
Deployment of the BPMN Verifier:
(User’s Guide)

Carlos Molina–Jimenez1 and Wenzhong Sun (Jim)2

1 School of Computing Science, Newcastle University, UK,
carlos.molina@ncl.ac.uk

2 Graduated MSc student, School of Computing Science, Newcastle University, UK,
jim.sun1983@hotmail.com

Abstract. This document is a walkthrough description of the deploy-
ment of the BPMN verifier (version 1.1) that can be used to verify the
logical correctness of choreography diagrams written in BPMN (Business
Process Management Notation).

In brief, the BPMN verifier is a java software tool that can mechanically
build a PROMELA model from a BPMN 2.0 choreography diagram.
Such a model can them be extended with LTL correctness requirements
(that the designer selects from a template repository) and presented to
the SPIN model checker to verify weather the LTLs are satisfied.

This document is aimed at potential users interested in downloading the
BPMN verifier (for example, from the GitHub repository), deploying it
locally and trying it by means of provided running examples.

It covers the deployment on Windows, Mac and Linux platforms.

1 Introduction

The BPMN verifier is a software tool implemented in Java, for assiting choreog-
raphy designers in the verification of choreography diagrams written in BPMN
(Business Process Management Notation).

This document discusses the latest version version 1.1 of the BPMN verifier
which was implemented by Wenzhong Sun (Jim) as a research collaboration with
the School of Computing Science of Newcastle Univeristy, UK. Version 1.0 was
implemented by Jim as part of his as part of his MSc Dissertation completed at
Newcastle. The document, discusses implementation features and is available in
pdf from [1].

A conceptual view of the BPMNverifier is shown in Fig. 1.

2 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

BPMN2
PROMELA

BPMN
editor modelchecker

SPIN

no error
uncovered

end

uncovered
errorproctype Buyer()

{...}

init{run Buyer()}

 model
PROMELA

Buyer

Buyer
 req

Store

BuyReq

Store

Buyer

Store
 conf

startEv
G1

BuyConf

endEv

BPMN choreography

model with LTL
 PROMELA

proctype Buyer()

{...}

init{run Buyer()}

TO_init:
 if:: ... fi;

never{ /* ![]p */

#define p (pay...
bool pay...

accept_S2: }

LTL
templates

 LTL
manager

Fig. 1. Functionality of the BPMN verifier.

The tool consists of four main components:

– BPMN editor
– BPMN2PROMELA translator
– LTL manager
– SPIN modelchecker

1.1 BPMN Editor

BPMN is a public standard language for modelling business processes and is
maintained by the OMG [2]. It covers process models at different levels of ab-
straction, including choreography diagrams.

Graphically, a BPMN choreography diagram consists of several components
including circles, boxes, diamonds and lines, that represent, respectively, events,
activities, gateways and execution flows. These diagrams can be created by de-
signers with the help of BPMN editors such as the one shown in the figure. At
a lower level, a BPMN choreography diagram is a conventional XML file that
complies (or should) with the BPMN 2.0 standard.

1.2 BPMN2PROMELA Translator

BPMN2PROMELA is a software tool that we have implemented in java and au-
tomatically translates BPMN 2.0 compliant choreography diagrams to PROMELA
models that can be verified by the SPIN model checker.

PROMELA models produced by the BPMN2PROMELA translator can be
presented to the SPIN model checker, for verification of general (application
independent) safety and liveness properties (for example, absense of deadlocks
and non–progress cycles) that SPIN verifies by default. However, application
dependent correctness properties (for example, purchase request is eventually
followed by response) need to be explicitly included in the PROMELA model
(discussed below). SPIN accepts correctness properties specified as LTL (Linear
Temporal Logics) formula. LTL was originally suggested by Amir Pnueli [3] as
a formalism for reasoning about program correctness.

BPMN verifier 3

1.3 LTL Manager

The LTL manager shown in the figure is a graphical interface that can help chore-
ography designers include LTL correctness properties in the PROMELA model
produced by the BPMN2PROMELA translator. It was implemented by us in
Java and is a core compoment of the BPMN verifier. It allows designers to select
LTL correctness properties from a repository of typical LTL templates, instanti-
ate them with operations that appear if the choreography diagram under analysis
and include them in the PROMELA model produced by the BPMN2PROMELA
translator .

1.4 SPIN Model Checker

SPIN one of the most mature and well documented model checkers. It was
written by Gerald Holzmann [4] and publicly available for Windows, Mac and
Linux [5]. SPIN can be used for mechanically verifying whether a given PROMELA
model presented as input satisfies or violates a set of correctness properties.

2 Distribution Files

The source code distribution of the BPMN verifier includes:

– local java classes implemented by us.
– ancillary jar files available from the Internet.
– bpmn choreography examples that can be used as start up examples.

3 Ancillary Software

The user is expected to have the following software installed on his computer.

– Eclipse: the recommended way of launching the BPMN2PROMELA trans-
lator is as a Java application from within the eclipse platform. The current
version of BPMN2PROMELA is known to operate correctly in eclipse Indigo
which can be downloaded for free from eclipse home page [6].

– Spin model checker: Spin can be downloaded for free from its home
page [5]. In our experiments we used the latest version of SPIN, namely
Version 6.1.0–4 May 2011.

– BPMN 2.0 compliant editor: In our experiments, we have used chore-
ographies produced by the Eclipse BPMN2 modeler that is bundled with the
Savara Eclipse tooling and freely available from its home page [7].
The BPMN2 Modeler is part of JBoss Savara project [8].

– SQL Data Base: The BPMN verifier needs a data base for permanently
storing LTL templates. Thus the current version expects access to a MySQL
data base which can be freely dowloaded from MySQL home page [9].

4 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

4 Download the BPMN Verifier

A zip file of the source code is available from our home web page [10]. Yet
we strongly recommend to download it from GitHub public revision control
system [11] as this copy is guaranteed to include the very latest updates.

4.1 Deployment of the BPMN Verifier from GitHub

To install the BPMN verifier on your local computer from GitHub, go through
the following procedure:

1. Start eclipse.
2. Click on Help->Install New Software.
3. Copy and paste the link https://github.com/nclcmj/bpmn2promela into

the Work with: box.

5 Deployment of the BPNM Verifier from the zip File

If for some reason you have decided to download the zip file of the BPMN
verifier from our home page, go through the following step to deploy it in your
local computer.3

1. Store the BPMNverifier.zip: Save the BPMNverifier.zip file in a folder
of your local computer.

2. Start eclipse: Start eclipse and switch to the workspace of your choice. For
example /Users/Bob/eclipse/workspace.

3. Create a Java project: Right click on the blank area under Package Ex-
plorer view. Point the mouse on the New menu and click Java Project on
sub-menu when it pops up. See Fig. 2.

Fig. 2. Create a new java project.

When the New Java Project dialog appears, assign a name the project(e.g.
BPMN2Promela or BPMNverifier). In the Use an execution environment

3 Ignore this section if you have (or are planning to) downloaded it from GitHub.

BPMN verifier 5

JRE: box select javaSE–1.6 or the latest avaliable version of JRE. Finally,
press the Finish button to complete the project creation. See Fig. 3.

Fig. 3. Java project created.

4. Import BPMNverifier.zip: To import the files included in the BPMN-
verifier.zip files to populate the BPMNverifier java project created above,
do as follows. Right click on BPMNverifier and select Import on the menu,
as shown in Fig. 4.

6 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

Fig. 4. Import BPMNverifier zipped files into the BPMNverifier project.

Select General-¿Archive File from the options (see Fig. 5) and press the Next
button.

Fig. 5. Select archive file and press Next button.

Press the Browse button and locate your BPMNverifier.zip file. Finally, as
shown in Fig. 6, press the Finish complete this step.

BPMN verifier 7

Fig. 6. Import of BPMNverifier.zip completed.

5. Build Path: As shown in Fig. 7, eclipse signals some errors on the newly
populated BPMNverifier project (a red box with an X on the project folder).

Fig. 7. Content of the project.

To correct the error, we proceed to import some required jar files. To do
this, right click the project folder. Select the Build Path menu and select
Configure Build Path from the submenu. See Fig. 8.

8 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

Fig. 8. Build class path for the project.

When the Properties dialog appears, press Add Jars... to select jar files
as shown in Fig. 9.

Fig. 9. Add jars dependencies to the project.

From the Jar Selection menu, select all jar files shown in the Referenced
Libraries folder (see Fig. 10) and press OK to complete this step.

BPMN verifier 9

Fig. 10. Select jar dependencies.

6. Refresh project: All the needed Referenced Libraries (jar files) are
added into the BPMNverifier project. Thus the error should have disap-
peared by now. If the the red box with the X is still displayed, right click on
the project folder and click on Refresh from the menu that appears. The
BPMNverifier folder should look as shown in Fig. 11.

Fig. 11. BPMNverifier is ready for execution.

7. All the eclipse related files are now in the right place.

6 BPMN Verifier Configuration

The config.properties file located within the src (see Fig. 12) folder provides
pre–run configuration options.

10 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

Fig. 12. Configuration and start files of the BPMN verifier.

– buffer.size: This option defines the size of channel buffer. Its value should be
greater or equals than 0.

– message.type: This option defines the type of predefined messages which can
be stored in channels. There are five basic types in PROMELA: bit, bool,
byte, short, int. The value should be chosen from one of them.

– file.location: This option specifies where to store these automatically gener-
ated files. e.g. D://promelaFile.

– file.suffix: It specities the suffix of these PROMELA files.
– comment.*: Some comment in the content of PROMELA file.
– tranlator.type: This option specifies the form of generated PROMELA code.

Currently, it supports ”decentralized” and ”centralized” forms. We will dis-
cuss it in detail in next later.

– BPMNName: There is a block which named Examples in the file. It lists all
choreography diagrams in BPMN folder. All there diagrams are created by
SAVARA tool and they are the source of the project. We can choose which
diagram will be used by simply marking out it in the configure file.

– init.type: Let us choose the method of initialization.
– generation.model: The PROMELA model can be generated optional.
– generation.sequences: The sequences can be generated optional.
– generation.sequences.format: We can choose either plain text or XML format

of the sequences.

BPMN verifier 11

– generation.LTL: The never block can be generated optional.
– generation.LTL.formula: The formula we used to verify a PROMELA model.

7 Database Configuration

Once the MySQL Server 5.X. is deployed you need to create a database for
the template repository of Fig. 1 and initialise it with five tables. The simplest
way of doing is by executing the bpmn2promela20130109.sql script, which is
provided with the BPMN verifier bundle. Alternatively, you can manually create
the database and initialise the five tables as follows:

1. b2p users: maintains the users’ (administrator and ordinary users) infor-
mation. You need to create this table and initialise it shown in Fig. 13.

Fig. 13. Users table.

The fields are defined as follows:
Id a unique identification number of a user (for example, a choreography

designer) of the BPMN verifier.
Username The name of a user name (for example, the name of a choreog-

raphy designer), such as admin, carlos and ellis.
Password user’s password. For simplicity, we do not use encrypted pass-

word in this version of the BPMN verifier; consequently, the password
fields are shown in clear text in Fig. 13.

User type the type of user, which is 0 (for user with administration privi-
leges) or 1 (for ordinary users).

2. bpmn choreography table: This table stores the information about each
BPMN file. The fields, which are populated by the BPMN verifier, at run
time, are defined as follows:
Id Unique identification that identifies a BPMN choreography file.
file path The path of the BPMN choreography file.
image path The path of the image file of the choreography.

3. bpmn choreography message info stores information about messages (for
example, BuyReq, BuyPay, etc.) involved in each choreography. The fields,
which are populated by the BPMN verifier, at run time, are defined as fol-
lows:
Id Unique identification

12 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

choreography id The choreography that the message belongs to.
message The message (like BuyReq) that is delivered in the execution of a

task.
ltl symbol a character used for representing a message in an ltl formula.
bool message a Boolean variable, like BuyReqRecv, involved in an LTL

formula.

4. ltl formula definition: This table maintains the templates of LTL formu-
lae. The fields, which are populated by the BPMN verifier, at run time, are
defined as follows:

Id Unique identification.
Description The statement that describe the formula in natural language.

For example, always @V0@ is eventually followed by either @V1@ or @V2@
but not both.

Formula: the formula that written in LTL notation. For example,
!([](@V0@ -><>((@V1@ && !@V2@) || (@V2@ && !@V1@)))).

Nickname A short name for the formula.

5. ltl formula instance: This table stores the information about LTL formu-
lae related to choreographies. The fields, which are populated by the BPMN
verifier, at run time, are defined as follows:

Id Unique identification
choreography id The BPMN choreography, for example BuyerStore.bpmn,

that the LTL formula is related to.
definition id the LTL template used for producing the LTL formula.
specific description A description of an LTL template in natural lan-

guage.
specific formula An LTL template in LTL syntax.
is setup The parameterised LTL. For example, ¡¿a.

7.1 Database Connection

The current implementation of the GUI of BPMN verifer, does not offer means
for configuring the connection to the database, consequently, you need to do in
directly in the Java class.

1. The actual connection to the database takes place in line 11r of the ncl.b1037041.db.tool.-
DataBaseUtil.java file.

2. You need to customise the username and password.

jdbc:mysql://127.0.0.1/bpmn2promela?user=root&password=
&useUnicode=true&characterEncoding=utf-8";

BPMN verifier 13

8 Launch of the BPMN Verifier

Once the choreography designer is satisfied about the configuration options, he
can launch the BPMN verifier by running the BPMN2PROMELAWindow.java
located within the src (see Fig. 12).

The launch procedure is as follows: Right click on the file; next click on Run
As menu of eclipse and select Java Application. See Fig. 14

Fig. 14. Run the BPMN verifier as a Java application.

The GUI menu of the BPMN verifier appears on the screen as shown in
Fig. 15.

Fig. 15. Launch of the BPMN verifier.

9 Running Example

The BPMN verifier is now ready for use. We will demonstrate by means of an
example. Let us assume that the choreography designer is presented with the
following contract example and requested to produce a choreography model.

14 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

1. The buyer can place a buy request with the store to buy an item.
2. The store is obliged to respond with either buy confirmation or buy re-

jection within 3 days of receiving the buy request.
(a) No response from the store within 3 days will be treated as a buy rejection.

3. The buyer can either pay or cancel the buy request within 7 days of receiving
a confirmation.
(a) No response from the buyer within 7 days will be treated as a cancellation.

As a result, he produces the choreography diagram shown in Fig. 16.

Store

Buyer

Store
 rej

BuyRej

Buyer

Buyer
 req

Store

BuyReq

Buyer

Store

Buyer
 pay

BuyPay

Buyer

Buyer
 canc

Store

Buyer

Store
 conf

Store

startEv
G1 endEvG2

G3
BuyCanc

BuyConf

Fig. 16. Choreography between a buyer and store.

10 Validation of BPMN Choreographies

Imagine that to be assured that his choreography model is logical sound, he
decides to use the facilities offered by the BPMN verifier. The following steps
explain the procedure.

10.1 Uploading of BPMN Diagram and Image

You need to upload the BPMN choreography file you wish to analyse to the
BPMN verifier. Strictly speaking, the BPMN verifier only needs the BPMN
choreography diagram (the xml file produced by your BPMN 2.0 compliant
editor when you save your graphical choreography). However, for your own con-
vinience, the BPMN verifier also asks you to upload an image (in gif, jpg, and
jpeg formats). To perform this task follos these steps:

1. Click on the File and next on Upload ChoreFile. See Fig. 17.

BPMN verifier 15

Fig. 17. Upload BPMN file and image.

2. Click on Select (right side of Upload...). See Fig. 18.

Fig. 18. Select BPMN file to upload.

3. Select the file that contains your BPMN diagram from your local disk, for
example BuyerSeller.bpmn.

4. Click on Clear if you get the wrong file and click on Select again to repeat
the procedure.

5. Click on Add to upload the selected file.
6. Click on Select (right side of Upload ima...). See Fig. 19.

Fig. 19. Select choreography image to upload.

7. Select the file that contains the image of your BPMN diagram from your
local disk, for example BuyerSeller.jpeg.

8. Click on Clear if you get the wrong file and click on Select (right side of
Upload ima...) again to repeat the procedure.

9. Click on Add to upload the selected file.

The name (BuyerStoreChore in this example) of the BPMN diagram will be
shown on the left side of the pane.

16 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

1. Click on rename if you wish to rename it and then on Confirm.
2. Click on Delete if you wish to delete both BPMN diagram and its image.
3. To see the image of your choreography, click on View Image. You can enlarge

or scroll the frame. See Fig.20.

Fig. 20. A view of the BPMNchoreography image.

4. The N/M read–only parameter of the LTL(s): 0/0 provides information
about the LTL formulae related to the current BPMN choreography. M (which
equals 0 in this example) indicates the number of LTL templates that have
been specified for the current BPMN diagram. N (which equals 0 in this
example) indicates the number of LTL templates that have already been pa-
rameterised for the BPMN diagram (BuyerStoreChore in the example). For
a newly uploaded BPMN diagram the desiger will always see LTL(s): 0/0.

5. Choreography and image storage: Once a BPMN diagram is loaded to the
BPMN verifier, it remains stored in the verifier’s data base and can be called
for correctness verification against LTL formulae (explained later) several
times until the designer deletes it.

10.2 Specification of LTL Templates

The BPMN choreography diagram can be validated againts a set of LTL proper-
ties composed from LTL templates available in the repository of LTL templates.
LTL templates are LTL formulae that include abstract variables that follow the
notation @Vi@ where i is an integer. Examples of valid, abstract variables are
@V 0@, @V 1@, @V 2@, @V 3@, etc. Two examples of valid LTL templates are
[] @V0@ and <> @V1@. Such LTL templates can be parameterised by choreog-
raphy designers to convert them to specific LTL properties. LTL templates can
be uploaded into the LTL template repository of BPMN verifier by some body

BPMN verifier 17

with administrator privileges. The current version of the BPMN verifier does
not check for administration privileges but we are planning to implement them
so that only administrators of the LTL template repository can add and delete
LTL templates.

1. Click on LTL Mngmt as seen in Fig. 21.

Fig. 21. Specification of LTL templates

2. In the Description box, specify (keyboard type or copy and paste), in
English or other human language, the LTL template you wish to upload
into the data base. Variables in the LTL template are abstract and enclosed
within a pair of @ characters.

3. In the Formula box specify the corresponding formal description of the tem-
plate that includes the abstract variables enclosed in a pair of @ characters.
You can type, copy and paste or use the the set of characters (!, &&, etc.)
avaliable just below the formula box). You also need to specify a name (in
the Nickna... box) for the templete.

4. As an example, Fig. 22 shows the description in English and formal notation
of a template that can be used for specifying eventually properties. It has
been named eventually but other names chosen by the choreography designer
can be used.

Fig. 22. Specification of the eventually LTL template.

5. Once the Description, the Formula and the Nickna... fields are completed,
you need to press Add LTL to store the template in the repository.
A view of the eventually template (together with other examples) after in-
cluding it in the repository is shown in Fig. 23.

18 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

Fig. 23. Examples of LTL templates.

6. Click on the corresponding DELETE if you wish to delete an LTL template
from the data base.

7. Statistics: The BPMN verifier offers a means for assessing the usage rate
of the LTL stored in the data base. Click on LTL mng-> Statistics (see
Fig. 24) to see a graphical view of LTL usage.

Fig. 24. Show statistics.

Currently, the this facility can only output bar charts. We are planning to
include more output formats in the future.

10.3 PROMELA Model Generation

Click on Tools and then on ProModel Generation to gain access to the BPMN2PROMELA
translator that is capable of producing PROMELA models from BPMN chore-
ography diagrams. See Fig. 25.

BPMN verifier 19

Fig. 25. Generation of PROMELA models.

1. On the left side you see all the BPMN choreography diagrams currently
stored in the data base, BuyerStore in this example. See Fig. 26.

Fig. 26. Generation of PROMELA models.

2. Click on View Image if you wish to display a choreography image on the
screen.

3. Click on Generate to generate the PROMELA model of the BPMN chore-
ography diagram. The result of the generation is displayed on the eclipse
console. As shown in Fig. 27, this PROMELA model does not include yet
any LTL formula. In principle, this is a complete PROMELA model that can
be presented to SPIN as it is for validation of safety and liveness properties
that SPIN validates by dafault; unfortunatelly, this cannot be done with
the current version of the BPMN verifier as it can validate only PROMELA
models with LTL properties included. This is a programming flaw that needs
correction.

4. On the right side of the screen you see (in read–only mode) all the LTL
templates currently stored in the LTL repository. In this example, there is
only one which is called eventually.

5. Use the drop down menu on the left side of the LTL template to select
the number of instances of the LTL template you wish to associate to the
PROMELA model (BuyerStoreChore in this example). In Fig. 27 this pa-
rameter is set to 2 which suggests that we are interested in validating two
actual LTL properties derived from the eventually template, againts the
PROMELA model. For instance the two instances of the eventually @V1@
LTL template might be parameterised with BuyReq, and BuyPay, respec-
tively.

6. Click on Add. A message (2 instances have been added to the BuyerStore) will
appear on the screen to indicate that two instances of the eventually LTL

20 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

Fig. 27. Generated PROMELA model.

property have been instantiated and associated to the PROMELA model.
Notice that the generated PROMELA model displayed on the eclipse console
is not altered after clicking on Add ; the association between the LTL intances
and the model takes place internally.

10.4 Parameterisation of LTL Templates

In is worth emphasising that the LTL properties created above are only templates
that need instantiation:

1. Click on Tool and next on LTL Vars Parameterisation (see Fig. 28).

BPMN verifier 21

Fig. 28. Parameterisation of LTL templates.

2. On the left side, you are presented with a menu from where you can select a
BPMN choreography diagram. Select one of them, for example, BuyerStore.

3. Click on Properties to see the LTL templates associated to this BPMN
choreography diagram. See Fig. 29.

Fig. 29. Specification of actual LTL properties.

4. As one can see from Fig. 30, the LTL templates appear with means for
instantiating their variables.

5. Select the variables you wish to include and click on Add.
6. Repeat the procedure to instantiate each LTL property.

22 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

Fig. 30. Parameterisation of eventually LTL instances.

7. In Fig. 30 the first LTL instance has been parameterised to BuyReq, whereas
the second in being parameterised to BuyPay.

10.5 PROMELA Model Verification

To actually include each parameterised LTL instance as a never claim in the
PROMELA model generated above, click on Tools (see Fig. 31).

Fig. 31. Verification of PROMELA model.

1. Click on LTL to see the LTL formulae associated to the model. The PROMELA
model of this example is BuyerStoreChore that appears selected in the drop
down menu. The drop down menu allows designer to select PROMELA mod-
els stored in the data base that have LTL formulae associated to them.

2. View Image allows you to see a graphical image of the BPMN choreography
diagram.

3. Click on LTLs to see all the LTL formulae associated to the PROMELA
model (see Fig. 32).

4. Tick the left side button to select (or deselect) each LTL property you wish to
verify against the BPMN choreography diagram. Press the Details button
(on right side) if you wish to see more information about the LTL property.

BPMN verifier 23

Fig. 32. Selection of LTL formulae.

5. Press Delete if you decide to leave it out of the validation. Alternatively, you
can use the (De)se... button to select or deselect all the LTL properties in
a single step.

6. Click on Validate to validate each LTL property against the PROMELA
model. On the background, the BPMN verifier includes each LTL property
into a copy of the PROMELA model generated before. Thus if you select
two LTL properties for verification, the BPMN verifier will create two copies
of the PROMELA model. Next it presents each PROMELA model with its
corresponding LTL property included, to the SPIN model checker.

7. The results of the SPIN validation will be shown on the eclipse console and
appear as a green or red message on the right side of each LTL formulae
which indicate respectively, satisfied and violated. Fig. 33 shows the valida-
tion results produced from an LTL formula that satisfied the PROMELA
model.

Fig. 33. Validation results.

8. A counter example (trail file) is created in the working folder when an LTL
formulae is violated.

24 Carlos Molina–Jimenez and Wenzhong Sun (Jim)

10.6 Help

This button is meant to take you to the documentation of the BPMN verifier. It
is not fully functional yet. But is you would like to see the names of the people
involved in this project, click on About BPMN verifier.

11 Licence

The BPMNverifier is released under the Apache License, Version 2.0[12], which
is available from Apache’s web pages. Also, you can find a txt copy from our
home page [10].

12 Implementation History

Table 1. BPMN verifier–implementation history.

Version Date Contributors Key features

1.1 Dec 2012 Wenzhong Sun (Jim) Automatic LTL inclusion.
1.0 Oct 2012 Wenzhong Sun (Jim) Automatic BPMN to PROMELA

translation.

References

1. Sun, W.: Design and implementation of a bpmn to promela translator.
http://homepages.cs.ncl.ac.uk/carlos.molina/home.formal (visited in Nov 2012
2012) MSc Dissertation Project, Aug 2012.

2. OMG: Documents associated with business process model and notation (bpmn)
version 2.0. http://www.omg.org/spec/BPMN/2.0 (Jan 2011)

3. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symposium on
Foundations of Computer Science (FOCS 1977). (1977) 46–57

4. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall
(1991)

5. SPIN: On-the-fly, ltl model checking with spin. http://spinroot.com (visited in
Jul 2012 2012)

6. Foundation, T.E.: Eclipse. http://www.eclipse.org (2012)
7. Foundation, T.E.: Bpmn2 modeler. http://eclipse.org/bpmn2-modeler (2012)
8. Jboss: Savara and testable architecture. http://www.jboss.org/savara (2012)
9. Corporation, O.: Mysql data base. http://www.mysql.com (2012)

10. Molina-Jimenez, C.: Carlos molina–jimenez home page.
http://homepages.cs.ncl.ac.uk/carlos.molina (2012)

11. Inc., G.: Github distributed version control system. https://github.com (2012)
12. Foundation, T.A.S.: Apache license version 2.0, january.

http://www.apache.org/licenses (2004)

