How To Sync with Alice

Feng Hao' and Peter Y.A. Ryan*?

! School of Computing Science
Newecastle University
feng.hao@ncl.ac.uk
2 Faculty of Science
University of Luxembourg
peter.ryan@uni.lu

Abstract. This paper explains the sync problem and compares solu-
tions in Firefox 4 and Chrome 10. The sync problem studies how to
securely synchronize data across different computers. Google has added
a built-in sync function in Chrome 10, which uses a user-defined pass-
word to encrypt bookmarks, history, cached passwords etc. However, due
to the low-entropy of passwords, the encryption is inherently weak — any-
one with access to the ciphertext can easily uncover the key (and hence
disclose the plaintext). Mozilla used to have a very similar sync solu-
tion in Firefox 3.5, but since Firefox 4 it has made a complete change of
how sync works in the browser. The new solution is based on a security
protocol called J-PAKE, which is a balanced Password Authenticated
Key Exchange (PAKE) protocol. To our best knowledge, this is the first
large-scale deployment of the PAKE technology. Since PAKE does not
require a PKI, it has compelling advantages than PKI-based schemes
such as SSL/TLS in many applications. However, in the past decade,
deploying PAKE has been greatly hampered by the patent and other
issues. With the rise of patent-free solutions such as J-PAKE and also
that the EKE patent will soon expire in October, 2011, we believe the
PAKE technology will be more widely adopted in the near future.

1 Introduction

The past two decades have seen the gradual evolution of a computer. A computer
used to be a luxury, but now it is a necessity; it used to be bulky and fixed at one
location, but with the rise of smartphones and tablets, it is becoming smaller
and more mobile; it used to store data locally, but now data storage is moving
to the cloud (which can be accessed anywhere from the Internet).

One trend from this evolution is that an individual now tends to own several
computing devices. At home, he may use a good-performance desktop PC for
entertainment; on the road, he may use a smart phone to read news and check
emails; at meetings, he may use a laptop or a tablet to deliver a presentation.
The possession of multiple computers naturally raises a practical problem: how
to keep data in sync across different platforms?

* Sponsored in part by the FNR Luxembourg

Dropbox offers a popular solution. According to the report, it has a popula-
tion of 25 million users worldwide [3]. To set up a sync account, the user needs to
provide a username/password. Once installed, the software will centrally store
the user’s files on the company’s servers, automatically tracks the changes, and
synchronizes the changes across the user’s computers. The sync process happens
in the background and is transparent to users.

However, there is a serious lack of privacy protection in the Dropbox solution.
As Dropbox states its security policy on its website [3], “Dropbox employees are
prohibited from viewing the content of files you store in your Dropbox account,
and are only permitted to view file metadata (e.g., file names and locations).”
Meanwhile, the company also acknowledges: there are a small number of em-
ployees who must be able to access the files whenever necessary. Although this
is stated by the company policy as “rare exception, not the rule”, the security
is hardly reassuring. (If an insider attacker leaks users’ personal files to the
government, the users will probably never know.)

Browser vendors face exactly the same problem. Every browser keeps a user
profile, which includes history, bookmarks, cached passwords and so on. The
user profile used to be stored locally, but it has become increasingly necessary
to store it remotely (in a “cloud “), and synchronize the profile across the user’s
computers. This can significantly improve the usability and productivity. For
example, if a user buys a brand new laptop, after sync he will be able to instantly
re-use the same bookmarks, history etc that were previously accumulated on
another laptop. This is quite convenient.

As browser vendors recognize, security is a key issue. The user profile contains
security-sensitive information — for example, it may contain passwords for on-
line banking or other accounts. If the data is stored on the vendor’s “cloud” and
the vendor can read data, users must completely trust the vendor (just as in
Dropbox) not to misuse it. But, the problem goes deeper than the mere trust.
If the vendor has ready access to all the user’s on-line account passwords in the
cloud, what are the legal implications if the user accounts are compromised?
How can the vendor establishes the public confidence that it did not leak any
user’s passwords nor misuse them?

The right solution seems to have an end-to-end encryption between the two
sync computers. All data between the computers is encrypted. The user is the
sole holder of his own encryption key; no one else is able to read data — not even
the cloud provider. Both Morzilla Firefox and Google Chrome aim to provide
such a solution. In the following sections, we explain their solutions in detail.
The same sync design in the browser is instrumental and can be generally applied
to many other applications (e.g., to address the security loophole in Dropbox).

2 Background

In this section, we briefly explain the Password Authenticated Key Exchange
(PAKE) technology in general and the J-PAKE protocol in particular. They are
relevant to solving the sync problem.

2.1 Password Authenticated Key Exchange

Password Authenticated Key Exchange (PAKE) is a foundational building block
for a wide range of security applications. This technique allows establishing se-
cure communication between two parties solely based on a shared password
without requiring a Public Key Infrastructure (PKI). A PAKE protocol shall
fulfill the following security requirements:

1. Off-line dictionary attack resistance — It does not leak any information
that allows a passive/active attacker to perform off-line exhaustive search of
the password.

2. Forward secrecy — It produces session keys that remain secure even when
the password is later disclosed.

3. Known-session security — It prevents a disclosed session from affecting
the security of other established session keys.

4. On-line dictionary attack resistance — It limits an active attacker to
test only one password per protocol execution.

A secure PAKE protocol has several compelling advantages over PKI-based
schemes such as SSL/TLS. First, it does not require a PKI, which is partic-
ularly expensive to set up and to maintain. Second, it allows zero-knowledge
verification of a password: in other words, the user can prove to the other party
the knowledge of a shared password without revealing it. Since the password
is never disclosed to the other party (unlike in HTTPS), a PAKE protocol is
naturally resistant to phishing attacks.

The first PAKE protocol was called the Encrypted Key Exchange (EKE), de-
signed by Bellovin and Merrit in 1992 [5]. Subsequently in 1996, Jablon proposed
another solution called Simple Password Exponential Key Exchange (SPEKE)
[7]. Many other PAKE protocols were proposed. In 2000, IEEE P1363.2 formed
a working group to study all available PAKE protocols and to select secure ones
for standardization. However, in 2008, the project ran out of the maximum eight
years; no concrete conclusion seemed to be made.

Two hurdles emerged during the standardization process. First, patent was a
big issue. Many PAKE protocols were patented. In particular, EKE was patented
by Lucent Technologies [6], SPEKE by Phoenix Technologies [8], and SRP by
Stanford University [4]. Second, these protocols were found vulnerable. EKE
was reported to leak partial information about the password, hence failing to
satisfy the first requirement [9]. SPEKE was found to allow an active attacker
to test multiple passwords in one protocol execution, therefore it does not ful-
fill the fourth requirement [11]. Similarly, the SRP does not satisfy the fourth
requirement, as explained in [12]. None of these protocols have security proofs.

2.2 J-PAKE

It became clear in 2008 that the PAKE problem was still unsolved. In the same
year, Hao and Ryan proposed a new PAKE protocol, called Password Authen-
ticated Key Exchange by Juggling (J-PAKE) [1,2]. The protocol follows a com-
pletely different approach from past schemes. It works as follows. Let G denote a

subgroup of Z; with prime order ¢, and g be a generator in G. Let s be a shared
password between Alice and Bob, and s # 0 for any non-empty password. The
value of s is assumed to be within [1, ¢ — 1]. Alice selects two secrets at random:
x1 €r [0,q — 1] and z3 €g [1, ¢ — 1]. Similarly, Bob selects x5 € [0,¢ — 1] and
x4 €g (1,9 —1].

Round 1 Alice sends out g**, g*2 and knowledge proofs for x1 and xo. Simi-
larly, Bob sends out g*3, g** and knowledge proofs for s and 4.

The above communication can be completed in one round as neither party
depends on the other. When this round finishes, Alice and Bob verify the received
knowledge proofs, and also check g*2, g*+ # 1.

Round 2 Alice sends out A = g\@1t@ste0)225 qnd ¢ knowledge proof for x5 - s.
Similarly, Bob sends out B = g(@1+#2423)%as qnd o knowledge proof for x4 - s.

When this round finishes, Alice computes K = (B/g*24%)%2 = g(@itas)-w2-2aes
and Bob computes K = (A/g*>@4%)%4 = g(@1+e3): 2274 With the same keying
material K, a session key can be derived x = H(K), where H is a hash function.
Alice and Bob will subsequently perform explicit key confirmation as described
in [1]. In the protocol, the knowledge proof can be realized by using, for exam-
ple, Schnorr signature. Overall, the J-PAKE protocol has been proved to fulfill
all the four security requirements. In addition, the protocol is unpatented. The
J-PAKE protocol and security proofs have been available on the IEEE P1363.2
website? for public review for over three years; no attacks have been found.

3 Sync solutions in Browsers

In this section, we will explain how major browser vendors try to tackle the sync
problem. In particular, Firefox 4 presents an interesting case study as it is the
first browser to adopt the PAKE technology in the sync design.

3.1 Overview

Sync has become an important feature for a modern browser. With the exception
of IE 9, new releases of browsers generally have built-in support for sync (see
Table 1). In the following sections, we will focus on comparing sync in Firefox 4
and Chrome 10, as their solutions are representative.

3.2 Chrome sync

Chrome 10 provides a straightforward sync design, based on using a password as
the encryption key. Setting up sync in Chrome 10 is almost zero effort — as long
as you have an Gmail account. The user can then configure what to sync. By

% http://grouper.ieee.org/groups/1363/Research/contributions/hao-ryan-2008.pdf

Browser |Release date|Built-in|Sync-key Price
Firefox 4 | Mar, 2011 Yes 128-bit Free
Chrome 10| Mar, 2011 Yes |Password Free
IE 9 Mar, 2011 No - -
Opera 11 | Dec, 2010 Yes None Free
Safari 5 | Jun, 2010 Yes None |$99 per year

Table 1. Overview of Sync solutions in browsers

default, that is everything: apps, auto-fill, bookmarks, extensions, preferences,
themes and passwords (Figure 1). The browser offers two options to encrypt the
sync data: re-using the Gmail password (default) or choosing a new password

(Figure 2).

| scrupuli: Using Goo.

Set up sync

d 1o haofenges
» syncing this|
(@ synced data
st 10 save pass
er save passwy

1age Saved Pal

ble Autofill to f|

1age Autofill §

wort Data froﬂ_

et to default th

ames

_| DataTypes | Encryption

Configure sync

Google Chrome syncs your data with your Google account
securely. Keep everything synced or choose what data to

sync from this computer.

@ Keep everything synced
O Choose what to sync:

v Apps

v Autofi

¥ Bookmarks

v Exte

(oK) (Cance)

eme

Fig. 1. Confgure sync in Chrome 10

However, Google’s solution provides virtually no guarantee of privacy. In
both options, the encryption key is directly derived from a password. Due to
the human’s inability to remember cryptographically strong secrets, a password
normally only has 20-30 bits entropy. Thus, although Google encrypts the sync
data in its cloud, the encryption key is inherently weak. Anyone who has access to
the ciphertext can readily break the key by exhaustive search and fully uncover

the sync data.

Coo

Set up sync

Data Types (Encryption |
Google Chrome requires you to encrypt your data using
either your Google password or your own passphrase.

® Use my Google Account password
) Choose my own sync passphrase Learn more

@ Cancel

heme

Fig. 2. Encryption options in Chrome 10 sync

3.3 Firefox sync

The previous version of Firefox (3.5) used to have a similar sync solution. To set
up sync, the user needed to remember two passwords: one for the sync account,
and the other for encrypting data. The encryption works basically the same
as in Chrome 10 — using a user-defined password as the encryption key. One
subtle difference is that in Chrome 10, the default option is to re-use the Gmail
password as the key, while in Firefox 3.5, the default is to let the user define a
new password.

Because the encryption was inherently weak, Firefox 3.5 had the same prob-
lem as in Chrome 10. Similar to Google, Mozilla was at a privileged position: it
was able to read all the user’s data despite that the data was encrypted (by a
password). In recognition of this problem, the company has been trying to find
a solution.

From Firefox 4 beta 8 (released in Dec, 2010), Mozilla made a complete
change in the sync mechanism. The new solution adopts the Password Authen-
ticated Key Exchange technology — in particular, it chose J-PAKE. Figure 3
shows an overall diagram about how sync works in Firefox 4. First, the browser
generates a random 128-bit key, called the sync-key. This sync-key is never sent
to Mozilla. It is used to encrypt the browser bookmarks, history, cached pass-
words etc. Only the encrypted data is stored at the Mozilla “cloud”. Alternative
servers can be used, and one can even set up his own server.

To set up sync in Firefox 4 is relatively straightforward. First, one needs to
configure what data to sync (see Figure 4). Second, the J-PAKE algorithm is used

Encrypted bookmarks, history, passwords
under sync—key

Sync in giphertext Sync in‘sjphertext

Transfer sync—key using J-PAKE

sync—key:

2-egig9-egseg-i48df-i8450-b78fg-sdgfc
9ig5-egseg 97sdg A new device

Fig. 3. Sync mechanism in Firefox 4 (beta 8 and later)

to securely transfer the sync-key between different Firefox clients. (Otherwise,
the user will need to manually type in the sync-key, which can prove tedious
especially on a mobile phone.) Using the J-PAKE protocol, the user reads a 12-
character secret code from the new device (as shown in Figure 5) and enters it to
the host device. Since the secret code is exclusively shared by the two devices, a
secure end-to-end channel can be created and through this channel, the sync-key
is transferred to the new device.

4 Discussion

4.1 Comparison between Firefox and Chrome

Between the two sync mechanisms, which is more appealing to users? Obviously,
the Firefox sync is more secure than the Chrome’s. On the other hand, many
average users find the Chrome sync attractive as it is so simple and easy. It is yet
unclear to what extent do users care about their privacy or whether they care
enough to make a switch. In the Mozilla solution, users are in control of their
data. The data is encrypted by a cryptographically strong key and only the user
has access to the key. The use of J-PAKE facilitates the transfer of the sync key
between devices without compromising security. However, the crypto process is
not easy to understand by the common people. To many users, the sync setup
in Firefox 4 happens almost like a magic. Will the Mozilla’s efforts in honoring
the user privacy pay out in the long term? Perhaps, only time can tell.

Firefox Sync Setup

Sync Options

Computer Name: |nfh19's Firefox on Intel Mac OS X 10.6
Sync My (¥ Bookmarks

@ Passwords

™ preferences

@ History

Tabs

@ Recommended: Merge this computer's data with my Sync data
O Replace all data on this computer with my Sync data

O Replace all other devices with this computer's data

Fig. 4. Sync options in Firefox 4

4.2 Outlook of PAKE

To our best knowledge, the use of J-PAKE in Firefox 4 is the first large-scale
deployment of the PAKE technology. The adoption of PAKE had been greatly
hampered in the past due to patent and technical issues. The obstacles are
disappearing. With the rise of J-PAKE as a patent-free solution and also that
the EKE patent will soon expire in October 2011 (see [6]), it looks likely that
the PAKE technology will be more widely adopted in the future.

5 Conclusion

The Password Authenticated Key Exchange (PAKE) protocol is a useful cryp-
tographic technique. In this paper, we explained how PAKE could be applied to
tackle the sync problem. In particular, we described how sync works in Firefox
4, which is the first browser to adopt the PAKE technology. After over twenty
years of intensive research in PAKE, the field finally starts to see its use in a
large-scale practical deployment.

References

1. Feng Hao, Peter Ryan, "J-PAKE: Authenticated Key Exchange Without PKI",
Springer Transactions on Computational Science, Special Issue on Security in Com-
puting, Part II, Vol. 6480, pp. 192-206, 2010.

10.

11.

12.

Firefox Sync Setup

Add a Device

Your other device and select “Add a Devic”.
| r7mb

| nvfz

| udtx

|

|

ki i ol i
(CCancel)

(Sync Options Cancel) CoBack) (Continue |

Fig. 5. Add a new sync device in Firefox 4

. Feng Hao, Peter Ryan, "Password Authenticated Key Exchange by Juggling",

Proceedings of the 16th Workshop on Security Protocols, Cambridge, April 2008.
Dropbox website: http://www.dropbox. com

Official SRP website: http://srp.stanford.edu/

S. Bellovin and M. Merritt, “Encrypted Key Exchange: password-based protocols
secure against dictionary attacks,” Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, May 1992.

S. Bellovin and M. Merritt, “Cryptographic protocol for secure communications,”
U.S. Patent 5,241,599.

D. Jablon, “Strong password-only authenticated key exchange,” ACM Computer
Communications Review, Vol. 26, No. 5, pp. 526, October 1996.

D. Jablon, “Cryptographic methods for remote authentication,” U.S. Patent
6,226,383, March 1997.

B. Jaspan, “Dual-workfactor Encrypted Key Exchange: efficiently preventing pass-
word chaining and dictionary attacks,” Proceedings of the Sixth Annual USENIX
Security Conference, pp. 43-50, July 1996.

IEEE P1363.2 Working Group, P1363.2: Standard Specifications for Password-
Based Public-Key Cryptographic Techniques. Draft available at http://grouper.
ieee.org/groups/1363/.

Muxiang Zhang, “Analysis of the SPEKE password-authenticated key exchange
protocol,” IEEE Communications Letters, Vol. 8 No. 1, pp. 63-65, January 2004.
F. Hao, “On small subgroup non-confinement attacks”, proceedings of the 10th
IEEE International Conference on Computer and Information Technology, CIT’10,
pp. 1022-1025, 2010.

