
On the Privacy of Private Browsing – A Forensic
Approach

Kiavash Satvat, Matthew Forshaw, Feng Hao, Ehsan Toreini

School of Computing Science
Newcastle University

Abstract. Private browsing has been a popular privacy feature built
into all mainstream browsers since 2005. However, despite its prevalent
use, the security of this feature has received little attention from the
research community. In this paper, we present an up-to-date and com-
prehensive analysis of private browsing across four most popular web
browsers: IE, Firefox, Chrome and Safari. We report that all browsers
under study suffer from a variety of vulnerabilities, many of which have
not been reported or known before. Our work highlights the complexity
of the subject and calls for more attention from the security community.

1 Introduction

In 2005, Safari first introduced private browsing, a feature that enables a user to
surf the Internet without leaving traces on her local computer, such as history,
cookies and temporary files [5]. All other mainstream browsers have since added
the feature, including Internet Explorer (IE) [4], Chrome [1] and Firefox [2].

Although the basic aim of private browsing is the same, the implementations
vary greatly across different browsers. This adds significant complexity to the
subject. So far only few researchers have attempted to investigated the subject.
In 2010, Aggarwal et. al. first initiated the security analysis of private browsing
in [5]. In particular, they defined a threat model, surveyed the main usage of
private browsing, reviewed the open source code of Firefox, and studied the
effect of Firefox extension on private browsing. In 2011, Said et al. continued
the investigation by examining the content in the volatile memory and they
found artifacts left in memory about user activities in the private session even
after the session had been closed [6]. Apart from these two publications [5,6], the
subject of the security of private browsing seems to have been mostly neglected
by the research community.

In this paper, we extend the earlier works in several aspects. First, we refine
the threat model in [5] to capture more realistic threats in practice. Second,
we carry out more extensive experiments than [5]: covering not only Firefox,
but also IE, Chrome and Safari. Third, we scrutinise artefacts left from private
browsing from all angles: not only in memory as in [6], but also in disk and
network traffic.



2 Research methodology

In this research work, we took a forensic approach to collect and analyse residual
data left on the host computer after the private browsing session. Virtualisation
was used to prevent any cross-contamination between experiments. In particu-
lar, VMware Player (a free version of VMware) was installed [10]. Windows 7
was chosen based on its popularity among the Internet users. The latest ver-
sions of the four most popular browsers (as in April, 2013 [9]) were installed:
Mozilla Firefox (19.0), Apple Safari (5.1.7), Google Chrome (25.0.1364.97) and
IE (10.0.9200.16521).

For each experiment, a fresh Windows installation with a single web browser
was used. The experiments were carried out for each browser to investigate
possible residual data left in memory or disk after private navigation. To allow
other researchers to easily replicate the experiments, we only used freely available
forensic tools. Finally, all the software tools developed during the course of this
research are released as open source (see [20]). We hope this would help browser
vendors evaluate the security of their products and improve accordingly.

3 Threat model

Same as in [5], we categorise attackers into two types: local and remote. A local
attacker is someone who has physical access to a user’s machine. The threat
model defined in [5] restricts the local attack to “after the fact” forensics. On the
other hand, it is acknowledged in [5] that the user may have installed third-party
browser extensions before the private session. Our model about a local attacker
is essentially the same as that in [5] but with one difference: we explicitly assume
at least one of the installed third-party extensions were written by an attacker.
Instead of surveying the third-party extensions and speculating their behavior
as in [5], we write our own extensions as if from an attacker’s perspective. This
allows capturing the exact impact of extensions more directly.

For remote attacks, we assume the attacker is capable to engage with the
user in a web browsing session over HTTP(S). This typically happens when a
user navigates to a web site that is controlled by an attacker, whose goal is to
detect whether the user is in the private mode1. As compared with the model in
[5], we have excluded the threat of remote websites tracking users (e.g., based
on IP addresses [7] or unique browser fingerprints [14]). This is because private
browsing has never been designed to prevent web tracking [1,2,3,4]. (We refer
interested readers to other privacy-preserving tools such as TOR [15] for the
prevention of web tracking.)

Against the defined threat model, we conducted a series of experiments to
assess the security of private browsing among the four most popular browsers:
1 Given the often negative connotation of using the private mode for viewing adult
websites (see [5]), we consider the fact of using the private mode a privacy feature
by itself. If the remote website learns the user is in the private mode, it may push
more adult-oriented advertisement to the user.



Firefox Chrome IE Safari
Domain name system

√ √ √ √

Memory inspection
√ √ √ √

File timestamp −
√

−
√

Index.dat * N/A N/A
√

N/A
SQLite database crash *

√ √
N/A

√

SQLite added bookmark *
√ √

N/A
√

Extension *
√ √

−
√

Cross-mode Interference * N/A
√

N/A N/A
Hyperlink attack

√ √ √ √

Timing attack *
√ √

−
√

Table 1: List of attacks and their applicability to each browser. Those marked
with * contain new results discovered by our study, while others correspond to
attacks that have been previously known but validated again by our study.

Firefox, Chrome, IE and Safari. Table 1 summarises the attacks, and their ap-
plicability to specific browsers.

4 Local attacks

4.1 Summary of previously known attacks

Domain Name System (DNS). DNS caching has long been known as a major
threat to private browsing [5]. This vulnerability is caused due to the operating
system caching all DNS queries sent by a web browser. We confirm that this
vulnerability still persists in all browsers three years after it was reported in [5].
Third-party extensions have been developed to address this issue [11,12], but
none of them has been adopted by browser vendors.

Memory Inspection. In 2011, Said et al. reported that artifacts from a
private browsing session were found in the main memory after the end of the
session [6]. We have verified that the same vulnerability still exists in the latest
versions of all fours browsers. After navigating a few websites in the private
mode and closing the session, we inspected the content in RAM and discovered
traces of private navigation, including visited URLs, password and cookies.

File timestamp. In [5], the authors compared the “last modified date” of files
in the Firefox profile directory before and after private browsing. They found the
timestamps had been changed while file sizes remained the same, which allows
deducing the occurrence of a private session in the past. Our experiments show
the vulnerability has been fixed in the latest version of Firefox (and also IE),
but it still exists in Chrome and Safari.

4.2 Index.dat

The Index.dat files are binary format log files used by IE to store the user’s
browsing history, cookies, temporary files, etc. We analyse these files in order to
evaluate the correlation between IE’s InPrivate mode and Index.dat files. After
the navigation of the targeted websites in the private mode, we scrutinise residual



traces left in the files. Unlike in some earlier versions of IE, the latest version
has successfully removed the traces of visited websites in the private mode.

However, we found that adding bookmarks in the IE private mode could lead
to information leakage. Bookmarks added during a private session were stored
as standalone files with corresponding creation timestamps. On the other hand,
there is no matching URL for the added bookmark in Histoy.IE5\index.dat.
A comparison between these files could allow an attacker to deduce that the
bookmark was added in the private mode and when. False positives may occur
if the user added a bookmark in the usual mode without visiting the page (e.g.,
right-click over a hyperlink to add it to the bookmarks). However, the false
negatives are always zero.

4.3 SQLite Database

SQLite databases are used by Firefox, Chrome and Safari to store historical
records of browsing activities [13]. We study the correlation between private
browsing and the underlying SQLite database and reveal two vulnerabilities:
one related to the application crash, and the other related to adding bookmarks.

Application Crash. There are many reasons why a browser program may
terminate in an unexpected way, e.g., sudden power loss or system crash. The
critical question is that: if the program terminates in an unexpected way, will it
leave unexpected evidence on disk?

In Firefox, the SQLite database uses the Write Ahead Logging (WAL) mode
to implement database transactions such as atomic commit and rollback. In the
event of application crash, database connections are not closed cleanly and the
WAL files will remain on disk until the browser is restarted. We observed that
the WAL files left from the private mode always had the zero size (since there
were not database updates), while the WAL files left from the usual mode had
non-zero size. Hence, based on the size of a WAL file and its timestamp, an
attacker will be able to deduce that a private session occurred at a specific time.

Chrome implements the SQLite database transactions using Journal files in-
stead of the WAL files. To speed up the loading, the browser uses two SQLite
databases to store the history records; a primary “History” database and monthly
digests in the form of “History Index YYYY-MM”. In the usual mode, the browser
uses a journal file for each database. However, in the private mode, it just uses
one journal file for the “History” database only. All journal files will remain on
disk in the event of application crash or power loss. Based on the existence of
only one journal file, an attacker can deduce that a private session occurred and
the timestamp of the file reveals when. Similar to Firefox, restarting the browser
in the usual mode will remove the evidence.

The case of Safari is more serious. Unlike Firefox and Chrome that only use
in-memory SQLite database for private browsing, Safari first writes records of
the visited websites to the database file and then removes them after the browser
is closed normally. We found that if the browser was closed in an abnormal way
(e.g., manual termination), the records of visited websites in the private mode
would remain in the database. The residual data persists on disk even after the



browser is restarted, which poses a serious threat to the user’s privacy. As a
countermeasure, we recommend Safari to adopt in-memory SQLite updates, like
Chrome and Firefox.

Adding Bookmarks. In Firefox, after visiting targeted websites and adding
a bookmark in the private mode, we examine the places.sqlite SQLite database,
which contains records of all visited URLs and added bookmarks. Our investi-
gation revealed that a bookmark added during the private mode was recorded
with empty “title” and “last_visit_date” fields, disclosing that the bookmark
was added during the private mode at a specific time. It is worse than the ear-
lier IE case, since the evidence is definite: i.e., zero false positive and zero false
negative. The case of Chrome is similar. The URL for bookmarks added in the
private mode could be found in the “history” SQLite database. Unlike a book-
mark recorded in the usual mode, the “visit_count” field was always set to 0 and
the “hidden” field set to 1.

The case of Safari is the most problematic. Under the normal operation,
Safari removes the browsing history in the private mode when the program is
closed. However, we found that as long as the user added one bookmark during
the private navigation, all the websites that were visited during the private
session would remain in the SQLite database. (A bug report on this issue has
been filed to Apple.)

4.4 Extensions

Chrome Extension. We developed a Chrome extension (the source code in
[20]) that, once enabled in the private mode, was able to record detailed user ac-
tivities for the duration of a private browsing session. This includes when the tabs
were opened and closed, which web pages were visited and at which time, how
the user moved between tabs and windows, etc. In the latest version of Chrome,
extensions are disabled in the private mode by default. This “disable-by-default”
policy significantly alleviates the threat. However, the fact that Chrome allows
the private and usual modes to run in parallel renders this policy ineffective, as
we will explain in Section 4.5.

Internet Explorer Extension. We developed an IE extension [20] to obtain
the URL and the content of the HTML pages based on using the Browser Helper
Object (BHO) class. Like Chrome, IE disables extensions in the private mode
by default. However, even after we manually enabled extensions in the private
mode, we found the extension had only restricted privilege: in particular, it could
no longer invoke the BHO class. Hence, our attack did not work on IE.

Safari and Firefox Extensions. We developed similar extensions for Safari
and Firefox [20], which were able to record details of the user’s activities within
a private session [20]. In both Safari and Firefox, extensions are enabled by
default in the private mode. Hence, they are vulnerable to extension attacks.
The countermeasure we recommend is to disable extensions by default in the
private mode, just like in IE and Chrome.



4.5 Cross-mode interference

While extensions in Chrome are disabled by default in the private mode, Chrome
allows the usual and private modes to run in parallel, providing the attacker an
opportunity to exploit cross-mode interference.

The attack was motivated by the following observation: the Chrome://memory
page displays all the opened tabs in the browser regardless if they are in the usual
or private mode. Accordingly, we developed an extension [20] using the standard
Chrome extension APIs [18].

The attack works as follows. In the usual mode, the extension is enabled
by default and it is able to invoke standard APIs to list all tabs, each having
a unique ID. If the tab is in the usual mode, the extension can obtain further
details about the tab, such as the page title and URL. However, if the tab is in
the private mode, no response will be given. This lack of response provides an
indication that the queried tab is in the private mode. By periodically polling
the tabs, the extension can detect the existence of a private browsing session,
the number of active tabs opened in the private mode, and when those tabs are
opened and closed.

Chrome also provides experimental APIs (which are enabled in chrome://flags)
to further enforce the extension’s functionality [19]. In particular, it provides the
following additional information about each tab: the CPU consumption, network
bandwidth and Frames Per Section (FPS). This information is obtainable even
for tabs in the private mode.

The extra information allows the attacker to draw an even more fine-grained
profile about the user activities within a private session. Figure 1 shows how the
user’s activities are correlated with the CPU consumption and network band-
width usage. Loading new pages increases the CPU and bandwidth usage at the
same time while scrolling pages only affects the CPU consumption. When one
is watching an HTML5 video, there is a substantial increase of both the CPU
usage and network bandwidth. As a countermeasure, we recommend the browser
should always be run in a single mode. This applies to all other browsers.

5 Remote attacks

5.1 Hyperlink attack

A conventional technique adopted by all browsers to distinguish visited links
from unvisited ones is by changing colour, hence improving the user’s browsing
experience [8]. However, there are noticeable deviations for the same mechanism
to work in the private mode. As we have tested, all browsers started a new
private session with all hyperlinks displayed in blue. Furthermore, in Chrome,
Firefox and Safari, the hyperlink never changes colour even after the user has
clicked the link or visited the URL. (One might argue that this has the benefit of
making it more difficult for the remote website to track the visited pages than in
the usual mode since the color of the hyperlink does not change much; however,



0 50 100 150 200 250
0

50

100

Time (seconds)

C
P

U
 C

o
n
s
u
m

p
ti
o
n
 (

%
)

 

 

0 50 100 150 200 250
0

500

1000

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
K

B
/s

)

CPU Consumption (%)

Network Bandwidth (KB/s)

Loading new page

User scrolling

Start of
video playback End of

video playback

Fig. 1: Profiling the user activities in the private mode

it is worth noting that defence against web tracking is not within the threat
model of private browsing.)

These deviations create an exploit path for a remote attacker. Based on the
difference in the hyperlink colours, the remote attacker is able to tell a private
mode apart from a usual mode. For example, since in Chrome, Firefox and Safari,
the hyperlinks are persistently blue in the private mode, a remote website can
use JavaScript to check the colour of the hyperlinks and easily tell if the user
is currently in the private mode. This vulnerability was first reported in [5] and
we find it still exists in the latest versions of the browsers. However, the case of
IE is different from the rest browsers; the colour of the hyperlink does change
based on the user’s clicking just like in the usual mode. However, the private
mode still deviates from the usual mode in that the former always displays all
hyperlinks in blue in the beginning of the session. Hence, if the remote attacker
is able to regularly engage with the user in more than one sessions (e.g., the
remote attacker controls a news website), he can easily tell if the user is in the
private mode.

As a countermeasure, we suggest to remove deviations of how hyperlinks are
colored between the usual and private modes. The only difference should be
that the private mode does not save any information about visited links after
the session is closed.

5.2 Timing attack

In this section, we describe a novel timing attack, which is able to remotely
detect the private mode based on measuring the time of writing a large number
of cookies. We developed a simple PHP and MySQL application to measure the
time taken to write a predefined number of cookies, and then store these results
to a database for further analysis. The Selenium testing framework [17] was used
to automate testing for large-scale experimentation.



2100

2200

2300

2400

2500

2600

2700

Normal Private
Chrome (150,000 cookies)

T
im

e
 t

a
k
e

n
 (

m
s
)

17500

17600

17700

17800

17900

18000

18100

18200

18300

18400

Normal Private
Firefox (20,000 cookies)

2900

3000

3100

3200

3300

3400

Normal Private
Safari (20,000 cookies)

3000

3200

3400

3600

3800

4000

4200

Normal Private
Internet Explorer (50,000 cookies)

Fig. 2: Box plots representing timing data collected for browsers under test.

Browser Equal Error Rate (EER) Threshold (t)
Google Chrome 1% 0
Mozilla Firefox 9% 0

Internet Explorer 63% -0.0002
Apple Safari 1% 0.0055

Table 2: Equal Error Rates for detecting the private mode

We collected extensive timing measurements for the usual and private modes
(100 samples per mode per browser) as training data (see Figure 2). We then
collected further 100 timing measurements for each browser for each mode for
evaluation. The evaluation is based on using a standard z -test [16] (details can
be found in the full version of the paper [20]). There are two types of errors
in the evaluation. One is the False Acceptance Rate (FAR), that is the rate
of a usual session being characterised as the private mode. The other is False
Rejection Rate (FRR), that is the rate of a private session being characterised
as the usual mode. The two error rates vary according to the threshold. Hence,
in the evaluation, we used the Equal Error Rate (EER) where the FRR and
FAR curves intersect. In the ideal case, the EER should be close to 50%: i.e.,
the chance for the attacker to detect the private/usual mode is no better than
tossing a coin. However, as shown in Table 2, with the exception of IE, a remote
attacker is able to correctly identify the browsing mode with high accuracy.

6 Conclusion

We have revealed a range of vulnerabilities in the existing implementations of
private browsing. The problems are generally caused by the following factors:
a lack of understanding of the threat model (especially in relation to remote
attacks), a lack of appropriate control of running extension in the private mode
(and neglect of the cross-mode interference) and a lack of rigorous and systematic
test (especially in edge cases such as program crash and adding bookmarks).



References

1. Chrome private browsing mode: https://support.google.com/chrome/bin/
answer.py?hl=en&answer=95464&p=cpn_incognito (Accessed: April 2013)

2. Mozilla Firefox private browsing mode: http://support.mozilla.org/en-US/kb/
private-browsing-browse-web-without-saving-info (Accessed: April 2013)

3. Safari private browsing mode: http://support.apple.com/kb/PH5000 (Accessed:
April 2013)

4. Internet Explorer private browsing mode: http://windows.microsoft.com/en-us/
windows-vista/what-is-inprivate-browsing (Accessed: April 2013)

5. G. Aggarwal, E. Burzstein, C. Jackson, D. Boneh, “An analysis of private browsing
modes in modern browsers,” the 19th USENIX Symphosium on Security, 2010.

6. H. Said, A.H. Mutawa, A.I. Awadhi, M. Guimaraes, “Forensic analysis of private
browsing artifacts,”. International Conference on Innovations in Information Tech-
nology (IIT), 2011.

7. A. Ruiz-Martínez, “A survey on solutions and main free tools for privacy enhancing
Web communications,” Journal of Network and Computer Applications, Vol. 35, No.
5, pp. 1473–1492, 2012

8. J. Collin, A. Bortz, D. Boneh, C.J. Mitchell, “Protecting browser state from web
privacy attacks,” the 15th international conference on World Wide Web (WWW),
2006.

9. Most popular web browsers: http://www.w3schools.com/browsers/browsers_
stats.asp (Accessed: April 2013)

10. VMware Player Version 4.0.0: http://www.vmware.com/products/player/ (Ac-
cessed: April 2013)

11. Click & Clean: https://chrome.google.com/webstore/detail/
ghgabhipcejejjmhhchfonmamedcbeod?utm_source=chrome-ntp-icon (Accessed:
April 2013)

12. Clear DNS Cache: https://addons.mozilla.org/en-us/firefox/addon/
clear-dns-cache/ (Accessed: April 2013)

13. S. Jeon, J. Bang, K. Byun, “A recovery method of deleted record for SQLite
database,” Personal and Ubiquitous Computing, Vol. 16, No. 6, pp. 707–715, 2011.

14. P. Eckersley, “How unique is your web browser?”, Available at https://
panopticlick.eff.org/browser-uniqueness.pdf (Accessed: April 2013)

15. The official website for the TOR project: https://www.torproject.org/ (Ac-
cessed: April 2013)

16. E. Kreyszig, “Introductory Mathematical Statistics,” John Wiley & Sons Inc, 1970.
17. Selenium: http://seleniumhq.org/ (Accessed: April 2013)
18. Standard Chrome extension API: http://developer.chrome.com/extensions/

(Accessed: April 2013)
19. Experimental Chrome extension API: http://developer.chrome.com/

extensions/experimental.html (Accessed: April 2013)
20. Open-source software tools developed for the research of private browsing: http:

//homepages.cs.ncl.ac.uk/m.j.forshaw1/privatebrowsing/


