
Risk-based test planning during system
development1

Felix Redmill

Redmill Consultancy

Abstract

This paper proposes carrying out test-oriented risk analyses during the
software and system development life cycle in order both to improve the
software and to inform test planning. It offers an overview of risk
analysis and explains where in the life cycle it would be useful to apply
it.

1 Introduction

Because of the complexity of software, its testing can almost never be exhaustive. It
must therefore be selective. The way in which test planning is carried out is therefore
crucial, not only to finding defects but also to doing so cost-effectively, and in the
time available. Many testers and test planners claim to base testing on risk, but most
cannot do so successfully because of a lack of knowledge of the subject of risk. Yet it
makes admiral sense to focus testing where the risks are greatest. In a previous paper
the current author explored the subject of risk-based testing and showed that its
application requires not only an understanding of software testing but also
knowledge of risk and its analysis [Redmill 2004].

The simple model of Figure 1 shows testing as the second stage of a three-stage
process. If test planners consider risk at all, it is almost always the ‘forward risks’
that they look for. These are the risks associated with system operation and which
involve the consequences of software failure. But there are also ‘backward risks’,
which arise out of development problems, such as incorrect specifications,
inappropriate design, casual programming, and inadequate management. They also
include what takes place across the interface between the developers and the testers.
Late delivery of software items, and their delivery out of the agreed order, can
considerably affect the time and effort needed to carry out the planned test
programme.

1 This was an invited paper at the Polish national software engineering conference, KKIO 2004,
Gdansk, Poland, 5-8 October 2004

Risk is a function of two components: the probability of occurrence of a defined
undesirable event and the severity of the consequences if the event does occur. When
considering the risks attached to software failure, the consequence component is the
focus of the testers’ forward risks, but the probability component arises out of the
backward risks. Because in most cases the consequence of failure is linked to the
software’s purpose, reducing it is not an option. Thus, risk reduction must be
achieved by reducing the probability of failure. Typically, testing seeks to commence
the process of reducing probability by finding defects. Then, actual reduction
depends on whether and how the developers implement corrections.

Feedback

Working system

Software

Feedback

Software

production
Testing System use

The testers’

forward risks

The testers’

backward risks

Figure 1: Testing as the second of three processes

In mechanical equipment, for which failure is a random occurrence, it may be
possible to determine the probability of failure from historic data. In the case of
software, however, for which failure is systematic and not random, historic data is
not predictive, even if it is carefully collected. And when the software has not yet
been produced, as is usually the case when test planning is carried out, there is no
basis for determining the likelihood of failure. At that time, however, the potential
consequences of failure may be estimated. Then, a risk-based approach to testing
may take the form of a ‘single-factor analysis’ based on consequence [Redmill
2004], the results of which are used to focus testing on the software whose failures
would have the greatest consequences. The purpose is to reduce the risks by reducing
the associated probabilities of failure. This is not a trivial process, for it requires a
thorough investigation of failure consequences with respect to all the system’s
stakeholders. An intuitive approach to risk analysis is inadequate, and an approach
based on knowledge of risk analysis is required.

Later, when the software has been written, it may be possible to arrive at a
probability estimate, by examining characteristics of the code, such as structure and
complexity, and by considering the quality of code previously produced by the
designers and programmers. This probability-based single-factor analysis cannot
produce an infallible estimate, but it can help the testers to focus on the code that is
likely to contain the largest numbers of defects.

But these forms of test planning are carried out after the defects have been built
into the software. There is a proverb that ‘You can’t make a silk purse out of a sow’s

ear’. Quality needs to be present from the start. Testers may find imperfections and
show the way to improvement, but they do not themselves make the software better.
Indeed, testing comes late in the development cycle, when most of the principal
decisions have been made and the foundations for quality have already been laid, as
shown by the fishbone diagram of Figure 2.

Figure 2: Examples of activities prior to software being delivered to testers

Figure 2 does not present an exhaustive list of development activities, or place
them in a definitive order. It does not, for example, include test planning or activities
that recur at each stage, such as management and verification. It is intended to
emphasise that the testers’ ability to carry out their own tasks efficiently is strongly
influenced by preceding events. They do not have control over software quality.
Deficient work in the management of a project or in the technical development of a
system creates problems for the testers and results in an increased probability of
residual bugs, failures in service, and the need for maintenance and change to the
system – all of which increase system life-cycle costs. The backward risks are the
root causes of the forward risks. Reducing them would go a long way to achieving
higher-quality software and reducing system life-cycle costs. This paper examines
how a risk-based approach could be used to improve both development processes
and test planning.

The next section offers an overview of risk analysis and management, both to
inform those unfamiliar with the processes and to provide a basis for the proposals
subsequently put forward. This is followed by an explanation of the points in the
development life cycle when a formal risk analysis is appropriate. Finally there is a
discussion on the application of risk analysis as proposed in the paper.

2 An overview of risk analysis and management

The vocabulary of risk is not universally standardised. The terms ‘risk analysis’ and
‘hazard analysis’ are both used variously and sometimes synonymously, and ‘risk
management’ is used sometimes to embrace them both and sometimes only to cover
the decision-making and action-taking that follow them. In this paper, risk analysis is
taken to embrace the identification, analysis and assessment of the potential for
future problems, and to consist of four stages or activities:
• Scope definition, in which the scope and terms of reference of the analysis are

defined.
• Hazard identification, in which the things that could go wrong, given the context

of the analysis, are identified.
• Hazard analysis, in which the identified hazards are analysed so as to estimate

the risks that they pose. This involves estimating the likelihood of a hazard
materialising into an accident (or hazardous event), and the potential
consequences if it did.

• Risk assessment, in which the risks posed by the hazards are assessed against
tolerability criteria.

As mentioned above, the terms used in risk analysis and management are not
universally agreed. Sometimes the scope definition stage is not mentioned in
definitions of risk analysis. Sometimes the hazard analysis stage is referred to as risk
analysis, with the overall process being called risk management. Sometimes a ‘risk
management’ stage is added to the process, and sometimes this final stage is referred
to as ‘risk reduction’. However, the title of ‘risk reduction’ is unsatisfactory because
the final stage is not limited to risk reduction but is concerned with making decisions
between various risk-management strategies, including not reducing some risks. For
consistency in this paper, ‘risk analysis’ embraces the above four-staged model and
is followed by the decision-making, action-taking activities of ‘risk management’. In
the context of risk-based testing, risk management involves the use of the results of
risk analysis to inform test planning.

In general, risk analysis would not provide the only basis for decision-making, for
there may also be political, legal, financial, and other information to consider. In
system development, there may be similar factors, as well as time and other project
constraints. However, the purpose of this paper is only to address the use of risk to
inform test planning, and the consideration of other information is left to project
decision-makers.

In software testing, risk analysis may be carried out at a high or low level, rapidly
or thoroughly, with a broad or narrow remit, depending on its objectives. Sometimes
the hazard identification and hazard analysis stages may be merged. But a significant
advantage of risk analysis is that it imposes a methodical approach and, in order to
maintain this, the four stages should always be identifiable, even when they are not
separately defined. A further point is that, as the risk analyst is usually not the
decision maker, care needs to be taken in both the documentation and the
communication of the results of risk analysis. The following sub-sections offer
further information on the four stages, with an added note on risk management.

2.1 Scope definition

A crucial determinant of any study – feasibility study, public inquiry, or risk analysis
– is the definition of its objectives and terms of reference. If the objectives are not
explicitly defined, they are unlikely to be met; if the terms of reference are not
clearly stated, the study may be conducted too narrowly to achieve its purpose or
may range so widely as to cover irrelevant issues and exceed its intended budget.
Because they define the field of inquiry, the terms of reference very strongly
influence a study’s results, and care should be taken in defining them. Examples of
issues that should be defined in this stage are:
• The physical and logical boundaries of the system to be analysed. A single

system may output only to paper or may control equipment that is geographically
co-located with it. A distributed system may consist of logical and physical
elements that are located in many parts of the world. An internet system may
physically be located in only one place but may potentially have effects on
numerous people globally. In each case the boundaries of both the system and its
relevant effects must be carefully defined if a risk analysis is to be effective.

• The scope and limits of the study. The study’s boundaries may not coincide with
those of the system to be studied, so they need to be defined separately.

• The types of risk to be addressed. In commercial or industrial contexts, a study
may be intended to address only financial or only safety risks. In a development
project, the purpose of an analysis may be to investigate the risks to on-time
completion rather than those associated with failure of the system – which are
the risks most likely to be of concern in the context of software testing. Test
planning may also be interested in the risks of software being of low quality, or
those of security breaches of the system, from both external and internal sources.

• The types of information that should be collected. In the present context, the
information required would certainly include the consequences of system failure,
and it may also include details of the system’s development. In most cases it is
important to include details of the system’s operational environment.

• The necessary, proposed, or allowable, sources of information. For testing, the
system’s stakeholders are likely to be appropriate sources. Omitting a significant

stakeholder could lead to a considerable underestimate of potential
consequences.

• How the results will be used. The intended use of results could affect the way in
which a risk analysis is conducted. In the present context, it is assumed that the
use will be to inform test planning.

• Tolerability criteria. Criteria against which the acceptability or prioritisation of
risks will be judged should be defined.

There should be a scope-definition stage at the start of every risk analysis. In
planning an analysis to inform risk-based testing, some (but not necessarily all) of
these points will arise, and it is the responsibility of the analyst to ensure that the
study’s scope is fully defined and preparation for it is carried out thoroughly.
However, the subject of scope definition will not be described in further detail.

2.2 Hazard identification

In risk analysis the sources of risks – the things that could go wrong and cause
undesirable events – are typically referred to as hazards. Hazard identification is the
stage of risk analysis in which they are methodically searched for and identified.

A risk analysis may be given the broad objective of addressing all types of
undesirable event, or it may be confined only to particular types. In some cases, a
system owner may be most concerned with the risk of the system not being brought
to market on time, and a study may be launched with the objective of addressing the
hazards that could lead to that single undesirable event. For test planning, the
undesirable event may be system failure, of which there are likely to be many types,
with many possible causes of each. Or, considering risk from the point of view of
development rather than use, the undesirable event may be the production of
software that does not meet its quality requirements.

Effective hazard identification demands not only a methodical approach but also
creativity. In simple cases, where there is plenty of historic information on failures
and how they occurred, a checklist can be helpful. A disciplined examination of the
results of audits, complaints, and staff interviews can provide the basis of learning
from what has occurred in the past. But when novelty is involved, as in bespoke
software, there is the likelihood – indeed, almost always the certainty – of new
hazards whose identification requires creative investigation. Brainstorming sessions,
if well managed, can throw up many good ideas in a short time. But brainstorming is
not based on a model of the system under study and so cannot be guaranteed to
uncover its most hidden or most severe faults. The most powerful method of hazard
identification is hazard and operability studies (HAZOP) [Redmill et al 1999], which
not only includes planning, careful team selection, and strong management of the
process, but also the use of ‘guide words’ to focus the study.

Methodical hazard identification can be time-consuming, and corners are often
cut in carrying it out. Yet it is critical to effective risk analysis, for hazards not
identified are neither analysed nor mitigated.

2.3 Hazard analysis

Hazard analysis is intended to explore the identified hazards and determine the risks
that they pose. As risk comprises two components, the probability of an undesirable
event and the event’s potential consequences, the purpose of hazard analysis is to
determine values for these two variables and to combine them, quantitatively if this
is feasible, or otherwise qualitatively, to arrive at risk estimates. This is the general
case. But with software, and particularly newly written software, arriving at a value
for the probability of failure is problematic, and a legitimate form of analysis is
single-factor, based only on the consequences of failures, which provides a basis for
determining which probabilities it is most worthwhile to reduce by finding and fixing
defects [Redmill 2004]. The risk analyses recommended in this paper are carried out
during the stages of software development and may address both the consequences
and the probabilities of identified undesirable events.

2.4 Risk assessment

All risks are not of the same magnitude. Their consequences and probabilities both
vary. Similarly, mitigating actions differ according to the risk. Some risks are small
and may be considered tolerable as they are. On occasions, significant risks may be
accepted because of the benefits to be had from taking them and because of the cost
of reducing them. Thus, mitigating action depends on how tolerable a risk is deemed
to be. Determining tolerability is the purpose of the risk assessment stage.

When quantitative risk analysis is carried out, assessment is made by comparing
the determined risk values against numeric criteria. When analysis is qualitative, risk
values may be expressed as categories (e.g. high, medium and low). In either case, a
structure for assessing risk may be based on a simple model (see Figure 3, in which
three regions are stacked vertically against an axis of increasing risk). If the value of
any risk is above a defined ‘intolerability’ level or threshold, the system cannot be
deployed unless the risk is reduced to a tolerable level. If a risk is below a defined
‘tolerability’ threshold, it is considered acceptable as it is. Risks between the two
thresholds may be deemed tolerable, but they should be reduced unless reduction is
not cost-effective. This three-tiered model reflects the way in which humans deal
with risks in every-day life, and it also reflects the Health and Safety Executive’s
ALARP (as low as reasonably practicable) model [HSE 2001].

This basic model of risk tolerability needs to be calibrated for each application by
defining its thresholds in the scope-definition stage of a risk analysis, the units of
calibration being determined according to the context of the study. In most studies,
they are units of currency. In safety they may be numbers of lives lost per year.

Three regions are in most cases adequate, but a fourth can be included by dividing
the central ‘tolerability’ region into two. Further, when the model is used not to
define tolerability but as the basis for risk-management action, or for prioritising the

actions to be taken, any number of regions (or risk classes) may be defined,
depending on the number of categories of action or prioritisation deemed necessary.

Risks in this region are tolerable

but should be monitored to ensure

management if they grow

Risks in this region are intolerable

and must be reduced at least into the

tolerability region before the

system is allowed to operate

Risks in this ‘tolerability’ region

may be considered tolerable but

should be reduced unless

reduction is impracticable

Zero risk

Tolerability threshold

Intolerability threshold

Increasing

risk

Figure 3: Three regions of risk space

2.5 Managing the risks

At the end of risk analysis, the risks and their tolerability are known, so far as the
available information and the thoroughness of the analyst allow. Decisions on what
to do about them must then be made and implemented.

The purpose of the assessment stage is to inform risk-management decisions, and
there are three ways in which the principles of the assessment process may be used.
First, they can be applied according to tolerability, such that they define the
appropriateness of a system to be deployed. The general principle is that risks below
the tolerability threshold may be left as they are, though monitored to make sure that
they don’t increase, those above the intolerability threshold must be reduced or
eliminated, and those between the two thresholds should be reduced or otherwise
mitigated if practicable. Second, the regions of the model can be equated to
programmes of risk-management action to be taken, and this is the method used in
some risk-based testing. Third, the regions may be equated to levels of prioritisation,
such that counter-measures against the risks of highest priority are implemented first.

3 An overview of test-orientated risk analysis in the
development process

The most effective risk analysis is carried out not once, or even repeatedly, but
continuously. That is to say, a mechanism is put in place – and used – for analysing,

recording, and managing new hazards, as and when they are identified. Yet, there are
points during system development when it is appropriate to carry out formal
analyses, each conforming to the risk-analysis model outlined in Section 2. These
points arise when new information becomes available and when significant changes
are planned. In most projects they occur when the following have been produced:
• The objectives for the system;
• The specification of requirements;
• The architectural (or structural) design;
• The detailed (module) design.

The results of risk analyses at these points could be used as the bases not only for
reducing identified risks and improving the development process, but also for test
planning. Indeed, all but the first of them coincide with the critical points in the V
Model [STARTS 1986] (see Figure 4), which models the development life cycle
from a testing perspective. The rectangles in Figure 4 represent life-cycle phases and
the ellipses represent their products. The dotted horizontal lines point out that the
entities on the left are the bases for those on the right, that the latter should conform
to the former, and, therefore, that the tests to prove those on the right should be
derived from those on the left. The model takes a testing perspective.

The plans for testing the products on the right of the V should be aimed at
determining their conformity with the entities on the left – which, therefore, test
planners must understand fully. Often, however, they do not know which parts of
those entities are of greatest importance, which are the most difficult to implement,
or which would throw up the greatest problems if defective or not implemented. If
risk analyses were carried out on the entities, risks could be managed in three
principal ways.
• Immediate action could be taken by making adjustments in the life-cycle phase

in question. For example, a risk identified at the objectives stage might be
reduced or eliminated by changing the objectives, abolishing the relevant aspect
of the project, or abandoning the project altogether.

• Risk mitigation action could be taken in the subsequent life-cycle phase, because
the identified risks show where particular care should be taken. For example, a
risk identified at the requirements stage might be reduced by providing
appropriate redundancy in the design.

• In all cases testing could be appropriately planned to ensure the efficacy of the
risk-mitigation features, and, more generally, to provide a further layer of risk
management.

Risk analysis also attempts to attribute values to risks, either in absolute terms or
relative to other risks, so it allows prioritisation for management action. But risk
management is not simply about avoiding risk. It is, importantly, about making
decisions about how to handle them. In some cases, high risks will be taken because
the expected benefits are high – but at least the risks are understood and measures are
taken to manage them, including, perhaps, the putting in place of contingency plans.
In some cases, it is not worth spending a great deal of time trying to calculate
probabilities, especially when the necessary data is absent. If the risk is going to be

accepted, despite the potentially high consequence if it matured, the issue is not what
the probability is but rather how can it be reduced to a tolerable level. Risk
management therefore depends as much on decision-making – based on evidence –
as on taking action.

A point worth making is that analysts should in all cases take the system’s
operational environment into consideration. Each study’s terms of reference should
include it. The risk of failure during system operation is increased if risk analyses do
not address operational conditions, and if the information available to analysts does
not include them the omission should be documented with the analysis results. If this
cannot be done, an exception report should be prepared.

Detailed

requirements

specification

Carry out

software design

Architectural

design

Carry out detailed

software design

Detailed design

Do coding and

unit testing

Debugged

modules

Software

integration and

integration testing

Integrated

software

System

integration and

testing

Tested system

Objectives for

the system

Figure 4: The V Model, which takes a testing perspective

4 Addressing risk during development

4.1 When the system’s objectives are defined

In its representation of the development life cycle, the V Model begins with project
initiation and the preparation of a detailed specification of requirements. But prior to
that the objectives for the intended system should have been defined at a strategic
business level. Only objectives that address system functionality and other technical
issues are within the scope of this paper; those that concern issues such as increases
in profit and reductions in staff numbers are not.

When objectives are defined, there is usually not a great deal of information about
the proposed system, so an elaborate risk analysis would be inappropriate. But an
analysis of what is intended can be of considerable value. For example, an analysis
of the safety risks posed by an intended chemical factory could determine where it is
– and, importantly, is not – appropriate to site it. It should also reveal the major
hazards posed by the system and, thus, inform the developers of the system
specification of the need for particular safety requirements. Thus, risks recognised
and accepted at the objectives stage must be mitigated by requirements at the
specification stage.

Suppose that the management of a hospital wishes to introduce a computerised
patient-records system. They might state their objectives as to:
• Store the clinical and administrative records of all patients;
• Allow physicians quick access to find out the medical histories of patients and

also to update the records with diagnoses, prescriptions, and progress reports;
• Allow nurses access to discover what treatment is necessary and plan dosing;
• Allow management to keep track of all patient transactions, including the

details of their entry, where they were accommodated, and what medical
and other services they received.

Even a brief risk analysis would almost certainly reveal that loss of medical
records would be catastrophic, that doctors would not like a slow system, that nurses
should not have access to full patient records, and that if management lost track of
patients the hospital would not be paid for services provided. The first and fourth of
these demands that records must be highly available and that their integrity must be
preserved. The second requires high performance and training of the doctors. The
third calls for confidentiality and the facility for different users to have access only to
certain functions. So out of knowledge of the major risks arises a number of high-
level requirements, including security, which was not stated as a system objective.
These requirements then need to be analysed in order that the full specification
should contain detailed, quantified statements of what is needed. Further, they
provide notice to testers of items that should receive particular attention, both in
system testing and in the customer’s acceptance testing.

It may be seen that the objectives, as stated, are to provide benefits from the
points of view of a number of system stakeholders, among whom the patients do not

feature. Yet, the patient is at the heart of the system. If the patient’s perspective is
taken, it turns out that a breach of security could lead to a threat to the patient’s
safety – which was not obvious from the initial statements. Thus, a risk analysis that
addresses this point will lead to the definition of requirements to provide patient
protection.

A further advantage of carrying out a risk analysis at the objectives stage is that it
facilitates the early detection of objectives that are undefined or unclear, and of
conflicts between multiple objectives. Such conflicts arise, for example, when each
of several senior stakeholders defines one or more objectives for the system. It is not
uncommon for projects to come to grief in later stages because of the impossibility of
achieving all objectives within the allocated time and budget, or even at all. From a
test-planning point of view, the risks identified at this stage should be used in
planning business-case tests at the system and acceptance testing stages.

4.2 At the specification stage

There is a great deal more information in a requirements specification than in a
statement of objectives, and this needs to be structured and validated before being
subjected to risk analysis. An attempt to analyse a document that is ambiguous, in
which there are gaps, and where related items of information are randomly scattered,
is likely to show only that the biggest risk arises from the uncertainties of the
specification itself. But given a good specification, risk analysis is both possible and
useful.

The first things to look for is whether the risks arising out of the objectives have
been properly catered for in the specification, and whether documentation has been
produced to guide the test planners on thoroughly testing the critical requirements.
For analysing the full specification, the HAZOP technique [Redmill et al 1999] is
preferred, mainly because of its guidewords, but failure modes and effects analysis
(FMEA) [IEC 1985] is also an option. The HAZOP guidewords focus attention on
what the consequence would be if specified functions were absent, if they were
incorrect, or if they operated at an inappropriate time. Similarly, they raise questions
about so-called ‘non-functional’ requirements such as performance. When incorrect
or inadequate functionality is deemed probable, or would give rise to severe
consequences, particular attention should be paid to those functions during design,
and notice should be given to the test planners.

Specification risks that are usually not recognised are those attached to
requirements that do not meet any of the system’s objectives. All requirements
should be strategically validated to ensure that they fall within, and contribute to, the
system’s objectives. Those that do not should not be allowed. Many projects run
over-time and over-budget, and many systems fail to meet their objectives, because
of requirements that should not be there. Further, many such systems carry unused
functionality, which costs a great deal of wasted money to produce. If the extra
requirements are important, the objectives for the system should be extended. If they

are not important, they should be removed from the specification. But identifying
such extraneous requirements requires an understanding of the system’s objectives,
and often these are not known by the project manager. Thus, risk analysis at the
specification stage is likely to lead to a re-examination of the system’s objectives,
which, in turn, may result in a review of the requirements.

The requirements that are found in the analysis to be critical or risky should be
given special attention. One possible remedy is to remove them, but this requires a
review of the system’s objectives, for it may mean that they too have to be adjusted.
If it is found that a risky requirement is there because of a key objective, another
solution must be found. In this case, the risk should be mitigated in the design, and
testing should be planned to exercise the design solution so as to ensure that it is as
robust as necessary.

4.3 At the design stage

A design is even more appropriate to a HAZOP study than is a requirements
specification, for almost by definition it is well structured. As already suggested, two
studies are appropriate – of the architectural design and the detailed design (see
Figure 4). At the architectural design stage, high-level design decisions, such as the
choice of technologies and ways in which reliability and availability will be
achieved, should be made. The architectural design should also address the risks
identified at the requirements stage. For example, design features should be used to
mitigate risks to safety and security. A risk analysis of the architectural design should
therefore not only address the design with respect to whether and how it meets the
system requirements, but also whether and how it mitigates the risks previously
identified.

If the design proposes the use of a new technology, or one that has been untried in
the organisation, the risk analysis should seek to identify the risks of doing so and
analyse them to determine their potential effects on the organisation, the project, and
the system. Lessons should be derived from other uses of the technology – in other
projects and other organisations. Was it easy to use? How much training was
required? Did it work first time? If the risks turn out to be significant, what
management action is appropriate? Should the notion of employing the technology
be abandoned? Or would training of staff be sufficient to reduce the risks to tolerable
levels? Perhaps, even after training, an expert should be brought in as a short-term
consultant to ensure that the technology is used both efficiently and effectively.

The detailed design defines how individual functions will be implemented in
software. The content of software modules, and their inter-relationships, are
revealed. Thus, the functions identified at earlier stages as being critical, or posing
high risks, can be given particular attention. They can be allocated to the best
programmers and made the focus of more intensive testing.

The detailed design, based on top-down decomposition, also provides test
planners with a basis for deriving an integration plan. This should define the

preferred schedule for building the system from the various software components.
Usually, if such a plan is created at all, only the testers know about it. Yet, if
component integration and integration testing are to be carried out in a given order,
the modules to be integrated must be delivered by the developers in that order. So the
integration plan needs to be the basis not only for integration and testing but also for
development. Otherwise, it is almost certain to be useless as a plan. Development in
accordance with the integration plan reduces the need for stubs and drivers, saves
time, and makes testing more effective. It also paves the way for the use of business
cases in system and acceptance testing. Further, it stops testers from being at the
mercy of the programmers and places them on an equal footing with them. Indeed,
the test planners need to have influence over the coding process – which is unheard
of in most organisations. A risk analysis at the detailed design stage therefore needs
to consider the risks not only of software modules being delivered late, but also of
their not being delivered according to the integration plan.

Identifying such risks throws up new problems, for their causes often lie not in
technical problems but in issues of project and development management, planning
and discipline, and these may not be familiar to the risk analysts. Thus, there is the
lesson that if risk analysis is to be carried out during the development life cycle it
must be expected that analysis of the identified hazards will require exploration of
project, administration, and management issues as well as technical problems.
Analysts must therefore be chosen, and trained, accordingly.

Once a risk analysis of the detailed design has been carried out, the identified
risks should be used by the development manager in selecting appropriate staff for
programming, appropriate techniques for inspecting and testing the modules, and
appropriate levels of quality assurance of the processes involved. Test planning too
should be informed by the results.

5 Discussion

Testing helps to reduce the probability of failure by detecting deficient software. But
it would be preferable for a low probability to be achieved in the first place, during
the development processes. This is not a new concept, but it is not usual for testing
concepts or risk analysis to be employed in addressing the testers’ backward risks.
This paper proposes ways of doing so.

Taking a risk-based approach during development allows risks to be identified
and mitigated early, and tracked throughout development, thus resulting in fewer
defects in the software. It also provides risk-based information to test planners so that
they can focus testing on the most critical functions and their software. The paper
therefore takes a testing perspective. It introduces the subject of risk analysis,
provides a four-staged model of carrying it out, and shows how and at what stages it
may be used during system development.

No risk analysis should ever be considered to be definitive. Always the results
could be improved if more information were available. Each analysis during the

development life cycle will have access to greater detail than its predecessor, and the
techniques employed and the time and other resources allocated should reflect this.
However, each analysis should be carried out with sufficient thoroughness to identify
and analyse the major risks identifiable at that stage. Then, the resulting risk-
management requirements must either be met by immediate changes or they must be
defined as constraints on the future definition and development of the system. Thus,
the risks identified at the objectives stage should be mitigated either by changing the
system’s objectives or by defining appropriate requirements, which then become a
part of the system’s requirements specification. The need to mitigate risks identified
at the requirements stage should be met by changing the requirements (which may
also require changes to the system’s objectives) or by placing constraints on the
system’s design; and so on. Clearly, one essential purpose of each risk analysis after
the first should be to enquire into whether adequate mitigation of previously
identified risks has been put in place. The results of each analysis should be used to
inform the relevant level of test planning, thus ensuring that testing is used to verify
whether or not the defined risk mitigations have indeed been put in place and are
adequate. Doing this may require simulation of the risk conditions to determine if the
relevant undesirable events occur and, if they do, how they are coped with.

Risks arising during development may have their origins in risky objectives or
requirements for the system, or in high-level strategic decisions. They may have
technical causes, such as the use of unproven or unfamiliar technologies. They may
also result from administrative, managerial, or project management problems or
deficiencies. Thus, the risk analyses must be carried out by teams whose members,
between them, are capable of understanding all of these issues. Many risk analyses
are abortive because the analysts are blind to the types of hazards involved.

Development-process improvement is usually done from a project-management
or quality-management perspective. Applying risk management and taking a test
planner’s perspective are not common and they offer possibilities for both academic
research and trials by industrial practitioners.

References

[HSE 2001]. Health and Safety Executive: Reducing risks, protecting people. HSE
Books, 2001
[IEC 1985]. International Standard 812 Analysis Techniques for System Reliability:
Procedures for Failure Modes and Effect Analysis. International Electrotechnical
Commission, Geneva, 1985
[Redmill 2004]. Redmill F: Exploring risk-based testing and its implications.
Software Testing, Verification and Reliability 14, 3-15, 2004
[Redmill et al 1999] Redmill F, Chudleigh M and Catmur J: System Safety:
HAZOP and Software HAZOP. John Wiley & Sons, 1999
[STARTS 1986]. The STARTS Purchasers’ Handbook. NCC Publications,
Manchester, 1986

