
Deployment of the Contract Compliant Checker:
(User’s Guide)

Carlos Molina–Jimenez1 and Ioannis Sfyrakis2

1 School of Computing Science, Newcastle University, UK,
carlos.molina@ncl.ac.uk

2 Graduated MSc student, School of Computing Science, Newcastle University, UK,
giannisfyrakis@gmail.com

Abstract. This document is a walkthrough description of the deploy-
ment of version 1.1 of Contract Compliant Checker (CCC). The CCC is
a software tool implemented at Newcastle Univeristy UK, in Java and
Jboss Drools. It can be used for monitoring and enforcing of contract
regulated interactions. Examples of such interactions are contractual
agreements signed between buyers and sellers of goods and contractual
agreements signed between providers of computing services and their
consumers.
The CCC is loaded with the set of ECA rules that represent the con-
tractual clauses of the contract under monitoring and deployed as a web
service, for example, withing a trusted third party or within one of the
business partners. As a web service, i) the CCC listens to events (REST-
ful messages) produced by the application under monitoring, ii) processes
them using its ECA rules and iii) produces a response (a RESTful mes-
sage) indicating that the event was found to be either contract compliant
or non–contract compliant.
This document is aimed at potential users interested in downloading the
CCC (for example, from the GitHub repository), deploying it locally and
trying it by means of running the provided examples.
It covers the deployment on Windows, Mac and Linux platforms.

1 Introduction

The CCC is a software tool that we have implemented at Newcastle Univeristy
UK, in Java and Jboss Drools. It can be deployed as a contract monitor or
alternatively, as a contract enforcer, By monitor we mean that the CCC acts as
a passive observer of the interaction whereas by enforcer we mean that the CCC
actively interfears with the interaction to prevent business partner to execute
contractually ilegal actions.

In both deployments, the CCC is provided with the set of Event Condition
Action rules (ECA rules) that represent the contractual clauses of the contract
of interest and deployed as a web service. It can be physically deployed withing
a trusted third party or within one of the business partners. Its job is to listen
to and process events and determine if the business partners are observing their
contract clauses. We will use two examples to explain the operation of the CCC.

2 Carlos Molina–Jimenez and Ioannis Sfyrakis

1.1 Monitoring Example

Let us assume that a buyer and store have agreed to trade under the following
contract. This contract example is oversimplified and uncomplete, yet it it good
enough for explaining our ideas.

1. The buyer can place a buy request with the store to buy an item.
2. The store is obliged to respond with either buy confirmation or buy re-

jection within 3 days of receiving the buy request.
(a) No response from the store within 3 days will be treated as a buy rejection.

3. The buyer can either pay or cancel the buy request within 7 days of receiving
a confirmation.
(a) No response from the buyer within 7 days will be treated as a cancellation.

Imagine that the two business partners decide to monitor their contractual
interaction. A typical deployment of the CCC for addressing this question is
shown in Fig. 1.

buyer

store

CCC

m
o

n
it

o
ri

n
g

 c
h

an

co
m

m
u

n
ic

at
io

n
 c

h
an

response: CC | NCC

trusted third party

events

Fig. 1. The CCC deployed as a contract monitor.

In the figure, buyer and store represent the two parties involved in the con-
tract. The trusted third party is a third party that operates the CCC which is
assumed to be loaded with the ECA rules that represent the contractual clauses.
As shown in the figure, the business partners use a communication channel (com-
munication chan) for exchanging their business messages. In addition they use
a monitoring channel (monitoring chan) for notifying events of interest to the
CCC. Examples of events are events that notify of the execution of a contractual
business operation such as the execution of a buy resquest operation by buyer
or the execution of a confirmation operation by the store. Upon receiving an
event(for example, BuyRequest), the CCC processes it to determine if the event
is contract compliant (CC) or non–contract compliant (NCC). The results (re-
sponse: CC | NCC) is sent to interested in parties such as the business partners.

Deployment of the CCC 3

1.2 Enforcement Example

Imagine service providers (providers for short) that offers services to clients
under the stipulation of a contract. As a more specific example, let us think of
a provider that sells pre–paid cards to clients that grant access to its service
N (for example, five) times. Naturally, such a provider would need to deploy a
mechanism to allow legal request reach its service and reject ilegal ones (those
that exceed the agreed number).

An potential solution to this problem is shown in Fig. 2, where the client
and provider represent the business partners.

CCCgateway

client

req

res: open|close

Req

service

provider
req

Fig. 2. The CCC deployed as an enforcer.

In this scenario, the the CCC is deployed as an enforcer—it opens or closes
the gateway that grants access to the service.

1. The client sends a request (req) to the gateway.
2. The gateway intercepts req and forwards it to the CCC which is loaded with

the ECA rules that represent the contract between the client and provider.
3. The CCC processes req and determines if the client has not exceeded yet his

prepaid access (five requests in this example).
4. If req is declared legal by the CCC, it responds with open, otherwise it

produces close.
5. The gateway forwards the request to the service only when the CCC responds

with open.

2 Abstract Architecture of the CCC

We have implemented the CCC as a RESTful web service. Fig. 3 shows an ab-
stract view of its architecture. In this section we will present and overview of
the functionality of its components. Details about their implementations, de-
ployments and configurations will be presented in subsequent sections.

4 Carlos Molina–Jimenez and Ioannis Sfyrakis

URI:/queues/jms.queue.events/create

method:POST

method:POST

URI:/file/upload

decoupler
database

rule

base
rule editor
(browser)

rule
engine

DB

contractual
application

logic

CCC

respqueue

method:POST

URI:/queues/jms.queue.resp/read

eventqueue

rbupdate

presentation layer logic layer DB access layerclient data layer

Fig. 3. Abstract architecture of the CCC.

As shown in the figure, conceptually, the CCC consists of four layers (pre-
sentation, logic, DB access and data layers) and is expected to interact with
external entities that are represented by a client tier.

Client: The client represents the external entity to the CCC and consists of
a rule editor (for example, a browser) and a contractual application. The rule
editor is used by rule administrators for updating the rule base of the CCC.
It offers editing facilities and means for sending the edited file to the CCC
as a conventional HTTP POST request. The contratual application represents
the contractual application under monitoring or enforcement. For instance, in
Figs. 1, the contractual application corresponds to buyer and store. Similarly,
regarding Fig. 2, the contractual application corresponds to the client.

Presentation layer: The CCC interacts with external entities through its
presentation layer which we have implemented as three RESTful endpoints:

– A rbupdate (rule base update) point that accepts POST request sent by
administrator to update the current rule base of the CCC.

– An eventqueue that accepts and stores events produced by the contractual
application and sent as RESTful POST requests. Examples of events pro-
duced by the buyer–store contract example would be BuyReq, BuyConf and
BuyPay that correspond, respectively, to the execution of buy request, buy
confirmation and payment operations. To support portability of events, the
eventqueue accepts events tagged with XML tags. For example, the BuyConf
and BuyPay events are expected to be formatted as follows:

<event>
<originator>store</originator>
<responder>buyer</responder>
<type>BuyConf</type>
<status>success</status>

</event>

<event>
<originator>buyer</originator>
<responder>store</responder>
<type>BuyPay</type>
<status>success</status>

</event>

Deployment of the CCC 5

The originator specifies the business partner that initiated the execution
of the operation; likewise, reponder specifies the business partner that re-
sponded to the operation; finally, status specifiess the outcome of the oper-
ation (we will elaborate on this parameter later). Thus the BuyConf event
notifies that the execution of a buy request operation was originated by the
store, responded by the buyer and completed in success. Similarly, the Buy-
Pay event notifies that the execution of a payment operation completed in
sucess and was originated by the buyer, responded by the store.

– An respqueue (response queue) where the CCC stores the results (contract
compliant or non contract compliant) of the evaluation of the events. To
support portability of results, the CCC produces results tagged with XML
tags like in the following two examples:

<result>
<contractcompliance>true</contractcompliance>

</result>

<result>
<contractcompliance>false</contractcompliance>

</result>

The first example is the response to an event that was declared contract
compliant (true) by the CCC. In contrast, the second example is the response
to an event declared non contract compliant (false) by the CCC.

Logic layer: The Logic layer is represented by the CCC logic which consist
of a rule base, rule engine and ancillary Java classes (not shown in the figure).
The rule base represents the ECA rules that encode the contractual clauses. The
rule engine represents the rule engine (for example, Drools engine) that upon
arriving of events, triggers the execution of the corresponding rules.

DB layer: The DB layer represents a data base that is used by the CCC for
storing permanent records (for example, events notified to the CCC) about the
development of the contractual interaction.

DB access layer: The DB access layer is represented by a database decoupler.
Its job is to hide from the designer the details of the communication between
the CCC and the particular database technology used.

The functionality of the CCC as a web service can be summarised as follows:

1. The CCC retrieve and event from the eventqueue, sent by the contractual
application.

2. The rule engine of the CCC processes the event with the help of the rules
in the rulebase.

3. The CCC produces a response (RESTful message) that indicates if the event
is contract compliant or not, and enqueues in the respqueue.

6 Carlos Molina–Jimenez and Ioannis Sfyrakis

3 Deployment of Components

The deployment of the CCC is platform independent. The functionality of the
current version has been tested in a Mac platform; namely in a MacBook Pro
with Mac OS X Version 10.6.8, 2.4 GHz Intel Core 2 Duo and 4GB of memory.
We will use this settings in our discussions.

3.1 Database Deployment

The CCC needs a data base for permanently storing records about the contractul
interaction. The current version uses a MySQL data base.

Free versions of MySQL data base servers can be downloaded from [1]. We
use version 5.x.

Once the MySQL Server is deployed you need to create a database and
initialise it with the following table: ...

3.2 Deployment of JBoss Drools

The current version of the CCC uses Drools version 5.4.0—the latest version of
Drools, which can be dowloaded for free from [2]. As explained in their documen-
tations, the drools library are copied into a local working folder. In our works
we use ...

3.3 The drl Rule File

By default the CCC is deployed with a drl rule file that containts the contract
example between a buyer and seller discussed in Section 1.1. The file is called
BuyerStoreContract.drl is stored in $JBOSS HOME/standalone/Drools/upload.

To support the explanation of the rules, we will use a graphical representation
of the contract written in BPMN choreography language [3], see Fig. 4.

Deployment of the CCC 7

Store

Buyer

Store
 rej

BuyRej

Buyer

Buyer
 req

Store

BuyReq

Buyer

Store

Buyer
 pay

BuyPay

Buyer

Buyer
 canc

Store

Buyer

Store
 conf

Store

startEv
G1 endEvG2

G3
BuyCanc

BuyConf

Fig. 4. Graphical view of the buyer–store contract.

The figure involves five events (BuyReq, BuyRej, BuyConf, BuyPay, Buy-
Canc) that correspond to the five business operations (buy request, buy reject,
buy confirmation, buy payment, buy cancellation) included in the English text of
the contract. We assume that the executions of all the five operations complete
in success, therefore, we do not need fules for handling events that notify of ex-
ecutions that complete in failure. In this order, the BuyerStoreContract.drl file,
includes only five contract–related rules (rule Buy Request, rule Buy Reject, rule
Buy Confirmation, rule Buy Payment, rule Buy Cancellation3. In addition it
includes an initialization rule (rule Initialization) and a reset rule (Rule Reset).
The reset rule deals with reset event sent by the contractual application to signal
the end of a contract run (execution path). In our example, the contractual ap-
plication sends a reset event after sending BuyRej, BuyPay and BuyCanc. The
main job of the reset rule is to grant the buyer a right to submit a BuyReq so
that a new contract run can be started.

package BuyerStoreContractEx

Import Java classes for EROP support
import uk.ac.ncl.erop.*;

Global variables (persistent objects passed from outside)
global RelevanceEngine engine;
global EventLogger logger;

global RolePlayer buyer;
global RolePlayer seller;
global ROPSet ropBuyer;

3 The rule names in the BuyerStoreContract.drl file provided in the software bundle
might very slightly.

8 Carlos Molina–Jimenez and Ioannis Sfyrakis

global ROPSet ropSeller;
global TimingMonitor timingMonitor;

global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirm
global BusinessOperation buyReject;
global BusinessOperation cancelation;
global Responder responder;

"rule Initialization": initialize the ROP sets for buyer and seller.
This rule is launched only when the contract is set up.
Initialy, the buyer has the right to submit a buy request.
rule "Initialization"

when
$e: Event (type == "init")

then
System.out.println("* Initialization when");
#grant buyer’s right to submit a buy request
ropBuyer.addRight(buyRequest, seller, (String)null);
System.out.println("* Initialization rule triggered ");

end

#rule Buy Request: deals with BuyReq events.
removes buyer’s right to submit buy request and
#imposes an obligation on the store to either reject
#or confirm the request.
rule "Buy Request"

when
$e: Event(type=="BUYREQ", originator=="buyer", responder=="store", status=="success")
eval(ropBuyer.matchesRights(buyRequest))

then
Remove buyer’s right to place BuyReq
ropBuyer.removeRight(buyRequest, seller);
impose seller’s obligation to either accept or reject the request
BusinessOperation[] bos = {buyConfirm, buyReject};
ropSeller.addObligation("React To Buy Request", bos,buyer, 60,2);
System.out.println("* Buy Request Received rule triggered");
#The event is declared contract compliant and a response produced.
responder.setContractCompliant(true);

end

#rule Buy Reject: deals with BuyRej events.
#removes store’s obligation to react to buy request.
rule "Buy Reject"

when
$e: Event(type=="BUYREJ", originator=="store", responder=="buyer", status=="success")
eval(ropSeller.matchesObligations("React To Buy Request"));

then
System.out.println("* Buy Rejection");
Buyer’s obligation is satisfied, remove it
ropSeller.removeObligation("React To Buy Request", buyer);
System.out.println("* Buy Rejection");
System.out.println("* Buy Request Rejected rule triggered");

#The event is declared contract compliant and a response produced.
responder.setContractCompliant(true);

end

#rule Buy Confirmation: deals with BuyConf events.
#removes store’s obligation to react to buy request and
#imposes buyer’s obligation to pay.
rule "Buy Confirmation"

when
$e: Event(type=="BUYCONF", originator=="store", responder=="buyer", status=="success")
eval(ropSeller.matchesObligations("React To Buy Request"));

then
buyer’s obligation is satisfied, remove it
ropSeller.removeObligation("React To Buy Request", buyer);

Deployment of the CCC 9

#impose buyer’s obligation to pay within 60 seconds, 2 min, 1 hour
ropBuyer.addObligation(payment, seller, 60, 2, 1);
ropBuyer.addRight(cancelation, seller, 60, 2, 1);
System.out.println("* Buy Request Confirmation rule triggered");
#The event is declared contract compliant and a response produced.
responder.setContractCompliant(true);

end

#rule Buy Payment: deals with BuyPay events.
#removes buyer’s obligation to pay or cncel.
rule "Buy Payment"

when
$e: Event(type=="BUYPAY", originator=="buyer", responder=="store", status=="success")
eval(ropBuyer.matchesObligations(payment))

then
#buyer’s obligation to pay is satiasfied, remove it.
ropBuyer.removeObligation(payment, seller);
ropBuyer.removeRight(cancelation, seller);
System.out.println("* Payment rule triggered");
#The event is declared contract compliant and a response produced.
responder.setContractCompliant(true);

end

#rule Buy Cancellation: deals with BuyCanc events.
#removes buyer’s obligation to pay or cancel.
rule "Buy Cancellation"

when
$e: Event(type=="BUYCANC", originator=="buyer", responder=="store", status=="success")
eval(ropBuyer.matchesRights(cancelation))

then
#buyer’s Obligation is satiasfied, remove it.
ropBuyer.removeRight(cancelation, seller);
ropBuyer.removeObligation(payment, seller);
System.out.println("matches right cancellation: " + ropBuyer.toString());
System.out.println("* Buy cancellation rule triggered");
#The event is declared contract compliant and a response produced.
responder.setContractCompliant(true);

end

#"rule Reset": deals with reset events sent by the contractual
#application to signal the end of a contract run (execution
#path). In our example, the contractual application sends a
#reset event after sending BuyRej, BuyPay and BuyCanc.
#The rule grants the buyer a right to submit a BuyReq
#so that a new contract run can be started.
rule "Reset"

when
$e: Event(type=="reset")
eval(!ropBuyer.matchesRights(cancelation))

then
System.out.println("* reset when");
ropBuyer.reset();
ropSeller.reset();
#clear business failures flag for each business operation
buyRequest.setBusinessFailure(false);
payment.setBusinessFailure(false);
buyConfirm.setBusinessFailure(false);
buyReject.setBusinessFailure(false);
cancelation.setBusinessFailure(false);

#grant buyer’s right to submit a BuyReq
ropBuyer.addRight(buyRequest, seller, (String)null);
System.out.println("* Reset rule triggered");

#The event is declared contract compliant and a response produced.
responder.setContractCompliant(true);

end

10 Carlos Molina–Jimenez and Ioannis Sfyrakis

We use the symbol → to denote the happened before relation, thus a → b
denotes that a happened before b. Them in accordance with Fig. 4, an example of
a legal sequence of events would be: BuyReq → BuyConf → BuyPay → reset
that would trigger the execution of four (without counting the initialization rule)
rules, namely, rule Buy Request, rule Buy Confirmation, rule Buy Payment, rule
Reset. Another valid sequence of events would be BuyReq → BuyRej → reset
which would trigger the execution of three rules only, namely rule Buy Request,
rule Buy Reject, rule Reset

3.4 Deployment of JBoss Application Server

The current version of the CCC runs within a Jboss Application Server (AS). In
our experiments we used AS version 7.1.0 which is freely available from [4]. As
explained in its documentation, you can copy the AS software into a folder of your
choice. For example, we copied it into /Users/ncmj2/JAVA–LIBRARIES/jboss–
as–7.1.1.Final.

More importantly, you need to set a JBOSS HOME environment variable
in your Linux shell. For example, since we used a bash shell, we included the
following line in its .bash profile file.

...
export JBOSS_HOME=/Users/ncmj2/JAVA-LIBRARIES/jboss-as-7.1.1.Final
...

3.5 Deployment of CCC Eclipse Project

For developement purposes, it is convenient to deploy the CCC in a development
environment. In our work we use eclipse (Indigo Service Release 2). The structure
of the eclipse proyect (called CCCRest–ear) is shown in Fig. 5.

Fig. 5. CCC eclipse project.

Deployment of the CCC 11

4 Launch of Components

4.1 Launch of the AS

To launch the AS you need to execute the run.sh shell script:
#!/bin/sh
run standalone Jboss 7.1.1
exec $JBOSS_HOME/bin/standalone.sh

--server-config=standalone-full-ha.xml

This script is provided within the CCCRest–ear bundle (see Fig. 5).
To launch the AS, go your working folder (to

/Users/ncmj2/eclipse/workspace/CCCRest–ear in iour example) and type ./run.sh
(see the following text):

{/Users/ncmj2}% pwd
/Users/ncmj2/eclipse/workspace/CCCRest-ear

{/Users/ncmj2}% ./run.sh
===

JBoss Bootstrap Environment

JBOSS_HOME: /Users/ncmj2/JAVA-LIBRARIES/jboss-as-7.1.1.Final

JAVA: java

JAVA_OPTS: -d32 -client -Xms64m -Xmx512m -XX:MaxPermSize=256m -Djava.
net.preferIPv4Stack=true -Dorg.jboss.resolver.warning=true -Dsun.rmi.dg
c.client.gcInterval=3600000 -Dsun.rmi.dgc.server.gcInterval=3600000 -Dj
boss.modules.system.pkgs=org.jboss.byteman -Djava.awt.headless=true -Dj
boss.server.default.config=standalone.xml

===
==

17:06:46,332 INFO [org.jboss.modules] JBoss Modules version 1.1.1.GA
17:06:46,599 INFO [org.jboss.msc] JBoss MSC version 1.0.2.GA
17:06:46,653 INFO [org.jboss.as] JBAS015899: JBoss AS 7.1.1.Final "Bro

...

17:06:58,668 INFO [org.hibernate.tool.hbm2ddl.TableMetadata] (MSC serv
ice thread 1-4) HHH000108: Foreign keys: []
17:06:58,668 INFO [org.hibernate.tool.hbm2ddl.TableMetadata] (MSC serv
ice thread 1-4) HHH000126: Indexes: [primary]
17:06:58,670 INFO [org.hibernate.tool.hbm2ddl.SchemaUpdate] (MSC servi
ce thread 1-4) HHH000232: Schema update complete
17:06:58,696 INFO [org.jboss.weld.deployer] (MSC service thread 1-4) J
BAS016008: Starting weld service for deployment CCCRest-ear.ear
17:06:59,566 INFO [org.jboss.resteasy.cdi.CdiInjectorFactory] (MSC ser
vice thread 1-1) Found BeanManager at java:comp/BeanManager
17:06:59,843 INFO [javax.enterprise.resource.webcontainer.jsf.config]
(MSC service thread 1-1) Initializing Mojarra 2.1.7-jbossorg-1 (2012022
7-1401) for context ’/CCCRest-ear-web’
17:07:01,587 INFO [org.jboss.web] (MSC service thread 1-1) JBAS018210:
Registering web context: /CCCRest-ear-web

17:07:01,603 INFO [org.jboss.as.server] (Controller Boot Thread) JBAS0
18559: Deployed "CCCRest-ear.ear"
17:07:01,612 INFO [org.jboss.as] (Controller Boot Thread) JBAS015951:
Admin console listening on http://127.0.0.1:9990
17:07:01,613 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874:
JBoss AS 7.1.1.Final "Brontes" started in 15580ms - Started 535 of 671
services (134 services are passive or on-demand)

12 Carlos Molina–Jimenez and Ioannis Sfyrakis

At this stage, the instance of the JBoss AS is ready to accept deployments,
of the CCC for example. Type ctrl–c to stop the AS.

4.2 Launch of the CCC Web Service

To ease the task of managing the CCC dependecies and its deployment into
the AS, we use Maven facilities [5]. The pom.xml file that maven requires is
provided in the CCC bundle (see Fig. 5). We have configured it with all the
needed dependencies, such as Drools, resteasy, hornet, and mysql. The following
lines show how we launched the CCC Web service (we assume that the database
and the AS are already running).
{/Users/ncmj2}% pwd
/Users/ncmj2/eclipse/workspace/CCCRest-ear
{/Users/ncmj2}%
{/Users/ncmj2}% mvn clean package jboss-as:deploy
[INFO] Scanning for projects...
...

[INFO] Reactor Build Order:
[INFO]
[INFO] CCCRest-ear
[INFO] CCCRest EAR: Commons Module
[INFO] CCCRest EAR: EJB Module
[INFO] CCCRest EAR: WAR Module
[INFO] CCCRest EAR: EAR Module
[INFO]
...
[INFO] Reactor Summary:
[INFO]
[INFO] CCCRest-ear SUCCESS [1.127s]
[INFO] CCCRest EAR: Commons Module ... SUCCESS [3.924s]
[INFO] CCCRest EAR: EJB Module SUCCESS [3.595s]
[INFO] CCCRest EAR: WAR Module SUCCESS [4.628s]
[INFO] CCCRest EAR: EAR Module SUCCESS [27.995s]
[INFO] --
[INFO] BUILD SUCCESS
[INFO]

[INFO] Total time: 42.724s
[INFO] Finished at: Thu Jan 24 18:04:45 GMT 2013
[INFO] Final Memory: 25M/254M
[INFO] -----------------------------------
{/Users/ncmj2}%

The deployment of the CCC Web service within the AS is acknowleged by
the AS which produces the following messages on its screen:
...
18:04:43,258 INFO [org.jboss.weld.deployer] (MSC service thread 1-3) J
BAS016008: Starting weld service for deployment CCCRest-ear.ear
18:04:43,467 INFO [org.jboss.resteasy.cdi.CdiInjectorFactory] (MSC ser
vice thread 1-2) Found BeanManager at java:comp/BeanManager
18:04:43,759 INFO [javax.enterprise.resource.webcontainer.jsf.config]
(MSC service thread 1-2) Initializing Mojarra 2.1.7-jbossorg-1 (2012022
7-1401) for context ’/CCCRest-ear-web’
18:04:44,985 INFO [org.jboss.web] (MSC service thread 1-2) JBAS018210:
Registering web context: /CCCRest-ear-web

18:04:45,030 INFO [org.jboss.as.server] (management-handler-thread - 2
) JBAS018562: Redeployed "CCCRest-ear.ear"
18:04:45,031 INFO [org.jboss.as.server] (management-handler-thread - 2
) JBAS018565: Replaced deployment "CCCRest-ear.ear" with deployment "CC
CRest-ear.ear"

Deployment of the CCC 13

At this stage the CCC is Web service ready for work. It is waiting for the
arrival of events to the eventqueue.

5 Deployment of the Client

To test the functionality of the CCC Web service, we have implemented a client
application that can play the role of the contractual application shown in the
client tier of Fig. 3. The client application can be conveniently deployed as an
eclipse project as shown in Fig. 5 where it appears as CCCRestClient.

The client produces and enqueues events in the eventqueue and retrieves
events from the respqueue. We use it to demonstrate the use of the CCC in the
monitoring of the contract example between the buyer and store discussed in
Section 1.1.

Thus the client application mimics the behaviour of the buyer–store interac-
tion of Fig. 1, in the sense that it produces the events involved in Fig. 4.

6 Launch of a Monitoring Example

To lunch the client, you need to run the RestClient.java as a Java application
(see Fig. 6).

Fig. 6. Client launch as a Java application.

Once the client is launched, it looks for events stored in a local folder of your
choice and enqueues them in the eventqueue. In our examples, we use the eclipse
Run Configurations menu to indicate the client the location of the events.

14 Carlos Molina–Jimenez and Ioannis Sfyrakis

6.1 Run with Contract Compliant Events

As shown in Fig. 7, for this experiment, we store the events in the
/Users/ncmj2/CCCParser/ccTestSeq-mxl.

Fig. 7. Specification of sequence location.

The current implementation of the client expects the events folder to contain
one or more subfolders—one for each potential contract run. Consequently, each
subfolder contains one or more *.xml files where each of them represents an
event. The following lines show the structure of the ccTestSeq–mxl folder that
we use in one of our experiments.

The ccTestSeq–mxl folder contains two subfolders: correctchoreExecSeq1 and
correctchoreExecSeq12. The correctchoreExecSeq1 subfolder contains four events:
event1.xml, event2.xml, event3.xml and event4.xml. Similarly, tthe correctchore-
ExecSeq12 subfolder contains only three events: event1.xml, event2.xml and
event3.xml.

{/Users/ncmj2}% pwd
/Users/ncmj2/CCCParser/ccTestSeq-xml
{/Users/ncmj2}%
{/Users/ncmj2}% ls -lR
total 0
drwxr-xr-x 6 ncmj2 staff 204 8 Nov 15:46 correctchoreExecSeq1
drwxr-xr-x 5 ncmj2 staff 170 8 Nov 15:46 correctchoreExecSeq12

./correctchoreExecSeq1:
total 32
-rw-r--r-- 1 ncmj2 staff 130 8 Nov 15:46 event1.xml
-rw-r--r-- 1 ncmj2 staff 131 8 Nov 15:46 event2.xml
-rw-r--r-- 1 ncmj2 staff 130 8 Nov 15:46 event3.xml
-rw-r--r-- 1 ncmj2 staff 127 8 Nov 15:46 event4.xml

./correctchoreExecSeq12:
total 24

Deployment of the CCC 15

-rw-r--r-- 1 ncmj2 staff 130 8 Nov 15:46 event1.xml
-rw-r--r-- 1 ncmj2 staff 130 8 Nov 15:46 event2.xml
-rw-r--r-- 1 ncmj2 staff 127 8 Nov 15:46 event3.xml

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchore
ExecSeq1/event1.xml

<event>
<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchore
ExecSeq1/event2.xml

<event>
<originator>store</originator>
<responder>buyer</responder>
<type>BUYCONF</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchore
ExecSeq1/event3.xml

<event>
<originator>buyer</originator>
<responder>store</responder>
<type>BUYPAY</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchore
ExecSeq1/event4.xml

<event>
<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

</event>
{/Users/ncmj2}%

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchore
ExecSeq12/event1.xml

<event>
<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchore
ExecSeq12/event2.xml

<event>
<originator>store</originator>
<responder>buyer</responder>
<type>BUYREJ</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchore
ExecSeq12/event3.xml

<event>
<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

16 Carlos Molina–Jimenez and Ioannis Sfyrakis

</event>

As we can see from the lines shown above, the events are XML tagged. The
correctchoreExecSeq1 folder contains the contract run that includes BuyReq →
BuyConf → BuyPay → reset, similarly the correctchoreExecSeq12 folder con-
tains the contract run that includes BuyReq → BuyRej → reset. In accordance
with Fig. 4, both contrac runs include only contract compliant events.

As shown in the lines below, a run of the client confirm our expectations: the
events from both execution runs are declared contract compliant by the CCC.

log4j: ...

folder: /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchoreExecSeq1
filename: event1.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=buyer, responder=store, type=BUYREQ, status
=success]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchoreExecSeq1
filename: event2.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=store, responder=buyer, type=BUYCONF, statu
s=success]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchoreExecSeq1
filename: event3.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=buyer, responder=store, type=BUYPAY, status
=success]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchoreExecSeq1
filename: event4.xml

Deployment of the CCC 17

-------- Begin Request to CCC service ----------
BusinessEvent [originator=reset, responder=reset, type=reset, status=
reset]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchoreExecSeq12
filename: event1.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=buyer, responder=store, type=BUYREQ, status
=success]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchoreExecSeq12
filename: event2.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=store, responder=buyer, type=BUYREJ, status
=success]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/ccTestSeq-xml/correctchoreExecSeq12
filename: event3.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=reset, responder=reset, type=reset, status=
reset]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

18 Carlos Molina–Jimenez and Ioannis Sfyrakis

6.2 Run with Non–Contract Compliant Events

As shown in Fig. 8, for this experiment, we store the events in the
/Users/ncmj2/CCCParser/nccTestSeq-mxl.

Fig. 8. Specification of sequence location.

The structure of the nccTestSeq-mxl folder is similar to the of ccTestSeq-
mxl, except that this time the subfolder correctchoreExecSeq12 contains (in ac-
cordance with Fig. 4) a non contract compliant sequence, namely BuyReq →
BuyPay → reset.

{/Users/ncmj2}% pwd
/Users/ncmj2/CCCParser/nccTestSeq-xml
{/Users/ncmj2}%
{/Users/ncmj2}% ls -lR
total 0
drwxr-xr-x 6 ncmj2 staff 204 8 Nov 16:17 correctchoreExecSeq1
drwxr-xr-x 5 ncmj2 staff 170 8 Nov 16:19 correctchoreExecSeq12

./correctchoreExecSeq1:
total 32
-rw-r--r-- 1 ncmj2 staff 130 8 Nov 16:17 event1.xml
-rw-r--r-- 1 ncmj2 staff 131 8 Nov 16:17 event2.xml
-rw-r--r-- 1 ncmj2 staff 130 8 Nov 16:17 event3.xml
-rw-r--r-- 1 ncmj2 staff 127 8 Nov 16:17 event4.xml

./correctchoreExecSeq12:
total 24
-rw-r--r-- 1 ncmj2 staff 130 8 Nov 16:17 event1.xml
-rw-r--r-- 1 ncmj2 staff 130 8 Nov 16:19 event2.xml
-rw-r--r-- 1 ncmj2 staff 127 8 Nov 16:17 event3.xml

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchore
ExecSeq1/event1.xml

<event>
<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

</event>

Deployment of the CCC 19

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchore
ExecSeq1/event2.xml

<event>
<originator>store</originator>
<responder>buyer</responder>
<type>BUYCONF</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchore
ExecSeq1/event3.xml

<event>
<originator>buyer</originator>
<responder>store</responder>
<type>BUYPAY</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchore
ExecSeq1/event4.xml

<event>
<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

</event>

{/Users/ncmj2}% pwd
/Users/ncmj2/CCCParser/nccTestSeq-xml
{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchore

ExecSeq12/event1.xml
<event>

<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchore
ExecSeq12/event2.xml

<event>
<originator>store</originator>
<responder>buyer</responder>
<type>BUYPAY</type>
<status>success</status>

</event>

{/Users/ncmj2}% cat /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchore
ExecSeq12/event3.xml

<event>
<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

</event>

As we expected (see results below), a run of this experiement shows that the
CCC declares the event BuyPay non–contract compliant.

log4j: ...

folder: /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchoreExecSeq1
filename: event1.xml

20 Carlos Molina–Jimenez and Ioannis Sfyrakis

-------- Begin Request to CCC service ----------
BusinessEvent [originator=buyer, responder=store, type=BUYREQ, status
=success]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
No messages left in queue
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchoreExecSeq1
filename: event2.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=store, responder=buyer, type=BUYCONF, statu
s=success]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchoreExecSeq1
filename: event3.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=buyer, responder=store, type=BUYPAY, status=succ
ess]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchoreExecSeq1
filename: event4.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=reset, responder=reset, type=reset, status=reset]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchoreExecSeq12
filename: event1.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=buyer, responder=store, type=BUYREQ, status=succ
ess]
-------- End Request to CCC service ----------

Deployment of the CCC 21

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchoreExecSeq12
filename: event2.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=buyer, responder=store, type=BUYPAY, status=succ
ess]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>false</contractCompliant>
</result>
-------- End Response from CCC service ----------

folder: /Users/ncmj2/CCCParser/nccTestSeq-xml/correctchoreExecSeq12
filename: event3.xml

-------- Begin Request to CCC service ----------
BusinessEvent [originator=reset, responder=reset, type=reset, status=reset
]
-------- End Request to CCC service ----------

-------- Begin Response from CCC service ----------
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<result>

<contractCompliant>true</contractCompliant>
</result>
-------- End Response from CCC service ----------

7 Implementation

Details about the technologies used in the implementaqtion of the CCC and the
client can be found in Chapter 6 of the MSC dissertation that originated this
work [6]. UML class diagrams are also available.

8 Licence

The CCC is released under the Apache License, Version 2.0[?], which is available
from Apache’s web pages. Also, you can find a txt copy from our home page [?].

9 Implementation History

References

1. Corporation, O.: Mysql data base. http://www.mysql.com (2012)
2. JBoss: Drools. http://www.jboss.org/drools/
3. OMG: Documents associated with business process model and notation (bpmn)

version 2.0. http://www.omg.org/spec/BPMN/2.0 (Jan 2011)

22 Carlos Molina–Jimenez and Ioannis Sfyrakis

Table 1. BPMN verifier–implementation history.

Version Date Contributors Key features

1.1 Aug 2012 Ioannis Sfykaris Implementation of presentation and
data access layer. Implementation
of a client module for testing pur-
poses.

1.0 Oct 2010 Massimo Strano CCC logic implemented.

4. Community, J.: Jboss application server 7.
http://www.jboss.org/jbossas/downloads/ (2013)

5. Foundation, T.A.S.: Apache maven project. http://maven.apache.org/ (2013)
6. Sfyrakis, I.: Implementing a contract compliance checker for monitoring con-

tracts. http://homepages.cs.ncl.ac.uk/carlos.molina/home.formal (visited in Nov
2012 2012) MSc Dissertation Project, Aug 2012.

