On Small Subgroup Non-confinement Attack

Feng Hao
Thales E-Security, Cambridge, UK
Feng.Hao@thales-esecurity.com

Abstract—The small subgroup confinement attack works by
confining cryptographic operations within a small subgroup,
in which exhaustive search is feasible. This attack is overt and
hence can be easily thwarted by adding a public key validation:
verifying the received group element has proper order. In this
paper, we present a different aspect of the small subgroup
attack. Sometimes, the fact that an operation does not fall
into the small subgroup confinement may provide an oracle to
an attacker, leaking partial information about the long-term
secrets. This attack is subtle and reflects structural weakness
of a protocol; the question of whether the protocol has a public
key validation is completely irrelevant. As a concrete example,
we show how this attack works on the Secure Remote Password
(SRP-6) protocol.

Keywords-password authenticated key exchange, secure com-
munication, Secure Remote Password protocol

I. INTRODUCTION

The small subgroup confinement attack is one common
attack against discrete logarithm based key agreement pro-
tocols [3], [4]. It exploits the structure of the group G where
key agreement takes place. One choice of such a group is
Z, where p is a large prime. The order of this group is a
composite, so there exist subgroups. Say G, is one small
subgroup of primer order w, then w|p — 1. Suppose g is a
non-identity element in G, then g” for x € Z, will also lie
in the same subgroup. This can potentially cause problem
if w is small: an adversary can then exhaustively search all
elements in the subgroup.

One attacking scenario is to confine the session key
derived from a key agreement protocol to a small set. In
the original description of the Diffie-Hellman protocol [16],
the key agreement operates in the whole cyclic group Zj.
Alice and Bob select random secrets x and y respectively
(x,y €gr [1,p — 1]), and exchange ephemeral public keys
A = a” and B = oY where « is a primitive root modulo
p. In the end, Alice and Bob can compute a common key
K = o™, which a passive attack cannot. An active attacker
can however confine K to a small subgroup G,, as follows.
He intercepts A, B and replaces A with AP~1/% B with
Bw=1/w The common key computed by Alice and Bob
will be K = o*¥(P=1)/v Because K is an element of the
small subgroup, the attacker can find out K by exhaustive
search.

The above attack motivates moving the operation of key
agreement from the whole group Z to a large subgroup.
Since Pollard’s tho method can compute a logarithm in a

subgroup of prime order ¢ in time O(,/q), the size of the
subgroup must be at least twice the intended security level
[13]. In other words, for 80-bit security, ¢ should be at
least 160-bit. The Diffie-Hellman protocol can be modified
accordingly: Alice and Bob just need to change the « to a
generator 3 of the intended subgroup, which for example
can be computed as 3 = a(P~1/q,

In addition, it is important for Alice and Bob to validate
the received public keys. This can be done by verifying
A,B € (1,p— 1), and also A%, B? = 1. However, this
verification adds burden to the end user’s computation as
the exponentiation is an expensive operation. An alternative
is to choose secure group parameters such that (p — 1)/2
contains no small factors (say all larger than 160-bits) and
in the extreme case (p—1)/2 is a prime itself. This approach
will make the generation of group parameters substantially
more expensive (which is however not a big problem if
the parameters are computed only once for a community of
users). Choosing secure parameters may mitigate the effects
of certain attacks, but it does not fundamentally change the
problem. In any event there will always be at least one small
subgroup, the one containing only two elements {1, p — 1}.
Hence, proper validation is still needed to ensure not falling
into this subgroup.

With an appropriate public key validation in place, it
appears that small subgroup attacks can be prevented. This
seems the case for all the reported small subgroup attacks
so far [3]-[5].

In this paper, we demonstrate a different (or rather para-
doxical) aspect of the small subgroup attack: attackers may
exploit the small subgroup “non-confinement”. While some
cryptographic protocols were carefully designed to avoid
falling into small subgroups “traps”, the fact that they did not
fall into the “traps” provides an oracle to the attacker, leaking
partial information about the long-term secrets. This attack
is especially concerning when the long-term secrets are low-
entropy passwords. In the following sections, we will explain
how this attack affects the Secure Remote Password (SRP)
protocol.

II. SRP-6 PROTOCOL

The Secure Remote Password (SRP) protocol was first
proposed by Wu in 1998 [1], [2]. It aims to address the
Password Authenticated Key Exchange (PAKE) problem
— namely, how to bootstrap a high-entropy session key

based on a low-entropy shared password without requiring
a Public Key Infrastructure. The SRP protocol has been
deployed in many practical applications and is currently
being standardized by the IEEE P1363.2 working group [8].

The development of the SRP technique follows a heuristic
approach. The protocol bases its security upon gradual im-
provements. When new attacks were discovered, the protocol
was patched accordingly.

Over the years, the protocol has been revised several
times. The SRP-3 [1] is the initial submission to the IEEE
P1363.2 Standardization committee [8]. But it was later
found containing various weaknesses, among which the most
serious one is the subjection to a two-for-one guess attack
(discovered by D. Bleichenbacher in 2000) [2]. An active
attacker was able to exploit a design flaw in SRP-3 to test
two passwords in one attempt. The protocol was revised to
address that attack and after several attempted changes, the
final version called SRP-6 was submitted to IEEE P1363.2
[2].

After patching the two-for-one attack, the SRP author
claims that SRP-6 has achieved the theoretical limit in per-
mitting exactly one password guess per protocol execution
[2]. However, this theoretical claim was made without any
theoretical proof. We will show a counterexample to indicate
otherwise.

First, we explain how SRP-6 works (Figure 1). The proto-
col operates in a group defined by a safe prime N = 2xp+1
where p is also a prime. All values in Figure 1 are computed
modulo V.

The client and server bootstrap their trust relationship
based on a common password P. Let s be a random salt
and I be the user identity. In SRP-6, the server does not
store P; instead it applies a one-way hash function H to
computes x = H (s, I, P) and only stores a verifier v = g*
where g is a primitive root modulo N. Details of each step
in the protocol are explained below:

1) The client sends his identity I to the server.

2) The server replies with the salt s after looking up I
in the database.

3) The client chooses a random number a, 1 < a < N,
and sends the ephemeral public key A = g% to the
server.

4) After verifying A # 0, the server chooses a random
number b, 1 < b < N, and sends B = 3v + gb to the
client.

5) After verifying B # 0, the client computes M; =
H(A,B,S) where S = (B — 3g®)etH(AB)z and
sends M, to the server.

6) After verifying M, the server computes My =
H(A, M,,S), and send M> to the client.

7) Finally, both sides can compute a common session key
k= H(S).

III. ATTACK

In SRP-6, the modulus N is defined to be a safe prime
N =2 x p+ 1 where p is also a prime. The use of a safe
prime is a common choice in key exchange protocols, for
example SPEKE [11]. The main rationale is to address a po-
tential attack where an active attacker may exploit the exis-
tence of small-order subgroups to confine the exponentiation
operation within a small subgroup. One countermeasure is to
perform a public key validation: checking the received group
element has the proper order. It requires one exponentiation
to do that. Another means is to use a safe prime. Then, there
will be only one small subgroup that contains two elements
{1, N — 1}. Checking that an element does not fall within
this small subgroup is very easy.

However, the use of a safe prime is not a panacea. It still
depends on how the elements in the protocol interact with
each other. In particular, we observe that in Step 4 (Figure 1),
it is unclear which subgroup that the base B —3¢g” generates.
Normally, for cipher algorithms built upon the intractability
of discrete logarithm problems, such as the DSA and Diffie-
Hellman key exchange, they operate in a subgroup (of prime
order) consistently [13]. But in SRP-6, the base B—3¢” may
have order 2, or p, or 2p. This ambiguity can be exploited
by an active attacker, as we explain below.

Let us consider the case where the client holds a secret
x = H(s,I,P) and the server (attacker) does not have the
correct verifier (v = g*). So the attacker takes a random
guess of the password P’, and computes «’ = H (s, I, P’),
v = g* . Figure 2 demonstrates the attack. Details of each
step are explained as follows.

1) The client sends his identity I to the server.

2) The server sends to the client the salt s (which the
attacker eavesdropped in the past).

3) The client chooses a random number a, 1 < a < N,
and sends the ephemeral public key A = g% to the
server.

4) The server chooses a random guess of the password
P’, computes v/ = gH(S’I’P/) and sends B’ = 3¢’ to
the client.

5) After verifying B’ # 0, the client computes M; =
H(A,B’,S) and sends M; to the server.

Subsequently, the server (attacker) goes off-line and does the
following computation. If he finds M; = H(A, B’,0), that
is § = (B’ — 3¢%)¢t4* = (, then he had guessed the right
password. What if he guessed wrongly? The theoretical limit
of a PAKE protocol is to limit the attacker to learn nothing
more than P # P’ (i.e., the zero-knowledge property of
the protocol). Though SRP-6 claims to provide the strict
zero-knowledge verification of the password, the following
analysis indicates otherwise.

With overwhelming probability, S # 1 or N — 1 because
the value S is random over [1, N — 1]. (If S happens to
be 1 or N — 1, the attacker simply needs to try a different

Client Server
1. L (look up s, v)
2. x=H(s,I,P) S
3. A=g" A B=3v+g" u=H(AB)
4. u=H(A B),S=(B-3¢")""™"" B S = (Avv)?
5. M, =H(A,B,S) %} (verify M)
6. (verify Ms) & My = H(A, M, S)
7. K =H(S) K =H(S)

Figure 1. The SRP-6 protocol

u=H(A,B), S = (B —3¢")*
M, = H(A,B',S)

A

Client Server (attacker)
I~ (Look up eavesdropped s)
x=H(s,I,P) S
A=g° A (Choose z'), B' = 3v' = 3¢g"
B/
Z

M, if My = H(A, B’,0), obtain 2’ = x;
else if My = H(A, B', N — 1), stop;
else if My = H(A, B’,1), stop;
else: 3v' —3v # 0
3 —3v#£1
3 —3v#N-1

Figure 2. An active attack on SRP-6

password next time such that S # 1 or N — 1.) The attacker
can verify this by checking My # H(A,B’,N — 1) and
M, # H(A,B',1). Thus, the attacker concludes that S =
(B’ — 3¢%)**t“* is not one of the small subgroup elements
{1, N — 1}, so it must be case that the base B’ — 3g” # 1
and B’ — 3¢g* # N — 1. (Note the N — 1 is the generator
of the small subgroup). Hence, the attacker learns additional
information 3v’ — 3v # 1 and 3v’ — 3v # N — 1. Based on
this, he rules out two more verifiers, which correspond to two
passwords. By the SRP-6 protocol definition, the password
P and the verifier v (as well as all the other values in Figure
1) are defined modulo N [2]. Therefore, the two filtered
verifiers are perfectly legitimate values by definition.

The attack can be slightly more complicated. In Step 4 of
Figure 2, the attacker could send B’ = 3v’ + gb where b is
an arbitrary value of the attacker’s choice. After Step 5, the
attacker could immediately filter out three v values based on
3v' —3v+g° # 0, 30" —3v+¢° # 1 and 3v'—3v+¢® # N—1.
However, this time, the attacker has to follow through the
rest of the steps in the SRP-6 in order to learn whether
v = v’ (that is whether P = P’). In summary, if the attacker
guessed the password wrongly, he can filter out four verifies
in one go, which correspond to four different P values.

This attack may appear counterintuitive to protocol de-
signers. Normally, a common goal in the protocol design is
to prevent falling into small-order subgroups. However, in
the case of SRP-6, the fact that the protocol does not fall into

a small-order subgroup gives away information, allowing an
active attacker to test multiple passwords in one attempt.
Given the existing structural design of the SRP-6 protocol,
there seem no easy ways to fix this issue .

We need to stress that this attack is subtle. It is unlikely
that this particular attack poses serious threat to the practical
security of the SRP-6. The choice of a safe prime N in
SRP-6 has significantly mitigated the practical effect of the
attack. If SRP-6 operates in a different group (with more
than one small subgroups), the effect can be much worse.
In any case, the theory of the attack remains exactly the
same, which indicates a structural weakness of the SRP-6
protocol design.

However, this attack is still significant in some aspects.
First, it shows the danger of making a theoretical claim in a
security protocol without any theoretical proof. The SRP-6
author claims that the protocol has achieved the theoretical
limit of the best on-line dictionary attack resistance [2].
The above attack provides a counterexample to suggest
otherwise. This helps gain better understanding of the SRP-
6 construction. Second, it cautions protocol designers on the
other side of the small-subgroup attack: besides the confine-
ment, an attacker may also exploit the non-confinement of a
cryptographic operation. The more conventional approach
is to design an algorithm to operate in a single prime-
order subgroup unambiguously and consistently (e.g., DSA,
Schnorr Signature, SPEKE [11] and J-PAKE [17] etc) rather

than hop among subgroups of different orders (e.g., SRP-
6 [2]). The former is of course free from both the small-
subgroup confinement and non-confinement attacks.

IV. CONCLUSION

In this paper, we describe a paradoxical side of the small
subgroup attack. While a protocol is designed to avoid
falling into the small subgroup, sometimes the fact of not
falling into the small subgroup may leak information. This
happens when the protocol mixes up operations in subgroups
of different orders. As a concrete example, we demonstrate
how this attack works on the SRP-6 protocol. While the
SRP-6 scheme claims that it has achieved the theoretical
zero-knowledge verification of the password, this attack
provides a counterexample to indicate otherwise.

REFERENCES

[1] T. Wu, “The Secure Remote Password Protocol,” Proceedings
of the 1998 Internet Society Network and Distributed System
Security Symposium, San Diego, CA, pp. 97-111, Mar 1998.

[2] T. Wu, “SRP-6: Improvements and Refinements to the Secure
Remote Password Protocol,” Submission to the IEEE P1363
Working Group, Oct 2002.

[3] C.H. Lim and PJ. Lee, “A key recovery attack on discrete
log-based schemes using a prime order subgroup”, Crypto
’97, LNCS 1295, pp. 249-263, 1997.

[4] D. Brown, A. Menezes, “A Small Subgroup Attack on a Key
Agreement Protocol of Arazi,” Bulletin of the ICA, No. 37,
pp- 45-50, 2003.

[5] C. Boyd, A. Mathuria, “Protocols for authentication and key
establishment,” Springer-Verlag, 2003.

[6] D. Taylor, T. Wu, N. Mavrogiannopoulos, T. Perrin, “Using
the Secure Remote Password (SRP) Protocol for TLS Authen-
tication,” RFC 5054, Nov 2007. RFC5054 http://tools.ietf.org/
html/rfc5054

[7]1 SRP Protocol Design from the official SRP website: http:
/Isrp.stanford.edu/

[8] IEEE P1363 Working Group, “Draft standard for Specifica-
tions for Password-based Public Key Cryptographic Tech-
nique,” IEEE P1363.2/D26, Sep 2006. P1363.2 http://grouper.
ieee.org/groups/1363/

[9] S. Bellovin and M. Merritt, “Encrypted Key Exchange:
password-based protocols secure against dictionary attacks,”
Proceedings of the IEEE Symposium on Research in Security
and Privacy, May 1992.

[10] B. Jaspan, “Dual-workfactor Encrypted Key Exchange: effi-
ciently preventing password chaining and dictionary attacks,”
Proceedings of the Sixth Annual USENIX Security Confer-
ence, pp. 43-50, July 1996.

[11] D. Jablon, “Strong password-only authenticated key ex-
change,” ACM Computer Communications Review, Vol. 26,
No. 5, pp. 5-26, October 1996.

[12]

[13]

[14]

[15]

[16]

[17]

Muxiang Zhang, “Analysis of the SPEKE password-
authenticated key exchange protocol,” IEEE Communications
Letters, Vol. 8, No. 1, pp. 63-65, January 2004.

D. Stinson, Cryptography: theory and practice, Third Edition,
Chapman and Hall/CRC, 2006.

V. Boyko, P. MacKenzie, and S. Patel, “Provably Se-
cure Password-Authenticated Key Exchange Using Diffie-
Hellman,” Eurocrypt 2000, NCS 1807, pp. 156-171, 2000.

“Password-authenticated key exchange (PAK) protocol,” ITU-
T Recommendation X.1035, Feb 2007. http://www.itu.int/rec/
T-REC-X.1035/en

W. Diffie, M. Hellman, “New directions in cryptography,’
IEEE Transactions on Information Theory, Vol. 22, No. 6,
pp. 644-654, 1976.

F. Hao, P. Ryan, “Password authenticated key exchange
by juggling,” the 16th International Workshop on Security
Protocols, SPW’08, Cambridge, UK, May 2008.

