaustive comparison against a dictionary.

There are additional security requirements for a secure PAKE protocol: for
example, session key indistinguishability and forward secrecy. Since they are
less relevant to the particular attack presented in this paper, we refer interested
readers to [10,21] for more details. The requirements for secure PAKE protocols
have also been formalized in models using the paradigms of game-based security
[1, 2], simulation-based security [5, 22] and universal composability [6, 7].

A number of password-based key exchange protocols have been suggested
such as EKE [3,4], SRP [23], SPEKE [14], the Katz-Vaikuntanathan scheme [16]
and J-PAKE [10]. Among these protocols, we will mainly focus on SPEKE
because it bears a similarity to Dragon�y. The SPEKE protocol is essentially a
Di�e-Hellman key exchange where the generators are replaced by values derived
from the shared password. In the description of a fully constrained SPEKE [14],
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Figure 1: The SPEKE Protocol
Alice Bob

p is a safe prime: p = 2 · q + 1
1. x ∈ [1, q − 1] y ∈ Q

2. X = (s2)x X−→
3. Y←− Y = (s2)y

4. K = Y x = s2xy K = Xy = s2xy

the protocol de�nes a safe prime p = 2 · q + 1 where q is also a prime. Alice
sends to Bob (s2)x where s is a shared password and x is a random value from
[1, q − 1]. Similarly, Bob sends to Alice (s2)y where y is a random value from
[1, q− 1]. Both Alice and Bob can then compute a common key K = s2xy. The
SPEKE protocol is summarized in Figure 1.

Zhang demonstrates that the SPEKE protocol is not fully resistant to on-
line dictionary attacks [24]. An adversary may test more than one password
in one run based on dividing passwords into groups of exponential equivalence.
To mitigate this attack, Jablon revised the SPEKE speci�cation in the IEEE
P1363.2 standard draft3 by taking the squaring operation on the one-way hash
of the password rather than the password itself. The squaring operation is to
ensure the protocol works in a subgroup of prime order q.

Another limitation with SPEKE is related to the use of a safe prime. Given
a safe prime p of 1024 bits, the operating subgroup has a size of 1023 bits. So
the exponentiation takes a long exponent of about 1023 bits. In terms of com-
putation, this is relatively expensive since the cost of exponentiation is roughly
linear to the bit length of the exponent.

We note that EKE and SRP also have issues that may encourage the choice
of Dragon�y over them. The EKE protocol has been shown, over many common
groups, to allow an attacker to eliminate some passwords due to the structure of
observed messages [15]. SRP is not implementable over elliptic curve groups [25].
Variants of SRP over elliptic curve groups have been proposed, but have not
been analyzed to the extent that SRP has [25].

2.3 The Dragon�y Protocol

Dragon�y is based on discrete logarithm cryptography. This means that an
implementation of Dragon�y can either use operations on a �nite �eld or an
elliptic curve. No assumptions are made about the underlying group, other
than that the computation of discrete logarithms is su�ciently computationally
di�cult for the level of security required. In each case, there are two operations
that can be performed: an element operation that takes an input of two elements
and outputs a third element, and a scalar operation that takes an input of an
element and a scalar and outputs an element.

3http://grouper.ieee.org/groups/1363/passwdPK/
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Figure 2: The Dragon�y Protocol
Alice Bob

P ∈ Q P ∈ Q
1. rA,mA ∈ {1, . . . , q} rB ,mB ∈ {1, . . . , q}
2. sA = rA + mA sB = rB + mB

3. EA = P−mA sA, EA−−−−−→
EB = P−mB

4. sB , EB←−−−−−
5. ss = (P sBEB)rA A = H(ss|EA|sA|EB |sB)

−−−−−−−−−−−−−−−−−−−→
Verify A

= P rBrA ss = (P sAEA)rB

6. Verify B B = H(ss|EB |sB |EA|sA)
←−−−−−−−−−−−−−−−−−−−

= P rArB

7. Compute the shared key: K = H(ss|EA · EB |(sA + sB) mod q)

We take the �nite �eld as an example. Let us de�ne p a large prime. We
denote a �nite cyclic group Q, which is a subgroup of Z∗p of prime order q.
Hence, q | p− 1. We denote the element operation A ·B for elements A and B,
and the scalar operation Ab for element A and scalar b. These notations are in
line with those commonly used when working over a �nite �eld.

The Dragon�y protocol works as follows (see Figure 2 and also [13]):

• Alice and Bob have a shared password from which each can determin-
istically generate a password element P ∈ Q. The algorithms to map
an arbitrary password to an element in Q are speci�ed in [13] and [11].
However, the details are not relevant to our attack, so they are omitted
here.

• Alice randomly chooses two scalars rA,mA from 1 to q, calculates the
scalar sA = rA + mA mod q and the element EA = P−mA mod p and
sends sA, EA to Bob.

• Bob randomly chooses two scalars rB ,mB from 1 to q, calculates the scalar
sB = rB+mB mod q and EB = P−mB mod p and sends sB , EB to Alice.

• Alice calculates the shared secret ss = (P sBEB)rA = P rArB mod p

• Bob calculates the shared secret ss = (P sAEA)rB = P rArB mod p

• Alice sends A = H(ss|EA|sA|EB |sB) to Bob where H is a prede�ned
cryptographic hash function

• Bob sends B = H(ss|EB |sB |EA|sA) to Alice

• Alice and Bob check that the hashes are correct and if they are then they
create a shared key K = H(ss|EA · EB |(sA + sB) mod q)

Similar to SPEKE, Dragon�y uses a generator that is derived from a pass-
word. However, by design Dragon�y permits the use of short exponents. So for
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a given modulus p of 1024 bits, the operating subgroup is only 160 bits. Hence,
the length of the exponent is relatively short: only 160 bits. Overall, Dragon�y
is a lot more e�cient than SPEKE in terms of computation. One factor that
contributes to the superior e�ciency of Dragon�y over SPEKE is the omission
of public key validation. At a �rst glance, this omission may appear harmless.
However, in the following sections, we will explain that such omission renders
the Dragon�y protocol vulnerable to o�-line dictionary attacks, in which an
attacker is able to eliminate all passwords except the correct one in one run of
the Dragon�y protocol.

3 A Small Subgroup Attack on Dragon�y

We begin by presenting the algorithm we use to attack Dragon�y in Section
3.1, along with an explanation of why this attack is feasible. Next we describe
experiments that measure the success and e�ciency of this attack against Drag-
on�y using �nite �eld cryptography (Section 3.2) and elliptic curve cryptography
(Section 3.3). Finally, we present the results of these experiments in Section 3.4.

3.1 Attack Methodology

It is claimed in [13] that the Dragon�y protocol is resistant to o�-line dictionary
attacks. However, no security proofs are given. Instead, the author provides
a heuristic security analysis of the protocol's resistance to passive and active
attackers. Our analysis of the protocol has not identi�ed any weaknesses against
passive attackers.

The analysis for active attacks is as follows. It is assumed that an active
attacker would select an arbitrary value for mB and compute EB = GmB where
G is the group generator for Q. Then, the attacker would receive a hash value
for which the only unknown input to the hash function is z where P = Gz.
Therefore, for an o�-line dictionary attack to be successful, the attacker would
have to be able to compute z for a random element in Q, which contradicts the
assumption that discrete logarithms are hard to compute.

We point out that computing EB = GmB is not the best option available to
an active attacker. Instead, the attacker can use the following method, summa-
rized in Figure 3. First, the attacker sets EB = Sn where Sn is the generator
of a small subgroup of Z∗p of order n. This small subgroup generator will have
been calculated before the protocol begins. Then, the shared secret computed
by Alice is ss = (P sB ·Sn)rA = P sBrA ·SrA

n , and this is the only unknown value
on which the hash sent by Alice is dependent.

The attacker then uses Algorithm 1 to obtain the victim's password ele-
ment P . This algorithm requires no further interaction with Alice, so can be
completed even if Alice terminates the protocol before it is completed.

If Algorithm 1 can be completed quickly enough, then the attacker can 1)
forge a valid response B to bypass authentication (so the victim is unaware
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Figure 3: Small Subgroup Attack
Alice Attacker

P ∈ Q Sn

1. rA,mA ∈ {1, . . . , q} sB ∈ {1, . . . , q}
2. sA = rA + mA Set EB = Sn

3. EA = P−mA sA, EA−−−−−→
4. sB , EB←−−−−−
5. ss = (P sBEB)rA A = H(ss|EA|sA|EB |sB)

−−−−−−−−−−−−−−−−−−−→
(P,B,K)←

= P sBrASrA
n OfflineSearch

(A, sB , EB)
6. Verify B B = H(ss|EB |sB |EA|sA)

←−−−−−−−−−−−−−−−−−−−
7. Compute the shared key K = H(ss|EA · EB |(sA + sB) mod q)

that the password has been compromised); 2) compromise the secrecy of com-
munication by deriving the session key K and using it to impersonate Bob to
Alice.

Alternatively, if Algorithm 1 takes long enough to complete that Alice ter-
minates the protocol, then the attacker is simply left with the password element
P . This can then be used to falsely authenticate the attacker as Bob (or Alice
as they share a password) in a future run of the protocol.

This attack will be feasible as Sn generates a small subgroup and the pass-
word space is su�ciently small to permit dictionary attacks. In Algorithm 1
(line 5), following A = A′, we will have ss = ss′ because the hash is assumed to
be a random oracle and is collision resistant. Thus, we obtain:

P sBrASrA
n = (P ′sAEA)sB ·Rx (1)

where Rx is a (yet unknown) small subgroup element.
After re-arranging the terms, we obtain:

P sBrA

(P ′sAEA)sB
=

Rx

SrA
n

(2)

Notice that the term on the left is an element in a subgroup of prime order q
while the term on the right is an element in a small subgroup of order n. Since
q 6= n, the equality holds only when both sides are identity elements in Z∗p : i.e.,
1. Therefore, (P ′sAEA)sB = P rAsB , from which the only possible value for P ′

is P ′ = P .
After successfully obtaining the victim's password, the attacker is then able

to complete the protocol and/or future runs of it and impersonate either Alice
or Bob to the other.
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Algorithm 1 O�ineSearch algorithm

Input: A, sB, EB

Output: P , B, K

1: for each P' in dictionary do

2: for each Rx in the subgroup do

3: ss′ := (P ′sAEA)sB ·Rx

4: A′ := H(ss′|EA|sA|EB |sB)
5: if A′ = A then

6: P = P ′

7: B = H(ss′|EB |sB |EA|sA)
8: K = H(ss′|EA · EB |(sA + sB) mod q)
9: Return {P,B,K}
10: end if

11: end for

12: end for

3.2 Attack Implementation over Finite Field

We implemented an attack simulation in Java. This simulation consists of three
components: the password chooser that randomly chooses a dictionary of pass-
word elements, the honest party that randomly chooses one of these elements as
a password and performs the Dragon�y protocol in an honest manner, and the
dishonest party that performs the dictionary attack against the honest party.

We �rst ran the Dragon�y protocol in a 160-bit subgroup of a 1024-bit
�nite �eld. The group parameters are speci�ed in Appendix A. They are
originally from the standard NIST cryptographic toolkit4. However, the NIST
toolkit does not publish the small subgroups. Hence, we began by using a
brute force method to determine the prime factors of p − 1 (where p is the
prime modulus of the 1024 bit group). In the experiment, we only searched
for prime factors of size less than 32 bits. We have found the following prime
factors: 2, 3, 13, 23 and 463907. Accordingly, we calculated generators for each
of the corresponding small subgroups (see Appendix A) and performed a set of
experiments to determine the time to complete an o�-line dictionary attack for
each subgroup.

Each set of experiments involved mounting the attack with dictionaries of
1000, 10000 and 100000 random password elements. The di�erent dictionary
sizes allowed us to measure how an increase in dictionary size would a�ect the
time taken to complete the attack. In all cases, the time measured was the time
to try every possible password, rather than the time until the correct password
was discovered. Each experiment was performed 30 times and the average value
was taken.

4http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/DSA2_All.pdf
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3.3 Attack Implementation over Elliptic Curve

Besides the �nite �eld, the Dragon�y protocol can also be initiated over an
Elliptic Curve, on which the Elliptic Curve Discrete Logarithm (ECDL) problem
is assumed to be intractable [13]. Similar to the case of �nite �eld, Harkins does
not mandate any public key validation in the protocol speci�cation over elliptic
curve. Hence, the attack methodology explained in Section 3.1 equally applies
to the elliptic curve version of the Dragon�y protocol.

To demonstrate the attack, we chose to implement the Dragon�y Protocol
over a 163-bit Koblitz Curve. The group parameters are speci�ed in Appendix
A and are originally from the NIST's Recommended Elliptic Curves for Federal
Government Use5. This curve has a co-factor of 2, so we identi�ed a small
subgroup of size 2 to use in our attack. As with the previous experiments,
we mounted the attack with dictionaries of 1000, 10000 and 100000 random
password elements, and performed each experiment 30 times.

3.4 Results

We note that only one possible password was identi�ed in every experiment and
this was the password chosen by the honest party. In all cases the experiments
were run under Windows 7 on a 2.9GHz PC with 4GB of memory.

We measured the times taken to check all possible passwords as dictionary
size varies from 1000 to 100000. This showed a fairly linear relationship between
dictionary size and the time taken to try all passwords, and also that the attack
is still feasible for a relatively large dictionary size. The mean times taken to
check one dictionary element as the subgroup size varies are shown in Table 1.

With the original speci�cation of the Dragon�y protocol in [13], the best
strategy for the attacker is to choose the smallest subgroup: say the size 2 for
the �nite �eld. Assuming a dictionary size of n = 10000, the OfflineSearch
algorithm will take on average 0.005 × n/2 = 25 seconds to �nd the correct
password. After obtaining the correct password, the attacker can trivially de-
rive the session key and continue to engage with the victim for the subsequent
secure communication. As a result, the attack can be undetectable (though the
victim may notice some delay in getting the response from the other party). We
should stress that whether the attack is quick enough to be undetectable is less
important. Since it is an o�-line dictionary attack, in any case, the attacker
will be able to obtain the victim's password. In that regard, the security has al-
ready been breached. Furthermore, the attacker is likely to signi�cantly shorten
the time of exhaustive search by distributing the calculation over several high
performance machines.

5http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
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Table 1: Attack E�ciency Experiments
Type Subgroup Size Mean Time to Try One Password (ms)

Finite Field 2 5
Finite Field 3 6
Finite Field 13 6
Finite Field 23 8
Finite Field 463907 16935
Elliptic Curve 2 20

4 Discussion

We begin by discussing how small subgroup attacks against the Dragon�y pro-
tocol can be prevented (Section 4.1). Then, we compare the e�ciency of the
Dragon�y protocol to the SPEKE protocol (Section 4.2).

4.1 Preventing Small Subgroup Attacks on the Dragon�y

Protocol

Small subgroup attacks can be prevented by checking that the received element
E (more speci�cally, EA for Bob and EB for Alice) is a member of the group
being used by the cryptographic scheme. In the case of a �nite �eld, this can
be achieved by checking that E is a member of the supergroup, that E is not
the identity element and that Eq is equal to the identity element [18]. For
the elliptic curve, a similar check is needed to ensure the received element is a
valid public key over the elliptic curve. The importance of this check � known
as the public key validation � in key exchange protocols has been highlighted
by Menezes and Ustagolu [20] in 2006 and also by a recent attack reported in
2012 [9].

However, to validate a public key will involve some computational cost. This
is especially the case when the initiation of the protocol is over a �nite �eld,
since a full exponentiation will be needed. This can decrease the protocol ef-
�ciency and make it less appealing than its competitors. Based on the time
measurements in Table 1, one might be tempted to only perform a partial val-
idation: ensuring the element does not fall within the subgroups of sizes {2, 3,
13, 23}, since for larger sizes, the time required to complete the o�-line search
is much longer (say many days). However, we advise against any such partial
validation, because the attacker may have much more powerful computing re-
source than what we had in the experiment. To adequately prevent the small
subgroup attack, a full public key validation should be performed.

4.2 Comparison between Dragon�y and SPEKE

We observe that the Dragon�y protocol is very similar to SPEKE [14] with two
minor changes. First, it drops the constraint in [14] that p must be a safe prime
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Table 2: Consequence of attack if public key validation is missing
Consequence of small subgroup attack Dragon�y SPEKE

Success in guessing the password o�-line Yes No
Success in impersonation Yes Yes

Success in eavesdropping secure communication Yes Yes

(i.e., p = 2 · q + 1). Thus, it looks much more e�cient than SPEKE since it
can accommodate a short exponent, say a value of 160 bits instead of 1023 bits.
(Given a �xed modulus p, the cost of exponentiation is linear to the bit-length
of the exponent.) Second, instead of sending just one single element by each
participant as in SPEKE, Dragon�y adds an extra scalar in the �ow. However,
the rationale for these changes is not explained in [13] or [11].

First of all, we note that the second change causes the Dragon�y protocol
to su�er a more serious consequence than SPEKE if the public key validation
is missing. To explain this, let us assume there is no public key validation in
both Dragon�y and SPEKE. Without the public key validation in SPEKE, an
active attacker can con�ne the session key to an element in a small subgroup
[14]. By brute force, the attacker can obtain the session key, thus defeating
authentication and con�dentiality in the secure communication. However, the
attacker is unable to obtain the password. By contrast, in the case of Dragon�y,
an active attacker is able to additionally obtain the victim's password (see Table
2).

Furthermore, we note that although the public key validation involves some
computational cost, it does not necessarily mean it will make the protocol ine�-
cient. For example, we can patch the Dragon�y protocol by adding a public key
validation step. The patched protocol can still be more e�cient than SPEKE.
This is largely due to the choice of using the short exponents. We illustrate the
di�erences in e�ciency between the protocols in two ways, by considering the
number of operations required to compute the exponentiations, and by mea-
suring the time taken to perform the protocol in an experiment. We present
both the number of modular multiplications and modular squaring operations
needed to perform the exponentiation for each protocol and the results of an
experiment to measure the times taken to execute each protocol in Table 3, for
a modulus p of 1024 bits for both protocols, a subgroup size of 160 bits for
Dragon�y and a subgroup size of 1023 bits for SPEKE. The experiments were
run under Windows 7 on a 2.9GHz PC with 4GB of memory. Each experiment
was performed 30 times. As shown in Table 3, although the public key valida-
tion step adds one extra modular exponentiation to the existing three modular
exponentiation, the patched Dragon�y still outperforms SPEKE.
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Table 3: Computational cost for each participant given a modulus p of 1024
bits, 1023 bit subgroup for SPEKE and 160 bit subgroup for Dragon�y

Protocol No. of Mod Mul No. of Mod Square Time (ms)

SPEKE 1023 2046 250.6
Dragon�y (original) 240 480 49.4
Dragon�y (patched) 320 640 64.0

5 Conclusion

We have shown that the original Dragon�y protocol is vulnerable to a small sub-
group based o�-line dictionary attack. The protocol can be patched by adding
a public key validation step in the speci�cation. In the past three decades, pub-
lic key validation has been frequently omitted in key exchange protocols (even
in standard speci�cations). Sometimes that omission was due to a negligent
mistake, but more often, that was intentional: because the public key valida-
tion is commonly seen as an expensive operation. Through the example of the
Dragon�y protocol, we show the importance of the public key validation and
also demonstrate that the impact of adding public key validation on the overall
protocol e�ciency is not as signi�cant as some people may think.
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A Group Parameters

A.1 Finite Field Subgroup

The group parameters are taken from the NIST cryptographic toolkit using a
1024 bit modulus, and are shown in Table 4. The subgroups of di�erent sizes
and their respective generators are shown in Table 5. However, only subgroups
of sizes of up to 32 bits are listed.
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Table 4: Group Parameters (Finite Field Subgroup)
Parameter Value (Base 16)

Prime Modulus E0A67 598CD 1B763 BC98C 8ABB3 33E5D DA0CD

3AA0E 5E1FB 5BA8A 7B4EA BC10B A338F AE06D

D4B90 FDA70 D7CF0 CB0C6 38BE3 341BE C0AF8

A7330 A3307 DED22 99A0E E606D F0351 77A23

9C34A 912C2 02AA5 F83B9 C4A7C F0235 B5316

BFC6E FB9A2 48411 258B3 0B839 AF172 440F3

25630 56CB6 7A861 158DD D90E6 A894C 72A5B

BEF9E 286C6 B

Generator D29D5 121B0 423C2 769AB 21843 E5A32 40FF1

9CACC 79226 4E3BB 6BE4F 78EDD 1B15C 4DFF7

F1D90 5431F 0AB16 790E1 F773B 5CE01 C804E

50906 6A991 9F519 5F4AB C5818 9FD9F F9873

89CB5 BEDF2 1B4DA B4F8B 76A05 5FFE2 77098

8FE2E C2DE1 1AD92 219F0 B3518 69AC2 4DA3D

7BA87 011A7 01CE8 EE7BF E4948 6ED45 27B71

86CA4 610A7 5

Subgroup Order E9505 11EAB 424B9 A19A2 AEB4E 159B7 844C5

89C4F

A.2 Elliptic Curve

The group parameters are for a 163 bit Koblitz Curve, taken from the NIST's
Recommended Elliptic Curves for Federal Government Use, and are shown in
Table 6. The chosen curve has a small subgroup of size 2 with the point (0,1)
being the generator.
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Table 5: Subgroup Generators (Finite Field)
Subgroup Size Generator (Base 16)

2 E0A67 598CD 1B763 BC98C 8ABB3 33E5D DA0CD

3AA0E 5E1FB 5BA8A 7B4CA BC10B A338F AE06D

D4B90 FDA70 D7CF0 CB0E6 38BC3 341BE C0AF8

A7330 A3307 DED22 99A0E E606D F0351 77A23

9C34A 912C2 02AA5 F83B9 C4A7C F0235 B5316

BFC6E FB9A2 48411 258B3 0B839 AF172 440F3

25630 56CB6 7A861 158DD D90E6 A894C 72A5B

BEF9E 286C6 A

3 C644F AEA25 8D199 FA294 8F762 9C61F A38C5

FD02C 0629A AF401 B8F1C 11777 F1596 E8176

9FD81 DD69D E8A7A 58FF3 AF656 1947C 5317F

FEC4E 3E396 C7229 978AD B14AA 96FB0 2D014

4A3B0 433BC D1C73 32DC2 5B3DB DAF68 E3622

0F311 5913D DC408 1E601 96196 E7405 53FBD

94083 128F5 34300 FA399 E71E8 B83C4 9590B

21C8E D2F4C 0

13 6F165 E1313 45256 75B6F 6C0FF 1BAAD 32513

77F34 AAB82 EDA7C E4D7C 85B50 10F81 22412

3FDFF F6CFB 8AFE78 3685FC 67D8D E91F0 CC70D

B8340 DFE93 98295 D616B 4FE47 39C62 19D12

688A3 12CBE ECB53 F00E9 6B1FF 9B7DD 8308C

20CEA 82B7F 6FB98 B2D7E 9F581 D01B3 C94C1

074E5 8AED3 A1267 1C8EA AF994 C5742 24EC0

6A914 6E19

23 47DEC 28EB6 0A9BE 720D1 AD4E7 016AE DC162

27C88 755A7 E5259 A5B8E D02CF 76CB7 609CD

4869A 65BD7 5640D 36A30 BB1A4 63A34 A5B8D

5EB0E 29D83 2ADEA DF9D5 8ADF0 A0AA4 715F9

C6C62 0321F 47F0C E1C66 D3A65 66E66 818E5

552C6 0D8F9 EEF36 9144E F07E2 AED12 383D6

9D27D 6C898 0C6E2 D7700 7AD90 45A2D 55E54

DA1B9 05FC7 4

463907 16561 8E5D1 ED397 D8C7A 1D7A7 CB5DB 035DC

93586 DD6B6 B2670 D5FAE 4065E 6F7D7 B326C

902C5 EFC20 B3066 E462B 6D02F 46DEE 94DF5

545BA BB12E 63388 183D7 129F6 EE229 C6EDD

C6784 B8CC1 6315E 0BF9B 57D57 2EE63 5CE44

63601 48AA8 48BCC 8BFE4 F4C50 1C030 75E36

67AF3 3FD39 540AC 94DF6 F4CEA 7337C A7B60

2C057 9E849
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Table 6: Group Parameters (Elliptic Curve)
Parameter Value

Binary Field Polynomial t163 + t7 + t6 + t3 + 1
Curve Equation y2 + xy = x3 + x2 + 1
Order (base 16) 4 00000000 00000000 00020108 A2E0CC0D 99F8A5EF

Generator x co-ordinate (base 16) 2 FE13C053 7BBC11AC AA07D793 DE4E6D5E 5C94EEE8

Generator y co-ordinate (base 16) 2 89070FB0 5D38FF58 321F2E80 0536D538 CCDAA3D9
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