

. This document is not an official PL/I Language
Specification. Tor information concerning the
official interoretation the reader is referred to
the PL/1 lLanguage Specifications, Torm WNo.
¥Y33~-6003-1.

TBEM LABORATORY VIENNER,
Austria

INFORMAL INTRODUCTION TO THE
ABSTRACT SYNTAX AND
THTERPRETATION OF PL/Y

by

K. ALBER

H. GOLDHARXN

P. LAUER

P. LOGCAS

P, OLTVA

H. STIGLEYTNER
K. WALK

G, ZEISEL

ABSTRACT

This document represents an informal introduction to the
formal definition of the abstract syntax and interpretation of
PL/Y. The intent of this document is to give sufficient
information on the basis and structure of the formal definition
so that guestions of detail can be formulated and answered by
_consnlting the formal definition.

Locator Tecrms_for_ IBH

e i e e, - s e .

PL/T
Pormal Definition
Syntax, abstract
Semantics

21 PROGRAHEBING

TR 25.09%

30 June 1969

TBM LAB VIENNRZ ‘ TR 25.099

30 JUET 1969 TNFORMAL INTRO TC THE ABSTRACT SYNTAY AND INTERPRETATION OF PL/T

This document is an updated version of:

Favs LOCAS, P., BALBER, ¥., BANDAT, K., BEXIC, H., OLIVA, P.; WALK, K.,
ZEISEL, G.: Informal Introduction to the Abstract Syntax and
Interpretation of PL/TI. L '

IBH Laboratory Vieana, Techn. Report TR 25.083, 28 June 19563,

It is part of a series of documents {ULD VYersion ITI) nresenting the
formal definition of syntax and semantics of PL/I:

7’2/ FLECK, M4.: Pormal Definition of the PL/TI Compile Time Facilities {ULD
Yersion ITII). . ‘ T
IBM Laboratory Vienna, Techn. Report TR 25.095, 30 June 1969.

/37 URSCHLER, G.: Concrete Syntax of PL/I ({ULD Yersion IIT).
IBM Laboratory ¥iemna, Techn. -Repert TR 25.096, 30 June 71969.

/4/ URSCHLER, G.: Translation of PL/I into Abstract Syntax (ULD Version ITT}.
IBA Laboratory Vienma, Techn. -Report TR 25.097, 30 June 1969.

5/ #ALK, K., ALBER, K., FLECK, M., GOLDHANN, H., LAUER, P., MOSER, E.,
OLIYA, P., STIGLEITHNER, H.,: ZEISEL, G.: Ahstract Syntax and
Interpretation of PL/I {ULD Versiom III}.

I8H Laboratory Vienmna, Techn, Report TR 25.0698, 30 April 1969

/67 ALBER, K., GOLDMANN, H., LAUER, P., LUCAS, P.,, OLIVA, P., STIGLEITNER, H.,
WALK, K., ZBTISEL, G.: TInformal Introduction to the Abstract Syntax
and Tnterpretation of PL/T {ULD Versiom TIIT}. .
IBH Laboratory Viemna, Techn. Report TR 25,099, 30 June 1969.

The method and notation used in these documents are essentially taken
over from the first version of a formal defimition of PL/T issued by
the Vienna Laboratory:

1/ PL/T Defimition Group of the Vienna Laboratory: TFormal Definition of
PL/TI.
IBM Laboratory Vienna, Techm. Report TR 25.071, 30 Decepber 1966

/8/ ALBER, K.:r Syntactical Description of PL/I Text and its Pranslatior into

Abstract Normal Forwm.
IBH Laboratory Viemna, Techp. ‘Report TR 25.074, 14 April 1967.

iid

IBM LAB VIENKA TR 25.099

INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

Y/

An outline of the method is given in:

Lucas, P., LAUER, P.,, STIGLETTNER, H.: HMethod and Notation for the Fornmal

Definition cf Programming Languages.
IBEM Laboratory Vienma, Techn. Report TR 25,087, 2B June 1968.

This document also contains the appropriate references to the relevant
literature. The basic ideas and their application to PL/I have been
made available through several workshops on the formal definition of
PL/I, ard presentations and publications inside and outside TBM., The
method is denmonstrated by application to an appropriately tailored
subset of PL/T in:

/107 LUCAS, P., WALK, K.z On the Formal Description of PL/T.

iv

To be published in Annual Reviev in Automatic Programming - Vol.6.
Pergamon Press, New York 1969.

The language defined in the present version is PL/T as specified in
the PL/I Language Specifications, Porm No. Y33-6003-1, with the
addition of attention handling, imput stream and string scamning, and
file variables.

The present document will be made subject to validation by the PL/I
Language Department, Hursley.

IBM LAB VIENNA TR. 25,099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

CONTRIBUTION TO THE DOCUMENT

Project marager: K. WALK

Authors: Authors of the present version are listed in the following
with their main contribuntions indicated by chapters. Tt
should be stated that credit must be given also to those
anthors of previoas versions who have not been engaged in
producipg the present document. The contributions of these
authors are listed in the respective documents of the
previous versions. .

K. ALBER 2q, ?., B.’ g-

H. GOLDMANN 13.
P. LAUSE 4.1, 10.3

P. LUCAS 5.

P. OLIVR 8.3, 12.

B. STIGLEITNER 18, -

K. WALK 1.y 3., 4.2, 6., 10.1, 10.2
6. ZETSEL 1. -

Proofreading: P. LAUER

Production: This document was prepared by means of automated
text-processing systems. TEXT 360 was used for processing
the prose parts., The formatting, indexing,
cross~referencing, and updating of formula texts was handled
by means of FORMULA 360.

PORMOLA 350 is a syntax~controlled formula processing systenm
vhich wvas developed in the Vienna Laboratory especially to
facilitate the production and maintemance of PL/I Formal
Dafinition documents. The achievements of K.F. EOCH in the
overall design and implementation of FORNMOLA 360 are
acknowledged in particular, Essential components of the
system are due to G. URSCHALER {syntactical decomposition eof
formulas) anmd E, MOSER (formula input checker). H. Hoja and
G. Zeisel contributed to the clarification and formulation of
the required formatting processes.,

Coordination: F.-Schwarzenberger, #. Stadler
Technical control: K.F. Koch, E. Hoser, H. Stadler
Data tramnscription: Miss ¥®. Schafil, Hrs. H. Deim, and sub~contractors

System support: H. Chladek, G. Léhmayer

TBEM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAXY AND INTERPRETATION OF PL/T 30 JONE 1969

SCOPE OF THE DOCUNENT

This document is an informal introduction to the formal definition of
the abstract syntax and interpretation of PL/T /5/. The intent of this
document is to give sufficient informatiom on the hasis and structnre of
the formal definition so that guestions of detail can be formulated and
answered by consulting the formal document. - The central part of this
introduction starts with anp outline of the main syntactic structures of
abstract vrograms with attached notes as to the relatiom of abstract
programs to their concrete representation {chapter 2}. & brief summary
of the major state components of the PL/I machine is givern in chapter 3.
The chapter on storage and data outlines the objects which can be
manipanlated by a PL/Y program {e.g., values, valne revresentations,
datasets,...}) and their treatment by the formal definitioen, A summary
follovws of the entities which can be declared in a PL/I program and their
formal equivalents. The computation of the PL/T machine is discussed in
chapter 6. Chapters 7 through 12 explain the basic behaviour of the PL/I
machine in interpreting the major components of a program, whereby the
instraction definitions of the formal defiaition and the control cycle of
the PL/I machine are replaced, so to speak, by plain English sentences
sometimes augmented by flovw charts,

This document is neither an introduction to the notation used nor to
the method applied in the formal definition {for method and notation see
/9/ or /M/). The terminolgy and style of the explanation assunmes
familiarity with PL/T and with the methedology of the formal definition.
This document, therefore, does mct represent a self-contained
introduction to PL/I and is only intended to he used in connection with
the formal document /5/. It does not cover the entire range of the
formal definition of PL/I.

NOTATION

In general, abstract objects are fepresénted_in a tvo-dimensional
form, The following conventions are used:

' - elemeatary object. The box contains either a
variable wvhose name indicates the tyre of the
object or the object itself:

composite object vhose structure is not
further specified, The box ccrtains either a
v variable whose name indicates the tvpe of the
object or a comrcrete representation of the
object itself:

St S ==« Sn composite object vhere S,,53sv-055n Are

! [| selectors and ¥5,Vasev-¢¥p are the immediate
components.

V4 Vy Vin

IBM LAB VIENNA

30 JUNE 1969

1. THE OVERALL STRUCTURE OF THE FORRAL DEFINITIO

2. STRUCTIRE OF ABSTRACT PROGRANS

2.1 Block Structure o+ o « s« « o "« 4 2 ="« s & =
2.1.1 Program a % ®» % 3 & & & 3 % & " e ®w » @
2.1.2 Begin block & 4+ o« ¢ 4o 4 s a 2 s o o + a
2.1.3 Procedure body .« ¢ « « o = 4 + s '« o o

2.2 Declarations .« &+ & 0 4 48 2k s e ke o0
2.2.1 Proper variables . .« « ¢ o o s 2 s o ‘&
2,2.2 Entry declarationsS . « o o « o 4 s =

2.3 StatEMentS - ° o - -] - - - - a - - = L) -

2-u Expressions * 4 & =8 4 s 3 ® % & a ' % = a2 =
2 4.1 References s & & & 8 2 & & w s w8 = @
2.5.2 Constants . « 4 ¢ & 4 4 3 2 e 4 & 2 2

3. THE STATE OF THE PL/I NACHINE . ¢ o« = « a2 &

3.1 The Use of the State Comnponents . . « + « &

3.2 The Scope of the State CDlponents I

3.3 Directories and S5tacksS . . 4 « & 2 2 8 w =

. STORAGE AND DATA . ¢ 4 v = « = = * w om o om s e e e e .
4.1 Representation of Data in the PL/I Nachine
4.1%.1 values, value representations, operands
4,17.2 The transition between a valoe and its representat
4.2 Internal Storage and Generations of Variables
3.2.1 Storage and storage DATES « & « o = = « = 2 » « «
4.2.2 Flementary assignment . . e« 4 5 s s s 2 s s 2 = e
4,2.3 Elementary allocation and freeing ., . . . « . . .
4.2.% Storage mapping « + o v v 2 5 o & & 4 2 e = s @
4.2,5 Senerations of variables . . . 2 o =2 s s ¢ «
4.2.6 Sub-generations of generations . « « « o =« = «
4.2.7 Surrvey of attributes depending on the storage mode
4.2.7 1 AT®AS o « o = = * %+ = # = & 3 ®m & 3 ® ® & # @
4.2.7 2 DDlBterS, foset":' # s » a4 & = = @ & & * = =
4.2.7.3 The ALIGNED and UNBLIGNED attributes
3 External Storage and File Unions . o « « 2 » « 2 «
4,3.1 External sStOoTage .+ « + o 2 v s = s & » o & 2 »°=
H.B.Z File u“iﬂn of a file * 4 2 # & ® © ® % # e = w u
4,.3.3 Data set mapPiBg 4 4 o o & 4 ¢« 2 8 4 = 2 ® 4 = &«
4.3.3.1 Toner data sets s a ® ¢ ¢+ s 8 « 3 s
4.3.3.2 Data set activity . « & . ¢ & 4 ¢ 4 4w 5 e .
4.3,3.3 Forwards and backwards transmission«
3.3.3.4 Related mapping - % & 4 e & @ @ '8 # =+ = & » »
4,3.0 Basic data transmissionf « o« + «. 4 s = = & « &« & o
4,3.4.1 Positioning, reading, and deleting
0.3.08.2 Rewriting . 4 o 4 & o o ¢« =« » = % 2 2« s« « = =
4.3.4-3 “ritiﬂg 5 & ® 4 ® 4 # Ww e a B & = a =2 & » ®=
b.3,8.8 TransmisSSion ©TIOLS o o 2 o o o s '« s » = = =

[L I L L] -

N

[* & » []

OF PL/T

.i.l » 4 a | ; . = ; a4 iy o8

& B & 5 3 B R P OF AR

L] [] -

[] » - L] - - - L .) Q

-8 L] L [# L) a ¥ & L] b & B -

: o
L I I N -]

- . ’» & [] a » a & L) * a

L I e R R R I T T S S S S S T T T S S S T

- ® [I] LI L] L] L] * L]

& & & 4

[[] * B a 4 & = LI - & & @ a L] L] L | LI | [] - !‘ L[] * 3 4

2 & ¥ 4 & ¥ & 4 3 ® & @

" 8 B s 4 F & B & B8 = a

E & @ L]

4 & 3 B F & 3 3 & & O+ & & & & &£ ¥ B O 4 b 8 " B B O 4 &

+ 2] » L] - ¢ =8 8 . & L]

LI TR

[o T & # . [] a » L] L) [N 3 . » - [] []

@

LI L] * L3 L] []

a LI » 4 a . LI LI) v = @] a

LI - » [] - L) - @ [

4 & & 2 & & & 8 8 & ¥

TR 25.099

INFORRBAL TNTRO TO THE ABSTRACT SYNTAXY AND IRTERPRETATION OF PL/T

CONTENTS

8 * & & 3 B 3 4 8B B »

[] &« & 3

¢ & & 8 4 & 4 8 n ¥

L T] " 8 s ¥ F A & 2 B »

. = 5 5 & B 0 -i L T

L B O L I T R S Y T S T S T TR S S R]

- L] L] - L

T N B & 8 =

- . & » - []
o .
—

* » “ 8

4 & ® s & .9 4 @

L]
il
—

LI I L Y D T T TR TN R U Y T TR SR)
™
i~

vii

IBM LAB VIENNA

30 JUNE 1969

IDENTIFIERS AND THEIR SISNIFICARCE .

5. - - - - - - - - - - »
5.1 Declaration and Use of Identifiers . + + « s « = = « »
5.2 Denotation and Attributes . & 4 . & 4 4 4 2 4 . e + » = =
S.3 Proper Variables .+ o+ « 2 & + 2 2 2 s 2 & = s s« o« « » « =
5.4 Based and Defined Variables . . . & &+ & & & « o s = 2 « &
5'5 Piles - . = . - - - - - - - - - - - 'S - - - s w - - . - -
5.6 ProcedUIES « & A 3 B O = % B 4 4 @ # & » 4 » w4 W & w @
5.7 Generic Names - . & =+ * a . = = s« » « 4« = = » a . # » M
5.8 Builtin PUnCtionNsS + + o o 2 « & '+ « =« 5 =« 2 2 s ¢ = = = =
S.q Labels # B & = % = & & ® & =2 & ®W &8 & W w ® 2 s ¥ & & w8

5.9.1 Labels which serve as designation of goto statements

5 q 2 Format 1abElS @ A A % e xom wm o om s W e e s ow o+ w
5-10 AttentiOHS . - » » - - - » - - - - - - - - - * - - - -
5.71 S0M@ REMATKS 4 4 2 2 » 5 o 2o o = s =« » 2 ' &« s« &« = '« =
6. THE COMPUTATION OF THE PL/T MACHINE . o o o« = = s &« .« s e
6.1 The Initial State of the PL/I Machine . . + « v =4 o« & »
6.2 The State Transitions - - - - * w - - - - - - - - - - » -
7 TASKS - - - - - - - - - - - - - - - - - - « . - - - - - -
7 1 Parallel EIECUtlon * & @+ = - s B & 4 ® s =& = =
7.2 Representation of Tasks in the State of thke PL/T Machine.
7.3 ﬁtfachlng Of Tasks - - - - [] - - - ."... - - - - . ;'- -
7.“ Termination Of Tasks - L - - - - » - - » w - - - - - -
7.5 Synchronization of TASKS ¢ v « o s = 4 '35 = = "8 's o = » ‘=
8. BLCCK AC'FIVA'FIDNS - .- - - - .- » L - . - - - - » - L) - - -
B 1 The Dump D - - - - - - - A - L] - - - - - = = - - - - -
8.2 Interpretation of a Begln BloCk « o 4 ¢ o« 2 s o o o » = o

8.2.1 Unique gqualification of names 4 « ¢« « o« o « « = 2 + =

A.2.2 The block activation name BA .+ 4 &« o o « s # + ‘¢ » =«

8.2.3 Interpretation of declarationNS . . + s s « « s s + ‘s

8.2.4 Block epilogue and the epllogue information 2I . . .
8.3 Pr Ocedurp Call 2 & & 8 o 8 s # =% &'s s =8 '3 s =w a4z » = =

8-3-1 AquNEDt pa551nq a2 w s B & % w & 2 » 3 & % # w ‘= w @

8.3.2 Punction referefCe .+ .« .« o« = '©o o # % = s 2 % s = =» =

8.3,3 REturn froﬂ a Procedure s w & & ® ® # A = € e 5w = =

8;3;“ Generic Selection 2 & & & @& =3 3 ®w = @®= 2 2 & % 4« & ®» @
9. PLO¥ OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION . « « » =
9.1 Sequential Execution of Statements . . . + & ¢ s & 2 & .
9.2 Nesting of Statement Lists . o & &« & ¢ = o o » ¢ s = = =
9.3 The If-statament s = = = s w8 » ® # e % = ® 8 s A a @
9.4 Structure of the Control Informatlon CT 2o s e e o s = s
qlE rroups L] - - - - L] - - - - » - - - Ll » ‘w . - - - » - - -
9.6 L - - - - - L - - a » - - - » -

The Goto Statement . . .

viii

&+ » ® & 0 * [] . 4 L] - [[]]

® & a2 . & B

LI I I I O

. LI * B LI | - l.l

L I] * . & B L L I & & » . » . & 8 L]

-

L] L] LI) L] * &

s 42 L] & » -

* 8 » L] I ® 4 @ . 0 L]

(L I Y N A I T T T R S R
LI O N L T T R T S,

. s & LI I

LI T T N]

. LI | L]

. L] L . 4 ¥

* 3 & " & 2 ¥ B & B E F s

L] - & & 3 & &

. 8 32 8 B B ®E ® & » & 3

TR 25.999

S ¥ 8 % 5 8 @

L T T T S

L) * L3 . 8 * ¥ 2

. -+ L] L O .]

" s 2 4 & w s

L *® 8 = [] -

"+ & & ® B a

- L[] » a * . s & & = & P

LI T T)

L] * & 4 * @

s & 2 4+ # [] . 4 & & 3 B

- » . & B 2 &

I B R I L

INTORMAL TNTRO TO THE ABSTRACT SYNTAX AED INTERPRETATION OF PL/T

IBM LAB VIERNA

30 JUHNE 1969

TR 25.099

INFORHAL YNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

15. ALLOCATTIOER, ASSTGNMENT AND EXPRESSION EVALOUATIONW

10.1 Allocate Statement and TFree Statement . . .
10. 1.1 The

0.1, 1,1
10.1.1.2
10.1.1.3
10.17. 1.4
10.1.2 The
10.1.2.1
10.1.2.2
10.1.2.3

allocate statement . o 2« <« + s s « ¢ ‘o a
order of execution of allocations . . R
Allocation of controlled variables . . .
Allocation of based variables in main stora

-
.
-
L]

Allocation of based variables in areas .-
free statement . *« & @ 2 = e & s * v ®
Freeing of controlled variables
Freeing of based variables in main storage
Preeing of based variables in areas . . .

10.2 As=signment Statement, Expression Evaluation, Refer
1Db2q1 Pre—evaluatiﬂn Of expressions 5 & & a8 2 8
10.2.2 Expansion of aggregate assigrment statements .
10.2.3 Scalar assignment . « 2 '« ¢ 2 % s s s '=a'a s @
10:2.“ Expressioﬂ eval“ation a 5 & ® % =2 s a0 a s =

10.2,. 4.1 Evaluatiom of expressions in entry context .,

10.2.4.2 Pvalumation of expressions is non-entry contex
10.2.5 Reference to variables & ¢ o o @2 s s & = = '« '«
10-2»5.1 PrOPEI Variables ® # % s @& 8 ® =« = ®w & & =
10.2-5-2 Defined Variaﬁles a e "o « 85 8 = » - - - -
10.2.5.2.1 Isub~definifng . « « o e 2 e s 2 "2 @« s =
10o2o 5.2o2 Simple definil‘lg a # 8 s & &8 3 w ‘% s & =
10.2»5‘2.3 OVEIlaY defining 2 ‘& a ‘=2 "#» 8 & "a.’s = ‘s =
. 10-2-5‘3 BaSEd variableg - - e @ 3 - » - c.. - - -
10.3 Infix and Prefix Operatiomns, Conversion, Numeric P
10.3.1 Infix and prefix operatioRs . o « « '« 2 2 o =«
10 3 2 CDn?erSJ.Ol'l - a s s a - a e & ® = ® o - a - - -
10.3.3 Representation and evaleation of numeric pictsn
17. ATTENTIONS AED CONDITIORS . » » » ‘e e e e e e e w
11.1 State Conporents for Attentions and Conditiomrs . .
11. 1.7 Attention directory AN . . 2 v 2 2 22 = o s =
11.1.2 The attention enabling state B . . - ¢ a 5 =
11.1.3 The attention environment directory E¥ . . . o
71.1.4 The condition state CS ¢ o s a o4 & o 2 o % s
11.1.5 Evaluated conditions and condition selectoars .
17.2 Enabling and Disabling . o « o« v a « 2 s c°c o s o
11.2.1 Enabling and disabling of conditions o
11.2.2 Enabling and disabling of attentions , . . . =«
11.2. 2.1 Enable statement 2 o ®w ® % # ‘'z = # = ® o =
11-2-2q2 Disable StatemEnt *» % 8 @ @« @ =& ®w» ®» o 5 ©
11.3 Condition RCtiOn * % w & ® ‘2 '» ®w m ‘a = s 28 '®m w »n e
11.3.1 Standard system actiof « o e ¢ o2 = = "= "2 "= =
11.3.2 On and revert statement . « « =2 s 22 2 "4 =
11-u Bttention ﬁCti?ation & o o a ' # = ‘@ ‘# * % w L] ; a =
11. 4.1 Asynchronous interrupt « + o o« o ¢ ¢ « o « = "
11.4.2 Access statement . o o ¢ o 4 °c o 26 = = '« "8
11.5 Condition Activations . . ¢ o« « s o a 2 « s s ="
11.56 Condition Builtin Fanction Status .« 5 &+ + 4 + o =

e

[

M

lU.'ﬁ....l\Qi.

& B e 8 e . 2 * & L) a 4 [[N] L] L]

[] [] * []

S 6 8 HMoe » o8 e * s @

B 4 & 8 & 8 & % ¥ ¥ @ 2 O & 5 4 + B oW B

a . » [] L]

Do s {1 8 & 3 & s
o
*

t

& % 3 3 & 4 3 T B P & % & ¥ 8 ¥

e ;‘ LI I

]

L] * @ e * A - L] L] L] [] * L] o L] L] L] & B

»

B & 4 = = 3 9 p B 3

4 .

L R T L T T S T S S T - S T

L LIS) * = . L I] a4 [] 4 % L

»

& & s 4 % B » B 5 ¥ ¥ & &

¢ % & & 5 8 0

L] L & & & L I) [] » [] L] ¢ 8 l. O. [] . L]

al

¢ w2 4 & B & U 3 B 8BRS A hE s 8

[} » LI] * 5 []]

L] .+ - L] [] . LI I] - [] L] " 3 & a @ []

]

[]] - 8 - u. ﬂ. L . '. .' L] l‘ | I]

S 5 8 % 4 » 8 B L S T R T R T B S T

a a a & L] & & 2 & B]

et

.'.I‘Il..'ll..ll.mlll.;‘l#.l'

& ¢ & 5 0 & 2 3 ¥ & 5 4 # ..U & a9

-

. . . L N) . & * # L] + @ L]]

[] L] 4 @ » " » *» » [I] L [. s & & LI]

ll.tl.lynltotll.ll'llll.la'llll.QQ

e % % . L[] 2 & - & 8 & L BN] & B b » [[] L]

- [] L L] L] [] * 4 a & = . . @ L] * a

L] [] L) L & & & L [] 8 & . 0 L I [T » . & L] 4 » []]

O(D-Jmtha\ml=uldhld-;d

s
DO IDDODINNAWL R W W LN R

b
[\ Y

ix

TBHM LAB VIENNA

30 JUNE 1969

12. TINPUT AKD OUTPOT 4 2 4 o o 2 2 o 2 + 2 2 s « s s s o 2 2 =«
12.1 Evaluation of Statement Options . . & 4 4 « ¢ » « 2 » o =
12.2 Dpeniﬂg * ® 2 & ® 2 s % & e "W w mR ® ¥ 4 % & ® & & » & w =
12,2.1 File and file union dAirectories . .« « » a 4« « 2 e » =
12.2-2 TYPES of Opening 2 & 4 & & = ® B ® 3 8 = B 3 ®w * w = &
12.2.3 Proper ODENING 4 4 4 « o 2 = 2 2 s s s 2 s a« = = « o +»
12,2,3.1 Opening criterion .+ + - ¢« & o o 5 o« s « = = » 2=
12.2.3.2 Successful proper opening . « v 4 & o v w ¢ ¢«
12.2.3.3 File union status . & & @ « 2 = o« « s &« = = = =+ =

12- 3 Closing - - - - » - * - - - - - - - - - - - - - - - - - -
12 3 1 Tvneq of Closing 2 » + 5 &4 e 3 =m B 4 # w w s A = & w
12.3.2 Proper clogsing « « . B T T T T T O
12.8 Label Processing and Data Set Switching . . a & ¢ & & 4
12.5 Record TransmissSion .+ 4 4 = 4 s 4+ 2 = 2 a 2 s = s =« « = =
12-5:1 I/O—events » - « #% 4 * =& A & = = = & = L " =2 s =
12.5‘2 Locking Of kevs & 2 a2 % # =2 % ®w & % * 4 & =B % @« » m =
12.5.3 PrDPEI data traﬂsmissiﬂu LT S S
12.5.3.1 HTIite v & « 2 5 4 s s s 2 a 5 5 2 2 a = % = = » &«
12.5.3.2 10CALE 24 « 4 + o » 2 2 o w 4 = % 3 8 2 *» ° v « & =
12,5.3.3 RPeWCite . . 2 o & o o o &« 2 % % » % 2 = 2 s 2 = =
12-5.3.“ Set”read * 8 % & 3 & W A ® 2 4 # % % = s ®B B 8 w ®
12,.5.3.5%5 Into-read, ignore~read, delete . & « o« v o o = s =
12.6 Stream Transmission . 4+ & « PO . s s ox e
12.6.1 Initiation and termination of vut and get statements .
12.6.2 Data specifications . « « « o + 2 « &« o » s 2 2 s » =
12.6.2.171 Data list eXDANSIioON o - & o o o o o a » & « = s =
12-612-2 Forﬂat list expaﬂsion 2 s = ® 3 e % 4 = w # 2 =
12.6.3 Stream output ¢ & ot 4 4 4 4 e 2 s e s 8 e o oe e s
12.6.3.1 Elenentary transerission .« « o« « 2 « o = « & » = «
12.6.3.2 Special cases of stream tansmission . .+ « « « « o
12.6.8 Stream InPUt & &+ 2 4 4 4 4« 2 4 % o 2 s e x 3 w s = w %
12.6-“.1 scaﬂniﬂg Step 2 & 8 2 & & »2 ®w 8 T 3 & & » & * w A
12.6. 4,2 Conversion SteD o+ «v o o« » ¢ 2 2 s s s '« & + s ' %
12.7 Message TranSmissSion ¢« o o » = + 4 = = o 3 2 2 &« o '« 2 « =
12.7.1 Hessage Storage - =2 = = & w & B w &£ ®w w o m B % » W u owm
12.7.2 Display tranSRISSIon & o« & o & 2 « 2 + 2 2 e '« o+ & a =

13, BUTLT-IK FUNCTIONS AKD PSEUDO VAETABLES & 4 u 2 o 2 o o o =
T3.7 Built=in Tunctions + ¢ ¢ v 4 & 4 4 4 2 4 2 4 4 s 4 e e »
13.2 assignment to Pseudo Variables . & v v 4 4 4 s 4 v = » o

1": OPTTHIZATION - L] - » - - - - - - » - - - » -
14.17 Eules for cCommoning of Axpr9551ons- the REDUCIBLE Attr1bute
14.2 The REDRDER Attribute * ® # & 3 @ o m oA » 8 m ® @ & 4 w o=

T4.3 The RECUBSIVE ALtribute . . & v o o o o 2 2 2 o o = e .

APPENDIX: GLOSSARY & + v 4 4 ¢ o o 2 2 o = © = " e .

LI) L] - LI - L] » [] - - & @] 4 L [] L] * » L] » -

» L]

L] . 5 » [] *« * & 2 4 » [- ¥ - LI] L] - & L] L I 1 > 8 3 L] L I [] [] L] -

. 2 4 0»

. a2 s 8 - » &« = » L » L] * L] L -

" & 3 e 2 3 ® B &8 & 2 ¥ T ¥ B %

»] - L]

- » » LI [] *] [I ¥ & » . Ll L] [] » . o L] » ¢ + = & [. & & & @ - L[] []

* &

[] . & LI L] * 2 a . L) - . » . 2 @

L L] s 0w 4 & ¥ L » L I T 4

[N T TR B TR |

L] L] L [] * [] L] - L. [] L]

.

- » » * % [] LI 1 = ¥ » s a2 @

L T B)

LN N D T D Y

LI L] [] - [. = » L) * » L I » L] -]

TR 25.098

INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

T

TEM LAB VIENNA ' TR 25.099

30 JUNE 196§ INPORMAL INTRO TO THRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

1.__THE_OVERALL STRUCTURE OF THE_PORMAL DEFTINITION OF PL/I

The block diagram {Fig. 1.1} shows the process which is taken as the
basis of the formal definitiom of PL/T.

; T e e e it -
.._..r.,_.-.l i : i
i 8yntax ' ! roper
to —ei bty -l translator Ft et sl pre~pass | fp e prop -—-v-—---[wil-i
L_PSLSfL | 2 S pre-p 5o interpret, Ee

i
i
PL/I machine o
{interpreter) !

e ——
I

meaning

e o Ty - s o e — ol

Fig. 1.1 Structure of the formal definition

The input to the entire process is the concrete program {concrete
text) t,, which is a PL/T program represented as a character string, and
certair initial data sets dy;. The set of concrete programs considered by
the formal definitionm is defined by a set of syntactic rules (11 extended
Backus Normal Form) called the concrete syntax.

No specific process has been specified for the syntax parser
{therefore sho¥n in dotted linesy whose result {the parsing tree t,} ‘is
implied by the concrete syntax. :

The translator hkas been specified by a function which maps the parsing
tree t; into the abstract_program {abstract text} t;. The task of the
translator is to keep the stricture of the parsing tree where this
structure is significant, to transform the program into some standard
form where the structure is not significant {e.g.; the tramslator
collects all declarations spread over one block into one component of the
block} and to remove some notatiosal conventions {e.g. partially
gualified names are fully gualified by the translator). The result of
the translator is an abstract object as described in /9/, i.e., a tree
with pamed branches and elementary objects at the terminal nodes, which
exhibits the essential structure of the PL/T program. Al abstract

syntax. The set of programs specified by the abstract syntax is a
superset of the set of programs which can be produced by the translator
for the parsing tree considered.

The rest of the interpretation is defined by the PL/YT machine whose
initial state Ey is produced essentially from the abstract program t; and
the initial data-sets d,. The machine may be considered to run through a
seguence of states, called the computation, while it interprets a progranm
until an end state is reached (if ever). In principle, the interpreter
as specified hy the formal defimition allows {and this is its task} the
generation of a computation for a given PL/I program and given data sets.
Hore precisely, because the interpreter is not fully determined, it
allows the generation of a set of possible computations. The interpreter

1. THE COVERALL STROCTUORE OF THE PFORMAL DEFINITICK OF PL/T 1

TBM LAB VIENNA TR 25,099

INFOEHKL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

is specified as a function which yields for any state the set of possible
successor states. For the following reasons it may be the case that the
computation actually cannot be produced by the formal definiticn of the
interpreter:

n because the evaluation of an implementation-defined {and therefore
unknow¥n) function is necessary

{2) hecause a partially defined function has to be applied to an
argument for which the function does not have a defined value,

Any state of the PL/I machine is an abstract object as described in
/9/, i.e., the same formal tools can be applied to the abstract progranm
and the states of the PL/TI machine. The set of all states which the PL/T
machine can possibly assume for any given abstract program and any data
sets is contained in the set of states defined by the abstract syntax of
the states. The abstract syntax of the states exhibits the essential
structure of the states of the PL/T machine.

The process defined by the interpreter falls into two major parts, the
prepass and the proper interpretation.

The prepass accomplishes the following tasks:

(1} allocation and initialization of static variables

{2) null allocation of controlled variables

{3 linkage of the scope of the external declarations

{4} insertion of appropriate information into the declaratioms

occurring in the program to establish the necessary linkage
betveen the declarations and the entries made in the state of the
PL/I machine during the prepass (see (1}, (2), {3} above).

The intermediate state £,' contains then the abstract program nodified
according to (4.

TFinally the proper interpretation interprets the prepassed program
according to the meaning of the individual statements,

The abstract syntax of PL/T may be taken as the center of the formal
definition in the sense that the process to the left of the dotted line
in Fig. 1.1 deals with a special representation of PL/I as a character
string and the process to the right deals with the meaning of PL/T.

Only the abstract syntax and the interpreter are considered im this
document.

2 1. THE OVERALL STRUCTUORE OF THE FORMAL DEFIRITION OF PL/T

IBM LAB VYIEWNA

30 JONE 1969

- TR 25.99%

TNTORMAL IWTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

2. _STROUCTURE OF ABSTRACT PROGRANS

Corresponding chapter of /5/:

2.

Abstract syntax of program

The £following abbreviations are used in this chapter:

ADD
aggr

AL

ap

AITO
BIN
cond
const
CONY
CTL

da

nEC
decl
dens
descr
DYY
elen
eva
expor
EXT

FTX

PLT

id
init .
IAT

1b4
MULT .
op

opr
param, PARAM
prec
prop-st
pkr
‘gual
ref
ret-type
scale-f
sl
st,stmt
st~loc
stg-cl
ubd
ONAL

v

addition
aggregate attribute
aligned
argument part
automatic
binary
cendition
constant
conversion
controlled
data attribute
decimal
declaration
density
descriptor
division
element
evaluated aggregate attribute
expression
external

fixed

floatieg point
identifier
initial
internal

lower bpund

mgltiplication

operand

operator

parameter
precision

proper statement
pointer
gualification
reference

retura type

scale factor
subscript list
statement .
statement location
storage class
upoer bound
unaligned

value

. 2. STRUCTORE OF ABSTRACT PROGRANS 1

IBM LAB VIENNA . TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

. This chapter describes the overall structure of abstract programs,
i.e., the abstract syntax of PL/I. Where necessary the correspondence
with the concrete syntax is given. An abstract program, referred to as
program throughout this document, is an abstract object as described in

/57,

2.1 _BLOCK_STROCTURE

Corresponding sections of /5/:
2.1 Program, procedure body

2.3.1 Block, group

A PL/I progran cohstitutes a nested structure of bilocks: A progran
itself may be considered as a block and certain of its subcomponents are
blocks. Since programs are objects, their structuare implies that the
blocks contained im a program are themselves tree structures: If b, and
by are two different blocks in a program then: either b, contains b,, or
bz contains by, or by and b; are two distinct components in a common
containing block b.

|

!

R 7 ;— ************ fT T T
“ |

| | H
o e B R e B
[I l

SRS R P e R A N I
T e T &

T e R T SO li

I |

e s ——— s — __m.__-j lk_.f____;._._____fwmmf.ﬁ — e

Pig. 2.1 Object structure and blogk_structure of a prograi {the dotted
boxes indicate hlocks). :

During the interpretation of a ﬁrdgram, the interpretation of a block
establishes a so-called block activation which introduces:
(n new meaning of identifiers,

{2) a new enrabling status of conditions,

2. STRUCTURE OF ABSTRACT PROGRAMS

IBEM LAB VIENNWA ' TR 25.099

30 JONE 1969

(3)
(4)

TNFORMAL TRTRO TO THE ABSTRACT SYNTAX AKD IRTERPRETATION OF PL/T

a new level in the nested structere of statements,

a new coptimizing statas.,

Rccordingly a block generally consists of the followinglfité

comoponents: ’
5- ciecl-part s—hoTy-part s-cand- part s-st-list ~ s-reorder
decl~ part body- part cond- part R q-§2
eﬁmﬁ) elem(2) . .emmh]
sty sty st n
rig. 2.2 General structure of a hin¢k

(n

(2)

(3}

(4}

{5)

A declaratiop part collecting all declarations local to the block
{vhether they are explicit, contextual or implicit in the concrete
program) ; the structure of a declaration part is described in 2.2.

A procedure body part collecting all procedure bodies local to the
block: the structure nf a procedure body part and the relation
between an entry declaration and the corresponding procedure body
is described in 2.2.2.

A conditiop prefix part consisting of two lists of conditions,
namely those conditions to be erabled and those to be disabled for

the block.

A list of statements, ®hich constitutes the main part of the
block., This list contains only the "executable™ statements at the
outermost lewvel in the block in their consecutive order, ignoring
all declarative information {declarations, procedares, format
sentences, entry points} contained intermixzed in the concrete
program text. A discussion of the term "statement® and a
description of the structure of statements is given in 2.3,

A flag indicating whether it is a reorder block or not. This is
used for optimizing purposes only (cf. T4}.

There are essentially two types of blocks: begin blocks and procedure
bodies. As a third type, also a complete program itself may be
considered as a klock.

2. STROCTURE OF RBSTRACT PROGRAMS 3

IBM LAB VIENNA TR. 25.099

TNTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

2.1.1 PROGRAN

A program is an incomplete block consisting only of a declaratien part
and a procedure body part. The conditions to be enabled by default are
fixed in the initial state of the PL/T machine. 1Instead of a statement
list a single call statement or function reference 'is interpreted, which
is specified apart from the program {the "initial call®" of the "main
procedure®}, It is not a reorder block.

The declaration part consists of the declarations of all entry
identifiers of all external procedures of the program, The procedure
body part consists of all external procedure bodies,

Tt is assumed that the program contains all external procedure hbodies
needed for its execution and the corresponding entry declarations. That
is: TIf for an external entry declaration the concrete program does not
contain a corresponding procedure body; an extermal procedare body has to
be incorporated from ocutside the concrete program, e.g. from a library.
In the abstract program it is assumed that this process has been
performed by an implementation defined Function used by the translator.

Example:

8-

The followving concreate progfani

A:B:PROC .,.
DCL E ENTRY EXT;

L]

C:ENTRY ... - hody,
END A '
D:PROC ... o
LR : deYD
END D;

is translated into:

|

S-decl-pdri s-bodynpart
Ehtry dECla- PTOCEd{ure
rations for bodies
A;B,C, D, E A, DE

Pig. 2.3 Example of a program

4 2., STROCTURE OF ABSTRACT PRGGRAKS

IBM LAB VIENHA " TR 25,099

N JUKE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AED IHTEBPRETATIGN GF'PLQI

2,.1.2 BEGIR BLOCK
A begin block cccurs anywhere in the context of a proper statement
{cf. 2.3). In fact, it is a proper statement.- As such it is activated
when the normal flow of control comes to the execution of this proper
statement, and after its termination the flow of control continges
normally. The structnre of a begin block is exactly the general
structure of blocks as described above. ' .

Exaample:

The concrete begim block

{CONV,NOSIZE) :BEGIN REOHDEB;
DCL A ..u3
statement-1:
P:PROC ... END B;
statesent-2:
DCL X wuey ¥ wua3
Lzstatement—-3;
ERDs

is tramnslated into:

| | ! -

s-ded;Pavt s-body-ParT 5~cond—cht s-st-list s-vaordey
declarations pror_edure enable d (0N
of body of dicabled.:
AX, Y, P L P SIZE
elem (1) elem (2) elem (3) elem (4) elem (5) elem(6)

| | | |

null- stimt statement-1 |statement-2| [null- simt statementd [null - stmt

Tig. 2.4 ©Example of a begin'biobk

Hote: Cf. 2.3 for the treatment of-thekconcrete DCL*s and END*s in the
abstract progran.

2, STRUCTURE OF ABSTRACT PROGRAMS 5

Ip™

LAB VIENNA TR 25.0099

INFORNAL TRTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

2. 1.3 PROCEDURE BODY

6

2.

A procedure body occurs as an immediate component of the procedure
body part of a block. It is activated by a call statement or function
reference by means of an entry ideptifier. The same procedure body may
be activated by means of different entry identifiers.

A procedure bhody contains, besides the five general components of any
block as described above, a sixth component, the entry part. It contains
for each entry identifier associated with the procedure body an
individual component, called entry point. - {Note: There is no difference
between the "main entry"™ and a "secondary emtry™ in an abstract program;
different entry identifiers occorring at the same entry point in a
concrete program have their individeal entry points in the translated
abstract progranm).

. The entry point of an entry jidentifier consists of three
components:

n The statement location. It is an index list localizing relatively
to the statement list of the procedure body that statement by
vhich the interpretation:-of the statement list is to be started if
the procedure body is activated by this entry identifier. This
conponent is constructed by the translator using the position of
the entry point in the concrete text. The localization of a
statement within a statement list by means of am index is
described in 9.3%.

(2) The parameter list. It is the list of those parameter identifiers
to whom arguments are passed when the procedure body is activated
by means of this entry identifier. ({Note: Por convenience of the
interpreter the identifiers are not themselves elements of the
parameter . list; they are appended by the selector s-id to the list
elements; cf. 8.2.1).

e i i,

vhich the function value is to be converted hefore return if the
procedure body is activated by a function reference by this entry
identifier. The return type is constructed by the tramslator frona
the returns attribute explicitly specified in the cencrete text or
inserted by default.

(3) The return type. It specifiés the data attribute {and density) to

Additionally, a procedure body may'contain as seventh component a flag
indicating that the procedure may be invoked recursively.

STRUCTORE OF ABSTHACT PROGRAMS

IBM LAB VIEKNE2

30 JOUNE 1969

Exapple:

The concrete body:

TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

{CORV,NOSIZE) :Q:I:PROC{X,Y) REORDER RECURSIVE;

DCL A ...3

stategent-1;
P:PROC ... END P;
R:ENTRY {X} FIXED;

statene.nt-:—?: |

DCL X weey ¥ wse3
' statement—3:_

END 0

is translated into:

|

s-dect-~part S—bod.y—part s-cOhd—Purt s-st-List

| | |

[same asin Fig- 2.4 !

s-reorder s-entry-port

|

$-recursive

| o |

s-st-loc s-param-list s-ret-type s-st-loc s-param-list s-ret-type

| | | I

s-st-loc s-param-list §-ret-type

| |

FIXED
BIN...

<13 <X,¥> | |FLOAT <Ay KXY
DEC...

Pig. 2.5 Example of a procedure body

FIXED
DEC...

<3> X

2. STRUCTURE OF ABSTRACT PROGRAMS 7

IfM LAB VIENKNA TR 25.099

TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNR 1969

2,2 DECLARATIONS

B

2.

Corresponding sections of /5/:
2.2. Declarations

2.5.1 Evalpated aggregate attributes

In the declaration part of a block all declarative information is
collected which is local to the block, except the bodies of the local
procedures which are collected into the separate body part. This
declarative information is all information valid for the whole block
independently from its location within the concrete program text of the
block. ©Each identifier declared local to the block, whether its
declaration in the concrete program is explicit, contextual or implicit,
has a declaration in the declaration part, with the following exception.
Por a structure declaration only the major structure identifier, the main
identifier of the structure, has a declaration and not the identifiers of
the componrents of structures. The declarations are complete in the sense
that all attributes implied by default statéments or by the default rules
of the langnage from the concretely specified attributes are inserted by
the translator. Therefore the default statements of a concrete Pprogranm
do not appear in the abstract program anymore.

Tc each identifier of the concrete program corresponds uniguely an
predlcaEE_Is:ld. “The transformation from the character strlng
representing an idenptifier in the comcrete program to its corresponding
abstract identifier is performed by the function mk-id {cf. chapter 1 of
/5/}s 1In the following the term identifier denotes such an abstract
jdentifier while the identifiers of the concrete program are denoted as
concrete _identifiers where necessary. Nevertheless, in figures the
abstract identifiers are represeated by the corresponding concrete
representations {e.g. A is written instead of mk-id(A)).

- The structure of a declaration part is the following: FEach declared
identifier serves as selector selecting its declaration from the
declaration part,

decly decl, decly,

Fig. 2.6 Declaration part

This structure of a declaration part provides easy access to an
individual declaration through the declared identifier itself; any other
structure would reguire a more complicated device for accessing an
individual declaration.

STRUCTORE OF ABSTRACT PROGRAMS

iBM LAB VTIENRA

30 JUNE 1989

Example:

TR 25.199

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATTON OF PL/I

The declaration part of the block given as example in 2.%1.2 has
the following structure:

|

|

|

A % N P L
| | l | i

ded aration of declaration of } declaration of declaration o declaration of
A X l Yy P L

Fig. 2.7 Example of a declaration part

Each individuwal declaration is an object, whose structure depends

essentially on the type of the declaration. There are the following
eleven types of declarations:

(n

{2)

(3)

("

(5)

(6)

m

Proper variables, Their declarations are described in some detail
in 2.2.1.

Defined variables. Their declarations consist of: a reference to
the base variable, the aggregate attribute of the defined variable
{as described in 2,2.%) and possibly an expression for the
position in the case of overlay defining.

Rased variables. Their declarations consist of: the aggtegate
attribute of the based variable {cf. 2.2.1) and possibly a

- reference to the implied pointer.

Pntry constants. Their declarations and their correspondence to
the procedure bodies are described in 2.2.2.

File constants. Their declarations consist of: the set of file
attributes {as far as explicitly declared in the concrete
program}, the scope {INT or EXT} and the implementation dependent
environment attribute.

Statement label constants. Each statement label constant has in
the abstract program as its declaration an index list (1list of
integers and truth values} which localizes the labeled statement
relative to the statement of the containing block., This
localization is described ir 9.4. The index list is constructed
by the translator from the position of the labeled statement
within the concrete text.

Pormat_label constants. Tormat sentences, which in the concrete
program have the syntactical form of statements, are declarative
informatisr and occur in the abstract program as declarations of
their labels and not as statements. These declarations consist of
the format list, the condition prefix part and an identifier
unigquely identifying the format sentence (the first label of the
format sentence is chosen by the translator}: A format sentence
with two labels leads to two declarations with the sane
identifier, while two identical format sentences lead to tuo
declarations with different identifiers,

2. STRUCTURE OF ABSTRACT PROGRAMS 9

IBM LAB VIENNA

INTORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

(8) Generic_identifiers. Their declarations are lists of

‘TR 25.099

3% JUNE 1969

generic family members. A generic family member comsists of the
entry reference to be selected and the list of possibly incompleate

parameter descriptors.

(N Builtin functions. For each builtin function used,

whether it is

declared explicitly with the attribute BUILTI¥ in the concrete
text or not, in the abstract program there is a declaration which

is just the elementary object BUILTIN.

(10 Brogrammer _named conditions. Their declaration is the elementary

object CONWD.

(1 Attentiong. Their declarations contain only an implementation

dependent environment attribute.

- 2.2.17 PROPER VARTABLES

The term proper variable denotes variables of any storage class
{static, automatic and controlled) and parameters. Tt does not include
defined or based variahles. Tt demotes only "level-one variables”, i.e.,
arrays, structures and scalars which are not themselves compoments of

arrays or structures.

The declaration of a proper variable consists of three or four

compenents:
s-scope s-ﬁgvcl s~aggr 5-c0nnect6d
CINT, EXT, (STATIC, AUTQ,
PARAM) L, 8)

Fig. 2.8 Declaration of a proper variable

These components are?

(N The scope_attribute INT, EXT or PER&H. In an abstract progranm
parameter declarations have their own scope attribate PARAM. This
is useful since the distinction between internal, extermal and

parameter declarations is often needed.

(2} The storage class attribute STATIC, AUTD or CTL. HRNon-controlled
parameter declarations harve the null object % as storage class
component.

(3} The aggregate_attribute as described below in more detail.

{4} Won-controlled parameters may have a flag indicating that only

L e

19 2, STRUCTURE OF ABSTRACT PROGRAMS

IBM LAB VIENNA TR 25.099

30 JUNE 1969

INFORMAL TNTRO TO THE ABSTRACT SYNTAY AND INTERPRETATION OF PL/I

The aggregate attribute {aggr) of a proper variable declaration {and

of a defined or based variable declaration as well) reflects the complete
structuring of an aggregate {(array, structure, scalar}: Since, during
interpretation, it appears easiest to handle data aggregates by
recursively defined functions or instructions level by level, the
structaring of data attributes is decribed lewyel by level:

(N

Arrays. & nrulti-dimensional array is decomposed into a nested
sequence of one~dimensional arrays: e.g. a two-dimenmsional array
of scalars iz handled as a one-dimensional array, vhose elements
are themselves one~dimensional arrays of scalars. An array of
structures is naturally handled im the same way with the only
difference that its base elements are described as structures.
Hence, an abstract program describes only one-dimensioral array
aggregates; the elements may be arrays, structures or scalars.
Array aggregate attributes consist of three compoments: B&An
expression or asterisk denoting the lower bound {if missing in the
concrete progran, the constant 1 is inserted by the translator),
an expression or asterisk denoting the unper bound and the
aggregate attribute of the elements of the array:

| |

5-thd g-ubd s-elem
EX Y, expyy aggr
of elements

FPig., 2.9 Aggregate attribute of an array

A refer option occarring as array bound {or string length or area
size} in the aggregate attribute of a based variable is translated
into an object consisting of the initializing expression and an
identifier list which is the fully qualified name of the
referenced structure component without the main identifier.

! l

5-expr 5 - refer

| |

expy id - list |

{2)

Fig. 2.10 Refer option

Structures. Like arrays, structures are described recursively. A
structure is analogous to a one~dimensional array, whose elements
may have ary aggregate attribute: array, stracture, or scalar.
The difference is that all elements of an array have the sanme
description, while for a structure all elements {called
successors) have to be described separately and to be listed in

their given order. Furthermore each successor has to he named by

2. STRUCTURE OF ABSTRACT PROGRANS 11

IBM LAB VIENNA TR 25.099

30 JUNE 1969

INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

an identifier {(which is used in references to the successor by a
qualified name). Seo, the description of a successor.of a
structure consists of two components, identifier and aggregate
attribuate, and a complete structure description has the form:

elem ()

] |
elem(2) elem(n)

S-QQGI

|

-i |
| |]
s-qual 5-aggv snctua{ s-aggr

| | | |

|

s-ag9r

id 4

agar, idy aggr idin aggrs

Hotes:

(3

(a)

(b}

Fig. 2.11 Aggregate attribute of a structuore

The LIKE attribute occurring im a concrete program is removed
by the translator and replaced by the complete aggregate
description.

(a)

The main identifier of a structure occurs as selector of the
complete declaration in the declaratior part, while the
successor identifiers are s-gual components in the aggregate
attribute,

(b)

Scalars. By this recursive description of the structuring of data
aggregates, one finally comes down to the scalar components. The
aggregate attribute of a scalar consists generally of three
compponents:

| | |

s-da s- dens $-init
da dens init
(AL or LNALY
Pig. 2.12 Aggregate attribute of a scalar

The data_attribute. It is an object describing the proverties of
the individual types of data; mode, base, scale, precision and
scale factor for arithmetic datay string base, an expression or
asterisk denoting the length and a flag distinguishing wvarying or
fixed length for string data; parameter descrptor list, retura
type and reducible flag for entry data (cf. 2.2.2): etc.

The density (ALIGNED or URALIGNED). This attribute is a property
of scalars, though it may be written in a concrete program also

12 2. STRUCTURE OF ABSTRACT PROGRANS

JBM LAB VIENNR

37 JUNE 1969

{c)

TR 25.099

INTORHAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

For aggregates. The translator resolves the language rules for
the inheritance of the density attribute from aggregates to their
components,

The initial attribpte (if 'applicable}. Tt specifies the
initialization of the scalar or, if it is a component of an array
at any level, the initialization of all corresponding components’
of that array. There are three types of initial attributes:
Nested lists of expressions with replication factors, or call
statements, or lists of "special initial elements™. The latter
are produced by the tramslator in case subscripted statement
labels occur in the concrete program text representing initial
values for an array of label variables. In this case, for the
subscripted statement labels label constant declarations are
produced with newly created identifiers; for the array of label
variables a list of special initial elements jis produced, each
consisting of the subscript list specifying which element of the-
array is to be initialized and the newly created identifier as
initial value. The same applies for subscripted entry names as
initial values for arrays of entry variables. .

The concrete program text

DCL 1 Z{5,N:N+N), CTL ,
2 A{*) INIT (0,0},
2 B,
3 C BIT{®+1},
3 L LABEL:
L(1,3):statement-1;

[

" L(2,5}:statement-2;

LI

leads to the following declaration part:

2. STRUCTURE OF ABSTRACT PROGRAMS 13

i

SWYHDOHd IOVYHISHVY 40 THNIONALS ‘€

€12 *bra

uocTjeIv]oep ajgeries Iadoad e jo aTduexd

|
Z

|

!

ZBL' zBL"
] | Cons] |
.. sco .- L i label const label const
pe 3 c s-aggr declaration declaration
: I , far L ¢1,3) for L(2,5)
s-lbd s-ubd s-elem
| |
1 5
| I
s-lbd s-ubd s-elem
| L
N N+M
etem (1) elem (2}
({
I 1 | |
s-quo.L 5~al.c33r s-qual s-aqgr
. l
5- Lbd. s«-ubd. 5- eLEm ellemt'l) eLém(Z)
| |
§-qua s-aggr 5- quﬂl ' s-0ggr
K ' | L | o H
s~ a 5= dens 5- tmt s-da 5~ d.e.ns -mit - 5- d.ens 5-init
m lUNALl I <>l ILABE] l ALI
! 1 ath | : |
s-mad.e s-b{ase s~s’cale s- p;ec 5~ base s-leng , el.e;-n(d) elem(2)
I DEC i I FLT I ldef'PmI ™1+ g-sl s-id s-sl s-id
| 1 { I I
¢4,%] |ZBL'] j¢2,5> lzBL"

I/7d 20 NOILVIZYJdYIINI GRY XIVINAS LOVELSHY ZHI 0L O4dINI TVHHEOINIL

ANOL OF

696l

VRNEIA VT Wdl

66076¢ 4L

TBHY LAB VIENY2 _ © TR 25,099

3¢ JYNE 1969 INFORHMAL INTRO TO THE ABSTRACT SYHTAXHANB'IH%EHPRETHTION 0OF PL/I

Often during interpretation evalpated aggregate atiribntes (eva) are
needed, especially for storage mapping. These are objects, produced
during the interpretation, vhich have a very similar structure to the
aggregate attribuntes described above, with the following differences:

(1) The expressions denoting extents {lover and upper bounds of
arrays,string lengths, area sizes) are evaluated and replaced by
their [integer) values. Bven if there are only integer constants
as extents, they have to be evaluated, i.e.,, replaced by their
values, since a constant is a more complicated object than just
its value (cf. 2.5.2). '

12} The jidentifiers of successors, which are irrelevant for storage
mapping are deleted. : :

(3) The initial attributes are removed.

{4) For several types of data {eatry, label, offset}, information

vhich is irrelevant for storage mapping is removed. Their data
attributes are replaced by standard ones, ramely elementary
objects (ENTRY, LABEL, OFFSET).

These evaluated aggregate attributes contain exactly the information
necessary for storage mapping of the described aggregate,

Example:

The evaluated aggregate attribute of the declaration in the
vrevious examble {Fig. 2.12} has the following structure {assuming
that W has the value 2 and 4 the value 4). . L

2. STROUCTURE OF ABSTRACT -PROGRAMS 15

TBEM LAB VIENNA TR 25.099

TNFORMAL TNTRO TO THE ABSTRACT SYNTAX A®D INTERPRETATION OF PL/I 30 JUNE 1959

8- {bd 5- ubd, s-elem
i
s-lbd g~ubd s-elem

]

[
elem{4) elem(2)
|]
$-agar s-aggr
|
sibd subd s-elem elem(t) alem (2)
|
5-099?’ 5-0_99(
l ! o | ?
5Ldu s-ld.ens s-idq s-ldens S-Ida s-dens
s-llnase S~Le191h|UNALI ILABEIJ '
T T 1 o] I

$- moole S~ base 5~ scale 5- prec

|REALI IDE1 lFLT l Idef'TecI

Example of evaluated aggregate attribute.
Yote, that in this figure digits in the boxes demote values,

while in the previous ones they denote the corresponding
constants.

Tig. 2.14

16 2. STRUCTURE OF ABSTBACT PROGRANS

IBM LAB VIENEA i TR 25.099

3n JUNE 1969

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

2.2.2 ENTRY DECLARATIONS

Both declarations of entry constants and of entry variables contain
the following three componentss

(N

The parameter descriptor_ list to be used on invokation for
conversion and testing of arguments. A parameter descriptor has
the form of an incomplete parameter declaration: I% consists of:
a storage class (CTL or 02}, an incemplete aggregate attribute {no
qualifying identifiers, no initial atiributes and only integer
values or asterisks as array bounds, string lemrgths or drea
sizes), and possibly a flag denoting a connected parameter.

The parameter descriptor list is produced by the tramnslator from
the parameter descriptor list of the entry attribute in: the
concrete program. If no parameter descriptor list is specified
{or a single parameter descriptor is missing) in the concrete
rrogram, the translator takes the information from the parameter
declarations in the corresponding procedure body in those cases
vhere a procedure body is available. This is the case for
interral entry constants and also for external entry constants in
the declaration part of the program itself. Tn the other cases
(external entry copstants in inner blocks of the program and entry
variables) missing descriptor lists or missing single parameter
descriptors are substitoted by an *,

Example:

N =

The concrete program text:

BCL P ENTRY{,PLOAT{10) CONNWECTED)
P:PROC{X,Y) ;
DCL X BIT{N) ALIGNED CTL;

END P;

1ead$ to the following parameter descriptor list in the
declaration of P: o T

©2, STRNHCTURE OF ABSTRACT PROGRANS 17

IBM LAB VIENNA

TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JORE 1969

18

elem (1)

elem(2)

| | |

s-sts-cl

| | | |

s-aggr 5-aggr | s-connected

CTL

2.

|
| §

s-dens s-da ¢-dens o 5ed

(2)

(3)

Note:

In

L
5- bﬁse $- lenqth s-mode s-hase sscale s-prec

ﬁ 1 e E)

FPig. 2,15 Example of a parameter descriptor list

The return type specifying the data attrihute and density of the
returned function value in case of a function reference, The
return type is produced by the translator from the returns
attribute of the entry declaration in the concrete program. If no
returns attribute is specified the translator takes the
information from the returns attribute ir the corresponding
procedure body in those cases where a procedure body is available
{as described above for the parameter descriptors). Otherwise the
return type is produced by the default rules of the language.

A flag denoting whether the corresponding procedure is reducible
or irreducible, :

These three components of an entry declaration are used when the
declared entry is invoked. It is the responsibility of the
pregrammer that they fit the invoked entry point of a proceduare
body. If not, it is am error. TIn particualar, it is possible to
assign any entry constant to any entry variable, irrespective of
whether the declarations fit together or not.

addition to these three components, which are common to

declarations of entry constants and to data attributes of entry
variables, the declarations of entry constants have the following
components:

(4)

The scope attribute: TINT or BEXT. Por internal entry constants
there erxists a procedure body with a corresponding entry point in
the procedure body part of the same block in which the entry
constant is declared. For external entry constants there exists a
procedure body with a corresponding entry point in the procedure
body part of the program.

STROCTORE OF ABSTRACT PROGRAMS

IBM LAB VYIENNA S TR 25.099

30 JUNFE 1949 INFORMAL THNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

{5) Declarations of intermal entry constants {and of external entry
copstants in the declaration part of the program itself) have a
s-body component which is an identifier giving the link to the
corresponding procedure body, as described below.

As mentioned above {in 2.1} all procedures which are local to a block
b are combined in one of its componmnents, the procedure body part
s~-body-vart{b). Each procedure body bd is an immediate component of the
procedure body part, selected by an identifier id, i.e.,
bd=ides-hody-part{b), {the translator takes the first entry identifier of
the procedure in the concrete program for this purpose, though this
choice is completely irrelevant for the meaning of the program)}. With a
procedure body bd, a number of entry identifiers are associated; each of
them, id*, gives access to an entry point ep as described in 2.1.3:
ep=id*es-entry-part{bd). TPor each of these entry identifiers id* there
is an individual entry comnstant declaration decl in the declaration part
of the containg hlock b, i.e., decl=id*s=s-decl-part({b}. These different
entry constant declaraions belonging to the same procedure body have as
s-body component that identifier id, by which the procedure body is
selected from the procedure hody part: s-body{decl)=id. Thus, each
internal entry constant declaration gives access, via its s-body
component, to a corresponding procedure body; conversely each procedure
body gives access, via the selectors of its entry points, to a number of
entry constant declarations,

The concrete program text

A:BEGIN:
P:Q:PROC ... :END D3
R:PROC ... $S:ENTRY ... END B:

END A;

leads in the above program to the following relevant components of
the block A: .

2. STRUCTURE OF ABSTRACT PROGRAMS 19

IBM LAB VIENNRA : TR 25.999

INFOEMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 196%

v + 0

s—deEL-Part . !

S—body-PaYt
P Q R S v P - * R
.,.! Ly “en nae // aw // —--b-

/ 7

S-pody s-body s-body S-body /s-erﬂry- art fsentry part
L= 1 L=1 11 [=1] ‘]
~Z N N T < a, R
\\._ ~ \\\ /<\ /// |

|
y
i
.
LR R

Pig. 2.16 Relation between internal entry declaration and
procedure boiddy

For external entry constants, the procedure bodies are found in a
different way. For each external entry constant declared in any block in
the program, there is an entry constant declaration of the same
identifier in the declaration part of the program itself. This
declaration is connected with a procedure body in the procedure body part
of the program in the same way as described above., So, an external entry
constapt declaration has a s-body component only if it occurs in the
declaration part of the program itself.

Exapple:
The program

A:B:PROC ...
DCL B:
BEGIN:
DCL B ENTRY EXT:
END B;

END A;

leads to the following situation:

2N 2. STRUCTORE OF ABSTRACT PROGRAMS

TRM LAB VIENNHA

30 JUNE 196§ ITHNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPEETATIGH OE PL/T
! |
s-decl-parl s-bod.y-part
—TA
-
g
’ SR
/] o
/s-entry-part s-stolist
/ .
s
A R e

T —— e
—_— e o,
s
e SE——

]
s-scope s-descy-list

|

EXT § :

TPig. 2,17 Relation betveen external emtry declaration and
procedure body.

The association of entry variables {including parameters) with

vrocedure bodies is performed dynamically during the interpretation by

assignpeent,

Corresponding section of /5/:

2.3 Statenments

logically complete unit of program text to be executed during the

sequential flow of control at the point given by its position within the
program. The term includes: the simple statements {e.g., assignment
statement, goto statement, null statement), the if-, on- and access

2. STROCTURE OF ABSTRACT PROGRANS

TR 25.099

&

IBY LAB VIENKA - TR 25.599

+ TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

22

statament, the different types of do-grouns and the begim block. Tt does
not include: declarations, procedure hodies, entry points, format
sentences and incomplete clauses as, e.g., BEGIE; or DO I= 1 TO ¥N: or IF
2 > 1 THEM or END; etc. So, the term "statement® does not denote the
units syntactically delimited by semicolons in the concrete program, bhut
logical units that may appear anywhere ¥in a statement context¥, e.g., as
THEN alternative of an if statement, and that may in some way be execnted
independently from other program parts.

The main part of a block (begin block or procedure body) is a iist of
statements to be executed one after the other in their given order
{cf. 2.7). Some of these statements may themselves contain statements
{namely the if-, on- and access statement} or even lists of statements
{namely the different groups and the begin block). Since these contained
staterments principally may be any type of statements and thus eay
themselves contain statements, the statement list of a block may be not
Just a linear sequence of statements but a rather connllcated structure
of nested statements.

Bach statement has primarily the same structure: Tt consists of the
followying three components:

|] | l

s-cond.- part s-label-List s prop-st

5-0N 5-no elep {1} +oo elem (n)

cond - Listy LOhd-USh

2.

Fig. Z.18 General structure of a statement

()] a condition part, ceonsisting of the list of comditions to be
enabled and cf the list of conditions to be disabled for the
statement.

{2} a label list. For convenience of the interpreter the label

ideptifiers are not themselves elements of the list: thevy are
appended by the selector s-id to the list elements, The label
list is used only for the purpose of raising the check condition.
Informatior about a statement label for the purpose of the goto
statement is taken from the label declaration {cf. 2 2, % &Y.

{3} the proper statement. There are 35 dlfferent types of -proper
statements (including begin block and group).. The structure of a
proper statement depénds very much .om- its-individual type. Tn

STRUCTURE OF ABSTRACT PROGRANS

TRM LAB VIENNA " TR 25.099

30 JUNT 1969 INFDREMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

most cases it is a nearly one-~to-ocne mapping of the syntacticdl
structure in the concrete progran.

Principally it would be possible to recognize the type of a prover
statement from its structure {e.g., there is no other statement
¥ith a left part s-lp, and a right part, s-rp than the assignment
statemznpt) . But there are some pairs of statement types {e.qg.,
open and close, dget and put} which, at least in special cases, may
not be distinguishable by the structure of the statement alone. w
Therefore all proper statements, except begin bleck and group,

have a compcnent, S-st, which is an elementary object denoting the
statement type. ‘ -

Since the structure of the statemenpts is a one~to-one mapping of their
syntactic form in the concrete syntax, they are not enumerated and
described in detail here ({the reader may get all relevant information
from section 2.3 of /5/}. The folloring are only some special additional
remarks, mentinning some deviations between the abstract and concrete
syntax.

Begin_block. 1In the structure of a program, the begin blocks play a
double role. On the cne hand, they are proper statements, and thus they
occur in the structure of statements where any other proper statement,
2.59., an assignment statement, might occur. On the other hand, as
described in 2.1, they impose {together with the procedure bhodies) the
block structure upon the program. Tt should be noted, that the condition
prefixes occurring in front of a begim block in a concrete program are
translated intoc the block condition part inside the begin block (cf. 2.1}
and not, as for all other statements, into the statement condition par*
beside it (that condition part consists of two empty lists}. This is

because the condition prefixes of a begin block have a different
semantical meaning from those of other statements.

group_and statement list. There are tvo essentially different
"do-groups®™ in A concrete program: those with iteration specification
and those without it. O0Only those with itevration specification are called
groups throughout the formal definition. Those without iteration
specification are considered just as statement list, parenthesized in a
concrete program by the parentheses DO; and E¥D;. Thus a proper
statement may itself be just a statement 1list inp the abstract progranm.

If-statement. The if-statement has always tvo alternative statements.
I1f there is no else alternative specified in the concrete program, the
translator inserts a null statement,

Null statement. & null statement in an abstract program may result
not only from 2 concrete null statement, but alsc from a missing else
alternative of an if-statement {as mentioned above} or from a concrete
declare or default sentence or end clause. This is because all
declarative information in a declare or default sentence is translated
into the declaration part, but possible labels have a semantical meaning
and must hold their position within the structure of statemeunts. -

Aliocate statement. Deviating from the siructure in the concrete
syntax, the information about one data aggregate to he allocated is
collected into one component and structured similarly to a proper
variable declaration, im particular its aggregate attribute {(cf. 2.2.1).
Therehy the tualifying substructure identifiers, which are redundant, are
omitted,

2. STRUCTURE OF ABSTRACT ‘PROGRANS 23

"i‘

TEM LAB VIENNA TR 25.099

TNFORMAL INTEO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/X 30 JUHE 1969

2,4 EXPRESSIONS

Corresponding section of /5/:

2.4 Expressions

Expressions are decomposed by the translator into (possibly nested)
Pelementary expressions®™., There are five different forms of elementary
expressions:

m an infix expression, consisting of two operand expressions and an
infix operator {which is an elementary obiject),

! f !

s-opr s - op-1 s-op-2

| |

Fig. 2.19 TIpfix expression

{2) a prefix expression, consisting of an operand expression and a
prefix operator {vhich is an elementary obiject),

l |

s -opr 5-0p

Fig. 2.20 Prefix expression

(N a parenthesized expression, consisting of an operapd expression
only,

5-0p

|

expy

Tig. 2.21 Pareathesized expression

24 2, STRUCTUORE OF ABSTRACT PROGRAMS

TBM LAB VIENNA ' TR 25.099

30 JUNE 1969 INPORMAL TNTRO TO THE ABSTRACT SYNTAX AND TNTERPRETATION OF PL/I

(4) a reference (described below, cf. 2,4.1),
{5} a gonstant (described below, cf. 2.4.2}.

This decomposition reflects the operations to be performed one after
another when esvaluating the expression. Moreover, it resolves the
precedence rules of the operators of the language since this structure
determines unicuely the operands for each operator.

In principle, the parentheses of a concrete program could be
eliminated by the translator producing stroctured objects as already
described. But since in the language there is one case {argument
passing) where parentheses have more than syntactical meaning, the:
parenthesized expressions are left in the abstract program in the form of
an object having only one component, namely the translation of the
concrete expressiocn coatained in the parentheses.

Zxagple:
The concrete expression
-3 *B+ (X+Y) /C

is translated intoc the object:

s-0p~ 1 s-op-1
1 |
S-op-1 s~olp—l 5-0p-4 . s~op}-2
_,——'——-*— c
Jopr s—c!!p A—B—J $-op
Jrimus A -op-1 S“OZP'Z

Fig. 2.22 Exanmple of an expression {the hoxes for
A,B,... represent references as describhed below)

The final compoenents of am expression are references and constants,

2, STRUCTHURE OF ABSTEACT PROGRANS 25

IBM LAB VTENNA ~ TR 25.099

INTOEMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATIOR OF PL/I 30 JUNE 1969

2.4, 7 RETERENCES

A reference may refer to a variable {proper, defined or based
variable) or to an entry, statement label, format label or file constant.
It is an object consisting of the following four components:

| P
s-id-:lis‘r s—‘c]tr _ s—:sl ‘ S‘iO‘P
id.-List ref ar & expy-list] ‘
elem () e elem (n)

expr-list ! expr - List

Pig. 2.23 Structure of a reference

{1} The jdentifier list. 1In the case of a reference to a constant it
consists of only one identifier, that of the comstant. 1In the
case 0of a reference to a variable it is the fully gualified nama,
That means the following: Tf it is a reference to a component of
a structure, then the identifier list consists of the main
identifier of the complete aggregate, followed by the gqualifying
identifiers of all substructures containing the referenced
component. TIf the concrete program does not specify the fully
qualified name, the translator completes it by inspecting the

_corresponding declaration.

{2) The pointer gualifier. This component may exist only in the case
of a reference to a based variable. Tt is itself a reference
referencing the gqualifving pointer.

{3) The subscript list, consisting of expressions and possibly
asterisks. In the concrete text of any array reference, the
subscripts for the individual array dimensions may be arbitrarily
added to any identifiers of the gualified name. Furthermore,
subscript lists for array references and argument lists for
function references are syntactically not distinguishable. The
translator inspects the corresponding declaration and collects all
array subscripts, but not function arquments, into the subscript
list., ©Non-array references have the empty list as subscript list.

{4) The arqument part, It contains the arquments in the case of a
function reference. Since a function may return the value of an
entry constant which may be invoked again with another argument
list, the argument part is not just a list of arguments, but a
list of argument lists. An argument list is a list of
expressions. A single argument list or the complete argument part
may be the empty list. The latter is the case for all
non-function references. Tt shounld be noted, that a reference may
vell contain both a non-empty subscript list and a non-empty
argument part {if a component of an array of entry variables is to
be invoked as a function).

26 2, STRUCTURE OF ABSTRACT PROGRANS

TBM LAB VIENNA " TR 25.099

30 JUNT 1369 TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Given a declaratien
DCL 1 S{M) BASED,

2 A, o
3 E{N) ENTBY(FLOAT,FLOAT} R"TURHS(ENTHY RETUBNG(F‘NTRYH,

the‘reference
P=35{1, %) L E{N=1} (X+Y, 1) {) (D, U*7)

is transliated into the following ocbject:

| | | —

s-id -list s-ptr s-sl ' s-ap

elemu) etem (2) clem(,z) elem(d) elem(2) elem(®) elem) elem(z) “elem (2)

- I I I l 1 l ¥ l N-1 1 I < >l

s-iol-list s~ sl 5~ ap elem() elem(2) elem(D) elem(2)

| I | l l X+Y 2 0 U*V
-elem (1) e

i

Tig. 2.28 Example of a reference

®

2. -STROCTURE OF ABSTRACT PROGRAMS 27

IBM LAB VTENNRA TR 25.099

INFORMAL TKTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

2.5.2 CONSTANTS

28

There are two different kinds of occurrences of constants in a
concrete program:

{1 in positions where only {=zigned or unsigned) integer constants may
occur {e.g., as precision of an arithmetic data attribute),

(2} as special cases of expressions,

In the first case, the abstract program contains just the value of the
constant, which is an elementary object satisfying the predicate
is-intg-val.

In the second case, the translator producés an object cbnsisting of
the scalar data attripntes implied by the form of the constant, and of
its value. ‘ :

s-mode s-base s-scale s-prec s~ scale-f

FPig. 2.25 Constant
The data attributes may only be arithmetic or fixed length string.

Example:
‘The concrete constant
007.30

is translated into the following object:

| |

2.

Tig. 2.26 Example of a constant

STRUOCTORE OF ABSTRACT PROGRAMS

IBM LAB VIENNA

30 JONE 1989

Corresponding section of /5/:

3.

The present chapter deals

consider the componrents of the state,
There are 13 different immediate components of any
one of these,

their structure.

state of the PL/T machine.

TR 25.099

INFOREAL INTRO TO THE ABSTRACT SYNTAX AND TNTERPRETATION OF PL/I

3. _THE_STATE OF THE PL/I_MACHINE

State components and computation of the PL/I machine

with three asvects under which one can

namely their use, their scope, and

the parallel actior part,

contains for every task being executed 10 components whlch have to be

considered.

The following

components:
s the
S the
jub: | the
AT the
DN the
Fo the
Th the
ET the
| the
AR the
EY the
TH the
PA the

There is always one task,
executed.
ahbreviated as follows:

TE the
AG t he
FD the
EN the
Ba the
EI the
cs the
b the
cI the
c the

3.1 _THE 0USE OF THE STATE COMPONENTS

{1 tasking: PA, TN, TE,

= o

is the key to the abbreviations used for the immediate

storage

external storage

unigque name counter
attribute directory
denotation directory
file union directory
time and date part
event trace

message part

attention directory
attention environment dlrectory
cuirrent task-event name
parallel action part

the current.task, which is currenflj being

Those components of PA which refer tec the curremt task are

task-event specification
aggregate directory

file directory

enabling state

block activation name
epilogue information
condition status

dump

control information
control

itd

T

The parallel action part PA contains for each parallel task or

input/output event its local components,

i.e., the state

components which are used only by the specific task or avent,

Bach task or event has got a unique name,

vhich is used to

3. TAE STATE OF THE PL/T MACHINE 1

TBM LAB VIENNA

TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION CF PL/I 30 JUNE 1969

2

3.

(2)

(3)

%)

(3)

(6)

{7

retrieve its comporents of PA. The compcnent TN contains the name
of the task currently being executed.

The task- and event specification TE contains all information
necessary for proper control and, in particular, for the
termination of the current task or event.

The event trace ET is a record of all completions of event
variables and all starts of executions of wait statements in the
carrent task.) '

block activations: D, EI, BA

The dump D is a stack which reflects the dynamic nesting of block
activations and keeps on each level the state components local to
one block activation. The epilogne information EI comtains all
information necessary to terminate the current block activation
correctly. A BA contains the unigue name given to the black
activation, '

interpretation of statement lists: CI, C

The control informatiom CI is a stack which reflects the dynanmic
nesting of groups (statement lists} within the current block
activation. The control C can be considered to bhe a generalized
stack, namely a tree which contains the relevant instructions to
be executed for the statement cuarrently under interpretation.

meaning of names: DN, AT

The denotation directory DN and the attribute directory AT
determine completely the meaning of the declared entities of a
program. It is a notable property of these two directories that
entries once made are never changed or deleted during subsequent

"interpretation.

variables: BAG, S

The aggregate directory AG and the internal storage 5 are devotad
entirely to the variables of a PL/I program. In particular, AG
contains the generations of a variable, which determine the access
to S for retrieving the values of the variable.

input ~ output: ES, FU, FD, H
The external storage ES actually contains the data sets and may
therefore be considered as the counterpart to the internal storage

5. The two directories FD and FD are entirely devoted to the
internal organisation of files. -

The message part M is the repository for messages and comments,
unigne mape generation: ON

The PL/I machine generates unigue names during interpretation for
identifying uniqguely certain pieces of information.

The component N is Just a natural number which determines the
next unigue name to be used. UN is increased by 1 whenever a
unigue name is generated, but never decreased.

THE STATE OF THE PL/I MWACHINE

TBM LAB VIENNA © R 25.099

30 JUNE 1969 INPORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATTON OF PL/T

{8) conditions: CS

The condition status C5 contains the information as to which
conditions are enabled and which actions are to be performed if a
condition occurs.

{9) attentions: AN, E¥, EN

The attention directory holds the information relevant for

"executing access statements and asynchronous interruvts. The
enabling state of attentiors is kept ir EN, the evalnated
attention eavironment in 2V,

(10} time ard date: I
This component consists essentlally of two integer values

specifving the cuarrent time and 2date.

3.2 THE SCOPE OF THE STATE COMPONENTS

This criterion associates each state component with specific sectioans
of the computation. These sections indicate the lifetime of the
respective components. Three different scopes are distinguished.

3 state compenent is called program local {of global} if it belongs to
the entire interpretation of a program, ta_ﬁ_iocal if it is a private
state component of a specific task, and block_local if 1t belongs to a
specific bhlock activatien.

The fellowing lists the state components according to their scove:

(H program_local:

s, Bs, UN, AT, DN, FU, TD, ET, M, AN, E¥, TN, PA

{2) task local:

{3 block local:

3, THE STATE OF THE PL/T MACHINE 3

IBH LAB VIENNA TR 25.09%

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

3.3 DIRECTORIES AND STACES

b

3.

(1)

(2}

Directories and stacks are two important structures of state
components.

directories:

A directory is a collection of an arbitrary number of entities
each of which consists of a name and some associated information.
The name is unigue within any directory so that the associated
information can be retrieved unambiguously.

The followving state components, and the data set directory of ES
are directories in the above sense:
AT, DN, £U, AN, EY, BA, AG, ED

stacks:

A stack always reflects some parenthesis-structure. The following
three components are stacks:
2, ¢I, C.

D reflects the dynamic nesting of block activations and CI
reflects the dynamic nesting of statements within a block
activation.

A =stack is a coapletely ordered sequence of entities. £ is a
generalized stack in the sense that it represents only a partial

erdering.

Among other things C reflects the parenthesis-structure of
expressions dmring their interpretation.

THE STATE OF THE PL/YI MACHINE

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORNMAL INTRCO TO THE ABSTRACT SYNTAX AND INTERPRETATIOR OF PL/I

4, _STORAGE_AND DATA

— e e 2

Corresponding sections of /5/:

9.1 Valueé, value representations, operands and operators

This section describes kov data is represented in the PL/Y machire.
Whereas the primary mathematical copcept is that of a value, data
actually appears in the state comrponents of the machine as value
representations and operands.

The introduction of value representations is suggested by scme
particnlar features of PL/I wmhich make it advantagecus to distianguish
between a walue and its representation in storage:

{(n B value cannot always be stored and retrieved without loss of
accuracy. -
(2) Ry means of based variables a value may be stored with one

aggregate attribute and taken out of storage with another
{possibly incompatible} aggregate attribute,

{(3) By means of record I/0 and area assignnent storage ray be
manipulatad (1ndenendeut of. data attributes) wghich can cause an

attempt to assign valnes to or take values from storage wlth
incompatible aggregate atiributes. .

In both the latter cases nndefined sifﬁations may arise. -

An operand consists of an evaluated aggregate attribute and_a value
representation, where the attribute constitutes the information necessary
for obtaining the correspsnding value from the value representation part

of the operand. Operands have been introduced because many operations
depend not only on the values but alsc on the attributes of their

arguments.
g.1.7 VALUES, YALUE EEPRESEHTETTOHS, OPERBEbS

Corresponding sections of /5/2

9.4.1 A class of data attriﬁﬁfés

9.1.2 Values

9.1.3 Representing and retrieving scalar values

There are different types of vai&esg they are asssociated with
different types of scalar data attributes vhich in addition satizfy the

%, STORAGE AND DATA 1

IBE LAB YIENNRA TR 25,099

IHFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPHRETATION OF PL/T 30 JUNE 1969

2

ll.

predicate is-correct-eda {cf. 9-3{1) of /5/} and they are tabulated in
Fig, b4,.%: o

data attributes associated types of values

arithmetic numeric values

~ character string, character string valunes
character picture,
{decimal) numeric pictare
bit strlng, bit string values

(binary) nuuer;c pictare

POINTER, OFFSEE" pointer values (cf. ©.2.1)

TASK integer values (cf. 7.2)

BYENT event wvalues (cf. 7.5)

: E— ' PR
umummuﬁg‘-mmﬂu“u““mmuﬁ——l

ENTRY, FILE, LABEL uaique names (cf. 8.3, 5.5)

Fig. 8.1 Scalar data attributes #nd their associated types of values

A numerical value is a real or coaplex number (and it is sufficient to
admit only rational numbers, and coaplex numbers with rational real and
imaginary part). & character string value is a list of character values,
a bit strlng__alne a 115t of bit values. Examples of character valnes
are the objects A-CHAR,B~CAAR,...,. 0-CAAR,1-CHAR,... 3 the two bit
values are the objects 0~BIT and 1= BIT,- Note that 1,1-CHAR,1-BIT (the
number 1, the character %, the bit 1) are different objects, Tor the
remaining types of values, see the sections referred to in Fig. #.1.

The internal storage of the PL/I machine is used to represent values. -
Hence, the storage and its constitpent parts are called walge
representations. - Interpretation of a reference to a variable eventunally
leads to an ‘application of the pointer value p to the storage stg (the
latter is itself a value representation), which yields a value
representation: similarly, interpretation of an assignment to a variable
leads eventually to an application of the function el-ass({vr-1,p,vr)
vhich changes the part p{vr) of the value representation vr to the value
representation vr-1 (cf. 4.2).

The sense in which a value representation represents a value is
explained in the next section; a value v is always represented with a
given evaluated aggregate attribute eva , and to retrieve v from its
representation, eva is needed again. -

Preguently, not only the values, but also the attributes of data are
needed. An operand is an object consisting of two components, an
evaluated aggregate attrubute eva and a value representation vr
{(Fig. #.2y. The eva~part of the operand consists of an evaluated
aggregate attribute and a dersity {cf. 2.2.1}.

STORAGE AND DATA

IB¥ LAB VIERNA TR 25.099

30 JUNE 1989 INFORSAL INTRC TO THEE ABSTRACT SYNTAX ARD TRTERPRETATION OF PL/T

| |
s-da SV
| |

Fig. 4.2 Operand

The result of the evaluation of an expression and the arguments for
mapy operations {infix operators, prefix operators, most of the built-in
functions, conversion) are operands.

The eda-part of an operand may bhe an area attribute. In this case,
the vr-part depends on the allocaticns made in the area. There is,
however, no need to introduce a concept of "area value®; therefore, the
area case does not appear im Pig. 8.1, '

8.1,2 THE TRANSITION BETWEEN A VALUE AND ITS REPRESENTATION

In this apd the following sections, whenever the evalmated aggregate
attribute under discussion is held conastant it will be denoted by EVA and
its corresponding eda-part by EDA (to distinguish it from eva and eda
respectively). Let EDA be an evaluated scalar data attribnte of opre of
the types listed inm Fig. 8.1 and satisfying the predicate is-correct-eda
{cf. 9-3{1) of /5/). The transition between a value v and its
representation [with the given attribute EDA) is illustrated by Fig. Y.3:

v~1-set (EDA)

val (EVA,vr}

[V
e .

R

rep{E\/A,v) v - set LEVA)

v - set(EDA)

Fig. 4.3 Transition between a value and its representation

The set v-set [EDA) is the set -of values which are representable with
ENhA; these are reguired to bhe of the type associated with EDA. Tha set
vr~set (EDA) is the set of valve representations that represent values

f. STORAGE AND DATA 3

ITBM LAB VIENNA TR 25,099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

g

Q.

with EVA. The function rep{EVA,v) transforms each element v of

v-set (EDA} into an element vr of vr-set{EDA}, called the representation
of v with EVA; conversely, the funpction val(EVA,vr}) transforms each
element vr of vr-set(EVR) into an element ¥ of v-set(EDA}, the valpe of
vr with EV3a.

Consider the set wv-1-set{EPA) of values that are assumed by
val (EVA,vr} if vr ranges over vr-set (EVA}: this is a suobset of the set
v-set {EDA}). The following is postulated about the functions rep{EVA,V)
and val(EVA,vr) {cf. 9-6{18), (19} of /5/}:

For all elements vr of vr-sef(EVh} and all elements v of
v-1-set {EDA) the two relations

vr=rep{EYA,v} and v=?al(E?A;tr}

are equivalent; i.e., rep(E?A,i}, considered as function over
v-1-get (EDA) only, and val({EVA,vr} are inverse functions.

In viewv of this postulate, v-1-set (EDA} can be called the set of
exactly representable wvalues, i.e.;, of those values for which transitionn
from a value to its representation, and the representation back to its
value, results in the unchanged value. (Fowever, those values not in
v~1~-set {EDA) are not exactly representable, because the function
val{EVA,vr} always leads into v-t-sSet (EDA}).

Examples:

(1) = Let EDA be the attribute CHAR(4). The set v-1-set(EDA} of exactly
representable values is tse set of all character strings of length
4, whereas the set v-set (EDA) is the set of all character strings.
Aence, the string "ABCD' will be exactly representable, whereas
the strings 'ABCY or TABCDE' will not; the valpes of the
representations of the latter two strings will pe #ABCh* and
*ABCD', respectively {where b denotes blankj.

{2) Let EDA be REAL DEC FPIX{4,!). The set g-i~set(EDA} is
impementation defined, the set v-set{EDAR}) is the set of all
numeric valunes that will rot raise the SIZE condition. - Tt will be
guaranteed that the number 123.4 belongs to v-i-set {EDA}, but not,
that the number 123.85 belongs to v-1-set (EDA); the value of the
representation of the latter may be 123,45, but it may also he
123.4, or 123.5 or sometiing else,

In some cases, a test has to he made as to whether the value is
representable; if it is not, th2 SYZE, STRZ or CORVERSION condition will
be raised., For these cases, af instruction test-rep(eva,v) is defined

instead of a functior rep{eva,”). Tor representable v, test-rep{eva,v)
bekaves like a function in tha: its only effect is to yield the
representation of v; it is this function, whether it is called rep{eva, v)

or not im /5/, which is meast in Fig. ‘8.3,

For string EDA, the v-1-se’{EDA} is the set of character string
values, or bit string valames, whose length satisfies the requirements
prescribed by EDA. The set w:set (EDA) is the set of all character strirng
values, or bit string values, and when necessary, ¥ is transformed into
an element v-1-set by tramca:ion, or by extensionr with BLAREK or 0-BIT
respectively. Strings are represented limearly in storage (cf. 9-7(21)
of /57 and 4.2.7.3). :

STORAGE BND DATA

IPA LAB VIENFA TR 25.099

30 JURE 1969 IRFORMAL INTRO TO THE BBSTRACT SYWNTAX ARD INTERPRBTRTIOH OF PL/I

For real arithmetic EDA, let b be the radix of EDA, i.e., b=10 or b=2
depending on whether the base nof EDA is decimal or binary; let p be the
precision of EDA, and, for figed-point ED2, let g be the scale factor of
EDA. _—

The set v-set {EDR) of represent&blé real numerical values is the set
of all real numerical values v such that

(n for figxed-point EDA: {v.htg] < btg
(2) for floating-point EDA: min-flt-EDA, € v < max-f1t-EDA,

where min~-flt-EDAR; and maxvfit—ﬁbni are certain
implementation~defined liaits (depending only on b}
{cf. 9-12({62),({63) of /5/}. .

The set v=-1-set{EDA) of ezactly representable values is
impiementation-dependent. Tt wil}, however, contain the subset
v~0-set (EDA} {cf. Pig. U.8.1%1) defired as frllows: wv-~0-set{EDA} is the
set of all values v of v—-set (EPA}. such that

{1} for fized-point EDA: :v,bvq is an integer
(2) for floating-point EDA: v=m.bte,

where m and e are integers aﬁd_amj < bip. -

v-4-set (EDA)
y-0-set (EDA)

rep(EVA,v)

e —
— -_-'—h._

~——— —

—— et

LOEVA v .
Ve M vr - set CEVA)

v-set(EDA)

Fig. 4.%a Transition between a real valne and its representation

L. STORAGE A¥WD DATR 5

IBM LAB VIENHA TR 25.099

INTORBAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JJUNE 19269

The definition of v-0-set (EDA) expresses that p is ¥the nurber of
digits” and g is "the number of digits to the right of the decimal
point”., Since no particular normalization rule is assumed, the linmits
for floating-point representation (cf. the definition of v-set{EDA)) have
been expressed as limits for the entire value, rot for the exponent.

Exapple:

Let EDA be REAL DEC FIX{4,1) {cf.-exampl 2 in 4.1.2). The set
v-set {EDA) of representable values is the set of real numerical
values v such that {v} < 1000, The set v-0~<set {EDA} of values for
which exact representation is guaranteed is

[0,40.1,~0.1,+0.2,-0.2,...,4995.8,-999,8,4999.9,~999.6}.

But v-1-set {EDA) may be larger than v-0O-set{(EDA), i.e., there may
be other values {within v-set {EDA}) that are exactly representahle
as well. ..

FPor the other ‘attributes EDA, both v-1-set (EDA) and v-set{EDA) are the
set of all values whose type is asseciated with EDA, i.e., all these
values are exactly representable {[FPig. &.5.2)3

val (EVA,vr)

— —

~
e e T

v-set(EDA) vep(EVAY) Tt (EDA)

Fig. -4.8b- frapsition between a non-real value apd its representation

6 4, STORAGE AND DATA

IBH LAB VIEKNA T PR 25.099°

30 JONE 1969 THFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

8,2 IXTERNAL STORAGE_AND GEBERETIGHS cr YkRIABLES

B ik . e e

Correspending sectiors of /5/3
3.4 The storage part §
3.3.4 The,&ggregate directbtngg"

8.3.8 Sub-generations of genéfaiicnsﬂ‘

$4,2.1 STORAGE AND STORAGE PARTS

The storage part S of the PL/T Hacking is a model of .actunal computer
storage. It shows, however, only the assential properties which may be
attributed to amy actuzl storage, without exhibiting any properties
specific to a particular realizatien. Wo explicit construction of the
storage part is therefore given. - It is rather described by the
properties of and the relations between the functions which perform the
basic actions on the storage part. This descriptive method while still
being precise frees the definition fromr the burden of unnecessary
details.

Storage parts are gsed to rTepresent values of some kind. They are
called, therefore, value representations. -Even the emtire storage part S
is said to be of the type value representation.

There are functions which select parts ont of a value representation,
wvhich are called ppintersg. - Given a value representation vr acd a pointer
p we call p{Vr) the p-part of the valoe representatlon ¥r. If vr has no
B part, p{vr) is undefined and we say that p ig oot aggilcable to ¥r.

The characterlstic-property of a-value-representatlon is its size.
The =ize of a value representation getermines which pointers are
applicable to it amd, censequestly, vhich parts one may select from it.
Tn turn, the size of a part selected by a pointer is determined unlquely
by the pointer (i.e. provided that vr has a p-part, the size of p(vr} is
lndapendent of any further propertles of ¥I). o '

3 tua—dxmen51ona1 picture may illustrate'the relat1on hetueen a value
representation vr ang its parts:

p; (vr)

Pig. .5 Two-dimensienal picture of storage

4, “STORAGE ANWD DATA 7

TBEM LAB VIBNNA TR 25.009

INFORMAL INTRO TC THE ABSTRACT SYNTRX AND INTERPRETATICN OF PL/T 30 JUNE 1969

If tvo pointers select independent parts, they are called independent
pointers. - Two parts being independent means that they have no parts in
common. MNon-independent parts are shown in Pig. -4.5 by overlapping
regions, i.e. p, is independent of p,, but not independent of p,. -

Exanple:

A linear bit storage may serve as concrete sfodel, 1A valae
representation consists of a linear arrangement of single bits,
indexed from T up to a maximum index n. n is the size of the
value representation. ERach pointer is a function with two integer
arguments f(i,;,is}. Tt is applicable to a value representation vr
of size n if 1€i,%i; and i3¢%n. - £({i,,i.) {vr) denotes the part
between and including the isth and the i,th element. Two pointers
f{isg*yia') and £{i,",io")} are indeperdent lf 1€i4'<C,"Y, 151,910,
and either i,;%<i," or. ia“<11 .

f (2,5 vr)
A

11213 latstiel7l8lolioln [2elw] w

v
(4,9 vr)
Fig. ‘4.6 Linear storage model

The p,-part of the py-part of a étoraqe vr is defined by p,4 {pz(vr}),
OT pg*py(vr). The symbol » is used fpr functional composition. - The term
Pi*pz represents again a pointer, -

‘3,2,2 ELEMENTARY ASSTIGNMENT

The p~part of a value representatior vr can be changed by the
elementary assignment function el~ass(vr,,p,vr), provided that the p-part
of vr exists, and that the size of vry, {the part to be assigned) is eqgual
to the size of the p-part. The function gives a new value representation
vr' :

vr' = el-ass{vr,,p,;¥r) .

vr' has the same properties as ¥r éxﬁept tkat vry is nov the p-part of
vr'. All parts which are independent of the p-part remain untouched. -

This has an important consequence, namely that all parts which are not
independent of the p-prart may be different after the assignment. - Since
no relationships between parts of value representations are defined, an
assignment simply makes all those parts nnknown which are not independent
of the part to which the assignment is made (with the exception of this
part itself).?

g - ——————]] i v o

8.

4,

1) There are exceptions to this in string assignment,

STORAGE AND DATA

IBHM LAB VYIENKNA TR 25.09%9

30 JOUNE 1969 INFORMAL TNTRO TO THE 2BSTRACT SYNTAX AND INTERPRETATION OF PL/I

Exapple:

Let the parts of the valne representation in Tig #.5 be:

Pa{vr} = vry
pa{vr} = vra
Pal¥r} = vr,

After execution of the. elementary assignment el»aSS(er ¢« D1 rVE}
the situatiom is:

Py {7CY) = vry* -
pa {vr'} .= anknown
Palvr'} = ¥ra .

#.2.3 ELEMENTARY ALLOCATION AND FREEING

Oon allocation of a variable a certain stoerage part is reserved for
holding the -wvalues of the ¥ariable.: The pointer identify¥ing this part is
noted -in order to prevent farther allocations from using it. - On freeing,
the part is released for further use..

An allocation can be made either in the main storage 5, or (for based
variables) in an area (whick itself is part of the main-storage)}. The
s2t of pointers identifying those parts of the main storage or of an area
vhich already have been used .for allocations, is called the allecation
state of the main Storage or of the area, respectively. The allocation
state is kept in the main storage, or in the area, itself, and can be
retrieved by applying the fanction alloc-state:

allst = alloc-state{vr)

allst is the allocation state of vr {vhich is the main storage, or anm
areal.

If the py-part of 5 or of an area is used for a new allocation, py is
added to the respective allocation state. - This action is called
elementary_allocation. Deleting a poinater from the allocatzon state 15
called elementarx free:ng. .

Fig. #.7 An area is allocated ip the p-part of 5. The py-part and the
pz-part of the area have been used for allocations. p is noted
in the allocation state of 5, py and p are noted in the
allocation state of the area.

4, STORAGE AND DATA 9

TBM LAB VIERHRA TR 25.099

INFORMAL INTRC TO THE ABSTRACT SYNRTAX AND INTERPRETATION OF PL/T 30 JUKE 1969

Elementary allocation and freeing is performed by the elementary
allocation and the elementary freeing function, respectively:

el-alloc{p,,¥r} gives a value representation vr* having the same
properties as vr, except that its allocation state is amended by

Das

el-free({p,;,vr} gives a value representation vr! having the same
properties as vr, except that p, is no longer member of the
allocation state,

The storage part which is reserved on allocation of a variable is
jdentified by a pointer given by an implemertation-dafined function which
depends on the evaluated aggregate attribute of the variable and on the
properties of the storage {the main storage or an area) in which the
allocation is made (for allocations in ar area only the allocation state
of the area is significanmt, but not its size}l. The selected part must
fulfil the following requirements:

{1 its size must be such that it matches the size of the value
representations which may be associated with the variables

{2 it must be independent of all the storage parts which are
identified in the allocation state of the storage in which the
allocation is mades

{3) it must be independent of the part in whick the allocation state
is kepnt.

If no storage part having the above properties can bhe identified, the
allocation is not possible. This sitnation is called storage-overflow.
The actions performed omn overflow of the main storage are implementation
defined. On overflow of an area, the AREA condition is raised (if
enabled).

The right size of a storage part is discussed in terms of the storage
mapping function in the next section.

4.2.8 STORAGE HMAPPTNG

10

L'-

The properties of a variable which are of significance in connection
with storage mapping are expressed by its aggregate attribute.

A variable, according to its aggregate attribkute, may be a scalar, an
array, or a structure variable. An immediate component of a variable c¢an
be identified by an integer value. - For array variables, this integer
value must be in the range between the lower and the npper bound of the
array, for structures between 1 and the number of immediate components of
the structure. A component of a variable is again of scalar, array, or
structure type. Components of nom~scalar components are identified in
the same way as immediate compoments of a variable, A component of a
variable therefore is identifiable by a list of integers, which is called
reference l1list (cf. 4.2.6).

An immediate component of a variable is said to be to_the left of
another immediate component, if the integer identifying it is smaller
than the integer identifying the other component. This generalizes in an
obvious way to non-immediate components. -

STORAGE ARD DATA

IBM LAB VIENKA Tk 25.099

3D JUNE 1969 THFPORHAL TETRO TC THE RBSTHRCT SYWTARXY AWD INTERPRETATION OF PL/T

The way in which the various components of a variable are associated
¥ith storage is determined by the storage_papping funcition. Let the.
storage allocated for a nor-scalar variable with aggregate attribute eva
be p(S). - The storage mapping fanction map{eva,n) gives a pointer pg such
that the nth immediate componert of the variable is associated with the
storage part pp(p(S}). The folloving reguirements must be satisfied by
the storage mapping function:

{1 if a variable or the compponent of & variable is an array or a
structure, the storage parts associazted with the immediate
corpvonents must be mutually imdependent.

{2} for each scalar aggregate attribute there is a cevrtain
implerentation-defined size of those valuwe .representations that
may bs asscciated with & variable given this attribute
(cf. 4,1.2} . The size of the-part of 5 associated with a =Zcalar
variable, or the scalar part of a variable, must match the size
determined by the scalar attribute. - '

Peculiarities of the mapping fanciior for the handliang of strings in
storage are discussed im 8.2.7.3.

3}2»5 GENERATIONS OF VARIABLES

The infornation necessary for accessing storage via a variable is
assembled in the geperation of the variable. - B new gemeration is formed
on alliocation of a wvariable ard remains valid until freeing. - A
generation is not changed between allocation and freeing.

4 generation consists of three parts:

{1 . the aggregate attribute partQ"This part consists of the evalrvated
aggregate attribute of the variable.

{2) the siapping information. This part gives the necessary input te
the storage mapping fumction dnd consists of an evaluated
- aggregate atiribate.,

There are c¢ases where the aggregate atitvribute coantained in the
mzpping information of a gemeration differs in array bounds and
strisg lescths from that-in tThe aggregate atiribute part of the
same gdeneration. This may odcur whern the storvage addressed by the
variable cwaing this generaltion has not been allocated via this
variahie {(i.e. £for data parameters and defined wariables).

{3} the pointer part. This part identifies the storage parts
associated with the variable. For gensrations formed on
allocation of s variable it consists of a single pointer. -
Sub-generaticns of gensratiops and generations of data parameters
may have pointer parts which are strygctuvred lists of pointers
fbfa q’u 2 5} N

On allocation of a variable with ewaindted aggregate attribute eva a
ney generation is foemed with

aggregate attribute part: ava

mapping iaformation: eva

4, STORAGE AWD DATER 11

IBH LAB VIENNA TR 25.199

INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

pointer part: single pocinter determined from eva and the
properties of the storage part in which the
allocation is made {cf. 8.2.3).

with a variable can be identified by a single pointer. This is the case
if the pointer part consists of a single pointer, and if all the storage
tdentified by that pointer is used by the wvariable. The latter condition
reguires that the array bounds and string lengths in the aggragate
attribute part are egual to the correspending array bounds and string
lengths of the aggregate attribute im the storage mapping part. It
follows that a ganeration formed on alleocation of a variable always is
connected,

4.2.6 SUB~GENERATIONS OF GENERATIONS

12

5.

Given the generation of a variable and a reference to the variable,
the sub-generation can be defiped vhich belongs to the mart of the
variable referred to. The evaluated sub-generation of a variable is unsed

N vhen an assigrment is made ¢o the referenced part {(provided that
it is scalar)

{2) ghen the operand associated with the part is to be evaluated
{provided that it is scalar}

{N when it is passed to the parameter of a procedure(cf. 8§.3.1).

Tn the reference to a varizble in the program text {cf. 10.2.5)
impediate compoments of stractures are identified by identifiers,
immediate components of arrays by subscript expressions. DOn evaluating a
reference, identifiers of structure elements are replaced by the indices
of the elements {the number of the elements when counted freor left to
right} and subscript expressions are gvaluated and ceonverted to integer
values {except whem subscripts are specified by asterisks)., The resualt
is a 1list of integer valves and asterisks, whick is calied the
reference list.

Example:
Let a variable ¥ be declared in the concrete text as
DCL 1 X{7,2) UNALIGNED, 2 Y BIT{3}, 2 Z{5} BIT{S):
and a reference to X be -
X {1,% . Z(S)
then the evaluated reference list is <1,%,2,5>.

A generation and a reference list determine a spb~gereration in the
following way:

{1} A new aggregate attribute part is formed by a sub-aggregate
attribute of the aggregate attribute in the aggregate
attribute-part of the generation. Tt is obtained by successively
applying the elements of the reference list {from left to rightd
to determine immediate components of the aggregate attribute. If

STORAGE AND DATA

IBM LAB VIEKNA

30 JUNE 1969

(2

(3)

TR 25,099

INFORMAL IRTRO TO THE ABSTRACT SYNTAX BND INTERPRETATION OF PL/Y

the element of the reference list is an integer value i, them the
impediate component is

(a) for arrays the aggregate attribute of the immediate array
elements -

(b} for structires the aggregate attribute of the 1th structure
element. -

If the element of the reference list is an asterisk and the
aggregate attribute is #an array, then the resalt is again an array
¥ith the same bounds, but vith aggregate attributes of the
elements as defined by application of the rest of the reference
list to the original element_aggregate attributes, An asterisk
defines a cress-section of the original array.

R new . mappingllnfbtmetloa is formed. The aggregate attribute in
the mapping information of the generation is treated like that in
the aggregate attrlbute part (see above}y. -

i new 901nter part is formed by successive appllcatlou of the
elements of the referesnce list:

{a) If the pointer part consists of a single pointer p and the
first element of the reference list is an integer valne i,
"then the new poirter part is

(map(eva,i)}=p

where .eva is the aggregate attribute of the part of the
variable corresponding to p. ‘The new pointer part
identifies the storage part corresponding to the ith
immediate component of this variable compornent.

{b) If the pointer part is a single painter p and the first
element of the reference list is an asterisk the result is
a list of pointers p;,;Pagss»Dn. The variable part
corresponding to p must be an array in this case, n being
the rupber of inmediate elements of the array. The
pointers Pyp,s«v,Pn 2re given by:

{map(eva,lbﬂ}jsp

by =
pa = {map{eva,ibds1}}ep
Pn = {map{eva,ubd)})ep

where 1bd and ubd are the lower and upper bounds of the
array, ubd - 1bd = p - 1, and eva is tke array attribute,
The remaining refarence 1ist them rust be applied to each
individual element of;the 1ist pPyyeess;Pn in forming the
final pointer uart . The result #ill be a non-connected
generation, '

{) If the poirter part is a list and the first element of the
-reference '1ist ‘is am integer value. i, the resuvit is the ith
element of the list. The part of a variable corresponding
to a list of pointers_ is always an array. -

&. STGRAGE AND DATR 13

IBM LAB YIENNA TR 25,099

INFOBMAL INTRO T0O THE ABSTHACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1369

{d) If the pointer part is a list and the first element of the
reference list is an asterisk then the remaining reference
list is applied to esach element of the vointer list (the

result being again a listd.

The three patts as defined umder {1}, (2) and{3) fora the
sub-generation of the genmeration, determined by the reference list. &
sub~generation may be unsed in the same way as the original generation.

Example:

Consider the reference to the variable X as presented in the
preceding example. The step-wise constroction of the aggregate
attribute part amd the pointer part of the sub-gemeration
determined by the referepce is jliustrated in the following.

Evaluated aggregate attribute eva of X:

s~ lhd s~ ubd s-elem
| 7
i
5. Lbd 5~ ubd 5-elem
1 2
| |
elem (1) elem (2)
f +
$-aqqr s - aggr
| | |
BITG) UNAL s- lbd 5- ubd 5-elem
1 5 BIT{S)UNAL
Fig. 4.8a

14 4, STORAGE AND DATA

IBEM LAB VIERNA TR 25.099

30 JUNE 1969 INFORHAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATIOR OF PL/I

Let p be the pointer part of the generation asseciated withk X.

{n The reference 1list is <1,%,2,5> (see preceding example}. The
sub-aggregate attribute defined by the first element of the
reference list is:

eva,:
s- lbd s-ubad s-elem
1 2
elem (1) elem (2)
{ | %
5- aggr 5-aggr
| l
BITB) UNAL 5-lbal 5-uba s-elem
1 5 SIT(SUNAL
Pig. %.8b

With py = pap{eva,1}) ¥e get the modified pointer part: ©Dy®p.
p:*p{S) is the steorage associated with the first element of the
array variable X.

{2) The remaining reference list is <*,2,5>. ¥e nov have to create a
list of pointers, each element correspoading to ar element of the
array eva,. ®ith

mapf{eva, ., 1}

Paa

It

Paa = map(eva,,2)
¥e gét the list of pointers: <pz4%P1®PsP2a®Pa®P?.-

{3} The remaining reference 1is£ is €2,5>», The sub-ageregate
attribute defined by the first element is:

%, STORAGE AKD DATR 15

IBM LAR VTENHA

TR 25.799

THFORMAL INTRO TO THE ABSTRACT SYNTAXY AND INTERPRETATION OF PL/I 30 JUNE 7969

evana:

s-tkd s-ubd 5-elem
1 2
s- bl s-ubd s-elem
1 BIT(SIUNAL
*ig., 8,Bc
¥2 now have to modify =ach slempent of the above list of pointers.
Hith
Ps = map (evVass,2)
evasgy, being the aggregate attribute corresponding to each element
of the poiater list {i.e., the elements of the array evay):
eVagq2
elem (1) elem (2)
5-aggr s-aggy
BIT(3) UNAL |]
5-Lbd s-tihd S- e!tem
i 5 BTGUNAL
Fig. 4.84

{4

we get the modified pointer list <p3®pP33°P1®D,D3°0,2°Dy 20>,

The remaiﬁing reference list is <5>, The sub-aggregate attribute
defined by it is:

16 4, STORAGT AWD DATA

IBM LAB VIENNA TR 25.099

30 JUNE 196§ INFORMAL TNTRO TO THE ABSTRACT SYNTAX ARD IRTERPRETATIOR OF PL/T
eva,:
s-lLd S-Lbd s-dLm
| | |
1 2 BIT(SJUNAL
Pig. U4.8e

¥e have to modify each elemant of the above list of pointers,
¥ith

Ps = Map{evass,5)

evad,g being the aggregate attribute corresponding to sach element
of the pointer list:

evVasasl
| | |
s-lbd s Ubal s-etem

1 5 BIT(BJUNAL

Fig. 4.8f

we get the modified pointer list <p,*pP3*Da1®D1®P,Te¢®Pa®Paa®Pa®D>.

The'resnlting sub~generation is éomposeﬁ of the aggregate attribute
part eva,, the mapping information eva,, and the pointer part consisting
of the above pointer list, '

Suppose we would use the reference X (1,%*).Z{5} as argument to a
procedure, where the corresponding parameter P has the atiribute eva,.
The non~connected sub-generation corresponding to the reference is then
installed as the genreration of the parameter P. In case of a referesce,
say P{2), to the parameter again a sob-generation if formed. This
sub~generation consists of

aggregate attribute part: [BIT(5) UNAL
mapping information: BIT{5) URAL

pointer part: PpPy®Pa®DPaa®pPi®p {being the second element of the list of
pointers in the generatior of P),

The operand defined by the reference P {2} consists of the aggr=gate
attribute BIT{S} UNAL and the value representation p,*p3®pza®"pP,®p{5}.

4, STORAGE AND DATA 17

TBEM LAB VTIENUR TR 25.0099

INFORMAL INTEO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1369

4,2.7 SURVEY OF ATTRIBUTEHES DEPENDING ON THE STORAGE MODEL

4,2.7,1_Areas

A variable, or part of a variable, declared as an area gets associated
on allocation with a storage part, whose size depends on the declared
size in an implementation-defined way. A& certain part of this storage is
always reserved for holding the allocation state of the area. The
allocation state is a set of pointers {cf. %.2.3}. Immediately after
allocation of an area the allocation state is made the empty set.

Area variables are used to make allocations and freeings via based
varjiables in the storage assgciated with the area variable
{cf. 1D.1.1.4).

h,2.7.2 Pointers, offsets

18

4.

The values of variables declared with the POINTER or OFFSET attribute
are pointers as defimed in #4.2.7. Thkey can be used to identify storage
parts associated with connected generations. Values of pointer variakles
are used to identify parts of main storage, the values of offset
variables are used to identify parts of areas. The use of peoiater
variables for gualifying references to based variables is described in
10.2.5.3, the use of pointer variables fer allocating and freeing via
based variables in 10.1,1.

If p(S) is the storage associated with an area, and o is an offset
value identifving a part of the area, then oep is the pointer value
identifying this storage part in maim storage. &n area together with an
offset relative to this area therefore define a pointer to main storage.
Conversely, given the peointer to an area and a peinter to a part of the
area, the offset of that part relative to the area cam be found. This
process is called conversion between pointers _and _cffsets.

It is important to noke that an offset value identifying the storagse
associated with a variable allocated in an area, only depends on the
aggregate atiribute of the variable and on the allocation state of the
area at the time when the allocation was made, The allocation state, in
turn, is made up of the offset values identifying those storage parts
used by the allocations. Similar allocations made in the same seguencs
in two different areas therefore define the same allocation state for the
areas, An offset identifying the storage part of, say, the Jast
allocation in the one area therefore rmay bhe used to identify the storage
part of the last allocaticn in the other area.

The ADPR builtin~-function applied to the referemce to a variable gives
a pointer operand, provided the sub-generation associated with the
reference is connected, The valpe of the operand is the pointer taken
from the pointer part of the sub-generation.

STORAGE AND DATA

IBM LAB VIENKA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

8,2.7.,3 The ALIGNED and ONALIGNED attributes

Variables may be declared with the attribute ALIGNED or DNARLIGNWED.
These attribuetes, being part of the aggregata attributes, serve as
argument to the storage mappiag function {cf. 4.2.4). The intention of
nnaligned mapping is to optimire with respect to storage space, at the
cost of access time. The intention of aligned mapping is to optimize
With respect to the access time to the parts of stored aggregates, at the
cost of storage space The exact meaning, however, is implementation
defined. :

There is a special property of the mapping function for unaligned
string aggregates. The location of the various parts in storage is
Estructure~independent", i,e. - the pointer identifying a part depends
only on the number of elements {bits or characters) in the part, and on-:
the number of elements {hits or characters} vwhich are to the left of the
part in the aggregate. GSpecifically, the identification of a single bit,
or character, is determired by the pumber of bits or characters which are
to the left of it, i.e. by its linear index. This property gives a
vell-defined relationshivp between the locations of the elements of tvwo
differently struactured, unaligned string aggregates. The property is
significant for the definition of string overlay defining
{cf 10.2.5.2.3} . ‘

4. STORAGE AND DATRA 19

IBH LAD VIENNA TR 25.099

INFORHMAL INTRO TQ THE ABSTRACT SYHTAY AND INTERPRETATION OF PL/I 3% JUNE 1969

4,3 _FBXITERBNAL STORAGE AND _FILE TDHIONS

20

4.

Corresponding sections aof /5/:
3.6 Input and ocutput
11.1 Data set mapoing

11.2 Basic access to data

The following abbreviations are used in this gection:

mRD,MP mapping parameter

ds, DS data set

ids,IDs inner data set or proper inner data set
el data element or proper data element

vr vélue representation

csa s2t of file attributes or complete set of file attributes
ea evaluated enviroament attribute

£ " file name

u file unrion name

char character value

tmt _ transmission error flag

File attributes are abbreviated in the text by the first three letters
disregarding official kevyord abbreviations,
RExceptions: BST is the abbreviation for BITSTREAHN, CST for STREAM, and
PRT for PRINT.

This section defines the organisatiocon of the external storage which is
the repository fer data sets and the association of a file with a data
set, The association is considered mainly between the file usnion and
external storage. Information ceoncerning the relation between a file
value and a file name, and the organization of file directories can be
taken from section 5.5 and in more detail from szection 12.2.1.

Within the scope of this section it will be of little importance
vhether a file nrior name, say u, or the file union itself (i.e.; the
entry in the file union directeory selected by u} is considered. The main
difference ? between the two is that the file union name is valid from
the creaticn of a file union to the end of the computation, and the file

1} Another differemce is that file union names allow a distinction
between identical file unions, which nevertheless might have been
created by different openings. .

STORAGE ANWND DATA

IBM LAB VIENNA TR 25.999

30 JUWE 1969 INFORMAL INTRO TO THE ABSTRACT SYRTAX AND INTERPRETATION OF PL/I

union is valid only until the file is closed, has nc impact as long a
file is considered after opening and before closing has occurred,

#,3.1 EXTERNAL STORAGE

The external storage consists of two immediate components (Fig. #.9).
Ope compopent is the data set directory consisting of data sets and
optional transmission error flags. An entry of the data set directory is
selected by a data set name. The other component of external storage
conveysinformation concerning data set sharing., This component is
constant for a particular program but it is implementation-dependent. It
reflects the "program~dependency” of the relation hetween a file ard a:
data set. -

information

I__*%"_mj fw_'*“"mwm“"‘mm“"m“—*'wm—l
S'ds -sh j i ds- Y14) d.S'hg_ i

l by |
ds-sh bt |

I !

Data set | : ds, feat, ds, Itmtll |
A |
Shavmg : TMT or & T™T or & |

| | 1

Data set directory |

Fig. 4.9 External storage ES

The external storage is initialized by the iritial call. Changes of
the data sets may occur by data transmission and by indeterministic
environmental influences, such as data set switching in case of multiple
volume data sets, inpat on transient (i.e., tele-processing) data sets,

"transmission errors which set the transmission error flag to TNT, and all

kind of operator interference. Envirormental influences may cause the
insertion of data sets under data set names which previously yielded
empty data sets. However, data sets must not be deleted, and a
transmission error flag THT must not be reset to empty.

Tt is important to note that speaking of a "multiple volume data set®,
"koyed data set", etc. is only an inexact way of expressing the fact that
a data set could have been related {or in fact is related} with a file
{or files} treating the data set like a multiple volome data set, or like
a data set containing keyed records. That is, data sets de not have a
structuring as such: . they are elementary objects. However, if a data
set is related at some instance with several files, they might treat the
data set as if it were strunctured. - At the same instance, the structuring
may be differsnt for different files, i.e., data transmitted to the data
set by one file may appear differently to another file, A file is said
to map a data set into the structured form of an inner data set. Data
set mapping depends on the file union and on the data set {cf.t4.3. 3).

A file union is alvays related with exactly one data set which can be
conceived as a single volgme. The environment attribute amnd the

h. STORAGE RE¥D DATA 21

TEM LAB VIENNA . TR 25.099

INFORMAL TNTRC TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JONE 1969

4.3.2

22

h.

data set title contained in the file uniom and the data set sharing
information nf ES are the arguments of an implementation-devendent
function which yields the data set name selectlng the data set, The case
that the data set name refers to no entry of the data set directory is
excluded at opening, and no file unicen will be created in such a case,
The data set related with the file union remains the "same® throughout
the existence of the file union. Since, in general, there i=s no privacy
of a data set, the only entity which is gunaranteed to remain the same in
the data set name.

A data set contains data, i.e., entities which exoplicitly take part in
data transmission. In addition, it contains descriptive information
about data. TFor this reasor, it would not be ingtructive to imagine
e.49., a record data set as a list of *logical records?. 1B more realistic
view sucported by the model tn he developsd would be to conceive of a
data set which is composed of the complete contents of the medium on
which it is stored {e.g., the dump of a disk pack including all
meaningful data separators, and including all hidden buffers) and of the
description of the contents {e.g., location of the data set lahles,
blocking format, physical record length, and keys of records). This
concept of a data set is a generalization of the usual notiom of a data
set.,

T'ILE ONION OF A FILE

The information necessary for accessing the data set associated with a
file is assembled in the file upion of a file which is an entry of the
file uwnion directory FU. The file union is created asn npening of a file
and rermains valid until closing. & file union consists of components
which are present in ewvery file uwnion and which rewain constant betveen
opening and closing: the #file parameter® and the file name f
(Fig. 4,10} .

FWW_“__I
!
| Data I
(‘ T — transmission
5-p S_éf | components|
_______________ o
| -y L
5-cso s-ed s-title ; [:__Eﬁ“_
L
r_sa] ea title i |
i
File PQFOJhEter !
_________________ _J

Tig. 4.70 Tile unrion

STORAGE AWD DATA

TER LAB VIENNA

TR 25.099

30 JOXE 1969 TRPORMAL INTRC TCO THE ABSTRACT SYNTAY AED INTERPRETATION OF PL/T

211 components of the file parameter are compuied on openrning. The
file parameter compenents ea and title serve for localixzing one data set
in ES; the mappning parameter {which is identical with the file parameter

except for buffering or exclusivity attributes contained in csa) ascribes
a certain structuring to the localized data set,

The compomnent csa of the mapping pérameter can be one of the following
twenhty sets of file attributes:

BST with IHP or OUT

CST with IKP or OQUT or OO0T,PRT

REC, SEQ with INP or
GOT or
UFD or
REC, TRRE with INP or
00T or

I8P,
0aT,
UP Dg
INP,
0uT,

REC, DIR, KBY with IFNP or

KEY
KEY
KEY

-KEY

KEY
ouf

orT
or

or

or

INP, BAC cor IHP, XEY, BAC or

UPD.

The other components of the file ynion are summarized in Pig. #.171 in
tabular form, contaising ap abbreviation ¢of the name of the ceomponent, a

dascription as to whether the component is constant or variable and of
what kind of file unien it is a pari, and references to sections which

describe the comporent in rore detail.

4.

STORAGCE AND DATA

23

IBM LAB VIEZENNA TR 25.099

IRFORMAL THTRO TO THE ABSTRACT SYWTAX AND INTERPRETATION OF PL/T 30 JUNE 1989
Component Description Type of file union
£ copy of file name used constant cf. 12.2.3.2
for on~condition raising
st status of the file unmion ‘variable cf. 12.2.3.2,
with respect to data set 12.2.3.3,
syitching and data set 12.5{2)
label processing
volno number of current volume variable non-keyed cf. 12.8
col current colunn variahle strean cf. 12.2.3.2,
12.6.3.1
cournt namber of data fields cf. 12.6.1,
transmitted since start of 12.6.2.1,
last statement 12.6.3.2
I1sz maximum number of bits or constant output cf, 12.2.3.2,
characters in a 1line streanm 12.6.3.1
line current line variabie print cf. 12.2.3.2,
12.6. 3
DSE maximuae number of lines comstant print cf. 12a. 2,
on a page T2
buf buffer pointers with or variable buffered cf. 12.3.2,
without key seguential or 12.5.3
transient
io-ev names of attached .variable record ct. 12.2.3.2,
I/0-events non—-transient 12.3.2,
non=hufrered 12.5.1
tn-key names of tasks and the variable exclusive cfe 12.5.1,
keys locked by thenm 12.5.2

.3.13

Fig. 4,11 File name aand data transmission components of a file union

The file union contains nearly all informatior which characterizes a
particular ®generaticn® 1 of a file, apd the variable components of the
file union keep the necessary hlstory. Cnly task-local information for a
file cannot be stored in the file union. This information is part of the
file directory and is necessary for opening and clesing and for the
interpretation of transmission errors en stream files.

sATA SET MAPPING

The necessity of data set mapping originates from the wvarious ways one
and the sane data set (more exactly:z =z data set accessible by one and
the same data set name} mavy take part in data trasmission. The roncept
of mapping 15 already meeded in the case where considerably different

24

b.

1) The unigue identification is a file umion nane

STORAGE AND DATA

IBN LAB VIENWA TR 25.059

30 JOUKE 1969 INFORMAL INTRC TC THE ABSTRACT SYNTAX AWD INTERPRETATION OF PL/T

file uniens are successively associated with a particular datz set. Data
set sharing by file unions existing concurrently, irrespective of whether
they are shared again over tasks, ogly influences the logical statements
which can be pade with respect toc the mapping.

Example:
HATH:PROC ...

PUT FILE(A) TDIT(X,Y.Z} {R{20}}: stream file union

CLOSE FILE{A): ' T

IF X=Y THEN READ FTLE{R} INTG{ﬁ}; record input file union

ELSE OPEN FILE({A} UPDATE KEYED: record unpdate file uvwnion
REFRITE FILE{A) KEY{V) FROH(Z}:

LRI]
ERD;

The eanvironment attribeotes for all file umions are the same {they
are not specified in concrete text}, and also the data set titles
are identical [*A*), hence all file uniocns refer to the sane data
set name. The output produeced with the stream file union may be
read irp by the record input file omion or by the record gpdate
keved file union. As to whether reading or updating is legal, amnd
what would be the effect of reading or updating of the data set,
can be decided cnly at ezecution of the READ or REURITE statewment,
Tt is anticipated that PL/I gunarantees very little abeut the final
state of the data set ander consideration in this example.

The file unions a data set is associated with and the “"contents® of
the data set are not predictable nntil the data set is effectively
accessed somewhere Aduripg program execution. This situation can be
roughly compared with the assumption that sSomevhers during execution of a
program it might be possible to switck from the 6G-character
representation of a congrete program into the 48-character
representation, or to treat blanks like semicolioms. With this asserption
it would not be possidle anymore to tranrslate a program into abstract
text, and the concrets text itself vould have to be intervreted.

The sitwnations may also be cnmpared to a valeue representatior heing
totally or partially accessed by several generatioms. Only for certain
generations canm the ralue representaticn be mapped into a reasonable

value.

If a data set ds cam be accessed, i.e., if the mappieg exists, the
mapped data set is called an inner data set ids. The mapping depends
solely on the mapping parsmeter mp of the file union and the data set:

ids = decipher{mup,ds)

The structuring of isner data sets, and the notion of proper inmer
data sets is described in the seguel. Since data transpission consists
of a change of ds, this change has to be reflected in ES from where 45 is
taken., The changes are aiways made explicitly in the ids, and the
changed data set which will replace the data set iz §35. The mapping from
ids back to ds, and the most general properties of both mapping are
described in the sequel. Those properties of the mapping specifically
related with basic data tramswmission are discussed in section 4.3.8.

4. STORAGE AWD DATA 25

ITBM LAB VIENNA TR 25,099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AWD IRTERPRETATION OF PL/I 30 JONE 1969

4.3.,3.1 Tnner data sets

Given a mapping parameter HP, there will be a sabset of data sets
which can be mapped into inner Jdata sets. This subset is characterized
by all data sets ds for which the predicate is-decipherable{HP,ds} is
true. If this subset is nen-empty,! there is at least one data set, say
DS, which yields IDS, and this inner data set is in addition a proper
inner data set (see below). Not every proper innrer data set can be
mapped back into a data set. However, IDS can be mapped back and yields
DS again. Hence, under the prenise is-decipherable{mp,ds), for every
mapping parameter mp and data set ds

decipher (mp,ds) = ids and cipher{mp,ids) = ds

is guaranteed.

is®idg

is*ds

decipher (1P, DS)

—— —

cipher (™MP,IDS)

1S = decif‘c;h evable P

15 PrQP - ‘d'SHP
ig - daclphered.MP

Pig. 4.12 Domain and range of the mapving functions decipher/cipher,
given a particular mapping parameter BP

In Pig. 4.12 the sets of data sets, inner data sets and proper inner
data sets are symbolized by is= 2ds, isids, ana 15“pf0p“1d5p4p.— The
domain of the function decipher o is 15-dec1pherab1eﬂp, its range is
is-decipheredmp. . The function cipher 15 the inverse of decipher with
respect to the second arqument.

Data sets are elepentary objects, inner data sets are composite
objects (Pig. 4.1%3 and 4.194).

ol i S o e - £

26

b,

1) This situation will referred to in the sequel by the tern
"there exists a mapping®.

2} The subscript denotes a dependency on the mapping parameter MNP which
should be considered fixed for the moment. The set of all objects for
which a predicats is true is symbolized by the sign "6 " above the
predicate name.

STORAGE AND DATA

IBM LAR VIERF2 TR 25.099

30 JCEE 19569 INFORHMAL INTRC TC THE ABSTRACT SYHTAY AND INTERPRETATION OF PL)I

=77

: |

. ! |

Mhondata :

e suianin N el mli ey ;;ontentsofl
s-header s-tyailer s-data i L‘n’lir_céqiaieﬂ

i

I [

H o

elem{)... elem() elem) - elem(j);; elem)... elem{n) i

l I i ‘ |
Ll :
il :
| \

| | |
I chan} [charij ic.han E g char | g

Data set lakels

511 eln

Pig. 4.13 Data contents of inmer data set

S-00S S-mp-no s-garbage
Pos%tioh | mapping ﬁir garbage
number

ini‘.eger value
or END integer value

Pig. #.74% FNon data contents of inner data set

k1]l compomnents summarized as data in Pia. 4%.13, and the position and
mapping number components of Fig. 4.1% are inspected or changed by data
transeission. The garbage component comprises all the information which
is part of the contents of the data_set bt which is hidden to the
mapping parameter HP under consideration. The garbage may contain for

exanple

{n the positions and possibly the buffers of the file unions sharing
the data set for the moment,.

{2) descriptive information about the data set,

{3} hidden information which is not accessible by the file union under

consideration but way be transparent to another file uanion, etec.

‘ Pile unions with the sage mapping parameter sharing a data set yield
the same inner data set.- The pappinyg nuskber of the inner data set is the

4. STORAGE AND DATA 27

TBM LAB VIEWNNRA TR 25.099

TNFORNAL INTEO TO THE ABSTRACT SYNTAY AWND INTERPRETATION OF PL/T 30 JUNE 1969

28

4.

number of the sharing file unicns with the same mapping parameter, so to
speak the number of equivalent data trasmission vaths.

Example:

Fig. #.15 shovs a part of ES and FE, namely two file unions with
MP; and one with MP; as the rapping parameters. If it is assuamed
that there are no other file unions in FU having HP, or HP, as

marping parameter, the mapping mumber of IDS; is twe and of TIDS,

is one.
L

data
L transmission
7 paths

}—w——w—’-———1' 'r— file
| MP, ! { .. uhions
| L of FU
L |

I DS, = decipher (1P, DS), iDs,-

s-mp-no (IDS,)=2 decipher (117, DS),

S*MP-HO (IDSZ) B 1

Fig. 4.15 'Example for the roles of the mapping nunber

Mapping numbers are adjusted exclusively at creaticm or deletion of =2
file union. Notice that the information on the mapping number is
containedin the data set and not in the file union {cf. %.3.3.2}).

The pgsition component of the data set denotes the position of the
last element of intrinsic data which has been transmitted. The position
is END if the end of the data set has been reached by some previous
transmission.

The data set labels are lists of character values, the no-label case
is modelled by empty lists. The header label is always processed during
the data set opening phase {cf. 4.3.3.3).

Ipntripsic data consist of stream or recocrd slements {ely to =1, in
Fig. 6.13). Bit or character values and the elementary objects
line~delimiter (LDEL), page-delipiter ({PDEL), carriage-return (CRET}, and
tabulator {TABL) are sktream elements. & value reorasentation, a value
representation and a key being a list of character values, and the

elenents.

The value representation component vr of a record element usually is
an exact copy of the storage being transmitted. The record’s vr may

STORAGT AND DATRA

IBM LAB VIENNA TR 25.099

30 JOWE 1969 IHFORMAL JIRTED TO THE ABSTRACT SYRTAY AWD TIHT YRPRETATION OF PL/I

serve as the source of subseguent Pas-is® agsignment to an aggregate,?! or
it may be used o deterasine a poister valuwe to accomodate vr 1f suitable
buffer or area storacge has to be allocated for vr.

Example:

HAIN=PROC ...
 BCL A RETED,
1'%, 2 %1 PLOAY{16}, 2 ¥2 CHAR{3), 2 X% FLOAT(16},
¥ (2,5 CHAR{2}:
REWRITE PILE{A) FROH{Z): == w1,k
E: o & o ;

READ ?ILEiA% XEY {ky SET{Pi: == ¥y
READ PILE{N) Eﬁfgkﬁ_“ﬁfﬁiwﬁg = gT
READ FILE{4) REBEY{k)} IWTG{{): - vr

EWND:

The REWRITE staternszant is zssumed to open & as a seguential update
keyed buffered file. Traznsaission of T means updating of the
record slenent b y the storage associated with ¥, say vr. This
record element is assumed to have Xey k. any of the following
three READ statenents is assured to fotek ve. T there is sanough
free storade, storage alliocatien snd initiaiization with vr will
be guarantesd for the First READ. Turther reference witk bBointer
P will depend on the agoregate abtivibute associated through tke
reference. The second READ is oniy gusranteed if the sizes of vr
and of the aggregate referenced by ¥ are the same., The meaning of
Further references to ¥ or syb-aggrecates of ¥ is
inplemsntation-dsependent {cf. the function map im 4.2.8). The
third RERD is cguarantesd to reestabiish ¥ vith the mearing it had
at the moment whan the RIE¥RITE was egecuted.

th the followiag
n Figs. B.13 and

B proper inper dats =2t is an ipner data set @
additicmal properties {the descripiion iz based u
4.14)

it
Bo
{1} if %¢he position iz ap imkteger, it is positive and doos not

exceed n,
{2} the mapping number is pogitive,
{3 a1} data slements e@lp,uo-0,%1ly are proper data elepeuts of they arve

DELETEDL {optional only in the case the attribute REC is contained
in the mapping paraneter),

{63 all data clemests ely,..., 2l Wust have a pioper Eev in case the
attribute KBY is contaimed in the nspping pavamster.

The decizsion as t¢ whether a key is proper aust be left te the
implementation. ~The correspotfence beitveen attributes and proper data
elepents is given in Plg. #.75H. Wokice that the data elerents are
arrandged in a 1list alse in case the mavping paraoeter contains the
atiribute DIR.

1} el-assivr,target-p, target-vo) of, B, 2,2

#, S¥ORAGE AED DATA W 29

ISR LAB VIENNA TR 25,099

INFORMAL TNTRO TO THE ABSTERACT SYHTAX AND INTERPRETATION QF PL/TI 30 JONE 1959
Mapping parameter Proper data element is a:
containing the attributes:
BST with INP or OUT bit value or LDEL
CST with INP or GQUT character value or LUEL
CST with OOT, PRT character value, LDEL,
PDEL, CRET, or TA&BL
REC with KEY, etc. value representatidn and kevy
REC without KEY, etc. valne fepresentation

Pig. 4.6 Happing parameters and prover data elements

4,3,3,2 Ddata get activity

30

A data set is said to be actiye with respect %to a certain mapping
rarameter mp if the corresponrding mapping number #mp is greater than
zero, inactive otherwise.! Fig. #.15 shows a data set DS being active
with respect to MP,, MP,, etc. The following statements on #mp can be
mades:

(N Tt is guaranteed that an imactive data set can be opened.
(2} Opening increases #mp by one, 2 closing diminishes #mp by one.
{(3) A change of #mp dces not affect data set mapping by active mapping

parameters different from mp, except for the garbage component.
However, opering with mp may. cause that a mapping does no more
exist for previounsly inactive mapping parameters different from
mp, Closing with mp may cause the data set to hacome a candidate
for potential mapping and opening by some mapping parameters
different from mp. Hence, for any such mapping parameter the
mapping number will be zero..

{4} For mapping parameters Adifferent from mp, any kind of data
transmission including pesitich changes might affect data set
mapping in the &ata, position, and garbage components but not in
the mapping number compenents.

Example:

At some stage of the computation it is attempted to relate a file
with a data set DS througk opening. Opening is ansuccessful and
raises the UNDF on-condition. Im the seguel, sore files sharing
DS are closed. TIf the first gpening is retried subseguently, it
migkt be successfgpl.

existence of a mapping is presupposed ia this section.
2) If for an active data set the increased #mp would not preserve the
existence of the mapping then opening wonld not be succsssful.

4. STORAGE AND DATA

IBEH LAB VIENKA TR 25.099

30 JUNRE 1969 INFOREAL INTRO TG THE ABSTRACT SYNTAX AND INTERPEETATION OF PL/T

Piles which do not share a data set have different mapping parameters,
Such files have no relation except that they might have the same file
name.

=

4.3.3.3 Torwards and backwvards_transmission

=

For the notion of data set activity it vwas necessary to anticipate
parts of the criterion for corening with a particular mp: The existence
of the mapping, and the existence of the mapping even for the increased
mapping number.

In connection with data transmission obviously onrly those mapping
parameters are of interest vhich satisfy this criterion.

In particular, for any mp contaiping the attribute BAC which satisfies
the criterion, and for np, differing from mp in the missing attribute BAC
only, it is guaranteed * that the proper imner data sets yielded by ap
and mp; have mutually exchanged header and trailer labels, and intrinsic
data being arranged in inverted seguence. The position compoments are
the same.

Aence, instead of processing a data set backwards, i.e., decreasing
the current position and taking the header label instead of the trailer
label and vice yersa, the adaption of the above rule of inverted spapping
allows getting rid of all these exceptions at once. -

4.3.3.8 Related mapping

In general, no conclusion about similarity or dissimilarity of inner
data sets can be made if they are yvielded by the same data set but
different mapping parameters. However, if the mapping parameters are
identical exceprt for thke set of attrlbutes, and if the attributes neither
contain the attributes PBAC nur PRT, the inner data sets have the same
data {labels and intrinsic data) if all sapping parameters bhelong to the
Same mapping category.Z The mapping category is bit stream, character
stream, keyed, and non-keyed if the attributes BST, C5T, REC and KEY, and
EEC but not KEY are contained in the mapping parameter, respectively.

More speciai relations of mapping parameters containing the attribute
UPD with mapping parameters specxfy1ng INP or OUT %ill be detailed in
sections 8.3.4.7 and 4.3.4.3,

4.3.4 BASIC DATA TRANSMISSION

Basic data transmission is the mairn application of data set mapping.
Pasic data transmission:is always performed by *basic groups®, i.e., as
one elementary step of the computation. The basic groups usually make an
explicit change im ES. Depending on the type of basic data tramsmission

1} mp, is a "forvards" mapping parameter. The exact formulation of the
guarantee is complicated by the fact that fromr mp satisfying the
opening criterion it must not be derivable that mp, will satisfy the
opening criterion, too. This gould@ be a general statement on the
sharing of backwards and forwards mapping parameters which certainly
could not be supported by an implementation on tape-like medius.

2) An exception is the mapping category keyed if some mapping parametars
contain the attribute DIR and some do not. 1In this case only identity
of proper data elements of imtrinsic data is guaranteed hut %the
sequencing is not preserved, -

4. STORAGE AND DATA 31

TYBM LAB VIERNRA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYRTAX AKD INTERPRETATICN OF PL/Y 30 JONE 196%

other state components may also be changed. Por example, buffers are
allocated, freed and assigned to, assignment to the target aggregate of
data transeission is perforamed, etc.

Since this section is devoted solely to the static properties of data
set mapoing, only the names of the basic data transpitting actions are
given, together with references where they are discussed in more detail
in this document ({Fig. 4.17).

¥ame of action: Refer Basic data tranmsmitting
to section function involved:
stream-transmission 12.6.3.1 read {ep,ds, &}
vrite{mp,ds,el}
into-set~transeission 12.5,3.4,
12.5.3:5 read {mp,ds,key)
set-transmissior 12.5.3. 4
ignore~transmission 12.5.3.5 _ ‘ignore(mp,ds,ny
delete-transmission 12.5.3.5 delete{ap.,As,;kev}
rewTite-~transmission 12.5.3.3 reurite {mp,ds,el}
¥rite-transeission 12.5.3.1

o write {mp,ds,el)
buffer-transmission 12.5. 3.1

Note: el is a proper data element with respect to mo,
key is amr optiomal key, » is an optional integer.

Fig. 4.17 Basic data transmitting actions and functioms

The actions are based on the five basic data iransmitting functions
read, ignore, delete, rewrite and write. A1l these fumctions bave in
common, that they map a data set ds in dependence of additional
information {(mp, el, key, n} onto a data set ds; and some informationm
about the success of this transition inf,. The resulting dzta set ds, is
not necessarily different from ds {(Fig. 8578} .

32 4, STORAGE AND DATA

IBM LAB VIENWA TR 25.099

30 JUNE 1969 INFORMAL INTRO TC THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

ls=ds

decipher (MP, ds)
._—-—'—"'ﬂ-——‘\

-_—“-&‘_____“_
cipher (1P, ids)

ig - deai?)hered.

s~ cLe.c.'s'i‘ohErable

Fig. 4.18 Transition from ds to dsL -caused by a’
ba31c data transulttlng fanction

The resultlng lnformatxon inf, is enpty or it 1n31cates certain

et i e L P e . S P e S s .

read.) L . e e
There are three types of unusual situations:

{1 sométhing is Wrong with thE'iéf;;i.e., the key is not proper, or
_there is no matching key to be found in the-case of a read,
delete, pr rewrite, or there is a matching key found in a write,

(2) something is wrong with the 51ze of the value represantation
transmitted (rewrite, write),.

{3 the end of the data set has been reached (read,ignore,write).

Sitouations {1) and {2) %ill give risa to subseguent om~conpdtion calls,
situation {3) will caase waiting for input {in the case that mp contains
the attribute TRA and INP) or data set volume switching (im all other
cases). Hence, unusual situations are detected at . the point where basic
data transmission is performed. However, the interpretation of mnusual
situations is not part of basic data transmission.:

A1l hasic data transaitting fanctions becoge nndeflned {erronecus} if
at least one of the following cases applies:.

(a) ds cannot be mapped vith mp,

{h) ds is inactive with respect. to mp, i.e., the mapping number is
zero,

{c) ~ ds is in the position "END".nith respect {O‘HP.

Any of the above cases can be true because ds is erroneonsly shared by
rapping parameters other tham mp. . Since environmental influences may

4. STORARGE AND DATA 33

IBM LAB

VIENNA - TR 25.D99

TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JURE 1969

arbitrarily change any data sSet, such a change may also give rise to an
erroneous situation.

If the above kind of sharing and environmental influences are
excluded, cases (a)} and (b} will not apply since they would prevent
npening to occur, and because it is an important property of all basic
data transmitting functioms that they yield a data set ds; which can be
mapped again and which is active {(alsc in the wnusual situwations,
cf. Fig. b.18}. Since the basic data tranzsmitting action using the
function w¥ili teplace ds ({i.e., the data set as taken from ES before data
transeission cccurred} by dsy, the properties of defined mapping and
activity are conserved in ES.

Case {cy may apply alsc dus to a sharing of ds with the same mp if
basic data transmiscsion over ancother file union has reached unusual
situation {3} previousiy. This is demonstrated by the following example.

Exapple:

MAIN:PROC ...
DCL {&,BY RECORD, I INIT{1}:
" ON ENDF{a} IF T=%f THEN GOTD ®;
ON ENDT{B} GOTO END:
OPEN FILE{A), FILE(B} TITLE ('A%):
READ FILE{B) INTO{X}:
DA: BREAD FILE(R} INTO({Y):

LI

GOTO BDA:

w

E: I=0;

CHD¥:READ FILE{A) INTCI{Y}:
ERR: READ FTILE{B} IRTO{Y}:
END: END;

Opening is assumed to produce two file unions with identical mp.
If label E is reached then this has been caused by an end-of-file

- mituation on the file union accessible to A. The end-of-file
status being registered in the file union is a persisting form of
sitpation {3). The READ statement labelled ENDPF is issued in
end-of-file status, hence the on-unit is called again without
looking at the data s=t. The READ statement labelled ERR is
erroneous since the file upior accessibhle to B has not been set
into the end-of-file statas, hence the data set is mapped and
unusual situation {3) applies.

#.3.4,1 Positioning, reading, and_deleting

The basic data trapsmitting functions read and ignore yvield a data set
which may differ from the source data _set in the positioning only.?® It is
guaranteed that positioning will always be within the range described in
sectioa 4.3.3.7 for proper imner data sets, and that the existence of the
mapping is preserved. This is true even in those cases where the
positioning itself is inplementation-dependent because of an unusual
situation ir connection with positioning by a proper key {cf. #.3.8,(1)}.

el b S . A S Y . o R M T B e

34

b.

1} Both functions are not concerned with size violatioms. any mismatch
between the sizes of the value rapresentation componeat of the proper
data element read and any target storage specified will be interpreted
by the action into~-set-transmission ({cf. Fig. 4.17).

STCGRAGE AND DATA

IB¥ LAB VYIENNR TR 25.099

30 JONE 1959 TNFORHWAL INTRO TU THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

- The functiens read and ignore, if used for IFP file unions, have no
pecnliarities as compared with their usage in connection with OPD file
‘unions. Hence it may be postulated that mapping parameters differing
only in the attributes IHNP and UPD yield proper inner data sets with
identical data provided that the mappings exist and that a potential
success of opening with the OUPD mapping parameter implies the sane
success for the TNP mapping parametsr.

The basic data transmitting function delete changes positioning in a
vay similar to read and ignore. Tt is guaranteed that the replacement of
the proper data element by the artificial data element DELETED will
preserve the exwistence of the mapping.?

2,3.48.2 Rewriting

The proper data element el which has to be transmitted to the data set
ds by the fupction rewrite(mp,ds,el) might violate the
implementaion~dependent reguirements for the size of the value
Tepresantation component of 21, If it does not violate the requirements
then the implementation-dependent predicakte is-size-viclation{mp,ds,el}
is false and el can be rewritten as it is.2 Otherwise the predicate
ig-size~violation{mp,ds,el} is true and instead of el another proper data
aelement, say el,;, would he rewritten. The elements el and el, are
guaranteed to have the same XKey, and el. does not again violate the size
regirements.

Irrespective of whether el or el, is reyritten, the existence of the
mapping is preserved for the updated data set. bp
kind of positioming occurring im unusuzal situations is described in
section 4.3.4., 1.

B.3.4,3 Writing

The proper data element el which has $o be wyritten in the data set ds
by the function write{mp,ds,e%l} might viclate the data set extent and
size requirements cf the implenmentation. If both reguirements are met
then el is writtez as it is, ¥n this case the implementation-dependent
predicates is-end{mp,ds,el} and is-size-violation{mp,ds,2l} are hoth
false. However, if the predicate is-end{mp,ds,el} is true no data
element will be written but the position will be set to END, This will
be done regardless of any size viclation.

The last cassa, is—size—vialatiem(mp,és,el} being true and
is~and (mp,ds,cl) being false, is handied in the same way as a Size
violation at rewriting {cf. B.3-.4.32)..

Tf the attributes BST or CST are contained ip mp then the notion of
size violation becomes meazningless. 1In the above descriptien a value of
true should be substituted for the predicate is-size-viclation though the
predicate is not really used in the definition of stream trasmsmission. -

A e s o i Sl vy R R Sl R v Y

1) The replacement does not pecessarily, mean tkat the delieted proper data
element {or parts of it} will mot be accessible anymore to mapping
parameters other than the mp under discussiorn.

2) Proper data elemerts being contained ian ds cbyicusly do not violate
the size regnirements.

.3, STORAGE ANWD DATA 35

TBM LAB VIENNA TR 25.799

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JURE 1969

The basic data transmitting function write if used for DIR, OUT file
unions kas no peculiarity as compared with the usage of the funmction in
connection with DIR, UPD file unioms.; FAence it may be postunlated that
mapping parameters containg the attribute DIR and differing only in the
attribntes OUT and UPD yield proper inner data sets with identical data
provided that the mappings exist and that a potential success of opening
with the UPD mapping parameter implies the same success for the oOT
mapping parameter.

The kind of positioning occurring ir unpusual situations is described
in section 4.3.8.1.

B.3.4.4 Trapsmission ercors

I+ has been putlired in section 8.3.1 that the transmission error flag
appended to data sets is ES provide the information concerning
intervening transmission errors. Setting of the flag is not under the
control of the interpreter, and.is independent of any environmental
change of the data set.

Fvery basic data transmitting action (cf. Fig. 4.17}) inspects the flag
and deletes it. -

e o L s e e i S A . ot e b s e

36

4.

1) The function write is not used with the attribuntes SEQ, UPD,

STORAGE AND DATA

TBM LAB VIENHA TR 25.099

30 JUNE 1%69 TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

IDENTIFIERS_AND THEIR SIGNIFICANCE

This chapter considers a specific aspect of PL/I, namely the kind of
names which may occur in a program and their meazning during the execution
of that program. The question may he formalated more precisely in terms
of the PL/I machine as follows: at some point of time, i.e., for a given
state of the PL/T machine, what information is associated with the knowa
identifiers {or identifier lists in the case of gqualified references). R
diagram of the information which is in gemeral dynamically associated
with a name will be given for each spvecific kind of PL/I name. ' This will
be followed by a discussion as to when the individual components of the
diagram are created, changed or deleted. It will also be discussed under
which circumstances a name may have parts of the information associated
with it in commor with another name (sharing patternsj. Onrly single
tasks will he considered in this chapter, except for the last section
which will give some notes on the conseguences of tasking for the suabject
of this chapter.

The following kind of diagram will be useful in the discussions of
this chapter. Whenevar it is necessary to say that with a given piece of
information A ore may retrieve the information B from a directory § of
the state of the PL/T machine then this is indicated by the diagram:

D

A -~=== B

In other words 2 is associated with B in D.realized in the state of
the PL/I machine will, however, he suppressed. The above picture
therefore only indicates that it is possible to retrieve B given A from D
ir some way which is not specified further.

Occasionally, it will be necessary to represent composite objects, of
some specific kind, in a diagram. This will be dore by ennmerating
variables enclosed in parantheses, where the variables stanpd for the
immediate components of the obje=ct and the names of the variables
indicate the kind of component, The specific selectors that lead to the
components will thus be suppressed,

5,1 DECLARATION AND OSE OF_IDENTIFIERS

The relation between the use of an identifier and its corresponding

" declaration in a given progranm is static, i.e., can be determined without

interpretation of the program. The declaration which corresponds to a
given use of an identifier is always found in the declaration part of a
block containing the use.! The innermost block is to be taken im case
there is pore than one such block.

The inpitial step of the interpretation of a block is to make a copy of
the block. For each declaration of the declaration part a aew unigue
name is created and inserted as an additional component throughount the

- — e .

1} MWore precisely one should talk about jdentifier lists corresponding %o
guealified names rather than single identifiers.

5. IDPNTIFIERS AND THETR SIGNTFICANCE 1

IBM LAB VIENNA TR 25.099

TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/Y 30 JUNE 1969

block in any place of use of the jidentifier. Then a pew entity is
created for each individual declaration and made available under the
corresvonding unigue name. The term entity means, in this context, a
collection of state components which are linked together in some way. In
particular, entries in the denotation directory and attribute directory
are nade for each newly created unigue name.

As a consequence, the name of an entity is uniquely associated with a
specific interpretation of a specific declaration, i.e., associated w%ith
the declaration and a specific block activation.

Throughout the block activation any use of an identifier w»ill be
interpreted as references *o this entity, block activation he
interpreted as raferences to this entity. 7Tt is essential to note that
any copy of a part of the block carries the meaning of the identifiers
used but not locally declared within that part of the block. Copies of
parts of the block which are kept in the state for later interpretation
will therefore retain the meaning of their non-local identifiers
irrespective of the place vhere they are executed.

piffernet entities may share components and the present chapter will
he partially devoted to the study of these sharing patterns and thereby
some properties of PL/I will bhe formnlated.

Fig. 5.1 shows as an example the structure of the simple reference
S.2,B, after inserticn of the unique nhame, n say.

| L

s-id~ List 5-n 5-sl s-ap
| " ¢ <>
elemi(1) elem(2) etem {m
id 1 id 2] +-« |id n

Fig. 5.1 Example for a reference after insertion of the corresponding
unigue name n

5.2 DENOTATION AND ATTRIBUTES

2

5.

A1l entities created by the interpretation of a declaration have a
denotation and an attribute part to be found via the unigue name in the
denotation and attribute directories respectively. The following picture
of an entity (PFig. 5.2) is therefore valid independently of the kind of
its declaration, :

IDENTIFIERS AND THEIR SIGNIFICANCE

IBM LAB VYIENENA TR 25.099

30 JUNE 19569 INFORMAL INTRO TO THE ABSTRACT SYRTAX AND INTERPRETATION OF PL/I

den
DN
g
AT
a Hr

Fig. ‘5.2 General diagram valid for all types of entities, where n is the
unigue name

At this point of the discussion the denotation {denj cannot be further
specified since its structure and sigpificance depend on the kind of
declaration which created the entity.

The attribute, attr, is a copy of the attribaute from the declaration
which created the entity. The meaning of the global idemtifiers in this
copy {(becaunse of the insertion of unique names) remains fixed for any
interpretation and is the meaning given during interpretation of the
respective declaration part. - This is important since the attribute may
contain expressions which are evaleated outside the scope of their global
variables {e.g., bounds of controlled array variables).

5.3 PROPER_YARIABLES

The following abbreviations and metavariables are used:

gen geperation

eva _ evaluated aggregate attribate
ni papping information

vr valne representatipn

Pp pointer part

5. IDENTIFIERS AN¥D THEIR SIGHI?ICAHCE 3

IBM LAB VIIWNA . TR 25.099

INFORMAL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OTF PL/T 30 JUNE 1969

The general diagram of a proper variable is:

b R > < gen, gen, v gen, ?

atty

Fig. 5.3a Proper variables

genj=(evaj, mij, pp;)

Vi Nfp e wp

Pig. 5.3b Generations of variables

The Pigures 5.,3a and 5.3b are valid for all kinds cof proper variables
and may therefore be taken to represent the general concept of proper
variables in PL/I. HWithout reference to the specific types of proper
variables the following general rules can be stated,

General ronles:

() To_allocate a variable means, with respect to Fig. 5.3,1 to create
a2 gemeration {gen, .4 and to add the generation as the head of the
generation list in AG.

The new generation list is then:

<geN,, s ¢JeD, ,COK-1,~»rJCA4 >

The creation of a generation usually involves the evaluation of
aggqregate attributes.

{(2) To free a variable means, with respect to Pig. 5.3,1 to delete the

head from the generation list. The nev generation list is then:

<genk—1r---rgen1>

1) There is alsn a change in an allocation state (main storage for prover
variables) but this allocation state is not part of the diagranm for
propar variables. -

4 5, IDENTIFIERS AND THETR SIGNITFTICANCE

IBY LAB VIENWR

30 JGNE 1969

(3)

162

{3

{6)

TR 25.099

INFORMAL IRTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The current generation is the head of the generationllist
(i- L= 'qeﬂk, .

e e s A e . e e

the value representations of the current generationm.

Any attempt to free gen, by a free statement is an error.!

eva of any generatiom is produced upen alloeation.

The folloving rules will distinguish the special types of proper

variables as special cases of the general diagram,

The different types of variables:

(h

(2}

(3)

{#)

v . v e s 2 ———

Controlled variables:

{a) The aggregate _nape b is created during the prepass and
substituted into the declarationm. '

{b}) The generatior list is initially set to <gen,> and updated by
the execution of explicit allocate and free statements. The
initial generation gen, is essentially a null generation
containing an attribute part but no pointer part.

{c) eva is either taken from the previous generation or evalmated
from attr or from attributes which cccur in the allocate
statement.

Static variables:

~{a) For the agqregate name see (1) (a) above.

{b) A generation is created by the prepass according to the
corresponding declaration; the generation list is set to
<gen,*> and re®ains constant during the entire interpretation

of the progranm.

Aptomatic yariables:

{a) A unigue aggregate name b is created whesn the declaration is
interpreted (block entry).

{b} A generation gen is created upon the interpretation of the
declaration (block entry} and the geperatiop list is set to
<gen> and remains constant duaring the entire corresponding
hlock activation.

Bxternal variables:

External variables are either static or controlled. The same
urigue aggregate name b is substituted into all declarations of
the same idepntifier during the prepass,

e s s i b

1) This is part of a mechanism whichk gnarantees that no task frees

variables allocated by its mother.

5. IDENTIFIERS AND THEIR SIGNIFICANCE 5

TBM LAB VIENHA TR 25,099

INFORHMAL INTRO TO THY ABSTHRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

6

5.

{5} Internal variables:

RAutomatic variables are always internal and have been dealt with
in (3}.

For static and controlled variables different aggregate rames are
created for each declaratiom during the prepass,

(6) Parameters:

The following is a summary of the possibilities for passing a
proper variable as an argument to a parameter,

(a). If the argument is controlled and the parameter is also
controlled the aggregate name b is passed to the parameter
vhich therefore shares the gemeration list with the
parameter,

{b) TIf the attribute of the arqument and the corresconding entry
declaratior match in a certain way, the current generation
for a subhgeneration thereof} is passed to the parameter. &
new unique aggregate name b is created for the parameter.
The parameter therefore ghares valumes with the arqument.

(c} Tn all other cases a nev variable (dummy variable} is created
and identified with the parameter whose injitial value is the
value (or part of the value} of the argument. Therefore
there is po_sharing_at _all between the parameter and the
argument.

The following are notes on some sharing patterns which mlght occur
hetween tvwo different variables. .

Some sharing patterns:

(1) Two different variables have the same aggregate name and therefore
. share the generation list.

TDENTIFTERS AND THETR SIGNIFICANCE

TBN LAB VIENNA TR 25.099

30 JUNE 1969 INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRFTATION OF PL/I

b ¢ genkl...lgeh1>

This'sharing-patte:n occurs in the following situvations:
{2&) two external variables having the same identifier;

{b) controllad or static variables created by the sane
declaration:

{c) a contrclled variable {n;) passed to a parameter {na}.

{2) Two variables pointimg through their generations to
nan-independent storage and thersfore sharing values,

5. IDERTIFIERS AND THEIR SIGHIFICANCE 7

ITBH LAB VYIENNA TR 25.099

INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERRPRETATION OF PL/T 30 JUNE 1969
b AS ,
> (eva,mi; pp) ...
M
Ny
et yr
AT -
attr
K AG -
» (eva' mi’, pp')...
DN
h,
AT
atty
FPig. 5.5

This sharing pattern occars in the cases {a), (b}, and (¢} of (%
and in the situation where the generation or a subgeneration of a
proper variable is passed to a parameter {case (b) of parameter
“passing).

5.4_BRSED _AND DEFINED VARIABLES

==

{1} Based variables {cf. 10.2.9.3)

The general diagram for based variables is:

6o
N
n
Al
atltr
Pig. 5.6

B 5. IDENTTTIERS AND THEIR SIGNIFICANCE

IBM LAR VIENNA

30 JUHE 1959

{2)

TR 25.099

THTORMAL INTRO TO THE ABSTRACT SYNWNTAX AND INTERPRETATION OF PL/I

Open reference the attributes are evaluated and a generation is
temporarily created from these evaluated attributes and the
pointer given by the pointer qualification of the reference.

Defined wariables{cf. 10.2.5.2}

The general diagram is:

eva
N
AT

afttr
rig. 5.7

The denotation of a defined variable is the evaluated aggregate

attribute, The evaluation is done upon intervretation of the

respective declaration . (prologue). The base, which is contained
in the attribute, is evaluated upon reference.

Upon reference a generation is temporarily created from the eva
and the evalunation of the base which contributes essentialy a
pointer, No sharisg patterns and no parameter passing is to be
considered for based and defined variables.

IS.IIDENTIFIERS AND THEIR SIGNIFICANCE

9

TBM LAB VIEWNA

TNFORMAL TINTRO TO THE ABSTRACT SYNTAY AND INTERPRETATION OF PL/T

Fa RGNS~ A

10

The following abbreviations are used in this section:

own~-inh
fd-tmt, tnt
csa

ds

Fp,fd-

PO

S

buf
io~ev

tn

env

file attributes

file name

evaluated environment attrihbute
file identifier

file union name

own or inherited file
transmission error flag
complete set of attributes
data set

file directory

fiie‘union directory
extefnal storage
bﬁffer'information
attaéhed I/O-evénts

locked tasks

environment attribute

5. IDENTTFIZRS AND THEIR STGRIFICANCE

.. TR 25.09%

30 JUNE 1969

TBY LAB VTENNA TR 25.099

30 JUNT 1969 INTORMAL INTEO.TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

The general diagram for a file is:

cs ,
v i |
: " fd ~ status
FD I - i s
; i = (fa, fa-ea, id, u, awn-inh, fd-tmt)
N .
IN |
. |
n | FU
!
[
I ‘ ¥ .
atty | (csa ea,title;... but, .. j0-e0,... ; tn)
] S S——’ | |
I o v ¢ '
liE_ié s PA TEN
(ds, tmt}

Fig. 5.8

A file is the information which is accessible by the unique name n
through the state components AT, DN, FD, FU, and ES.! The various entries
are created or modified at the follpowing stages of the computation:
prepass, block prologune, attaching and termination of tasks, data
transmission inclnding opening and closing of the file. The entries to
the right of the dotted line in Fig. 5.8 are available only at points
vhen data transmission may take place, i.e., when the file has heen
opened and has not yet been closed.

Seneral rules:

S e e —n S L

{1} The file pame f is created during the prepass, ard is uonique for
each declaration of intérmal file constants and for all
declaratinns of the same file identifier in the case of external
file constants. The file name is substituted into the respective
declaration during the prepass. The declared envirenment
attribuote is evaluated and is entered into the file directory of
the main task under the file name £ {fd-ea} together with the file
attributes fa and the file identifier id.2

Crening of a file amends the entry in the file directory (fd-status in
Fig. 5.8} and makes the entry in the file union directory (the file

13 The casual access to other state components is represented by dashed
arro¥s ir . Pig. 5.8. '

2) Note: The value of a file variable is a representation of the unignue

name n of the respective file constant. Therefore n is referred to a
£ile wvalue in the chapters #, and 12,

5. IDENTIPIERS AND THEIR SIGNIPICANCE 11

IBM LAB VIENNA

TR 25.099

INFORMAL INTRO TO THE BABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

12

5.

union) under a new file mnion name u which characterizes a "generation®
of the file.

(3)

(4}

L

(6)

Data_trassmission over the file goes to or from the data set ds
which resides in external storage ES. Various components of the
file union keep track of the data transmission. In addition,
transmissiocon errors are recorded in tat and fd-tmt (Fig. 5.8}.

Closing of a _file deletes all entries made at opening, i.e., the
fd-status and the file ugnion. Assuming that the file anion name u
has been stored somewhere, it is no more possible to localize ds
in B35 on the basis of the file uniom name. This remains true even
if a following opening establishes another generation of the file,

Attaching of a task provides the new task with a copy of FD such
that all components fa, fd-ea, and id are exact copies. From the
fd-status of all open files only the file union name is copied.
The components own-inh will he empty for the life time of the
attached task {this is the indication for inherited files). <The
copponents fd-tmt will be initially empty.

Termination of a task causes closing of all files opened by this
task which have not been closed so far {closing of all owned
files).

There are no pecularities of argument passing since parameters can
only be file variables,

A more detailed description of file directories (and the modelling of

standard system print files) is given in sectiom 12,.2.1. Section 4.3
describes the selection of a particular data set in ES, and the
structuring imposed on the data set by the characteristics of the file.

Sharing Pattern

{1

{2)

{(3)

-+
A

T

B

Files sharing the on-condition actions:

files having the same file name, i.e.,

{a) external file conétants having the samé identifier
{b) file constants created by the same declaration.
Tiles sharing the file union:

files having the same file union nanme, i.e., file inherited by
task calls.

AS a conseguence situation (1) applies.
Files sharing the data set:

There is a function which yields for any ea and title a
datasetname by which the data set can be retrieved from ES.

Consequently, files having the same ea and title in the file unien
share the data set., This is, however, only a sufficient but not a
necessary condition. A more detailed description of the subject
may be found in G.3.1. '

NTTFIERS AND THEIR SIGNIFICANCE

IRM LAB VTENHA TR 25.099

30 JOUNE 1969 INTORMAL INTRO TO THE ABSTRACT SYNTAXY AND INTERPRETATION OF PL/T

5.6 _PROCEDORES

n

The following abbreviations are used in this section:

ba block activation name

bop block prefixz mpart
param-list parameter description list
ret-type return type

The general diagram for a procedure is:

e

(id,body, bat, bpp)

/JM;N,
AN

AT

{attyr)

Fig. 5.9

The antire entity is created upon block entry and remains unchanged
during execution {in that sense procedures may be considered to be names
of constants}.

The identifier points to the statement with which the interpretation
of the body has to start.

The body is essentially the text to be interpreted when the procedurs
is called. The body is defined in the corresponding declaration part in
case of internal procedures. Tor external procedures a unigque name is
found in the declaration which allows the retrieval of the body of the
external procedure, The abstract structure of the body has been given in
2.1.3.

The block activation name is the name of the activation in which the
corresponding declaration was interpreted.

The block prefix part is relevant for condition enabling.
There are no interesting sharing patterns to be discussed for

rrocedures, since the entire diagram remains censtant during
interpretation.

5. IDERTIFIERS AND THEIR SIGNIFTCANCE 13

IBM LAB YISNNA TR 25.099

TNFORMAL INTRO TO THZ ABSTRACT SYNTAY AND INTERPRETATION OF PL/T- 30 JUNE 1969

5.7_GENERIC NAMES

The general diagram is:-

///v [
P
AN

AT
\ atty

Fig. 5.10

The denotaticon is 1.

The attributes are a list of pairs {[ref,descr-list) where each pair
consists of am entry reference and a parameter description 1ist, The
» reference of each pair refers teo a procedure. Upon reference to a
generic name a specific pair is selected by comparing the argument list
of the reference with the various parameter description lists of the

list. The procedure referenced by the reference of the selected pair is
then called.

There is no parameter passing to be coasidered since there are no
generic parameters,?!

5.8 _BUTLTIN FUNCTIONS

The general diagram for builtia functions is:

\. BUILTIN -

Tig., S5.11

The declared identifier id determines uniguely the buiitin fupction to
be evalwated. The definition of the builtin function is contained in the
interpreter {and not given by standard declarations).

e L A . S o8 T T B b il s s i kb e

1} If an argument is a generic reference then the resualt of th e gemeric
selection is passed, i.e., a procedure,

14 5. IDENTITTERS AND THEIR SIGNIFICANCE

TRM LAR VTTHUM) TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTESPRETATION OF PL/I

5.9 LABZLS
5.9.1 LABPLS WHICH SERVE AS DESIGNATION OF GOTO STATEMENTS

The general diagram is:

A

(ba, st-loc)
DN,
n ////
_A—l
\ attr

Fig. 5.12

The denotation is a pair which conrsists of a block activation name and
an index list which identifies the statement location. The unicue name
ba determines the block activation and the statement location determines
the statement within this block activation to which control is passed in
case of a goto statement refering to that label. No arqgument passing is
to be considered. A& dummy label variabhle is always created and passed to
the parameter, when a lahel occurs as argunent, -

5¢%9.2 FORMAT LABELS

The general diagram is:

(format ~tist, st - prefix-p, vee)

DN

AT

Fig. 5.13

The format-list is taken from the labeled statement. The environment
is that which determines the interpretation of the format-~list. The
st-prefiz~p is constructed from the relevant part nf the statement
undated when the declaration is interpreted. The additional components
serve checking purnoses,

S. IDENTIFYERS AND THEIR SIGNIFICANCE 15

IBM LAB VIENNA

TR 25.099

INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

5,10 _ATTENTIONS

The following abbreviations and metavariables are useds:

=Y attentior environment directory
AN attention directory
ea evaluated environment
attn attention
The general diagram is:
Ev
b i —> eql
DN . } Al > attn
1d.
atlr
Pig. 5.18

A unigue name b is created during the prepass for each attention
identifier and inserted into the respective declaratiom {similar to
external). The prepass also evaluates the environment attribute and
makes the appropriate entry into E¥. There is a function which yield for
any identifier and evaluated environment attribute a name which gives
access to an entry in AN. The entry in AN is initially made by the
interpretation of an enable statement. FThe attention attn can be changed
by attention occurrences enable statements, disable statements,
asynchroneous attention interrupts and access-statements.

5.11 SOME REMAREKS

16

5.

After having enumerated all types of names {except cordition names}
which can be declared in a PL/T program, one may ask for which types of
names can the associated diagram change dynamically. The names for which
the diagram may change will be called {in this section) variables; the

remainder constants.

IDENTIFTERS AND THEIR SIGNIFICANCE

TBM LAB VIENNA TR 25.099

30 JURE 1969 TRTORMAL TNTRC TO THE ABSTRACT SYNTAX AND TNTERPRETATTON OF PL/I

variables:

{1Y proper variables
{2) files

constants:

{(1}. bazed and defined variables
(2) procednres

{3} generic names

{4) Dbuiltin functions

(5) labels

The study of sharing vratterms is only relevant for variables and not
for constants, since these patterns express whether updating a part of an
entity means automatically updating of a part of another entity.

Consider the example given in ¥ig. 5.,1%a where both ny, and n; have the
same v as a component. S5Since each name has its own copy of y, updating
of v of one name would only mean updating of its own copy of y. If,
however, there is only one copy of y owned by both napes as indicated in
Pig. S.15b then any updating of ¥y via one name would also mean updating
of y for the other name. In the latter case only it is said that n, and

n, share y.

Ny n,

Fig. 5.15a n; and mn,; have the same y

1“1 L]
x X
b

Tig. 5.15b n, and n; share y .

Chapter. 5 has so far not considered tasking. Tn the seguel the.
relation of tasking to the general diagrams will be discussed briefly.
of tasking to the general diagrams will be briefly discussed. There are

5. IDENTIFIERS AND THEIR SIGNIFICANCE 17

TBM LAB VIENNA -~ TR 25.099

INFORMAL THNTRO TO THE ABSTRACT SYNTAX ANT INTERPRETATION 0T PL/T 30 JONE 1969

18

5.

certain components in the state of the PL/YT machine, called task global,
which are shared by all active tasks and there are other components,
called task local, which are privat to a specific task, i.e., not shared
among different tasks. There are two task local state.components, AG and
FD, with respect to the state components mentioned in the general
diagrams. All other state components menticned in the diagrams are task
global. Wwhen a task is attached a modified copy of the AG and FD of the

attaching task is made for it.

The modification of the copy of AG consists in deleting all
generations from the generation lists except the current ones. Let AG,
be an aggregate directory and let AG, be the modified copy made from AG,
for a task to be attached.

The diagrams in Fig. S.16a,b show the versions of a proper variable
for the twe tasks. :

AGy :
e} - < genkfgenkd!...‘gen1)

e

\ attr

Tig. 5.16a attaching task

b AGy < geny>
v \

7

AT
\\“ (attr,env)

Fig. 5.16b attached task

The two versions of the variable obviously share storage via genp.
They have, however, their ouwn copies of the gemeration list and will
therefore not share storage via generations allocated after the task is
attached. The rule that gen; of a generation list must not be freed
guarantees that the daughter task will not free generations allocated by
the mother task.

The modification of the copy of FD consists in changing all
occurrences of * (own} to N (inherited). Since any opering creates an
entry {u,*,...), the interpreter can alvays test whether a file was
ovened by the current or some mother task. Let FD, be a file directory
and let FD, be the podified copy made from FD, for a task to be attached.
The d1agrams 5.17a,b shou the versions of a file for the two tasks.

IDENTTFIERS ARD THEIR_SIGHIEICAHCE

TBM LAB VIENNWA

30 JUNE 1969

3

f S (u,*,.“)

FuU

AT
4
™ attr (csa, titte,...)
| Es
(ds,;tmt)

Fig. 5.17a attaching task

ED,

~—> {0, INH, ...)

{csa title,...)

ES
(de, tmt)

Fig. 5.17b Attached task

TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND IKTERPRETATION OF PL/TY

The two versions obviously share the information in PJ and the data

set, Tf, hovever,

the mother closes the file and openrs another file with

this unigue name, the two versions will no longer share information, via

the file union name,
upon opening.

5.

since the mother vill create a nev file union nanme

IDENTIFYIERS AND THEIR SIGWNIFICANCE 19

TBM LAB VIENHNR TR 25.999

30 JURE 1969 TNFORMAL INTRO TO THE ARBSTRACT SY®RTAY AND INTERPRETATION OT PL/I

b, THT COMPUTATION OF TERE PL/T MACHINE

Correspending section of /5/:

3.7 The conputation of the PL/T machirne

The interpretation of a program starts with an inmitial state £, which
essentially is a cleared machine {of. #.1 of /5/}. Tt contains one
active task, the main task. The only components which are not cleared
and which essentially determine the conrputation ara the following:

{1 The external storage. Tt contains, in patticular, the input data
for the computation.

(2} The main storage. The initial state of the main storage may
influence a computation, though a well written program generally
should eliminate +this influence {raference %o a variable for which
storage is allocated but noft initialized depends on the storage
bafore allocation}.

{3 The control of the main task. It contains only the instruction
int-pregram(t,call,gen} which is execited as first instruction and
initiates the complete program interpretaticn., The three
arguments of this instruction are

{1) the program t to be intervreted as described irm chapter 2,

{2y a call statement or function refersnce call, specifying the
entry point at which the vrogram interpretation is to bhe
started and possibly arguments to be rassed to the parameters
of the entry point {cf, Z.2j. The concrete specification of
this call statepent or function reference is implementation
devendent, e.g., by contrel cards cor {in the F
implementation} by a procedure opticn MATIN included in the
cofncrete mragram itsel(;

{3} ovntionally a generatior gen to whick the returned value is to
be assigned if the orogram is activated by a function
reference.

The initial instruction handles the program t sinilar to the
interpretation of a begin bleck {cf. 8.2), but instead of the statement
list of a block the initial call staterent er functien reference is
interpreted. Moreover, before the bodies for the declared exterral ertry
identifiers are entered as parts of denotations into the denctation

~directsry DE, their text is nodified by the so-called prepass.

6. THE CONPYTATION 27 THE PLsI RACHINE 1

TBM LAB VIENNA

TR 25,999

INFORMAL INTRO TO THE ABSTRACT SYNTAY AKD INTERPRETATION OF PL/I 30 JURE 1969

6.2 THE STATE

TRANSITIONS

2

6.

The
occurs

{ny

(2

(3

The

transition from a state of the PL/T machine to its successor state
in three steps, whichk are discussed in the following.

The computation step. This step is contrelled by the instructions
contained in the control parts of the various tasks, First, one
of the active tasks is selected for execution. This is done by an
implementation~defined function, which returns the name of a
specific task. This task name is inserted in the TH~component of
the state, specifying the curremt task. The task name peramits the
access to the state components local to this task in P2 (cf. 3).
Prom the control part of this task, one of the instructionmns is
selected which are candidates for execution.

The control part is a tree~like collection of instructions, where
the instructions located at the terminal nodes of the tree are
those which are candidates for execution. There is, consequently,
a certain freedom as to hov to proceed in the computation. This
freedor accounts for the fact that in some places in PL/T the
sequence of certain actions is left anspecified (e.g., the order
of evaluation of operands in an expression}.

Pach instruction defines a specific state transformation, The
state transformation defined by the instruction selected for
execution is actnally performed. :

The environment step. There are certain changes in the state
possible which are mot comntrolled by the program being executed.
The state obtained by the computation step can be modified by
certain permissive changes in the internral or external storage
effected by the environment of the machine, by an updating of the
time component, and by incoming attentions and reply messages.

The interrupt step. Tests are made, whether the normal
computation has to be interrupted because of changes made in the
environment step. In this step tasks which are in the wait state
may be activated {because of incoming reply messages, input to
transient files, incoming asynchronous attentions, or if the time
condition for a delay statement is satisfied), tasks receiving
asynchronous attentions are also interrupted in their normal flow
of execution to enforce the call of ar associated on-unit.

ahove three steps define the next state in the cosputation. If

this is not an end state, again a next state is prodeced according to the

same rules.

THE COMPUTATION OF THE PL/I MACHINE

IBM LAB VTIZNNA TR 25.099.

30 JUNE 1969 INFORMAL TINTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T.

Corresponding sections of /5/:
5. Tasks

3.1 Parallel actions

The following abbreviations are used in this chapter:

AG aggregate directory
.BA binck activation nanme

c,C control

CcT control information

cs condition status

) dump

EI epilogue information

EN attention enabling state
. ev ' event variable

™D file directory

ilo~ev: input-ontput event

pa, PA parallel action part

pri priority

5,5 storage

TD time and date part

te,TE task-avent specification

tn,TN. task~-event nane

tv task variable

This chapter describes the parallel execution of parts of a PL/I
program and the synchronization of such parallel executions,

In a PL/I program, it is possible to specify in a call statement that

the called procedure hody is to be executed in parallel with the calling
‘block; i.e., the calling block continues with the execution of the

7. TASKS 1

TEM LAB VIENNZA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX ANWND INTERPRETATION OF PL/T 3N JONE 1969

statements following the call statement while the called procedmre body
is execnted. Fach parallel execution of a procedure body is called a
task. FEach task may itself call other tasks. The execution of the
procedure body by which the program is started is itself a task, the
so-called main task. A task is called active from the time when it is

started up to the time when it has terminated its last actions.

Purthermore, it is possible to specify in an inpant or outpet statement
that the data transmission is performed in parallel with the execution of
the task which contains the statement; i.e.,, the task continues with the
execution of the statements following the input or output statement while
the data transmission takes place. This paraliel data transmission is
called an I/0-event. :

Osually a task, which started a new task or an T/0-event, has to make
nse of the effects of that task or I/D-event at some later time. To be
sure that these effects have been completed when they are needed, there
are means for synchronizaticn of tasks and I/0O-events, The
synchronization is performed by event variables, which are set either
explicitly by assignment statements or automatically on completion of a
task or I/D-event. They are inspected by a wait statement which delays
the execution of its task until specified event wvariables are set,

The following sections describe the realization of these features of
the language by the formal model of the PL/I machine. Toc be concise,
usually only tasks are mentioned, though most of the discussions are
valid also for I/O-events,

7.1 PARRLLEL EXECUTION

2 T

Whenever the language specifies that tasks are to be executed Pin
parallel™, a concrete implementation, depending on its hardware
environment, may choose one of the following altermatives: PFither it may
execute them really simultaneously, e.g., using different processing
units. Or it may execute one task after another omne. Or it may execute
them "intermixed”, e.g., performing first some actions of one task, then
some actions of another one, then continuning the first task, and so on. -
The only restriction is that no actions of tasks which have to wait for
actions of other tasks {cf. -7.5) are to be performed. The choice, which
tasks are to be executed first, may be influenced by priorities specified
in the program, though this influence is not defined by the language,

In the formal definition, the parallel execution of tasks is modelled
by a segnential machine: An instroction of one task is execnted after
another instruction of possibly another task. In each state of the
computation, an implementation defined function, the priority scheduler,
determines out of which task an instruction is to be executed next., It
does not determine a task which is in a wait state (cf. 7.5).

TASKS

TBM LAB VI®wH TR 25.729

303 JUNE 1983 INTORMAL INTRO TO THEZ ABSTRACT SYNTAXY AND INTERPRETATION OF PL/T
1t ——t
2 } F—— — I e
il 4 i [O | R | [
I T L R [N |
21 21z 121 2 211 2 1

Fig. 7.1 Sequentializing model of instruction executions of twe parallel
tasks

Thi= seguentialized model describes the langwage correctly (i.e., its
possible computations are eguivalent to the different implementatipons
permitted) as long as the executions of instructioms of different tasks
do not influence each other. Mutual influencing of instructions of
different tasks occurs by changing and accessing of common state
compponents, mainly by use of the same piece of storage or external
storage. .

Ahen using the same piece of storage or exterpal storage, the guestion
of uninterruptable actions occcurs., Principally, in the formal model the
execution of an instruction, which transforms one state into its
successor state, is understood as uninterruptable. Nevertheless, in a
concrete imnplementation one instruction execution of the formal model may
be realized by a series of elementary, uninterruptable, actions. ©Or
different instruction executions of the formal model may be realized by a
single elementary, uninterruptable, action. Thus, it may happen that the
simultaneous or seguentially mixed execution of different tasks may lead
to results which could not occur in any computation of the formal model.

EZxapple:
A:BRGIN: DCL X CHAR{3} INIT{'ABC')}, Y CHAR(3):

CALL B TASK:
¥ = %:
BR:PROC:

T = YXYZ;

In the fermal model the assignment ¥='YYZ* in task B and the reference
to ¥ in task A are performed both by single instructions. That means,
that ¥="¥YZ* is executed either before or after Y=X and thus finally the
value of Y is either *ABC* or °IYZ'. In a concrete inmplementation the
assigning and referencing might be performed character-wise. Then it

7. TASKS 3

IBM LAB VIENNR TR 25.099

INFORMAL TNTRC TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

might occur that X is referenced in task A after the first character had
been assigned in task B, i.e., finally the value of ¥ might be *XBC'" or
TIYC' or even something else.

For these reasons the lanquage says that the result of a progranm
assigning and referescing the same piece of storage or external storage
by different tasks is undefined, if these tasks are not synchromnized
appropriately to avoid such simanltaneoas access. This undefinedness is
not expressed by the formal model (it will always yield a set aof well
defined results, as in the above example). Apart from this
undefinedness, the model reflects all situnations which are allowed by the
language and which may occer in concrete implementations.

To have the possibility of synchronizing tasks in a defined way,
however, certain actions are defined to be uninterruptable by the
language, These actions are the creation and termination of a task or

"I/0-event and the changing and accessing of event variables.

' 7.2_REPRESENTATION OF TASXS_IN THE STATE OF THE PL/I_BACHINE,

4 7,

Corresponding sections of /5/:
3.1.1 The parallel action part PA
3.1.2 The curreat task event name TN

3.1.3 The task-event specification TE

.Certain state components, e.g., the storage S, are comaon to all
tasks. They are called the global state components and serve {among
other parposes) for commanication between tasks. The other state
conponents, e.g., the control C, are owned by the single tasks, i.e.,
each task has its individual ones. They are called the task loca)l state
components and carry all information needed within the single tasks.
Osually no task uses the task local state components of other tasks;
exceptions from this rule are the creation of new tasks, the abnormal
termination of other tasks and inspection of informatiorn about event
variables, i.e., situations concerned with explicit synchronizationm
betveen tasks.

The global state components are immediate components of the state £ of
the PL/T machine, while all task local state components are subcomponents
of one immediate component of the state £, namely of the parallel action
part P2 = s-pa(f).

TASEKES

¥

IBRM LAB VIENNA TR 25.099

30 JUME 1969 TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF Pt/I
5- 6 ces S-tn e e S-Pa
— — :
-~ ~
| o ~
~
5 I‘l'.l"’l1 ' ~

A"

,]
tn

‘ e : ,
global stafe r.omporxenfs S -main 1 o o » tn,
S-tg ese $C sﬂfe see S-C s{te ver 5-C
te ¢ TE c tey ¢n

v
task lecal

state cow\‘aonents
of the current task

Fig. 7.2 _Tasks in the state of the PL/I machine

The parallel action part PA contains for each active task an immediate

‘component, selected by a unigque selector, called task-event nape tn. The

task~aevent names anhigquely identify the single tasks (and I/O-events}.

The task-event name of the main task is the selector s-main, those of all
other tasks are unigmne names created immediately before the tasks are
started, At each state of the machine, the priority scheduler (cf 7.1}
determines the task-event name tn of that task from which an instruction
is to be executed; this task-event name is entered into a global state
component, the current_task-event name TR=s-tn{f}. By means of this
copponent TN, one has access to that component of the parallel action

part PA which is associated with the task currently executed. This task

is called the curremt task.

The task local state components of each active task constitute the

~component of the parallel actior part PA selected by the task-event name

of that task. So, the parallel action part PA contains the task local
state components of all active tasks, c¢ombined intc one component for
each *ask. E.g., the control of the task identified by the task-event
name tn is the s-c component of the component selected by tn from P3,
i.e., s-cetnes-pa{f).

In the initial state £, of the machipe, there is only one active task,
the main task. Therefore the carrent task-event name TH of the initial
state is the selector s-maim and the parallel action part PA of the
initial state has only one component, selected Ly s-main.

7. TASKS 5

ITBYM LAB VIENNA ‘TR 25.099°

INFDRMAL TNTRD TO -THE ABSTHACT SYNTAX AND IHETERPRETATION OF PL/T 30 JUNE 1969

6

In each state, the task local state components of the current task are
called the current task local state components, e.g., the current
control, They are denoted by underlimned capital letters, like the global
state components. They are found by applying the current task-event nanme
TN=s~tn (€} to PA, €.9., C=s-ceTHN{PA). A reader, who is not ipterested in
tasking questions, may assume TX to be constant (the selector s-main}.

He may speak e.g., of "the control C" instead of "the carrent comtrol C"
and ignore the fact that the selectors for the task local state .
components, e.g., s-ceTNss-pa, for the control ¢ are more complicated
than those for the global ones, e.g., s-s for the starage 5. Also
throughout the present document the current task local state components
are named as, e.9., "the control” instead of the current control, etc.,
vhenever only one sirgle task is under consideration,

It shonld be remembered that the parallel action part PR contains
besides the entries for the active tasks also similar entries for the
active I/0O~events {cf. 12.5.1) and entries for attention events
{cf. 11.2.2.1).

There is one special task local state compoaent which, for each single
task, carries information about its status. - This component is the
task-avent specification IE.

|) | |

s»ltv s-ev s-wait s-free set s-io-ev
task- gen event-gen * or 9 ptr- set tn - set
i 7 e e
I S
s s
priority completion,
' status
rig. 7.3 Task~event specification :g of a task

If consists of the following five components:

{1 The generation of the asSociated task vg;;gg;g. This-variable is
either specified by the call statement which initiated the task,
or a dumnmy variable is created. The value of this wariable {to be
fourd in the part of the storage 5 belonging to the gemeration) is
an integer, the priority of the task. The priorities of all
active tasks are considered (in' an implementation defined way) by
the priority scheduler (cf. 7.1) to determine which is the
current task for the next instruction execution. When a task is
started its priority is determined in one of the followlng three

vays:

{a} The initiating call statement specifies a relative priority.
Then this relative priority is added to the corrent priority
of the calling taszk, the resulting value is taken as. priority
of the called task and assigned to its task variable.:

7. TASKS”

TBH LAB VTENNA

30 JUNE 1969

2

£}

1)

{5

TR 25,799

TNTORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTIRPRTTATION OF PL/I

{by The call statement specifies no relative priority hut a task
variable. Then the value of the task variable is left
unchanged and taken as priority of the called task.

{c} The call statenent specifies neither a relative priority nor
a task variable., Then the current priori*v of the calling
task is taken as vriority also of *he c3lled *ask and
acsigned *o its task variable.

The value of the task variable, and thereby the rriority of the
task, may he changed at any time by assignopent of a new value,
¥ith the only exceotion *that as leng as the task is active, this
is possible only by use of the priority pseudn variable. Ro task
variable zan be associa*ed with two tast= at +he zarma fi=a,

The generaticn of the associated aven* variable, This variable is
either specified by the call statemant which initiated the task,
or a dummy variable is created. T% is u=sad fnr synchronizaticn of
other tasks with the termination of this task (cf. 7.5). When a
task is started the completion value of it=s associated avent

.variable is set to "incomplete? (0-BIT); it cannot be changed as

long as the task is active and is set tn "conmplete®™ ([1-3TT)
automatically at the end of the task. As long ag a *ask is active
only the statos value of its event variatle zan be changed (by use

" of the status pseudo variable). Ho event wvariable can be

associated with two tasks at the zame time,

The wait state flag. It is usmally empty. ©Osly if the task is
waiting for synchronization with some effect of other tasks, this
component is present. The priority scheduler f(cf. 7.1} choonses
only such tasks for execution whose wait state flags presently are
empty. The flag is set by the task itself whenaver it comes into
a situation where it has to wait for some other action. The wait
flags of all tasks are deleted whenever an action occurs for which
possibly a task might be waiting. Thereby all waiting tasks are
reactivated, and each of them may deterrnine whether it can
continue now or whether it has ¢o wait further, i.e., to reset its
wait state flagq,

The based free set. BAll storage allocat=d by a task by based
allocation has to be freed by the task, at latest at its
termination. To preserve the information necassarv for this
purpose, each based allocation enters the pointar of the allocated
storage into the based free set of the task-event soecification TE
of the current task, and each based freeing deletes the pointer
from this set. At the start of a task this set is empty, at the
end of a task the storage of all pointers left in the set is freed
automatically.

The I/0O-eyent _set. All I/0-events started by a task, which are
yet running, are to be terminmated when the task terminates. Tor
this purpose, similarly as with the based stovage, a* each start
of an I/D-event its task-event name is entered into the I/O-event
get of the task-event specification TZ of the current task. At
the start of a task this set is emptr, at the end of a task all

I/0D-events, whose task~event names are en*tmrad into the set and

vhich are yet active, are terminated.

7. TASKS 7

IBM LAB VIENNA ... TR 25,099

INFORMAL INTRO TO THE ABSTRACT SYNTAX aND INTERPRETATION OF PL/T 30..JUNE 1969

7.3 ATTACHING OF TASEKS

B

Corresponding section of /5/:

5.1 Attaching of tasks

The creation of a new task is called attaching a task. The task which
attached the new task, by execution of a call statement with a task
option, is called the mother-task, the newly attached task the daughter

task.

1 task option of a call statement, which causes the attaching of a new
task rather than just the establishing of a ney block activation within
the current task, consists of three components:

5-task | s-event swpri

ref or * vef or % | expy or G

Fig. 7.4 Task option of a call statement

&) a referernce for the task variable of the daﬁghter task, or an
asterisk if a dummy task variable is to be created;

(2) a reference for the event variable of the daughter task, or an
asterisk if a dummy task variable is to be createdj;

(3} an expression specifying the priority of the daughter task
‘relative to that of the mother task, or empty if the priority of
the daughter task is to be taken either from the specified task
variable or from that of the mother task.

Rhen a new task is to be attached, the mother task creates a new
unigue name tn and enters a new component for the daunghter task into the
varallel action part PA, using the created unigue name tn as task-event
name of the daughter task. The new component of PA consists of the
following task local state compoments for the daughter task:

(M The task event specification FE of the daughter task is
" constructed malnly from the conponents of the task option of the
call statement. The task and e&vent variables are initialized by
" priority and completion values as described in 7.2,

{?) ‘ The aggregate directory AG of the daughter task is constructed
from that of the mother task hy taking over only the head
generations of all entries., By this mechanism it is guaranteed
that both mother and daughter tasks can use the current
generations of all variables, that both can continue the
genaration stack of controlled variables independentliy hy

7. TASKS

TBM LRAB VIENNRA TT 25.799

30 JUNE 1969

3

(4)

(5)

TNTORMAL TNTRD TO THE ABSTRACT SINTAYX AND INTERPRIETATION OT PL/T

allocations and that each task carn fr=e onivy **cse generations
which it had allncated itself {no task €freez the last generations
in the generationn lists in its nwn aggregate directory).

The file directory TD nf the danghter %ask is constructed from
that of the mother task by taking over all its entries, but
deleting all s-own components, By *his =echanizr all existing
entries are denoted as inherited and it is guaranteed that the
daughter task may use all files opered -y the nother task before
the attaching, that bhoth mother and daugkter task nav open
independently further files, and tha* each task can close only
those files which it had opened itself (no file closes files which
ara not denoted as Y"own"™ in its own £ile directory}.

The attention enabling state EN of the dauchter task contains nn
enabled, no associated and no waiting attentions,

The dump D and the condition sta*us €5 of the daughter task are
copied from the current ones of the mother task. Therebv it is
guaranteed that the roles of the dynamic block structure of PL/T
{cf. B) apply to the nested block activations, whichk will he
established within the daughter task, in the sape way as if they

- have been nested in the current block activation within the mother

task. T.e.,, the dyramic structure cf nested blcck activations
will be continued jidependently in the mcther task and in the
daughter task. This applies especially %o the scone rules for the
meaning of identifiers amd +o the inheritance rules for condition
enabling and conditior actions, This cortinugatior of the sequence

‘of nested block activations into the daughter task is the reason,

why no bhlock is tarminated before all tasks attached by it have
been terminated {cf. 7.#4}; othervise the sedgnence of nested block
activations would be interrupted, the daughter task would still
use jdentifiers inherited from the mother task which are already
obsolete.

mother task daughtertask

Fig. 7.5 Structure of dynamically nested block activations of
' mother task and daughter task

7. TASKS 9

IBM LAB VTENNA _ TR 25.099

INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

It should be noted that actually the inherited dump will be used
by the daughter task only for two purposes: for reestablishing
the conditior actions of the surrounding block activation by the
revert statement, and for preventing the call of an entry
constant, declared in a block activation other than a dynamically
surronnding one, by a call statement calling an entry variable.

{6) The block activation name BA, the epilogue information EI and the
control information CT of the danghter task are initially empty.
An empty block activation name and epilogue information is
characteristic for the outermost block activatiosn level of a task.
This fact is used by the goto statement, when successively
terminating block activations in the dump to prevent a goto into
block activations which were established by the mother task.

{7 The comtrol C of the daughter task contains imstructions for
performing a normal {non-task} procedure call within the daughter
task, and after return from that procedure body the termination of
the daughter task {cf. 7.4). After the new component for the
daughter task has been entered into the parallel action part PA by
the mother task, the daughter task is immediately active, has the
gsame rights as all other existing tasks and can execute these
instructions in its control.

In addition to the creation of the new component for the daughter task
in the parallel action part PA the mother task enters the task event name
tn of the attached daughter task into the epilogue information of its
current hlock activation. This is done to keep track of all daughter
tasks attached during a hlock activation, in particular, to terminate all
these daughter tasks before the block activation in the mother task
terminates {cf. T.4). '

7.4 TERMINATION OF TASES

10

7.

Corresponding section of /5/:

5.2 Termination of tasks

‘A normal termination of a task occurs after normal return from the
procedure body called when the task was attached. After this return, all
block activations established by the task (except the outermost one) have
already been terminated, "Then, the task performs the following actions:

(1 closing of all files opened and not yet closed by the task (to be
found in the file directory FD of the task};

(2} abnormal termination of all I/D-events started by the task which
are not yet terminated (to be found in the T/0-event set of the
task-event specification TE belonging to the task};

{1 unlocking of all keys locked by the task;

(") disabling of ail attentions enabled by the task (to be found in
: the attention enabling state EN of the task);

{5} freeing of alil duntrolléd and based storage allocated and not yvet
freed by the task (to be found in the aggregate directory AS and

TASKS

IBM LAB VTENHA T2 25.099

30 JUMNE 196§ INFGRMAL INTRG TO THE ABSTRACT SYNTAX AND INTIRPRETATION OF PL/X

the based free set of the task-event specifica*icn TZ of the task,
respectively) ;

(6} setting the comonletion value of the event variable associated with
+he task to "complete®:

(N The last action of the task is to delete it= own component from
the parallel action part PA; i.e., it Temoves all its own *ask
local state conmponents from the state. Thereby *he representation
of the task ig completely removed f£ron the state and it is no more

active,

An abnormal termination of a task occurs, vwhenever a task is
interrunted during its normal flow by an action causirg it to terminate,
These interrupting actions are:

(1} execution of an exit statement by the task :+self,

(2} execution of a stop statement by any task {terripating the main
task},

(3) termination of that block activation in the mo*her task by which

the task was attached,

If a task iz to be terminated abnormally the sanme actions as for a
normal task termination are performed, but befores *hat all its active
blnck actiwvations are firished nne after the other by =xecnticn of the
normal block epilogue (cf. 8.2.4). Among other actions, the epilogune of
each block activation causes all daughter tasks, attached by the block
activation, themselves to terminate abnormally. Tinal termination of a
block activation does not take place before all daughter tasks have in
fact completely terminated. Since, in turn all daughter tasks then
finish their hlock activations and thereby terminate all their own
daughter tasks and so on, the result is that abrormal termination of a
task automatically terminates all descendent tasks before. More
precisely, this mechanism ensutes that the general principle of the PL/I
block concept is obeyed: ¥No block activation is terminated hefore all
its dynamically nested block activations (cf. Fig.7.5) have been
terminated, whether they belong to the same task or to any descendent

task.

In particular, +his mechanism of autcmatically terminating all
descendent tasks when a task is to be terminated, is used by the stop
statement, Irrespectively by which task a stop statement is to he
exacuted, it causes the main task, and thereby auntomatically all other
tasks, to terminate abnormally.

7. TASKS 11

IEM LAB VIENEA TR 25.099

INFORMAL INTRC TO THE ABSTRACT SYNTAX AND THTERPRETATION OF PL/I 30 JOUNRE 1969

7.5 SYNCHRONTZATION OF TASES

12

7.

Corresponding sections of /5/:
5.3 The wait statement

3.1.5 The event trace ET

The synchronization of two tasks is performed by means of an event
variable (which has to be known to both tasks}: it is set by explicit or
automatically performe=d assignment in the one task and inspected by a
vait statement in the other task. The value of an event variable
consists of two components: the status valne (which is not relevant for
synchronization) and the completion value. The completion value is a bit
denoting either "incomplete® (0-BIT) or "complete™ (1-BIT). 1A wait
statement inspects vhether specified event variables are "complete®,
othervise it waits until they are.

OUsually an event variable may be set to "incosplete® or "complete® hy
explicit assignment of the value of another event variable or by explicit
assigneent of a bit value by means of the completion psendo variable.

The completion value of an event wvariable, hovever, which is associated
with a task {cf. 7.2), wvwith an I/O-event (cf. 12.5.17) or with an
‘attention event [cf. 11.2.2.1) canrnot be changed by explicit assignment
as long as that task or event is active (i.e., as long as the generation
of the event variable is entered into the task-event specificatioa TE of
any component of the parallel action part PA}. Such an event variable is
automatically set to "incomplete®” when the task or event is attached and
to "complete™ when it is deleted. . Thus, by a wait statement a task can
be synchronized either with a specified point (the point of an explicit
assignment to "complete®) in another task or with the termination of
another task, of an I/0-event or of an attention event, -

A vait statement recognizes an e&vent variable as complete if this
event variable satisfies one of the following three conditions on
inspection: '

(1) its completion value is in fact Ycomplete®™, or

{2) its completion value, though it is now possibly "incompleten
again, has been "complete” at some previogs time during the
current wait statement, or

)] it is associated with an I/0-event, which:

{a} was attached by the task containing the wait statement, and

(b) 1is not yet terminated (and therefore the completion value of
the event variable is "incomplete®}, baot

{c} has already finished jits data transsission.
Such an I/0-~event is called semi-coaplete.
The first case is recognized simply by inspecting the value of the
event variable in its storage. A special global state component, the

event trace ET, serves to recognize the second case. Tt records the
order in time of all actions setting event variables to "coamplete® and

TASKS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 TNFORNAL INTRO TCO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/X

all starts of wvait statements: Yt is a 1list to which, vhenever an event
variable is set "complete™ {by any action of the PL/I machine) the
generation of the event variable is added as new last elemenit. Whenever
a wait statement starts, it creates a unigue nawe as its individual
jdentification and adds thkis uanique nape to the event trace. So at any
time, by irspecting the event trace, a wait statement can recognize which
event variables have been set conplete later than its own start.

Example:

DCL {E1, B2, E3} EVENT; -
CONPL{E1), COMPL(E2), COMPL(E3)=!0*B;
CALL A TASK PRIORITY {3):

CALL B TASK PRIORITY(2}:

CALL C TASK PRIORITY(1);

A;PROC: -

- 8o 1

W2:WAIT{BE2) : -
COMPL{E2}=*0*%E:
L1:CONPL{EN =" 1¥B:

L] u

COMPL({E1} =* 0 B;
W3:WAIT(E3) ;

END A3

B:PROC;
W1:¥AIT{E1) ;
& " @ - 5
ERD B:

]l L i
-

.

C:PROC; ;
ces 3
L2:CORPL(E2) =" 1* B; -
e & w 5
L3:COBPL(E3) =* 1%8B; -
e 8

END Cg]

Assume that task R has the highest priority and is selected for
execution by the priority schedunler whenever possible, that task B has
the next priority and is selected for execution vhenever A but not B has
to wvait, and that task C has the lowest priority and is selected only if

. both A and B have to wait. The interesting wait statement is the one
labelled ¥1 in task B. The machine executes the program sectioms in the
order given by the rumbers at the right margin. When the flov of control
initially comes to the statement W1 (after the sections 1 and 2y, its
eyvent variable E1 is "incomplete®, thus it has to wait and the sections 3
and 4 are executed. TIn section 4 the event variable E? is set "complete®
and then ¥incomplete” again. When- {after section %} the statement W1
inspects Bt agaim, E1 is "incoaplete® but has beenr "complete” in the
meantime, thus task B can comtinue. The event trace up to this point is
the followirng (denoting the unigue names created for the wait statements
by w1, ¥2, ¥#3 and the generations of the event variables by E1, E2, E3):

7. TASKS 13

IBM LAB VIENNA TR 25.099

INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/X 30 JUONE 1969

14

7-

7

Fig. -7.6 Example of the event trace ET.

A semi-complete I/0O-event is characterized by the fact that its
component is yet containedl in the parallel action part PA, but its
control is exhausted. When a wait statement recognizes that one of the
event variables it has to wait for is associated with a semi-complete
I/0-event, it has fnlly to complete that I/OD-event, i.e., asong otkers to
raise I/0-conditions {cf. 12.5.1), to remove the corresponding component
froem the parallel actior part PA amd to set the associated event variable
to "complete®, It should be noted that this completion of a
semi-complete I/0-avent is performed only by that task which started the
I/0-event. Wait statements occurring in other tasks which incidentally
vait for the same event variable do not recognize it as seri-complete;
they have to wvait until it is cospleted by a wait statement in the right
task as described above.

A wait statement has to wait until a given number (the wait count) oat

of a specified list of event variables (the event list) is recognized as
complete, as described abave. This is done in the following way:

TASKS

IBM LAE VIERNA TR 25.0992

30 JORE 1969 INFORMAL INETRO TO THE ABSTRACT SYRTAX AND INTERPRETATION OF PL/T

wait count
=0

compiete the
l [/0-event

ramove from
[_ event list

| decrease wail

count by 1

|

v
|
I set wait
| state
| | |

) |
| __ (when reactivated) |

Fig. 7.7 The wait statement

7. TASES 15

IBK LAB VIENNA TR 25.099

TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JONE. 1969

16

7.

¥hen the task containing the wait statement is selected for execution
by the priority scheduler it inspects whether at least one of the event
variables to be waited for is recognized as complete, If so, that event
variable is repmoved from the event list, the wait count is decreased by 1
and, if the event variable is associated with a semi~complete I/0~event,
this I/0-event is fully completed. This is repeated until either the
vait count is 0 or no more event variable in the event list is recognized
as conplete.

It is finished and the task continues with the execution of the next
statement. Tt should be noted that this may happen before the event list
is erxhausted ¢if the wait count was less then the number of event
variables in the event list), In this case not all event variables in
the event list need to he complete, in particular there may remain
associated I/0O-events which are not fully completed.

If the wait count is not yet 0, but there are no more event variables
in the event list which can be recognized as complete, then the task
containing the wait statement is set into the wait state, i.e., the wait
state flag of its task-event specification TE is set {cf. 7.2}. As a
consequence, the priority scheduler will no more select this task for
execution.

Whenever an action is performed by any task for which ancther task
might be waiting {in particular the Pcomplete” setting of any event
variable and the semi-completion of amy I/O-event) all tasks are
reactivated, i.e., all wait state flags are removed. Then each formerly
waiting task may again be selected by the priority scheduler for
execution, it can inspect its event list whether there is now an event
variable recognozed as completed or not. Depending on this it either
continues the above described removing of event variables from the event
Jist or it goes back into the wait state another time.

4 similar mechanism applies also for all other situations in PL/T
where a task has to wait for some specific action:; The delay statement
waiting for a specific time {this time is entered into a special
comporent of the time and date part TD and all tasks are reactivated when
it is exceeded by the time component cof the state}, the block epilogue
wvaiting for the termination of all its daughter tasks, etc,

TASKS

IBM LAB VIENNZ TR 25.099

30 JONE 1989 INFORNAL INTRD TD THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

8. _BLOCK ACTIVATIDNS

Correspondiag sections of /5/:
6.1 Bleock activation
6.2 Procedure call

3.2 Flow of control

The following abbreviations are used in this chapter:

AG aggregate directory
arg argument

ap ' argament part

AT attribute directorj

b unique aggregate name
BA,ba block activation name
bpp block prefix part

C, c control

cI, ci’ " control information
cs, cs ' condition status

cTL controlled

p, d dump

den denotation

descr descriptor

DH denctation directery
Bl, ei epilogune information
elem ‘ element

EY attention environment directory
expr expression

fct function

D file directory

8, BLOCK ACTIVATIONS 1

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 19569
GEN, gen generation
id identifier
n nnigue name
pref prefix
ptr pointer
ref reference
ret-type return type
sl subscript 1list
st statement

This chapter describes the dypamic handling of the klock structure of
PL/I within a single task. The block straocture of a PL/T program
{cf. 2.1) leads on interpretatior to a dynamic system of nested block
activations. 1At any time for each active task, there is one plock
current block activation of that task. W®Whenever a task {including the
main task at program start) or the interpretation of a block
(begin block, procedure body, on-unit, attention) starts, a new block
activation is established. W®hen the interpretation of a btlock terminates
the previous block activation is re-established {if there was any for the
same task -~ the first block activation of a task terminates by
terminating the task itself}.- All block activations which are
established and not yet terminated are called active. The dypamic
descendants or nested block activations of a given block activation are
all those hlock activations which are established by actions of the given
one and all those established by actions of these latter ores and so on.
Within one task, at any time the systemof dyramic descendant block
activations which are yet active is linear, i.e., each active block
activation has at most one active immediate descendant in the same task.
They may have more immediate descendants in daughter tasks
{(cf. 7.3,Fig. 7.5}. It is a property of PL/I that no block activation is
terninated until its dynamic descendants have been terminated.

'8,1_THE_DINP D

2 8.

Corresronding section of /5/:

3.2.1 The dump D

The current block activation is represented in the state of the PL/T
machine by the following six local state components:

{n the block activation name BA,
{2} the epilogue information EI,
{3) the condition status CS,

BLOCK ACTIVATIONS

IBM LAB VIENNA TR 25.099

30 JUNE 1969l INFORMAL IHNTRO TO THE ABSTRACT SYNTAX ARD INTERPRETATION OF PL/I
{1) the damp D,
(5 the control information CIJI,
) the control C.

These six state components contain all information which belongs to
the current block activation and is obsolete on its termination. ¥hen a
nested block activation is established, the local state components have
to be sayed for use after termination of the nested hlock activation,
Since the latter installs its own local state components.

The local state component of all active block activations which are
not the cuorrent one are kept in the dump D. The dump is an object
manipulated like a push-down stack, it maintains dynamically the history
of the still active block activations. - It consists of six components,
namely the six local state components of the predecessor of the current
block activation. Its dump component has again the same structure and
consists of the local state components of the predecessor of that block
activation, and so cn. The dump of the first block activation is empty:
the dump of the first block activation of a task (except the main task)
is copied from the current dump of the mother task when the task is
created. So the different levels of the dump represent the dynamic
predecessors of the current block activation up to the first block

activation of the progranm, -

s-pba s-ef 5-C5 5-d S~Ci 5-C
ban EI oy CSp C!n Cp
a-ba s~!ei S-Cs s-d $-ci s—lc
by 4 ein-4 CSn-t Chn- 4 Cn-4
|
|
I
S-ba 5-ei $-¢s & Cli fuc
baq 64 q Csy ’ C-i1. C,‘

Fig. 8.1 The dzmp

B. BLOCK ACTIVATIONS 3

TB® LAB VIENWA TR 25.099

TNFORMAL THTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

When a new block activation is established the local state components
of the previcus block activation are copied as components iate the dump. -
Thereby the former components of the dump automatically become components
of the dump component of the dump, and so on: i.2., all parts of the duamp
are pushed down cne level., Conversely, when a block activation is
terminated, the components of the dump are copied into the local state

. components of the PL/Y machime. A1l parts of the dump are thus popped up
one level. This pechanism guaramtees that all local state components are
available a5 long as necessary, namely until the corresponding block
activation is termipnated, and that the right block activation is
re~established when a biock activation is terminated.

One should note that all informaticn contained in the local state
components {except the dump} is inherited into nested block activations,
since they are copied intoc the dump and not destroyed on establishing a
nested block activation. Afterwards, im general, the nested block
activation will modify the inherited state compomnents. Coaversely, no
information contained in the local state components [except the dump) is
inherited back into outer block activations, since they are overwritten
at block ternination. The Aump is left unchanged throughout a bhilcck
activation, except in some cases of abnormal block termimation, e.4g.,
goto out of a block.

8,2 INTERPRETATION OF A BEGIE BLOCK

Corresponding sections of /5/¢
6.7 Block activation
3.2.2 The block activation name B3

3.2.3 The epilogue inforration EX

As described in section 2.9.2, a begin block is a proper statement
consisting of five components:. a deciaration part, a procedure body
part, a condition prefixr part, a statement 1list and a reorder option
flag. Itz interpretation congists of the creation of a new block
activation, unigue gralification of the locally declared identifiers inm
the text of the block, interpretation of the declaraticens and their
installation in the state of the PL/Y machine, interpretation of the
statement list, and termrinatiomn of the bleck activation.

Tn more detail, the followirg actions are performed, im the order
given:

4t 8, BLOCK ACTIVATIONS

TEM LAB VIENWNA TR 25.099

30 JUNE 1969 INFORMAL INTRC TC THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

1] push down D

B
2] initiolize BAEL,CL

l
3] quatlify identifiers
| . ‘> Frolog_ue actions

—4—1 Create BA
i
——5—} updqte AT and CS

|
81 Lpdate DN

I | main pavrt
z ih’(erprett ot ' l (described in detail
Stclten';en Lis) by Fig, g 3)
8] terminate A)
 attached tasks :
_ [
iJ free local L ePilcgue actions

automatic variables

!
pop up B

continue actions of
rorevious block
activation

Fig. 8.2 Interpretation of a begin block

A. BLOCK ACTIVATIONS 5

TBM LAB VIENNZA TR 25.099

INFORMAL TINTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUKE 1969

(N The local state components of the previous block activation are
copied into the damp as described in 8.1. .

(2} The block activation name BA (cf. B.2.2), the epilogue information
EI {cf. B.2.4) and the control information CI (cf. 9.4) are
initialized for the new block activation,

{3} Tor each declaration contained in the declaration part of the
block a unigue name n is created and all occurrences of the
declared identifijer in the text of thke begin block to be
interpreted are gualified by this unique name n as described in

8.2.1.
{H) A unigue block activation name BA is created (cf. 8.2.2}).
{5} The attribute directory AT is updated by entering each declaration

out of the declaration part of the block under its unigne name n
{cf. 5}. The block prefix part of the condition status CS is
npdated by merging the previous one with the prefix comdition part
of the block {cf. 11.2.1}.

(6) The denotation directory DN is updated by constracting and
entering the denotation of each declaration out of the declaration
part, under its unigune name n, as described in 8.2.3.

(7 The statement list of the block is interpreted. This main part of
the block interpretation is described in chapter 9.

{8) A1l tasks which are attached dnring the imterpretation of the
staterent list and which are not yet completed are terminated
abnorpally. The information as to which tasks are to be
terminated is found in the epilogne information EI.
Tuoterpretation is continued after terminration of these tasks.

{9 ‘The storagé of all automatic variables allocated in this block
activation is freed. The information as to which storage is to be
freed is found in the epilogme information EI.

(10) The local state components of the previous block activation are
copied back from the dump as described in sectiom 8.1.

8.2.1 UNIQUE QUALI?ICA?IOH OF NAMES

The scope rules of PL/T reguire, that by a declaration the declared
identifier receives its meaning for all occurrences within the text of
the block containing the declaration. - This meaning is inherited also
into statically nested blocks as long as they do not contain another
declaration for the identifier, If the same block is activated twice,
both block activations are understood as completely independent of each
other: 1All declarations give for both block activations different
meanings to the declared identifiers. Another feature of PL/T is the
fact that the interpretation of a piece of text may be postponed until
another block activation than that one to which it belongs, i.e.; that
the meaning of identifiers occurring in this piece of text may differ
from their meaning in the block activation established when the text is
interpreted (e.g., declaration of a controlled variable, which is
interpreted on allocation possibly in a nested block).

311 these features are accomodated by the following simple mechanism:
At the beginning of any block activation, a unigque name mn is created for

6 8. BLOCK ACTIVATIONS

IBM LEB VYIENNA TR 25.099

30 JONE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

each of its declarations. On the cne hand, this unigue name is used as
selector to enter all informationr representing the meaning of the
declared identifier into the different state components of the PL/T
nachine, in particular the attribute directory AT and the denotation
directory DM. Thus the unique name n gives access to the meaning of the
declared identifier id, assocciated with it. On the cther hand, before
any further use of the text of the block is made, each occurrence of the
identifier iq in this text {including all contazined blocks} is gralified
by adding the usnigue name n. FRhenever, after this gqualification has
occurred, some part of that text is to be interpreted, not the identifier
id itself, bet the added unigue nase n is used to deterzine its meaning.
Fhen the activation of a nested block starts, those identifiers which are
not redeclared keep the foremer nnidue names they had received earlier,
while for the redeclared identifiers the tnigue names are overwritten by
ne¥ ores according to the new meaning given by the redeclarationm in the
nested block. Any identifier occurring withort matching declaratiom will
receive no unigque name by this mechanism and this %ill lead to am error
when an attempt is made to interprete the text containing the occurrence.
Any part of the text whick is copied and interpreted during a later hlock
activation retains its gualifying unique names and thereby the meaning of
the contained identifiers. Thus the above mentioned scope rules of PL/I
are nbeyed fully by this mechanisn.

DCL A (N) CTL, CHAR (3}, W INIT {5}
BEGIN: DCL N CHAR {3) INIT (*ABC®):
ALLOCATE A INIT (§):

LI

EWD:

For the first declaration of %, in the outer block, a unigue name
n; is created and added to all occurrances of N, ¥Whea the inner
block is activated, for the second &eclaration of N a second

- uftigue name ny is created and added to ail occurrences of ¥ in the
text of the inner block. How, when the allocate statement is
executed, the idertifier W occurring in the dimension attribote is
found to be gualified by n; and leads to a fixed point wariable
with value 5, vhile the identifier W occurring im the initial
attribote is found to be gualified by n, and amd leads to a
character variahbhle ¥ith value ®ABC?,

The described schema has to be slightly modified for the following
reason: The nost fregunent occurrance of identifiers in the program text
is in the context of references. TIn these cases not single identifiers,
but identifier lists, se-called gualified mazmes, occur possibly referring
to components of structures. Hot the main idemtifier, i.e., the head of
the identifier list, but the whole identifier list determines te which
declaration the reference refers.

B. BLOCK ACTIVATIORS 7

TBEM LAB VTIENNA TR 25.099

IHNTrORMAL INTRO TO THE ABSTRACT SYHTAX AND IFTERPRETATION OF PL/T 30 JONE 1969

Example:

DCL 15, 2 A, 2 B

BEGIN 1S, 2 &, 2 C3
e Sed ae.-
wes S.B ...
- 8 & S-C a & e

L) s LI

END:

The first declaration of S {in the outer bhlock) gives rise to a unigue
name n,, the second declaration of 5 (im the inmer block) another unigune
name ng. In the inner block the references 5,4, S.C and S are to be
gualified by n,, referring to the second declaration, while the reference
5.B is to be qualified by my, referring to the first declaration. -

This is accomplished by gualifying all qualified names referring to
the same declaration by adding the unigue name of that declaration. &
reference thus gqualifi=d has the followimg structure: besides the
components described in 2.4,1 it has another compenent, namely the
gualifying unnigue name n:

s~1d—iist s»{m s-lptr s-sl S-ap
n ref expr-list arg- part
glem () oo elem (n)
or G

Fig. 8.3 Reference gualified by a ﬁnigue nape

B.2.2 THE BLOCK ACTIVATION KAME BA

g8

8'

Por the meaning of some types of declarations {entry, labhel amd format
constants) the knowledge of th=ir block activatiomn, i.e.,; of the block
activation containing the declaration, is essential. An entry or label
constant may only be used by a call or goto statement in its own block
activation or any of the dynamic descendants thereof. TIn the case of a
goto statement the block activation of the label constant has %o be
re-established. 2 format constant may only be used by means of a remote
format in its ow¥n block activation. Since it is possible by means of
assignment to entry or label variables to traansfer tke values of entry,
lakel and format constamts into wvrong block activations, ore has to make
the test when using these values. -

For this purpose, each block activation which may contain declaratioas
(i.e., the activation of a hegim block or procedure body, but not of an
on-unit or attention} is unigunely characterized by a unigune name, the
block activation mame BA. This unigue name is created and inserted into
the state as local state component before the declarations are
interpreted. It is then inserted into the denotation of entry, label and

BLOCK ACTIVATIONS

IBM LAE VIENRA TR 25.099

30 JU¥E 1969 INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

format constants. A later test for correct use of such a constant can
then be performed by inspection of the current block activation name BA
and the bhlock activation names stacked at the different levels in the
current dump D.

The block activation name of the ouvtermost block activation of a task
{(including the main task) is left empty (i.e., U). This is tested by the
goto statement to avoid a goto out of the task: A goto does mot cross a
level in the dump 3 whose block activation name is 0. BAs a consegquence,
the block activation name component of the denotation of an external
entry constant is alwvays empty {since it is declared in the ouatermost
block activation of the main task}.-

The block activation name of a block activation initiated by a
condition or attention call is am asterisk (*}. These block activations
need not be uniguely identified since they do not contain declaratiorns,
nor must they be rejected as erroneous by a goto like the outermost block
activations of tasks,

Special provisions have to be made for the case where ap attention
interrupt occurs in the period between the establishing of a block
activation and the craation of its unigme name BA, since it could happen
in this case that a goto leads put of the block activation called by this
interrunt. TIf the block activation name of the previous block activation
would be intermediately taken over, such a goto might lead into the new
block activation instead of the previous one; if the block activation
name ¥ould be empty intermediately, a goto would rum into error like a
goto out of a task. Therefore, the block activation name of a new
established block activation is intialized to * until a unique name has
been created and inserted.

8.2.3 IRTERPRETATION OF DECLARATIONS

The mainm action of the block prologue is to interpet the declarations
of the block. That means to form the information about the meaning of
the declared identifiers and to enter this information under the unigue
names associated with the declarations. {cf. 8.2.1} into the different-
directories.

The texts of the declarations, . as modified by the uvniqgue gumalification
of mames {cf. 8.2.1}, are entered into the attribute directory AT
{cf. 5).

The donotations of the declarations are constructed and entered into
the denotation directory DN. The denotations of the different types of
declarations consist of all information which, besides the texts of the
declarations themselves, constituates the meaning of the declared
identifiers. TIts structure, for the single types of declarations, is
described in chapter 5.

For a proper variable the denotation is a unigque name b, the aqgregate
nape, which is used to access the generatiom list of the variable in the
aggregate directory AG. For static and comtrolled variables, the
aggregate pames were created by the prepass and entered into the text of
the declarations. For automatic variables new aggregate mames are
created, and, additionally, storage is allocated and initialized.

For an internal entry coanstant the denotation is conposed from the

declared identifier itself, the corresponding procedure body to be found
in the procedure bhody part of the block as described inm 2,2.2, the

8. BLOCK ACTIVATIONS 9

IBH LAB VIEWN2 TE 25.099

INFORMAL INTRO TO THAE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1959

current block activation name BA (cf. 8.2.2) and the bleck prefix part of
the current condition status £S. - Por aam external entry constant the sanme
denotation was constructed at program start, entered into DR under a
unigue name n whick was entered by the prepass into the text of all
declarations of external entry constants of the same identifier
throughout the text. Thus the block prologue has only to copy that
denotation ir the case of external entry constants.

For file constants and attentions the prepass created anigue names as
their denotations, serving as selectors to the file directory FD or the

.attention enviromment directory E¥. These unigue names were entered into

the text of the declarations by the prepass.

For a label constant, the declaration is constructed from the current
hlock activation name BE and the index 1list as given in the declaration,
For a format constant, the denotation is constructed fror the current
block activation name BA, the format list and the identification which
are hoth given in the text of the declaration, and the statement prefix
part given in the declaration and merged with the current bhlock prefix
part.

For a defined variable, the denotation is produced by evaluating its
aggreqgate attribute {cf. 2.2.1).

411 other types of declarations {based variables, generic identifiers,
builtin functions and programmer-named conditions) need no denotatiens.
A1l information about their meaning is given by their declarations.

The interpretation of autormatic and defined declarations requires
expression evaluation. Since in these expressions locally declared
identifiers may octur, provisions are made that no denotation of an
automatic or defired variable is evaluated before the denotatioms of all
those declarations have been entered into the depotation directory, which
are needed for its evaluation. Tf this reguirement is not satisfyable,
since some declarations are mutuzally depeadent {directly or indirectly)
on each other im this sense, then the program is in error,

8.2.% BLOCK EPILOGUE AND THE EPTILOGUE INFOREATION EIX

10

8.

The epilogue of a block activation terminates all tasks attached
during the block activation which are still active ([cf. 7.4}, frees the
storage of all local automatic variables and re-estahlishes the previous
block activation by copying the local state compomnents from the dump as
described in 8.%. The epiloque of a block activation is executed not
only on normal termination of the block activation, i.e., on exhaustion
of its statement list, but also on any occasion, when the hlock is to be
termirated abnormally. These occasions are: the return statement
{cf. B.3.3), the goto statement [cf. 9.6} and the abnorpal termination of
the task {cf. 7.4).

There is a local state component, the epilogee information EI, which
contains for each block activation all information needed by the epilogue
for correct termination of the block activation. Additionally, it
contains all information needed by a return statement to perform a
correct return from a procedure hody.

The epilogue information EI consists of the following componeﬁts:

BLOCK ACTIVATIONS

IBM LRB VIENNA

30 JUNE 1969

(1

(2)

{3)

(#)

{5)

(6)

TR 25,099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATICON OF PL/I

The free¢ set. The storage of all automatic variables and all
dummy arguments is to be freed at the end of the block activation
in which they are declared, or of the procedure to which they are
passed, respectively. The free set of EI maintains the
information as to which variables are to freed at block end.
Tnitially it is the empty set for a hegin block or the set of
aggregate names of the dommy arguments for a procedure. - Whenever
an austomatic variable is allocated, its aggregate name is added to
the free set, On termination of a block activation all variables,
vhose aggregate names are contained in the free set, are freed.

The task set. Tt has a similar pnrpose as the free set. Each
task attached during a block activation is to be terminated
abnormally at block end, if it kas not been completed earlier.

The task set is initially the empty set. ¥henever a task is
attached, its unique task name is entered into the task set of EI.
At block end all tasks, vhose unigue task names are contained in
the task set of EI and which are still active, are deleted.

The block-activation-type. A return statement has to perform
different actions depending on whether the current hlock
activation is that of a begin bleock, a procedure hody, or an
on-anit. To recagnize this distinctiocn the epilogue information
contains a component which is one of the elemerntary objects BLOCK,
PROC, DN. This component is set ¥hen a block activation is
established and never changed. For the block activation of an
attention call, which never executes a return statement, %this
component is empty.

The fupction denotation. If a procedure body is activated by a
fuuction reference, then, before the call, ar aggregate name is
created for a dummy variable for the function value to be
returned. This aggregate name is reserved in the epilogue
information of the called procedure to be used by a return
statement for allocation of a dumry variable and assignment of the
function value %o this dummy. Since such a return statement may
occur in nested begin blocks, the function generation is imherited
into the epilogue information of nested block activations of bhegin
blocks {but not of procedures}. This comrponent of EI is empty in
procedures activated by call statements imstead of functionr
references {and in nested begin blocks}.

The return type. If a procedure body is activated by a fonction
call, the return type of the called entry point is entered into
the epilogue information to be used by a return statement for
conversion of the functiom value and allocation of a dummy
variable for it. The return type is inherited into the epilogne
information of nested begin blocks in the same way as the fumction
denotation. This component is empty in procedures activated by
call statenments instead of function references {and in nested
begin blocks).

The main procedure_flag. TIf a return statement has to terminate
the pain procedure, i.e., the procednre activated by the initial
call of the computation, the finish conditior has to be raised
first, The main procedure flag serves to indicate whether this is
the case. It is set to * by the initial call and reset to 0 by
all later procedure calls. Like the function demotation this flag
is inkerited intn the nested block activations of begin blocks.

B. BLOCK ACTIVATIONS 11

IBM LAB VIENKA TR 25.099

INTORMAL INTRO TC THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JONE 1969

8.3 PEOCEDORE CALL

12

8.

Corresponding section of /5/:

6.2 Procedure call

L procedure call establishes a block activation of a procedure body by
a call statement or function reference. This section describes all those
actions performed during a procedure call which differ from the actions
performed during a begin block activation as described in B.2.

Both call statement and functiom reference consist essentially of a
reference specifying the entry to be called and a list of expressions
specifying the arguepents to be passed to the parameter of the called
entry. ‘

The reference for the entry may refer to either an eptry constant or a
scalar entry variable or a function wlich returns am entry valoe. TIn all
three cases ap entry _attribute is obtained out of the attribute directory
AT: either the declaration of the entry constant, or the data attribute
of the entry variable or the return type of the function. This entry
attribute consists essentially of two components {(further componests for
the three different cases are of no interest here): A parameter
descriptor list and a return type.

S-c}.escr—[s‘5t ' ' 5-rel-type
[Af— ‘ vet -type

elem(1) --- elem (n)
descry descr,
— _V . J

(or % if no descriptor
List specified)

Fig. 8.4 Entry attribute

The evaluation of the entry reference vields as value, in all cases,
the unigue name of an entry constant: either that of the referenced
entry constast itself, or that of ar entry comnstant which was assigned to
the referenced entry wvariable, or that of an entry constant returned by a
function call. Applying this unique name to the denotation directory DN
one obtains am entry_denotation, namely the denotation of the entry
constant to be called., The entry denctation comsists of:

BLOCK ACTIVATIONS

TBM LAB VIENNA TR 25.099

30 JOUBE 1969 INFORMAL THRTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

(1) the procedure body to be called,

{2} an identifier specifying the called entry point into the procedure
body,

{3} a block activation name (to be used only for testing as described
in 8.2.2),

€3] a block prefix part to be inherited into the condition status of

the called procedure.

$-body s-id 5-loat S-bpp
body ; ’ I
I N //I id I ba joref- parl
s-entry-part |~
- - g
id % ..
entry
point

Fig. B.5 Entry denotation

The entry attribute and entry denotation obtained in this way,
together with the list of argument expressions, contain all information
necessary for perforsing the procedure call. The entry attribute, which
is obtained for the reference ount of the attribute directory without any
expression evalumation, is used only in the calling block activation. The
entry denotation, which is obtained ont of the denotatior directory after
evaluation of the reference, is only used in the called block activation.

A procedure call differs from a begin block activation in the
following main points:

{tn Instead of a begin block occurring directly as the statement to be
interpreted, a procedare body contained ir the entry denotation
has to be activated.

(2) The expressions given in the call statement or function reference
are passed as arguments to parameters specified in the procedure
body, as described in detail in' 8.3.1.-

{3) In case of a function reference a valune is returned after
termination of the block activation as described in 8.3.2.-

{4) The interpretation of the statement list is not necessarily
started at the beginping, but at a point somevhere withim the

8. BLOCK ACTIVATIONS 13

TBY LAB VIENNA TR 25.099

TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OPF PL/T 30 JUNE 1959

statement list. This point is determined by the statement
location componeit of the emtry point, which is specified by the
identifier of the entry denotation {cf. 2.1.3 and Fig. 8.5). The
start of the interpretation of the statement list, using an index
list determining the statement location, is performed by the
mechanism of the goto statement [cf. 9.6).

B8.3.1 ARGUMENT PASSTIHNG

1M

a,

{n

{2)

{3)

)]

M

(2}

For passing the argements of a procedare call to the parameters of the
called procedure body the following informationm is available:

For

the argument expressions in the call statenmsnt or fanction
reference,

the parapeter descriptors im the emtry attribute ({if * is
specified instead of a descriptor list, all Jescriptors are
assumed to be ¥},

the parameter igeptifiers in the specified entry point of the
procedure bhody,

the parameter declaratiocas im the declaration part of the
procedure body by means of the parameter jidentifiers,

each single argument the following actions are performeds

Before the call, i.#., in the calling block activation, the
decision is made as to which of the following three types of
action is performed. - This decision is based on the syntactical
form and attributes of the argument on the ¢ne hand and the
parameter descriptor on the other hand, It skould be poted that
this decision is made without Any expression evalmation (i.e., can
be performed "at coepile time” in an implementatrion).

(a) Passing of derpotation {controlled stackj. This is performed
if:; the argument expression in fact is a referemce referring
to the complete declaration {and nct any sub-component) of a
controlled variable; the parameter descriptor specifies
contrelled steorage class {or is %}; and the aggregate
attributes of the argmmesnt amd of ‘the parameter descriptor
{if it is not *} match, except for extents.

{b) Passing of generatiocsn. This is verformed if: the argument
expression in fact is a reference to a variable {or to a
sub-corponent thereof): the parameter descripter does not
specify controlled storage class:; the aggregate attributes of
the argument and of the parameter descriptor (if it is not #*)
match; and, provided the parameter descriptor is specified as

connected, the argument refers to connected storage.

{c? Passing of value {dummy variable}. This is performed in all
other cases, if the parameter descriptor does not specify
controlled storage class.

pefore the call, the argument is evaluwated resulting im an object
consisting of anm aggregate name h and a type desigrator {[one of
the three elementary objects CTL, GZN, DUARY denoting the three
types of passing).

BLOCK ACTIVATIORS

TBEM LAB VIENNA

TR 25.099

30 JUXNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATTION OF PL/T

Pig.

s-den | s-type
I b | Iarg-?ype I

8.6 Evaluated argument ts5 be passed

The evaluation uses the argument expression and the parameter
descriptor, - It depends on the type of passing:

{a}

{b)

{<)

Passing of demotation. 1In this case the aggregate name of
the controlled variable referred to hy the argument
expression is taken as aggregate name of the argument.

Passing of gemeration. 1In this case the generaticnm
referenced by the argoment expression is evalwmated, entered
into the aggregate directory under a newly created unigue
name, and this unique name is taken as aggregate name of the
argument.

Passing of value. In this case, first the argument
expression is evaluated and, if a parameter descriptor is
present, converted to the type of the parameter descriptor. -
If the parameter descriptor or the argument expression is an
aggregate, the evaluation and conversion is performed by
expansion into the scalar compoments {cf. 10.2.8), nsing the
parameter descriptor {if present) or the aggregate attribute
of the expression as master aggregate. The resulting
operands are intermediately set aside in an auxiliary object,
called dummy operand. Second, the evaluated aggregate
attribute of the resnlting aggregate is determined frow the
dammy operand. 7Tt may happer that for an array of strings
each single component in the dummy operand has a different
string length. In this case the mazximum length is taken.
Third, a dommy variable with the determined evaluated
aggregate attribute is allocated and its generation is
entered into the aggregate directory AG under a newly created
unigue nawe, which then becomes the aggregate name of the
argument. TPourth, the single scalar components of the

" evaluated dummy operand are assigned to the correspording

scalar components of the dummy variable. -

Example:
DCL Q ENTRY {{3) CHAR{*}),
T INIT{O)3 ,

P:PROC RETORES (CHAR (%))
I=TI+1; :
RETUEN {(SOUBSTR{*ABCDE® ,1,TI});
END P;

CALL Q{Pj:

8. BLOCK ACTIVATIONS 15

IBM LAB VIENNA ‘ TR 25.09%9

INFORMAL THTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/TY 30 JURE 1969

16

8.

For the call of ¢ the argumert expression P has to be
eavaluated using the parameter descriptor (3) CHAR{*). In the
first step the argument expression P is expanded into three
scalar components and evaluated, i.e., the procedure P is
invoked three times returning the three scalar values 'A?Y,
TAB', 'ABC'. These three values {more exactly: the
corresponding operands) constitute an intermediate dummy
operand, In the second step, the evaluated aggregate
attribute (3)CHAR(3) is determined from this, i.e., an array
with bounrds 1:3 and scalar componerts heing character strings
of length 3., In the third step, a dummy variable for this
aggregate is allocated and, in the fourth step, the
components of the dummy operand are assigned to it, yielding
the values *A ', YAB ', VABCY,

{3) After the call, i.e., in the block activation established by

' the procedure call, the parameter identifier, like all
locally declared identifiers, is associated with a sniqume
name n {cf. 8.2.,1) and the attributes of the parameter
declaration are entered into AT. The argument, which has
been evaluated before the call as described, is passed to the
called block activation. 1Its aggregate name is, after
testing of the generation of the argument against the
parameter declaration, entered into the denotation directory
DN as the denotation of the parameter. Thus, im the called
block activation the parameter has the attributes of the
parameter declaration and the denotation resulting from the

above described arqument evaluation.

denotation ofarguvnent

id ————=N

attribute of parameter

rig. 8.7 ‘Connection of paraieter jdentifier with denotation and
attribute

There is one exception from this general rule: For controlled
arguments passed to non-controlled parapeters, after the call, the
last generation instead of the complete generaticon list in AS is
connected with a newly created unique aggregate name b, which
becomes the denotation of the parameter, i.e.; the passing of a
generation (instead of a denotation} is simunlated.

BLOCK ACTIVATIONS

TBM LAB VIERKA TR 25.099

30 JUNE 196% INFDREMAL TKRTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Exanmple

The effect of the three different types of argument passing
may be iljustrated by the follo¥ing example:

DCL A CTL FPIXED INIT(0),
P BNTRY {CTL FIXED, FIXED, PIXED):
ALLOCATE A&:
CALL P{A, A, {A});
P:PROC{X, ¥, Z):
DCL X CTL PIXED, Y FIXED, 2 PIXED:

END Pg;

To all three parameters X, Y, £ the same argument expressiom (or
nearly the same} correspomds, but to X the denotation is passed,
to ¥ the current generation and tc I the current valpe 0, After
argument passing the chaias for the four identifiers A, X, ¥, 2
from the identifier via unigqee name, denotation directory and
storage to the value 0 are as illustrated in the following figure:

AG

x,._____,___,,m/

¥

{gen, ... 2
s,
//’////'

(gen, *>

~
¥
>
ol
1
53
o
¥

Pig., B.8 The three types of argument passing

Obviously X shares the denotation, Y the generation amd % the

. value with A, Any assigament to A in the called proceduwre will
change the common current valme of A, X, ¥ {as long as no
allocation or freeing of A has occurred), but not the value of Z.
Any allocation or freeing of & will change the common current
generation of A and X, but not the generations of ¥ and Z. & and
X differ only with respect to their attributes in AT.

8.3.2 FONCTION REFERENCE

The interpretation of a function reference, occcurring during
expression evaluation, differs from the interpretation of a call
statement only in the fact that provisions are made to return an operand
for the function valee.

Por this purpose there are t¥o return types available: one {the oguter
retarp_type} in the entry attribute to be used in the calling block
activation, and another fthe ipner return type}) in the ertry peint in the
procedure body to be used in the called hlock activation. If both return
types do not match (they have to be identical erxcept for string length if
specified by %}, the program is erroneous. -

The returning of the operand by the function reference is performed in
the following way:

8. BLOCK ACTIVATIONS 17

IBM LAB VIENNA TR 25.099

TNFORMAL INTRO TO THE ABSTRACT SYNTAXY AND INTERPRETATION OF PL/I 30 JONE 1969

{1 Before the call, a unigune name b, to be used as aggregate name of
a dummy variahle, is created and passed to the called procedure. -
This anique name, and the outer return type, is the only relevant
information known to the calliang block activaticn.

{2} When establishing the called hlock activation the aggregate name b
and the inner return type are entered intoc the epiloque
information EI of the called block activation. They are alseo
inherited into nested block activations of begin blocks
{cf. B.2.4),.

{3 A return statement in the called block activation {or in a nested
one} evaluates its return expressicn and converts the result
operand to the inner return type found in the epilogue informationm
BEI. Then it allocates a dummy variable, taking the evaluated
aggregate attribute from the evaluated operand, amnd enters its
generation into the aggregate directory AG umder the aggregate
name b found in the epilogue information EI, Finally it assigns
the evaluated operand to this dummy wariable.

[%) After return from the called bleck activation, the calling block
activation accesses the dummy variable by means of the aggregate
name b; it takes the operand, tests its aggregate attribuate
against the onter return type amd frees the dummy variable.

8.3.3 RETORN FRON B PROCEDORE

18

8.

A procedure called by a call statement may be terminated regmlarly
either by a retuarn statement without expression specified or by coming teo
the end of the statement list of the procedure body. 3 procedore called
by a function reference may be terminated regularly omly be a return
statement with an expression specified. Irregularly it may be terminated
by a qgoto statement or any kind of abaormal task termination.

To have only one case of regular termination, the emnd of the statement
list of a procedure hody is handled as a return statement without a
specified expression.

A return statement may occur within nested begim block activations; in
this case it also has to terminate all begim block activations nested in
the innermost procedure activation. -

If the procedure to be terminated is the maip procedure of thke
program, the finish conditiosn has to be raised hefore any block
activation is terminated.

To ensure the availability of all mecessary irformation, the epilogne
information EI contains the function denotation {or @ ir the cass of a
procedure called by a call statement}) the return type (ot © in the case
of a procedure called by a call statement} apnd the main procedere flag,
which are inherited into nested begin block activations, and thke block
activation type, which is not inherited {cf. 8.2.8).

Using this information, a return statement works as described in
FPig. 8.9. '

BLOCK ACTIVATIONS

IBM LAB VYTIENNA TR 25,799

30 JUNE 19569 INPORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATIGN OF PL/I

proced.uve

return-expr
called loy?

spec.if jed?

fct-ref

callst

yes

evaluate

return-expr
sp ecified ?

return - expr

raise FINISH assign value
condition to fct- gen
no
bLOt':k-EPLkogu o
(actions 8,9,10 begin block!
of F@.Sl)
no
block-epileque continue actions
procedure?)% (aciionfs,‘j,*lﬂ of previous block
of Fig. 8.2) aclivation
no

g
(error)

Fig. 8.9 Return statement

B, BLOCK ACTIVATIORS 19

THRY LAB VIENNA TR 25.099

TRFORMAL TINTEBO TO THE ABSTRBACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

8.3.4

20

8.

GENERIC SELECTION

entry references and to use the generic identifier in call statements and
function references instead of an entry referemce., In such a case,
before the call is performed the geperic_selection takes place which
selects, governed by the attributes of the arguments of the call, one ount-
of the entry references of the family., The selected entry reference is
to be evaluated and the resulting entry constant to be called as
described in the previous section.

The declaration of a gemeric identifier is the list of the generic
incomplete parameter descriptors., The generic selectionp has to select
the entry reference of the first generic member in the list, whose
parameter descriptors {as far as specified) are identical with the
attributes of the argquments of the call. .

More specifically, this is performed in three steps:

(n The attributes of the results of the argument expressions are
determined (without evaluating tke expressionrs themselves).

(2) If the attribute of any argument ([or a scalar component thereof)
turned out to be of type entry, the problem arises whether the
generic selection is to he made under the assumption that the
entry itself is to be passed as argqument, or that it shall he
invoked and the result passed., For this decision a prescan is
made: TFor each attribute of an arqument {or scalar component of
an argument attribute) of type entry the generic members are
inspected whether any of them specifies the type entry [or no type
at all) at the corresponding position in the descriptor 1list, If
50, the selection is done under the assumption that the entry
itself is to be passed. If not, it is assumed that the entry is
‘invoked ({with empty argument list) repeatedly until the result is
not of type entry anymore. TFor the generic selection this means
that the entry in the list of argueent attributes is to be

. replaced by its final (non-entry) return type, before the list of
argqument attributes is used as basis for generic selection.

BLOCK ACTIVATIONS

IBA LAB VIENNA

30 JUNE 19269

(3

TR 25.099

INFORMAL INTRC TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Zxample:

DCL G GENWERIC (P1 WHEN(1,2 FIXED,2 FIXED),
P2 WHEK (1,2 ENTRY,2 FIXED}),
15, 2 E1 BNTRY RETURKS (FIXED},
2 B2 ENTRY RETURNS (FIXED);
CALL G{S):

Before the gemeric selection, the prescan inspects for each
scalar component of the argument S whether there is a
corresponding position in the descripter list of any generic
member of the type entry or not. Based on this inspection
the first component is assumed as entry type, while for the
second the return type is taken. TI.e., the gemeric selection
is performed with the modified argument attribute

1, 2 ENTRY, 2 ¥IXED,
¥hich then selects the member P2,

#ith the so modified argument attribute list the proper gemeric
selection is performed: One generic member after the other is
tested {in the given order} whether the number and attributes of
its parameter descriptors, as far as specified, are the same as
those of the arguments. The entry reference of the first generic
member satisfying this comndition is selected and replaces the
generic identifier.

8. BLOCK ACTIVATIONS 21

IBM LAB VIENNA TR 25.099

30 JUXE 1969 INTORMAL TNTRO TO THE ABSTRACT SYNTAX AND TNTERPRETATION OF PL/T

9. _FLGW _OF CONTROL WITHIN A SINGLE BLOCK ACTIVATIOR

Corresponding sections of /5/:
6.3 Sequential interpretation of statements
3.2.4 The control information CI
6.5 Groups

6.4 The goto statement

The following abbreviations are used in this chapter:

ba block activation name
c,c contrel

€I,ci controel information
cs condition statas

D Juap

DX denctation diredtofy
elenm element

F 'false

i integer

sSpD | statement prefix ?ﬂrt
st statement

T | true

As described in 2.3 the statement list of a block constitutes a rather
complicated system of nested statements, since some types of statements
may themselves contain statements of any type or even lists of statements
of any type. The present chapter describes the flow of control of the
PL/I machine through this system of statenments.

The interpretation of a bkegin block or of an on-unit is performed by
establishing a new block activation and, after its teramination,
re-establishing the old one and continuing, as described in chapter 8.
Thus, the flow of control within a single block activation remains to be
described. The normal flow is infloenced by:

(1 the seguencing of statements within a statement list,

{2) the nesting of statement lists within statements,

9. FLO¥W OF CONTROL WITHIN A SINGLE BLOCK ACTYVATION 1

TBM LAB VIENWA TR 25.099

TNFORMAL INTRC TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

{3 the nesting of statements occurring as then and else alternatives
in if~- and access statements (the else alternative in an access
statement is on the vhole treated in the same way as that in an
if~statement; it is omitted in this chapter),

() “the iteration specifications of groups.
The flow of control is governed by a local state component, the

control information CI. Tt reflects the current stutus of the PL/I
machine with respect to these four points, .

Additionally, the flow of control may be modified abnormally by =means
of the goto statement. This is performed essentially by meodifving the
control informatiom CI. :

9.1 SEQUENTIAL EXECUTION OF STATEBRENTS

Corresponding sections of /5/:
6.3.1 Statement list_

6.3.3 Interpretation of a2 single statement

The segquestial interpretation of statements within a statement list is
governed by two compoments of the control informatiorm CI, the text and
the index. WRhenever a statement cut of a statement list (but not a
nested statement contained within it) is under execution the text is that
statement list and the index is the number of the currently executed
statement within the list: e.g., when the third statement of a statement
list is executed the text is the statement list and the index is the
integer 3.

| I

s-text S~index

7
elem () .. eleml) / etem(n)

f p

St’l 5t| Stn

Fig. 9.1 Text and index components of CI on execution of a statement
list

During the execution of a statement list, the text component of CI is
in general left anchanged, while the index is always updated between two
statement executions,

2 9. FLOW OF CONTROL WITHIN A SIKGLE BLOCK ACTIVATION

TAM LAB VIENNA ' TR 25.099

30 JUNE 1969 TNFORMAL INTRO TO THE ABSTRACT SYRTAX AND INTERPRETATION OF PL/I

Whenever the execution of a statement {except the last cone of the
statement list) has been terminated, the index is increased by 1, the
statement denoted by the new index is taken from the text and executed,

The execntion of a single statement consists of:
(1} updating of the statement prefix part of the condition status CS,

merging the block prefix part of CS and the condition part of the
statement {cf. 11.2.7),

{2) raising of the check condition for the labels of the statement
{cf. 11.5},

{3 execution of the proper statement, which depending on the
statement type is described in the individual chapters of this
document.

9. FLOW OF CONTROL WITHIRE A SINGLE BLOCE ACTIVATION 3

TEN LAB VIENY2 TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYWNTAX AKD INTERPRETATION OF PL/T 30 JUKE 1969

execute statement

denoted by inolex:

1. u‘odate sy
2. check labels
3. execute proper

statement

last statement of bAL

¢

Increase index by 1

Fig. 9.2 Seguential execution of statements, governed by text and

index components of CI

4 9, PLOW OF CORTROL WITHIN A SINGLE BLOCK ACTIVATION

IBA LAB VIENKFA

TR 25.099

30 JUNE 1969 TNTORMAL TRTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

Corresponding section of /5/:

6.3.1 Statement list

When a statement list is to be eiecuted it is entered into the text
component of CI, the index component of CI is inpitialized to 1 ard the
mechanism described in 9.1.1 is started.

These actions are not sufficient in the case where a statement list is
to be executed during the execution of a statement which itself is a
member of a containing statement list, Fotr in this case the text and
index components of CI keep the information needed for the seguential
execution of the statements of the containing statement list. This
information would be lost by overwriting, if no special provisions vere
made when the nested statement 1list is execited. In order to keep the
text and index for the cortaining statement list and also information in
the control specifying hovw to continue after termination of the nested
statement list, the control information CI is handled as a stack
{similarly to the dump D, cf. B.1): WwWhenever the executionm of a
statement list starts, before the text and index components of CI are
overwritten, the complete currert control information CI and control ¢
are copied into two additional components of CI. VWhen the last statement
of the nested statement list has been executed, these two components are
reinstalled as state components CI and C, and the execution of the
containing statement list continues correctly.’

9, PLOW OF CONTROL. WITHIN A STHGLE BLOCK ACTIVATIGN 5

IBM LAB VIENNA TR 25.099

INFORHNAL INTRQ TO THE ABSTRACT SYNTAX AND INTERPRETATION OPF PL/T 30 JUNE 1969

stack Cl and C
into €1

enter t
into text,
initialize index

erform actions pop up Ll and £
of Fig. 9.2] from Ci

Fig. 9.3 Interpretation of a statement list t

Thus, the control information (apart from one special componemnt, which
is used only in =2dit directed stream T/D~statements} consists ¢of four
components: The current text and index, and the control irformation and
control of the containing statement list. - Agaim this control information
of the containing statement list consists of four such cosponents, and so
forth. EFach level in the control information represents one level in the
systen of nested statement lists.

& 9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION

IBd LAB VIENN:A - TR 25.199

30 JURE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND THTERPRETATION OF PL/I

s-text s-cl 7 5-}5
st-list <!

| I R
S't!ext s-index s-¢i s-[c

st-list’ n it | | o

Fig. 9.4 Control information for nested statement lists

9.3 _THE_IF-STATEMENT

Corresponding section of /5/:

6.3.2 The if-statement

The if-statement {and access staterent) introduces into the language a
form of statement nesting differing from the nesting of statement lists,
In order to reflect this form aof statement nesting also, the cancepts of
text and index components of CI is slightly modified:” The text may not
only be a statement list but also an if-statement. In this case, the
index is not an integer, but a trauth value, the index T denoting the
s-then component of the text and the index F denoting the s-else

component,

I [

s-text s-index
T l i T orF
s-then s-else 7
-~
e /
s
St-l- st E * - — =

Fig. 9.5 Text and index components of CI on execution of an if-statement

9, .FLOY OF CONTHOL WITHIN A SINGLE BLOCK ACTIVATION 7

TBEM LAB VIENNWR : TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATYON OF PL/T 30 JUNE 1969

The execution of an if-statement t causes the following actions to be
performed:

{1 The decision expraession of the if-statement is evaluated and
converted to a truth value truth.

{2} The same actions, i.e., pushing down the control information for
one level, are perforsmed as described for the execution of a
statement list in 9,1 and 9.2 with the following changes:

{a) the if-statement t (instead of a statement list) is entered
into the text component of CI;

{b) the index is initialized to the truth value truth (instead of
the integer 1):

{c} the meaning of "index denotes a statement out of text? is
extended as explained above;

{d) both the s~then and s-else components are considered as
"last" statements of text (Fig. 9.2), i.e., the control
informatiom CI is popped up after termination of either of
then,

9.4 STRUCTUORE OF THE CORTROL_ INFORMATION CI

a

9.

Corresponding section of /5/3

3.2.4% The control information CI

As described in the previous sections, the control informatiom CI
consists of four comporents: text, index, control information and
control, where the contained control information again consists of these
four components, and so forth. Each contained level in the control
information represents a contaiming level in the system of nested
statements. It ends up with the level representing the outermost
statement list of the curremt block activation: this one did mot stack a
control information, but the control causing finally the block epilogue.

FLOW OF CONTROL WITHIN A SINGLE BLOCKE ACTIVATION

IBM LAB VIENNWA TR 25.099

30 JUNE 1969 INFDRMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

s-teﬁt 5-ci L s-c
L
text ' En
I |
5-text 5-¢i s-¢
text Cr-4q
| ! B f
s -text s-index S=Cl 8¢
| | |
text, | index, | €4

r s:'tlnd.ex §~C

s-text
| |

te’xtq‘]Hd.EX1 ‘ Co

Fig. 9.6 Structure of -the control-iaformation

The structure of the control information is illustated by Fig. 9.6.
text; is the outermost statement list of the current block activation,
index, is an integer denoting the statement st; of text; currently under
execution, and ¢, is the comtrol specifying the actions of the block
prologue to be performed after termination of the execution of text,.
For each integer i between 1 and n, either text; is a statement list and
index; an integer, or text; is an if-statement and index; a truth
valee. index; denotes that statement :sti out of text; which is currently
under execution., The proper statement of sty is either a statement list
or a group contaimsing a statement list or ap if-statement. This
statement list or if-statement is the component textjy,. The control
ci{-4 specifies the actions to bhe performed after termination of the

execution of texts.

9. PLOW OF ‘CONTROL WITHIN A SINGLE BLOCK "ACTIVATION 9

TEM LRAB VTENNA TR 25.099

TINFORMAL INTRC TO THE ABSTRACT SYNTAX AND INTERPRETATICN OF PL/T 30 JONE 1969

10

9.

In this way the control information CI denotes exactly the innermost
statement currently being executed within the system of nested statements
of the current block activation., Since the component texti,; is always
already uniguely deterpined by text; and index;, all except the outermost
{text;) text components are redundant. They are always copied for
convenience of use. Tn fact, the innermost currently executed statement
is determined uniquely by text, and the list of indices: <index,,
indeXs,s»«,indexy,index>. This way of localizing a statement relative to
the statement list of a block by a list of indices is used in the
declaration of label constants {cf. 2,2) and in the execntion of the goto
statement {cf. 9.6}.

Example:

BEGIN3;LT 2 ... =
L2 @ .sa 3
L3 DG: L31 5 ... H
L32 1 IT ...
THER L32T 2 ..s 3
ELSE L32F 2 Do I = 1 TO H:
L3271 3 east
L32F2 ¢ ..»
END;
L33 = Y
ENDs
END:

If the statement labeled L32F1 is currently under execution the
control information is as given in PFig. 9.7 {vriting always the
labels instead of the labeled statepents). The index list
localizing the statement under execution is <3,2,F,1>.

FLOR OF CONTROL WITHIN A SINGLE BLOCK ACTIVATIORN

IBM LAB VYIENNA

30 JUVNE 1969

TR 25.499

INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

‘ .

B

next iterqtio.n step

S-cC

next statem ér_\t

next statement

s—jex %—1hdﬂ¥: .* s-ci I
<L32F1,L32F2 > 1 [
| B]
s-’lcext s’ihdex §-ci
132 F
| I
g-trxt s-azndex _s=ci ST
<« 34,L32,L33 > 2
switext s-iindex S-ic
<L1,L2, L3> 3

rig. 9.7

block epilogue

Fxample of contrel information CI

9. ‘TLOW OF CONTROL WITHIN A STNGLY BLOCK ACTIVATTON

TBH LAB YIENNA TR 25.099

INTORMAL INTRO TO THE ABSTRACT SYNTAXY AND INTERPRETATION OF PL/T 30 JONE 1969

9.5

12

GROURS

Corresponding section of /5/:

6.5 Groups

A group is a proper statement specifying repeated execution of a
statement list. There are two types of grouvs, the while group and the
controlled group, The text of a groupr consits of the statement list to
be iterated and an iteration specification. In the case of a while group
the statement list is executed repeatedly until a given condition is
satisfied, i.e.,, until the evaluation of a given expression yields- .
"true®, In the case of a controlled group after esach execution of the
statement list the value of a given variable, the comtrolling variable,
is incremented by a given value, the statement list is executed
repeatedly yntil the value of the controlling variable exceeds a given
valune.

The execution of a gronp is performed in such a way that all actions
controlling the iteration of the statement list are performed at the
lavel of the control information £I which is installed wher the execution
of the group starts. ®Rach time when the iterated statement list is .to be
executed, the control information is stacked for one level, i.e., the
statement list is executed exactly as descrihed in 9.2. During the
execution of the iterated statement list, the control component of CI
specifies the actions controlling the iteration of the statement list, in
particutar, it contains the information about the current status of the
iteration. ©Fach time when the exectuion of the iterated statement list
terminates, the control information is popped up for one level as
described in 9.2. Thereby the iterationm control is performed at the.
popped up level. o

3, FLOW OF CONTROL WITHIYN A SINGLE BLOCK ACTIVATION

TBH LAB YIENHA TR 25.099

30 JORE 1969 INFTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATTION OF PL/I

|

initialize
loop control

cor\tNread.y

toop

A J

once more

stack (I

execute
statement List

=
&

POP u

Pig. 9.8 Execution of a group

9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATIOR 13

TBM LAB VIENNA TR 25.099

INTORMAL THTRO TO THI ABSTRACT SYNTAX AND INTERPRETATION OF PL/TY 30 JUNE 1969

14

9.

Corresponding section of /5/:

6.4 The goto statement

A gotn statement consists essentially of a reference, which refers
either to a statement lahel constant, or to a scalar label variable, ot
to a function returring a label., The evaluation of this reference yields
in all three cases a unigue name n which, applied to the demotation
directory DN, gives access to the denotation of a statement labkel
constant: either the referenced label constant itself, or the one
assigned last to the referencéd label variakle, or the one returned by
the referenced function.

The denotation of a statement label constant coasists of two
components identifying uniquely the statement denoted by the label:

s-ba

[o]

Tig. 9.9 Demnotation of a statement label

{n The block activation name ba of that block activation in which the
label was declared.

(M An index list giving the statement location of the statement
denoted by the label relative to the outermost statement list of
the block activation identified by ba. The localization of a
statement relative to a statement list is described in 9.%. The
index list was produced by the translator from the position of the
label in the concrete text and inserted as declaration of the
label constant into the abstract program (cf. 2.2).

The aim of a doto statement is to simulate the normal flow of control
to the target statement denoted by the label, i.e., to transform the PL/T
machine into that state in which it would have been if the target
statement wonld have been encountered normally. This means first to
re-establish the block activation identified by the block activation nanme
of the label denotation, and second, within that block activation, to
modify the control information in such a way, that the sequence of its
contained indices, ordered from bottom to top, is the index list of the
label denotation.

TLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION

TBEX LAB VIENN2

30 JUNE 1969

(M

(2)

(3)

(%)

TR 25.099

IRFOEMAL THTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

This is performed in four steps:

The hlock activations established in the state, as represented by
the dump D, are terminated one after the other by the normal block
epilogue {cf. B8.2.4}, until the block activation is re-established
in which the label was declared, i.e., until the current block
activatior name BA is the blcok activation name of the label
denotation. Tf this block activation is not encountered up to the
outermost block activation of the task, the program is in error.

Tn the block activation re-established by step 1, the nested
statement levels are terminted one after the other, until the

. target statement is contained {possibly nested) within the

innermost not yet terminated statement list or if-statement., This
is done by povping up the control infermationm CI {cf. 9.4), level
by level, nntil the seguence of indices contained in CI {except
the current index) is egual to an initial portion of the index
list of the label denotation. (At the latest, this is the case
when all but the ountermnst levels of statements in the block
activation have been terminated).

The statement lists and if-statements containing the target
statement are entered level by level until the innermost is
reached., This is performed for each level by:

{a) changing the current index of CI to the valne given by the
corresponding place in the index list of the label
denotation,

(b} stacking the control information CI for ome level and
entering inte the text of CI the statement, from the old
text, which is denoted by the index just changed., This
statement has to be a statement list or if-statement if the
program is not in error. 1In particular it cannot be a group
{a goto into a group is forbidden, since im such a case no
loop control would have been established in the stacked
control, and therefore the flow of control wonld not find its
way out of the group correctly).

These two actions are repeated until all levels given by the index
list of the label denoctation are established.

Pinally, the current index is adjusted, i.e., set to the last

value of the index list of the label denotation, and the normal
flow of control is continued.

9. FLOW OF CORTROL WITHIN A SINGLE BLOCK ACTIVATION 15

I3M LAB VIENNA

TNFORMAL TNTRO TD THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

block epilogue

vight

block activation

established

pop up &l |

text of 1
contains tavget

stack €1

adjust

rig. 9.10

16 9. TLOW 0T COKTROL WITHIN A SINGLE BLOCK ACTIVATION

is immed.iate
companent of

indexof ¢

adjust
incdex of Cl

Bxecution of the goto statement

TR 25.099

30 JUNE 1969

>~ step

> stepl

IRK LAB VIENNA _ TR 25.099

30 JUNE 1969 INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I
Example:
BEGINg
LY & ...t
L2 : DO T = 1 TO Hjg
L2% 3 IF ... THEXW
L21T s BEGIN; ... ; GOTO L231: ... ;END:
L22 = ... ‘
L23 : DO: o -
1231 : target-statement;
L232 2 L..3
END3
ENWD;

EFD:

In this example the denotation of the label in the goto statement
ronsists of the block activation mame o0f the outer block and the index
list <2,3,1>. The goto statement is performed in the following four
steps: S

&) The inner block activation is terminated and the ounter one
. reestablished. Then the re-established control information CI is
as shownr in PFig. 9.11 {writing the labels instead of the labeled
statements as text components).

T | |

s-text 5-index S- Cf g~c
L 21 '. 1 T next statement
“s-text. s - trnidex $-Ci 5-¢

|

<La1,122,023 >

Loop controt of group

—

5=-C

|

block épﬂogue

U

|

&-text s -index

|

<l1,L2 >

Es

Fig. 9.11:‘Contrqlﬂihforhatibn duting goto example

(2} This control irformation is popped up one level,

9. PLOW OF CONTROL WITHIN A STNGLE BLOCK ACTIVATION 17

IBM LAB VIENNA TR 25.099%

TINFORMAL TNTFO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JONE 1969

(33 The index of the new control information is changed from 1 to 3
and CI is stacked one level. Then the control informatiorn is as
shown in Tig. 9%9.12.

|] B |

s-text 5-index §-c §-C
¢ L231,L232 » S (irrelevant) next statement
| | |
s—fext 5~ index &= i §-C
<L2M,L22,L23 > Loop contyrol ofgrOuP
| | 1
s-text s-ind ex $-C

| |

<L1,L2> - block epilogue

Pig. 9.12 Control information during goto example

€3 The index is adjusted to 1, and the flov¥ of control continues
normally. ’

Tt should be mentioned that in special cases one or more of these
steps may be skipped. TIn particunlar, in the simplest case of a goto,
namely a goto within the current statement list, only step b is
applicable.

Example:

NO: LT ¢ waa3
L2 2 .uat
L3 2 ...
L4 1 GOTO L2Z:
LS : tto:
END:

In this example only step 4 is performed, changing only the
current index of CI from 4§ to 2 and contipuing.

18 9, FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION

TBM LAB VTENNA TR 25.099

30 JONE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATICEF OF PL/I

10. _ALLOCATION, ASSTGNMENT AND EXPRESSION EVALUATION

Corresponding sections of /5/:
7. Allocation, initialization, and freeing of wvariables

8. Assignment statement, expression evaluation, reference to
variables

3. Data, operations and conversiosns

10.31 _ALLOCARTE STATEMENT_AND_FREE ST&TEHENT

Corresponding section of /5/:

7. Allocation, initialization, and freeing of variables
10.1.1 THE ALLOCATE STATEMENT

Corresponding section of /5/:

7.1 The allocate statement

An allocate statement specifies a list of allocations. Pig. 10.1%
shows the structure of the specification of a single allocation, with an
indication as to which components are significant for which types of

allocatlon.
s-agqr s-ial &N s-ptr s-area
allocation identifier unique-name| | po{niar— reference avea -
ottribute (offset -reference reference
A8 A
v -
for allocation of a controlied variable
A '
' Y
for ailocation of a based variable
A /

Y N
for allocation of a based variable inan avea

Fig. 10,1 Structure of specification of an alleocation

16. ALLOCATION, ASSIGNMENT AND EXPRESSTION EVALUATION 1

TRM LAR VIEN¥A TR 25.099

THTOERMAL TINTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

The identifier is the identifier of the variable to be allocated, the
unique nape is the unigque name nf this variable. Three types of
allocation have to be distinguished.

1

¥
-t

Tor determining the order of execution dependencies between the
allocations specified in the allocate statement are observed.

An allocation is dependent on another allecation of a variable
specified in the same statement if this variable is of controlled storage
class and if any of the evaluations inmplied by the allocation refers to
this controlled variable, and if this controlled variable itself is not
yat allocated. By implied evalpation there is to be understood the
evaluation of the aggregate attribute of the wariable to be allocated,
the evaluaticn of the pointer and the area reference {for based
variabhles), and the evaluation of the initial attribate.

All allocatinns which are not dependent on others in the above sense,
may be executed in any order. After the execution of each individual
allocation the non-devpendent allocations are re-determined and a
selection is made. Tt is an error if all specified allocations are
dependent on one another,

10.1.1.2 Allocatipon of comtrolled variables

The allocation of a controlled variable proceeds ir the following
steps:

{(n The aggregate attribute to be used for allocation is evaluated.-
This aggregate attribute iz the one which is declared for the
variable, but array bounds, string lengths, and area sizes may
stem from various sources., The following rules kold:

{a} if no allocation attribute is specifiéd ia the allocate
statement, then the declared aggregate attribute is
evaluated.

(b} if an allocation attribute is specified in the allocate
cstatement, then extents are takens:

from the attribute in the allocate statement if specified
there by an expression,

from the aggregaté attribate of the current gemeration of the
variable if specified in the statement by an asterisk,

from the Aeclared aggregate attribyte if left unspecified in
the statement.

{2) A peinter identifying the storage to be given to the variable is
determined from the evaluated aggregate attribute and the main
storage 5 {cf. #.2.3). This pointer is added to the allocation
state of S by the elementary allocation function (cf., 4.2.3).

(N A new generation is formed from the pointer and the evaluated
aggregate attribute. This generatiof is pat om top of the list of
generations associated with the unique namie of the vatiable in the
aggregate directory AG {cf. 5.3).

2 10, ALLOCATTON, ASSIGNMENT AND EXPRESSION EVALUATIOR

TBM LAB VIENN2A TR 25.099

30 JUKE 1969

(4

INFORHAL THTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The variable is initialized using the generation just defined, the
2llocation attribute specified in the allocate statement, and the
aggregate attribute declared for the variable. The allocation
attribute as well as the aggregate attribute of the variable mavy
contain initial attribuotes in their scalar attribute components
{cf. 2.2.1y. If an initial attribute is given in the allocate
statement, it overrides an initial attribute in the declared
aggregate attribute at the corresponding position, If no initial
attribute is given in the statement, the one in the d=clared
attribute is taken.

Bach initial attribute refers to a scalar component or to an array
component of the wvariable. The assignments to be performed
according to an initial attribute are determined by this attribute
and the sub-generation of the variable to which it refers.

There are three different kipds of initial attributes:

{a} If the imitial attribute is a nested list of expressions with
replication factors, the expressions are evalpated and the
replication factors evaluated and applied, the result being a
list of operands. The operands are assigned successively to
the scalar components of the generation to which the initial
attribnte refers. The process stops if the operand list is
exhausted, or if the scalar parts of the gemeration are
exhausted.

{bj If the initial attribute is a call statement, the call is
performed. ‘ .

{cy If the initial attribute is a list of "special initial
elements™, assignments of entry or label constants are
performed in the following way. Fach initial element
specifies a subscript list and the identifier of a label or
entry constant. For each of these elements, the subscript
list is used to determine a sub-generation of the gemeratior
to which the initial attribute refers, the unigue nanme
associated with the specified identifier is nsed to form an
entry or label operand, and the operand is assigned to the
sub-generation. '

cation of based variables ip main storage

e e e e

The pointer (offset) reference may or may not be specified in the

statemant. - The allocation proceeds in the following steps:

{1

{2)

The aggregate attribete of the based variable is evaluated. Since
the extents of a based variable may be specified only by constants
or REFER-options, this means that the expressions specified in the
REFER-options are evaluated and converted to integer values. The

result is an evalyated aggregate attribute,

A pointer is determined from the evaluwated aggregate attribute and
the main storage 5. This pointer is added to the allocation state
of 5, usirg the elementary allocation function {cf. 8#.2.3).

The pointer is also added to the free-set of the current task.
The free—set is a set of pointers identifying storage parts that
have been used for allgcatiom via based variables in 5. Tt is
used for freeing all this storage at termination of the task.

10. ALLOCATION, ASSIGNHMENT AND EXPRESSION EVALUDATIOR 3

TBM LAB VIERKR TR 25.099

TNFORMAL TNTRC TO THE ABSTRACT SYNTAXY AND INTERPRETATION OF PL/T 30 JUNE 1965

(3} Tf a pointer (offset) reference is given in the statement, the
generation associated with the reference is evaluated. Tf not,
the generation associated with the pointer {offset) reference
given in the declaration of the based variable is evaluated. A
pointer operand is formed from the pointer deternined in step (2),
and assigned to the generation just evalpated.

If the generation is an offset generation (i.e., if an offset
reference was specified instead of a pointer reference), the
pointer is converted to an offset before assignment, using the
area declared with the offset reference for the conversion
{cf. 4.2.7).

(4 411 components of the variable mentioned as targets in
REFER-options, are assigned the values of the extent expressions
specified in the respective REFER-options, These values are
obtained from the extents in the evaluated aggregate attribute
evalunated in step {1}). Steps (3) and (4} may be dome in any
order,

(5) A generation is formed from the evaluated aggregate attribute and
the pointer. This generation is used for initialization of the
based variable. The initialization proceeds as described for
controlled variables, except that no initial attributes are
specified in the statement. Only initial attributes specified in
the aggregate attribute of the variable are used,

10.1.1.4% Allocation of based variables in areas

The pointer and the area reference may or may not be present in the
statement. The allocation proceeds in the following steps:

&) Tf an area reference is specified in the allocate statement, the
generation associated with this reference is evaluated. If not,
the reference used for setting the pointer must be ar offset
reference {it is either given explicitly in the statement, or in
the declaration of the controlled variable, see step (4)). The

. area reference given in the corresponding offset declaration is
evalnated in this case, and taken as the generation of the area in
which the allocation is made.

{2) The aggregate attribute of the based variable is evaluated as in
step (1) of the allocation of a hased wvariable in main storage.

£}] An offset is determined from the evaluated aggregate attribuote and
the allocation state of the area identified by the area generation
‘evaluated in step {1). A test is made whether the allocation in
the area is possible {the test is implementation-definedj}. If the
allocation is not possible, the AREA condition is raised.

If the allocation is possible, the offset is added to the
allocation state of the area.

(4} The pointer (offset) reference is determined and evalnated as in
step (3) of the allpocation of a based variable in main storage.
The offset determined in step (3) is used to form an offset
operand, which is assigned to the pointer {offset) generation.

If the generation is a pointer generation, the offset is converted
to a pointer using the area in which the allocation is made
(cf. 8.2.T7%.

4 10, ALLOCATION, ASSIGNBEKRT AND EXPRESSTICON EVALUATION

IBM LAB VIENKA

30 JUNE 1969

(5)

{6)

TR 25.099

IKFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Tnitialization of components mentioned in REPER-options is done as
in step (8) of the allocation of a based variable in main storage.

Steps {#) and {S) may be dome in any order.

The offset is converted to a pointer using the area in which the
allocation is made {cf. %.2.7). This pointer and the evaluated
aggregate attribute are used to form a generation. The generation
is used for initialization, which proceeds as for allocations in
main storage.

On normal return froa the on~unit called by the AREA cordition,
the allocation is retried after reevaluation of the area
genetation, .

10.1.2 THE TREE STATEMENT

Corresponding section of /5/:

7.5 The free statement

A free statement specifies a 1ist of freeings which are executed in.
any order, PFig. 10.2 shows the structure of the specification of a
single freeing with the indicatiocn as to which compenents are significant
for which type nof freeing:

rig.

| |

s-ref s-area
areaq
reference
reference
\.__H_Y_.._J

for freeingofa
controlied or based
variable in main storage .

AW 7
Y

for freeing ofa based vaviable
inan area

10,2 Structure of specification of a freeing

The reference is a level 1 reference to the variable to be freed.

10. ALLOCATION, ASSIGNMENT AND EXPRESSTON EVALUDATION 5

IBM LAB VIENKNA

TR 25.099

TNFORMAL TNTEO TO THE ABSTRACT SYNTAX AND INTERPRETATICON OF PL/I 30 JUNHE 1969

10.1.2.1_Freeing of controlled variables

{(n

(2)

(n

{2

The following actions are taken:

If the list of generations associated with the controlle2 variable
in the aggregate directory AG contains the null generation only,
no action is taken, If the list contains just one generation,
thern this generation belongs to another task, and the freeing is
erroneous. In all other cases, the top generation of the list of
generations is deleted.

The pointer contained in the pointer part of the deleted
generation is deleted from the allocation state of the main
storage 3.

The following actions are taken:

The generation associated with the reference of the based variable
is evaluated.

The pointer contained in the generation is deleted from the
allocation state of the main storage. It is also deleted from the
free-set of the current task, thus preventing any attempt to free
the associated storage part a second time at task termination. &
test is made whether the pointer was actually present in the
allocation state and in the free-set.

10,1.2,3 Preeing of based variables in areas

The area reference may or may not be presest in the statement. - The

following actions are taken:

(n

{2)

(3}

Tf the area reference is present in the statement, its associated
generation is evaluated. If it is not present in the statement,
it is obtainred from the pointer qualification of the bhased
variable reference in the following way. If the poainter
gualification is a reference to the POINTER built-in function, the
area reference contained in its second argument is taken. - In-all
other cases the gqualifier must be an goffset reference, and the
area reference specified in the offset declaration is taken and
evaluated.

The generation associated with the based variable reference is
evaluated.

The pointer contained in the generation is converted to an offset
using the area identified by the area generation obtained in step
{1), and this offset is deleted from the allocation state of the

area,

A test is made whether the offset was actually present in the
allocation state of the area,

6 10. ALLOCATION, ASSIGHHENf AND EXPRESSION EVALUATION

IBM LEB VIENNA TR 25.099

30 JUNE 1969 INFORNAL TRTRO TO THE ABSTRACT SYHNTAX ARD INRTERPRETATION OF PL/T

Corresponding section of /5/:

8. Assigament statement, expression evaluation, reference to
variables

An assignment statement is specified by an abstract text comsisting of
a left-part, which is a list of references, and a right-part, which is an

expression.
| |
s-lp S}VP
| | | expr
eleim) elfm (1) elem (n)
vef4 ref, - ref,

Pig. 10.3 Structure of an assignment statement

The references in the igft~-part are references to variables amd/or to
pseudo variables {pseudo variables are discussed in 13.2).

In order to simplify discussion, the term aggreqate attribute of the
reference to a variable will mean the aggregate attribute of the
referred~to part of the variable (cf. 4.2.8), ¥e shall also say that a
reference is an array, or a structure, etc., if the aggregate attribute
of the reference is an array or a structure attribute, etc.

If the references in the left-part of an assignment statement are
non-scalar), the assignment statement is an aggregate assignment
statement. An aggregate assignment statement is not interpreted
immediately, but it is expanded into a sequence of scalar assignment
statements which are interpreted segquentially.

The exransion and interoretation is governed by the evaluated
aggregate attributes of the referemces in the left-part. ({If a reference
happens to be the referernce to a pseudo variable, the aggregate attribute
of the first argument is taken).

The evaluated aggregate attrihute of a based reference in general
cannot be obtained before the evaluation of the REFER-options specifying
its extents, i.e., not before the evaluation of the pointer gualification
{cf. 10.2.5.3). All references in the assignment statement which are
exvanded therefore undergo a pre-evaluation before the proper
interpretation of the statement. The pre-evaluation fixes the generation
of the referenced variahble for the subsequent interpretation.

10. ALLOCATION, ASSIGNMENT AND EXPRESSTON EVALUATION 7

YBM LAB VIENEA TR 25.099

INFORMAL INTRO TGO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 19569

10.2.1 PRE-EVALUATION OF BEXPRESSIOWNS

Corresponding section of /5/7:

8.2,1.1 Pre~evaluation of expressions

The pre-evaluation of an expression concerns all those references in
the expression which are expanded in the expansion of aggregate
assignment statements. It does not concern, therefore, arguments of
user-defined functions, and non-expanding arguments of built-in frenctions
{vhether an argument expression of a built~-in function is expanded ot not
is a property of the built-in function!,

The pre~evaluwation of the reference to a variable results in a

generation. This generation is inserted as s-gen-component of the
raference itself, as shown in Fig. 10.4:

s-id-List 5+ s-ptr s-lst s-tap S—igen

i ifi i inte ' . ent .
identifier unique pointer sgbsqut afgunw generahoﬂ
List name reference fist List
Tig. 10.% Pre-evaluated reference

The inserted generatioa subsequently is used when the reference is
evaluated, or when assignments to the variable are made.

For proper variables {i.e.,

static,

antomatic,

or controlled variables

and parameters} the current generation is obtained as the head of the
list of generations associated with the variable in the aggregate

directory AG.
reference.
pre-evaluation.

For defined variables,

This generation is inserted as the s-gen-componenrt of the
no actionm is taken in the
For based variables a new generation is formed from the

evaluated aggregate attribute of the hased variable, and the pointer

resulting from the svaluation of the pointer gualifier.

The evalunation

of the aggregate attribute involves the evaluation of REFER-options.
evaluation of the generation of a based variable is dealt with in

10.2.5.3.

ALLOCATION,

ASSTIGNMENT AND EXPRESSION EVALUATICH

IBM LAB VIENNWA TR 25.099

30 JONE 1969 INPORMAL INTRC TC THE ABSTRACT SYNTAY AND INTERPRETATIOR OF PL/T

10. 2.2 EXPANSION OF AGGREGATE ASSIGNNENT STATEMENTS

Corresponding sections of /5/:
8.1.1 Expansion of aggregate assignment statements

8.1.2 Syntactic modification of expressions

As soon as the references to variables in the assignment statement
have been pre-evaluated, the evalnated extents of all involved variables
can be obtained from the generations associated with the references.

Let eva be the evaluated aggregate attribute of the left-most
reference in the left-part. The expansiocn proceeds as follows:

{n If eva is scalar, all references in the left-part must he scalar.
The assignment statement is executed.

{2} If eva is non~scalar, all references in the left~part must be
arrays with identical bounds, or all must be structures with an
equal number of compoments. For each integer i which determines
an immediate component of eva, proceeding seguwentially from thke
smallest to the greatest imteger, the following sctions are taken:

{(a) The text of the assignment statement is medified, as
determiped by eva and i (see helow).

(b} This modified text is treated like the original assignment
statement {this means that if the modified text specifies a
scalar assignment statement it is nov interpreted, otkerwise
it is expanded as Jjust described}.

The left-part and the right-part of an assignment statement are
modified according to the same rules, the rules for modification of
references being subsumed under the rules for modifying expressions.

The modification of an expression is detersined by the evaluated
aggregate attribute eva and the integer i and is done according to the
folloving rules:

(N If the expression is an infix expression, then both operand

expressions are modified according to the rules for modifying
. expressions.

{2) Tf the expression is a prefix expression, then the operand
expression is modified according to the rules for modifying
expressions.

(3 If the expression is narenthesized' then the expression enclosed

in the parentheses is modified accordlng to the rules for
modifying expressions.

(%) If the expression is a function refererce, a generic reference, a

lazbel, & format label, or a scalar reference to a2 variable, then
it is left anchanged.

10. ALLOCATION, ASSYGWHENT AND EXPRESSION EVALUATIOR 9

IBN LAB VIENRA TR 25.0992

INFORNMAL INTRC TO THE ABSTRACT SYNTAX ARD INTERPRETATICN OF PL/I - 30 JUNE 1969

{5y If the expression is am array reference to a variable and eva is
an array attribnte with the same number of dimensions and the same
bounds, then the referemce is replaced by the reference to the ith
component of the array.

(6} Jf the expression is a structure reference to a variable and eva
is a structure attribute with the same sumber of components, then
the reference is replaced by the reference to the itk conponent of
the structare. . »

{7y If the expression is a structure reference to a variable amd eva
is ap array attribute, them the reference is left unchanged.

{8) If the expression is a reference to a built-in functiom, then the
erxpanding arguments of the reference are modified according tec the
rules for medifying expressions. - Rhether an arguuent i=s expanding
or not is a property of the built-in function.

(9 A1l cases not menticned above are erroneous, -

Assiqgnment statements given the BY FAME option are expanded in a
different way. The difference with respect to the non-BY WAHE expanzion
arises when eva is a structare attribute. - Then .the information given teo
the modifying function is not the number of a component, but the
sub~aggregate name id identifying the component in the leftwost referesnce
of the left-part.

Rule {5} in the list of rules for modifying expressions kas to be
deleted for BY NAAE expamsion, and rule (6} has to be replaced by:

(&'} If the expression is a structuire reference to a variable and evsn
is a structure attribete, then the reference is replaced by the
reference with id apperded as name qualifier, provided that a
.component with name id of the structure exists. - If no such part-
exists, then the modifying process containing the refereace is
abandoned, i.e., no assignpent statement is constructed ard
executed in this step.

10. 2.3 SCALAR ASSIGNRENT

Corresponding section qf /57

8.1.3 Interpretation of scalar assignmenat statesents

R scalar assignment statement is executed by

{1 evalnating the sob-generation associated with the references in
the left-part (cf. 8.2.6 and 10.2.5}, in order from left to right. -
If the references are references to pseudo-vatiables, the
evaluatior results in pseado-generations (assigngent to
pseudo~variables is described in 13.2j.-

{2} evaluating the right-part expression, which results in an operaad
{(cf. 10.,2.4}.

3 assigaing the operand to the storaqe parts identified by the
evaluated generatioms, in order frow left to right.

1¢ 10, ALLCCATION, ASSIGHNRENT AND EIPRfSSIDN_EVALUlTIOl

IBM LAB VIENNA TR 25.09%

30 JUNE 1969 TNFORMAL INTRO TO THE ABSTRACT SYNTRX ARD INTERPRETATIbN OF.PL/I

The assignment of an operand implies the conversion of the operand,
using the data attribute of the generation as target data attribute
fcf. 10.3.2). The conversion process also comrtains a check as to whether
the assignment is at all possible and the raising of conditions.

Let the converted operand be op®' and the pointer part of the

generation be p then a new storage part S* is created on assignment
{cf. 4.2.2):

5' = el-ass{s-vr{op'),p,5)
10.2,4 BEYPRESSTION EVALUATTON

Corresponding sections of /5/:
8.2.2 Evaluation of expressicns in entry-context

8.2.3 Zvaluation of expressions in non-entry context

The evaluation of an expression results in an operand {cf. 4.71.7. Imn
general it pust be known whether an expression is evalunated in . a context
expecting an entry operand or not. This is the case if the expression is
the right~hand side of an assignment statement whose left-hand references
refer to ertry variables, or if the expression is in an argument
specified as entry. It is said in this case that the expression is in
entry context,

10.2.48.1 Evaluation of expressions_in entry coptext

An expression in entry context may be one of the'following:'

{1 A parenthesized entry expression. The expression enclosed in
parentheses is evaluated according to the present rules, which
gives the result of the expression.

{2) The reference to an entry constant. If no argqument list is
specified in the argument part of the reference, an operand is
formed from the attribute ENTRY and from the value representation
resulting from the representation of the unigque name of the entry
{cf. 4.1.2). The operand is passed as the Tesult of the
expression. TIf argument lists are specified in the argument part,
the entry is called as a function, using the first argqument list
in the argement part, the denotation of the entry name , and the
entry attributes {parameter description and return tyve) of the
entry name. The operand returned by the function call must be an
entry operand. If there is no argument list left in the argument
part, this operand is passed as result. If there are argument
lists left, the value of the entry operand is used to perform
another function call, using the next argupent list of the
argument part and the entry attributes given in the returm type of
the original entry. The resulting operand is again treated as
just described.

{H A reference to an entry variable. The reference to the wariable
is evaluated, giving an entry operand. This cperand is treated as

10, ALLOCATION, ASSIGNHENT AND EYPRESSION EVALUATIOR 11

IBEX LAB VIENNA

TR 25,099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JONE 1969

(4)

(5)

described in {2}, i.e., function calls are performed until all
argument lists in the argument part of the reference are used up.

A reference to a generic name. If there is no argument list
specified in the argument rart of the reference and the reference
is in an argument position to a2 procedure, the generic selection
is made using the parameter descriptor list of the corresponding
entry parameter description. If an argqument list is specified,
the attributes of the arguments are used for performing the
generic selection. The result of the selection is an entry
expression (cf. B.3.4). This entry expression is evaluated
according to the present rules, giving an entry operand,

The entry operand is treated as described in {2), i.e., fanction
calls are performed until all argument lists in the argqument part
are used up.

A float-generic builtin function. This is possible only if the
reference is in an argument position of a procedure. The generic
selection is performed using the parameter descriptor list of the
corresponding entry parameter description (this selection is not
further described in this informal document).

10,2.4.2 Evaluation of expressions is _non-eptry context.

12

10.

The following are the possible forms of an expression and the rules

for their evaluation in non-entry context. An expression may be:

(n

(2)

(3}

("

(5)

(6)

An infix expression. Both operand expressions are evaluated in
any order according to the rules for evaluating expressions., The
operator subsequently is applied to the two resulting operands,
giving the result of the expression (cf. 10.3).

‘A prefix expression. The operand expression is evaluated, the

operator iz applied subsequently to the resulting operand, giving
the result of the expression (cf. 10.3).

A parenthesized expression. The expression enclosed in

parentheses is evaluated, which gives the result of the
expression.

A constant. A coastant in the abstract text consists of a data
attribute and a value. It is converted to the form of an operand,
using the value representation resulting from representing the
value of the constant (cf. 4.1.2). The operand is passed as the
result of the expression.

A reference to a variable., References to variables are described
in 10.2.5. 1If the reference is to an entry variable, the
resulting entry operand is nsed to perfora a function call. The
function call is performed with the first argument list of the
argument part of the reference. 1If no argument list is specified,
the empty argument list is assumed, If the function again returns
an entry operand, it is again treated as just described, i.e., it
ig used for another fumction call.

A reference to an entry constant. The entry is called as a
function with the first argument list specified in the argoment
part of the refernce. Tf no argument list is specified, the empty
argument list is assumed. Tf the resulting operand happens to be

ALLOCATION, ASSIGNMENT AND EXPRESSION EVALOATION

TR LAB VIENNA TR 25.099

in JUNE 1969 TNFORMAL INTRC TO THE ABSTRACT SYNTAX AND THTERPRETATICN OF PL/I

an entry operand, it is called again with the next argument list
in the arqgument part. A resulting non-entry operand is passed as
the result of the evaluation. o

(7 A reference to a generic name. The genmeric selection is made
using the attributes of the arquments in the first arqument list
of the arqgument part {cf. B8.3.8}. The selection yields an entry
expressicen, which is evaluated according to the rules for
evaluation in entry context {cf. 10.2.4.1). The resnlting operand
is used for performing a function call as described in {6}.

{8) A label, format, or file constant. An operand is formed from the
data attribute LABEL (for label and format conrstants} or FILE {for
file constants) and the value representation resulting from
representing the unigue rame of the constant {cf. 4.1.2}. The
overand is passed as the result, :

{9 An isub-variable. Isub-variables occur only in connection with
isub~defining {cf. 10.2.5.2.1). The integer value attached to the
variable is used to form an integer operand, which is passed as
the result. :

10.2.5 REFERENCE TO VARIABLES

Corresponding section of /5/:

8.3 Evalegation of references to variables

The evaluation of the reference to a variahle proceeds in the
following steps: '

{n The generation currently associated with the variable is
evaluated, For proper amd based variables this evaluation is done
already during the pre-evaluation {cf. 10.2.1).

{2) The subscript-expressions occurring in the reference are evaluoated
and cenverted to integer valnes in order from left to right, the
sub~aggregate names {name gualifiersj occurring in the reference
are replaced by the integer values identifying the respective
sub-aggregate (cf. #4.2.8j. This step results in a reference list
{cf. 4.2.6}.

{3) The sub-generation determined by the generation and the reference
list is evaluated {cf. #4.2.6}.

(4) The operand determined by the (scalarj sub-genperation is
evaluated,

Step (2) also includes checking whether the subscripts are within the
range given by the evaluated aggregate attribute of the variable. If a
stubscript is ocutside the range, the SUBSCRIPTRANGE condition is called
(if erabled). The evaluated data attribute of a variable is obtained:

{a) for proper variables ({i.e., STATIC, AUTOMATIC, or CONTROLLED
storage class and parameters) from the aggregate attribute part of
the generation of the variable, which for proper variables is
immediately accessible,

10, ALLOCATTON, ASSTGHMENT AND EXPRESSION EVALUATTON 13

IBM LAB VYIENN2 TR 25.099

THFORMAT IHTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 39 JURE 1969
(b) for defined variables from the denotation of these variables
(cf. 5.4),
(c) for based wariables by evaluating the REFER-optionz contained in

the aggregate attribute (cf. 10.2.5.3}.

Proper variables, defined variables, and based variables differ in
step (1),i.e., in the vay the generation associated with the variables is
obtained. Step {1) is discugsed separately for these variables below.

The reference process does not include step {4} if the reference is in
the left-part of an assignment statement, or if it is the argument to a
procedure and the generation of the argument is to be passed to the
corresponding pvarameter {cf. 8.3.1). The sub-generation resulting from
step {3) need not be scalar in the last case.

10,2.5.1 Proper_ variables

The generation currently associated with a proper variable, if
existing, is obtainable as the head of the list of generations contained
in the aggregate directory AG under the aggregate name associated with
the variable. The aggregate name is obtained as the entry made in the
denotation directory DN under the unique name of the variable (see the
diagram in 5.3).

No generation exists if the variable has not been allocated.

10.2.5.2 Defined variables

The declaration of a defined variable specifies an aggregate
attribute, optionally a position {which is singificant for overlay
defining only}, and a reference which is called the reference to the base
variable, or base _reference. Three kinds of defining must be
distinguished.

10.2.5.2.1 Isub~defining

18

10.

A defined variable is isub-defined if no position is specified and if
the base reference contains subscript expressions which contain at least
one reference to an isub-variable. & reference to ap ismb-variable is
syntactically distinguishable from references to all other kinds of
variables, and is characterized by an integer value., An isub-defined
variable is always an array variable,

The reference to an isub-defined wvariable proceeds in the following
way {this covers steps (1} and {3} of the above general schenme):

(n Lat d be the number of dimensions of the defined array variable.
Then the first 4 elements of the evaluated reference list (see
step (2) above) are used to give the values to 4 isub-variables
{those characterized by the integers 1 to d). These values are
inserted as s-v-components of the references to the isub-variables
in the subscriont expressions of the base reference.

(2 The gereration associated with the base referemnce is evaluated.
(E))] A consistency check is made between the aggregate attribute of the
elements of the defined array variable, and the aggregate

attribute as given in the above snb~generation. The sane
conditions must be satisfied as in the simple-defined case between

ALLOCATICN, ASSIGNMENT AND EXPRESSION EVALUATION

TBRM LAB VIENNA TR 25,099

30 JUNE 1959 THRFORMAL INTRO TO THE ABSTRACT SYRTAX AND INfERPHETATION 0? PL/T

attributes of the defined varlable and the generatlon assoc1ated
with the base reference. :

{43 The rest of the reference list, not used to give values to.
isub-variableg, is used to determlne the sub-generatlon of the
above sub-generation. .

Note that if a reference to an isunb-variable occurs in an expression
the poperand resulting on evaluation is formed immediately from the value
found in the s-v-component of the isub-~reference. .

Exapple:
Let D and B be declared as:

DCL 1 D (2,2) DEFINSD B {(2SUB, 1SUB), 2 X, 2 ¥,
20, 2

B
18 {2,2), v
and consider the reference D (2,1} . ¥
The evaluated reference list is <2,1,2>.

The number of dimensions @ of the defined erray'variable is d = 2,
so there are 2 isub-variables, which get associated with the first
two elements of the reference list:

1S0B ... 2
2508 ... 1
The reference B {25UB, 1SUB) is nov evaluated. The relevant reference
list is €1,2>». Let gen be the gemeration associated with the variable B,
then we obtain the sub~generation gen' determined by gem and <1,2>.
The rest of the first reference list of the reference to the defined
variable {not used to give values to isub-variables) is <2>, The final
result is the subgeneration gen'' determined by gem' and <2>. :

10, 2.5,.2.2 Simple defining

A defined variable is simple-defined if no position is specified in
the declaration, and if its evaluated aggregate attribuote is equal to the
aggregate attribute of the base reference, disregarding array bounds and
string lengths., Corresponding array bounds must be soch that the bounds
in the base array comprise the bounds in the defined array, string:
lengths in the base array must be shorter than or egual to correspording
string lengths in the defined array.

The evaluation of the generation aseoc1ated with the deflned varlable
proceeds in the followlng vay: : :

(%) the base reference is evaluated , giving the corresponding
sub~generation, ' S : oo
(Z) the aggregate attribute in the aggregate attribute part of this

gemeration is replaced by the evaluated aggregate attrlbute of the
defined variable,

The nev aggregate attribute part inm the generation specifies which
parts of the storage associated with the base generatiom can be used by

10. ALLOCATION, ASSIGNMERT AND EXPHESStON EVALUATTON i5

TBM LAB VIENNA TR 25.09%

INFORMAL INTREO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/X 30 JUNE 1969

the defined variable. This modified generation may be non-connected,
even if the base generation is connected. The modified gemneration is the
inpat to step {3} in the general scheme in 10.2.5.

Example:
Let D and B be declared as
DCL D {2,2) DEFINED B, B (2,3):

Let p be the pointer part of the generation associated with B,
Fig. 8.4 symbolically shows the storage p{S) associated with B and
the storage corresponding to parts of B, in a linear model. It
also shows the storage usable by D, which is a non-connected part
of 5 (cf. 4.2.5).

B o

B,y Blzw

bt |

B BM,2 B, 3N B2, B2 B(z,a)iI
| i ! [!

I

UL DA DL
1 b !
! ! i !

NN RO,

TN

L
T

Fig. 10.5 Example for simple defining

10,2.5.2.3 Overlay defining

16

A defined variable is overlay-defined if it is an aggregate of
unaligned strings, and if the base reference is a string aggregate of the
same type (BIT or CHARACTER), and if the condition for simple defining is
not satisfied. Overlay defining has to be assumed in any case if a
position is specified.

The number of elements (bits or characters) in the base reference
minus the specified position must not bhe smaller than the number of
elements in the defined variable minus 1.

For describing overlay defining the term linear index of an element of
an aggregate is introduced, where element here means a single bit or
character. The mapping function introduces a left to right ordering of
the immediate components of aggregates (cf. 4.2.%4) and thus a tree
structure with ordered branches for a whole aggregate. The linear index

"of an element which is at a terminal node of the tree, is its position

10.

number ohtained by counting the terminal nodes from left to right.

The evaluation of the generation associated with the defined variable
proceeds in the following way:

ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION

IBM LAB VIENNA TR 25.099

30 JURE 1969 INFGRMAL IFTRO TO THE ABSTRACT SYNTAX AND TETERPRETATION OF PL/T

{1} the generation associated with the hase reference is evaluated:
this genmeration must be connected, :

(2) a new pointer is found which identifies that storage part which is
associated with the ith up to the 4th element of the base
reference, where i1 is the integer specified by the position
attribute, and j - i # 1 is the number of elements in the defined
variable, . B

(N a new connected generation is formed using the evaluated aggregate
attribute of the defined variable, and the new pointer.

It is a property of the storage mapping function that a pointer of the
reguired properties always can be found, and that the storage part now
associated with, say, the kth element of the defined variakle is exactly
the storage part associated with the [i # k -~ 1)th element of the base -
reference {cf. 4.2. 7). The new generation is the input to step (3) in
the general scheme in 10.2.5.

Let D and B be declared as

DCL D{3) BIT{1) UWRLIGNED DEFINED B POS (2},
1 B UNALIGKED,2 X BIT{(Z2}, 2 Y BIT(3):

Fig. 10.6 symbolically showvs the storage associated v1th B and its
parts, and the corresponding parts of D.

| D(ﬂ): D(Q): D3}
I D !
e]
Fig. 10.6 Example for overlay defining

10, 2. 5.3 Based variables

The declaration of a based variable specifies an aggregate attribute
and optionally a pointer reference. Extents are either specified by
constants or by REFER-options. The reference to a based variable may be
pointer gualified, i.e.,;, the reference, hesides identifier list and
argqument list specifies a pointer reference. The evaluation of the
generatinon associated with the reference to a based variahbhle proceeds in
the following way:

{(n If the reference is pointer gnalified, the gualifying pointer

reference is evalunated. Tf it is not qualified, the pointer
reference specified in the declaration of the based variable is

10. ALLOCATTON, ASSIGNMENT AND EXPRESSION EVALUATTON 17

TBM LAB VIERNA TR 25.099

INFORMAL INTRO TC THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

evaluated. The result is an operand which specifies a rpointer
value,

{2) The REFER-options im the agqregate attribute are evaluated. Each
REFER-option specifies an expression and an identifier list, The
expression is used for initialization after the allocation of a
based variable (cf. 10.1.1.3). The identifier list identifies a
scalar structure component within the based variable., This
component, within the storage identified by the above pointer,
contains the value which is used as the current extent for which
the REFER-option stands.

In order to retrieve thkis value, storage identified by the above
pointer is accessed. TFor this purpose an intermediate gemeration
is built from the pointer and the aggregate attribute evaluated ap
to the point (from left to right) containing the REFER-option.
RETER-options therefore are evaluated from left to right, if this
order is relevant, in any order otherwise. The operand resulting
from the storage access via the intermediate generation is
converted to an integer value.

{(3) If all REFER-options are evaluated, the resulting evaluated
aggregate attribute and the peinter evaluated in {1} are used te
construct a generation. This generation seryes as input to step
{3) in the general scheme in 10.2.5.

It is only for certain cases that the resulting generation is a
sensible means for referencing storage. Let eva-b be the evaluated
aggregate attribute of the based variable and let the storage part
identified by the pointer value be originally associated with a variable
{or part of a variahle) with aggregate attribute eva-p. If eva-p is
scalar, then the value representation associated with the storage part
makes sense together with eva-b only if eva-p and eva-b are egqual, no
relationships between value representations associated with non equal
attributes being defined. TIf eva-p is non-scalar, then the meaningful
parts of the storage part are identified by the storage mapping function
map(eva~p,i), the storage parts identifiable with the based variable,
however, are given by map({eva-b,i}, and again no relationship is defined
heween the values of the mapping function for non equal arguments.

There is an exception to the general rule that eva-b and eva-p have to
be equal, which is called the left-to-right eguivalence rale. This
exception is due to a property of the mapping fumction which is
guaranteed by the larguage. If eva is a structure attribute, then the
location of a structure component depeads only on the properties of eva
up to (from left to right) and including that component. Consequently if
eva-b and eva-p are structure attributes, a reference to a structure
component of the based variable gives defined results if eva~b and eva-p-
are equal up to that component.

18 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION

IBM LAB VIENNZ TR 25.099

3D JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

10.3 INFIX AND PREFIX OPERATIONS, CONVERSION, NUMERIC PICTURES

Corresponding sections of /5/:
9.3 Evaluation of infix expressions
3.4 Evaluation of prefix exvressions
9.5 Conversion

9,6 Pictures

10,3.7 INFIX AND PREFIX OPERATIONS

The part of expression evaluation which is te be described in this
section is the application of infix or prefix operators to already
evaluated, but not yet converted operands; these operands are ohiects
consisting of an evaluated aggregate attribute part ard a value
representation part, as described in B.1. The result of the pperation is
again an operard, and whereas the aggregate attribute part of this result
overand is completely defined by the language {except for the
implementation-defined maximum and minimum precision associated with
arithmetic data attributes), the value represented hy the value
representation part is gemerally not so defined. For character string
comparison, this aspect is treated by introducing an '
implementation-defined collating function: hence the wain problem was to
characterize the operaticns on numerical values and pointers in a way
which treats accurately certain subcases withount defining the rest, and
this was solved by postulating suitable axioms.

Pirst, appropriate target attributes are computed and the operands are
converted to these targets. These target attributes depend only on the
data attributes of the operands, except for the case of fixed-point
exponentiation {in which target and resplt attributes depend also on the
valoe of the second operand). It is convenient here that the target for
a conversion may be an incomplete attribute (cf. 10.3.2). PFor exanple,
for arithmetic infix operators, the common target for comversion of the
tvo operands is the object shown in Tig 10.7,

| |
5- Lode S»Lase s-lscale 5-prec

| | | |

mode base scale l ¥ I

Fig. 10.7 Target attribute for conversien during arithmetic infix
operations,

wvhere mode, base, and scale are the higher of the respective)
characteristics of the attributes of the two operands; for the arithmetic
prefix operaters PLUS apd MINOS, the target is the object AR-EDA

{cf. 10.3.2y. 7In the first case, the vrecision {and vhere necessary, the
scale factor), in tke second, all characteristics are obtained by means

attribute,

10. ALLOCATION, ASSIGNHMENT RW¥D EYPRESSION EVALOATION 19

TBEM LAB VIENNA TR 25,099

THFORMAL IKTRO TO THE ABSTRACT SYNTAX AND TNTERPRETATIOWN OF PL/I 30 JOUNE 1969

20

10.

Tor an infix operation, let eva;, eda, and vr; be the aggregate
attribute, the data attribute and the value representation of the
converted first operand, eva,, eda, and vr, those of the second. The
data attribute eda-res, of the result operand is computed as a function
of eda; and eda. To obtain the value representation vr-res; of the
result operand, the converted operands are transformed into their values
¥y = value{eva,,vr,), vy = value(evaz,vr;), and a result value v-resy is
computed from v, and v; {depending, possibly, also on eda, and edaz):
then vr-res is obtained as the representation of v-res with eva-resy
consisting of eda-resy; and the corresponding default density.

For arithmetic operators, the first step is the transition from v, and
¥; to v-resgy is a test, whethsr the operator is applicable; if not, the
FRROR or ZDIV condition is raised, otherwise, v~res, is computed. The
operation to be applied to v, and v; is not guaranteed in general to be
the exact mathematical operation corresponding to the operator, but mav
be an implenmentation-dependent approximation thereof, whose accuracy may
depend on eda,, eda,. However, the following is postulated:

If vy and v, belong to the sets v-0O~set{eda,) and v-0-set({edaz} of
values which are guaranteed to be exactly representable with eda,
and eda,, respectively {cf. 4.1.2), then, in case of fixed-point
eda, and eda, and an operator which is not division, the resualt
v-res, will be the exact mathematical result.

Example:

If eda, is REAL DEC TIXED (3,0), eda; is REAL DEC FIXED {4,1), v,
is 237, v, is 844.2, and the operator is PLUS, then v-resy is
1081.2; if vy were 814,25, then v-resy, = 1081.25 would not be
guaranteed. '

Before v~resy is represented with eda-res,, a test for overflow or
underflow is made, This test is very similar to that for the SIZE
condition (cf. #4.1.2), except that instead of the precisior of eda-resg,
the maximum precision associated with eda~resy is ssed. The following
can be derived from the definition of eda-resy and the axioms for v-resg:

Tf v-res, is guaranteed to be the exact mathematical result, and
if additiorally no PIXED OVERFLOW situation arises, then v-resgy is
in the v-0-set (eda-resgy), i.e., is guaranteed to be exactly
representable with eda-resg.

ITn the example given above, if the maximum precision for real
decimal fixed attribute is at least 5, them the result attribute
eda-res, will be REAL DEC FIXED({(S5,1), no overflow ¥#ill occur, and
the result value v-resy = 1081.2 #ill indeed be exactly
representable with eda-resg.

For comparison operators, the numeric case is treated axiomatically
¥ith similar postnlates: the character or bit string case, like the
string operators on the whole, and the file and the label cases t present

) It should be noted, however, that in +he file and label case not the
values themselves, but the denotations acgessible by means of these
values are compared {cf. 9-17{(77) of /5.

ALLOCATTON, ASSIGNMENT AND EXPRESSION EVALUATICN

IBM LAB VIENRA - TR"25,099

30 JUNE 1969 INFPORMAL INTRO TO THE ABSTRACT SYNTAX ARD INTERPRETATION OF PL/I

10. 3.2

no dificulties; The pointer case is again treated axiomatically, with the
following postulates (for the operator EQ;RE 1s defined as negation of
EQ) s

(1) If the tvo pointers are the same, then EQ.yields-trqe.
() If the two pointers are independent (cf.: 4.2}, then FQ yvields
- false. Co ' ' ,

For prefix operators, the general seguence of steps is the same,
though the details are much simpler. For the prefix operator MINUS, a
test for overflow or underflow must be made, because the predicates
testing for them are not necessarily invariant against change of sign
{e.g., an implementation may use asymmetric tvo-conplenent representation
for binary nunbers)‘

CONVERSIOH

Conversion is performed by an 1nstruct10n convert-1{eva-tg,op) " “which
has as arguments the target attribute eva-tg and an operand op which is
to be converted to this target. The result is the converted operand.
The eda-part, eda-tg, of the target eva-tg may be incomplete. Tf’'so, it
is completed (see below). Except in the case of area conversion (which

" is treated at the end of this sectlon), conver51on to'a colplete target

eva-tg falls into threé steps:

{1 The operand op is transformed 1nto a value.

(2) The value is converted into a value of the type deterllned by
eda~tgqg, .

(3 The converted value is represeénted with eva-tg:; the result of

conversion.is the operand whose evaluated aggregate attribute is
eva-tg and whose value representation is the obtained
representatlon.

The first and the third step are performed by the funct;on
value {eva,vr) and by the irnstructiorn test-rep{eva,v), as described in
4.1.2, (The instruction test-rep rather than the function rep is

s e i vt e

necessary, because SIZE, STRZ or CONVERSION conditions may be»ralsed).

The second step, called value conversion, distinguishes between the
different types of values, e.9., numeric, character string, etc., (cf.
Fig, 4.1). Conversion is only possible if the source and the target are
either of the same type or if each of therm is of one of the types
numeric, character string, or bit string. For identical source and
target type, the second step is the identity operation, and the third
step may be the inverse of the first.

Examples:

{1} If the source attribute eda~op (the eda~-part of eva-op} and the
target attribute eda-tg are both arithmetic, then step 1 yields a
numeric valne which is left unchanged by step 2 and transformed
back irnto an operand by step 3; if eda-op and eda~tg are the sanme,
then this operand will be op under certain additional restrictions
(cf. 4.1.2}.

10. ALLOCATION, ASSIGNMERT AND EXPRESSION EVALUATION 21

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

{2) TEf eda-op is a bit string attribute and eda-tg a binary picture
attribute, then step 1 will yield a bit string value, step 2 a
numeric value, step 3 its representation in pictured form.

(3) If eda~-op is a numeric picture attribute, eda~tg a character
string attribante, then step 1 will yield a numeric value vhich,
with the aid of eda-op, is transformed by step 2 into a character
string valoe; the representation of this character string value
¥ill be, under certain restrictions, the same as the valuge
recresentation part of the original operand op.

(4 Yf eda-op and eda-tg are both numeric picture attributes, then the
numeric value coaputed by step 1 will be transformed back into
pictured form. Even if eda-op and eda~tg are the same, this will
not under all circumstances be guaranteed to be the unchanged
origiral representation, because un~pormalized floating-point
representations ([produced by overlay-defining} will be normalized.

The defipition of the operation of value conversion distinguishes
between the six possible combinations of different source and target
types. In pumeric to character conversion, the source attribate is
needed: if it is naomeric picture, then this is es=mentially the overation
of representing a numeric value in pictured form {cf. 10,3,3): if it is
arithmetic, then again a picture attribute is constructed, though it
differs somevhat from the treatment of the ordinary picture case. Also
in pumeric %o bit conversicn, the source attribute is needed. In
.character_ to_numeric_conversion a scan from left to right is made, and at
each stage a test is made as to whether a correct continuation of the
string is still possible; if not, the CONVERSION condition is rajised; the
method by which this test is made is that develoved for stream input
transmission. In character to bit conversion, the target attribate is
needed, because only as many characters as necessary are converted (and
hence can raise the CONVERSIDON condition}. The tvo remaining cases, bit
to_pumeric_conversion and bit_to character conversion, present no
problems.

Area conversion is accomplished by the instruction area-conv{eva,op},
where op is the operand to be corverted and eva is the target attribute.
An area operand is constructed whose vr-part has the size which
corresponds to ava, the same allocation state as the vr-part of op, and
which in the parts identified by the allocation state is identical with

the vr-part of op.

Before the actual conversior a test is made whether the conversion is
possible. The conversion is possible if by a sequence of allocations a
value representation of the size corresponding to eva can be given the
allocation state of the vr-part of op. If the conversion is not possible
the AREA condition is raised.

As was said above, the target attribunte presented as first argument to
the convert-l-instruction may be incomplete; that means, amy component
may be specified by *. Examples of incomplete attributes are the:
folloving objects AER-EDA and STRING-EDA ([Figs. 10.8a and 10.8b):

22 . 10, HLLOCATION, ASSIGNMERT AND EXPRESSION EVALUATION

IBM LAB VIENNA " TR 25,099

D JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

10,3.3

| | g

s-mod.e L-pose s-scale

®ig. 10.8a The incomplete arithmetic attribute AR-EDA

|

5-vavying

rig. 10.8b The incomplete string attribute STRING-EDA

They can be used ta specify "conversion to arithmetic" or "conversionm
string™ without specifying particular characteristics. 2Another erxample
is given in 10.3.1. The comnletion of the components occupied by * can

attrihute,

REPRESENTATIOR AND EVALUATION OF NUMERIC PICTURES

only a very bhrief description of the concepts introduced and used in
9.6 of /5/ %11l he given.

We consider flrst the relation between picture dttributes in concrete
and in abstract text; the aim in choosing the particular form of abstract
syntax of pictures as defined in 2.2.3 of /5/ was to make explicit as
much as possible of the structure which is needed by the interpreting
functions and instructions, without too much of a burden on the
translator. Thus, the partition of a flxed-p01nt picture intc mantissa
field and scale factor, of a floatlng—n01nt pictare into mantissa field,
exponent separator, and exponent field is wade explicit by_showing these
parts as different comporents. Alse, the umnit position of the mantissa
and the division of sterling fields into subfields is shown by separate
pointers rather than by characters in the field description. '

Zxamples:
The three picture attributes (of mode REAL, say) which in concrete

representation read '-22.V9P(~3) ', 'ZZ.9E99', and 'G+HIINBMT', are
translated into the following abstract form (Pigs. 10.%a,b,c):

10. ALLOCATION, ASSTGNMENT AND EXPRESSTON EVALUATTON 23

IBY LAB VIENWNA TR 25.799

INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

24

10.

|

¢-mede 5- m’c field s- mt unit g-scale-f

1 = 1 o1

?™g. 10.9a Decimal fixed-point picture

| | |

5-|mod.e " g-mt-field S-€xp-sep s-eX.P-fiech

| |

Tig. 10.9b Decimal floafing point picture

| | |

s-mode s -mi-field s-stat- pavt-end S~ F‘d‘e”d 5~ shill-end

l | !
I REAL I +3987" I] 3

Pig. 10.9c Sterling picture

In these figures, strings have been represented by their concrete
equivalents. Certain picture characters are not translated into their
immediately corresponding abstract characters: so, 5 becomes SIGH, H
becomes S5-CHAR, P hecomes D-CHAR.

Rext, we introduce explicit picture attributes. These differ from the
picture attributes of the abstract syntax in that zero-suppression or
drifting information, where present, is given a more explicit form, the
subfield description is transformed into the corresponding ansuppressed
form, and explicit conponents containing the drifting information are

added,

Zxamples:

{1) Por a subfield description ?%$%2Z,9*', the unsuppressed form is
1399.,9*, the explicit form is shown by Fig. 10.10a (this time
strings being presented in their abstract form):

BRLLOCATION, ASSIGNMENT AND EXPRESSION EVRLUATION

TBM LAB VIENNA TR 25.099

30 JUNE 1969 TNFORMAL THTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/IT

elem(l) elem(3) elemlt) elem(S) s-dr-beg s-d rend. 5d.r~chc1r

etem ()

(ool] il ol B 121 L2 Bl

subfield of expiicit pictur? attri?utefﬁ-_,g.g

Fig. 10.10a

(2} Por a subfield descrintion '%,$33" the unsupressed form is

¢3,9997, the explicit form is shown by ‘1g. 10510h:

1

eie (&) elem(S) --S?dr beg ;:-dr‘-_énu_d“: s-dr-char

elem (1) lem (1) eiem (3)

B | e e

Pig. 10.10b Subfleld of ex911c1t plcture attrlbufe

DOLLAR

The essential step in the representat1on of a numeric valuse with a
numeric picture data attribute is the transformation of the numeric value
into a string value. As an intermediate step in this transformation, the
concept of pictured value is used, A pictured value kas the same
structure as a picture attribute (in explicit form), bat . the picteore
specification characters may be replaced by other characters; e.g., the
characters 9-CHAR may be replaced by the digits of the number to be
tepresented, In fact, the representation of a subfield consists in
Writing digits, sign characters, etc., as they come from the numeric
‘'value, into the picture attribute; only as a last step, the flnally
resultlng pictured value is "linearized" tg a strlng value. :

Exampnles:

el e e B e

To represent 0,123 with a pictore attribute which in concrete form
reads ?'999E55?, the following victured value is constructed from
0.123 and the abstract form of the picture attribute (Pig. 10.11}:

10. ALLOCATION, ASSIGNMENT AND EXPRESSTON EVALUATTON 25

TBE LABR VIENXA

TR 25,7299

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

| |

s-mt-field 5-exp-sep s-exp- field

I 1-CHAR I

Pig. 10,11

IZ—CHARI I?:-CHARI . l MINUS I I3—(HARI

Pictures value

This pictured value is then linearized to the string value which, in
concrete representation, reads '123E-3',

The segquence of steps in revresenting a subfield is {(for decimal and
sterling pictures):

{1 The number to be represented is decomposed into a number list.

(2) The elements of this list are transformed into characters; this
may include e.g. overpunching. The characters are written into
the appropriate positions of the pictured value.

{3 The sign is represented {if not treated already in step 2).

1) Zero suppression or drifting is performed, if specified, (Steps
1-3 will have used the unsuppressed form of the picture

attribute.}

A test for the SIZE condition is incloded,

The process of retrieving a numeric value from its representation in
pictured form is, in the main, defined implicitly as the inverse of the
representation process, Since conditions may be raised, the definition
is given by an instruction; also, certain "normalization rules" must be
postulated because there may be different values with the same
rerresentation.

26 10. ALLOCATTION, ASSIGHNMENT AND EYPRESSTON EVALUATION

IBM LAB VIENNA TR 25.099

30 JUKE 1969 INFORMAL INTRO TO THE ABSTRACT SYRTAX AND INTERPRETATION OF PL/T

11, _ATTENTIONS AND CONDITIONS

Corresponding sections of /5/:
3.5 State components for attentions and conditions

10, Attentions and conditions

The following abbrevidtipns are used in this section:

abn-ret

AN

‘attn-identifier

information for abnormal return.
attention directory

attention identifier

cap condition action part
chif condition builtin function
cond condition.

cond-bif-part

condition bailtin function part

Cs condition status

D ~dump

eattn~cond evaluated attention condifion
BT epilogue information

EN attention enabling state
enable glenent of the enable—iist

£y attention environment'directory
id identifier

ident attention identification
info-list attention information stack
~intg-val integer value

n aniguee name

pref-part prefix part

ptr-val pointer talue

ref reference

11. ATTENTIONS

AND COBDITIONS 1

TBH LAB TYENNA TR 25.099

TNFORNMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969
st statement
tn ‘ task name

11, 1_STATE_COMPONENTS FOR_ATTENTIONS AND_CONDITIONS

11.1.1

The attention directory AN, the attention enabling state EN and the
attention environment directory E¥ are solely used to describe the
enabling and disabling mechanism of attentions in the various tasks and
to stack the attention information.

The conditior status CS5 contains the enabling information for prefix
controlled conditions. The other two parts of C3, holding information
for interpreting on-units and condition builtin functions, are ased for
all conditions including the attention conditions.

ATTENTION DIRECTORY AN
The major state component dealing with the interpretation of an

attention is the attention directory AN. An attention is installed in AN
by an enable statement. '

A single attention is found in AN by the attention jdentification, a
selector characterizing an attention {cf. 5.10), which is the major part
of the evaluated attention condition {cf, 11.1.5 Fig. 11.%). For each
attention identificatiom four comsponents are contained in AN:

s-info .

info -tist

2 11,

Pig. 11.1 A single attention of AN

The s-info component contains the attention information which is
created with an attention occurrence and stacked in this component. This
attention information is used by an asynchronous attention interrupt or
by an access statement.

The s~task component names the task in which the attention is enabled
at the moment, '

The s-sSpec component characterizes the enabling mode relevant for
interpretation.

ATTENTIONS AND CONDITIONS

IBM LAB VIENNA TR 25.099

30 JONE 1969 INFORHAL INTRO TO THE ABSTRACT SYNTAXY AND INTERPRETATIOR OF PL/I

11.1.2

The iast component collects the names of the tasks with which this
attention is associated.

The entries in the last three components may be changed by ‘emable or
disable statements, or by task termlnatlon.
TEE ATTENTION ENABLING STATE N

To handle the enabling and disabling correctly each task has a state

attentlons are enabled or only assoc1ated with a task. This information
is kept in the first two components of EN, vwhich contain evalunated
attention conditions {cf. 11.1.5 Fig. 1t1.4}.

$ - enab-List s~assmrlkt g -wait-tist th, .. tn,,

eattn - cond editn- Cth eatin-cond- eattp- cond-| leatlt n-r_;o_n_d-

ust | .| List st List | .--- | [list

Pig. 11.2 DAttention enabling state EN -

In the.llst containing associated attentions +he eﬁaludtéd a++ént10n

" condition has the two non-emvty ‘auxiliary components ‘which are needed

11.1.3

11178

vhen the attentlon becores enabled for thlS task.

The_component selected by s-waxt-llst ericmerates thefatténtibns,uhich
ara only associated with the task but which are not specified with an
event, so that the task must wait until all these attentions have been
enakled for the task.

The last component comsists of a set of event names and contains, for
each event name, the corresponding evaluated attentlon conditions which
are only associated with the task.

THE ATTERTION ENVIRONMENT DIRECTORY EY
The attention envifbngggt directory EY contains, for each tnigue nane

of an attention identifier {cf. 5.10), an evaluated environment used to
create the attentjon identification (cf. -11.1.1}.

THE CONDITION STATE CS.

The major state component dealing with the interpretation of condition
sitwuations is the condition state CS. 'The condition state CS is a block
local state conponent and con51sts of four major parts.

11. ATTENTIONS AND CONDITIONS 3

IBY LAB VIENNA TR 25.099

INFORMAL INTRO TO THAE ABSTRACT SYNTAX AND TINTERPRETATIOR OF PL/T 30 JUNE 1969

11, 1.5

4

1.

-

4 TPP S-spp s-cap s-chif
pref ~part] Pfef‘ part cap cond- bif-Fcurt

Pig. 11.3 Condition state CS

The block prefix part (selected by s-bpp), and the statement
prefix part {selected by s-spp), control the condition emabling status
for all conditions which may be prefixed to blocks or procedures and
statements, respectively.

The condition action part contains the actions which are established
by executing an on-statement or a revert statement.

The last part is the condition builtin faunction part, which contains
components for the values of every condition huiltin function, and some
auxiliary ones for obtaining these valunes,

EVALUATED CONDITIONS AND CONDITION SELECTORS

The conditions appearing in the various condition and attention
handling statements are evaluated before interpretation. The eyaluated
copdition differs from the description in the abstract syntax only with
respect to three conditions: the evaluated check condition is a
reference to a base element; the evaluated Y/0O-condition has instead of a

s o i e S T il el et <l L e . e e s

R |

5~iTent 5—?pec s~-tn
ident ACC v tn - set
ASYN
or @ or G

Fig., 11.4 ©PEvaluated attention condition {eattn-cond)

To connect the condition with the proper condition action and to -
handle the condition prefixes correctly in CS, a condition selector is
created. As identifiers appear in several conditions, a dynamic
interpretation is necessary to ensure unambiguity of reference.

ATTENTIONS AND CONDITIONS

IBM LABR VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTHACT‘SfNTAXVAND THfERPREThTION O PL/T

This is done by creating a unigue selector from the evaluated
condition, by connecting the unigue name or the file name or the
attention identification or the identifier with a simple selector. Where

~no unigue name is needed, for example with the conversion condition, the

condition selector consists orly of the simple selector, e.g., s—conv,
Thus a dymamic interpretation of condition prefixes is ensured.

11.2 ENABLING AND DISABLING

11.2.1

11.2.2

11.2.2.

ENABLING RHD DISABLING OF CONDITIONS

Several PLfI on~conditions can be epabled or disabled under contrel of
condition prefixes., At the beginning of the program interpretation a
standard enabling status exists. This is reflected in the block prefix
part of the initial state of CS. This status may be mo@ified by prefizxes
in front of blocks, procedures, or statements.

Condition prefixes controcl the enabling and disabling in a static
scope. As identifiers way appear in several prefixes, a dynamic
interpretation of prefixes is recessary to ensure gnambiguity of
reference. This is donre by using the condition selector for entries in
the preflx part of CS.

As condltlon_preflxes heading a begin block or a procednre statement
have the scopes 6f the respective blocks, they are interpreted at block
entry or at procedure entry respectively (cf. 8.2). The unpdating of the
condition enabling status of a block or procedure is done by merging the
evaluated condition prefixes of the statically encompassing block with
the prefixes explicitly specified for the block or procedure.

Dburing the interpretation of PL/I statements the enabling status as
defined by the block prefix part of CS can be modified by explicit
statement prefixes {(cf. %3.1). A similar merging is done, and the
resulting enabling status of the statement is kept in the statement
prefix part. The statement prefix part is only valid for the specific
statement and is never stacked. ' '

ENABLING AND DISABLIKRG OF ARTTENTIONS

1 Enable statement

The interpretation distinguishes between enabling with or without
event option. W®hen the event-option is specified for one element of the
enable-list {cf. Fig. 11.5), the event generation is evaluated and the
attention-event, essentially c09515t1ng of the event generation, is
attached under a newly created unique mame in BA (cf. 7.3).. The sole
effect of this is to hinder any subseguent a551gnment to the event
variable.

t1. RTTENTIONS AND CONDITIONS 5

TBN LAB VIENNA TR 25.099

INFDEEAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969
| e
., ,enable-list |
5- st s-tst ,
Ve
rd
R
: elem (1) elem (2) cle,m (n)
endable, enable
5"C°“d s-spec s-event
J _ ACL or vef
s-attn-list ' ASYN
1 or G2
I ATTN l
etjm (4) . e . elem (k)

attn- identif%evk

Fig. 11.5 The enable statement

The attention identifiers in each element of the enable~list are
modified to attention identifications {cf. 11.1.1) and a list of
evaluated attention conditions is generated for each element of the
enable-list.

The attention directory AN is searched for entries for every evaluated
attention condition:

{1} When no entry is found the attention is newly installed in AN, and
the s-enab-list component in BN is updated with this condition.

{2) When the attention is already enabled for this task, then the

enabling mode is changed to the newly specified enabling meode. TIf
the altered enabling mode is asynchronous and the attention

6 11. ATTENTIORS AND CONDITIONS

ITBY LAB VIENKNA TR 25.099

30 JUNE 1969 TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATIOR Of PL/T

information stack of this attention 1n AH 1s not empty, then an
asynchronous 1nterrupt is 1mmed1ately executed

{3) When the attention is already enabled. for another task, it is only
" possible to associate this attentlon wlth this task. Two cases
are to be distinguished: ’

{a) The attention is not already assoeiafed'uith this task:

Then the set of task rames in AN is amended by the new task
name. - Into the list of associated attentions in EN the
evaluated attention condition, {with non-empty auxiliary
components), is entered. .

When an event is specified, then an entry is made under the
event name in EN. When it is specified without an event,
then the condition is concatenated with the s-wait-list
component of EN.

(b The attention is already associated with the task:

The new evaluated attention condition replaces the condition
with the corresponding attention identification in the list
of associated attentions ia ENX.

If an event is specified the condition is also entered into
EN under this event name.

When the enabling of one element of the enable-1ist with event—bption
is finished and it was possible to enable all the attentions related to
this event successfully, the attached event is deleted.

After the whole enable-list is interpreted a check of the s-wait-list
component of EF is mader When this list is empty, the next statement is
interpreted; otherwisas the task is set into the wait state, where it
remains until the list is empty.

11.2.2,2_Disable_statement

The disable statement disables or disassociates attentions from the
task and possibly enables them in another taskX. The attentiocn
identifiers are evaluated, and evaluated atteation conditicns created, as
with the enable statement. Three cases have to be distinguished with the
disabling of each attention conditions:

(N " When the attention is neither enabled nor’ assoc;ated with the
task, it is ignmnored.

{2} %When the attention is only asscciated with the task, the
corresponding entries in AN and EWN are deleted.

{3y The attention is enabled in the task:
(a) When no task regulres this attention for enabllng, i.e.; the

s-assoc component of this attention in AN is the empty set,
then the attentlon_ls deleted in AN and also removed from
" the list of enabled attentions in EN.
(™ The task which currently enables the atteniion, is selected

in an implementation defiped manner from the set of tasks
wvhich have this attenticn only associated with them. The

11. ATTENTTONS AND CONDTTIONS 7

IBM LAB VIEK¥A TR 25.099

INFORMAL INTRC TO THE ABSTRACT SYNTAX AHND INTERPRETATION OF PL/TX 30 JUNE 1969

correspoanding attention condition with the enabhling mode is
found in the s-assoc~list component in the attention
enabling state EN of the selected task., The attention
condition is transferred from this 1list to the list of the
enabled attentions. The two additional comporents are
correspondingly updated.

In AR the task name is replaced in the s-task component by
the nevw one and also deleted from the set of task names
there.

The enabling mode for the attention is possibly updated. -
When the enabling mode in the task, which gets this
attention enabled, is asynchronous and the attention
information stack in AN is not empty, an asynchronous
interrupt is prepared in the selected task amd all tasks are
set into the active state,

In all other cases only the tasks are set into the active
state,

Fhen one of the lists, kept in EN under an event name, gets
empty, the corresponding attention event is deleted from PA.

11.3_CONDITION ACTION

The standard system action is defined by the language, while the on
and revert statement allows the programmer to define actions.

17.3.7 STANDARD S5YSTEM ACTION

11. 3.2

8

11.

o s i o s s i il . v i e - s e i

conditions. TIn most cases the error condition is raised and a comment
written, vhile in other cases only a comment is written,

Special actions are required as standard system actions by the endpage
condition, not raised by signal statement, the check condition and the
error condition,

The standard system action for some conditions like the attention
condition result in no action,.

#hen the error condition is raised the condition name is passed in the
cbif argument to the error condition call, to handle the updating of
condition builtin functions correctly {cf. 11.6).

ON AND REVERT STATEMENT

An on-statement specifies an action, which will be executed when the
specific condition has been raised. The interpretation of an
on-statement for a specific condition establishes the new condition

in the cordition action part of the current condition state CS. The
condition written ir the on-statement is evaluated to yield a list of
evaloated conditions. The condition action is then stored in CS for
every element of the list.

ATTENTIONS AND CONDITIONS

IBRN LAB VTENNA "7 TR 25.099

30 JUNE: 1969 TNPORMAL INTHO.TO THE ABSTRACT SYNTAX AND “INTERPRETATYON OF PL/T

e

" S-conal 5-0n flf{-:hilu.:' '

: -.st or SVSTEN -

cond

Fig. 11.6 Condition action

r T
[

The on-unit is a statement, without label prefixes, whichk ig not a
group, a return statement a procedure, an on-statement or an
if-statement, : ‘

X subsequent execution of an on-statement for the same coanditiop in
the same block, replaces the old condition action by a new one {which is
taken from the executed on-statement). The condition action, when not
newly spnecified, is inherjted to all descendants of a block or procedure,
and is stored there in the local condition state.

Whenever a revert statement is interpreted, the condition action of
the block local condition state is deleted, and the condition action of
the encompassing bleck is taken out of the dump D and reinstalled.

The execution of a revert statement as the only statement of an

on-unit has no effect due’ to the activation of a new block for the
interpretation of the on-unit.

11.4% ATTENTIOR ACTIVATION

11.4.1 ASYNCHROROUS INTERRUOPT

Attentions occur outside thes PL/T machine. Such an attention con51sts
of an attention identification part and the atteation 1nf0rmat10n b
{cf. 11.1.1}. The attention dlrectory A¥ is altered in the eBV1ronment
step {(cf. 6.2) from outside in such a way that the attention information
is stacked in the attention information stack of the corresponding
attention., The attention identification part is identical with the
attention identification of the evaluated attentlon condition.
{cf. %1.1.5 Fig. 11.8}. Entries in AN are only possible, when an enable
statement was previcusly executed and thus the attention installed in AN,

‘Because PL/T allows asypnchropons interrupts for attentions, in each
1n+errnpt step of the computation (cf. 6. 2)," the attention directory AN
is searched for attentlons, ghose: attentlon information stack was.
recently altered in- the- environment step and whose enabllng mode is

-~ asynchronous. If such an attention is found an asynchronous interrupt is
executed. ik DSttt . i R :

The asynchronous 1nterrupt is prepared in the task the name of which
is found in AR for the spec1f1c attentlon._ To 1mmedlat1y activate the
"attention: cond1t1on call, the task is“dumped and a new hlock actlvated
vhich soleély calls the attention conditinn. -

17. ATTENTIONS AND CONDITIONS 9

TBM LABR VIERNA TR 25.099

INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/X 30 JUNE 1969

11

10

- 0.2

The attention condition call, after some prepatory actions, leads to a
normal condition call, These preparatory actions are listed below:

Storage is allocated and the head of the attention informatior stack
of the attention in AN is assigned to it. The pointer to that storage is
passed to the cbif argument of the condition call together with a newly
created oncode value, for later use in the on-unit. Before the nrormal
condition call is executed, the enabling mode is changed from
asynchronous to accessed to make the condition call aninterruptable hy
another asynchronous interrupt of the same attention. After
interpretation of the condition call the original enabling mode is
reinstalled, if not changed by the on-unit, and the allocated storage is
freed,

ACCESS STATEMENT

The access statement makes atteation information available for
processing from an attention, whose enabling mode is accessed.

11.

s-st s-clond s-elge
- B i
ACCESS s-attn-list °
or ¢
| IATTN I
elem (1) e elem (k)
5-n 5-iad

altn - identi f'ierk

Pig. 11.7 The access statement

If the list of attention identifiers specified in the statement is
empty an arbitrary attention satisfyisg the following condition is
chosen: it must be enabled in the task wvith accessed mode and the
attention stack muyst not bhe empty. - Using this attention the attention
condition call is interpreted. TIf no such attention exists the else~unit
of the access statement is interpreted. In its absence, the task is set
into the vait state as long as such an attention can not be found.

When a 1list of attention identifiers is specified in the access
statement, a list of evaluated attention conditions is created. All
these must be specified with accessed enabling mode, otherwise it is an
error. -

ATTENTTONS AND CONDITIONS

TBM LAB VIENWA TR 25.099

HE 1969 INFORMAL INTRO TG THE ABSTRACT SYNTAX AND INTERPRETATIOH QF PL/T

The attention condition to which the condition call is made is chosen
in the following manner: The first cendition is taken which is enabled
in the task and wvhose attention informatior stack is not empty. If no
such attention exists the interpretation is as: descrlbed above vith empty
attention identifier list. : .

The attention condition cali is handled analogous to that for
asynchronous interrupts {cf. 11.8.1).

11.5_CONDITION_ACTIVATIONS

The raising of a_conditionr is caused either by an interrupt or by a
signal statement. The execution of a signal statement for a condition
causes the condition to be raised immediatly. The actual condition call
is interpreted in the same way as the condition ca11 raised by 1nterrupt
{fcf. 11.8.1).

The activation of the various conditions is Adescribed in the several
places in the interpreter, where they can occur {see for example raising
of the check condition with the assignment statement; cf. 8<3({1) of /5/.
Also the attention activation {cf. 11.8) leads to the condition call.

Special actions have to be performed for the check, the conversion and
the I/0~-conditions, bafore the general interpretation of the condition
call {(call-cond-1; cf. 10-19(55) of /5/). The check condition, raised
with a list of references, has to be expanded, and then the call is
executed for every element of the =sxpanded reference list. The ordering
of elements in the list is relevant.

If a conversion condition is not raised by a signal statement but
through an actual conversion error, a specific action is activated which
either allocates a dummy and passes the corresponding generation or
passes the generation passed to it, to the onsource builtir function and
in both cases passes an integer to the onchar builtin function. The
value returned after the interpretation of the condition call may be
modified through pseudovariables.

Before the call to an I/O-condition is interpreted, the values of ‘some
condition byiltin functions are completed {in all cases the onflle value
is sety and passed to the call.,

The interpretation of the condition call must distinguish between
prefix controlled amd uncontrolled conditions. The statement prefix part
of the condition status C§ carries the information whether the
praefix controlled condition is enabled or not., This information has to
be tested before raising. Only the raising of the underflow condition,
the check condition and the attention condition, if they are disabled,
result in no action. In all other cases, if disabled conditions are
raised, the program is in error. Furthermore, the conrdition call must

-distinguish the conditions which on normal return from the condition

actior permit further interpretation, from those conditions, which on
normal return arrive at an error situation. 1A special action" 1: required
after the return from the call to the arror condltlon.

The condition state is now inspected for an appropriate CDHdlthﬂ
action for the specific condition, which is done through the condition
selector created from the condition. If no action is present or the
on-unit component of the condition action part of €5 is SYSTEM, then the
standard system action is executed, otherwise the condition action is
interpreted.. In both cases a snap action may precede it,

11. ATTENTIONS ARD CONDITIONS 11

IBM LAB VIENKNA TR 25.099

TNPORMAL TINTRO TO THE ABSTRACT SYNTAX ANRD INTERPRETATION OF PL/I 30 JUHE 1969

Condition actions are interpreted in close analogy to parameterless
orocedures. The current state is stacked, and a new block activation is
established. The condition status is updated with the block prefix part
of the corresponding on-statement, which was also reserved in the
condition action. A special epiloque information is constructed and
installed in EI.

After updating the condition builtin functionh part, the on-unit is
interpreted, =o that it may use the updated values of the condition
builtin functionz. The on~unit is internreted like a single statement.
When this is finished, the block activation is terminmated. The stacked
state iz reinstalled and the next instruction is executed. 1In some cases
this may lead to an error which finishes the interpretation.

.11.6 _CONDITION BOUILTIN PUECTION_STATDS

Condition builtin functions change the value they return as a
conseguence of condition raising. The new value obtaimned remains
unchanged in the dynamic descendence of the condition raising, i.e., in
all blocks entered from an on-unit executed as a consequence of the
condition raising. If a condition is raised and only the standard system
action iz executed, no change of the condition builtin function values is
required. O©Only when the standard system action for a conditior results
in raising the error condition, the condition builtin functions return
the same values as in an on-unit for the condition.

The information needed to interpret condition builtin functions is
kept in the gondition builtin function_part of CS {cf. 11.1.4). This
part consists of one component for each condition builtin fuonction, and
of some additional components,

|

| | | | | i

s-onloc s-oncode ... s- cmattn §- en’rry s-onfile-def s-type §-abn-ret s-cond

l.d

] [niq vail IP\V VGLI l%d] I id I E!GNAL] abwn-ret | “[ealin-cond

12 1.

or Q Cor @ or G or & or @ or G2 or &2

Pig. 11.8 The condition builtin function part of CS

The values of the components of the condition builtin functioms in C3
are updated every time a condition action different from the standarcd
system action is interpreted. The auxiliary components selected by
s-entry and s-onfile-def get their values directly in various places of
the interpreter. 1l1l the other values are entered into a special
argument {cbif argument} constructed at the point of the condition
raising and are then passed to the condition call.

According to the various conditions, the instruction nov inserts the
proper values into the corresponding components. Thereby the entries in
the auxiliary components are nsed: The value for the onloc component is
taken from the s-entry component of the condition builtin function part

ATTENTIONS AND CONDITIOWS

IBM LAB VIENKHA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

of CS; the onfile value, in the case of the conversion condition, is
taken from the s-onfile-def component.

The component selected by s~type is used to distinguish conditions
raized by interrupt from conditions raised by a signal statement. The
component selected by s-abn-ret is needed to provide proper completion of
I/0-events after a GOTO out of an on-unit called during a wait statement.
The s~cond component in CS is used to distinguish attention conditions
from other conditions, and therefore allows changing the enabling mode to
the mode before the condition call in the case of an abnormal return from
an on~unit {cf. 11.4.1).

The value of oncode is defined by an inmplementation defined function
dependent om the point of interrupt.

The components of the condition builtin function part may them be used
by the condition builtin functions to get their values, TIf cordition
builtin functions are used out of proper context (that means outside an
on-unit for the specific condition) or if the corresponding component of
CS is 0, the functions return standard values as described for the
individual builtin functions.

T1. ATTENTIONS AND CONDITIORS 13

TBM LAB VIENNA TR 25.099

30 JUNE 1969 INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

12._ _INPUT_AND OUTPUT

Corresponding sections of /5/: "
11. Inpat and output

3.6 TInput and output

The followimg abbreviations are used in this section:

fd,Fp file directory”

PU file union_diréctory

ES external storaqé

5 (intetnal)'storgge

® ressage stbrage“(or message part)
PA 7 parailelgaction part

TE : taSk&evént specification

f 'v'filefname 7 |

e} ' i fiie.ﬁnidn name

env-attr ‘{unévgluated) environment attribute
et evaLuétéd staténent texﬁ

ref reference

expr expression

This chapter describes the totality of I/0 actions as summarized in
Pig. 12.1. . The basic concept dealing with the external storage, the
association betveen data sets and file umnions, and the logical statements
about data set mapping have been.outlined in section 4.3. A familarity
with the notions developed there ¥ould help in reading this chapter,
However, a d?talled knouledge is only needed for section 12.2.3.1, and
12.5.3. : .

A very short description of files is givern in section 5.5. It is
particularly helpful for sections 12.2 and 12.3.

The structuring of this chapter follows more or less the steps in the
interpretation of I/0 statements. Statements which do not refer to-
files, i.e., stream I/0 with string source or target and message I/O
{(Pig. 12.1), w111 get only petipheral ment1on. . :

42, 'TNPUT AND OUTPUT 1

4

A"

Liidino INY LOdNI

'5-EI'-'I

L-ZL

o/ uwo Asaang

110 type: record 1/0 stream /0 message 1/0
stream file
. Eri . .
go\verned by: record fll.e standard system ® r'mg souree of display certain standard
o string target statement system on -units

print file
most
characleristic
ctote, ammponents FD, FU, ES FU, & M
invelved :
initiated or . . get statement or

) opening or closing :
terminated by: : put slatement
.) reply of
inpul by : read stotement | get stalement get statement display
statement

put stotement
soud b locate statement capy oction dl:5plﬂ‘/ of ¢certain standard
eutput by or write statement check standard display system actions of

statement on-ctonditions
system action .
reod stalement
or rewrite statement

update by:

or write statement
or delete statament

I/7d 30 ROIIYIA8ddIIRI QEV XVINAS JIDVHISHY HHL OL OQYLNI TVHUOSNI

6961 dRAl OF

YNHEIA HYT WAL

660°5Z 4L

IBM LAP VIEHRNA TR 25.099

30 JNNE 1969 INFORNAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATICGN OF PL/X

12, 1_EVALUATION OF_ STATEMENT OPTTIONS

Corresponding sections of S5/
11.3.1% DOpen and close statement

11.4.1 Interpretation of statement options

The following abbreviations are uased in this section:

1s=z linesize

blsz type indication for 1isz

psz pagesize

ident identification {e.q., key, display message)
idtoe target identification

spec sPecification

¥ith respect to the statement text one may discriminate between open
and close statements {Pig. 12.2}, record I/0 and display statements
{e.g., into-read statement in Fig. 12.3}, and stream I/0 statements
{e.g., file-put and string-put statement in Fig. 12.4).

12, INPOT AND OUGTPUT 3

4

IBM LAB VIENWA TR 25.099
INFOREAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969
s~5t s-List
IOPEN!
elem(1) elem{2) .vw elem (n)
nxA
open open
A
] | | |
| s-file s~ title s-lsz s- blsz 5-|psZ s-open-altr s-env-aftr s-volume l
| ‘
I vref eXPYa expry % expr; lﬁfe—attr- setl env-ativ *],
|
l or §e or &2 or G or 52 . t or§P |
l First open elemen {
L — —— —_— —_— — —— . o . — — —_— —— o — —_— —— . e — — — —_— s — t— ——— | ——— —— e I
s-st s-list
- elem (n)
na ?
close ,

F——— e

I

!

l

l

!

|

|

L

Fig. 12,2 Open and close statements

12. THNPUT AND OUTPUT

IBY LAB VYIEENA TR 25.099

30 JONE 1969 THNFORMAL IETRO TO THE ABSTRACT SINTAX AND INTERPRETATION OF PL/I
s-st s-file s-into S-ident s-idta 5-nolock g -event
I READI vef - refy EXPry vef, i *] ref g
or @ or @ or & ov G2

Pig, 12.3 Into~read statement

| | | | |

s-st s-file s-spec s- page s-line s- skip

| R
IPUTJ vef data-speg l * J exjoy , expry
QY Q OV'Q or Q ovr Q

N] |

5‘rt 5~thng s-hase s-spec
l P UT‘] vefy : base data-spec
CHAR or BIT

Fig. 12.4 Pile~put and string-put statement

It can be seen that I/0 statement text is nearly a one-one translation
from concrete text., The major exceptions are:

(1) In an open _element the component s-1sz will optiomally indicate
the linesize., The distinction betweenr LINESTIZE and BLINESIZE can
be taken from s-blsz {0 or #*).

{2) The component s-open-attr will always be a set of file attributes
in the case of an open element {including the empty set). In this
respect an open element always differs from a close element.

{3 The component s-env-attr originates fror a specified concrete
ENVIRONMENT option. It is presupposed that the translation will
vield env-attr in sose normalized but unevaluated forr.

{4} In all I/0 statement either a file reference, s-file, or a string

reference {or expression in the case of string-get statement},
s-string, is available. In the string case, the component s-base

12. INPUT AND OUTPOT 5

I8 LAB VIERWA TR 25.09%

INFCRMAL INTRO TO THE ABSTRACT SYKTAX AWD IKTERPRETATION OF PL/Y 30 JUNE 1969

allows the separation of a concrete STRING option from a BITSTRINWG
option.

{5) The translator is assumed to insert the constant one ia the case
therz iz & SKIP option vithout expressiom in the comcrete tezt.

{6} kecord I/0 and display statements have any KEYTO or REPLY options
available under s~idto, ary KEY, KEYFROHE or DISPLAY options are
available umder s-ident.

The strocturing of data specifications is described imn 12.6.

Interpretation of I/0 statements starts with a check of the statement
text for mutually incompatible options {e.g9., in ary open or closs
element a non-enpty compoment s-volsome is in conflict with 211 components
except s-file and a component s-open~attr which mest in this case be the
expty set) and for the incorrectmness of siangle options {e.g. refy in
Pig., 12.3 rust refer to a conanected aggregate). Thereafter, those
cptions whichk are expressions or environmant attributes are evaluated in
arbitrary order but one after the other. - Tn particular, alsoc optioms
belonging to different open or close elerments will be evaluated in
arbitrary order, Evalnated options are integer values {for s-lzz, s-psz,
s-ignore, s-skip, s-line), lists of character values {for s-title,
s—ident), evalaated environment atiributes {for s-env-attr), scalar event
generations {for s-event), scalar character string gererations or paendo
generations {for s-idte), generatiems (for s-from, s-into), file operands
{for s=file in an open or close element}, and file uwion names {for
s-file in I/0 statements other than open or close).

The evaluated options are inserited in the original statement text.
For any I/0 statement except open and close, the resulting object is
cailed the gyalpated statement text et. The file union mame inserted as
the s-file component is the result of normal iepliicit opening
{cf. 12.2.2). The =t is particulariy helpful im the interpretation of-
record I/0 statereats.

12,2 OPERIHEG .

&

12.

Corresponrding sections of /5/:
3.6.1 The file directory FD
3.6.2 The file union directory FU
11. 3.1 Opern and close statenent
71.3.2 Implicit opening

11.3.3 Opening
The folloving abbreviations are used in this section:

fa set of file attributes

ea evaluated environment attribute

IKPOT AED CUTPUT

IBM LABE VIENNA TR 25.099

30 JUNE 1969 INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPEETATION OF PL/I

ia identifier
st-prt,ST-PRT standard print
tnt transmit

ordinary I/C statements can be properly interpreted only if a file has
been opened which matches with the I/0 statement. The classification of
opening given in section 12.2.2 should relate the interpretation of
ordipary I/0 statements and open statements {started in 12.1) with the
proper openimng actions described in section 12.2.3. The most 1nterest1ng
case of proper openimg is the creation of a file which causes changes in
the file directory of the current task and in the file union directory.
The function and structuring of both directories is anticipated in
section 12.2.1 in order not to burden the description of proper opemning.

12.2.1 FILE AND FILE OUNION DTIRECTORIES
The file directory FD serves. two purposes{-
(N Tt links any file name with its evaluated environment attribute
fd-ea, its file constant identifier id, and its file attribute fa
{Fige 12.9). - : ‘

" {2) It may 1ink any file name‘(optibnél fd-status ii Fig.-fZ.Sj with
an entry in the file union directory.

{, SR _ U . s-st-prt

T T T

s-al’ctr s-ea s—lid s-fd-st s-attyr s-ea s-ial s-fod-st | S-fd - st
= | erwenl e e E Fq.h! fd -ea, i.‘dﬁi fl- status,| [fd- status,

or S or & . ov G2
' or ST-PRT .

Fig. 12.5 File directory

The components fd-=a, id, fa are constant, and have been entered into
the ID by the prepass. They are needed only as arguments for proper
openlngol Syccessfrl proper opening amends the FD-entry under
censideration by the fd-status {Pig. 12.6} which contains a file union
name @, the indication that the file has been opened in the current task
{*), and a component dealing with errors in stream data transmission.
The first tvo components of the fd-status remain comnstant until the file

closed. Cleosing deletes the fd-status.

1) fa is simply a copy of the file attributes available through
application of an appropriate file valoe to the attrihnte directory.

12. TNPUT AND OUTPUT T

IBNM LAB VIENKA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/AY 30 JURE 1989

S-owh s-tmt

or® or &

Pig. 12.6 Status of a file directory entry

Up to novw only "program. file names"™ f,,...,fn have been discussed,
There is one additional file name, the standard system print file_ name
s«st-prt, which does not have explicit fd-ea, fa, and id components since
all these components are constant for an implementation (fd-ea), and fa
and id are constant for the language. Opening with the file name
s-st-prt creates an fd-status, closing deletes it as usual.

The file name s-st-prt, as opposed to program file names, cannot he
the denotation of any file value. Hence, the file name s-st-prt is not
accessed directly as a result of an evaluated file option but only in the
following cases:

()] copy action because of copy opticon on file-get statement,
{2} standard system actiom for check on-condition,
(3 indirect access by the particular program file name fp.!

Case {3) is the only case which necessitates some kind of linkage
between the file directory entry for f,, and the entry for s-st-prt. This
linkage is provided by the special fd-status ST-PRT (entered under the
file name fg,), and the ordinary fd-~statns entered nnder the file name
g-st~prt. Notice that f, may refer indirectly to s~st-«prt, but s-st-prt

cannot refer indirectly to f, as long as no linkage exists, -

The file union name u is unjque for a particular opening., Opening
enters and closing deletes the file union selected by u in the file union
directory FO (Fig. 12.7). Pile nnions are described in section %.3.2
{Figs. .10 and 4.11).

1) In Pig. 12.5 idy corresponds to SYSPRINT and fa, is one of the set of
file attributes {STR}, {OUT}, (STR,0U0T}, or {STR,OUT,PET}.

8 12, TNPUT AND OUTPUT

TBM LAE VIENNA g TR 25.799

30 JOUNE 1969 INFORNMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I
T“ Tl Cen
file union, | file uniony

rig. 12,7 File union directory

An attached task will be supplied with a copy of all components of the
file directory of the attaching task which are not strictly private to a
-task. The strictly private comporents are s-own and s-tmt. This allows
a classification of any fd-status into an gwn or ipherited fd-status. As
a conseguence of copying the file enion names, file unions might be
shared by tasks.

Zxapple:

MATN:PROC ...
PUT DATA;: -
CALL P TASK:
CLOSE FILE(SYSPRINT) ¢
P:PROC; '
GET LIST{X} COPY:
- END MAINW;

The POT apd CLOSE statements refer indirectly to the standard
system print file name fn. Hence, the file is opered by the PUT
statement, will be inherited to the task P, and is closed by the
CLOSE statement in the attaching task MATE. The COPY option of
the GET statement will not create a new file unioh. Either it
¥ill refer directly to the standard system print file (if it is
5till open}, or the interpretation of the COPY option will he
erroneous if the standard system print file has been already
closed. ’ ' '

Tf the example is modified, and the PUT statement is executed in

statement and the GET statement will create two independent file
unions., ' C '
12.2.2 TYPES OF OPENING
There are three tyves of opening:
{1} explicit opening caused by a single-open;élement,
(2) implicit opening caused by ordinary 1/0 statements,

(3} implicit and direct opening of standard syster print files.

12. TNPUT AKD OUTPUT 9

TI8M LAB VTIENNYA TR 25.799

TNFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATIOR OF PL/I 30 JUKE 1969

Explicit _opening by a particular open element may take place if all
ontions of the oven element have been =2valuated, and if explicit opening
of any open elements to the left has been completed. After completion of
explicit opering the open element will be deleted from the statement taxt
or the arguments for transmit or unndefinedfile on-condition calls will be
inserted in place of the open element. If opening of all open elements
is comprleted then the modified statement text will be inspected from left
to right for on~condition arquments, and the on-conditiomns will he
called.

Explicit opening supplies proper opening with the following argmments:

(n the file value n {taken from s-file),1

. {2) the set of attributes derived from s-oper—attr and the set of file

attributes declared, i.e., contained in the FD-entry for the file
name n{DH), shortly f in the sequel,

{3 the data set title s~title {(if non-empty}, othervise the file
-constant identifier contained ir f£{FD}.,

{4} the evaluated environment attribute merged from s-env-attr and the
evalnated {(declared) enviromment attribute in f (FD),2

(5) the wvolume option s-volume,
(A) the line and page sizes: s~1sz, s-blsz, s-psz.

Inplicit _opening may take place if the file option of the ordinary T/0
statement has been evaluated, and if evaluation yielded a file operand.
Implicit opening may yvield an open file or it may immediately cause
transmit or umrdefinedfile on-condition calls. RAfter returning from an
undefinredfile on~condition call, the file might have been opened. 1In all
cases where an copen file is left, a final check will be made as to
whether the file is consistent with all statement options, and the file
union name will be returned.?

Implicit opening supplies proper opening with the following arguments:

(n the file value n taken from the file operand,
(2) +the set of attributes derived from the attributes deduced from the
statement and from the file attributes contained in £ ({FD),
.(3} the data set title identical with the file constant identifier
contained in f£f(FD),
(o) the evaluated environment attribute identical with that contained
in £(ZD),

S e i . o e S e 0 . o o e

10

12.

1} The mention of "s-file®”, etc. means the "component s~file ef the
pre-evaluated text", etc.

2} s-env~attr might contribute to the evaluated environment of the file
union im a similar way as s-open-attr does to the complete set of
attributes.

3) The check is always necessary since the deduced file attributes depend

- on the statement type (s-st} but do not depend on the statement
options.

INPOT AND ODOTPRUT

IBM LAR VITNNA TR 25. 199

3" JUKE 1969 TNFORMAL INTRO TO THZE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I
{5 the volume option does not apply (INPL),
(6) the line and page sizes do not apnly ().

birect and conseqguently impligcit opening of a standard svéteg print
file supplies the following arguments ko proper opening:

()] the file value does not apply (),

{2y the set of attributes is {CST,D0T,PRT},

(3 the data set title corresponds to SYSPRINT,

(4 the evaluated environment attribute is implementation-dependent,

{5) and {6} are the same as for implicit opening.

12.2.3 PROPER OPEINING

Proper opening first makes an error test on its arguments and creates
a unigue name u. The second step tests whether a new file is to be
opened, and if so makes all entries in FD, FU, and external storage ES
{cf. 12.2.3.2). The second step may ba unable to open a new file either
because a file is already open or because the opening criterion is
violated. The third step returns the arguments for undefinedfile
on~condition calls if the second step did violate the opening criterion,
In all other cases ths actions of the third step will depend on the
volume option {0, ¥, TMPL) and the status of the file union. These

actions are described in section 12.4.

12.2.3.1 _Oprening criterion

The opening criterion, i.e., reaguirements {1) throughk {4} and
optionally {S) must bhe satisfied if successful cpening should occur:

(1) The set of attributes, being an argument of proper opening, i= a
complete set of attributes. The complete sets of attributes can
be taken from the description of the mapping parameter in 4,3.2.
However, in all instances where the attribnte SEQ or TRA is a
menber of an attribute set, one of the buffering attributes BUF or
UNBR has to be added. In addition, {REC,DIR,KEY,UPD,EXC} is a
complete set of attributes,

(23 The data set title and the (merged} evaluated environment
attribute, being arguments of proper opening, access a data set ds
in external storage ES {cf. 4.3.1).

{3 Thera exists a mappirg ! dependent on ds and the mapping parameter
mp, whers mp is composed of the (merged) evaluated environment
attribute, the data set title, and the complete set of attributes

nroperly adjusted.
{4} There exists a mapping dependent on the data set dsy and mp, where

ds; has a mapping number which is one greater than the mapping
number of ds {both mapping numbers with resnect to mp}).

e e o ey Al S Al R bk i e ke ek e

1y cf. footnote in 4,3.3.1,

12. INPUT AND OQUTPUT 11

TEM LAB VITNMH:A TR 25,099

TNFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATYON OF PL/T 30 JUNE 1969

{5} Tndirect opening of the standard system print file is only
successful if the standard system print file is not open.

12.2.3.2 Successful proper omening

The effect of successful proper opening with a new file union name u
and some file name £ is summarized helow:

{1) The fd-status is entered under f in FD as described in 12.2.7. 1In
cagse of indirect opening of the standard system print file two
entries are made.

{2} The file union is entered under u in FU. The components s-p (file
parameter}) and s-f (file name} ! have been described in 8.3.2. ©Of
all additional components a file union may have {cf. the
compilation in Fig. 4.11), only the status {st), the cuarrent
column {col), the linesize {lsz}, the current line {line}, the
vagesgsize (vsz), or the names of attached TI/0O-events {io-ev} are
part of the initial file union.

The components col and line are initially one, io-ev¥ is initiated
with the empty set, 15z and psz are set according to the argumentq
of proper opening, st is set to SW-BOV (cf. 12.2.3.3).

An important property of the file urnion {throughout its emntire
existence) is the compatibility of all its components with the
complete set of attributes contained in the file parameter
component. Henrnce, for example, col might be an integer in case
the attributes BST or CST are specified otherwise col is empty:
the component tn-key {(cf. Fig. 4.11) is a directory of kevs only
if EXC is =specified, etc.

e, The data set ds accessed is replaced by the data set ds, descrlbed
in 12.2.3.1{2,8).

12.2.3.3 File union_status

The file union status st [not tc be confused with the fd-status)
characterizes the transition of the file union with respect te data set
label processing and data set switching., Fig. 12,8 shows the possible
values of st and how they may be reached. FBReading and writing of data
set labels, basic data transmitting actions {cf. Fig. 4.17}, and data set
switching is checked if st actunally conforms with the particular action
to be performed. This 2liminates érrors in case the file union is sharved
over tasks.?

- i o A B Y T R o

12

12,

1} This copy of the file name in the file union is a convenience and not

a necessity.
2} Por example, multiple processing of a label of one and the samre data

set is excluded.

IKPOT AND OUTPUT

TBM LAB VIENWA TR 25.099

30 JUNE 19869 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATIOR OF PL/T

switch to
next volume

basic data

transmission

Switch fo
end- of-file

Successful
pro]oer opcning

SW-ROV Bov Ge EOV Sw . ENDF
read write yeqad write
header (abel trailer Label

Fig., 12.8 PFile unionr status

12,3 CLOSING

This section is arranged similar to the section on operimg. 7Tn all
instapces where c¢losing is similar to opening except for some ’ :
straightforward changes, a description will be omitted.

12.3.1 TYPES OT CLOSING

There are two types of closing:

{1 explicit closing caused by a single close element,
{2y implicit closirg by the epilogue of that task which opened the
file,

Explicit closing is like explicit opening, except that no
undefinedfile on-conrdition call car result. Proper closing is provided
¥ith the following arguments:

{1 the file name f {takenr from the component s~file of the
pre-evaluated text and DN),

{2) the evaluated enV1ronment attribute merged from the component
s-eny-attr of the pre-evalmated text and the evaluated environment
attribute of the file union,

(3) the volume option s~volume of the pre-~evaluated text.

el i

epllogue is in progress. Proper c1051ng is provided with the following

arguments:
{1} 2 file name f having am own fd-status,
{2} an evaluated enviroasent attribuate which is

implementation~dependent,

12. YRPUT AND OUTPOT 13

IBM LAB VIENNA _ . TR 25.099

INFORWAL INTRC TO THE ABSTRACT SYHTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

(3 the velume option does not apply {IMPL).

12.3.2 PROPER CLOSTNG

Proper closing first makes a case distinction which separates .
successful proper closing in case of no volume optien (Q or ITMPL) and an
own fd-status from no action (if the fd~status is empty), and trailer
label processing followed by data set switching if there is a volume

-option (¥*) which is compatible with the file {cf. 12.4, condition type

EOYY.

Successful proper closing can be separated into three steps. The

first step transmits the buffer and/or frees the bhuffer registered in the

file union of a buffered file, and deletes any still active I/O-events

registered in the file union. Buffer transpission is similar to the
first part of the execution of an evaluated locate statement. Fence,

.interpretation of locate transmission will allow for an artificial

CLOSE~LOCATE statenent ({cf. 12.5.3.2).

The second step is concerned with trailer label processing and data
set switching. This step is skipred if the status of the file union is
prot empty (cf. Pig. 12.8) or if the step is part of a task epilogue.

‘"The third step is the reverse process of successful proper opening:
The fd-status and the file union are deleted, and the data set accessed
is replaced by a data set whose mapping number is one smaller than
hefore. 1Ir case the standard system print file is closed, and if it had
been opened indirectly, of course the special fd~status ST-PRT will he
deleted, too.

12.4 LABREL PROCESSYNG_AND DATA_SET_SWITCHING

14

Data set label processing with or without data set switching depends
on a file union name and a condition type which is 3G+, EOV or BOV-BOV.

The condition type BOY indicates that a header label is to be read,
passed to a begin of volume on-condition call, and is to be written apon
leaving the on-unit. This corresponds to the status transition SW-BOV,
BOVY, © in Fig., 12,B. These actions are performed as third step of proper
opening if the volume option is not empty and the status is SW-BOV.

After reading the label in case of seguential isput or after writing the
label in case of segquential update, the data set is positioned to
position zero.

The condition type EOV indicates that a trailer label is to be read,
is passed to an end of volume onr-condition call, is to be written upon
leaving the op-unit, and the data set is to bhe switched, This
corresponds to the status transition 2, EOV, S¥%W, SW-BOV or ENDF. Data
set swyitching transforms the status from 5¥ to ENRDF if the file union
specifies the attribute KEY or if it specifies INP or UPD and the
accessed data set is the last volume. The checking as to whether a data
set is the last volume is implementation-defined, ard dewends on the
mapping parameter, the data set, and the current volume number volno of
the file union {cf. Fig. 4.11). Data set switching transforms the status
from SW to SH-BOV in all other cases, and increments volno appropriately.

Notice that data set switching causes no change of the data set.
Aence, it would be more precise to speak of file union switching. The
data set might be changed by environmental influences,

12. I¥PUT AND OUTPUT

TBM LAB VIENNA ‘ TR 25.099

30 JUNT 1969 IRFORMAL INTRC TO THE ABSTRACT SYNTAX AND INTERPRETATION OF. PL/T

The conditon type EOV-BOV indicates that the actions corresponding to
EOV and BOV should occur in succession. The BOV actions are cancelled if
+he B0V actions have not reached the status SW-BOV. The EQV-BOV actions
are performed :

(1} as third step of proper opening if the volume option is #* and the
status is other thap SWH~BOV {(most reasonably),

{2) as part of record transmission or streanm transmission if the end of
the Jata set has been reached by a previous basic data transmitting
action,

12,5 PECORD TRANSMISSION

Corresponding sections of /5/:
11.4,2 Diaplay and record handling statements

11.5 Record transmission

The following abbreviations are used in this section:

n name
an event namne

tn task nane

0 pointer or onffset

ap area pointer

ptr pointer reference

nop mapping parameter

ds data set

el prover data element

chif on-condition built-in function

Record transmission depends on the evaluated statement text et
{cf. 12.1) and the list of those references ref-list for which check
on-conditions are to he raised in *he segquel but which are not contained
anymore in et. TIn particular, s~-file {et) is the file urion narme.

The following case distinctions are made:

{1 TE the file nnion status is ENDF then the endfile on-condition
will be called.

{2} Tf s-event{et) is an event generatiomn therp an T/D-event will be
attached. This depends on et, ref-list, and a newly created evant
name en {cf. 12.5.71).

12, TNPUT AND OOTPOT 15

IBM LAB VIEHNNR

TR 25.099

TNFORMAL INTRO TO TWE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JONE 1969

16

12.

{3

()

If et is an evaluated unlock statement then the specified key,
s-ident {et), will be unlocked immediately {cf. 12.5.2).

NDtherwise the following actions will occur in successien:

(a}

{b)

{c?)

{c2)

Proper data transmission depending on et, and the returning
of a list of condition irdications {cf. 12.5.3.1). Condition

contain the special indication END. They indicate unusual
situations and/or transmission errors.

Call of the on-conditions for whichk indications have been
returned by step {a).

If the special indication END has not been returned by step
(a): Conditicopal unlpncking of key and check on-conditior
calls for ref-list. This terminates interpretation of the
statement.

Otherwise: Step (4) is retried. This is preceded by a call
of the pending oa-condition and a wait for further input (in
case the attributes TRAZ and INP are contained in the file
union) or by data set label processing and data set switching
of condition type EOV-BOV {in all other cases), Data set
switching and further input usually depend on envirormental
influences. Hence, it will depend on these whether step (1)
will ultimately be taken.

TRPOT ARD OOTPUT

TEM LAB VTENNR . ’ TR 25.099

30 JUNE 1969 INFTORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

12.5.1 T/0-EVENRTS

An I/0-event is a special kird of parallel action whick is able to
execute vroper data transmission "in parallel” with other actions
{cf. chapter 7}.

en t_T

[altacking |

I t I '

L_E{E__MA_J

s-te SeC
. r—— o
] _ | event !
5-}{,,\ $-ev s-check tj@'f‘_sﬁ“isf?ﬂlf
' s-evént(et) ref - list
including ¢

Tig. 12.9 Part of PA showing an I/0-event just created

Fig. 12.9 shows the entry made in PA at attaching ! am T/D-event
characterized by the event name en, the evaluated statement text et, and
ref-list. Besides that, attaching of an Is/0-event causes an assignment
to the event generation, and the addition of en to the component io-ev of
the file union (cf. Fig. 4.11, and 12.3.2) and to the relevant component
of TE. :

The name of the attaching task {component s-tn) is only used in
connection with locking of keys. » .

The box "event-transmission® in Fig. 12.9 denotes the actions of
proper data transmission depenrding on et followed by conditional:
unlocking and some terminating actions. These terminating actions

{n ‘handle the returned list of condition indications, and inrsert the
list of arguments to on-condition calls under s-cond, and also
insert et under s-eov-bovy if the special indication END has heen
returned 2 {cf. Fig. 12.10);

i A i o Ak S e o A

1) Creating, activating, starting are used as synonyms of atfaching.
2} This may occur for write, into-read, or ignore-read statements.

12. INPOT ANﬁ QUTRPOT 17

IBM LAB VIBHNA

INFORMAL INTRO T0O THE ABSTRACT SYNWNTRX

TR 25.799

A¥D TINTERPRETATION OF PL/T 3% JUNE 1969

(2} activate all varallel actioms, since the T/0-event hkas perforred
all its actions {the component s-c will be empty), and any other
parallel actions which might have been waiting for the T/C-event
to hecome semi~-complete counld continue,

en tn
F“”‘"J‘f'“ -
| attaching |
| |
L _task |
site
s-in s-ev s-check s-cond s- eov-bov s-unlock
——— =% | | |
saAme as Fig. 12.9 conad-tist et et
including ¢ or §Q or G

Pig. 12.10

Part of PA showing a semi-complete I/0-event

Completion of the semi-complete I/0-event by a wait statement

(Cf- r’iqo

7.7} executes I/0 on-condition calls {component s-cond),

verforms immediate unlocking (component s-unlock), sets the completion
value of the eavent variable associated with the T/0-event to “complete™
and deletes the entry for the T/0-event from PA {analogous to 7.4,

(6,7)),

T/D-event {essentially the same actions as step (U4},
and executes check on-conrdition calls {component

indroduction o 12.5%,
s-check).

12.5.2 LOCKTING OF XEYS

retries the data transmission but without attaching a new

{c2} of the

Any file union containing the attribute EXC may have a directory the

entries of which are sets of keys.

names. A particular keyvy {i.e.,

particular,
TN or, in case the guestion i=s

I/C~event, tr is the name of the attaching task s-tn(TE}.

locked-foreign if it is locked

The entries are selected by task

posed during the interpretation of an
The key is
by some task but not locked-own.

The first step of proper data transmission, which is aprlicable to TXC

filez only, checks if the key,
wait takes place until the key

s-ident{et}, is locked-foreign. If so, a
will be unlocked by *the task for which the

kev iz locked-own (immediate or conditional unlocking, see bheloaw).
Otherwise, or after the wait, the key will be entered in the directorv,

and will be locked~own from then on.
the statement at issue has no noloack ontion,

18 12. INPUT AND ODTPUT

However, this entry is made only if
i.e., s-nolock(et) is enmpnty.

TEM LAB VIZINWA : TR 25.099

n JUNE 1969 TRFQRMAL INWTRD TD THE ABSTRACT SYNTAY AND INTERPRETATION OF PL/I

12.5.3

Conditional unlocking has no effect except if it is performed by a
delete, rewrite, or write statement on an EBEXC file, TIf the statement has
no event option ther immediate unlocking will be performed, otherwise et
will be irnserted under s-unlock of the event specification TE
{cf. TFig. 12.10y.

Immediate unlocking has no effect except if it is performed on an EXC
file, and the key is locked-own., The key will be deleted from the
directory in the file union, anrd all waiting parallel actions are
activated.

The deletion of the whole file union whick occurs at successful prover
closing, and *he deletion of all keys locked by some task which takes
places at the termination of that task {cf. 7.8, {3)) are special cases of
immediate unlocking.

PROPER DATA TRANSMISSION

The actions designated by probper data transmission comprise all
activities which have to 4o with the transmission of a particular record
data element hetween internal and external storage. These activities
include a transition of the data set causing a modification of ES,
freeing and/or allocation of a buffer and/or several assignments causing
a modification of 5, a modification of the file union component dealing
vith buffers, and the construction of a list of condition indications.

Proper data transmission depends on et, Tt is defined for write
statements (Pig. 12.11), locate statements including the artifical
CLOSZ~-LOCATE statement (Tig. 12.14), rewrite, read {i.e., set-read,
into-read, ignore-read), and delete statements {(Pig. 12.15).

The organization of this section follows the flow outlired in the
Eigures. Actions denoted in the flow charts by names ending on
“—transnission” refer to the basic data transmitting actions mentioned in
section #4.3.4 (Pig. 4.17). Such actions mavy be performed only if the
file union status is empty {(Fig. 12.8}. : '

12. INPUT AND OOTPUT 19

IRM LARB VIENNA

TR 25.099

TNFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969
(BUF) (EXC) (otheywise)
buffer - wait fov
fransmission untocking
. A4
PROCEED chedk 4‘
buffer-trans -
missio

write -
transimission

|
v

write
tvansmission

Mercomﬂek
List of condition

indications

\

y

make List of
condifion indicalions

Pig. 12.11 Proper data transmission - WEBEITE

12.5.3.1 W;ite

20

The actioas differ as to

RO¥, EXC, or none of both.
meaning:

(1) Hait for unlocking.
first step of proper

{(2) ¥®rite-transmission.

ghether the file union contains the attribute
The boxes of Pig. 12,11 have the following

This potential wait is described in 12,5.2 as
data transmission.

The basic data tranmitting function write

{cf. 4,3,4,.3) applied to its arquments mp, ds, el vields the new
data set and possibly an indication for one of the unusumal

sitnations ¥KEY, REC,
parameter, ds is the

END. The argument mp is the mapping
(oldj} data set, and el is the record data

element having (2 possibly empty) key component, s-ident{et), and
a value representation coamponent holding the storage designated by
the generation s-from({et).

The new data set replaces ds in ES, and a set containing an
indication for an unusual sitwation !

12. IEPOT AND CQUTPUT

IBM LAR VIENNA .~ TR 25.1799

30 JUNE 15969 INTFTORMAL TNTRO TO THE ABSTHACT SYNTAX AND INTERPRETATION OF PL/T

together with any transmission error flag ({cf. 4.3.4.8) is passed
to the following step.

{3) NHake _list of condition indications. The set of indications is
modified and ordered. The resulting list contains elements which
Serve as arguments to on-condition calls or they contain the
special indication END {Fig. -12.12). The file name f is taken
from the file union, io~cond is one of the elementary objects K%Y,
REC, THT, and END, and the component s-chif provides those values
to condition built-in functions which are characteristic for the

situation.

KEY
} io-cond = REC
5- cbif) TMT
l | | END

s-onkey s-oncode

5- ident (et} l intg l

inctuding® Cor Q@

Fig. 12.12 Condition indication made by WRITE

{4) Buffer-transmission. The basic data tramsmitting function write
will he used analogously to [2) bnt the record data elament el is
a buffer.

Any file union containing the attrihute BUOF may contain a
component (huf in Pig. 4.11) which specifies one ar two pointers,
and a key consisting of a list of characters {only if the
attributes XEY and 00T are also specified). TIf only one pointer o
{Fig. 12.13) is present in the file union then it denotes the main
storage o{5}. Otherwise the area storage osap{S) is designated
where ap is the area pointer and o is the offset,

1) Instead of "REC" an integer value is passed which results form the
comparison of the record- and storage-sizes involved.

12, INPUT AND OUTPOT 21

Te¥ LAB VIENNA

INFORMAL INTEO TO THE ABSTRACT SYNTAXY AND INTERPRETATION OTF PL/T

S-buf

s-area-p s-yey
I ap I key

or & or &

Tig. 12.13 Tile union entry for an allocated buffer

™ 25.199

30 JUNE 1969

Buffer-transmission is skipped (i.e., no actior) if the file
unions buffer component is empty. In all other cases the data
slement el may be constructed. TIf the function write does not
vield one of the unusual situations KEY or END then the new data
set replaces the 0ld one in ES, and a set of condition indications
is passed to the following step just as detailed in step (2). Tn
addition the huffer is freed and deleted from the file union.

If the function write vields one of the unusual situations K=Y
or END the same actions are performed except that the buffer is

neither freed nor deleted.

{5) Ccheck buffer-transmission. The exit labelled SXIP is taken if

unusual situations KEY or END occurred in the previous

buffer-transmission, otherwise the exit PROCEZED is taken.

{6) Make complete list of condition indications. The two sets of

condition indications resulting from buffer- and

write-transmission are combined and are treated in a siwmilar way

as described in step {3).

22 12, TNPOT AND OQUTPUT

o

IBN LAB VIENWNA © TR 25.099

30 JUNE 1969 INFORMAL IKTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF. PL/I

12.5.3.2 lLocate

lacate statement (LOSE - LOCATE
l { cf 12.5.2)
buffer - S - buffer-
transmission _ transmission

check PROCEED

buffer-trans-
mission
. aliocatg -
SKi buffer

make List of
condition indications

I

Fig. 12.14 Proper data transmission - LOCATE

There is only one action namely the allocation of a buffer (box
allocate-buffer in Fig. 12.74) which has not vet heen described in
section 12.5.3.1%1. .

Allocation of the based varible with unigue name s-n{et) is either in
main storage or in an area dependent on s-ptr{et), or in absence of a set
option, on the declaration s-n({et) (AT} of the based variable. The
components s-~id, s-n, and s-ptr ! of et and these same components of a
specification of a single based allocation have analeogous functions,
Hence, the corresponding description of actions can be taken over from
chapter 10 if the following differences are observed:

. In case allocation is in main storage the type of allocation is BUFFER
{instead of BASED), and the boffer pointer and/or key is entered into the
file union (o, key in Fig. 12.13) instead of being added to the based
free set of TE. ‘ S

o Ay e e A A L e e S VR S A e

1} s-pir(et) has not been evaluated previouwsly. It is still a reference
Oor emrpty.

12.: TNPUT AND OUTPUT . 23

TEM LAB VITENA TR 25,099

TNFORMAL TNTRQ TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

In case allocation is in an area the area pointer, the offset andsor
key are entered into the file union (ap, o, key in Fig. 12.13).

12.5,3.3_Rewrite

24

tet-read CEXC) (otherwisa)
. + 4
set- } wail fov rewrile-
into - set- unlocking into - set~
trans mission ignore -
delete -
rewrite - _ transmission
into set-
delate -
transmission

12,

W
b

X
make list of
condition indications

FPig. 12.15 Proper data transmission ~ REWRITE, READ, DELETE

The actions correspond to the flow chart of Fig. 12.15, the middle
branch being taken if the file union contains the attribute TYXC, the
right branch iz taker in all other cases.

Wait for unlocking and the making of condition indications has been
dealt with in 12.5.3.71 (1} and (3}.

The rewrite-transmission uses the basic data transmitting function
rewrite {cf. 4.3.4%.2). The arguments are mp, ds {as described in
12.5.3.1), and a record data element el which is buil+ from the storage
designated by s~-from{et) or from the buffer. The conditios indications
FEY or REC may result., The replacement of the old data set by the new
data set in E5, and the handling of on-conditions is analegous to
12,5.3.1.

TNPOT RND OUTPUT

IBY LAB VIENNA TR 25.09%9

30 JUNE 1969 INFOREAL TNTRG TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

12.5.3.4 Set-read

The actions for a set-read statement and for a locate statement have
some similaritiesr Both statements are restricted to file unions
containing the attribute BUF, and both statements comprise data
transmissior, buffer freeimg, buffer allocation ({in main storage or in an
area), and the insertion of the new buffer in the file union,

Since loacte is restricted to 00T and set-read to INP or UPD, the
statements may not be related with one and the same file urion. In case
of locate the size of the buffer to be allocated depends on the evaluated
aggregate attribute of the based variable. However, for a set-read the
size is derived fror the record data element read.

The case distinction as to whether allocation for a set-read is to
occur in main storage or in aan area is made on the basis of the set
option s-ptr{et}, In the first case the treatment is very similar to an
into-read on a buffered file {cf. 12.5.3.5, into-set-transmission and
left branch of Fig. 12.15). In the latter case the record data element
is read, i.e., the basic data transmitting function read {cf. #.3.%.1) is
applied to mp, ds, and s-ident{et). This yvields the new data set, and an
indication for one of the unusunal situations XEY, END or ({this is the
usual situation) the data element read in.

{n Uassual siteation: The nevw data set replaces the old ome, and
indications are passed to the following step.

{2} TUsual situation: 1In additiom to {1} the old huffer {if any} is
freed, a nev buffer, with allocation type AREA, is allocated (if
possible}, the value vepresentation component of the data element
read in is assigned to the buffer and the key component is
assigned to the keyto option s-idto(et) {if applicable}. The
offset is assigned to the set option s-ptr{et)}, and the area
pointer and the offset are entered into the file gnion {ap, o in
Fig. 12.133. '

12.5.3.5 Into-read, ignore-read, delete

The actions correspond to those described in 12.5.3.3 except that
into-set-, iqnore-, and delete-~transmissior is performed im place of
rewrite~transmisssioa, i.e., the basic data transmitting functions read,
ignore, and delete are tsed, respectively {cf. Fig. 12.15}.

No general description of the transmission actions is given since it
follows in a rather straightforward way from a re~interpretation of the
above sections and from the relevant sections of 4.3.%.

It shorld be noted that ignore- and delete-transmission have no effact
on buffers registered in the file union; assignment to any keyto option
s-idtc(et) as part of into-set-transmission occers only if the assignment
and conversion rules yield no om-condition calls.

12. INPUT AND OUTPOT 25

IaM LAB YTIENNA TR 25,099

THFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTIRPRETATION OF PL/Y 30 JUNE 1969

12.6_STREZAM TRANSMISSION

Corresponding sections of /5/:
11.6 Stream transmission

11.7 Svecial cases of stream transmission

The folloving ahhreviations are used in this section:

gen,ps-gen generation or pseudo-generation
hi higher index {current position)
1o lower index

intg integer value

fol format list

init ipitial

incr - increpent

char character value

72.6.7 INITIATION AND TERMINATION OF POT AND GET STATEMENTS

Evaluation of statement options {cf. 12.1) affects the file, skip, and
line options of put and get statements (Fig. 12.4}. The resulting
evaluated text et has a file union name u as its component s-file, and
integer values as its conmponents s-skip or s-lime. Tt should be noted,
that the data specification, s-spec{et), and all options of string-put or
string-get statements are left unevaluated,

S-cata-list s-type LIST
_ type= DATA
f type ALL-DATA
elem@) ... elem(n)
naxAi
dato- data-
item, item

Tig. 12.16 List-or data~-directed data specification

The structuring of list- or data~directed data specifications
{Fig. 12,.16), and edit-directed data specifications (Figs. 12,17 to 19
shows the close corresvondencs to the structuring of concrete text.
There is only one non-trivial difference between concrete and abstract
text which concerns data-directed data svecifications with missing

26 12, TNPUT AND OQUTPUT

T8 LAB

37 JUK:

VIENNA TR 25,099

1960 INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPEETATTION OF PL/I

{concrete) data list: The translator is assumed to insert a data list
cortaining all unsubscripted fully qualified references if they refer to
praoper variables which are not parameters and which are known in the
black where the statement is executed; in such a case the type will be
ALL-DATA, TIf thare is a data list in the concrete data~directed data
specification then tha tyve will be DATA, and the data list is the
one-one translation of concrete text, '

The type ALL-DATA Ls_néeded in the interpretation of put statemehts in
order to know that the ordering of the data list is irrelevant, and that
operands which cannot be converted tn character string are to be skipped.

[‘ T
elem (1) ' ‘.. elem (M)
i) ' m 4
{] .
& d{ata—tist : -s-format - list
i
elemd) o elem(n) elem(4) see elem(k)
data- datqg - c .
itemy i . |itemy ormaty) formaly

~Tig. 12.17 Edit-directed data svecification

s-contr-vay ' s-spec-Llist g-do-Llist or ex pr

B

7

v do -spec-Li
ef © -spec _L’St elem(1) »e- elem(n)
! _n;1_ '

Tig. 12.18 Controlled or simple data jtems

12. TNPOUT AND OUTPOT 27

TR¥ LAB VIENNRA TR 25.099

THTOPMAL TNTFO TO THT ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30. JUNT 1969

WWWWW —
| sxnwple i
4 format f
lpecification
S-'YEP s~ format -List [« 3 S-type E:EW.._._._..MJ

‘ . remote

expr l E Iformatl]controi

elem{4} --- elem(n) type data
] n 1t !
format 4 format

Tig. 12.19 Iterated or simple format

ITritiation and termination of get and put statements depends largely
an the oresence of a string or a file option. However, interpretation of
the Aata specification is only slightly affected by this difference
{T"exvansion of data specification®} except for the interpretation of
elementary transmission,

The followirng initiating actions occur for evaluated file-put and

{1} Tf the file union status is ENDF them the endfile on~condition
will be called. This terminates the statement.

{2} The conponent Ycount™ nf the file union is initiated to zero
{cf. Tig. 4.11).

(3 Any page, skip, or line options are executed just like the
correspoending simple control formats.

{4) The data specification is interpreted, i.e., exvansion of the data
svecification occurs iteratively with transmission of data fieldis
{(2xcent for data-directed input}.

The initiating actions for stripg-put and string-get statements are
nrecaded by a case distinction depending on the components s-string and
c~base (cf. Fig. 12.1):

{a) The component s-string is a reference to a scalar string tyve
variahle or psaudo-variable, and the component s-hase agrees with
the tyre of the reference,

(b)) A string-get for which {a} does not apply.

{c) An erronenus siring-put.

Tf case {a) avplies then the following steps will be taken:

(a1 The geperation or pseudo-generation of the reference is evaluated,

ard it is entered under a newly created unigue name into the file
union directory Il {component s-g in Tig. 12.20}.

27 12, TXPUT ANWD QfTPUT

TAM LAR VIIZINNR TR 25.999

3% JUNE 1963 THNTORMAL INTRO TGO THE ABSTRACT SYNTAX AND INTERPRETATION OT PL/I

|

gen
j

or ps-gen “ .Vcr Q

Pig. 12.20 "File union" corresponding to a string-put or
string-get statement

This entry additionally contains a component s-hi of value zero.
Transmission of data fields to or from the storage designated bv
the component s-g increments the component s-hi, i.e., the
component has a similarity with the position of ar inner data s=t
{cf., 4.3.3.1. The component s-l1o is an integer value in some
cases of get statements: The component s-lo indicates the lowest,
and s~hi indicates the highest position of the data field heing
read. The knowledge of both positions is necessary for the proper
interoretation of onsource and onchar pseudo-variables and
built-in functions used in conversion on-unlts called because of
inconsistences in the data flpld

{a2) Eszentially the sanme actions as in step {4} above.
fad) The check on- condltlon is called for the reference in case of a
string-put. .

If case {b) applies then the following steps will be taken:’

(b1} The operand of the expression (expressior includes raference) is
evaluated and converted to a string with BIT or CHAR base as
. specified by s-base in Fig. 12. b°

{b2) A dammy is allocated (having the generation gen), and the
converted operand is assigned to it.

(b3 Essenrtjally the same actions as in step (a1} above with the
: generation gen.

{b 4} Assentially the same actions as in step (4) above.

(b5} The dummy is freed.

Step {4), the interpretation of the data specification, is dealt with
in the following sections. In these sections it will not be the conmplete
data specification which is of major importance but the current data list
or farmat list or parts of them (components s-data-list and s-format-list
in rMig. 12.1% and Pig. 12.17). On the other hard, the data and format
lists do rot convey all the information necessary to characterize the
data transmission. Fence, this information is collected in the
transmission parameter (Fig. 12.21) which is a modified skeleton of a get
or put statement; The components s-base, s-spec, s-page, s~line, and
s-skip have been deleted from the statement text. The mutually exclusive
connnnents s-file and s-string contain the file union name relevant for
the interpretation of the statement. An additional component s-type may

12. TNPUT AND OUTPUT 29

TBM LiB VIENNA TR 25.799

THTORMAL TNTRO T0O THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

be present in the transmission parameter which is a copy from the data
specification {cf. Fig, 12.76) or is the elementary object EDIT in case
of an edit-directed get or put statement.?

LIST
') EDIT
- - fi 5-Strin -t 5~ C0
5-sl S- file thg s-type Dy type-{ DATA
ALL-DATA
I GET or PUTl l u I I U I I type I I * l CHECK-DATA
ov & or &2 or S or &2

Tig. 12.21 Transmission parameter

12.6.2 DATA SPECIFICATIONS

An edit-directed data specification is a list which is interpreted
from left to right. The first action is to put the format 1list of *the
head nf the data specificatior into the component s-init of CI
{cf. Tig. 12.22). From there the "initial format list™ will be taken for
format list expansion {(cf. 12.6.2.2}. The second actien is the expansion
nof the data list of the head of the data specification which additionally
devends on the transmission parameter. After completion of the
expansion, the same action will be repeated with the tail of the data
svecification until all the data specification is worked up.

List~ and data-directed data specifications are checked as to whether
they are related with a file union the base of which is CST or CHAR. The
gstrean bage of a file unipn is BIT or CHAR (if the file union has been
created by a bitstring or string nption), eor it is PRT, C5T or RST in the
nther cases of file unions which contain the attributes PRT, CST (but not

PRT) or BST, respectively.

I£ the check on the stream base is satisfied then the expansion of the
data list is started in case of list-directed data svecifications, and in
the case of data-directed output data svecifications. A data-directed
input data specification will not be expanded {cf. 12.56.4).

1. Data list expansion

The data list vhich is a list of contrnlled or simple data itenms
{cf. Tig. 12.18) is expanded into its scalar compoments. This ptocess
uses the expansion of aggregate expressions, and the expansion of
controlled do-groups {the structuring of a controlled data jtem is
similar to the structuring of a controlled do-gtouvp}.

1) The type CHECK~-DATA is used in connection with check standard systen
action, the empty type is used where neo other type yould be reassanable
{cf.12.6.3.2}

30 12. THPOT AND OUTPUT

TR LAB VIEHNA TR 25.099

30 JUNT 1969 INFORMAL TNTRO TO THT ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

In case of stream output transmission, -any resulting scalar expression
is evaluated and transmitted {cf. 12.6.3}.! If a data transmission has
really occurred, and if transmission was over a file then

(1 the current value of the component "count® in the file union is
' incremented by one (cf. Fig. 4.711), and

{2) any transmission error flag in the FD-entry is inspected, and the
transmit on-condition is called if necessary {cf. 12.6.3.1).

Tn case of stTeam input transmission the generation of any resulting
scalar reference is evaluated and the next data field is transnmitted
{cf. 12.%6.48).1 Tf the data field should not be skipped ther the
assignment to the generation is performed, and if transmission was over a
file, then the above steps {1) and {2) will occur in additionr.

12.6,2.2 _Tormat list exvapsion

The expanded format list is local to an edit-directed put or get
"statement. Hence, it is appropriate to store the current expanded format
list in a comronent of the control information CI {s-expand in
Pig. 12.22).32 '

other

COom Ponents

J
|
|
of CI i
|

l
s-fol
P o 9.4
l///_ Lgr__J L mmmmm _J
| | -
s-init s-el:qc:octﬂcl.I_.__..“.t
~=d orS |
| | - |
elem@) <. elem(k) elem@) o-. elem Ci)
[Y |
format 4 format format,, format,;
or id

1) Transmission is preceded, in the edit-directed case, by a reguest for .
the next evaluated simple data format, i.e., by the exnansion of tha
format list and the interpretation of all intervening non-data
forrmats.

2} In fact only the stacking and unstacking of CI at block boundaries is
needed in connection with format list expansion,

12. -'TNPOT AND OUTPUT 31

TAM LAR YTENNA TR 25.299

TNTORMAL TNTRND TO THEI ABSTRACT SYNTAY AND INTERPRETATION OF PL/T 30 JUNE 1969

It has bheen described at the beginning of 12.6.2 that the complete
frrmat list of the element of the data specification under comsideration
is econtained in the component s-init, and that the component s-expand is
initially empty.

The format list expansion is always activated by a reguest for the
next evaluated simple data format (cf. Tig. 12.19). 5Such a request will
cause a change of s-expand but it will never change s-init., The actions
are easily explained if they are split up into an expansion stev and a
data format step which are taken iteratively,

The egpansion step yields the next evalunated simple data or control
format or empty depending on the following mutnally exclusive case
distinctions:

(N If the expanded format list is empty or the emnty list then it is
rerlaced by the initial format list {[wrap-around).

{2} If tbe expanded head 1 is an iterated format {cf. Pig. 12.19) then
the resulting exnanded format list consists of as many copies of
format lists of the iterated format as the repetition factor
indicates, concaterated with the exvanded tail.?

{1} If the exvanded head is a simple hut remote format then the
resulting exranded format list consists of the remote format list,
concatenated with the remote format identifier (see below}, and
concatenatad with the exvanded tail.

(4 Tf the expanded head is a remote format identifier them the
resulting expranded format list is the expanded tail.

{5 If the expanded head is a simple but control or data format then
the format is checked for internal consistency, and for
consistency with the stream base of the file union., Tf the check
iz positive then the format is evaluated and returned. The
resulting expanded format list is the expanded rail.

Tn case (1) to {4) erpty will he returned,

The data forpat step is verformed one or more times as long as the
evpansion step yields emvty or a control format, In the first case the
e¥xnansion step is repeated immediately, in the second case it is repeated
after executing the data transmission corresponding to the comtrol
format.

St*ers (3) and {4) deal with remote formats. & remote format contains
2 reference which is evaluated, and the value must denote a format
{Yahel) constart, 7In addition, the block activation name and the
condition prefix part of the format corstant denctation must be the same
15 the current block activation name BA and the statement prefixes
s-sop (C5), resnectively. The remote format list contained in the format
“~nstant denotation is considered valid only if the remote format
idenptifier of the format constant denotation is not yet contained in the

=ypanded format list. This check caters for recursive usage of one and
*he =ame remote format list.

12,

1y "Zyvanded head® is used for "head of *he exvranded format list, i.e.,
heades~exvandes—~fol (CI)".

2y v2ypanded *ail"™ is used for "tail of the expanded format list, i.e.,
tajles-expandes-fol {CI}".

THPTT AND OOTPUT

TE® LAB VIZNWA TR 25,799

3% JUNT 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

12.6.3

STREAM GUTPRUT

List-directed and data-directed transmission essentially consits of a
cenversion to character string type, and of the construction of names in
character string form. The result*ing string is handled hy elementary
data field transmission.?® . . o :

Bdit-directed transmission governed by data formats is treated similar
to the ahove types of transmission. Tf edit-directed transmissiom occurs
over a file and by control formats then elementary data transmission may
occur immediately. All control formats directed to a print file may
cause increase of the current line component of the file nnion ("line" in
Fig. 4.711) until the pagesize "psz™ is just exceeded bv one. Only a page
control format may reset line to ore,

1 _Tlementary_transmission

12.6.3,

Elemeptary data field transmission depends on the transmission
narametar and on a bit or character string. 7Tf the target is a string
characterized by a file union corresponding to a string-put then the
assignrment of the string occurs element by element as long as the target
may accomodate the spurce elements. This occurs in parallel with the
incrementationr of the current position s-hi {cf. Fig. 12.20). The error
on-condition is called if proper assignment is impossible.

If the target is a data set then elementary data transmission will
occur 2lement by element with the current columh properly uprdated. This
updating is an incrementation of the comnonent "col” of the file union
until the linesize "isz" {cf. Fig. .11} is just exceaded. Transmission
of a data element will be vreceded by the execution of a skip control
format if col cannot be incremented anymore. This resets col to one.

Tlementary data transmissionr is performed essentially in two steps
which might be execnted iteratively:

(1) Basic data transmission. This is the action stream~transmission
{cf. FTig., 8.17) which uses the basic data transmitting function
yrite (cf. 4.3.4.,3). The third argument of the function (el}) is a
proper stream output or stream output print data element as
enumerated in 4.3.3.1. The data set is replaced in ES by the data
set yielded by application of the function write to its arguments,
and the information returned is the unusual situation END or
emnty, TIn addition, a transmission error flag of the data set is
deleted from the data set and copi=d into the FD-entry
fcf. 4.3.8.4, 12,6.2.1)., _ : .

{(2) In case the unusual situation END has occurred previously, data
set label procaessing and data set switching is performed with
condition type EOV-BOV {cf., 12,4), and stev {1) is retried if no
transmission error occurred through data set label processing.

2 Snecial cages of stream tansmisgion

The copy action, and check standard system actions cause ontput to a
standard system orint file {cf. Pig. 12.1).

The goovy_action is elementary data field transmission of single

S e v s . ki ki Vg ke Rt

1} Zventually preceding tabulation ig describhed in 12.6.3.2

12. THPOT ARD OOTPUT 33

TEE LAB VTENNA TR 25.199

TRFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

characters or bits read ' with a transmission parameter having an empty
tyne, The action is preceded by a direct (hence 1m911C1t) opening of the
s+andard system print file. :

The check standard system _action is expansiorn of the reference under
consideration (cf. 12.6.2.1}, and data-directed putput of its components.
There are some modifications of data-directed transmission which are
indicated by a transmission parameter having the type CHECK-DATA., Before
data transmission takes place the standard system print file is opened
and the *count"” compomnent of the file unrion is initiated to zern.

The 2ndpage_standard system _action executes a page format on that
print file which is accessible by the file name being the argument of the
action.

Clementary data field transmission over a print file is preceded bv
tabulation in case of list~- or data-directed output. Tf tabulation is in
the current line then elementary data transmission of the data element
TABL will occur with the current column property adjusted, otherwise
tabylation is in the next line. This means execution of a skio format
followed by elementary data transmission of TABL with the current coluamn
adjusted to the very first tahulator position.

12.6.4 STREAM INPOT

Inout of a single data field is performed in two steps: B scanning
step and a conversion step. Depending on the data read in the first
step, the second step may be skipped.

12.6,4,1 Scanning step

The scanning step is in fact composed of subseguent scanrnings, each
with different arguments. In case of edit-directed input the scanning
step is degenerated into simple counting which dges not depend on the
data read. Scanning nlays the role of elementary data field trarnsmissior
of stream outout with the natural difference that it dervrends on the
transmissior parameter and the scanning argument {see below}. Tt is also
an inherent Aifference that scanning returns the data field which is a
bit or character string (if edit-~directed), or a character s=string
ootinnally ending with the special elementary object EEDM-SCAN {if list-
or data- directed). Hence, scanning is to some degree merely the reverse
rrocess of elementary {outnat) tranmsmission described in 12,6.3.7.%2

The gcanning argument (Fig. 12.23) is of particular interest in list-
and Aata-directed transmission.

—— . o

1Y Bi*s are converted to characters.
2) TElementary {input) data transmissior may invelve the copy action
{cf., 12.6.3.2}.

34 12, TYPIT AND QUTPOT

IBM LAB VIENWA : TR 25.099

-3 JUONE 1969 -INFORMAL INTRO TO THE ABSTRACT SYNTAX AND TNTERPRETATION OF PL/I

L | o

s-end s—stop s‘stop-M¢r s-iner

8 ERROR-ENDF ' .' I char-set; l char-set,
or &2 or &2 or @

Fig. 12.23 Scanning argumeat

The components of the scanning argument have the following meaning:

{n z-end. An om-condition call will be executed if the end of the
input stream has heen reached, and if the coaponent is ERROR-ENDP
The endfile ‘on-condition is called if transmlsslon is over a f11e,
the error on—condltlon is called otherwise.

If the component s-end is empty, scanning will terminate without
raising any on-conditions. In this case ENDN~SCAN will be
appended to the data field yielded in order to have an 1nd1caflon
for this kind of termirnation.

{2) s-stop, S=- s*on—incr, s-incr. These components define the scanning
classes the meaning of which is given below. :

411 scanning arguments actually used have the additional properties
that po character occurs in more than one component, and that at most one
of the components s-stop, s-stop-incr, and s-incr is empty.? This allows
the formation of three scanping classes C{s-stop}, C{s~ stop~incr), and
C{s-incr} for any scanrning arqgument by the following rule: TIf the
correqpondlng component of the scanning argﬁment is empty then the class
is the set of all characters not contained im the otker components,
otherwise it is the component itself.

The scanning classes have the following meaning:

in ‘C{s—-stop). If a character is scanned which helongs to that class
: then the scan is stopped. This is a case of normal termination,

{2} C{s-stop-incr). Same as {1}, apd in addition the current position
will be incremented by one. :

3 C{s-incr}. 7Tf a character is scanmned vhich helongs to that class
then the current position will be incremented by ome, and the scan
is continued.

The particular scanning argument of Pig. 12.24 defines the class
C{s-stop} which is the enmpty set, C{s-stop-incr} which is {APOSTR, CONMA,

BLANK}, and C{s~incr} which is the set of all characters except those
contained in C{s-stop-incr)}. TIm other words: Scan as long as no

1) Besides that, s-stop and s-stop-incr are mutnally non-empty.

12. TNPUT ANDB OOTPUT 35

TEM LAB VTENNA TR 25.099

INFORMAL INTRG TD THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

apostronhe, comma, or blank is read. Any subseguent scan will start at
the position following the apostrophe, comma, or blank.

f

s-stop~incr

[{A POSTR,CONMA | BLANK | I

Tig. 12,20 Example of a scanning argument:
Second scan for list directed input

12.h.4,2 Conversion_sten

6

v

The conversion step checks the data field for syntactical correctness
and huilds an operand with the apparent attrihute and value of the data
field. TIn apparent attribute anc valae of the data field. 1In case of
data~directed input also the target reference is constracted which is
checked agajinst the data specification {the subseduént actions are as
described in 12.6.2,1 under the paragraph stream input transsission).

12.

Corresponding sections of /5/:
3.6.4 The message part i

1.8 Display transmission

The following abbreviation is used in this section:

gen generation or pseundo-generation

Mecgage transmission is data transmission to aad from the message
storage {or message part) 8 effectnated by display statements by certain
standard system on-units {cf. Fig. 12.1). It should he noted that the
on-check standard system action performs output by a standard systeam
print file, i.e., output goes to ES and not to M (cf. 12.6.3.2).

INPUT AND QUTPOT

TBM LAR VITNHZ TR 25,799

A% JINT 1969 T¥PORMAL TINTHO T0O THL ABSTRACT SYNTAXY AND INTEEPRETATION OF PL/X

12.7.1 MTSSARGE STORAGE

-

The message storage M (Tig. 12.25) is a global state component which
serves to accumulate. three tvoes of messages in the components s-display,
s-tenly, and s-comment. A)l components are initially empty lists which

intercretation of the progranm,

I ! |

5-displtay : S~comment ' s-reply
... : - i : S
! i : | o R
elemU} ... elem(i) - elem(l) - elem{4) ... elem(k) -+ elem(m)

FMMA_Lmu_W ! ; !
| named- ' named - | hamed - named - }
} MmCss0gey 4 Message 4y mess0ae rq messoge

i BT A S 1

| ! 1 i | ! [|

| S-name S-message | { S-message

. PRSI [S l

| s § ! : g

% A imessage 4;| | % MESSAQE ik |

i]

; N L I : :

L _ __ > __ named message di | s mt&"_‘iﬂ_"_'eiiﬂg'iz‘*_l

Y :
_..Same name ______ o
| b
elem(4) ves elem(p)
! i
comment 4 comment p

-

ig. 12.25 Message storage 4

The =strtucturing of comments put out hy certain standard svsten
on-units is implementation-defined.

Vamed messages transmitted by display statements contain the message
which is a list of character values and a unique name.

t2. IWNPUT AND OUTPUT 37

TBM LAB VITUNN:A TR 25.099

TNZORMAL TNTRD TO THS ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNRE 1969

12.7.2 DISPLAY TRAUSMISSIOR

The display, renly, and event options of a display statement are
evaluated as described in 12.7. The resulting evaluated text et has the
form {a} or (b) of Fig. 12.26.

5- 5t s-i\dent S-st s—i|den’c s-idto 5-event
display- : .] i
| DispLay ST Bpispay | Gy veply event
string string gen gen
(@) - (b) or Gd

Fig. 12.26 Evaluated text of display statement

The form (a) having only a display option {s-ident), transmits the
message {display-string) together with a newly created unigue name to ¥
{i.e., named-nessageq,).

The form (b) of Pig. 12.26 may cause the attaching of amn T/0-event if
the event option {(s-event} is not empty. The relevant actions can be
derived easily from 12.5.71. The presence of the reply option (s-idto)
indicates that after the transmission of display~-string {see ahove} a
wait should occur as.long as there is no matching named message in the
comnporent s-reply{M).

Bnvironmental influences may append named messages to the list
s~-reply(d), i.e., after some time there might be the situnation of
matching messages named-message, and named-messagey; shown in
Tig. 12.25. 1In this case a wait entered after transmitting
named-messagedy might be completed after assigning the message part of
the renly message named-messagepy, to the target generation reply-gen,

Since this assignment may ke executed as part of an I/0-event,

on-condition calls eust be avoided. This is similar to the assignment to
a keyto ontion {cf. 12.5.3.5).

IR 12, TNPUT AND OUTPUT

I3M LAB VIENHA . TR 25.009

30 JUND 1949 INTORHAL THTRO TO THZ ABSTRACT SYNTAX AND INTERPUTTATION O7 PL/T

13. __BOILT-IN TUNCTIONS_AND PSIUDO VARIABLES

Corresponding sections of /5/:
12.2 Zvaluation of built-in function referencss
12.3 Aggregate attributes of huyilt-in furctiens
12.5 Table of built-in functions
12.6 Evaluation of the individual buil*~in functions

12.7.1 Assigument to pseudo variables

13,1 _BUILT-IN_TONCTIONS

Built-in functions may occur as refsrences in any expression contex*®,
They consist of an identifier, characteristic of the individual function
to be applied, and an argument list. ©Evaluation of a reference to a
built~-in function returas an operand.

In /5/, the evaluation of a reference to a built-in functicn is
accomplished in two steps: A geperal step, the effect of which can he
described in a way common tc all built-in functions and an individual

step which is specific to the individual built-in function and returns
the result operand.

{1} general step

The result of this stev is a new argument list. Devending on the
individual built-in function and the argument position, each
element of the original argument list is converted to one of the
followirg types and then inserted into the correspording position
of the new list,

operand: An operand is evaluated from the original argument and
converted to a target attribute characteristic of every
built-in function and argqument place.

operand list: It can only cccur if the original argumen® is an
aggregate expression; crerands are computed from its scalar
elements and arranged as a list,

integer: From the original argument expression an.operand is
avaluated and converted into an inteqger constant.

evaluated aggregate attribute; In general, the original arguazent
is an aggregate expression whose attributes are tn be
deterrined.

generation: The generation of the original argument is evaluated.

text: The original argument is inserted unchanged into the new
argument list.

13. BUTLT~-TN FONCTIONS AND PSEUDO VARTABLES 1

TBEM LAB VIENNA TR 25.09%

INTOEBMAL TINTRCG TO THE ABSTRACT SYNTAX AND INTTRPRETATION DT PL/I 30 JINE 1969

(2} individual step

According to the mature of the individual built-in functinn, tha
result operand is evaluated from the new argument list which was
generated by the first stev,

A similar procedure, devided into a general and an individual sten, is
followed in the evaluation of aggregate attributes of built-in function
references,

Example:

Consider the following section of a program:

DCL B BIN FIXED(S),
¥ FIXED,
A BIT (6} ;

33

23

BIT (B, N) ;

Hnus

e

The built~in function BIT converts the first argument tn a bit
string and pads or truncates it according to the length specifiad
by the second argument., '

The reference BIT(R,N} is intarpreted in the following
way(cf. 12.2, 12.5, 12.6.2.1 of /5/y:

{n General step:

The actions of the first step are controlled by a table
{cf. 12.5.2 of /5/. The following part of the table is used to
illustrate, how it governs the argument evaluation:

BIT 1 f wwe | OGP | STRING=EDA | ... | eval=bit{ops,ka}

21 we. | INTG | * | ees

Tor the first argument, 0DP causes an operand to be computed from
B, and the result of this operation is then converted to
string-type according to the entry STRING-EDA; let this final
operand be opy. IBTG =ffects that an integer , ka, is comnuted
from N, '

{2} Individnal step:

The second step then begins with the execuntion of the instruction
eval-bit(ops,kz}s Tt returns the following operand op-res:

2 13, BUTLT-IN FUNCTIONS ARD PSTUDO VARIABLES

TBEM LAB VIENNRA oo TR 25,999

30 JUBE 1969 INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION .OT BL/T
OP‘Y’ES:_
S-avly §~VY
evag repleva,, '101'8)
evay =
o-dens e s-d.a
UNAL | ‘ | '
s-lbase s-length
BIT 3

op-res 1s assigned to A; after assignment A has the value
*101006'B.

13.2 BRSSIGHNMINT TO_PSEUDO_VARIABLES

Pseudo variables are means of accessing various storage parts which
are otherwise inaccessible, for example: storage parts reserved for
special purposes are accessible by condition- and multitasking pseudo
variables: subparts of a scalar string may be assigned via the pseudo
variable SUBSTR.

A reference to a pseudo variable occuring in the left vart cof an
assignment statement consists of the name of the pseudo variable and a
list of arguments, On evalgating the reference a pseundo_generation is
formed. A pseudo generation contains all information necessary to make
the assignment. Tt consists of the name of the pseudo variable and a
list of evaluated arquments which are either gemerations or integer
values {depending on the type of the pseudo variable}.

The pseudo assigmment is carried ou* using

{n the evalnated pseudo generation

13. BUILT-IN TONCTTIONS.AND PSEURO VARTABLES 3

IRM LAB VTIENN2 ‘ TR 25,1399

THFORMAL TNTRD TO THE ABSTRACT SYNTAY &AND INTZRPRETATION OF PL/i 30 JUNT 19649
(2} *he operand which resulted from the evaluation of the right part
expre=ssion,

4

The assignment includes conversion of the operand with target
aggregates devending on the vnseudo ygeneration.
ggreg g 9

Let B be declared as

DCL A CHAR(S5) INIT{*12345%);

Consider the pseudo assignment

SOBSTR{A,3,2}) = TAB?';

After execution, the walue of A will be the string
'12&35‘.

The pseudo generation corresvonding to the left part of the above
psendo assignment is

$-id. s-avg- List

SUBSTR tgen, 3, 2>

where gen is the generation of A.
On assignment, an ovperand is computed whose aggregate attributes

are the zame as those of gen, and whose vr~part is the value
representation of '12A35', This operand is then assigned to gen.

13. BUILT<-IN TUNCTIONS AND PSEUDD VARIABLIS

IBM LAB VIEWNA - . TR 25.099

30 JUWT 1989 INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

14, _OPTINIZATION

Corresponding chapter of)5/:

13. oOptinmization

Optimization rules are introduced ip the PL/Y language to enable a
compiler to produce more efficient object code. - The definitions of these
rules, however, are given in terms of values found -at execution time,
i.e.; the formal description is based op the computatien of a program.

There are two kinds of optimization rules in PL/TI. Pirst, the
language definition has been relaxed so that expressions may be commpped.
Secord, attributes are added to the langpnage which enable a compiler to
do more efficient program optimization. :

Both optimization rules are described formally by modifying the set of
strict computations of a program {(cf. -6.). To describe the rules for
componing of expressions, the concept of compuntation is extended, so that
additional valid compmtations may be derived,flovever, the set of strict
computations is redunced by rejecting compuntations which are invalid
because of the ﬁrong nse. of optlmlzatlon attr;butes in the interpreted
program text, :

14,1 RULES FOR_COMMONING OF EXPRESSIONS; THE REDUCIBLE ATTRIBUTE

To describe the rules for cosponing of expressions {including the
definition of the REDUCIBLE attribute), the concept of computation is
extended in such a way, that it includes the n0551b111ty of steps in
which expressions are commoned.

Such a step may occnr lu_the course of a computation, if an
instruction for evalmating an expression is ready for execution, and if
another expression which is common with this expression has been
evaluated previously during-the computation. In this case, instead of
evaluating the expr9951on, the value derived from the earlier evaluation
may be taken. ; : ' : '

Although only scalar expressions may be commoned in a step of a
computation, the notion of common.expressions must be defined for the
general case of aggregate ‘@xpressions, since these may appear as
argquments of comnou functlon references. -

Two expressiopns are cogggg, 1f they ‘have the same ‘structure, and if

corresponding components are commoft references, the same constants or the
same isubs.

For the definition of common referemnces, if one of the references is a
generic reference, it is replaced by the reference constructed from the
selected entry refereance by concatenating its argument part with the
argument part of the original reference,

Tuvo references are common, if they have the same evaluated list of
name gualifiers, if their subscript lists are common f{i.e. if

14. OPTIMYZATION 1

IBM LAR VTENNA TR 25.089

TNFORNAL TNTRO TQ THE ABSTRACT SYNTAX AWD INTERPRETATION OF PL/T 30 JUNE 19619

2

14,

corresponding subscript expressions are common)}, and if, according teo the
kind of the raferences, one nf the following conditioms holds:

{1 Both are refernces to variables, these variables are common, and,
for entry components, the corresponding entry reference is
reducible and the argument parts are common.

{2) Both are entry references to the same function, the reference in
question is reducible, and the argument parts are common,

{3} Anth are references to the same reducible builtin function, and
the argument parts are common.

{uy Both are references to label, format or file constants with the

same denotation,.

Two variables are copmon in the following cases:

e e e e e ot i e i s i

{1) Both are proper variables with the same generation and the sanme

value representation.

{2y Both are defined variables with the same derotation, their hases
are common references, amd their p051t10n< are either empty or
common expressions,

{3) Both are based variables with the same generation and the same
value representation, their pointer gqualifiers are common
references, and their refer options have the same evaluated list
of name gualifiers.,

Note that based variables can not be commoned if they occur in
argqunent expressions of fanction refernces, since in this cacse
their generations are urknown in the states in question.

cf the entry reference {entry or non~entry), and in fhe case of an enfry
context, it devends on the length of the argument part. An entry
reference in an entry context is reduecible, if either the argument parct
is emnty, or the corresponding entry attribute is declared as reducible
and the number of its reducible declared return types is at least ecual

-to the length of the tail of the arguament part, An entry reference in

non-entry context is reducible, if the corresponding entry attribute is
declared as reducible and all its return types of tyoe entry are declared
as reducible.

Note that the explained notion of reducible entry references
constitutes the definition of the REDUCIBLE aftrlbute.

Two argument parts atre common, if corresponding arguments are common

expressions and their descriptor aggregate attributes {given explicitly
or by default) are essentially equnal,.

OPTIMYIZATTON

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL TNTRG TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T

P:PROCEDURE(X) REDUCIBLE RETURNS
({ENTRY IRREDUCIBLE RETURNS (FLOAT));
vas 3 BRETURN{Q}: END;

Q:PROCEDIRE; ... 3 END:

DECLARE F,G ENTRY VARTABLE, A,B,Y FLOAT;

.3 e

P o= P{2%Y &+ 3}
common
G = P{3 + 2%Y):
B = P{2%Y + 3);
not common
B = P{2%Y + 3);

According to the RETURNS attribute of the procedare P, a reference to
P is reducible in entry context, but not in non-entry context. I.e., the
first tvo references to P are common, the second two are not.

14,2 THE _REORDER ATTRIBOTE

The REORDER attribute may be specified for a block or procedure body
if it is reguired that the execution of the bedy should give the same
results as execution of the body according to the strict definition of
PL/T unless there is a computational or system action interrupt during
the execution of the body. The definition of the REORDER attribute is
given by its relation to the interrupt handling facilities of PL/T.

The formal defimition consists in testing whether individual members
of the set of strict computations of a program are erroneous because of
the wrong use of the REORDER attribute, i.e., if the REORDER attribute
associated with a body leads tn undefined situnations due to on-units
executed during the computation of this body.

To bhe precise, a combutation is erroneous because of the wrong ase of
the REDRDER attribute in the interpreted program text, if the following
conditions hold:

(n There exists a section <E{i1},...,E{i2}> as part of the
computation, called reorder-section, which constitutes
{disregarding steps belonging to another task) the computation of
a block or procedure body declared with the REORDER attribute,

{2} There exists a section <E{j1},....,E(i2)> as part of this
reorder-section, called on-section, which constitutes the
computation of an on-unit.

{3} There exists a pointer p which is contained in the allocation

state of the storage between E(k1} and &{k2) (exclusivelyv}, and
which does not belong te an automatic variable declared in a block

4. OPTIMIZATION 3

IBAM LAB VIENWA TR 25.099

JE¥FORMAL INTRO TO THE ABSTRACT SYNTAY AND INTERPRETATION OF PL/T 30 JUNE 1969

or procednre whose body is declared with the DRDER attribute and
conputed inside the reorder-section.

{4} There is a reference to this pointer p in a state £({k} between
Ef{k1} and £{k2} which is not guaranteed under such circcumstances.

upder the above circumstances, if one of the fellowing
alternatives holds:

{a} E(k) lies in the oa-sectiom.
P is not referesced by the use of on-builtin fumctions.
p is allocated or freed or its content is modified in the
reorier~-section {but outside the on-section), or p is allocated
ontside the on-section {possibly also outside the reorder-section}
and belongs toc a controlied variable which is allocated or freed
in the reorder~section,

(b} E{k) lies inm or after the raorder-section.
p is alliocated or freed or its content is modified in the
on-section without the use of on-psendovariables, or p is
allocated before the end of the reorder-section and belongs to a
controllied variable which is allocated or freed or modified ia the
on-section withkout the use of on-pseudeovariables,

{c) £(k}) lies in or after the reorder~section.
There is an abnormal return from the on-section.
P is allocated or freed or its content is modified in the
reorder-section, or p is allocated bhefore the end of the
reorder-section and belongs to a controlled wvariable which is
allocated or freed in the reorder~section.

4 14, OPTIMIZATION

IBM LAB VIENNA

30 JUWE 19869

TR 25.099

TRTORMAL INTRO TO THE ABSTRACT SYNTAY RND INTERPRETATION OF PL/TY

Zxamples:
ad {a}:
reorder - section
s A —\
on- section
”~ A ™
| I L/ v \ \ |
! \ [i \ A / / i
k1 i1 J1 2 jz : k2
allocation of p, allocation freeing reference top freeing of p
associated to & of B of B (without on-buittin
controlled variahle B functiorn)
Tig. 14.1

The reference to p is not guaranteed, since, due to the
reordering process, the on-section could fall between allocatioen
and freeing of B in the reorder-section.)

ad [b):
veorder- section
A
! ~
on-section
—_—h
| [[LY \ | \ v |
’ Vol A) ! 7 X |
k1 11 i j2 i7 K ‘.
allocation of p, altocation modification of B freeing of B reference freeing
associated to o of B (without on-psevd.o- to p of P
controlted variahble B vavriable)
Pig. 14,2

The reference to p is not quaranteed, since, due to the

reordering process, the on-section could fall hetween freeing of B
and i2.

14, OPTIMIZATIOE 5

&

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO TRE ABSTRACT SYNTAXY AND INTERPRETATIOK OF PL/I 30 JUNE 1969
ad {cy:

reorder- section
A

on - section

f_'“‘L“_"\

[4 y / N\ !
N " \), X ! }
itk k J1 j2 ’ k2 i2
all ocation dflo reference ‘rop abnormal medification freeing
return of the content of P
of P

Pig. 14.3

The reference to p is not goaranteed, since, due to the
reordering process together with the abnormal retuorm from the
on-section, the referance to p and the modification of the content
of p counld be interchanged.

14,3 _THE RECURSIVE ATTRIBUTE

4 computation is srroneous because of the wrong use of the RECORSIYE
attribote in the interpreted program text, if it contains the computation
of a procedure which invokes itself though it is mnot declared with the
RECHRSIYE attribute.

14. OPTIMIZATIORN

IBH LAB VIENNA

30 JURE 1

This glossary is a compilation of technical terms used in the document,

TR 25.099

969 INFORMAL INTRO TO THE ABSTRACT SYNWNTAX AND INTERPRETATION OF PL/I

APPENDTYX:

GLOSSARY

section guoted in the right column refers to the place where the term is

explained

+~ In the document,

this place is emphasized by underscoring.

The primary intent of the glossary is to serve as an aid for reading the
Occasionally, terms are characterized by a gualification added in

document.

parentheses in order to delimit the scope of the reference,

abnormal
abstract
abstract
abstract
abstract

termination

(Of a task)--------------oa--an----u--.--a-c..---
iﬂentifier..--.a-.-a.-.-o...-.---..---.........-.-..---....-.
PrOJTAMus swwaevnvacstswdnmraoassenaesnssnsasansstaonsensnnanssae
Syntax.--.......--.............--4-.......oa.-..--..-...----n

Syntaz OF the Stal oS ecsesussscssssnscnsusnranssncrsrabantnenssan

active (blﬂck activatioﬂ)-.......,.....-....‘-........,..-..--.---.a-;

active (inner data Set)e.vcasesesaenccsssasncarscrnnsnaseansannsnssnsvss

=
]
L
.

active (task/event).a.......-....a..--....a...--..-.....‘..-.-......-.

aggregate BAEETiDUt e e srneassnnsvsnnsnassnnvssscaacavssannssassanssasnsy
aggregate attTibute O0f & TFelereNCBecesssnssrsasrastssorcanssatsasnsnss

5]
.

aggregate NAMCo s asecsvr ta8iosernassadst vrassssinsessamscsstastssvssaons

allOCate.;..-......-.a-...-g--.s---.-------....-.,..-..ag.;..-...-.-..

allocate sStatement.esscaessssssvssasanssonsnsanccnvaassnsussssasasnisnmans

allocation {Of a buffer}.-.,.....a.-........-.............-....--..--.
allocation StatCecanssscssssescansaasssssacessnssssssassansanssssnsnns
applicable.....n....--.....--.-.-.-...-.........--......s..-o--.--....
argument expressionanuata----oanﬁ--n-o-n--q-a-..cn.au.o..-c-ocnoo--n--
argqument vpart {of a reference).cecesrsnceceensaasnssnsoncsnusnsvennans

arfay.a.o-....-.-qua-------an-.--n.a,......aa-a-o-..-.-...-..-.-....-.

o
b
»

R e o~ Ry |
+

. .

assignment'..”“'---.‘.P“.'..‘n-.“-..-.'I.-"-.-‘-"...."'.....‘-’..
associated event VATriableueanoancsennrsnsssssenssnsosnssnnvssnsssassssassn
associated task variable..cesecscsssscaroveassesassonnssarasascssnsnnns

asynchronous interrupt..scecceenssesnnssesssnssnssonssnvosnesavoansnnsas

attaching

-
—
[]

(a task).-------....-......--.....--c.-....-....-.........-.

attention....,.-....-----...-.--......-.---.o-.--....-...a;a.-----.... 12.
attention {declaration)ecesscecsscensssscssnsecsrascersacasnsssssnsnnsses

attention condition CAllecsccnsttsansussnssssnsasasatoannnassaasnssnnsss 11.
attention direCtOrYiaesrscesesnecasansesssccnanssosssnsascnsnsassnasssnsuss 11.
attention environment directory.-.-....----.-..-.-.--.---....-.-...... 110
attention event.,............-..-....‘---'....‘-.-.‘..'.’..'--‘-...-..- 12.
attention informatioNesesessesescecsenaanassacsasaassnecnesanancssssnnaanse 11.

based free Seticievascecosssnssasacensasasscsasscassnasnaasscsasansanansss

based VariablE......---.-p--e.a...a-...-.-.........o.g.-....-.......-.

basic data transmitting aCtioRoecesesecssesncsnscsnsssavcassanssnssssa
basic data transmitting functioRci.ceecactvescancevassoseaansssnsccsans

= &
L]

begin DlOCK . aussssasnssacescsassssasasarsnsnssesssssnessansanavsnctscanses

bit String ValiUBeeasevsssnunsoasssanstotsarnassasasasassarsateanssanasss

=
.

bit to character CONVErSiOMNiuscsccscsanrososenscsssnssasasssscanncrsanea 10.

bit to NUMEriC CONVALSiOMNeicssassssscsosscsssvsanannssnsssansssasssanaaan

bit valuealvn-aaa--q.c-.-.-.l-.qc-d..-.;;asl.".:-al.-.-u--s---dnuucob

APPENDIX:

=
= o
.

GLOSSARY

The

M -3
.

a

. - . L[] L] ¥ * L[] L[] [3 L] L] - . - » . L] L] - [] - [] -
EEE S S S TN S ST R B 6 S e N N T N N e [- QS Ry W

- B ek e = RN LSS DD W N W N ON

+ [I] [] [] [] L[]

=S PR - NN

*

= - D) W]

1

rsm LAB V¥

INFORMAL INTRO TO THE

blocKkeeanonsessnaseans
activaticNesnocs
activation rane.
activation type.
localecroncncoas

block
block
block
block

IERNA

bufferceosccccsanvssonsas
briltin functiofeoeass

character
character
character
character

ABSTRACT

E

string valuecesean
to bit conversionc...

to pumeric conversion

»

*

s

Valuennsoeanun-u-onne
check standard system action.e.
close elemeNicosoecooas
COmmentoegoonuwneoaae«
common argnment parts.
COMMON EEZPresSSiOnScaes o
common referenceS.csas
common variableS.iscossnsvnens
complete set of attributes.
completion valu@.cesossssae

computationN.scscennsas
computation stepaszes
concrete identifier..
concrete pPrografsssass
concrete SyNtaXcsnsos

condition
condition
condition
condition
condition
condition
condition
cendition
condition

conversion betwesn pointers

actiOfesson
builtin function

o

@

»

°

o

o

=

-

L]

-

-

CR-]

LI

58 a8

EIE N

a % w®a

LI]

o8-

LN

Callt4taat¢n-onoo
indication..
part-.a-oulu
prefix part.
selectolesos
statlecsonnos
LYPRocnsencs
conditional unlocking..
connected {flag of a parameter declaratioN)ecsassccssans
connected {generation}a.esscoscas
consStanteeccesncsoaswosse
control formatescecesss
control information Cl.
controlled groUvecesses
contrnlling variablecscsaseonas

»

o

a

oSS

EEE]

asenoa

seacz

mesasa

°

L

a

o

Te v ewo oD

oo e s n

n a0 8 e

LI I)

LI

COPY 2CLiONaecsassasnsssconne
CTOSS~S8CEtiONecsvosvnvasne

current

{block activation)}

current generatioNeseccsss
current tasKeasascscesssnas
current task-event name,.

data
data form
data set.

data set
data set
data set
data set
data set
data tran

daughter

2 APPEND

attributResoass

at step...
@B 8 O F s aDYE
directory.
label.ivess
namEOOQﬂOH
switching.
titlecsaseoas
sSmission..
tasSKesasan

IX:

GLOSSARY

L)

#

@

-

]

»

-

-

»

SYNTAY

-

"

-

]

»

-

AND

seo0 o6
LI N
secwar
ewsas so0

a3 vaaan

INTERPRETATICN

wAMIRPH LGB B

LER IR IR RN N R

-

LN R R RN RN

B OB L LR BB PN BRSSP ED N D

LY

o8

- @

ee o0 oe

o e esnw

fee oo ew

L I Y

A D s eETEYTEARE DD

and offsets..

o

-

* 08

@

-

W

CE RN

LIE IS

mes o0 on

0w e

s &w o0

-

-

R Y NN

ERE RN)

EE RN RN EEE]

vaosae

or

PL/T

30

TR 25,099

JUNZ 1969

1~
[

+

[Ja o]
®

NG
&

.
[}
Y
n
&
D and
L] L]
SRR R) S s Y

L]

)
L]

W S R LS b bd b L —
E]

—
[o A ~ e o R =
ES
€

a
a

—
[\
“

— W
3 8

=%

A&
- ek o O
e & a

=

12.2..

~d
o

b h
L]

- b

=y pr

- _as

[& & . a

F
]

Y -
= N R —
] &

)

b
BN B R DT b N B
* 8 8 &]

ey
[
s
o
*

&

-
[N~
4
LI

4
[pSIRUREN [EVe IEVS]
¥ ?

a
= v
)

L3

%
a L
NWWDARNMN AU O EO 20 80 =Wl IR = bR U b o b e vd 3 ot B b B B

~
a

[
&

—
[
®

&
@

¢ [
() =2 b = 3 b d —d BN

=
®
&g wEE N
.

= =
8 8 _, & &

el L B) wd i BN
s & @ -

IEM LAB VIENNA

TR 25.099

30 JUNE 1989 INTORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I1

declaration-laaitlﬂﬂnODGIOO!DU.I.D-I.C'-...l‘lﬂnﬂﬂciﬂ-’-..-O"..lll'...
declaratioﬂ partﬂ-sﬁ.'lﬂ-O.ﬂ.‘IDQ'.-GI.-I.G’...’.'IIDI.’.I'!."OQ.I.'.I-
defined variahlel.sn.-.'..’!lll.t.llb’i‘...s..‘ﬁﬂ!.‘l“.v.l...l.l’..'.
definition of the REDUCIBLE attributen-.---.-.a.-.-.a......-...--....-
densityn..oliinoﬂﬁ!-ldﬁa.,cltllﬂllﬁ.’b..l‘ilt-!.llultﬂl‘..l‘ll.l.i-ll‘
direct {access to standard system print file NANE)eessscsrsacscsesnssa
dummy operanduaQl.l’i”'l.l.lO‘.lt.lt.ll.wtl.-.Q!..G!D’I’.i.‘..l...l't

dynamic descendant {block activationS)iecoesssesnsnscesasscusrasansrsnna

elementary allocatiOMesscssccverasnesssassscsannsvmoscasssvassoncansns
elementary datz field transmissioﬂ.a-on---aa--zs--oi.c-q----oa.--.----
elementary data transmissionnao-o-.o-coo--n:s-.---a-u--aoao-at.--o.-‘o
elEEEntarY freeing'---a-t-a-tu:.--aaoasc-n.-&--ansn-d--a:o-n--.y.---d-
ENE StAlCuncownorscessssanssnccanssoransssansssosmenssnosnsnnsssssannss
endpage standard System actiono---va:assutoc-ao-a--d-.w-o-o.souo---t.c
entry attributEoo.---a-ou---o--OQ-OlQ--ac-n-.-;a-dqaavtacn..---s-ia'--
entrY CONStANTsnsvssasnnssosssunsonosrnsusnsassssnsenancsosanasasashan
entrY denotation---..e.a-d-.....--.-.-n...--------a;a---.-.........-..
entry identifieruesnsvascassnosnnnasnenanacranessonanosssancssnssansconnsn
entty part/pointa---..-...--.-.-a-;a-..a---m..--.----.s--.--..o.---...
envirﬂnment attributEnﬁo.---o...--nuoo:----y--.a.-;ao----n.o----o...--
epilogue (of a block activatioB)eesvssassessasncssansoncatoncosssensan
erroneous computation (by wrong use of RECURSIVE attribute)..caceascass
erroneous computation {by wrong use of REORDER attributelesveicrccinass
evaluated aggrEgate attribute--unnaqans-ooo---‘nas-a-n-ootnaawnt--.-‘-
evaluated attention Condition..-..-..a--..--.;s..a‘-.----.-...........
evaluated Condition..--»---o.-..¢--a-.-...--...‘.c--..o---.-.,-.a.--..
evaluated statement Xt encwsvonsnscsnsanssussasssacsanscscrasosnassuraas
event Yariable...--.a-«.--a-.....e....--.n.....-a...........ag..so.---
exactly representable.....oa.-a-----.-.--...-.....;...-..---.-g.------
expansion step {O0f 2 format 1iSt)ecescesscassccsacsasnsasassccasnvoses
explicit Closingg...--.----.u.-.---a.-.....q.-..--.....--..,...--.-a..
explicit Openiﬂgocoaq-n--xna-ogn--aqag---tns---ono--.a-ssn---n-ooa.--.

explicit picture attribute.,...n..o.-.-........-....an.,...gg,a.;...w.

fd-status (file directﬂry Status)--w-n-.:o--»--aa--a-a--.n.n--a-c-.--a
fileceocosmnusnsnssoscsatsessnonnoassnstodasnesssrstatasnnsnsssnsanssdnrs
file CONStANCavoossonanoanssvwsnaassrtesnacassnsosanssoasussnnansassssa
£11€ NAMECevrswnsasssavsonsssesnenssnmennasssnansonssnassssnnesanasnassenn
file UNiONeuacencsansmsssasnsasstasuscsvnasurnamosunansnnnastnessassss
file UGNIiON NAMEusswoscssvasssbencanmessnsanestosssansnssdnsassrssrusanans
file ValUl.iccananscsorneososcsvsnsmanesstinasaascasnoasussusecsorrannsasensan
file‘bput (Statement}“.."‘-""."’-‘..".."'-‘-"-."-‘..-...""',..‘.'.
format label constant.cievicosvmetonccssronssmemssacascanssnsnnanssans
free."’ﬂ.ﬂ..ﬂl‘."".‘ LI I IR B I B B B B B BB B B B B B BE BB B IE B BE N B O B BE B BE BRI BE S O B B B I BRI B)
free Seleecitsvssnsoasvrsessssnssusannsosnssnaonsssssinsnnassnasssnnsmsaness
freeing {Of a buffer)..-:.‘-.-.--.-...--....--a.-o-o.a-..-.-..a...a.a.
fully qualified name..ﬂ-'b“-‘-.‘-...‘.’.‘..ﬂ'..-..ﬂ.‘.‘...ﬂQ--.-‘.‘.-
function deﬂotation.onnaoncoaa-n-o----os---o-onc--g.--azc--cane------.

generationlﬂ-ﬂﬁﬂlﬁﬂﬁw.l..‘..'.-‘......“...".‘..-..."'-‘.‘."‘..”."'.
generation liStuoosoevecoescessnssnsrensconnacsnstodnnasssnsnenanasass
generic (family) member.-...i..-{,.;.---......-a.a..-.-....o.--...----
generic identifier.----....-....-.-..n.o-.-.-....o.aa.-...--;..-..---.

generic SeleCtiONaccasnsscscsssninsssnarsonasmanmassmrannsnenmsananssnas

global-onn..--t..-aoaa-------o.-dn-a-og--.-o.g-aaa-o----a»-;o--ao....--
groupcooaucu‘g.a--o'.n-.oat\'l-.a--.l-..--.u..oa.l.at-.aban‘ol--i-al-a..

group ({repeated eXBCULION) eccnerssacvsnsssoncasnoscucanncaamanssmeacssa

Y
@

—
Ny B2
. .

= Oy
.

[\ RS Ry Y A}

-
b
.

-
[
— ka3 ¥ -

-
M
*

—h

'y
%]
L]

[y
Wbto b NN

.
Lo o T P A N 6 T G |

LI}
. » []

*
L]

=33
. . N
. P % o

. « ¥ 0w
WK SN S = DD W e RN o Lo WA LN e b oad s W

£ N
. .

[~}
B4
L I R T

- b N
-

e

B wd nt D) D OY W 2 - D0 D W
]

LI
. . L]

DN oE
-

[TV o5 B FER N Ry
[

F=
* “
LI T T T LI

[I o]
- 4 4
NEFWNhOAN GOV WD oD
[] [" [] L) »

[]
FaaffwhasaiOmooa

(]
L]

@@
.

+
L

f =
)
L] »

L3

2
L]

¥

.
bk WD

-+

W Wl N N
s

APPENDTX: GLOSSARY 3

TBN LAB VIENWA

INI'ORMAL TINTRO TO THI ABSTRACT SYNTAX

I/O“eveﬁtauwansvn«muavawcauauuaaseu
I/0~event~setccoscosesconossconanone
identifier list (of a referenceloss
if-statementecssacoocssocanoocessnss
immediate component {of =z variable}

irnediate unloCKinGeecsasess
implicit cloSinge.sucvsassas
implicit oOpeninge.scsccscocas
inactive ({inner data seit}...
independent.coruwsecncosvnonos
ipdex {component of control

infix expressiOfcesascsocosowms
inherited fd~statuSsesuwsesas
initial attributPocccscosans
initializationNeccamonssanona

a

@

o

=

s
i

=

i1

Y

3

s oo e oD

EEE RS

Do oa

a0 0 e o0

L

@

AND

LR YR

tO BRGS0 RD D

sesecaavsczesssnsnase e
RformatioR)cccsasconson
indirect {access to standard system print f£file name)

a

@

o

3

inner data Sefcucesssmecusases
inner veturm typs {returm type of an entry point)
interrupt StePuccecussosavsucaa

intrinsic datasscescnsssasnao
jterated format...ssccccosos

label listuccacssnewocsnnnos
left~-to-right seguivalence...
locked {key by same task) .o-o

main identifielfccecn=wnonaas
maln procedulfscvccccossssons
main procedure flage-cccccss
Pain tasSKcsesocoosscoscuncnns
mapping {of a date s8%}scsnoe
mapping number.vssoasocacanns
mapping parameteTecccsssccos
nother ta8Kcocococsmsncasescos

RAMEE HESSAJBcwacvsccscomass
nested {block activationsj..
normal termination

u

2

u

2

2

=

o

{ocf a task)

not guaranteed referencle-.sva
null statementosccossssscnuona
nemeric *o bit COPYRYrSiONecsosos
numeric to character conversicn.

nugerical valeCsescemsscnsnns

ocpen Elemeﬂ&amoocmwnaeamuemo
opening CriterioNcecscscssaoce
0peraANGeacsscescscnvoscassoss

outer return type {resturm tyove of an entry

]

Y

=

@

Do COREOANGD MDA 0T D

XY

@

o

E)

o

a

@

w6 2

@

o

2

ovn fd-statUS.csoevcvacacsonnsos

parallel action part Phesoao
parameter declaratiof:coescss
parameter desCcriptoloccoesases
parameter descriptor list...
parameter identifieroccccsas
parameter 1list.ccessccsosvos

@

=

L]

parenthesized expressicCRensszas

passing of denotation/generations/value

&

@

@

2

@

L]

o

e

o

o

2

w

a

El

»

@

@

5

LMD B0 PO SD DY D DD

sasecomoaBDEBOCIad

omAassenBomaM e 08D

O DL DD BB D MO R DD D

oo B

]

o

o

o

@

=

"]

P

-

o

<

«

I

L]

@

o

@

@

L

@

@

sazo08e

omp o0 aa

EE Y E N

»

B

a

o

w

]

o

L]

s aD e oD S

pictured ¥alulsscscscosocvocwocssncscns
pointer.ccccosnscoswvocovanosannasoccsosaesossnooacnn

pointer gqualifielrcssccscecscnoasonsssoscacsoansansas

4 ARPPENDIX: GLOSSERY

Te 68O tan e

ceoesond oA

Lo aBENm B o

RN RN

coscoRLI0Q

BB DeB &8ss

INTERPRETATION

LR R E LN L R -]

09 05050 H DD
sacmssmcws
20 e 896 a8
BT OO0 DI B DD
D WP oD DBD S
ssavences o
LRI BB BB B]
{dUmEMY} 2 0o

40 V6T e Do

csssaoscacssa
declaration}.

sacsraseca e D0

OF

rL/T

3G

TR 25.09%

JUNE 1969

Q

o
L]

Ll [

@
@

[
[

B
2

[
Fold Mo

&

]

=
1

&
L]

[
&

b
&
)
]

L]

mad
[NV]
a

4
2 [

8
L3

o &=
8

& & 8

[IR TS IR FVIRT I G S N N i RS SRR I 06 B N R |
)
B =2 B0 B) b = e Tt ws PO RO o B LT LD b B sl

Ll

R &=
)
Lt
Y

—
a

-]

2.3
10.2-5-2.5
12:5.2

#

-]

20 X
€

[N RSN O]
5

-3 &
w0 L W)
a a

4

=
+

= W =
@

B

~J
[E]
G N = o & B R

—
8]
- bl B
6
PG T PERPY I s » RS

@

L

el

Ll

-]
&

o
[~ eNw
&

a

&
-]

—

E

oy
b
&

-3
<

L)
L]

a

oo &
a

[IS R Y I
L]

b) e =3

—a

o

-]
8 -]

[

L]

END Gl e DO ot B D =
-]

o wd) b £t n BN wh b o)

3 &

&
@

bDpo 0@
-]
S

L3
&

—
b= Q@
@

]
L]

]
]

TEM LAB VIENNRA

30 JUKE 1969

THFORBAL INTRO

position (of an inmer data set}.
pre-evaluation of expressions...
prefix expressioR.ceccsncawas
PrEpasSaan-uoanuocuoco-oan-oc
PTiorit¥acoenscoccosssoncsvsnn
priority scheduleleacsccessse
procedure bodY.ocswensonasssss
procedure body Partivecesvous
procedure Cidllocsscccssesvoans
programaa&ll.‘Q.I.G"’QOQIIGO
Progran 1localecovassscsnnsass
programmer named condition...

proper
prober
preper
proper
prover
proper
proper
proper
proper
pseudo

ClosSifNigeacsenconeasnne
data elementeavasvsssas
data tracsmissiofescos
inner data Setccoosoas
intervretatiofesoeasases
key:annvw)oaooasco-a.-
Openiﬂgosbauuuuausawne
statementecusonmssacess
VariablE-n-e¢-------g.
generatioNesecescsssesa

raising of a conditioNecsnces

record

{data) elementisesecass

reducible entry referencess..
FeferenCeoaavescsnansnscoanass
reference lisSt.sccsssencscsass

remote

format.cscssseccnconosas

representablescccoscsascsssas

representationcceccesces

a0ae

LR

LN)
v aew
- opa
“sen
L]
- nwa
LI
LI
RN
LI Y
LR
s a390

EREE

LY
LI
L B
e eno
L
X

@B ve

D 2B EBIPN AL GEDE

return type {of an entry point)ecwoanse
return type {of an entry declaraticn)..
raturn type {(used in epilogue) suveanese

ScalaroaGl..llIQQGOOQDEB'QIOQDDQQ‘OIB
Scanning argumMenNt.cccescccssncnoaasa
scanning €lasSssencso0cvsvecnsscsons
scope attributCeccsscemcvsnnonescss
semi~-complete {I/0O~event}ocsccosces
Share,uﬂbu”ﬂﬂﬂaﬂnsae‘nﬂQiﬂDDlﬂﬂOB’lﬂ
sharing {of a data Set}eccscsvscssw
SiZEaacnwaweeapoquenﬂoa-ccnnnoowcan
standard systen actiONeecscesnescsas
standard system print file nanme.
statemnenNtescvccssasonsssescascssesss
statement label constant.cessocus
statement listo-onw-u-nunwoaw.w-
statement locatioNacccscsacenscs
status {of a file union}aescocssws

status

Valu@oeooswsscaanssman

® 8@

storage class attributE.scsescias
storage mapping functichaesoaos
storage OVerfloWecavnosensecas=

stream

{data) elemeftocssceoa

Stream basSP:ecsessavescasanss

string=-
string-

get {(statement)..css.e
put {statement)..ccana

Structur€cocccscsasscasanosno
sub-generatiolessascsecscsnas
subscript list (of a reference).

@ % o

EI)

@ e n

ERCR

LI

& 6w

s oww

suea

o8B

@@ B

L

uoeway

" oon

* s B

naeas

2 aas

s e w

EIC)

LICIE

LI

s pnaw

v 90 e

s wen

EIL I

©v s e

RN]

aea.

LI

LI

LRI

RN

ER N

LI

v o 2o

L)

LI R

EIN Y

-

TC THE ABSTRACT SYNTAX

AND

LR I NN

aene e

D as s

osaaw

ER N R A

*w o s De

LI

LN

ERE I NI Y

o660 e

s s wvaes

et D ea @

APPENDIX:

e 0

LI R

3@ an

LI

e n a9

LI LN

LI

&

—_

[NE
@

TR 25,

L]
=

s
[y
(= WL}
)

BN D
*

& & a
=3
-0
5

w N W po
.

»
=
L

¥
=

2

-3

na L
o

2
—

e 5 8
&=
]

SN

-t

L3
-
[\
*

5

-

8
DN E EME
u

4
N YO N
4 & B
NS E N
]

4

L]
u

£ D DT O G B B D s G PN BN DD vl B B
+

L] &

&
| S g
L3

B
— b

a

-
N

L3
RV
]

* L]

L]

L]
=

L]
— ek own B
MENMNMNND WE &N
2

-

¥ & B

GLOSSARY

099

INTERPRETATIOK OF PL/I

o+ I ST SE RN RN |
L] &

3

4

W U G w B
¥ o
BB G 2 e W NN W =2 ma B ot I o o

8

L]

[FSI 0 I o0 N RN
4 L]

[ST N R N N S - T)
& 4 9 a
£ WNNNE 2N

a

[

)

4

&

B & 9 & & s 8

k' * & a & @ L]] © L]
i O b 2 b BN b L0 e T W) Wl) = U] b

5

IBE LAE VIENHNRA TR 25,099

INFOREAL INTRO TO THE ABSTRACT STYNTAYI AND INTERPRETATION OF PL/T 30 JUONE 1969

—

successful proper cloSiNgecossesnsasssvusssossessnssonnnanntscnnssonsons
successful proper OPENiBJecsasssdesssscacstnsssccananenensassnsonacosss
succeSsornsaa0005-0-‘ﬂﬂaGIBQGWIQ.Dn-ISQDBC@&OGﬂIQ!Uﬂt‘:ﬁﬂl.l'l‘n’w..ﬂd.l

synchronization {of tasks and I/0«-eveniS).sesnescsccascsessansssaasnnss

4
a

=t

[\

L
NFJN
[o% PUREC

*

~ =k N

—~
[\
o
b

4 Da e

tabulatioﬂolQoenaa‘oe.lﬂ.liﬂnﬂoann.Diﬂ.’iﬂla!BI"Qt.!l’l...b’.lﬂ.’ﬂ...
taskauﬂnnaaassﬂﬂﬂbtuﬂﬂﬂﬂ!sbuﬁﬂuuaSnoﬂvotﬂﬂ'llﬁﬂﬂoﬂ'lﬂ’ﬂﬁOUB.EQ‘OI&I!.h
task globalﬂ..ﬂﬂ.ﬂﬂ.bﬂvﬁﬂoﬂoﬂB.'Bﬂ‘ﬁl'..'wo".xﬂlbl‘i-ﬂ.ﬁ‘."'..ﬂ.‘@'ﬂ..
task 1Gcalnnsﬂ@@.aalﬂ!ﬂﬁﬂau-&u‘l-ba.WzﬂOQIIDUO#CQSCOGi#‘a.ﬂ.i.ﬂl.n-".
task Setseou-aeocgwnawnnauomapnlasuo-uoeongnufo-oeo---o-a-vaavo-aaona:a
task‘_event name-nuﬂsaeﬁaBIDﬂBBo.--ﬂ’nl'.O.ﬁ.!.‘ﬂ..h.o.SQDIICI..I‘..--C
text (component of contrcl informatioN)eucecesacsscansccsscsmasescovans
te the left fin aggregateg)aeaoau-u'aasanuoassa,sogsanue-aco-oc-uca--‘
transmission error flaQeccscceansnossnsescconocnsscsnasnasnsoooonansnsns
transmission pATAMEeteTesocosecovisvanscacossnasascastonascsensansennsens

o an
¥
o

@
*
Gh Lo O s e
4

*
&

®
- T N T ok e] DI

.
N E &
.

L]

*
»

unirterruptable ACTiONscscscccesssncssscsssbeaessanssacsscaunsansonass

unusual situation {after basic data tramnsmitting action}.cssvcusscasss 4.3.4
Value’aaueaaensns-oaan’wmoqeoono.woanaoanuno-nooo-uc-cncnaaauu-uuo-ooaﬂo u-‘ﬂz
value ccnversioasuaaontoaaesuaqannoosmaeasu--un:qans.-4a---naau-aou--. 10-312

4,2.1

value representatioﬂasnec:snae-aouaaucanona-acwo‘m-qn;:o-oo-aa-nu-o-oc

T.2
9.5

¥ait state flagsoeunannnaeuauaaaanow.ee-gu--aoac-a-n-aaoaoou---asno--n

Hhile group--ounnsseanc-suﬂstﬁnauilﬂolnoaac-c'-.osacnnaa-oucst'nouuclo

6 APPENDIX: GLOSSARY

	SMonmouth1607201415011
	SMonmouth1607201336010
	SMonmouth160720133609
	SMonmouth160720133608
	SMonmouth160720133607
	SMonmouth160720133606
	SMonmouth160720133605
	SMonmouth160720133604
	SMonmouth160720133603
	SMonmouth160720133602
	SMonmouth160720133601
	SMonmouth160720142600

