
Design and Implementation of a BPMN to
PROMELA Translator

Wenzhong Sun (Jim)

MSc in Advanced Computer Science,
School of Computing Science, Newcastle University, U. K.

August 2012
w.sun2@ncl.ac.uk

Abstract. An Electronic Contract (E-Contract), is the electronic ver-
sion of a traditional paper based contract. Electronic Contracts are widely
used in the business world today. How to convert from a traditional
contract into an E-contract is a considerable challenge for system ar-
chitects. Service Choreography tools (e.g. BPMN) can be employed to
help designers with modelling business processes described within busi-
ness contracts. Verifying such a choreography conforms to the contract
requirements is an extremely important yet challenging task. Manual
verification is extremely difficult because of the potential complexity of
the choreography model. Therefore in this dissertation we propose using
model checking tools (specifically the SPIN model checker) in order to
be able to analyse choreography models systematically. We propose that
a BPMN choreography can be converted into PROMELA, which is the
input language of the SPIN model checker. To automate the conversion
process from BPMN to PROMELA. I have built a BPMN to PROMELA
translator, which I describe in this dissertation.

Declaration: I declare that this dissertation represents my own work
except where otherwise explicitly stated.

1 Introduction

Business to Business Interactions (B2Bi) conducted over the Internet are regu-
lated by legal business contracts signed between two or more participants; for
example, between a buyer and seller that have agreed to conduct business with
each other.

A business contract contains a list of normative statements or equivalently,
as a list of rights, obligations and prohibitions that the signatory parties are
expected to observe.

The clauses of the a business contract precisely stipulate what activity (also
called operations or actions) the parties are expected to execute, when and in
which order to honour their rights, obligations and prohibitions.

A hypothetical example of a business contract (or just a contract) between
a buyer and store, with typical activities (buy request, buy confirmation, buy
rejection, pay and cancel) is shown below:

2 Wenzhong Sun (Jim)

1. The buyer has the right to place a buy request with the store to buy an
item.

2. The store is obliged to respond with either buy confirmation or buy re-
jection within 3 days of receiving the buy request.

3. The buyer can use its discretion to either pay for or cancel the buy request
within 7 days of receiving a confirmation.

The execution of each activity involves the participation of the two busi-
ness partners which interact in a peer–to–peer relationship as against the more
traditional client-server relationship.

The implementation of contracts results in intricate interactions that are con-
veniently expressed as a cross–organisational business process executed between
the business partners. Realistic contracts normally result in cross–organizational
business processes of considerably complexity that are likely to suffer from logi-
cal errors. For this reason, contracts are normally represented at different levels
of abstractions that serve different purposes. Abstraction levels range from infor-
mal models aimed at humans to formal ones aimed at computers and amenable
to systematic manipulation and reasoning with the intention of uncovering po-
tential errors.

For instance, widely used models are choreographies which allow systematic
reasoning at design time but without accounting yet for the particularities of
implementation technologies. We believe that contracts should be represented
as choreographies and scrutinise for potential logical flaws before modelling (or
implementing) them as distributed systems. As elaborated below, choreogra-
phies represent a B2Bi at message level. Once the designer is satisfied about
certain correctness requirements verified on the choreography, the latter is used
for producing (either mechanically or manually) the actual public processes (one
for each participant) that implement the cross–organizational business process.
This idea is illustrated in Fig. 1.

(in process lang.)
choreography

PPB PPS

(in English lang.)
business contract

choreography messages

StoreBuyer

Fig. 1. A contract, its choreography and public processes.

In the figure, Buyer and Store represent two arbitrary contracting parties
that have agreed on the terms and conditions included in the business contract

BPMN to PROMELA Translator 3

expressed in English language. The dashed lines represent production, so the
business contract is used for producing the choreography which is expressed in
a process language. Similarly, the choreography is used for producing PPB and
PPS . PPB and PPS stand for the buyers and store’s public processes respec-
tively. The solid line represent a communication channel used by the Buyer and
Store for sending the choreography messages involved in the execution of each
activity included in the contract.

Choreographies offer a global view of a message–based interaction and are
specified in choreography languages such as [1]. In this order, a choreography
of a bilateral interaction would include the sequences of messages exchanged
between the two business partners as observed by a third party with a global
view of the interaction.

Choreographies are not directly executable. They are only abstract models
of a cross–organisational process. They can be used for several purposes. As
shown in Fig. 1, they can be used to derive the public processes of the business
partners. More importantly within the context of our discussion, choreographies
can be used for reasoning at design time about different aspects of the behaviour
of the contract that they represent. In this order, choreography models can
help determine whether the business process satisfies certain safety and liveness
properties, such as absence of deadlocks, causality (message order) and non–
progress cycles. For this to be possible, choreographies need to be expressed
in notations that are amenable to systematic analysis with the assistance of
software tools such as model checkers.

Several choreography languages have been suggested by both industry and
academic institutions. A categorization of choreography languages is presented
in [2] and re–examined in [3]. A language that has achieved wide acceptance
and the focus of interest of this dissertation is BPMN. BPMN is relatively new:
version 1.1 was approved in 2006 whereas its latest version 2.0 was released in
2011 ([1]) and still under very active scrutiny. Consequently, mechanical tools
for reasoning about of BPMN process are still the subject of research activities.
To help cover the gap, in this dissertation we design, implement and discuss a
translator that can mechanically produce PROMELA code from choreography
diagrams expressed in BPMN, precisely in the RosettaNet version [4] of BPMN
2.0. We will refer to it as the BPMN2PROMELA translator. As explained at
large in Section 2, PROMELA is the input language of SPIN, a mature, widely
available and well documented model checker. The PROMELA model produced
by the translator can be used for uncovering potential logical errors included in
the BPMN choreography diagram. The idea is illustrated in Fig. 2.

In Fig. 2, BPMN editor represents a tool for generating BPMN2 choreog-
raphy diagrams. BPMN choreography is a diagram created with the BPMN
editor. Actually, a BPMN choreography is an XML files. BPMN2PROMELA is
the BPMN choreography to PROMELA translator that we have implemented
in this dissertation. It is a Java application which can be configured and run on
any platform. We will discuss it in detail in Section 3. As pointed out in Fig. 2,
a valid BPMN choreography is presented as input to the BPMN2PROMELA

4 Wenzhong Sun (Jim)

BPMN2
PROMELA

BPMN
editor modelchecker

SPIN

proctype Buyer()

{...}

init{run Buyer()}

 model
PROMELA

Buyer

Buyer
 req

Store

BuyReq

Store

Buyer

Store
 conf

startEv
G1

BuyConf

endEv

BPMN choreography

uncovered
error

no error
uncovered

end

Fig. 2. BPMN2PROMELA translator used to uncover choreography errors.

translator. Then, the corresponding PROMELA model is obtained as the out-
put of BPMN2PROMELA translator. The PROMELA model is presented to
the SPIN model checker which is a general tool for verifying the correctness of
distributed software models in an automated way to uncover potential errors.
If no error is uncovered by SPIN, then whole process ends. Otherwise, it will
loop back to the very beginning to inspect behaviours described in the original
BPMN choreography.

The PROMELA model can be used for other purposes as well. For instance,
and as explained in Section 5, it can be used for mechanically producing the
message sequences encoded in the original BPMN choreography.

To show the practicality of the concepts presented in this dissertation, we dis-
cuss them within the context of SAVARA Testable Architecture [5] (an on going
Jboss project aimed at creating tools for designing business processes) frame-
work. However, our concepts and ideas, including those behind the BPMN2PROMELA
translator, are rather generic and can be used in other frameworks.

1.1 Proposed Aim and Objectives

The primary aim of the project is to design and implement a BPMN to PROMELA
translator by using Java.

The following points have been identified as main objectives of the project:

– To understand why we need a BPMN to PROMELA translator.
We would like to verify a BPMN choreography with SPIN. However, SPIN
only takes PROMELA as its input language. Therefore, the BPMN choreog-
raphy needs to be converted into PROMELA model. But currently, there are
no translators for translating from BPMN choreographies into PROMELA
models. So we need to build a translator to bridge the gap between them.

– To investigate related fields that associated with this translator.
In this dissertation, we want to translate a high level language into another
high level language. Therefore, full understanding about BPMN constructs
and PROMELA syntax is a very important objective in the dissertation.

BPMN to PROMELA Translator 5

– To design and implement the translator.
To design and implement a BPMN2PROMELA translator is the main objec-
tive of this dissertation. In this project we want to build a XML based Java
application that translates BPMN choreographies into PROMELA models.

– Symbolic execution based sequence generation of BPMN choreographies.
Sequences in BPMN diagram are very important for contract experts and
system designers. How to generate message sequences automatically from
BPMN choreographies is an issue for us.

– To validate PROMELA models which generated by the translator in SPIN
and analyse results of typical scenarios.
Analyse some typical scenarios, in order to get a idea of how the translator
helps us in design level.

1.2 Structure of Dissertation

This dissertation is organised as following:
The background in Section 2 will primarily introduce what is E-Contract,

choreography and orchestration, Jboss Savara Testable Architecture, PROMELA,
SPIN and Linear Temporal Logics.

Section 3 introduces different alternatives of translation. Then this section
shows the structure of BPMN2PROMELA translator. After that, the overall
design and implementation of the translator will be discussed at the end.

We will analyse some typical BPMN choreographies in Section 4 in order to
get a clear idea about how the translator helps us in design level.

Section 5 discusses basic concepts about events in distributed systems. Then
we will briefly introduce methods of sequence generation from BPMN choreogra-
phies.

Section 6 introduces the testing strategy used for testing core components of
the translator. Then we evaluate the aim and each objective of the dissertation.
At the end of this section we will evaluate the BPMN2PROMELA translator.

Some previous work in this area is discussed in Section 7.
The conclusions and future work in Section 8 ends up the dissertation by

summarizing the work which has been done and points out some further work
that can be done about this project.

2 Background

2.1 Electronic Contracts

A business contract stipulates what activities the contracting parties are ex-
pected to execute. In our execution model, the execution of each activity always
involves the participation of the two parties that interact with each other in a
loosely coupled manner. In principle, the execution of activities can involve more
than two parties at the price of more complexity; this possibility fall outside the
scope of this dissertation. The execution model that we follow is discussed in

6 Wenzhong Sun (Jim)

Store

Buyer

Store
 conf

BuyConf

Buyer

Store

Buyer
 pay

BuyPay

G1

Success

G2

Technical Failure

Business Failure

Success

Technical Failure

Business Failure

Fig. 3. Execution model of activities.

depth in [6], we present here only a brief summary. We assume that each execu-
tion involves an initiator and a responder. The initiator is the party that initiates
the execution, the responder is the party that responds to the execution. We as-
sume that once an execution is initiated, it always terminates and produces an
outcome. The execution of each activity within each party always and indepen-
dently produces one out of three possible outcomes: success, business failure, or
technical failure. Success (es) represents the desirable (normal) outcome; whereas
business failure (bf) and technical failure (tf) represent undesirable outcomes
due to, respectively, business and technical reasons. By independently we mean
that for the execution of a given activity the two parties can potentially produce
conflicting outcomes (for example, one of them declares s, whereas its counter-
part declares bf). To keep the two participants aligned, synchronization (both
declare s, bf or tf) mechanisms are used (see for example [7]). The use of syn-
chronization mechanisms is assumed in the RosettaNet version [4] of BPMN.
Since the BPMN diagrams shown in this dissertation follow this specification,
they also assume the existence of underlaying synchronization mechanisms. The
execution model of each activity that we assume in this dissertation is shown in
Fig. 3.

Observe that the outcome of each activity (Store conf and Buyer pay) is
guarded by exclusive gateways (G1 and G2, respectively) with three alternative
execution paths. The target of Technical Failure or Business Failure outcomes
is not shown in the figure. The assumption is that these paths lead to activities
that handle the undesirable situation, such as repetition of the failed execution.

For the sake of simplicity, in some of our examples of choreographies (in
Fig. 4 for instance) we show only the normal (primary) execution paths.

2.2 Choreography and Orchestration

The concepts of choreography and orchestration as defined in firstly introduced
in [8], are used to refer to different views of a business process. Another way of
looking at these terms is that they represent (model) the same business process

BPMN to PROMELA Translator 7

at different levels of abstractions, presumably, with the intention of capturing
different aspects of its behaviour.

A choreography refers the description of how multiple participants (or roles)
interact to achieve a goal. It is used to capture all interaction obligations and
constraints from a global perspective. On the other hand, an Orchestration rep-
resents executable business process from participant’s perspective. In Fig. 1 for
instance, the choreography specifies interactions between Buyer and Store in
an abstract process model. Whereas the orchestration specifies public business
processes for each parties which projected by the choreography.

Since they represent the same business process, orchestration can be gener-
ated automatic projection from choreography.

2.3 Jboss Savara Testable Architecture

Testable Architecture is a new methodology designed and developed by Red Hat
and Cognizant Technology Solutions in 2009. It can be regarded as a framework
with the purpose of supporting designers and architects in designing and de-
veloping distributed business applications. This methodology mainly focuses on
message and service oriented system.

Savara is a on going project established and maintained by JBoss [5]. Its aim
is to build a framework that based on the Testable Architecture methodology
which can help us building distributed and service oriented systems. Different
from other architecture tool kits, the goal of this project is to ensure that all
artifacts created throughout the life cycle of a software development project are
verifiable against other previously defined artifacts. It means that the purpose
of the framework is to make sure the verifiable of all parts of a software project.
In another word, it assists us to ensure that delivered system will still conform
to the original software design (therefore business requirements) for the whole
lifecycle of a project. Under the guidance of such a theory and employ tools that
have been and will be developed in Savara, the final system has the possibility
to fully apply the business requirements.

Savara offers several tools for supporting designers at different stages. We will
focus our discussion only on those that are relevant to this dissertation, namely:
the BPMN diagram editor, scenario editor and the scenario simulator.

The BPMN Diagram editor BPMN diagram editor here refers to BPMN2
choreography diagram generation tool which has been installed on eclipse plat-
form as a plug-in. It corresponds to the BPMN editor of Fig. 2. As a part of
SAVARA tool suits, this editor enable us generate BPMN choreography conve-
niently by simply dragging and dropping BMPM elements from the icon menu
to the canvas. Actually, these BPMN diagrams are encoded as conventional and
standard XML files that can be used and manipulated by XML supportive tools
like Dom4j (A third party library for working with XML on Java platform).
Diagrams which created by using the editor can be employed for several pur-
poses. For example, they can be used to verify scenarios which are generated by

8 Wenzhong Sun (Jim)

SAVARA scenario editor (we will discuss it later). As mentioned in Section 1 in
this dissertation we use them as input files for creating PROMELA models. Ba-
sically, it is a convenient graphical user interface (GUI) that allows developers to
create choreography documentation by working with images rather than typing
texts. Currently, it supports some basic BPMN elements such as: Connectors,
Tasks, Gateways, Events, Data Items and other elements. The information on
how to build a choreography can be found in the SAVARA User Guide.

The scenario editor SAVARA also offers a scenario editor to help developers
create scenarios by using a GUI tool. A model is a highly abstract manifesta-
tions of a system of interest for designers. A model is competent for a given
analysis if it contains sufficient detail to permit that analysis. A simulation is
a symbolic execution [9] of a model. And what is a scenario? ”The inputs and
stimuli provided to a model during a simulation run is termed a scenario [10].”
The scenario editor in combination with the simulator and the BPMN diagrams
helps designers perform a simulation action easily by choosing the model that
need to be checked and a type of simulator. Note that these scenarios are also
encoded as conventional and valid XML files and suffixed as ”scn”.

The scenario simulator A scenario simulator in SAVARA is a software tool
which can perform certain type of simulation action of a scenario specification
against a choreography model. We have known what a model is. And a model
which can be simulated is called an executable model. In this case, a choreogra-
phy model is an executable model because it can be put into a simulation en-
vironment and produces corresponding results. Actually it performs a symbolic
execution of the BPMN choreography diagrams against the scenario provided
as input. A symbolic execution refers to the analysis of programs by tracking
symbolic rather than actual values. When a simulation is acting, message events
(associated with the specific roles) in the scenario are simulated against the
models specified in a option dialog. If the message event is valid, its node will be
displayed in green. If however the event is unexpected, then it will be shown in
red instead. However, how does a simulator work is totally transparent to users.

Simulator stands at abstract level and employs symbolic execution method
to analyse programs by tracking symbolic values.

2.4 PROMELA and SPIN

PROMELA (Process Meta Language) is a language for specifying business mod-
els and the input language accepted by the SPIN model checker. As thoroughly
discussed in [11], PROMELA has some syntax to represent key elements such
as processes, channels, messages etc. which are abstracted from message based
distributed systems. Basically, it is a language for specifying verification mod-
els [12]. By verification models we mean abstract design which only includes
properties that we want to verify. It is usually used in abstracting distributed
systems, especially focus on the exchange of messages between business parties.

BPMN to PROMELA Translator 9

We will describe here only the constructs that we use in our BPMN2PROMELA
translator in Section 3.

SPIN is a software tool for validating models of distributed system (e.g. com-
munications protocols [13]) written in PROMELA. It can simulate the execution
of a PROMELA model and reveal designers whether their designs conform to
the original requirements. As a valuable design tool it can be utilized at any
level of abstraction. In general, SPIN is a model checker that employs state ex-
ploration to validate properties which defined in PROMELA model[14]. Model
checking [15] is the main work which done by SPIN. Model checking apply some
algorithm to verify concurrent systems. These systems are described by using
PROMELA and specified with some properties. SPIN exhaustively verifies the
system and returns the result of correctness.

There are two ways of initializing the execution of a PROMELA process.
First, put it into a ”init” block. The ”init” block is used to declare the behaviour
of a process that is active in the initial system state. The obvious advantage of
such approach is that, we can do some complex initialization work (e.g. define
channels, pass parameters into predefined process prototype) before we run it.
The second way is that a ”active” prefix can be added before the declaration of
a proctype. It defines processes that are required to be executed in the initial
system state. In this dissertation, some figures have been shown as first approach
and some code examples is represented in the second way. This two approaches
is identical in the paper.

2.5 Linear Temporal Logics

Assertion is an important language construct in PROMELA. It produces some
results(e.g. error) during verifications with SPIN in accordance with param-
eters it holds. Correctness properties of concurrent programs that written in
PROMELA can be verified and specified by using assertions. But assertions
cannot express all of these properties. It means that for majority correctness
properties of PROMELA models, assertions are not enough.

Linear temporal logic (LTL) is the formal logic used for expressing correctness
requirements expected to be observed by abstract models like those written
in PROMELA and validated with SPIN[16]. LTL are used for two different
purposes. First, they are used for expressing correctness properties. For example,
a choreography designer can use them to express some requirements that his or
her choreography should meet such as ”message A is always followed by either
message B or message C”. LTL are also used for expressing trap properties in
model checking-based testing. The aim here is not to uncover logical errors by
to generate sequences automatically from a validated PROMELA model [17].
The syntax and semantics of LTL are not within the range of this dissertation.
Therefore, we do not discuss them here.

Elementary and practical introductions to LTL with focus on SPIN are pre-
sented in [13, 17].

10 Wenzhong Sun (Jim)

3 BPMN to PROMELA Translation

3.1 Choreographed vs Orchestrated Translation

A given BPMN choreography can be translated into different alternatives: chore-
ographed or orchestrated. The idea is illustrated in Fig.4. At the top of the figure,
there is a BPMN choreography which involves two parties (Buyer and Store).
Choreographed translation is illustrated as alternative a) in the figure. With
this approach only one process is created during the translation regardless of
the number of participants included in the BPMN choreography. Communica-
tion activities (e.g. sending and receiving messages by each party) are within
this process which is shown as process BuyerStore in the PROMELA process
box and as proctype BuyerStore in code box. The orchestrated translation is
illustrated as alternative b) in the figure. With this approach, the PROMELA
model created has as many processes as participants are in the choreography
model plus the init process to initiate them. The two boxes on the right bot-
tom show the situation. Process Buyer and Store (proctype Buyer and proctype
Store in code box) represent the two participants of the BPMN choreography.
However, it is worth observing that communication operations of orchestrated
translation is explicitly modelled. Communication messages are transferred from
one process to another via channels (e.g. B2S and S2B).

Buyer

Store

Store

Buyer

Store

Buyer

Store
aborts

Buyer
 pays

endEvstartEv G1

delivers
Store

Deliv

Pay

Abort

G2

success

failure

proctype Store(){

B2S ? Pay(_);

...}

init{ run Buyer();

 run Store()}

proctype Buyer(){

B2S ! Pay(1);

...}

BuyerStore
proc

PROMELA processes

proctype BuyerStore()

{

B2S ? Pay(_);

...}

init{

run BuyerStore()}

 B2S ! Pay(1);

code code

BPMN choreography

a) b)

B2S

S2BBuyer
proc

Store
proc

PROMELA processes

Fig. 4. Choreographed and orchestrated translations.

BPMN to PROMELA Translator 11

Fig. 5. The structure of BPMN2PROMELA translator.

3.2 Structure of BPMN2PROMELA Translator

The BPMN2PROMELA translator is meant to produce PROMELA models from
BPMN choreography diagrams mechanically. It was implemented in Java within
Eclipse framework. Fig. 5 shows the structure of the translator. BPMN chore-
ography in the figure refers to a BPMN diagram created by using SAVARA
BPMN editor. A BPMN choreography is actually organized and stored as an
XML document. Therefore, it can be processed programmatically. Config file is
a configuration file for the translator. For example, it allows the designer to spec-
ify the size of channel buffers, the storage path of PROMELA model files, the
type of messages and the BPMN file to be translated. More information about
configuration can be found in Appendix A.3. The translator follows the config-
uration file when execution and produces a corresponding PROMELA model
automatically.

3.3 Basic BPMN Constructs

Our translator supports only some of the constructs specified in the BPMN 2.0
standard. Precisely, it follows the RosettaNet version of BPMN which is a subset
of BPMN 2.0. Before discussing the translation from BPMN choreography to
PROMELA model. We will discuss the BPMN elements that we support in our
translation. We will use a BPMN diagram (the BPMN choreography of Fig.4)
as example to support our explanation.

Events: An event represents something that can be notified during the process
of a workflow. Events in a flow always generate some results. There are three
types of Events defined in BPMN: Start, End and Intermediate events.

Currently, this project supports only Start and End events. In BPMN, circles
are used for representing events, thus in Fig. 4, startEv and endEv represent,
respectively, the start and end events of the process.

Activities: An activity represents a task that can be achieved by business
partners during the process.

The activities are represented by rectangle boxes that indicate the names of
the activity, involved parties and messages. Fig. 4 includes three activities called

12 Wenzhong Sun (Jim)

Buyer pays, Store delivers and Store aborts. They represent the Buyer’s payment
request, the Store’s delivery notification and the Store’s cancellation of payment
request, respectively. The involved parties (participants) are named inside bands
(top and bottom of an active box) of different colours. The sender’s in a white
band and the receiver in a shaded band.

Messages: A message represents an abstract information which can be trans-
ferred from one party to others.

The RosettaNet version of BPMN stipulates that there are only two par-
ticipants in each activity which are a sender and a receiver. There are three
messages in Fig.4, they are Pay, Deliv and Abort which represent PaymentRe-
quest, DeliveryNotification and AbortNotification, respectively. For example, in
the Buyer pays activity, the Buyer sends the Pay message to the Store and the
Store finally receives it.

Gateways: A gateway is used to control the flow of sequences in a choreography.
They are represented by diamonds. BPMN 2.0 supports different types of gate-
ways(e.g. Exclusive, Inclusive, Parallel, Event-Based, and Complex). Gateways
control the splitting and merging of sequence flows.

Currently, only exclusive gateways (split and merge) are supported in this
version of the translator. Fig. 4 includes one exclusive split gateway (G1 and
corresponding exclusive merge gateway G2).

Sequence Flows: A sequence flow is used to express the order between events,
activities and gateways.

It is specified by arrowed line that connect events, activities and gateways.
Fig. 4, for example shows a sequence flow from start event to Buyer Pays activity.

3.4 Basic PROMELA Constructs

To help the reader understand how the translator works, we will explain here
some of the central PROMELA constructs.

Global Variables: In PROMELA, variables can be divided into several types.
Our translator supports two of them: First, Enumerated types are used to define
the messages in a choreography such as mtype = {Abort, Pay, Deliv}. The syn-
tax in PROMELA is expressed as mtype (=)? {msg (,msg)*}. Second, LTL vari-
able types: they are used to include LTL correctness properties into PROMELA
model, this kind of definition will be placed at the beginning of the content.
For example, #define p (ture). The corresponding PROMELA syntax is #define
variable (bool). The current implementation of the translator does not support
basic data types or Structures.

BPMN to PROMELA Translator 13

Global Channels: In PROMELA, channels can be declared either global or
local. Channel declaration specifies buffer size and data type. Only the type of
declared messages can be transferred through the channel. For example, mtype
= {BuyConf, BuyPay} defines all messages involved in a choreography. So chan
Store2Buyer = [0] of {mtype, byte} is the declaration of a channel. It can accept
messages of mtype and byte and its buffer size is zero. Therefore, BuyConf and
BuyPay are all allowed to be communicated by using Store2Buyer. In this trans-
lator we use only global channels. The syntax in PROMELA can be described
as chan channelName = [INT] of {typename(, typename)*}.

Processes: Currently, as mentioned in Section 2, there are two ways to de-
fine processes for a BPMN choreography. In choreographed translation there is
only one process in PROMELA model whereas an orchestrated translation will
create as many processes as participants are defined in the choreography. The
body of a process includes a number of statements or blocks that can be one
of atomic block, message activities (sending and receiving), selection construc-
tion (if block), GOTO statement, labelled statement, SKIP statement and run
statement. Moreover, there are two means to initialize processes. The ”active”
keyword can be used to initialize each process or alternatively the designer can
initialize them in an ”init” block. Both approaches are supported in this transla-
tor by configuration. The syntax in PROMELA should be (active [N]) proctype
processName (args) {statements}.

Message Communications: The syntax for message sending and receiving
in PROMELA is represented as chan!msg(1) and chan?msg() respectively. For
each task in the choreography, results in a sending statement and corresponding
receiving statement. The format in the translator for message communications
can be described as participantA2participantB?(!)msg. participantA and par-
ticipantB represent the sender and the receiver in a task, and msg is the message
of the task. For example, suppose that in a task Buyer sends BuyReq to Store,
then the corresponding message communications are Buyer2Store!BuyReq(1)
and Buyer2Store?BuyReq().

Selection Constructions: The syntax of selection constructions can be de-
scribed as if (::(condition)? statements)+ fi. Condition is a bool value, the op-
tion can be executed if it is true. Basically, a split gateway can be translated
into an if-fi block. However, there are some exceptional circumstances during the
implementation work. We will discuss them in following sections.

GOTO and Labelled Statements: Within a process, a label must be uniquely
identified. They are usually associated to GOTO statements. In this translator,
these statements only appear when loop paths were involved in the BPMN chore-
ography. The translation syntax is as follow: label: statements ... GOTO label.

14 Wenzhong Sun (Jim)

Table 1. Mapping from BPMN constructs to PROMELA syntax.

BPMN
constructs

PROMELA syntax explanation

start event global variables, global
channels, blank

processes, LTL properties

initialize a framework for PROMELA
model. If non-active processes, then init

block and RUN statements

end event nothing indicates the end of translation

activity a channel, a message
sending statement,

corresponding message
receiving statement

(according to sender and
receiver)

if loop paths, then GOTO statements and
labelled statements; if message activities
are the first statements of a if-fi blocks,

then colon blocks

participant
sender

a process repeated sender will be ignored when
creating processes

participant
receiver

a process repeated receiver will be ignored when
creating processes

exclusive split
gateway

selection constructions
(if-fi blocks)

an if-fi block will be deleted under some
exceptional circumstances [18]

exclusive merge
gateway

nothing a signal for the end of if-fi block; a pointer
for message activities; if it follows a split

gateway immediately, then SKIP
statement

message a message definition,
construct message
communications

define a message as global variable

sequence flow nothing used for going through all paths in the
choreography

Run Statements: As mentioned before, there are two ways to initialize models.
Run operator within init block is an option for this translator. The translation
syntax in PROMELA is atomic {run processA (args); run processB (args); ...}.

3.5 Mapping from BPMN Constructs to PROMELA Syntax

In this section, we will discuss the mapping from BPMN constructs to PROMELA
syntax. We will focus on the orchestrated translation of Fig.4. TABLE 1 indi-
cates the relationship between BPMN constructs and PROMELA syntax. Chore-
ographed translation is slightly different from orchestrated one. We will discuss
it later.

Basically, the procedure of translation can be described as shown in Fig.6.
We can see that the translation can be divided into two stages: first, parsing
stage, in this stage, a BPMN choreography diagram (XML file) is parsed into
a set of interrelated Java objects. These objects represent BPMN constructs

BPMN to PROMELA Translator 15

Fig. 6. Stages in translation.

in this domain. They are stored within a Context, which in this project has
been represented by a Java class. Information such as messages, participants,
gateways, and tasks are stored (after parsing them) in the Context. These objects
are retrieved from the Context as needed during the translation. Then at the
second stage, namely, translating stage, a Translator, which is a key class in this
stage, reads the Context and produces a syntax tree in memory by following the
mapping explained in TABLE 1. Finally, the translator work through the syntax
tree [19] and transforms it into PROMELA model which is stored in a plain ascii
file.

A start event can be translated into a framework (all messages, channels and
processes) for a PROMELA model. However, in fact, start event does not have
those necessary information, it only indicates the beginning of a translating.
When the translator recognizes that there is a start event, it will get these infor-
mation from context. An end event does not translate into any BPMN construct,
it is just a sign for telling the translator that it is the end of the translation. An
activity is translated into a channel in the parsing stage and message activities
(sending and receiving) in translating stage respectively. Note that if these mes-
sage activities are the first statements of a selection construction (if-fi block), a
colon block will be created as a child of the if-fi block. If the diagram includes
loop paths, then labelled statements and corresponding GOTO statements would
be added, because an activity will be passed more than once. Each participant
represents a process in orchestrated translation. An exclusive split gateway can
be translated into selection constructions and placed into each process. However,
under some exceptional circumstances it will be removed from the syntax tree.
First, if a selection construction has only one option, then it will be removed
and all its children will be appended to its parent node. Second, if a selection
construction has zero options, it will be removed directly. An exclusive merge
gateway can be translated into a SKIP statement only if it follows a split gate-
way immediately (see Fig.9). In addition, it is also an important signal point. A
message (whose type is configurable) in a task will be translated into a global
variable.

16 Wenzhong Sun (Jim)

3.6 Translation from BPMN Choreography to PROMELA Model

This section we will discuss some key aspects of the design and implementation
of the translator.

Abstract and Concrete Syntax Tree An abstract syntax tree (AST) is a
tree-like data structure which is widely used in language related tools such as
interpreters, code generators or compilers. Typically, it is a ordered and rooted
tree that represents structures in certain type of programming language. Basi-
cally, there are two types of nodes (components) in the construction of a tree:
branch nodes and leaf nodes. A branch node is a node that can contain other
nodes. A leaf node cannot contain other nodes, it only can be embodied into a
branch node as its child. Each node actually represents a construct of code. In
this case, branch nodes include PROMELA syntax like proctype definition block
or if-fi block. Leaf nodes include syntax such as variable declaration, channel dec-
laration or message activities (sending and receiving). The translation involves
the construction of PROMELA syntax trees for BPMN choreography diagrams.
Precisely, the PROMELA syntax will be organized in corresponding Java objects
[20, 21].

Different from abstract syntax tree, a concrete syntax tree always reflect
syntactic structures concretely. It usually represents strings according to the
grammar of the language. In this project for example, chan!msg, chan?msg or
mtype = {Message} are nodes from syntax tree. These two types of trees can be
used within the same domain, but they stand at different levels.

Fig. 7 gives us an idea about how to parse a BPMN choreography into a
syntax tree; then map it to PROMELA code fragment. b) shows the syntax
tree with labels (1 to A). The corresponding PROMELA code is shown in c).
The branch nodes have been circled by smooth square with a label on its edge.
In general, each node has a place within the PROMELA code document after
translation.

Design Patterns of Java in this dissertation Design patterns are some
reusable solutions that help designers solve problems which recurring during the
development of software systems [22]. They can be divided into three types: cre-
ational patterns, structural patterns and behavioural patterns. In this project,
some design patterns were used during the design work. The most important de-
sign pattern in the project is the Composite Pattern [22, 23]. This project is lan-
guage related, so tree structure is used here to organize and represent PROMELA
syntax. In our project, Composite Pattern enables us to treat PROMELA syn-
tax objects in the same way. It helps us construct the syntax tree and treat the
nodes uniformly. We use block and inline represent branch and leaf respectively.
Fig. 8 shows the structure of this pattern.

Block nodes represent syntax like process, if-fi etc. Inline nodes represent
message sending, receiving, GOTO statement etc. For example, a process block
(label 7 in c) of Fig. 7) can contain other components (block or inline), but a

BPMN to PROMELA Translator 17

Fig. 7. The example of syntax tree.

Fig. 8. The structure of composite pattern.

message sending statement (label 9 in c) of Fig. 7) only can be included into a
block (e.g. process block or if-fi block).

4 Verification of Translated BPMN Choreographies

To show the benefit and proof the test the soundness of the BPMN2PROMELA
translator, we will discuss in this section some of the most representative trans-
lations we have conducted. We will also show some logical errors that SPIN has
uncovered from the PROMELA models produced by the BPMN2PROMELA
translator.

18 Wenzhong Sun (Jim)

4.1 Contract Example

Imagine that a choreography designer is commissioned to design a BPMN chore-
ography for the contract example shown in Section 1 and that he or she pro-
duces the choreography shown in Fig. 9. To verify the logical soundness of the
choreography, we convert it into PROMELA code with the assistance of our
BPMN2PROMELA translator. The PROMELA code generated by our transla-
tor with partial editing is shown below after some minor alterations to improve
readability. LTL (never block) is shown below.

Buyer

Buyer
 req

Store

BuyReq

Store

Buyer

Store
 rej

BuyRej

Buyer

Store

Buyer
 pay

BuyPay

endEv

Buyer

StoreStore

Buyer

Store
 conf

startEv G3G2
G1

BuyCanc

BuyConf

Buyer
 canc

Fig. 9. Incorrect version of choreography of contract example.

#define TRUE 1

#define FALSE 0

#define c (conf==TRUE)

#define r (rej==TRUE)

#define p (pay==TRUE)

#define n (canc==TRUE)

mtype = {BuyConf, BuyPay, BuyRej, BuyCanc, BuyReq};

chan Store2Buyer = [0] of {mtype, byte};

chan Buyer2Store = [0] of {mtype, byte};

bool conf= FALSE;

bool rej= FALSE;

bool pay= FALSE;

bool canc= FALSE;

active proctype Buyer() {

Buyer2Store ! BuyReq(1);

if

BPMN to PROMELA Translator 19

:: atomic{Store2Buyer ? BuyRej(_); rej=TRUE};

:: atomic{Store2Buyer ? BuyConf(_); conf=TRUE};

Buyer2Store ! BuyPay(1);

if

:: Buyer2Store ! BuyCanc(1);

:: skip

fi

fi

}

active proctype Store() {

Buyer2Store ? BuyReq(_);

if

:: Store2Buyer ! BuyRej(1);

:: Store2Buyer ! BuyConf(1);

atomic{Buyer2Store ? BuyPay(_); pay=TRUE}

if

:: atomic{Buyer2Store ? BuyCanc(_); canc=TRUE}

:: skip

fi

fi

}

never { /* !([](c -><>((p && !n) || (n && !p)))) */

T0_init:

if

:: (((! ((n)) && ! ((p)) && (c)) || ((c) && (n) && (p)))) ->

goto accept_S35

:: (1) -> goto T0_init

fi;

accept_S35:

if

:: (((! ((n)) && ! ((p))) || ((n) && (p)))) -> goto accept_S35

fi;

}

After verification of SPIN, we can see a error is generated finally. Details
have been shown blow it.

(Spin Version 4.3.0 -- 22 June 2007)

State-vector 32 byte, depth reached 18, errors: 1

proc 0 (Buyer) Recv BuyConf, ... (Store2Buyer)

proc 1 (Store) Recv BuyPay, ... (Buyer2Store)

proc 1 (Store) Recv BuyCanc, ... (Buyer2Store)

As we can see from the never block, the correctness property described in
LTL can be expressed in English as After receiving confirmation, the buyer is

20 Wenzhong Sun (Jim)

expected to either pay or cancel. More technically and in LTL terminology, this
property can be expressed as: always confirmation (c) is eventually followed
either by payment (p) or cancellation (n) but not by both. Then, according to
the expressing designer creates a formula. The formula is transformed into a
never block by using tools such SPIN. However, as shown in the code, there is
a error after verification. Because SPIN produced a counter-example indicating
that the LTL is not satisfied. An exploration of the counter-example shows the
following message sequence BuyReq → BuyConf → BuyPay → BuyCanc
which is not correct. Therefore, this LTL is violated in this choreography.

Imagine now that after taking into account the pertinent corrections, the
choreography designer produces the BPMN choreography shown in Fig. 10.
Again, we use our BPMN2PROMELA translator to convert the choreography
into PROMELA code which is shown in Appendix B.1.

Store

Buyer

Store
 rej

BuyRej

Buyer

Buyer
 req

Store

BuyReq

Buyer

Store

Buyer
 pay

BuyPay

Buyer

Buyer
 canc

Store

Buyer

Store
 conf

Store

startEv
G1 endEvG2

G3
BuyCanc

BuyConf

Fig. 10. Correct version of choreography of contract example.

The Result from SPIN validation is shown below.

(Spin Version 4.3.0 -- 22 June 2007)

State-vector 32 byte, depth reached 14, errors: 0

If we present the SPIN validator with the two pieces of code that derived
from Fig. 9 and Fig. 10 into SPIN without inclusion of LTL and verify them, we
will find that none of them has error. Is that means all of them meet the original
requirement? Let us take an example to explain it. A clause in the textual con-
tract could be described like ”after confirmation always follows either payment or
cancellation”. This statement can be abstracted as a series of message sequences:
BuyConf → BuyPay and BuyConf → BuyCanc. From Fig. 10, we can analyse
and obtain: BuyConf → BuyPay and BuyConf → BuyCanc. They conform to
the design. However, from Fig. 9 we can get the following message sequences:
BuyConf → BuyPay and BuyConf → BuyPay → BuyCanc. Apparently, the

BPMN to PROMELA Translator 21

second one does not conform to the requirement. But this kind of hidden error
cannot be detected only by using SPIN. Therefore, LTL is introduced here to
help designers uncover these type of problem. The clause can be converted into
correctness requirement that can be represented in LTL. These LTL formulas
can be included in to PORMELA model and then be used to uncover logical
errors like this. Fig. 11 illustrates the idea about how to validate a PROMELA
model by introducing correctness properties in LTL. BPMN choreography is the
diagram which has been created by using SAVARA tool. PROMELA model is
generated by using BPMN2PROMELA convertor. Here, note that correctness
properties in LTL is included into PROMELA model and exposed together to
the SPIN model checker to test the correctness of the model against the LTL.
SPIN produces counter-examples if the LTL is not satisfied by the PROMELA
model.

Fig. 11. Validating logical consistency of a BPMN choreography using LTL.

As we anticipated, a validation with SPIN reassured us that the BPMN di-
agram is logically consistent against conventional safety and liveness properties
(deadlocks, unexpected messages, non–progress cycles, invalid end states, etc.)
and against a list of LTL properties that we chose to verify such as buy confir-
mation is eventually followed by either buy payment or buy cancellation.

4.2 Purchase Goods Example

Fig. 12 is the BPMN diagram of SAVARA PurchaseGoods example.
The code in Appendix B.2 is its corresponding PROMELA code produced

by our BPMN2PROMELA translator.
A validation of the PROMELA code with SPIN against conventional safety

and liveness properties reveals that the PurchaseGoods choreography of Fig. 12
suffer from end state errors.

pan: invalid end state (at depth 10)

(Spin Version 4.3.0 -- 22 June 2007)

State-vector 52 byte, depth reached 16, errors: 1

proc 3 (CreditAgency) terminates

proc 2 (Store) terminates

22 Wenzhong Sun (Jim)

Fig. 12. Purchase Goods SAVARA example

Fig. 13. Unrealizable choreography (example one).

proc 1 (Buyer) terminates

proc 0 (Logistics) ... (state 1)

Examination of the counter example produced by SPIN reveals that the
uncovered error is located within the Logistics process. A close examination of
the BPMN diagram reveals that SPIN uncovers that the Logistics process is left
in an invalid end state when the execution does not include the Good Rating
branch of the Evaluate Credit Rating split gateway. One can fairly argue that
this is not a serious error. In the PROMELA code it can be quickly fixed by the
inclusion of and end–state label in the Logistics process.

4.3 Unrealizable Choreography Examples

A fundamental question that arises from a choreography specification (expressed
in BPMN for example) is whether its is realizable or not. In other words, is the
choreography implementable as a sound distributed application composed out
of two or more participants? Fig. 13 illustrates the point.

BPMN to PROMELA Translator 23

The BPMN diagram includes three participants (Customer, TravelAgent, Ho-
tel) and specifies a single message sequence: {BookRequest → BookConfirmed}.
At first glance, the choreography seems to be sound, however, a systematic ex-
amination with SPIN would reveal that it is realizable only under synchronous
communication. Under asynchronous communication, there is no guarantee that
the precedence of the two messages will be observed.

To uncover the problem, we translated the BPMN diagram into PROMELA
using our BPMN2PROMELA translator. Next we presented SPIN with the
PROMELA code and the following LTL property to verify message precedence:
BookConfirmed is always preceded by BookRequest. The PROMELA code pro-
duced from the translator argumented with the LTL which was included manu-
ally is shown below.

#define TRUE 1

#define FALSE 0

#define c (CreditRcv==TRUE)

#define i (InvRcv==TRUE)

bool CreditRcv=FALSE;

bool InvRcv=FALSE;

mtype = {BookRequest, BuyConfirmed};

/*all channels in the diagram*/

chan Customer2TravelAgent = [1] of {mtype, bool};

chan Hotel2Customer = [1] of {mtype, bool};

/*all parties involved in the choreography*/

active proctype Customer() {

Customer2TravelAgent ! BookRequest(TRUE);

Hotel2Customer ? BuyConfirmed(InvRcv);

}

active proctype Hotel() {

Hotel2Customer ! BuyConfirmed(TRUE);

}

active proctype TravelAgent() {

Customer2TravelAgent ? BookRequest(CreditRcv);

}

/* LTL expressing precedence BookRequest->BookConfirmed */

never { /* !(!i U c) */

accept_init:

T0_init:

24 Wenzhong Sun (Jim)

if

:: (! ((c))) -> goto T0_init

:: (! ((c)) && (i)) -> goto accept_all

fi;

accept_all:

skip

}

A SPIN verification run signals the violation of the LTL property. Details
are shown below:

(Spin Version 4.3.0 -- 22 June 2007)

State-vector 44 byte, depth reached 9, errors: 1

proc 0 (Customer) Recv BuyConfirmed, ... (Hotel2Customer)

proc 2 (TravelAgent) Recv BookRequest, ... (Customer2TravelAgent)

In addition to the above errors, SPIN produces a counter-example. An ex-
amination of the counter-example generated by SPIN and the PROMELA code
shows that the PROMELA model can actually accept two message sequences:
BookRequest → BookConfirmed and BookConfirmed → BookRequest. The
first one is correct, the second one is not.

Let us analyse the realizability of the choreography in Fig. 13. In this exam-
ple, the buffer size is a very important factor for this property. The choreography
is realizable only if the size of channel buffer equals to zero (buff=0). This means
that communications between business parties are synchronized. The diagram
expresses a design requirement, which can be described as BookConfirmed is al-
ways followed by BookRequest. From the PROMELA code we can see that these
three processes are running simultaneously, this scenario can be described as
Fig 14 when buffer size is zero. There are three steps according to the figure:

1. Customer tries to send BookRequest to TravelAgent and blocks until Trave-
lAgent receives the message.

2. When BookRequest is received by TravelAgent, customer unblocks.
3. Customer can now receive BuyConfirmed sent by Hotel.

Under synchronous circumstance (i.e. buff=0), this choreography is realizable
because Customer can receive BuyConfirmed from Hotel only after unblocking,
this guarantees the sequence of these two messages.

However, the choreography will not be realizable if the size of channel buffer
greater than zero (buff>0). This means that communications between business
parties are unsynchronized. Consider the situation described above. This time,
both messages can be stored into channel buffer (buff>0), which means that as
a receiver in the second task, Customer has the possibility to receive BookCon-
firmed before TravelAgent receives BookRequest. In this situation, BookRequest
will followed by BookConfirmed which totally against the original requirement.

Another unrealizable choreography example is illustrated in Fig. 15. This di-
agram includes four participants (Buyer, Store, Warehouse, Logistics) and spec-
ifies single message sequence: {BuyRq → DelivRq}. Like Fig. 13, we translated

BPMN to PROMELA Translator 25

Fig. 14. The scenario when buffer size is zero (example one).

Fig. 15. Unrealizable choreography (example two).

it into PROMELA and then we presented SPIN with the code including the fol-
lowing LTL property to verify message precedence: DelivRq is always preceded
by BuyRq. The code is shown below.

#define TRUE 1

#define FALSE 0

#define b (BuyRqRcv==TRUE)

#define d (DelivRqRcv==TRUE)

mtype= {BuyRq, DelivRq};

chan Bu2Sto=[0] of {mtype,bool};

chan Wh2Log=[0] of {mtype,bool};

bool BuyRqRcv=FALSE;

bool DelivRqRcv=FALSE;

active proctype Buyer() {

Bu2Sto ! BuyRq(TRUE)

}

26 Wenzhong Sun (Jim)

active proctype Store() {

atomic{Bu2Sto ? BuyRq(_); BuyRqRcv=TRUE};

}

active proctype Werehouse() {

Wh2Log ! DelivRq(TRUE)

}

active proctype Logistics() {

atomic{Wh2Log ? DelivRq(_); DelivRqRcv=TRUE}

}

never { /* !(!d U b) */

accept_init:

T0_init:

if

:: (! ((b))) -> goto T0_init

:: (! ((b)) && (d)) -> goto accept_all

fi;

accept_all:

skip

}

A SPIN verification run signals the violation of the LTL property. Details
are shown below:

(Spin Version 4.3.0 -- 22 June 2007)

State-vector 48 byte, depth reached 11, errors: 1

proc 3 (Logistics) Recv DelivRq, ... (Wh2Log)

proc 1 (Store) Recv BuyRq, ... (Bu2Sto)

Obviously, the choreography in Fig. 15 is unrealizable, because it is impossi-
ble for Warehouse to know that Buyer has sent BuyRq to Store before it sends
DelivRq to Logistics. It is unrealizable regardless of the type of communication
(synchronous or asynchronous). This is a more general case than example one
and it can be corrected only with the inclusion of an extra message. Fig. 16
briefly indicates the procedure of correctness. a) is the choreography which rep-
resents the choreography in Fig. 15. Possible scenarios (B, S, W and L repre-
sent Buyer, Store, Warehouse and logistics respectively, BR and DR refer to
BuyRq and DelivRq) of it which can cause the appearance of wrong sequences
({DelivRq → BuyRq}) are shown as b). We can see from these charts that
there are gaps between Store and Warehouse. Therefore, these two tasks are
completely independent and these messages are occurred concurrently. We can
see from these charts that Logistics will receive DelivRq from Warehouse before
Store receives BuyRq from Buyer regardless the sequence of message sending.
So in these scenarios, the choreography is unrealizable.

BPMN to PROMELA Translator 27

Fig. 16. Correct choreography with the inclusion of an extra message (example two).

As mentioned, we can correct it by including an extra message (namely Syn).
Compare with two choreographies (a) and c)) in Fig. 16, we can see that an extra
task (with blur edges) has been included between original tasks. After receiving
BuyRq from Buyer, Store notices Warehouse with a message in task two. d)
indicates that this message (with dashed line) has bridged the gap between Store
and Warehouse. Under such circumstance, BuyRq and DelivRq are forced to
observe the precedence needed. There is a relation between them now. According
to principle three in Section 5.1, the causal precedence between them is BuyRq <
DelivRq. It conforms to the design requirement. The code of c) is shown below.

#define TRUE 1

#define FALSE 0

#define b (BuyRqRcv==TRUE)

#define d (DelivRqRcv==TRUE)

mtype= {BuyRq, DelivRq, Syn};

chan Bu2Sto=[0] of {mtype,bool};

chan Wh2Log=[0] of {mtype,bool};

chan Sto2Wh=[0] of {mtype,bool};

bool BuyRqRcv=FALSE;

bool DelivRqRcv=FALSE;

active proctype Buyer() {

Bu2Sto ! BuyRq(TRUE)

}

28 Wenzhong Sun (Jim)

active proctype Store() {

atomic{Bu2Sto ? BuyRq(_); BuyRqRcv=TRUE};

Sto2Wh ! Syn(1)

}

active proctype Werehouse() {

Sto2Wh ? Syn(_);

Wh2Log ! DelivRq(TRUE)

}

active proctype Logistics() {

atomic{Wh2Log ? DelivRq(_); DelivRqRcv=TRUE}

}

never { /* !(!d U b) */

accept_init:

T0_init:

if

:: (! ((b))) -> goto T0_init

:: (! ((b)) && (d)) -> goto accept_all

fi;

accept_all:

skip

}

A SPIN verification run signal the violation of the LTL property:

(Spin Version 4.3.0 -- 22 June 2007)

State-vector 60 byte, depth reached 8, errors: 0

We can see the result from SPIN validation, problem has been fixed by in-
troducing an extra message.

It is worth mentioning that same problem for Fig. 13 can be solved by using
similar method, too. Fig. 17 shows the procedure and the basic concept is the
same as Fig. 15. Due to space limitations we will not discuss this issue further.

5 Generation of Message Sequences from BPMN
Choreographies

The behaviour encoded in a choreography diagram can be regarded as the mes-
sage sequence that such choreography can accept. It follows that the availability
of these sequences is crucial as they can be used for several purposes. For in-
stance, given a message sequences that is known to be correct, one can present
it as input to its correspondent BPMN diagram, simulate it and verify if the
sequence is accepted or rejected. In this section we discuss two potential alter-
natives for generating the message sequences encoded in BPMN choreographies.

BPMN to PROMELA Translator 29

Fig. 17. Correct choreography with the inclusion of an extra message (example one).

5.1 Symbolic Execution Based Sequence Generation

The generation of sequences automatically is important for designers. As told
above, an alternative is BPMN → Promela code → Promela model → SPIN
→ sequences. The problem with this approach is that it requires knowledge of
model checking and LTL. Are there other alternatives? It is worth exploring.
As a potential alternative we have implemented a simple framework which can
generate message set and sequence set automatically from a given BPMN. It is
only a preliminary implementation but can be used for experimental purposes.
Its functionality can be described by the following steps. BPMN → framework →
sequences.Currently, this framework can support simple choreography diagram
including loop. Let us take an example to explain how it works.

There are three parties in the example (Buyer, Store and Factory). They
agree about the buying and selling of goods. The global model was drawn as
Fig.18.

From the figure, we see that there are some messages sent from one process
to another. They are all driven by sending events. Here we did not include re-
ceiving events because we assume that the message will eventually delivered.
So there exist a set Vevents = {BuyRequest(BR), NotEnoughGood(NEG),
OrderRequest(OR), OrderConfirmed(OC), BuyFailed(BF), BuyConfirmed
(BC), CustomerNotFound(CNF)} which represents valid messages (events)
in the model. For any other message, CheckBalance /∈ Vevents. According to
the description of preceding paragraphs, we can conclude that there must be a
Vseq = {BR → CNF,BR → OR → NEG → BF,BR → OR → OC → BC}
represents permitted message flows of the model. Actually, each entry in this
set indicate a possible path in this diagram. Thus a message flow is correct if
and only if it is a subset of any entry in Vseq. According to this, we can sum-

30 Wenzhong Sun (Jim)

Fig. 18. Global model of choreography example.

mary that there are two types of wrong message flow. First, wrong message.
For example, BR → CheckBalance /∈ Vseq because CheckBalance /∈ Vevents.
Second, wrong sequence. For instance, CNF → BR /∈ Vseq because although
CNF,BR ∈ Vevents, CNF → BR is not a part of Vseq. So for example, if
OR has occurred in the system in one business conversation, then the following
message should be either NEG or OC, all others are not valid except these two.

Currently, this sub-function (symbolic execution based sequence generation)
has been integrated into the Eclipse project. The sequence generator or the
BPMN2PROMELA can be selected by means of the Config file. Users can choose
the type of sequence flow file either in plain text or XML format. The sequence
flow box on the right of Fig.19 represents the outcome.

Fig. 19. The structure of sequence generator.

5.2 Model–Checking Based Sequence Generation

As we know, PROMELA code can be used as input language to SPIN for detect-
ing errors. It also can be used for generating message sequences as well [24]. In
order to obtain a test sequence, a designer needs a validated PROMELA model.

BPMN to PROMELA Translator 31

Second, trap properties have to be defined and be included into this model.
A trap property is actually an LTL included into a PROMELA model to pro-
duce the execution test sequences automatically. Sequences appear as counter-
examples produced by SPIN in response to the examination at the PROMELA
model against the LTL trap properties. Fig. 20 briefly expresses the idea of how
to produce counter-examples by working with trap properties, it represents the
work that has been done so far. The meaning of ”correctness properties in LTL”
and ”PROMELA model” has been explained in Fig. 11. Here trap properties
are included into PROMELA model which has been checked previously by using
correctness properties. SPIN produces counter-examples that contains informa-
tion from where the sequences can be extracted after some filtering of irrelevant
information.

Fig. 20. Generating execution sequences by employing trap properties.

Compare with the symbolic execution based sequence generation, Model–
Checking Based Sequence Generation has an advantage: these message sequences
are produced from a validated PROMELA model (in symbolic execution based
sequence generation, sequences are produced from a BPMN choreography that
might be flawed). This is a very important property for the reliability of the
sequences. This approach has been used also in [25].

6 Testing and Evaluation

This section describes the testing of the BPMN2PROMELA translator. It in-
cludes the testing of PROMELA model generation, LTL formula and definition
generation, message sequences generation and basic functionalities. Outcomes
after testing are compared with the predefined expected outcome. After that,
we will evaluate aim, objectives and the translator.

32 Wenzhong Sun (Jim)

6.1 Overall Testing Strategy

Generally speaking, this project is done by Test-Driven Development (TDD),
TDD is a type of software development which employs the concepts of test-first
programming of extreme programming [26]. It especially suits for those short
term, small or medium-sized projects. During the development, developers repeat
a short development cycle [27]. First, in a test-driven development (e.g. this
project), writing a test before the implementation of a new feature is essential.
For example in this project, I begin with a very simple BPMN choreography
which has only one activity. Then test this case, we found that it fails because
we have not implemented it yet. Second, write some code to implement the new
feature. The aim of the code is to pass the test. If it is successful, write another
test like the step at very beginning. For instance, this time the new feature is
exclusive gateway, I repaint the BPMN choreography: add a gateway after the
activity. Then implement it and run all tests and see whether the new one fails.
Repeat the work until we meet all requirements. It is very important that new
code should not damage any existing functionality which has passed the test.
Fig. 21 illustrates the testing strategy of this project. It is worth mentioning
that the final outcomes (PROMELA models) should also pass the SPIN syntax
checker. Currently, we perform this checking work manually. But in the future, it
should be integrated into the whole testing structure and be tested mechanically.

6.2 Testing Performed

Three forms of testing were performed:

– Unit Testing
JUnit [28] is a easy to use unit testing framework for Java. It has been
integrated in Eclipse. We use it to test basic functionalities such as loading
the configuration file, check properties in BPMN diagram like valid path size,
loop path size, messages, tasks. Basically, it follows the principle of TDD.

– Integration Testing
The aim of integration testing is to detect errors between integrated com-
ponents [29]. Basically, parsing and translating stages are developed inde-
pendently. This test in the project aims to see if a BPMN element can be
transformed into correct PROMELA syntax without losing meaning.

– System Testing
We followed some basic rules of system testing mentioned in [30]. In our
dissertation as we mentioned, PROMELA models which generated by the
translator should pass the SPIN syntax checker. The goal of this disserta-
tion is to create PROMELA models with valid syntax. Therefore, for each
PROMELA model, we should check it within SPIN. The version of SPIN we
used in the project is 4.3.0. This aims to test whether the final system meets
all original requirements.

The choice of test cases and the test result can be found in Appendix C.

BPMN to PROMELA Translator 33

Fig. 21. Test strategy in this project.

6.3 Evaluation Against Aim and Objectives

In this section, we will evaluate the proposed aims and objectives which have
been set out in Introduction. Following this we would like to evaluate the trans-
lator which is the main contribution of this dissertation.

Aim Evaluation The primary aim of the dissertation is to design and im-
plement a tool that translates BPMN choreographies into PROMELA models.
The translator consumes BPMN choreography diagrams which is generated by
using SAVARA BPMN diagram editor and produces corresponding executable
PROMELA code.

Objectives Evaluation The first objective we set out to achieve was to do
some research work and get a clear idea about why we need the translator.
For this point, we employ Jboss Savara Testable Architecture to explain the
procedure of the development of distributed systems. Here we mainly focus on
the design level. Now we have known that the translator aims to bridge the gap
between BPMN choreography and SPIN model checker.

The second objective was to investigate related fields that associated with this
translator. In this project the translator is responsible for the translating from
a high level language (BPMN that represented in XML) into another high level
language (PROMELA). Therefore, before coding, have a clear idea of BPMN
constructs, SPIN model checker, PROMELA syntax and LTL formula is essen-
tial. Moreover, mapping BPMN elements into PROMELA syntax is the key of
the translator.

The third objective was to design and implement the translator. It is the
primary objective of this project. We will discuss it thoroughly in next part.

Next objective was to generate message sequences from BPMN choreogra-
phies automatically. Currently, this part has been merged into BPMN2PROMELA

34 Wenzhong Sun (Jim)

translator as a sub-function. Two types of files can be generated after execution
for the purpose of flexibility.

The final objective was to validate PROMELA models which generated by
the translator in SPIN and analyse results of typical scenarios. In this disserta-
tion, we take some example to briefly explain how the translator helps us.

6.4 Evaluation of BPMN2PROMELA Translator

As stated before, this is still an on-going project. Some features have not been
added into it. the following lists shows the work that has been done and some
future work. Currently, following functionalities has been implemented in the
translator:

– Supporting a set of BPMN elements such as events, activities, messages, ex-
clusive gateways and sequence flows which can be translated into PROMELA
syntax like variable definitions, message definitions, channel definitions, pro-
cess definitions, if blocks, atomic blocks, init block, message activities, run
statements, GOTO statements, label points.

– It supports configuration of buffer size and message type.
– It supports simple loop back paths from activity to activity or from split

exclusive gateways to activity.
– It supports choreographed and orchestrated translation of PROMELA mod-

els.
– It supports two types of initializing processes (init and active).
– It supports LTL generation (it supports a single LTL formula in current

version).
– It supports message sequences generation from BPMN choreographies into

two types (plain text and XML format).

Some future work that can be done is listed below:

– A GUI is needed for users.
– Supporting more elements in BPMN standard.
– Supporting multiple LTL formula definition and configuration.
– Supporting complex loop back paths in BPMN diagrams.
– Testing PROMELA model in SPIN automatically. Currently, syntax check-

ing work is done manually. In the future, we want to integrate this work into
this project.

– A static checker for BPMN diagrams.

7 Related Work

A lot of work has been done to encode BPMN choreographies into another
form. The results has been presented in paper [31]. In their work, they primarily
focus on realizability issue with choreographies. So a realizability checking ap-
porach for BPMN 2.0 choreographies has been proposed. Then in [31], BPMN

BPMN to PROMELA Translator 35

2.0 choreographies is translated into LOTOS NT, which ”is an improved ver-
sion of the LOTOS ISO standard that combines the best features of imperative
programming languages and value-passing process algebras”. They have listed
several reasons about why LOTOS NT was chosen to be the target language:
first, there are some similar points between BPMN constructs and LOTOS NT
syntax such as choice, sequence, etc. Second, LOTOS NT can be analysed by
state-of-the-art verification toolbox (CADP). They consider both synchronous
and asynchronous communication when discussing realizability of BPMN chore-
ography. As what we did, they also focus on a significative subset of BPMN
elements. A counter-example will be generated if realizability cannot be ensured
and it helps designer in their modelling work.

In [32], in order to solve the communication problems between developers
and domain experts. They present a user friendly ECLIPSE plug-in for the
verification of requirements over a Business Process model. Standard BPMN
notation is used for the specification of Business Process in the tool. This tool
implements a converting from BPMN specification to the CSP formal language
and supports CSP verification via model checking. Their work can be described
into three steps: first, mapping BPMN model into CSP model. Second, set up
goals according to the quality requirements. Third, verification of CSP model
with these goals. Then analyse counter-example if necessary. The idea behind
it is similar as the relationship between PROMELA model, LTL formulas and
SPIN model checker in our dissertation. The goal of their work is to enable
designers to do verification work with graphical notation that they are already
familiar with.

A tool has been implemented in [33] that is used for the translation from XML
serialization of BPMN models to the Petri Net Markup Language (PNML) for
static analysis. This paper focuses on the control-flow perspective of BPMN.
They also mentioned how to use Petri net analysis toolset for analysing. Basi-
cally, they did the same job as what we did but translated BPMN into petriNet.
For example, they have a mapping table from BPMN Object to Petri-net Mod-
ule, just like the BPMN element to PROMELA syntax mapping table in this
dissertation. Also, they have some issues which have not been addressed with
the limitation of Petri nets: first, parallel activities, which is a problem in our
project too. Second, exception handling of sub-processes. Third, complex gate-
ways. From the point of view of our design, we considered that PROMELA and
SPIN are a more mature model checking tool than petri nets and better docu-
mented. We do not know what properties are better expressed in petri net than
in PROMELA and the other way around. It could be one of our future works.

The translation from BPMN to Event-B has been presented in [33] in order to
improve the quality of business process models within a software design process
by using formal methods. They also talk about the impact of the analysis results
on software design by examining their latest work by using Event-B and Rodin.
They focus on readability, provability and analyzability of the translation. They
also have a mapping table like what we did. The translation is done automated

36 Wenzhong Sun (Jim)

and covers a large set of BPMN constructs. Moreover, both control flow and
data flow have been considered.

However, few works focused on the encoding of BPMN choreographies into
PROMELA models. [34] has the similar idea with this paper. In [34], they intro-
duce a verification procedure which has an automatic translation algorithm for
producing readable PROMELA code from BPMN specification. However, this
translation algorithm remains in the theoretical stage, they have not published
the translator yet. In this dissertation, we have a preliminary implementation
of a BPMN2PROMELA convertor that can mechanically produce PROMELA
code from SAVARA BPMN choreography diagrams.

8 Conclusions and Future Work

In this dissertation, we have discussed why we need a BPMN to PROMELA
translator. We investigated related concepts such as BPMN choreography, SPIN,
PROMELA and LTL. Then we design and implement a BPMN2PROMELA
translator by using Java. After that, some examples were given and analysed
to explain how the translator can be used at design stage. Next, we discussed
sequence generation of BPMN choreographies. Finally, we evaluated what have
been done in this project. Basically, the main contribution of this dissertation is
the implementation of the BPMN2PROMELA translator. It acts as an bridge
between BPMN choreographies and SPIN model checker. However, it is a on
going project. New features needed to be added to complete it in the future.

As we mentioned before, counter-examples have been produced. However, it
is not enough for the process of sequence generation. Because counter-example
is a plain textual file with some excess information. It cannot be processed me-
chanically and be used as scenarios in the SAVARA platform. To address this
limitation we describe here some future work that can be undertaken in the fu-
ture (see Fig. 22). The first step is to create a filter which can help us filter out
information from counter-examples. The second step is to design and implement
a tool which can be used to transform sequences from textual form to XML for-
mat. These XML files then can be used as scenarios for automated processing.
Surely before that, we should define XML tags for this domain and predefine
them in a XML schema. The tool is named ”Sequence2XML” in the figure.

Fig. 22. Future work on model-checking based sequence generation.

BPMN to PROMELA Translator 37

Another potential enhancement of this work would be the automatic inclusion
of LTL properties into PROMELA code. We know that now PROMELA model
can be generated automatically. However, correctness properties in LTL still have
to be defined manually. Include them mechanically is highly desirable. Fig. 23
shows how to include LTL into PROMELA model currently. Basically, there are
four steps.

1. The designer think of a correct property in English such as message A is
always preceded by message B.

2. Express it in LTL notation such as !(!a
⋃
b).

3. Convert the LTL into PROMELA code (within a never block) using the au-
tomatic converter provided by SPIN.

4. Copy and paste the resulting PROMELA code of the LTL into PROMELA
model.

5. Run SPIN which will verify the PROMELA model against the LTL.

Fig. 23. Future work on the automatic inclusion of LTL.

We can see now, LTL properties have to be added manually that is editing (as
shown in the blur square with a human). Integrate model and LTL mechanically
means that this step can be accomplished without the interference of human.

As mentioned before, scenarios for choreography can be generated manually
by using SAVARA tool. It is feasible for those choreographies that have few
paths. However, it is improper or even impossible for designers to create them
one by one if the number of paths is large (e.g. more than 10). Therefore, we
should have a method to create these scenarios mechanically. As we can see from
Fig. 22, sequence files which can be regarded as scenarios will be generated from
a PROMELA model with trap properties. They are XML files which have the
capability to be processed by machines.

Acknowledgements I would like to thank my project supervisors Dr. Ellis
Solaiman and Dr. Carlos Molina-jimenez for the patience, time and effort they
have spent on me during the work of this dissertation. This work was partially
supported by them. I was entitled to use some figures and segments of SPIN

38 Wenzhong Sun (Jim)

validations and LTL formulas from the research papers of Dr. Carlos Molina-
jimenez. This enable me to focus on the main aim of my dissertation: The design,
implementation and testing of the BPMN2PROMELA translator. Their guid-
ance helps me bring project to its successful completion.

I would also like to express my gratitude to my family and friends for their
continuing support. Their help has been greatly valued and appreciated from
start to end during this year.

References

1. OMG: Documents associated with business process model and notation (bpmn)
version 2.0 (Jan 2011)

2. Decker, G., Kopp, O., Barros, A.: An introduction to service choreographies.
Information Technology 50(2) (2008) 122–127

3. Schönberger, A.: Do we need a refined choreography notion? In: Proc. 3rd Central–
European Workshop on Services and their Composition, Services (ZEUS’11). Vol-
ume 705., CEUR-WS.org (2011)

4. RosettaNet: Rosettanet methodology for creating choreographies (27 July 2011
2012) Version Identifier: R11.00.00A.

5. Jboss: Savara and testable architecture (2012)
6. Molina-Jimenez, C., Shrivastava, S., Strano, M.: A model for checking contractual

compliance of business interactions. IEEE Trans. on Service Computing 5(2) (2012)
276–289

7. Molina-Jimenez, C., Shrivastava, S.: Maintaining Consistency between Loosely
Coupled Services in the Presence of Timing Constraints and Validation Errors. In:
Proc. 4th IEEE European Conf. on Web Services (ECOWS’06), IEEE CS (2006)
148–160

8. Peltz, C.: Web services orchestration and choreography. Computer 36(10) (October
2003) 46–523

9. Coward, P.D.: Symbolic execution and testing. In: Proc. IEE Colloquium on
Software Testing for Critical Systems. (1990)

10. Fitzgerald, J.S., Larsen, P.G., Pierce, K.G., Verhoef, M.H.G.: A formal approach to
collaborative modelling and co–simulation for embedded systems. Technical Report
CS–TR–1264, School of Computing Science, Newcastle University, UK (2011)

11. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall
(1991)

12. Zhao, W.: Yet another model checker for promela: – the transformation approach.
In: Proc. 4th IEEE Int’l Conf. on Secure Soft. Integration and Reliability Improve-
ment Companion (SSIRI–C’10),. (2010) 137–142

13. Ben-Ari, M.: Principles of the Spin Model Checker. Springer (2008)
14. Bharadwaj, R., Heitmayer, C.L.: Model checking complete requirements specifica-

tions using abstraction. Automated Software Engineering 6(1) (1999) 37–68
15. Staunton, J., Clark, J.A.: Finding short counterexamples in promela models using

estimation of distribution algorithms. In: Proc. 13th annual Conf. on Genetic and
evolutionary computation (GECCO’11). (2011) 1923–1930

16. University, K.S.: Spec patterns (Aug 2012)
17. Holzmann, G.J.: The Spin model checker: primer and reference manual. Addison–

Wesley Professional (2003)

BPMN to PROMELA Translator 39

18. Overbey, J.L., Johnson, R.E.: Generating rewritable abstract syntax trees (Oct
2008)

19. Howarth, N.: Abstract syntax tree design. Technical report (1995)
20. Jones, J.: Abstract syntax tree implementation idioms. (2003)
21. Bokowski, B., Spiegel, A.: Barat a front-end for java. Technical report (1998)
22. Copper, J.W.: Java Design Patterns: A Tutorial. 2nd edn. Addison-Wesley (April

2000)
23. Erich Gamma, Richard Helm, R.J., Vlissides, J.: Design patterns: elements of

reusable object-oriented software. 37th edn. Addison-Wesley (March 2009)
24. Rayadurgam, S., Heimdahl, M.P.: Test–sequence generation from formal require-

ment models. In: Proc. of the 6th IEEE Int’l Symposium on High Assurance
Systems Engineering (HASE01), IEEE CS (2001) 23–31

25. Abdelsadiq, A., Molina-Jimenez, C., Shrivastava, S.: On model checker based
testing of electronic contracting systems. In: 12th IEEE Int’l Conf. on Commerce
and Enterprise Computing(CEC’10). (2010) 88–95

26. BENJI KOLTAI, JEFFREY WARNICK, R.A., NILAN, S.: Test-driven develop-
ment (Dec 2011)

27. George, B., Williams, L.: A structured experiment of test-drivendevelopment.
Volume 46. (April 2004)

28. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley (2000)

29. Beizer, B.: Software testing techniques. 2nd edn. Dreamtech (2002)
30. Petschenik, N.H.: Practical priorities in system testing. Technical report, Bell

Communications Research (1985)
31. Poizat, P., Salá’un, G.: Checking the realizability of bpmn 2.0 choreographies.

In: Proc. 27th Annual ACM Symposium on Applied Computing (SAC’12). (2012)
1927–1934

32. Flavio, C., Alberto, P., Barbara, R., Damiano, F.: An eclipse plug-in for formal
verification of bpmn processes. In: Third Int’l Conf. on Communication Theory,
Reliability, and Quality of Service (CTRQ’2010). (2010) 144–149

33. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis
of BPMN process models. available at: http://eprints.qut.edu.au/6859/ (April
2007)

34. Aguilar, J.C.P., Hasebe, K., Mazzara, M., Kato, K.: Model checking bpmn models
for reconfigurable workflows. Technical Report CS–TR–1274, School of Computing
Science, Newcastle University, UK (2011)

40 Wenzhong Sun (Jim)

A BPMN2Promela Translator

A.1 Technologies and Tools Used in Implementation

Eclipse Eclipse is a multi-language software development environment com-
prising an integrated development environment (IDE) and an extensible plug-in
system. It is written mostly in Java. It can be used to develop applications in
Java and, by means of various plug-ins, other mainstream programming lan-
guages including C, C++, Perl, PHP, Python, Ruby. It is a free tools platform
for almost all kinds of developers. As we mentioned before, it has a extensible
plug-in system which makes it very easy to be extended. Another important
aspect of eclipse is that compilation is executed automatically whenever we save
a file. It always builds for users and the procedure is completely transparent for
developers. This essentially means the code is always compiled.

The version that is used here is ”Indigo Service Release 1”. It can be down-
loaded in http://www.eclipse.org/indigo/.

SAVARA Savara is a project established and maintained by JBoss (still in
development so far). It gives us a framework that based on the Testable Archi-
tecture methodology which can help us building distributed and service oriented
systems. It includes several tools to assist the designer of the business application
at different stages of his design. It used for design purpose.

Main functionalities of the tool so far:

1 Definition of choreography

2 Creation of scenarios

3 Generation of service (BPEL, BPMN2 Process, SCA Java)

4 Generation of contracts (WSDL)

5 Simulation of scenarios against the choreography

The focus here is the definition of choreography. In this project, we were
using SAVARA to define choreography diagrams. The information on how to
build a choreography can be found in the SAVARA User Guide.

SAVARA 2.0.x tools is used here. They have been downloaded and deployed
to eclipse on Win 7.

Extensible Markup Language(XML) XML is a markup language that de-
fines a set of rules for encoding documents in a format that can be both read
by human and executed by machine. It is produced by W3C and follows XML
1.0 Specification currently. Although the design aim of XML is to transport and
store data, it is widely used for the representation of data structures. In this
case, choreography diagrams that created by using SAVARA are actually XML
documents. Therefore, it has the capability to be processed automatically by
procedures in any languages on any platform. XML documents may begin by
declaring some information about themselves, as in the following example:

<?xml version=”1.0” encoding=”UTF-8”?>

BPMN to PROMELA Translator 41

In the declaration, ”version” attribute indicates that it is defined in the XML
1.0 Specification and ”encoding” attribute means the textual format data in the
document is encoded in UTF-8 (It is a variable-width encoding that can represent
every character in the Unicode character set).

Understand XML syntax and features is essential for the project. Here we
use an example to briefly explain some main features of XML in our research
scope. Figure 24 shows how to open the file. Right click the choreography file,
mouse over ”Open With” menu, when the sub-menu appears at its right, click
”Text Editor” button to open it in a textual perspective.

Fig. 24. Open a choreography in text editor.

This is a official example given by SAVARA. The download page is
http://downloads.jboss.org/savara/examples/savara2-example-purchasing.zip. The
information on how to import this project into eclipse can be found in SAVARA
Getting Started Guide. This file is in the ”architecture” folder which has been
shown in the figure above. Figure 25 shows part of the document.

Fig. 25. The content of choreography file.

As mentioned above, XML has some features and syntax. When we create
a valid XML file, we should always follow the predefined syntax. Fortunately,
SAVARA choreography diagram generation tool help us creating such documents
by simply dragging and dropping icons from the menu to the canvas. XML
documents which generated by using this tool apply with following syntax:

42 Wenzhong Sun (Jim)

1 All XML elements must have a closing tag

2 XML tags are case sensitive

3 XML elements must be properly nested

4 XML documents must have a root element

5 XML attribute values must be quoted

Therefore, the document which is created in this way is a compliant file.
This means that no need for us to care about the grammatical structure of a
document. We can put our efforts on business requirements and information.

It is important to know that all tags in figure 25 are not defined in any
XML standard. They are defined by the creator in a schema file. Because XML
emphasize simplicity, generality, and usability. So XML language has no prede-
fined tags. We can invent specific tags in any area. So basically, an XML schema
is a description of a certain type of XML document. In our case, all BPMN
XML files are constrained by BPMN2.0 schema. This schema can be found in
http://www.omg.org/spec/BPMN/2.0/.

Process Meta Language (PROMELA) and SPIN PROMELA is a process
verification modeling language for both communication protocols and concur-
rent programming. The language allows for the dynamic creation of concurrent
processes to model (e.g. distributed systems). The goal of the language is to
test the logic of concurrent execution processes. It focus on following procedure
rules: first, it ignores format of messages, encoding, storage of data, transmission,
etc. Second, it specifies a validation model. In PROMELA models, communica-
tion via message channels can be defined to be synchronous or asynchronous.
PROMELA models can be analysed with the SPIN model checker, to verify that
the modeled system produces the desired behavior. PROMELA programs consist
of three key elements: processes (global), finite message channels and variables
(global or local). We will discuss the syntax of this language thoroughly in next
section.

We have mentioned SPIN above, it is a general tool for testing the correctness
of distributed software models in a automated way. Models to be verified are
described in PROMELA.

Currently, we use Xspin to check the syntax of the PROMELA code. Verifi-
cation and simulation are also run on this platform. The SPIN version is 4.3.0
(22 Jun 2007) and the Xspin version is 5.2.0 (8 May 2009).

Java Java is a object-oriented, class-based, platform independent programming
language. Its design principle is to make application developers WORA (write
once, run anywhere). It means that Java code that runs on one platform does not
need to be recompiled to run on another. Because Java applications are typically
compiled to class file (byte code) that can run on any Java Virtual Machine
(JVM) regardless of platform. We have told about eclipse before, eclipse does
compilation for developers automatically and transparently. Therefore, develop
application in eclipse is a good choose for Java developer.

BPMN to PROMELA Translator 43

It is noteworthy that there are plenty of third-party Java Libraries available
for developers. It means that we can build our own application on the top of
some mature technologies (e.g. in this project, XML parsing techniques). No
need for us to develop them again, we just reuse them. Actually, it is one of Java
design purposes.

JavaSE-1.6 or higher version can be employed in the project.
In addition, some knowledge of design patterns is required when constructing

an expandable application.

Third party Jars Dom4j is an open source, easy to use library for working
with XML on the Java platform. It is a highly-performance, high flexible, and
memory-efficient implementations of XML framework. So it is used here to help
us resolving XML issues, by using this library a standard XML file can be easily
parsed and employed within any Java application. The list below is some key
features of Dom4j:

1 Dom4j fully supports Java Collection Framework.
2 It has full support for JAXP, SAX, DOM and XSLT standards.
3 As mentioned before, it is a memory-efficient implementations. When deal-

ing with relatively large documents, it produces little memory overhead.
The latest stable version of dom4j, 1.6.1, was released on May 16, 2005.

This version is steady and completely satisfies the requirement of this project.
Parsing XML by using Dom4j simplifies the hardships of the development of this
project(especially, this is an XML-based Java application). dom4j-1.6.1.jar and
jaxen-1.1.1.jar are imported into this project.

A.2 Deployment

This section describes the installation procedure for the BPMN2Promela tool.

Preparatory Work SAVARA tools should be downloaded and installed as
plug-in into eclipse before deployment. The information on how to install SAVARA
into eclipse can be found in the SAVARA Getting Started Guide.

Importing Project into Eclipse BPMN2PromelaV1 is an project which can
be used to translate choreography diagram(generated by using SAVARA) into
PROMELA executable code. To get the source code, please contact Dr. Ellis
Solaiman (ellis.solaiman@newcastle.ac.uk) or Dr. Carlos Molina-jimenez (car-
los.molina@newcastle.ac.uk). Once the SAVARA Eclipse Tool distribution has
been correctly installed, and the BPMN2PromelaV1.zip file is available, then
use the following steps to import the project:

Open eclipse and right click on the blank area under ”Package Explorer”
view, mouse over ”New” menu and click ”Java Project” on sub-menu when it
pops up.

44 Wenzhong Sun (Jim)

Fig. 26. Create a new java project.

When the ”New Java Project” dialog appears, name the project(e.g. BPMN2Promela),
then select javaSE-1.6 or higher version to be its execution environment JRE,
press ”finish” button to create a blank project.

Fig. 27. Name a project and create it.

BPMN to PROMELA Translator 45

Right click the blank project, select ”import” on the menu.

Fig. 28. Import the project.

When the ”Import” dialog shows up, select the ”General->Archive File”
option and press the ’Next’ button.

Fig. 29. Select archive file and press next.

46 Wenzhong Sun (Jim)

Press the ’Browse’ button and locate the BPMN2PromelaV1 zip. Press the
’Finish’ button to import the project.

Fig. 30. Import the zip into the blank project.

Once imported, the Eclipse navigator will list the content of the project. But
there are some errors, it is because we have not imported related jar files.

Fig. 31. The content of the project.

BPMN to PROMELA Translator 47

Then right click the project, mouse over ”Build Path” menu and press ”Con-
figure Build Path” on the submenu.

Fig. 32. Build class path for the project.

When the ”Properties” dialog appears, press ”Add Jars” button to select jar
files.

Fig. 33. Add Dependent jars to the project.

48 Wenzhong Sun (Jim)

In ”Jar Selection” diagram, select all jar files in lib folder and press ”OK”
button. Then click ”OK” button on ”Properties” dialog to finish this step.

Fig. 34. Select Dependent jars.

”Referenced Libraries” should be added into the project and all errors should
be disappeared now. If these errors still exist, right click the project and refresh
it.

Fig. 35. Project has been imported successfully.

BPMN to PROMELA Translator 49

A.3 Configuration and Execution

This section describes how to configure and run the project.

Preparatory Work Make sure that BPMN2PromelaV1 project has been suc-
cessfully imported into eclipse and all third party jar files is added into class
path. Figure 36 shows the content of the project: some packages which contain
source code. A BPMN folder which includes all choreography diagrams in it, they
are inputs for this program. A config.properties file that controls the behavior
of the program.

Fig. 36. Content of the project.

50 Wenzhong Sun (Jim)

Configuration Config.properties file is under src folder. Open it, we can see
some configuration options.

1 buffer.size: This option defines the size of channel buffer. Its value should
be greater or equals than 0.

2 message.type: This option defines the type of predefined messages which
can be stored in channels. There are five basic types in PROMELA: bit, bool,
byte, short, int. The value should be chosen from one of them.

3 file.location: This option specifies where to store these automatically gen-
erated files. e.g. D://promelaFile.

4 file.suffix: It specities the suffix of these PROMELA files.

5 comment.*: Some comment in the content of PROMELA file.

6 tranlator.type: This option specifies the form of generated PROMELA code.
Currently, it supports ”decentralized” and ”centralized” forms. We will discuss
it in detail in next section.

7 BPMNName: There is a block which named Examples in the file. It lists
all choreography diagrams in BPMN folder. All there diagrams are created by
SAVARA tool and they are the source of the project. We can choose which
diagram will be used by simply marking out it in the configure file.

8 init.type: Let us choose the method of initialization.

9 generation.model: The PROMELA model can be generated optional.

10 generation.sequences: The sequences can be generated optional.

11 generation.sequences.format: We can choose either plain text or XML
format of the sequences.

12 generation.LTL: The never block can be generated optional.

13 generation.LTL.formula: The formula we used to verify a PROMELA
model.

Execution After configuration is complete, open the main Java file (Automat-
icGenerator.java under package generator.jim.test). Right click at the content of
it, mouse over ”Run As” menu then press ”Java Application” option to run it.
Figure 37 indicates the procedure. After running it, some useful information will
be displayed in console and PROMELA code file will be created and stored in
the given folder which has been configured in config.properties file.

Fig. 37. Execute the project.

Here is a configuration and the corresponding example code. It briefly indi-
cates the relationship between them.

BPMN to PROMELA Translator 51

Fig. 38. Diagram of the example.

Fig. 39. Configuration and corresponding code.

A.4 Structure and Restriction of the Project

This section briefly pictures the structure of the project and describes how to
modify the code so that it can meet new requirements.

52 Wenzhong Sun (Jim)

Structure of the Project The structure of the project can be divided into
three parts.

1 BPMN elements model part.
In the part, we use following diagram (Figure 40) to help us understand some

key concepts.

Fig. 40. An example to explain the structure of the project.

Key interfaces:
InterfaceTranslatable: Elements in choreography diagram that implement

this interface can be translated into some certain PROMELA code.
Examples of translatable elements in Figure 40 are all events, tasks and

gateways.
InterfaceFlowNode: This interface represents those elements which can be

connected by sequence flow.
Examples of elements which can be connected in Figure 40 are all events,

tasks and gateways.
SequenceFlow: The connector between elements.
Examples of sequence flow in Figure 40 are those strings with a arrow linking

between events, tasks or gateways.
InterfaceLogicalParent: Logically, a element can be regarded as the parent of

other elements.
InterfaceLogicalChild: Logically, a element can be regarded as a child of other

elements.
For example in Figure 40, ”buy request” task is a child of ”start” event.

Similarly, ”buy confirmed” task is a child of the split gateway. The split gateway
is a child of ”start” event and at the same time, it is the parent of ”buy con-
firmed” and ”buy failed” tasks. It is noteworthy that ”customer not found” task

BPMN to PROMELA Translator 53

after the merged gateway is a child of ”start” event. In the process of identify-
ing logical parent, some data structure can be used (e.g. stack). The situation
becomes more complicated when a choreography contains loop paths in it. Fig-
ure 41 shows this kind of situation, when ”buy request” task acts as a member
of normal path in this case ([start, buy request, split gateway, buy confirmed,
end]), its parent is ”start” event. However, if it appears in loop path instead
([start, buy request, split gateway, buy failed, buy request]), its parent, at this
time, is the split gateway. It is very important for us to get the right parent of
an element. Because when we generate the code, we have to know where the
statement or syntax block should be placed.

Fig. 41. Choreography with loop path from a Choreography Task to another Chore-
ography Task.

Figure 42 shows the main structure of BPMN elements. InterfaceTranslatable
stands at the top of the hierarchy, InterfaceFlowNode extends it. Because ac-
cording to the requirement, BPMN element who implements InterfaceFlowNode
should be translated into some certain PROMELA code.

54 Wenzhong Sun (Jim)

Fig. 42. The structure of transforming XML file into BPMN elements in Java objects.

2 Translator generation part.

Key interfaces:

InterfaceConvertor: Class who implements this interface has the ability to
translate a given context into a piece of PROMELA code.

InterfaceTranslatorFactory: It defines a series of functions which can create
translators for all kinds of BPMN elements.

InterfaceTranslator: It is generated by InterfaceTranslatorFactory. Class who
implements this interface can translate a BPMN element in diagram into its
corresponding PROMELA code and insert the code fragment into the right place
of the document.

Figure 43 shows the main structure of translator factory and its products –
translators for BPMN elements. InterfaceConvertor has a InterfaceTranslator-
Factory and the converter uses this factory to create translator for each BPMN
element.

BPMN to PROMELA Translator 55

Fig. 43. The structure of translator factory for BPMN elements.

3 PROMELA syntax model part
In the part, we use following code fragment (Figure 44) to help us understand

some key concepts.

Fig. 44. An example to explain the structure of PROMELA syntax model.

Key interfaces:
InterfaceComponent: It defines all behaviours for PROMELA syntax objects.
All statements and blocks in Figure 44 are regarded as components in a file.
AbstractBlock: A block element contains other syntax component.
Examples of block elements in Figure 44 are components like BlockIf or

BlockProctype which have been marked in the picture.
AbstractInline: A inline element can only be contained into a block element.
Examples of inline elements in Figure 44 are components like InlineComment,

InlineMessageSending or InlineMessageReceiving.

56 Wenzhong Sun (Jim)

Figure 45 shows the relationship between PROMELA syntax objects. Basi-
cally, the whole content of PROMELA file is a syntax tree. we will explain it in
next section.

Fig. 45. The structure of PROMELA syntax classes.

Restriction of the Project However, currently, there are some restriction
when generating PROMELA code by using this application.

1 The supportive type of PBMN elements: Start Event, End Event, Exclu-
sive Gateway, Choreography Task, Sequence Flow and Message are supported
presently. Figure 40 can give us a clear idea of this, it includes all valid elements
for this version. We will discuss how to expand it in next section.

2 Loop back path in diagram: Looping back is very common and useful in
choreography. Therefore, support for this feature is necessary. Basically, there
are two types of Looping back are supported in this version. Loop back from a
Choreography Task to another Choreography Task. Figure 41 shows this kind of
situation. And another one is from an Split Exclusive Gateway to a Choreogra-
phy Task. Figure 46 is an example for this situation. Additionally, this version
supports one loop back. It means that for each Choreography Task there can
exist only one loop back path. It should be modified to support multi loop path
in the future.

BPMN to PROMELA Translator 57

Fig. 46. Choreography with loop back from an Exclusive Gateway to a Choreography
Task.

3 Gateway pair problem: Choreography diagrams in figure 47 and figure 48
are trying to express the same meaning. However, the matching of gateways is
not corrent in figure 47. Choreography can be processed correctly only if the
gateways are matched properly.

Fig. 47. Incorrect matching of gateways.

58 Wenzhong Sun (Jim)

Fig. 48. Correct matching of gateways.

B Code examples

B.1 Code 1

#define TRUE 1

#define FALSE 0

#define c (conf==TRUE)

#define r (rej==TRUE)

#define p (pay==TRUE)

#define n (canc==TRUE)

mtype = {BuyConf, BuyPay, BuyRej, BuyCanc, BuyReq};

chan Buyer2Store = [0] of {mtype, byte};

chan Store2Buyer = [0] of {mtype, byte};

bool conf= FALSE;

bool rej= FALSE;

bool pay= FALSE;

bool canc= FALSE;

active proctype Buyer() {

Buyer2Store ! BuyReq(1);

if

:: atomic{Store2Buyer ? BuyConf(_); conf=TRUE};

if

BPMN to PROMELA Translator 59

:: Buyer2Store ! BuyPay(1);

:: Buyer2Store ! BuyCanc(1);

fi;

:: atomic{Store2Buyer ? BuyRej(_); rej=TRUE};

fi;

}

active proctype Store() {

Buyer2Store ? BuyReq(_);

if

:: Store2Buyer ! BuyConf(1);

if

:: atomic{Buyer2Store ? BuyPay(_); pay=TRUE}

:: atomic{Buyer2Store ? BuyCanc(_); canc=TRUE}

fi;

:: Store2Buyer ! BuyRej(1);

fi;

}

never { /* !([](c -><>((p && !n) || (n && !p)))) */

T0_init:

if

:: (((! ((n)) && ! ((p)) && (c)) || ((c) && (n) && (p)))) ->

goto accept_S35

:: (1) -> goto T0_init

fi;

accept_S35:

if

:: (((! ((n)) && ! ((p))) || ((n) && (p)))) -> goto accept_S35

fi;

}

B.2 Code 2

mtype = {AccountNotFound, BuyRequest, DeliveryRequest, BuyConfirmed,

CreditCheck, BuyFailed, CustomerUnknown, CreditRating, DeliveryConfirmed};

chan Store2CreditAgency = [0] of {mtype, byte};

chan Store2Logistics = [0] of {mtype, byte};

chan CreditAgency2Store = [0] of {mtype, byte};

chan Store2Buyer = [0] of {mtype, byte};

chan Logistics2Store = [0] of {mtype, byte};

chan Buyer2Store = [0] of {mtype, byte};

active proctype Logistics() {

Store2Logistics ? DeliveryRequest(_);

60 Wenzhong Sun (Jim)

Logistics2Store ! DeliveryConfirmed(1);

}

active proctype Buyer() {

Buyer2Store ! BuyRequest(1);

if

::

if

::

Store2Buyer ? BuyConfirmed(_);

::

Store2Buyer ? BuyFailed(_);

fi;

::

Store2Buyer ? AccountNotFound(_);

fi;

}

active proctype Store() {

Buyer2Store ? BuyRequest(_);

Store2CreditAgency ! CreditCheck(1);

if

::

CreditAgency2Store ? CreditRating(_);

if

::

Store2Logistics ! DeliveryRequest(1);

Logistics2Store ? DeliveryConfirmed(_);

Store2Buyer ! BuyConfirmed(1);

::

Store2Buyer ! BuyFailed(1);

fi;

::

CreditAgency2Store ? CustomerUnknown(_);

Store2Buyer ! AccountNotFound(1);

fi;

}

active proctype CreditAgency() {

Store2CreditAgency ? CreditCheck(_);

if

::

CreditAgency2Store ! CreditRating(1);

::

CreditAgency2Store ! CustomerUnknown(1);

BPMN to PROMELA Translator 61

Table 2. Result of test cases.

test case description expect outcome actual
outcome

SPIN
syntax

checking

single task common path: 1; loop path: 0;
task: 1; message: 1; participant: 2

PASS NO
ERROR

a task follow by another task common path: 1; loop path: 0;
task: 2; message: 2; participant: 2

PASS NO
ERROR

a task followed by a exclusive
gateway; the gateway followed by

two tasks in different path

common path: 2; loop path: 0;
task: 3; message: 3; participant: 2

PASS NO
ERROR

nested exclusive gateways: a
gateway is on the branch of

another gateway

common path: 3; loop path: 0;
task: 9; message: 9; participant: 4

PASS NO
ERROR

simple loop from an activity to
another activity (with exclusive

gateway)

common path: 1; loop path: 1;
task: 3; message: 3; participant: 2

PASS NO
ERROR

complex loop from an activity to
another activity (with nested

exclusive gateway)

common path: 2; loop path: 1;
task: 6; message: 6; participant: 2

PASS NO
ERROR

simple loop from an exclusive
gateway to an activity

common path: 2; loop path: 1;
task: 3; message: 3; participant: 2

PASS NO
ERROR

complex loop from a nested
exclusive gateway to an activity

common path: 3; loop path: 1;
task: 5; message: 5; participant: 2

PASS NO
ERROR

a split exclusive gateway followed
immediately by a merge gateway

common path: 3; loop path: 0;
task: 5; message: 5; participant: 2

PASS NO
ERROR

fi;

}

C Test Cases

TABLE 2 shows the typical test cases and the result from unit test and SPIN
syntax checker.

Fig. 49 shows the result of these test cases.

62 Wenzhong Sun (Jim)

Fig. 49. The result of junit test.

