
TECHNICAL REPORT

TR 25.099
30 June 1969

INFORMAL INTRODUCTION TO

THE ABSTRACT SYNTAX AND

INTERPRETATION OF PL/1

K. ALBER
H. GOLDMANN
P. LAUER
P. LUCAS
P. OLIVA
H. STIGLEITNER
K. WALK
G. ZEISEL

LABORATORY VIENNA

N 0 T :

This do9ument is not an official PL/I Language
Specification. cor information concerning the
official interoretation the reader is referred to
the PL/I Language Specifications, ~orrn No.
Y33-6003-1.

ABSTRACT

IBM LABORATORY VIENNA,
Austria

INFOR"AL INTRODUCTION TO THE
ABSTRACT SYNTAX AND
INTERPRETATION OF PL/I

by

K. ALBER
H. GOLDMA!I!I
P. LAUER
P. L{JCJIS
P. OLIVll
H. STIGLEITNER
K. WALK
G. ZEISEL

This document represents an informal introduction to ~he
formal definition of the abstract syntax and interpretation of
PL/I. The intent of this document is to give sufficient
information on the basis and structure of the formal definition
so that questions af detail can be formulated and ans>~ered by
consulting the formal definition.

PL/I
Formal Definition
syntax, abstract
Semantics
21 PROGRAI'lMYllG

TR 25.099

30 June 1969

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

This document is an updated version of:

/1/ LUCAS, P., ALBER, K., BANDAT, K., BEKIC, H., OLIVA, P., WALK, K.,
ZEISEL, G.: Informal Introduction to the Abstract syntax and
Interpretation of PL/I.
IBM Laboratory Vienna, Techn. Report TR 25.083, 28 June 1968.

It is part of a series of documen.ts {tJLD version III) presenting the
formal definition of syntax and semantics of PL/I:

121 FLECK, M.: Formal Definition of the PL/I Compile Time Facilities (tJLD
Version III) •
IBM Laboratory Vienna, Techn. Report TR 25.095, '30 June 1969.

/3/ URSCHLER, G.: Concrete Syntax of PL/I (tJLD Version ·!!!).
IBM Laboratory Vienna, Techn. Report TR 25.096, 30 June 1969.

/4/ URSCHLER, G.: Translation of PL/I into Abstract Syntax (ULD Version III).
IB!! Laboratory Vienna, Techn. Report TR 25.097, 30 June 1969.

/5/ WALK, K., ALBER, K., FLECK, M., GOLDHANR, H., LAUER, P., HOSER, E.,
OLIVA, P., STIGLEITRER, H., ZEISEL, G.: Abstract Syntax and
Interpretation of PL/I (!lLD Version III).
IB~ Laboratory Vienna, Techn. Report TR 25.098, 30 April 1969

/6/ ALBER, K., GOLDMANN, H., LAUER, P., LUCAS, P., OLIVA, P., STIGLEITNER, H.,
WALK, K., ZEISEL, G.: Informal Introduction to the Abstract Syntax
and Interpretation of PL/I {!lLD Version III).
IBM Laboratory Vienna, Techn. Report TR 25.099, 30 June 1969.

The method and notation used in these documents are essentially taken
over from the first version of a .formal definition of .PL/I issued bv
the Vienna Laboratory:

111 PL/I Definition Group of the Vienna Laboratory: Formal Definition of
PL/I.
IBM Laboratory Vienna, Techn. Report TR 25.071, 30 December 1966

/8/ ALBER, K.: syntactical Description of PL/I Text and its Translation into
Abstract Normal Form.
IBn Laboratory Vienna, Techn. Report TR 25.074, lQ April 1967.

iii

IBM LAB VIENNA

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JDNE 1969

An outline of the method is given in:

/9/ LDCAS, P,, LAUER, P., STIGLEITNER, H.: Method and Notation for the Formal
Definition of Programming Languages.
IB~ Laboratory Vienna, Techn. Report TR 25.087, 28 June 1968.

This document also contains the appropriate references to the relevant
literature. The basic ideas and their application to PL/I have been
made available through several workshops on the formal definition of
PL/I, and presentations and publications inside and outside IBM. The
method is demonstrated by application to an appropriately tailored
subset of PL/I in:

/10/ LDCAS, P., WALK, K.: On the Formal Description of PL/I.

iv

To be published in Annual Review in Automatic Programming - Vol.6.
Pergamon Press, New York 1969.

The language defined in the present version is PL/I as specified in
the PL/I Language Specifications, Form No. !33-6003-1, with the
addition of attention handling, input stream and string scanning, ana
fil~ variables.

The present document will be made subject to validation by the PL/I
Language Department, Hursley.

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFOR~AL !NTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Project manager: K. WALK

Authors: Authors of the present version are listed in the following
with their main contributions indicated by chapters. It
should be stated that credit must be given also to those
authors of previous versions who have not been engaged in
producing the present document. The contributions of these
authors are listed in the respective documents of the
previous versions.

K. ALBER 2., 1., a., 9.

H. GOLD!! ANN 13.

P. LAUER ij.1, 10.3

P. LUCAS 5.

P. OLIVA 4. 3, 12.

H. STIGLEITNER 14.

K. WALK 1., 3., 4.2, 6., 10.1, 10.2

G. ZEISEL 11.

Proofreading: P. LAUER

Production: This document was prepared by means of automated
text-processing systems. TEXT 360 was used for processing
the prose parts. The formatting, indexing,
cross-referencing, and updating of formula texts was handled
by means of FOR!ULA 360.

FOR~ULA 360 is a syntax-controlled formula processing system
which was developed in the Vienna Laboratory especially to
facilitate the production and maintenance of PL/I Formal
Definition documents. The achievements of K.F. KOCH in the
overall design and imple•entation of FORMULA 360 are
acknowledged in particular. Essential components of the
syste• are due to G. URSCHLER (syntactical decomposition of
forMulas) and E. KOSER (formula input checker). H. Hoja and
G. Zeisel contributed to the clarification and formulation of
the required for•atting processes.

Coordination: F. Schwarzenberger, K. Stadler

Technical control: K.F. Koch, E. Koser, K. stadler

Data transcription: Kiss w. Schatzl, Krs. H. Deim, and sub-contractors

systeM support: H. Chladek, G. Lehmayer

·v

IBM LAB VIENNA TR 25.0q9

INFOR~AL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

vi

This document is an informal introduction to the formal definition of
the abstract syntax and interpretation of PL/I /5/. The intent of this
document is to give sufficient information on the basis and structure of
the formal definition so that cruestions of detail can be formulated an~
answered by consulting the formal document. The central part of this
introduction starts with an outline of the main syntactic structures of
abstract programs with attached notes as to the relation of abstract
programs to their concrete representation (chapter 2). A brief su .. ~ary
of the major state components of the PL/I machine is given in chapter 3.
The chapter on storage and data outlines the objects which can be
manipulated by a PL/I program {e.g., values, value re~resentations,
datasets, ••• J and their treatment by the formal definition. A summary
follows of the entities which can be declared in a PL/I program and their
forMal equivalents. The comnutation of the PL/I machine is discussed in
chapter 6. Chapters 1 through 14 explain the basic behaviour of the PL/I
machine in interpreting the major components of a program, whereby the
instruction definitions of the formal definition and the control cycle of
the PL/I machine are replaced, so to speak, by plain English sentences
sometimes augmented by flow charts.

This document is neither an introduction to the notation used nor to
the method applied in the formal definition (for method and notation see
/9/ or /10/). The terminolgy and style of the explanation assumes
familiarity with l'L/I and with the methodology of the formal definition.
This document, therefore, does not represent a self-contained
introduction to PL/I and is only intended to be used in connection with
the formal document /5/. It does not cover the entire range of the
formal definition of PL/I.

NOTATION

In general, abstract objects are represented in a two-dimensional
form. The following conventions are used:

elementary object. The box contains either a
variable whose name indicates the type of the
object or the object itself;

composite object whose structure is not
further specified. The box contains either a
variable whose name indicates the type of the
object or a concrete representation of the
object itself;

composite object where s~,s2 ,.G~ 6 sn are
selectors and v~,v2 ,.~.,vn are the immediate
components ..

IBM LAB VIENNA TR 25.099

30 JURE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

1. THE OVERALL STRUCTURE OF THE FORMAL DEFINITION OF PL/I •

2. STRUCTURE OF ABSTRACT PROGRAMS
2.1 Block Structure

2.1.1 Program
2.1.2 Begin block
2. 1.3 Procedure body

2.2 Declarations
2.2.1 Proper variables
2.2.2 Entry declarations

2. 3 Statements
2.4 Expressions •

2.4.1 References
2.5.2 constants

•

3. THE STATE OF THE PL/I !ACRINE
3.1 The Use of the State Components
3.2 The scope of the State Co•ponents
3. 3 Directories and Stacks

4. STORAGE AND DATA

•

• •
•

•

•

4.1 Reoresentation of Data in the PL/I Machine
4.1.1 Values, value representations, operands

•

•

•

4.1.2 The transition between a value and its representation
4.2 Internal storage and Generations of Variables •

4.2.1 Storage and storage parts
4.2.2 Elementary assignment
4.2.3 Elementary allocation and freeing
4.2.4 storage mapping
4.2.5 Generations of variables
4.2.6 Sub-generations of generations
4.2.7 survey of attributes depending on the storage model

4.2.7.1 Areas
4.2.7.2 Pointers, offsets
4.2.7.3 The ALIGNED and UNALIGRED attributes

4.3 External Storage and File Unions
4.3.1 External storage
4.3.2 Pile union of a file
4.3.3 Data set mapping

4.3.3.1 Inner data sets
4.3.3.2 Data set activity •
4.3.3.3 Forwards and backwards transmission •
4.3.3.4 Related mapping

4.3.4 Basic data transmission
4.3.4.1 Positioning, reading, and deleting
4.3.4.2 Rewriting
4.3.4.3 Writing
4.3.4.4 Transmission errors

• •

•

•

• •

•

•
•

•

1

1
2
4
5
6
8

10
17
21
24
26
28

1
1
3
4

1
1
1
3
7
7
8
9

10
11
12
18
18
18
19
20
21
22
24
26
30
31
31
31
34
35
35
36

vii

IBM LAB VIENNA

30 JUNE 1969 IN~OR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

5. IDENTIFIERS AND THEIR SIGNIFICANCE
5.1 Declaration and Use of Identifiers
5.2 Denotation and Attributes
5.3 Proper Variables
5.4 Based and Defined Variables
5.5
5.6
5.7
5.8

Piles .
Procedures
Generic Names
Builtin Functions

5.9 Labels

•

5.9.1 Labels which serve as designation of
5.9.2 Format labels

5.10 Attentions
5.11 Some Remarks

•

6. THE COMPUTATION OF THE PL/I MACHINE
6.1 The Initial state of the PL/I ~achine
6.2 The State Transitions •

7. TASKS
7.1 Parallel Execution

•

•

goto state•ents

•

•
•

• •

7.2 Representation of Tasks
7.3 Attaching of Tasks

in the State of the I'L/I !lachine.

7.4 Termination of Tasks
7.5 Synchronization of Tasks

8. BLCCK ACTIVATIONS
A.1 The Dump D
8.2 Interpretation of a Begin Block

8.2.1 Unique qualification of names.
8.2.2 The block activation name BA
8.2.3 Interpretation of declarations
8.2.4 Block epilogue and the epilogue

8.3 Procedure Call
8.3.1 Argument passing
8.3.2 !unction reference
8.3.3 Return from a procedure
8.3.4 Generic selection

•

•

•
•

•
information :!:I

9. FLOW 0? CONTROL RITRIN A SINGLE BLOCK ACTIVATION
9.1 Secruential Execution of Statements
9.2 Nesting of statement Lists
9.3 The If-statement
9.q Structure of the control Information CI
9.5
9.6

viii

r;roups
The Goto Statement

•

•

1
1
2
3
8

10
• 13

14
14
15
15

• 15
16

• 16

1
• 1

2

• 1
• 2

4
• 8

10
• 12

1 . 2
• 4

• 6
• 8

• • • 9
10
12
14

• 17
• 18

• 20

1
2
5
7

• 8
12
14

IB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION
10.1 Allocate Statement and Free Statement

10.1.1 The allocate statement. • •
10.1.1.1 Order of execution of allocations ••
10.1.1.2 Allocation of controlled variables •
10.1.1.3 Allocation of based variables in main storage
10.1. 1.4 Allocation of based variables in areas

10.1.2 The free statement.
10.1.2.1 Freeing of controlled variables
10.1.2.2 Freeing of based variables in main storage
10.1.2.3 Freeing of based variables in areas

. . . . •

•
•

•
10.2 Assignment Statement, Expression Evaluation, Reference to Variables

10.2.1 Pre-evaluation of expressions •
10.2.2 Expansion of aggregate assignment statements
10.2.3 Scalar assignment

. . .
10.2.4 Exnression evaluation • . . • •

10.2.4.1 Evaluation of expressions in
10.2.4.2 Evaluation of expressions is

10. 2. 5 Reference to variables ••
10.2.5.1 Proper variables.
10.2.5.2 Defined variables
10.2.5.2.1 !sub-defining
10.2.5.2.2 Simple defining
10.2.5.2.3 Overlay defining
10.2.5.3 Based variables

. .

entry context
non-entry context.

• •

. . .

.

.

.
10.3 Infix and Prefix Operations, Conversion, Numeric Pictures

10.3.1 Infix and prefix operations
10.3.2 Conversion •
10.3.3 Representation and evaluation of numeric pictures

11. ATTENTIONS AND CONDITIONS •
11.1 state Components for Attentions and Conditions

11.1.1 Attention directory AN •
11.1.2 The attention enabling state EN
11.1.3 The attention environment directory EW.
11.1.4 The condition state cs.
11.1.5 Evaluated conditions and condition selec~ors

11.2 Enabling and Disabling •
11.2.1 Enabling and disabling of conditions
11.2.2 Enabling and disabling of attentions •

11.2.2.1 Enable statement.
11.2.2.2 Disable statement

11. 3 Condition Action • • •
11.3.1 Standard system action
11.3.2 on and revert statement

11.4 Attention Activation •
11.4.1 Asynchronous interrupt
11.4.2 Access statement •

11.5 Condition Activations

•

11.6 Condition Builtin Function Status

•

•

. .

. .

.

. .

•

. .

. .

•
•

• •

. . .

. . . .

•

1
1
1
2
2
3
4
5
6
6
6
7
8
9

10
11
11
12
13
14
14
14
15
16
17
19
19
21
23

1
2
2
3
3
3
4
5
5
5
5
7
8
8
8
9
9

10
11
12

ix

TBM LAB VIO':NNA TR 25.099

30 JUNE 1969 IN~ORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

12. INPUT AND OUTPUT
12.1 Evaluation of Statement O~tions
12.2 Opening

12.2.1 File and file union directories
12.2.2 Types of opening
12.2.3 Proper opening

12.2.3.1 Opening criterion
12.2.3.2 Successful proper opening
12.2.3.3 Pile union status

12.3 Closing
12.3.1 Tyoes of closing

•

12.3.2 Proper closing
12.4 Label Processing and
12.5 Record Transmission

12.5.1 I/0-events

Data Set Switching

12.5.2 Locking of keys
12.5.3 Proper data transmission

12.5.3.1 Write
12.5.3.2 Locate
12.5.3.3
12.5.3.Q

Fe write
Set-read

12.5.3.5 Into-read, ignore-read, delete
12.6 Stream Transmission

•

•

12.6.1 Initiation and termination of]>Ut and get statements
12.6.2 ~ata specifications

12.6.2.1 ~ata list exoansion
12.6.2.2 Format list expansion

12.6.3 Stream output
12.6.3.1 Elenentary transmission
12.6.3.2 Soecial cases of stream tansmission

12.6.4 stream input
12.6.4.1 Scanning step
12.6.4.2 Conversion step

12.7 Message Transmission
12.7.1 Message storage
12.7.2 Display transmission

13. BUILT-IN ?UNCTIONS .~ND PSEiJ~O VARTABL:S
13.1 Built-in cunctions
13.2 Assignment to P~eudo Variables

14. OPTJMIZATION
14.1 Rules for Commoning of Expressions; the REDUCIBLE Attribute
14.2 The REORDER Attribute
14.3 The RECURSIVE Attribute

APPENDIX: GLOSSARY • •

X

1
3
6
7
9

11
11
12
12
13
13
14
14
15

• 17
18
19

• 20
23
24
25
25
26
26
30

• 30
31
33
33
33
34
34
36
36
37
38

1
1
1

1
1
3
6

1

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INl'OR.!lAL INTRO TO TBE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The block diagram (Fig. 1.1) shows the process which is taken as the
basis of the formal definition of PL/I.

: ,----~---------~-~------1
r------; I I I

to--l Syntax l-t1-translal:orrt1rr-l ~ ! •lpre-pc.ss ri-0
1-. proper : ""r

I porser I 1 ~ 1nterpre\.. 1 '> '-------.J I I I
J 1 PL/I machine J

. d. I I (mterpreter) J
I L----------------------J

· representation i meaning .,.. ___________ .!... __________,

Fig. 1.1 structure of the formal definition

The input to the entire process is the £Ql!£~1!LJ!roqram (concrete
text) t 0 , which is a PL/I program represented as a character string, and
certain initial data sets d0 • The set of concrete programs consii!ered by
the formal definition is defined by a set of syntact.ic rules (in extended
Backus Normal Form) called the concr~t~-~ynt~~·

No specific process has been specified for the syntax parser
(t.herefore shown in dotted lines) whose result (the parsing tree t 1) is
implied by the concrete syntax. .

The translator has been sp.ecified by a function which maps the parsing
tree t 1 into the 9.!HJ.tr~£.L.!!t~t~l!! (abstract text) t 2 • The task of the
translator is to keep the strncture of the parsing tree where this
structure is significant, to transform the program into some standard
form where the structure is not significant (e.g., the translator
collects all declarations spread over one block into one component of the
block) and to remove some notational conventions (e.g. partially
qualified names are fully qualified by the translator). The result of
the translator is an abstract object as described in /9/, i.e., a tree
with na3ed branches and elementary objects at the terminal nodes, which
exhibits the essential structure of the PL/I program. All abstract
programs considered by the further process are defined by the 9.h~~9.£!
2Yll!9.!· The set of programs specified by the abstract syntax is a
superset of the set of programs which can be produced by the translator
for the parsing tree considered.

The rest of the interpretation is defined by the PL/I machine whose
initial state <o is produced essentially from the abstract program t 2 and
the initial data-sets d 0 • The machine may be considered to run through a
sequence of states, called the £Q!l!~!~t!QJ!, while it interprets a program
until an lmiL2i~i~ is reached (if ever). In principle, the interpreter
as specified by the formal definition allows (and this is its task) the
generation of a computation for a given PL/I program and given data sets.
More precisely, because the interpreter is not fully determined, it
allows the generation of a set of possible computations. The interpreter

1. THE OVERALL STRUCTURE OF THE FORMAL DEFINITION OF PL/I 1

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

is specified as a function which yields for any state the set of possible
successor states. F~r the following reasons it may be the case that the
computation actually cannot be produced by the formal definition of the
interpreter:

(1) because the evaluation of an implementation-defined (and therefore
unknown) function is necessary

(2) because a partially defined function has to be applied to an
argument for which the function does not have a defined value.

Any state of the PL/I machine is an abstract object as described in
/9/, i.e., the same formal tools can be applied to the abstract program
and the states of the PL/I machine. The set of all states which the PL/I
machine can possibly assume for any given abstract program and any data
sets is contained in the set of states defined by the A22!~~ct synt~_Q£
ih~~i~i~~· The abstract syntax of the states exhibits the essential
structure of the states of the PL/I machine.

The process defined by the interpreter falls into two major parts, the
prepass and the proper interpretation.

The eree~~~ accomplishes the following tasks:

(1) allocation and initialization of static variables

(2) null allocation of controlled variables

(3) linkage of the scope of the external declarations

(4) insertion of appropriate information into the declarations
occurring in the program to establish the necessary linkage
between the declarations and the entries made in the state of the
PL/I machine during the prepass (see (1), (2), (3) above).

The intermediate state Eo' contains then the abstract program modified
according to (4).

Finally the eroe~_!n1ere£~i~i2~ interprets the prepassed program
according to the meaning of the individual statements.

The abstract syntax of PL/I may be taken as the center of the formal
definition in the sense that the process to the left of the dotted line
in Fig. 1.1 deals with a special representation of PL/I as a character
string and the process to the right deals vith the meaning of PL/I.

Only the abstract syntax and the interpreter are considered in this
document.

2 1. THE OVERALL STRUCTURE OF THE FORMAL DEFINITION OF PL/I

IBM LAB VIENNA TR 25.0q9

30 JUNE 1969 INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding chapter of /5/:

2. Abstract syntax of orogram

The following abbreviations are used in this chapter:

ADD
aggr
AL
ap
AUTO
BIN
cond
const­
CONV
CTL
da
D:::'C
de cl
dens
descr
DIV
elem
eva
exur
EXT
FTX
FLT
id
init
HIT
lbd
!!ULT
op
opr
param, PARA!!
prec
prop-st
ptr
qual
ref
ret-type
scale-f
sl
st,stmt
st-loc
stg-cl
ubd
UNAL
V

addition
aggregate attribute
aligned
argument part
automatic
binary
condition
constant
conversion
controlled
data attribute
decimal
declaration
density
descriptor
division
element
evaluated aggregate attribute
expression
external
fixed
floating point
identifier
initial
internal
lower bound
.multiplication
operand
operator
parameter
precision
proper statement
pointer
qualification
reference
return type
scale factor
subscript list
statement
statement location
storage class
upper bound
unaligned
value

2. STRUCTURE 01' ~BSTRACT PROGRAMS 1

IB!I LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

This chapter describes the overall structure of abstract programs,
i.e., the abstract syntax of PL/I. !!here necessary the correspondence
with the concrete syntax is given. An abstract program, referred to as
.1!!:2!U:!!!!. throughout this document, is an abstract object as described in
/5/.

corresponding sections of /5/:

2.1 Program, procedure body

2.3.1 Block, group

A PL/I program constitutes a nested ~tructure of blo£)!;§: A program
itself may be considered as a block and certain of its subcomponen ts are
blocks. Since programs are objects, their structure implies that the
blocks contained in a program are themselves tree structures: If b 1 and
b2 are tvo different blocks in a program then: either b._ contains b2 , or
b3 contains b1 , or b1 and b2 are tvo distinct components in a common
containing block b.

r-------- -------l
1

I
I ------, ,---------- -, I
I
I
I

I
I

1 .------.--~--~ I

I

r- r- ------1
I 1 I ,--L-----,,--- 1

I I 1 I I
I L ____ J 1 :
I 1
I I L----..J I
I L _______ J

I
I

I L ________________ .J L ______________ _j I
L ______________________________________ J

Fig. 2.1 Object structure and bloc.k structure of a progra11 (the dotted
boxes indicate blocks) •

During the interpretation of a program, the interpretation of a block
establishes a so-called block activation which introduces:

(1) new meaning of identifiers,

(2) a new enabling status of conditions,

2 2. STRUCTURE OF ABSTRACT PROGRA~S

IBM LAB VIENNA TR 25.099

30 JUNE .1969 I!IFORIIAL IRTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

(3) a new level in the nestea structure of statements,

(4) a new optimizing status.

Accordingly a block generally consists of the .following five
comoponents:

s-sl-list · s-reorder s- ded -part

I dedi· part I

s-body-part

I bod)_part I ~
elem (1) elem (2)

cbcb
~ig. 2.2 General structure of a block

(1) A !l!tllir.~!.i!!!Ll!!!:i collecting .all declarations local to the block
{whether they are explicit, coptextual or implicit in the concrete
program); the structure of a declaration part is described in 2.2.

(2) A !!!:!!£!tdU:£jt_body p'!,rt collecting all procedure bodies local to the
block; the structure of a procedure body part and the relation
between an entry declaration and. the corresponding procedure body
is described in 2.2.2.

(3) A £2n!l!!i!!!LP!:lt!~art consisting of tvo lists of conditions,
namely those conditions to be enabled and those to be disabled for
the block.

(4) A list of statements, vhich.constitutes the main part of the
block. This list contains only the "executable" statements at the
outer•ost level in the block in their consecutive order, ignoring
all declaratiYe information (declarations, procedures, format
sentences, entry points) contained intermixed in the concrete
program text. A discussion of tile ter11 "statement" and a
description of the structure of statements is given in 2.3.

(5) A flag indicating whether it is a reorder block or not. This is
used for optimizing purposes only (cf. 1ij).

There are essentially tvo types of blocks: beg!!Ll!J&s:ks and procedUJ;:!!
JlQ!ll!!li1· As a third type, also a co•plete program itself may be
considered as a block.

2. STRUCTURE OF ABSTRACT PROGRAMS 3

IBM LAB VIENNA TR 25.099

INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

2.1.1 PROGRA!!

A program is an incomplete block consisting only of a declaration part
and a procedure boay part. The conditions to be enabled by default are
fixed in the initial state of the PL/I machine. Instead of a statement
list a single call statement or function reference 'is interpreted, which
is specified apart from the program (the "initial call" of the "main
procedure")• It is not a reorder block.

The declaration part consists of the declarations of
identifiers of all external procedures of the program.
body part consists of all external procedure bodies.

all entry
The procedure

It is assumed that the program contains all external procedure bodies
needed for its execution and the corresponding entry declarations. That
is: If for an external entry declaration the concrete program does not
contain a corresponding procedure body, an external procedure body has to
be incorporated from outside the concrete program, e.g. from a library.
In the abstract program it is assumed that this process has been
performed by an implementation defined function used by the translator.

The following concrete program:

A:B:PROC •••
DCL E ENTRY EXT;

C:ENTRY ...
END A;

D: PROC ••• . . .
END D;

is translated into:

;-ded-part

I
e"' t.· y deda­
Yations (oY

A,B,C, D, £

s -body-part
-I

rrocedure
bodies
A ID I E

Fig. 2.3 Example of a program

4 2. STRUCTURE OF ABSTRACT PROGRAMS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFOR!!AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

2.1.2 BEGIN BLOCK

A begin block occurs anywhere in the context of a proper statement
(cf. 2.3). In fact, it is a proper statement. As such it is activated
when the normal flow of control comes to the execution of this proper
statement, and after its termination. the flov of control continues
normally. The structure of a begin block is exactly the. general
structure of blocks as described above.

J:g!!.!!lg:

The concrete begin block

{CONV,NOSIZE):BEGIN REORDER;

DCL A ... '
statemen-t-1;

P: PROC • • • END ·!>.;

statement-2;

DCL I ••• , Y
L:statement-3;

END;

is translated into:

s-d.ecl· ra.vt s -body· part S- GOhd-pavt s- st-list s- YeoroleY
.I I

decloxa_tions procedure enabledoCON eh of booly of d.i 'able cL
A,X,Y,P,L p SIZE

elemC1) elem (l) elem (3) elem (4) elem (5) elei'YI ((,)

I null- ~tm t I I null -

1

stmt \ I null-\shnt I
Fig. 2.q Example of a begin block

Note: Cf. 2.3 for the treatment of the concrete DCL's and END's in the
abstract program.

2. STRUCTURE OF ABSTRACT PROGRA!!S .5

!Bll LAB VIENNA TR 25.099

INFOR"AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

2.1.3 PROCEDURE BODY

A procedure body occurs as an immediate component of the procedure
body part of a block. It is activated by a call statement or function
reference by aeans of an ~£I-1~1!ier. The same procedure body may
be activated by means of different entry identifiers.

A procedure body contains, besides the fi.ve general components of any
block as described above, a sixth component, the ~~£!• It contains
for each entry identifier associated vfth the procedure body an
individual component, called ~1£!_£21~· (Note: There is no difference
between the "aain entry" and a "second~r:r entry" in an abstract program;
different entry identifiers occurring at the same entry point in a
concrete program have their individual entry points in the translated
abstract program).

The entry point of an entry identifier consists of three
components:

(1) The statement location. It is an index list localizing relatively
to the state111ent list of the procedure body that statement by
which the interoretation of the statement list is to be started if
the procedure body is activated by this entry identifier. This
coaponent is constrocted by the translator using the position of
the entry point in t.he concrete text. The localization of a
statement within a statemen~ list by means of an index is
described in 9.-.

(2) The par~~t-!1~!· It is the list of those parameter identifiers
to vho• argo•ents are passed vhen the procedure body is activated
by means of this entry identifier. {Note: For convenience of the
interpreter the identifiers are not themselves elements of the
parameter list: they are appended by the selector s-id to the list
elements; cf. 8.2.1).

(3) The ~21~-!ZP~· It specifies the data attribute (and density) to
which the function value is to be converted before return if the
procedure body is activated by a function reference by this entry
identifier. The return type is constructed by the translator from
the returns attribute explicitly specified in the concrete text or
inserted by default.

Additionally, a procedure body may contain as seventh co•ponent a flag
indicating that the procedure may be invoked recursively.

6 2. STRUCTURE OF ABSTRACT PROGRA8S

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The concrete body:

{CONV,NOSIZE) :Q:I:PROC(X,Y) REORDER RECURSIVE;

DCL A ••• ;

stateaent-1;

P:PROC ••• END P;

R:ENTRY(X) FIXED;

stateaent.,-2;

DCL x· ••• , Y 9

statement-3;

END Q;

is translated into:

s-ded -l"o.rt s-bod.y-po.rt s-<.Ond-porl s-st-List s-reorder s-entr:J-pa.Yl s-recur.s.ive

! I wmo .,! fiq 24 I ! r±t
L-------------------~

Q I R

I
s-st-loc s-po.rarn-list s-ret-lype

a Eilil 1 :;~·_, 1

I ~~
s -st-loc s-paro.m-list s-ret-type

EJ I,),, lj~',~~' I
I I I

s-st-loc. s-pa-mm-list s-re.t-type

8 0 l:~b

I

Fig. 2.5 Example of a procedure body

2. STRUCTURE OF ABSTRACT PROGRA!'JS 7

IB" LAB VIENNA TR 25.099

!NfOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

Corresponding sections of /5/:

2.2. Declarations

2.5.1 Evaluated aggregate attributes

In the declaration part of a block all declarative information is
collected which is local to the block, except the bodies of the local
procedures which are collected into the separate body part. This
declarative information is all information valid for the whole block
independently from its location within the concrete program text of the
block. Each identifier declared local to the block, whether its
declaration in the concrete program is explicit, contextual or im~licit,
has a decla~!;.i.Q!!. in the declaration. part, with the following exception.
For a structure declaration only the major structure identifier, the ~l!.i!!.
i!l.!m!.lli~!: of the structure, has a declaration and not the identifiers of
the components of structures. The declarations are complete in the sense
that all attributes implied by default statements or by the default rules
of the language from the concretely specified attributes are inserted by
the translator; Therefore the default statements of a concrete program
do not appear in the abstract program anymore.

To each identifier of the concrete program corresponds uniquely an
!E§!.!:a£!;._i!l.~!!.ii!i~t which is an elementary object satisfying the
predicate is-id. The transformation from the character string
representing an identifier in the concrete program to its corresponding
abstract identifier is performed by the function mk-id (cf. chapter 1 of
/5/). In the foll~wing the term !2~!!.!.!!!~!: denotes such an abstract
identifier while. the identifiers of the concrete program are denoted as
£Q~£r~1~-i~~nti~i~~~ where necessary. Nevertheless, in figures the
abstract identifiers are represented by the corresponding concrete
representations (e.g. A is written instead of mk-id(A}).

The structure of a declaration part is the following: Each declared
identifier serves as selector selecting its declaration from the
declaration part.

id1 id.l ... jd. VI

B ~ ~
Fig. 2.6 Declaration part

This structure of a declaration part provides easy access to an
individual declaration through the declared identifier itself; any other
structure would require a more complicated device for accessing an
individual declaration.

8 2. STRUCTURE OF ABSTRACT PROGRA~S

IBM LAB VTENNA TR 25.099

30 JUNE 196Q INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION 0!' PL/I

A

I

The declaration part of the block given as example in 2.1.2 has
the following structure:

X y p l
I I I I

de cl a.vation of declaration of declaration of decla.ration of declaration of
A X y p L

!'ig. 2.7 Example of a declaration part

Each individual declaration is an object, whose structure depends
essentially on the type of the declaration. There are the following
eleven types of declarations:

(1) PrQ.Q~L.Yi!E.ii!l!l~!!· Their declarations are described in some detail
in 2.2.1.

(2)

(3)

Defined variables. Their declarations consist of: a reference to the-base-variable, the aggregate attribute of the defined variable
(as described in 2.2.1) and possibly an expression for the
oosition in the case of overlay defining.

~!!22~-Y!!E.ii!h!2!!•
attribute of the
reference_to the

Their declarations consist of: the aggregate
based variable (cf. 2.2.1) and possibly a
implied pointer.

(4) ~ntry_s£nali!nl2· Their declarations and their correspondence to
the procedure bodies are described in 2.2.2.

{5) !i!~_£Qnstallt§• Their declarations consist of: the set of file
attributes {as far as explicitly declared in the concrete
program), the scope (INT or EXTI and the implementation dependent
environment attribute.

(6) ~ti!l~m£nt_!~l!~l-£2ll2tanl!!· Each statement label constant has in
the abstract program as its declaration an index list (list of
integers and truth values) which localizes the labeled statement
relative to the statement of the containing block. This
localization is described in 9.~. The index list is constructed
by the translator from the position of the labeled statement
within the concrete text.

(7) !2E.~i!l-!i!h~!-£2natant§. ~ormat sentences, which,in the concrete
program have the syntactical form of statements, are declarative
information and occur in the abstract program as declarations of
their labels and not as statements. These declarations consist of
the format list, the condition prefix oart and an identifier
uniquely identifying the format sentence (the first label of the
format sentence is chosen by the translator)' A format sentence
with two labels leads to two declarations with the same
identifier, while two identical for,at sentences lead to t~o
declarations with different identifiers.

2. STRUCTURE 0!' ABSTRACT PROGRAMS 9

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

(8)

(9)

Generic identifierso Their declarations are lists of
g2u2£r~-f~iili m2ili~~~· A generic family member consists of the
entry reference to be selected and the list of possibly incomplete
parameter aescriptors.

Builtin functions. For each builtin function used, whether it is
declarea-expiiCitly with the attribute BUILTIN in the concrete
text or not, in the abstract program there is a declaration which
is just the elementary object BUILTIN.

(10) R~Qg~~mmg~-~~m~g-~QnQit!Qn~· Their declaration is the elementary
object COND.

(11) Attentions. Their declarations contain only an implementation
dependent-environment attribute.

2.2.1 PROPER VARIABLES

The term £EQ£~~-Y~~i~Ql~ denotes variables of any storage class
(static, automatic and controlled) and parameters. It does not include
defined or based variables. It denotes only "level-one variables", i.e.,
arrays, structures and scalars which are not themselves components of
arrays or structures.

The declaration of a proper variable consists of t.hree or four
components:

~
s·st9-cl

~
s-conneded

B
(INT,EXT,

PARA M)

(1)

(2)

(3)

(4)

(STATIC,AUTO,
CTL, Q)

Fig. 2. 8 Declaration of a proper variable

These components are:

The scone attribute INT, EXT or PARAM. In an abstract nrogram
parameter-declarations have their own scope attribute PARAA. This
ls useful since the distinction between internal, external and
para~eter declarations is often needed.

The ~i2£~g-~!~~~-~!i~!h~i~ STATIC, AUTO or CTL. Non-controlled
parameter declarations have the null object U as storage class
component.

The ~gg~g~~ig_~!irih~te as described below in more detail.

Non-controlled parameters may have a flag indicating that only
~Q~~~~i~Q arguments may be passed to them.

10 2. STRUCTURE OF ABSTRACT PROGRAMS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The aggregate attribute {aggr) of a proper variable declaration (and
of a defined or based variable declaration as well) reflects the complete
structuring of an aggregate (array, structure, scalar): Since, during
interpretation, it appears easiest to handle data aggregates by
recursively defined functions or instructions level by level, the
structuring of data attributes is decribed level by level:

(1) !~~Y2· A multi-dimensional array is decomposed into a nested
seguence of one-dimensional arrays: e.g. a two-dimensional arrav
of scalars is handled as a one-dimensional array, whose elements
are themselves one-dimensional arrays of scalars. An array of
structures is naturally handled in the same way with the only
diffet:ence that its base elements are desct:ibed as structures.
Hence, an abstract program describes only one-dimensional array
aggregates; the elements may be at:t:ays, structures ot: scalars.
At:ray aggregate attt:ibutes consist of three components: An
expt:ession ot: astet:isk denoting the lowet: bound (if missing in the
concrete progt:am, the constant 1 is inset:ted by the tt:anslatot:),
an expression or asterisk denoting the uppet: bound and the
agg~:egate attribute of the elements of the at:ray:

s-lbd s.-elem

0 I
aggr

of elements

(2)

Fig. 2.9 Aggt:egate attribute of an array

A~ refer option occnt:t:ing as art:ay bound (ot: stt:ing length ot: area
size) in the agg~:egate attribute of a based variable is translated
into an object consisting of the initializing expression and an
identifier list which is the fully qualified name of the
referenced structure component without the main identifier.

s- refer

~
l'ig. 2. 10 Refer option

Stt:uctures. Like arrays, structu~:es a~:e described recnrsively. A
StrUCture-is analogous to a one-dimensional array, whose elements
may have any aggregate attribute: art:ay, stt:ucture, or scalar.
The difference is that all elements of an art:av have the same
desct:iption, while for a stt:ucture all elements (called
§~£g§§Q£§) have to be desct:ibed separately and to be listed in
their given ordet:. l'urthet:mot:e each successot: has to be named by

2. STRUCTURE OF ABSTRACT PROGRAMS 11

IBII LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 ,JlJNE 1969

an identifier (which is used in references to the successor hv a
qualified name). So, the description of a successor of a ~
structure consists of two components, identifier and aggregate
attribute, and a complete structure description has the form:

elern(1) elevn(2) elem(n)

I
I

I I
I

I I
I

a; s-O.<;J'J'

~
s-aggv

a5
s -"::r:Jr

@ I aJ~ .. 2 I I aglgv., I

Fig. 2.11 Aggregate attribute of a structure

Notes: (a) The LIKE attribute occurring in a concrete program is removed
by the translator and replaced by the complete aggregate
description.

(h) The main identifier of a structure occurs as selector of the
complete declaration in the declaration part, while the
successor identifiers are s-qual components in the aggregate
attribute.

(3) ll.£!!.1!!8• By this recursive description of the structuring of data
aggregates, one finally comes down to the scalar components. The
aggregate attribute of a scalar consists generally of three
components:

(A L or UNAL)

Fig. 2.12 Aggregate attribute of a scalar

(a) The ~;!ta att£ihYt~· It is an object describing the properties of
the individual types of data: mode, base, scale, precision and
scale factor for arithmetic data~ string base, an expression or
asterisk denoting the length and a flag distinguishing varying or
fixed length for string data; parameter descrptor list, return
type and reducible flag for entry data (cf. 2.2.21: etc.

(b) The den§._!ty(ALIGNED or !J.NALIGNED). This attribute is a Property
of scalars, though it may be written in a concret.e program also

12 2. STRUCTURE OF ~BSTRACT PROGRAMS

IBII LAB VIENNA TR 25.09.9

30 JUNE 1969 IN?ORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

for aggregates.
the inheritance
components.

The translator resolves the language rules for
of the density attribute from aggregates to their

(c) The initi~l~ttri~~!~ (if ·applicable). It specifies the
initialization of the scalar or, if it is a component of an array
at any level, the initialization of all corresponding components
of that array. There are three types of initial attributes:
Nested lists of expressions with replication factors, or call
statements, or lists of "special initial elements". The latter
are produced by the translator in case subscripted statement
labels occur in the concrete program text representing initial
values for an array of label variables. In this case, for the
subscripted statement labels label constant declarations are
produced with newly created identifiers; for the array of label
variables a list of special initial elements is produced, each
consisting of the subscript list specifying which element of the
array is to be initialized and the newly created identifier as
initial value. The same applies for subscripted entry names as
initial values for arrays of entry variables.

The concrete program text

DCL 1 Z(S,N:N+~), CTL,
2 A(*) INIT (0, 0),
2 B,

3 C BIT (~+1),
3 L LABEL;

L (1, 3) : statement-1;

L(2,5) :statement-2;

leads to the following declaration part:

2. STRUCTURE OP ABSTRACT PROGRAMS 13

~

"' .
Ul ,_,
"' c:
n

"' 0

"' "' 0

"' > .,
Ul ...
"' ,.
n ,_,
.,
"' 0

"' "' ..
"' Ul

"71
1-'·

"' .
"' . -"'
"' ,. .. ,.
'" ,....

"'
0
'0
11
0
'0

"' 11 ..
"' 11 ,...
"' C' ,....

"'
"" "' n
"' ,.,
"' ,.
0

"

z
I

S-0.99Y I s-J9-cl \ s-scope Efu
I lbd s-elem ETJ CTL •-<bd ;:_1~

dJLU

ZBL' ZBL"

label tonst label const
dec.lara.tion dedaration
fbr L(1,3) for L(2,5)

d.

B-bd ·rm s-lb 1

d::=ll N•M -:;m W

I , ·' elem \:ll
I

I -l
s-qual s-aggr

0 s-lbd. s-ubd. s-elem

~ .-1--,1
I l_*_j ~~ I

s-da s-dans s-init

\0E3
I I I I

s-mocle ~-ba.se s-sco.le s-pree.

IRE~ll a EJ ldef!pretl

I --1
s-aqsr

elem(1) elem(Z)

>-qual s-a99r s-qual s-0.99~

~ s-d.CA. s-d.ens s-init ~ s-cla s-clens s-init

L':.J ' .---t-, I ;- L, .----'---. I
~G ~~~~

I I
elem(1) elern (l)

I I
I I I I

~-sl s-id s-sl s-id

~ 8 j,z~s,Jjz~L"J

s -loo. se

EJ ~h

... ...
"' 0
'~

"' ,.
,~

....
"',
0

cl
0
,_,

"' t1 ..
"' Ul ,_,
"' ,..
n ,_,
t/1 ,..,
~ .. ,.
,.
"' d

H
z ,_,
"' "' .,
"' ~ .. ,_,
H
0

"'
0

'" ., ...
"' H

"' 0

"' 0
z

"' ~
"" "' '"'

'-j

"' "' ... ,. .,
<:
H ,.
z
z
>

cl

"'
h)

U1
•
0

'"' '"'

TBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Often during interpretation ~Y~!~~!~Q-~3S~~g~!~-~ti~!bu!~2 (eva) are
needed, especially for storage mapping. These are objects, produced
during the interpretation, which have a very similar structure to the
aggregate attributes described above, with the following differences:

(1) The expressions denoting extents (lower and upper bounds of
arrays,string lengths, area sizes) are evaluated and replaced by
their (integer) values. Even if there are only integer constants
as extents, they have to be evaluated, i.e., replaced by their
values, since a constant is a more complicated object than just
its value (cf. 2.5.2).

(2) The identifiers of successors, which are irrelevant for storage
mapping are deleted.

(3) The initial attributes are removed.

(4) For several types of data (entry, label, offset), information
which is irrelevant for storage mapping is removed. Their data
attributes are replaced by standard ones, namely elementary
objects (ENTRY, LABEL, OFFSET).

These evaluated aggregate attributes contain e.xactly the information
necessary for storage mapping of the described aggregate.

The evaluated aggregate attribute of the declaration in the
previous example (Fig. 2.12) has the following structure (assuming
that N has the value 2 and~ the value 4).

2. STRUCTURE OF ABSTRACTPROGRA!IS 15

TB!! LAB VIENNA TR 25.099

TNFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 Jt!NE 1969

•-l bd •- ubd s-elem

dJdJ
s-e le m

elem(1) elem{2)

I
~-aggv

I
~-lbd

1±11±1
I I

s-ubd >-e le m

s- rnoole s-base

IRE~ll B
S-S(Q[e

EJ
s-pree

ldef~ preCJ

elem(1) elem(2)

s-aggv-
1

. 1d s-d.u s- en,;

11~ [6"'"
s-da

1LA~ELr I

Efi

rig. 2.14 Example of evaluated aggregate attribute.
Note, that in this figure digits in the boxes denote values,
while in the previous ones they denote the corresponding
constants.

16 2. STRUCTURE OF ABSTRACT PROGRAMS

IBM LAB VIENNA TR 25.099

JO JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION 01' PL/I

2.2.2 ENTRY DECLARATIONS

Both declarations of entry constants and of entry variables contain
the following three components:

(1) The £~~!g!~r_g~scrip!Q£_1!§i to be used on invokation for
conversion and testing of arguments. A parameter descri!'tor has
the form of an incomplete parameter declaration: It consists of:
a storage class (CTL or D), an incomplete aggregate attribute (no
qualifying identifiers, no initial attributes and only integer
values or asterisks as array bounds, string lengths or area
sizes), and possibly a flag denoting a connected parameter.

The parameter descriptor list is produced by the translator from
the parameter descriptor list of the entry attribute in the
concrete program. If no parameter descriptor list is specified
(or a single parameter descriptor is missing) in the concrete
program, the translator takes the information from the parameter
declarations in the corresponding procedure body in those cases
where a !'rocedure body is available. This is the case for
internal entry constants and also for external entry constants in
the declaration part of the program itself. In the other cases
(external entry constants in inner blocks of the program and entry
variables) missing descriptor lists or missing single parameter
descriptors are substituted by an *·

The concrete program text:

DCL P ENTRY{,?LOAT{10) CONNECTED);

P: PROC (X, Y) ;

DCL X BIT(N) ALIGNED CTL;

END P;

leads to the following parameter descriptor list in the
declaration of P:

2. STRUCTURE 01' ABSTRACT PROGRAKS '17

!BII LAB V!ENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 J!JJIE 1969

elem (1) elem(2)

I
I

l·r;' ,rd.-e.,_s_s-_ll_s_sr_s·-~a s- aggr s-conneded

s-dens s-da clJ
I 0 I

I I I
s-mode s-base s-scale s-pree

IRJAL I s s 0
Fig. 2.15 Example of a parameter descriptor list

(2) The t2![tn_!!22 specifying the data attribute and density of th~
returned function value in case of a function reference. The
return type is produced by the translator from the returns
attribute of the entry declaration in the concrete program. If no
returns attribute is specified the translator takes the
information from the returns attribute in the corresponding
procedure body in those cases where a procedure body is available
(as described above for the parameter descriptors). Otherwise the
return type is produced by the default rules of the language.

(3) A flag denoting whether the corresponding procedure is reducible
or irreducible.

Note: These three components of an entry declaration are used when the
declared entry is invoked. It is the responsibility of the
programmer that they fit the invoked entry point of a procedure
body. If not, it is an error. In particular, it is possible to
assign any entry constant to any entry variable, irrespective of
whether the declarations .fit together or not.

In addition to these three components, which are common to
declarations of entry constants and to data attributes of entry
variables, the declarations of entry constants have the following
components:

(q) The scope attribute: TNT or EXT. Por internal entry constants
there exists a procedure body with a corresponding entry point in
the procedure body part of the same block in which the entry
constant is declared. For external entry constants there exists a
procedure body with a corresponding entry point in the procedure
body part of the program.

18 2. STR!JCT!JRE OP ABSTRACT PROGRAKS

IBM LAB VIENNA TR 25.099

30 ,JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRET.ATION OF PL/I

(5) Declarations of internal entry constants (and of external entry
constants in the declaration part of the program itself) have a
s-body component vhich is an identifier giving the link to the
corresponding procedure body, as described belov.

As mentioned above (in 2.1) all procedures vhich are local to a block
b are combined in one of its components, the procedure body part
s-body-nart{b). Each procedure body bd is an immediate component of the
procedure body part, selected by an identifier id, i.e.,
bd=id•s-body-part(b), (the translator takes the first entry identifiet of
the procedure in the concrete program for this purpose, though this
choice is completely irrelevant for the meaning of the program). With a
procedure body bd, a number of entry identifiers are associated; each of
them, id•, gives access to an entry point ep as described in 2.1.3:
ep=id • •s-entry-part (bd). For each of these entry identifiers id' thi'!re
is an individual entry constant declaration decl in the declaration part
of the containg block b, i.e., decl=id'•s-decl-part (b). These different
entry constant declaraions belonging to the same procedure body have as
s-body component that identifier id, by which the procedure body is
selected from the procedure body part: s-body(decl)=id. Thus, each
internal entry constant declaration gives access, via its s-body
component, to a corresponding procedure body; conversely each procedure
body gives access, via the selectors of its entry points, t.o a number of
entry constant declarations.

The concrete program text

A:BEGIN;

P:Q:PROC ••• ;END P;

R:PROC ••• ;S:ENTRY ••• END R; ...
END A;

leads in the above program to the following relevant components of
the block A:

2. STRUCTURE OF ABSTRACT PROGRAMS 19

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

<>-ded-l"a.rt
s-bod.y-pcnt

Piq. 2.16 Relation between internal entry declaration and
procedure body

For external entry constants, the procedure bodies are found in a
different way. ~or each external entry constant declared in any block in
the proqram, there is an entry constant declaration of the same
identifier in the declaration part of the program itself. This
declaration is connected with a procedure body in the procedure body part
of the program in the same way as described above. so. an external entry
constant declaration has a s-body component only if it occurs in the
declaration part of the program itself.

The program

A:B:PROC •••
DCL B;

BEGIN;
DCL B ENTRY EXT;

END B;

END A;

leads to the followinq situation:

2n 2. STRUCTURE OF ABSTRACT PROGRAMS

TRM LAB VIENNA TR 25.099

30 JUNE 1969 INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

s-ded·parl s-body-l"o.rl

I

A 8 ~_.A
~. /

I /f---1--T··· 1/ : I I
i I s- st-list I >-scope s-body 1 s-entry-part

~:,+r + //~ ...
E:J L!-1/ A 8

•

~- .. \ ~- ~ I I
" . . s-decl· part

----- --- --- ~ ---s
I

s-desc.v-list

I

Fig. 2.17 Relation between external entry declaration and
procedure body.

The association of entry variables (including parameters} with
procedure bodies is performed dynamically during the interpretation by
assignment.

Corresponding section of /5/:

2.3 statements

Throughout the formal definition of PL/I the tera 2tatemgnt denotes a
logically complete unit of program text to be executed during the
seauential flow of control at the point given by its position within the
program. The term includes: the simple statements (e.g., assignment
statement, goto statement, null statement), the if-, on- and access

2. STRUCTURE OF ABSTRACT PROGRAMS 21

IBM LAB VIENNA TB 25.099

• INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

statement, the different types of do-groups and the begin block. It does
not include: declarations, procedure bodies, entry points, format
sentences ana incomplete clauses as, e.g., BEGIN; or DO I= 1 TON; or IF
2 > 1 THEN or END; etc. So, the term "statement" does not denote the
units syntactically delimited by semicolons in the concrete program, but
logical units that may appear anywhere "in a statement context", e.g., as
THEN alternative of an if statement, and that may in some way be executed
independently from other program parts.

The main part of a block (begin block or procedure body) is a list of
statements to be executed one after the other in their given order
(cf. 2. 1). Some o.f these statements may themselves contain statements
(namely the if-, on- and access statement) or even lists of statements
(na11ely the different groups and the begin block) • Since t.hese contained
statements principally may be any type of statements and thus may
the11selves contain statements, the statement list of a block may be not
just a linear sequence of statements but a rather complicated structure
of nested statements.

Each statement has primarily the same structure: It consists of the
following three components:

s-cond-rart

I
s-label-List

I

I I
~---

s-no elei'Y'I(1) ... elem (n) s- st 1
'
'

t
5-id

t
s-id. ~

dJ ~
l"ig. 2.18 General structure of a statement

(1) a £Qndi!i!2JL2!!£i• consisting of the u.,t of conditions to be
enabled and of the list of conditions to be disabled for the
statement.

(2) a l!t!l.!l.!.-.!i§i• For convenience of the interpreter the label
identifiers are not themselves elements of the list; they are
appended by the selector s-id to the list elements. The label
list is used only for the purpose of raising the check condition.
Information about a statement label for the purpose of the goto
statement is taken from the label declaration (cf. 2.2, 9.6).

(3) the E£2£!l.£_§[t!t!!l.m!l.n!• · There are 35 different types of proper
statements (including begin block and group). The structure of a
proper statement depends very much on its individual type. In

22 2. STRUCTURE OF ~BSTRACT PROGRAMS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

most cases it is a nearly one-to-one mapping of the syntactical
structure in the concrete program~

Principally it would be possible to recognize the type of a prooer
statement from its structure (e.g., there is no other statement
with a left part s-lp, and a right part, s-rp than the assignment
statement). But there are some pairs of statement types (e.g.,
open and close, get and put) which, at least in special cases, may
not be distinguishable by the structure of the statement alone. ~
Therefore all proper statements, except begin block and group,
have a component, s-st, which is an elementary object denoting the
statement type. ·

Since the structure of the statements is a one-to-one mapping of their
syntactic form in the concrete syntax, they are not enumerated and
described in detail here (the reader may get all relevant information
from section 2.3 of /5/). The following are only some special additional
remarks, mentioning some deviations between the abstract and concrete
syntax.

~~~ill-219£~- In the structure of a program, the begin blocks play a 
double role. On the one hand, they are proper statements, and thus they 
occur in the structure of statements where any other proper statement, 
e.g., an assignment statement, might occur. On the other hatid, as 
described in 2.1, they impose (together with the procedure bodies) the 
block structure upon the program. It should be noted, that the condition 
prefixes occurring in front of a begin block in a concrete program are 
translated into the block condition part ill§id2 the begin block (cf. 2.1) 
and not, as for all other statements, into the statement condition part 
~~§i~~ it (that condition part consists of two empty lists). This is 
because the condition prefixes of a begin block have a different 
semantical meaning from those of other statements. 

rr£~2-~~~-§tat~!2~i-li2i· There are two essentially different 
"do-groups" in a concrete program: those with iteration specification .. 
and those without it. Only those with iteration specification are called~ 
9.£9!!.2§ throughout the formal definition. Those without iteration 
specification are considered just as §tat~~n!_Jist, parenthesized in a 
concrete program by the parentheses DO; and END;. Thus a proper 
statement may itself be just a statement list in the abstract orogram. 

If-statement. The if-statement has always two alternative statements. 
If there-rs-nO-else alternative specified in the concrete program, the 
translator inser~s a null statement. 

li!!.ll-~t~t~~~i· A null statement in an abstract program may result 
not only from a conc.-ete null statement, but al!'o from a missing else 
alternative of an if-statement {as mentioned above) or from a concrete 
declare or default sentence or end clause. This is because all 
declarative information in a declare or default sentence is translated 
into the declaration part, but possible labels have a semantical meaning 
and must hold their position within the structure of statements. 

!l!2£at2-~tat2~~lli• Deviating from the structure in the concrete 
syntax, the information about one data aggregate to be allocated is 
collected into one component and structured similarly to a proper 
variable declaration, in particular its aggregate attribute (cf. 2.2.1). 
Thereby the oualifying substructure identifiers, which are redundant, are 
omitted. 

2. STRUCTURE OF ABSTRACT PROGRA~S 23 



IBM LAB VIENNA TR 25.099 

INFOR~!L INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

Corresponding section of /5/: 

2.4 Expressions 

Expressions are decomposed by the translator into (possibly nested) 
"elementary expressions". There are five different forms of elementary 
expressions: 

(1) an infix~~£~22!2!• consisting of two operand expressions and an 
infix operator (which is an elementary object), 

s-op- 2 

lexp/r 2 I 
Fig. 2.19 Infix expression 

(2) a E£~tix ~xnr~§§i2&• consisting of an operand expression and a 
prefix operator {which is an elementary object), 

s -opr s-op 

lopeL!orl @ 
Fig. 2.20 Prefix expression 

(3) a E~£~th~§iZ~1_~~E~§§i2!• consisting of an operand expression 
only, 

Fig. 2.21 Parenthesized expression 

24 2. STRUCTURE OF ABSTRACT PROGRAMS 



IBM LAB VIENNA TR 25.099 

30 JUNE 1969 INl'ORMAL INTRO TO THE ABSTRACT SYNTAX AND TNTERPRETATION OF PL/I 

(4) a ~~f~2ll£~ (described below, cf. 2.4.1), 

(5) a £Q~~!~n1 (described below, cf. 2.4.2). 

This decomposition reflects the operations to be performed one after 
another when evaluating the expression. Moreover, it resolves the 
precedence rules of the operators of the language since this structure 
determines uniquely the operands for each operator. 

In principle, the narentheses of a concrete program could be 
eliminated by the translator producing structured objects as already 
described. But since in the language there is one case (argument 
passing) where parentheses have more than syntactical meaning, the 
£~renta~i~2g_~~£~~~!2n2 are left in the abstract program in the form of 
an object having only one component, namely the translation of the 
concrete expression contained in the parentheses. 

The concrete expression 

- A * B + (X + Y) / C 

is translated into the object: 

s-op-1 s-op- 2 

s-op-1 

~ 
'T I 

~ 
Fig. 2.22 Example of an expression {the boxes for 

A,B, ••• represent references as described below) 

The final components of an expression are references and constants. 

2. STRUCTURE OP ABSTRACT PROGRAMS 25 



IBM LAB VIENNA TR 25.099 

INI'ORKAL INTRO TO THE ABSTRACT SYNTAX AN.D INTERPRETATION Ol' PL/I 30 JUNE H69 

2.4.1 RE!'!RENCES 

A reference may refer to a variable (proper, defined or based 
variable) or to an entry, statement label, format label or file constant. 
It is an object consisting of the following four components: 

... elem (n) 

>- s l 

,----L_, 
~ e[em(1) 

s -otp 

~ ~ 
l'ig. 2.23 Structure of a reference 

( 1) 

(2) 

(3) 

(4) 

The identifier list. In the case of a reference to a constant it 
consists-of-only-one identifier, that of the constant. In the 
case of a reference to a variable it is the full!_g~aii!!2d n~~· 
That means the following: If it is a reference to a component of 
a structure, then the identifier list consists of the main 
identifier of the complete aggregate, followed by the qualifying 
identifiers of all substructures containing the referenced 
component. If the concrete program does not specify the fully 
qualified name, the translator completes it by inspecting the 
corresponding declaration. 

The Eointe£_g~alif!~£· This component may exis~ only in the case 
of a reference to a based variable. It is itself a reference 
referencing the qualifying pointer. 

The ~h~££!~~-l!~i. consisting of expressions and possibly 
asterisks. I.n the concrete text of any array reference, the 
subscripts for the individual array dimensions may be arbitrarily 
added to any identifiers of the qualified name. Furthermore, 
subscript lists for array references and argument lists for 
function references are syntactically not distinguishable. The 
translator inspects the corresponding declaration and collects all 
array subscripts, but not function arguments, into the subscript 
list. Non-array references have the empty list as subscript list. 

The ~£g~~nt_~!!£i· It contains the arguments in the case of a 
function reference. Since a function may return the value of an 
entry constant which may be invoked again vi th another argument 
list, the argument part is not just a list of arguments, but a 
list of argument lists. An argument list is a list of 
expressions. A single argument list or the complete argument part 
may be the empty list. The latter is the case for all 
non-function references. It should be noted, that a reference may 
well contain both a non-emoty subscript list and a non-empty 
argument part (if a component of an array of entry variables is to 
be invoked as a function). 

26 2. STFUCTURE 0? ABSTRACT PROGRAMS 



TBM LAB VIENNA TR 25.099 

30 JU.N! 1969 INFORMAL INTRO TO TllE ABSTRACT SYNTAX AN!l INTERPRETATION OF PL/I 

Given a declaration 

DCL 1 S(M) BASED, 
2 A, 

3 E(N,N) ENTRY(FLOAT,FLOAT) RETITRNS(INTRY RETURNS(INTRY)), ... ' 
the reference 

P->s (1,*) .1(11-1) (X+Y,1) () (O,U*V) 

is translated into the following object: 

5-id·li5t s-rtr 5- s L 

T I 
I I I I I I 

elem(1) elem ('l.) elem(J) elem( 1) elem(2) elevn(1>) etem(1) elem(2) elem(3) 

dJ0dJ cbr±JG B 
s -iol. -list s-sl s-ap 

eleL1) B dJ 
elemU) elevn(2) elem(1) elem (2) 

~ cbcbB 
0 
Fig. 2.24 Example of a reference 

2. STRUCTURE OF ABSTRACT PROGRA~S 27 



IB!I LAB VIENNA TR 25.099 

IKFORftAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

2.5.2 COIISTAIITS 

There are two different kinds of occurrences of constants in a 
concrete prograa: 

(1) in positions where only (signed or unsigned) integer constants may 
occur (e.g., as precision of an arithmetic data attribute), 

(2) as special cases of expressions. 

In the first case, the abstract program contains just the value of the 
constant, which is an eleaentary object satisfying the predicate 
is-intg-val. 

In the second case, the translator produces an object consisting of 
the scalar data attributes implied by the form of the constant., and of 
its value. 

o-d.a s-v 

ctJ dJ 
Fig. 2.25 constant 

The data attributes may only be arithmetic or fixed length string. 

The concrete constant 

007.30 

is translated into the following object: 

~-da s -v 

G s-mode s-bnse s- stale 

dJ 
s- scale-f 

~ ~ 8 dJ 
Fig. 2.26 Example of a constant 

28 2. STRUCTURE OF ABSTRACT PROGRAMS 



IBM LAB VIENNA TR 25.099 

30 JUNE 1969 INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

Corresponding section of /5/: 

3. state components and computation of the PL/I machine 

The present chapter deals with three aspects under which one can 
consider the components of the state, namely their use, their scope, and 
their structure. rhere are 13 different immediate components of any 
state of the PL/I machine. One of these, the parallel action part, 
contains for every task being executed 10 components which have to he 
considered. 

rhe following is the key to the abbreviations used for the immediate 
components: 

the storage 
the external storage 
the unique name counter 
the attribute directory 
the denotation directory 
the file union directory 
the time and date part 
the event trace 
the message part 
the attention directory 
the attention environment directory 
the current task-event name 
the parallel action part 

There is always one task, the £~!£~n!_!~e!. which is currently being 
executed. Those components of f! which refer to the current task are 
abbreviated as follows: 

the task-event specification 
the aggregate directory 
the file directory 
the enabling state 
the block activation name 
the epilogue information 
the condition status 
the dump 
the control information 
the control 

(1) taskinq: ~!. !.!!:• :J:];, ];! 

The parallel action part ~! contains for each parallel task or 
input/output event its local components, i.e., the state 
components which are used only by the specific task or ev~~t. 
Each task or event has got a unique name, which is used to 

3. THE STATE OF THE PL/I MACHINE 1 



IB~ LAB VIENNA Tl! 25.099 

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

retrieve its components of ~!· The co•ponent !! contains the name 
of the task currently being executed. 

The task- and event specification !! contains all information 
necessary for proper control and, in particular, for the 
termination of the current task or event. 

The event trace ~! is a record of all completions of event 
variables and all starts of executions of wait statements in the 
current task. 

(2) block activations: ~. !!, ~! 

The dump ~ is a stack which reflects the dynamic nesting of block 
activations and keeps on each level the state components local to 
one block activation. The epilogue information !! contains all 
information necessary to terminate the current block activation 
correctly. ~! contains the unigue name given to the block 
activation. 

(3) interpretation of statement lists: £!, f 

The control information CI is a stack which reflects the dynamic 
nesting of groups (statement lists) within the current block 
activation. The control c can be considered to be a generalized 
stack, na•ely a tree which contains the relevant instructions to 
be executed for the statement currently under interpretation. 

(q) meaning of names: ~!. !! 

The denotation directory ~! and the attribute directory !! 
determine completely the meaning of the declared entities of a 
program. It is a notable property of these two directories that 
entries once made are never changed or deleted during subsequent 
interpretation. 

(5) variables: !!<. §: 

The aggregate directory !Q and the internal storage §: are devoted 
entirely to the variables of a PL/I program. In particular, !Q 
contains the generations of a variable, which determine the access 
to §: for retrieving the values of the variable. 

(6) input - output: ]2, gg, !], ~ 

The external storage ]§: actually contains the data sets and may 
therefore be considered as the counteroart to the internal storage 
§:. The tvo directories !! and !Q are entirely devoted to the 
internal organisation of files. 

The message part ~ is the repository for messages and comments. 

(7) unique na11e generation: !! 

The PL/I machine generates unigue names during interpretation for 
identifying uniquely certain pieces of information. 

The component !! is just a natural number which determines the 
next unique name to be used. g~ is increased by 1 whenever a 
unique name is generated, but never decreased. 

2 3. THE STATE OF THE PL/I MACHINE 



TB~ LAB VIENNA TR 25.099 

30 JITNE 1969 INFOR~AL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

(8) conditions: £::1 

The condition status CS contains the information as to which 
conditions are enabled-and which actions are to be performed if a 
condition occurs. 

(9) attentions: !J!, EV, £!.!! 

The attention directory holds the information relevant for 
executing access statements and asynchronous interrupts. The 
enabling state of attentions is kept in. ]!]!, the evaluated 
attention environment in ]!e 

(10) time and date: :m 
This component consists essentially of two integer values 
specifying the current time and date. 

This criterion associates each state component with specific sections 
of the computation. These sections indicate the lifetil!!e of the 
respective components~ Three different scopes are distinguished. 

A state component is called E.L:Q!rrl!,J!._!Q!::ll {of JI!Ob;!],) if it belongs to 
the entire interpretation of a program, i!!~!Q£al if it is a private 
state component of a specific task, and £!2£t_!Q£!!! if it belongs to a 
specific block activation. 

The following lists the state components according to their scooe: 

3. THE STATE Ol' THE PL/I MACHINE 3 



IB!l LAB VIENNA TR 25.099 

INFOR"AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1q69 

Directories and stacks are two important structures of state 
co11ponents. 

( 1) directories: 

A directory is a collection of an arbitrary number of entities 
each of which consists of a name and some associated information. 
The name is unique within any directory so that the associated 
inforaation can be retrie11ed unambiguously. 

The following state components, and the data set directory of !§ 
are directories in the above sense: 
!I. ~!. I~. !!. ~y. E!· !Q. r~ 

(2) stacks: 

A stack always reflects some parenthesis-structure. The following 
three components are stacks: 
J:1, CI, f. 

~ reflects the dynamic nesting of block activations and £! 
reflects the dynamic nesting of statements within a block 
activation. 

A stack is a completely ordered sequence of entities. f is a 
generalized stack in the sense that it represents only a partial 
ordering. 

Among other things f reflects the parenthesis-structure of 
expressions during their interpretation. 

4 3. THE STATE OF THE PL/I MACHINE 



IBN LAB VIENNA TR 25.099 

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

corresponding sections of /5/: 

9.1 Values, value representations, operands and operators 

This section describes bow data is represented in the PL/I machine. 
Whereas the primary mathematical concept is that of a value, data 
actually appears in the state comp.onents of the machine as value 
representations and operands. 

Tbe introduction of value representations is suggested by some 
particular features of PL/I ~<hich 111ake it advantageous to distinguish 
between a value and its representation in storage: 

(1) A value cannot always be stored and retrieved vi thout loss of 
accuracy. 

(2) By means of based variables a value may be stored with one 
aggregate attribute and taken out of storage with another 
(possibly incompatible) aggregate attribute. · 

(3) By means of record I/O and .area ·assignment storage may be 
manipulated (independent of. data attributes) which can cause an 
attempt to assign ·values to or take val11es from storage with 
incompatible aggregate attributes. 

In both the latter cases undefined situations may arise. 

An operand consists of an evaluated aggregate attribute and a value 
representation, where the attribute constitutes the information necessary 
for obtaining the corresponding value from the value representation part 
of the operand. Operands have been introduced because many operations 
depend not only on the values but also on the attributes of their 
arguments. 

ij.1.1 VALUES, VALUE REPRESENTATIONS, OPERANDS 

Corresponding sections of /5/: 

9.1.1 A class of data attributes 

9.1.2 Values 

9.1.3 Representing and retriev~ng scalar values 

'!'here are different types of valu.es; they are associated with 
different types <>f scalar data attributes which in addition satisfy the 

ij. STORAGE AND DATA 1 



IB!I LAB VIENNA 'l'R 25,099 

INFOR!IAL IN'l'RO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

predicate is-correct-eda (cf. 9-3(1) of /5/) and they are tabulated in 
Fig. &.1: 

data attributes I associated types of values 

----------------------t------------------------
arithmetic 

character string, 
character picture, 
(decimal) numeric picture 

bit string, 
(bin11.ry) numeric picture 

POINTER, OFFSET 

TASK 

EVENT 

ENTRY, FILE, LABEL 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I. 
I 
I 
I 
I 
I 
I 

numeric values 

character string values 

bit string values 

pointer values (cf. &.2.1) 

integer values (cf. 7.2 

event values (cf. 7.5) 

unique names (cf. 8.3, 5.5) 

Fig. 11.1 Scalar data attributes and their associated types of values 

A ~~i£!!-I!!i~ is a real or coaplex number (and it is sufficient to 
admit only rational numbers,. and c.omplex numbers vith rational real and 
imaginary part) •. A >;har!£i!Ltlti!l.SL!.i!l!!!i! is a list of character values, 
a !1.!.t_!i!:t.U!!LY!l!!!i! a list of bit v.alues. Examples of ch~acter va!g~ 
are the objects A-CHAR, B-CH.lR, ••• i· 0-CHAR, 1-CHAR, •• , ; the two !1.!1 
!!li!i!§ are the objects O-BIT and 1,.,BIT. Note that 1,1-CHAR,l-BIT (the 
number 1, the character 1, the bit. 1J are different obJects. !'or the 
remaining types of value;., see the sections referred to in Fig. 11.1. 

The internal storage of the PL/I machine is used to represent values. 
Hence, the storage and its constituent parts are called value 
representations. Interpretation o£ a reference to a variable eventually 
leads to an application of the pointer value p to the storage stg (the 
latter is itself a value representation), which yields a value 
representation; siailarly, interpretation of an assignaent to a variable 
leads eventually to an application. .o.f the function el-ass (vr-1, p, vr) 
which changes the part p(vr) of tbe value representation vr to the value 
representation vr-1 {cf. 4.2). 

The sense in which a value representation represents a value is 
explained in the next section; a value v is always represented with a 
given evaluated aggregate attribute eva , and to retrieve v from its 
representationr eva is needed aqain. 

Frequently, not only the values, but also the attributes of data are 
needed. An 22~n~ is an object consisting of two components, an 
evaluated aggregate attrubute eva and a value representation vr 
(Fig. 4.2). The eva-part of the operand consists of an evaluated 
aggregate attribute and a density (cf. 2.2.1). 

2 4, STORAGE AND DATA 



IBM LAB VIENNA TR 25.099 

30 JUNE 1969 INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

s- d. a. s-vr 

I 
8 

Pig. 4. 2 Operand 

The result of the evaluation of an expression and the 
many operations (infix operators, prefix operators, most 
functions, conversion) are operands. 

The eda-part of an operand may be an area attribute. 
the vr-part depends on the allocations aade in the area. 
however, no need to int_roiiuce a concept of "area value"; 
area case does not appear in Fig. 4.1. 

4. 1. 2 THE TRANSITION BETWEEN A VALUE AIID .US REPRESENTATION 

arguments for 
of the bnilt-in 

In this case, 
There is, 

therefore, the 

In this and the following sections, whenever the evaluated aggregate 
attribute under discussion is held constant it will be denoted by EVA and 
its corresponding eda-part by EDA (to distinguish it from eva and eda 
respectively). Let EDA be an evaluated scalar data attribute of one of 
the types list_ed _in Fig. 4.1 and satisfying the predicate is-correct-eaa 
(cf. 9-3(1) of /5/). The transition between a value v and its 
representation (with the given attribute EDA) is illustrated by Fig. 4.3: 

Fig. 11. 3 

v- se\lEDA) 

v-1-se\ ( EDA) 

val ( E VA, vrl -----~ 

------
rep ( EVA 1v) vv- set ( EVA) 

Transition between a value and its representation 

The set v-set (EDA) is the set o.f values which are !:!U!!:!!§!!ntabl!! with 
EDA; these are required to be of the type associated with EDA. The set 
vr-set(EDA) is the set of value representations that represent values 

4. STORAGE AND DATA 3 



TBII LAB VIENNA TR 25.099 

INFORIIAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

with EVA. The function rep(EVA,v) transforms each element v of 
v-set {EDA) into an element vr of v.r-set {EDA), called the !:el.!r~§.!!J!!lli2!!. 
of v with EVA; conversely, the function val{EVA,vr} transforms each 
element vr of vr-set {EVA) into an element v of v-set (EDA), the ~1.rut of 
vr with EVA. 

consider the set v-1-set(EDA) of values that are assumed by 
val(EVA,vr) if vr ranges over vr-set{EVAI: this is a subset of the set 
v-set{EDA). The following is postulated about the functions rep(EVA,v) 
and val {EVA,vr) (cf. 9-6 {18), (19) of /5/): 

For all elements vr of vr-set(EVA) and all elements v of 
v-1-set{EDA) the two relations 

vr=rep(EVA,v) and v=val(EV!,vr) 

are equivalent; i.e., rep(EVA,v), considered as function over 
v-1-.set {EDA) only, and val (11VA, vr) are inverse functions. 

In view of this postulate, v-1-set(EDA) can be called the set of 
~~tly_r~r~§.!!J!~~~l~ values, i.e., of those values for which transition 
froa a value to its representatioll, and the representation back to its 
value, results in the unchanged value. (However, those values not in 
v-1-set(EDA) are not exactly representable, because the function 
val (EVA, vr) always leads into v-1-·set (EDll)). 

l:;.U!!l!l~!!.' 

(1) Let EDA be the attribute Gli11R(4). 'l'he set v-1-set{EDA) of exactly 
representable values is t •. e. set of all character strings of length 
4, whereas the set v-set(EDA) is the set of all character strings. 
!lence, the string 'ABCD• w:lll be exactly representable, whereas 
the strings • ABC' or 'ABCDJ:• will not; the values of the 
representations of the latter t.vo strings will oe • ABCb• and 
• ABCD', respectively {when. b denotes blank). 

(2) Let EDA be REAL DEC FIX (4, !) • The set v-1-set(EDA) is 
impementation cl.efined, th•3 set v-s et (EDAJ is the set of all 
nu~eric values that will rot raise the SIZE condition. It will be 
guaranteed that the number: 123.4 belongs to v-1-set (EDA), but not, 
that the number 123.45 b<•Longs to v-1-set (EDA); the value of the 
representation of the latter may be 123.45, but it may also be 
123.4, or 123.5 or sometling else. 

In some cases, a test has to be made as to whether the value is 
representable; if it is not, t'"' SIZE, S'I'RZ or CON.VERSION condition will 
be raised. For these cases, a1 instruction ~est~!:~J!(eva,v) is defined 
instead of a function rep (eva, ") • For representable v, !~st-r~l! {eva, v) 
behaves like a function in thn: its only effect is to yield the 
representation of v; it is th'c; function, whether it is called rep(eva,v) 
or not in /5/, which is meant in Fig. 4. 3. 

For string EDA, the v-1-se'{EDA) is the set of character string 
values, or bit string values, vhose length satisfies the requirements 
prescribed by EllA. The set ''·set (EDA) is the set of all character strinq 
values, or bit string values,. and when necessary, v is transformed into 
an element v-1-set by trunca·:lon, .or by extension with BLANK or O-BIT 
respectively. Strings are rEprese.nted linearly in storage (cf. 9-7(24) 
of /5/ and 4. 2. 7. 3). 

ij 4. STORAGE AND DATA 



IBK LAB VIENNA TR 25.099 

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

For real arithmetic EDA, let b be the radix of EDA, i.e., b=10 or b=2 
depending on whether the base of EDA is decimal or binary; let p be the 
precision of EDA, and, for fixed-point ED!, let q be the scale factor of 
EDA. 

The set v-set (EDA) of representable real numerical values is the set, 
of all real numerical values v such t.hat 

(1) 

(2) 

for fixed-point ED!: 

for floating-point EDA: 

fY.blqj ( big 

min-flt-EDA1 $ V < max-flt-EDA1 

where min-flt-EDA" and max-flt-EDA._ are certain 
implementation-defined limits {depending only on b) 
(cf. 9:-12(62), {63) of /5/). 

The set v-1-set(EDA) of exactly representable values is 
implementation-dependent. It will, however, conta·in the subset 
v-0-set (EDA) (cf. Fig. 4. Q.1) defined as follows: v-0-set (EDA) is the 
set of all values v of v-set(EDA) such that 

( 1) 

(2) 

for fixed-point EDA: 

for floating-point EDA: 

v.btq is an inteqer 

v=m .. bte¥ 

where m and e are integers and !m! < b!p. 

v-1-sel(E:DA) 
v-0- set ( EDA) 

rep(EVA,v) 
-------

/ 
I \ 

I \ 
I \ 

\ I 
\ ;, 

\. I 

' // 
....... __ __ -----

vat ( EVA 1vr) 
VY • set ( EVA) 

v-set(EDA) 

Fig. q.Qa Transition betveen a real value and its representation 

4. STORAGE AND DATA 5 



IB!I LAB VIENNA TR 25.099 

INFOR!IAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

The definition of v-0-set (EDA) expresses that p is "the number of 
digits" and q is "the number of digits to the r.ight of the decimal 
point". Since no particular normalization rule is assumed, the limits 
for floating-point representation (cf. the definition of v-set(EDA)) have 
been expressed as limits for the entire value, not for the exponent. 

Let EDA be REAL DEC FIX (q, 1) (cf. exa mpl 2 in 4. 1. 2) • The set 
v-set(EDA) of representable values is the set of real numerical 
values v such that lVI < 1000, The set v-0-set (EDA) of values for 
which .exact representation is guaranteed is 

[0,+0.1,-0.1,+0.2~-0.2, ••• ,+999.8,-999.8,+999.9,-999.9}. 

But v-1-set{EDA) may be larger than v-0-set(EDA), i.e., there may 
be other values (within v-set(EDA)) that are exactly representable 
as well. 

For the other attributes EDA, both v-1-set(EDA) and v-set(EDA) are the 
set of all values whose type is associated with EDA, i.e., all these 
values are exactly representable (Fig, 11.4.2): 

vo.l ( EVA, vr) 
~-----

--
v-set(EDA) 

vep(EVA,v) 
vr-seHEOA) 

Fig. ·.ll.llb Transition between a non-~;.,al value and its representation 

6 q. STORAGE AND DATA 



IBM LAB VIENNA TR 25.099· 

30 JUNE 1969 INFORMAL IJ!TRO TO THE ABSTRACT SYNTAX AND IliTEBPllETATION OP PLii 

corresponding sections of /5/: 

3.4 The storage part ~ 

3.3.4 The aggregate directory !~ 

8.3.4 Sub-generations of generations 

4.2.1 STORAGE AND STORAGE PARTS 

The storage part ~- of the PL/I l!achine is a model of .actual computer 
storage. It shows, however, only the_essential properties Which may be 
attributed to any actual storage, without exhibiting any properties 
specific to a particular realization. No explicit construction of the 
storage part is therefore given. It is rather described by the 
properties of and the relations between the functio-ns which perform the 
basic actions on the storage part.· 'J'his descriptive method while still 
being precise frees the definition from the burden of unnecessary 
details. 

storage parts are used to represent values of some kind. They are 
called, therefore, Y.!!!!.!LJ;epres!!n.trus!!!ll• · Even the entire storage part .;! 
is said to be of the type value representation. 

There are functions which select part·s out of a value representation, 
which are called IH!inte~;:l!!• Given a value representation vr and a pointer 
p we call p(vrj the p-part of the value representation vr. If vr has no 
p-part, p(vr) is undefined and 11e say that p is not !ERli~El!! to vr. 

The characteristic property of a value representation is its l!!iZ!!· 
The size of a v_alue representation determines which pointers are 
applicable to it and, consequently, which parts one may select from it. 
In turn, the size of a part selected by a pointer is determined uniquely 
by the pointer {i.e. provided that vr has a p-part, the size of p(vr) is 
independent of any further properties of vr). 

A two-dimensional picture may illnstrate the re-lation between a value 
representation vr and its parts: 

Pz C vr) 

Fig. q.s Two-dimensional picture of storage 

4. STORAGE AIID DAT~ 1 



IB!I LAB VIENNA TR 25.099 

INFORI!AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

If tvo pointers select independent parts, they are called 1~~~nd~n~ 
pointers. Tvo parts being independent means that they have no parts in 
common. Non-independent parts are shown in Fig. q.s by overlapping 
regions, i.e. p~ is independent of p3 , but not independent of p2 • 

2 

A linear bit storage may serve as concrete model. A value 
repr.esentation consists of a linear arrangement of single bits, 
indexed from 1 up to a maximum index n. n is the size of the 
value representation. Each pointer is a function with two integer 
arguments f(i~,i2). It is applicable to a value representation vr 
of size n if 1Si._Si 2 and i 2 Sn. f (i..,i 2 ) (vr) denotes the part 
between and including the i,_th and the i 2 th element. Two pointers 
f(is.',ia') ana f(:is.",ia") are independent if 1~it.'<i2• .. 1~i:a."<ia 11 , 
and either i 2 •<i,." or i 2 "<i,.•. 

3 4 s 1 6 1 7 1 8 1 s l1o 1,, l12 113 114 1 vr 

f(4,9)( vr) 

Fig. 4.6 Linear storage model 

The p~-part of the p 2 -part of a storage vr is defined by p._(p2 (vr)), 
or p~•p2 (vr). The symbol • is used .. for functional composition. The term 
p1 •p2 represents again a pointer. 

4.2.2 ELEI!ENTARY ASSIGNI!ENT 

The p-part of a value representation vr can be changed by the 
elementary assignment function el-ass(vr..,p,vr), provided that the p-part 
of vr exists, and that the size of vr._ (the part to be assigned) is equal 
to the size of the p-part. The function gives a new value representation 
vr• : 

vr• has the same properties as vr except that vr._ is nov the p-part of 
vr•. All parts which are independent Qf the p-part remain untonched. 

This has an important consequence, namely that all parts which are not 
independent of the p-part may be different after the assignment. Since 
no relationships bet~een parts of value representations are defined, an 
assignment simply makes all those parts unknown which are not independent 
of the part to which the assignment is made (with the exception of this 
part itself) • t 

1) There are exceptions to this in string assignment. 

8 4. STORAGE AND DATA 



IB" LAB VIENNA TR 25.099 

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

ll!!.!!.J!!.!!le: 

Let the parts of the value representation in Fig 11.5 be: 

Ps.(vr) = vr 1 
Pa(Yr) = vr 2 
Ps(vr) = vr3 

After execution of the elementary assignment el-ass(vr1 •,p1 ,vr) 
the situation is: 

Ps. (vr') = vr .. • 
Pa(vr') =unknown 
Ps(vr') = vr 3 

4.2.3 ELEMENTARY ALLOCATION AND FREEING 

On allocation of a variable a certain storage part is reserved for 
holding the values of the variable •. the pointer identifyin~ this part is 
noted in order to prevent further allocations from using it. on freeing, 
the part is released for further use. 

An allocation can be aade either in the main storage ~. or (for based. 
variables) in an area (\rhich itself is part of t.he main storage) • The 
set of pointers identifying those parts of the main storaqe or of an area 
which already have been used for allocations, is called the altocati!2ll. 
ll.iU2 of the main .storage or of the area, respectively. The allocation 
state is kept in .the main storage, or in the area, itself, and can be 
retrieved by applying the function alloc-state: 

allst ~ alloc-state(vr) 

allst is the allocation state of vr (which is the main storage, or an 
area). 

If the p1 -part of :2_ or of an area is used for a new allocation, p1 is 
added to the respective allocation state. This action is called 
21~nta£Y_~2£!i!2ll• Deleting a pointer fro» the allocation state is 
called 212~ta~y-~~22i~· 

Fig. ~.7 An area is allocated in the p-part of~· The p~-part and the 
p2 -part of the area have. been used for allocations. p is noted 
in the allocation state of ~. p1 and p2 are noted in the 
allocation state of the area. 

4. STORAGE AND DATA 9 



IBM LAB VIENNA TR 25.099 

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I 30 JUNE 1969 

Elementary allocation and freeing is performed by the elementary 
allocation and the elementary freeing function, respectively: 

el-alloc{p1 ,vr) gives a value representation vr• having the same 
properties as vr, except that its allocation state is amended bv 
P:s.• 

el-free(p1 ,vr) gives a value representation vr• having the same 
properties as vr, except that p1 is no longer member of the 
allocation state. 

The storage part which is reserved on allocation of a variable is 
identified by a pointer given by an implementation-defined function which 
depends on the evaluated aggregate .attr.ibute of the variable and on the 
properties of the storage (the main storage or an area) in which the 
allocation is made {for allocations in an area only the allocation state 
of the area is significant, but not its size). The selected part must 
fulfil the following requirements: 

(1) its size must be such that it matches the size of the value 
representations which may be.associated with the variable; 

(2) it must be independent of all the storage parts which are 
identified in the allocation state of the storage in which the 
allocation is made; 

(3) it must be independent of the part in which the allocation state 
is kept. 

If no storage part having the above properties can be identified, the 
allocation is not possible. This situation is called stQ£~~=~f12~· 
The actions performed on overflow of the main storage are implementation 
defined. on overflow of an area, the AREA condition is raised (if 
enabled) • 

The right size of a storage part is discussed in terms of the storage 
mapping function in the next section. 

4.2.4 STORAGE MAPPING 

The properties of a variable which are of significance in connection 
with storage mapping are expressed by its aggregate attribute. 

A variable, according to its aggregate attribute, may be a scalar, an 
array, or a structure variable. An !l!!l!!~l!i;!!~-gQJ!!£2llit!l1 of a variable can 
be identified by an integer value. For array variables, this integer 
value must be in the range between the lower and the upper bound of the 
array, for structures between 1 and the number of immediate components of 
the structure. A component of a variable is again of scalar, array, or 
structure type. Components of non-scalar components are identified in 
the same way as immediate components of a variable. A component of a 
variable therefore is identifiable by a list of integers, which is called 
reference list (cf. 4.2.6). 

An immediate component of a variable is said to be to the left of 
another immediate component, if the integer identifying-It-Is-smaller 
than the integer identifying the other component. This generalizes in an 
obvious way to non-immediate components. 

10 4. STORAGE AND .DATA 



IBM LAB VIENNA TR 25.099 

30 JUNE 1969 INFORMAL INTRO TO THE ABSTR!C'f SY!ITU AND Iln'ERPRETATION 01' PL/I 

The way in which the various components of a variable are associated 
with storage is determined by the ~t2£~g~-~E~ing_!~E£1!2E• Let the 
storage allocated for a non-scalar variable with aggregate attribute eva 
be P{2l· The storage mapping function map(eva,n) gives a pointer Pn such 
that the nth immediate component of .the variable is associated vi th the 
storage part Pn(P(!i.)). The following requirements must be satisfied by 
the storage mapping function: 

{1) if a variable or the component of a variable is an array or a 
structure, the storage parts associated with the immediate 
components must be mutually independent. 

(2) for each scalar aggregate attribute tnere is a certain. 
implementation-defined size ofthose value representations that 
may be associated with a variable given this attribute 
(cf. 4. 1. 21. The si'l:e of the part of 2 associated "ith a scalar 
variable, or the scalar part of a variable, must match the size 
determined by the scalar attribute. 

Peculiarities of the mapping function for the handling of strings in 
storage are discussed in 4.2.7.3. 

4. 2. 5 GENJ!IIATIO!IS Ol" VARIABLES 

The information necessary for accessing storage via a variable is 
assembled in the 9.5!.!~!:at!sm of the v.ariable. A """ generation is formed 
on allocation of a variable and remains valid until freeing. A 
generation is not changed between allocation and freeing. 

A generation consists of three parts: 

{1) the aggregate attribute part. This part consists of the evaluated 
aggregate attribute of the variable. 

(2) the mapping information. This part gives the necessary input to 
the storage mapping function .and consists of an evaluated 
aggregate attribute. 

There are cases where the aggregate attribute coni:ained in the 
mapping information of a generation differs in array bounds and 
string lengths from that in the aggregate attribute part of the 
same generation. This may occur when the storage addressed by the 
variable owning this generation has not been allocated via this 
variable (i.e. for data parameters and defined variables). 

(3) the pointer part. '!'his part identifies the storage parts 
associated with the variable.. For generations formed 011 

allocation of a variable it consists of a single pointer. 
Sub-generations of generations and generations of data parameters 
may have pointer parts which are structured lists of pointers 
(cf. 4. 2. 6). 

On allocation of a variable with evaluated aggregate attribute eva a 
new generation is formed with 

aggregate attribute part: eva 

mapping information: eva 

4. STORAGE llliD DATA 11 



IB!'I LAB VIENNA TR 25.~99 

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION 01' PL/I 30 ,JTJNE 1969 

pointer part: single pointer determined from eva. and the 
properties of the storage part in which the 
allocation is made (cf. 4.2.3). 

A generation is called £Qn~2£t2g if the storage part it associates 
with a variable can be identified by a single pointer. This is the case 
if the pointer part consists of a single pointer, and if all the storage 
identified by that p~inter is used by the variable. The latter condition 
requires that the array bounds and string lengths in the aggregate 
attribute part are equal to the corresponding array bounds and string 
lengths of the aggregate attribute in the storage mapping part. It 
follows that a generation formed on allocation of a variable always is 
connected. 

4.2.6 SUB-GENERATIONS OF GENERATIONS 

Given the generation of a variable and a reference to the variable, 
the sub-generation can be defined which belongs to the part of the 
variable referred to. The evaluated sub-generation of a variable is used 

( 1) when an assignment is made to the referenced part (provide<'! that 
it is scalar) 

{2) when the operand associated with the part is to be evaluated 
(provided that it is scalar) 

(3) when it is passed to the parameter of a procedure{cf. 8.3.1). 

In the reference to a variable in the program text (cf. 10.2.5) 
immediate components of structures are identified by identifiers, 
immediate components of arrays by snbscript expressions. on evaluating a 
reference, identifiers of structure elements are replaced by the indices 
of the elements (the number of the elements when counted from left to 
right) and subscript expressions are e~aluated and converted to integer 
values (except when subscripts are specified by asterisks). The result 
is a list of integer: values and asterisks, which is called the 
£2.fer~!L!ist. 

J::!.~le: 

Let a variable X be declared in the concrete text as 

DCL 1 X (7, 2} !JNALIGNED, 2 Y BIT (3) , 2 Z (5) BIT (5) ; 

and a reference to X be 

X (1,*) • Z(S) 

then the evaluated reference list is <1,*,2,5>. 

A generation and a reference list determine a §yb-qen~tiQE in the 
following way: 

(1) A new aggregate attribute part is formed by a sub-aggregate 
attribute of the aggregate attribute in the aggregate 
attribute-part of the generation. It is obtained by successively 
applying the elements of the reference list (from left to right! 
to determine immediate components of the aggregate attribute. If 

12 4. STORAGE AND DATA 



IBM LAB VIENNA TR 25.099 

30 J!JNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX UD INTERPRETATION OF PL/I 

the element of the reference list is an integer value i, then the 
immediate component is 

(a) for arrays the aggregate attribute of the immediate array 
elements 

(b) for structures the aggregate attribute of the ith structure 
element. 

If the element of the reference list is an asterisk and the 
aggregate attribute is an array, then the result is again an array 
with the same bounds, but with aggregate attributes of the 
elements as defined by application of the rest of the reference 
list to the original element~aggregate attributes. An asterisk 
defines a £:!;.2!!2=Se£!ion of the original array. 

(2) A new mapping information is formed. The aggregate attribute in 
the mapping information of the generation is treated like that in 
the aggregate attribute part (see above). 

{3) A new pointer part is formed by successive application of the 
elements of the reference list: 

(a) If the pointer part consists of a single pointer p and the 
first element of the reference list is an integer value i, 
then the new pointer part is 

(map (eva, i)) •p 

where eva is the aggregate attribute of the part of the 
variable corresponding to p. The new pointer part 
identifies the storage part corresponding to the ith 
immediate component .of this variable component. 

(b) If the pointer part is a single pointer p and the first 
element of the reference list is an asterisk the result is 
a list of pointers p1 ,p2 ,•••Pn• The variable part 
corresponding to p must be an array in this case, n being 
the number of immediate elements of the array. The 
pointers p,., ••• ,pn are given by: 

p,_ = (map(eva,lbd))•p 

P2 = (map{eva,lbd+1))•p 

Pn = {map{eva,ubd))•p 

where lbd and ubd are the lower and upper bounds of the 
array, nbd - lbd = n ""~ 1, and eva is the array attribute. 
The remaining reference .. list then must be applied to each 
individnal element of the list p,., ••• ,p8 in forming the 
final pointer part. The result will be a non-connected 
generation. 

(c) If the pointer part is a list and the first element of the 
reference list is an integer value i, the result is the ith 
element of the list. The part of a variable corresponding 
to a list of pointers~is always an array. 

~. STORAGE AND DATA 13 



IJ'IM LAB VIENNA TR 25.099 

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

(dJ If the pointer part is a list and the first element of the 
reference list is an asterisk then the remaining reference 
'ist is applied to each element of the pointer list {the 
result being again a list). 

The three parts as defined under (1), {2) and {3) form the 
sub-generation of the generation, determined by the reference list. A 
sub-generation may be used in the same way as the original generation. 

Consider the reference to the variable X as presented in tbe 
preceding example. The step-wise construction of the aggregate 
attribute part and the pointer part of the sub-generation 
determined by the reference is illustrated in the following. 

Evaluated aggregate attribute eva of X: 

s-lbd s-ubd s- elem 

cbcb 
s-lbd s-ubd s-elem 

cbcb 
elern C1) elern (2) 

t t 
s- aggr s- aggr 

s-lbd s-ubd s-elem 

cb cb 
l'ig. 4. Sa 

14 4. STORAGE AND DATA 



IB~ LAB VIENNA TR 25.099 

30 JUNE 1969 INFOR!!AL I!ITRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

Let p be the pointer part of the generation associated with x. 

(1) The reference list is <1,*,2,5> {see preceding example). The 
sub-aggregate attribute defined by the first element of the 
reference list is: 

eva 1 : 

s-lbd s- u.bd s- elem 

cbcb 
elem (1) elem (2) 

I j 
s- a.ggr s- a.ggr 

s-lbd. s-ubd s -elem 

m cb 
Fig .. 4.8b 

With p~ = map{eva,1) we get the modified pointer part: p~•p. 
p~•P(2) is the storage associated with the first element of the 
array variable x. 

(2) The remaining reference list is <*,2,5>. We nov have to create a 
list of pointers, each element corresponding to an element of t~e 
array eva~. With 

Pa~ = map(eva~,1) 
Pza = ilap (eYa._, 2! 

(3) The remaining reference list is <2,5>. The sub-aggregate 
attribute defined by the first element is: 

4. STORAGE AND DATA 15 



IBM LAB VISNN~ TR 25.099 

INFORMAL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE H69 

s-lbd s-ubd s- elem 

cbcb 
s-lbd s- ubcl s-et em 

cbcb 
?ig., 4. 8c 

We now have to modify each element of the above list of pointers. 
With 

eva 31 , being the aggregate attribute corresponding to each element 
of the pointer list (i.e., the elements of the array eva1 ): 

eleml1) elem (2) 

j t 
s-ag')~ s -ag9v 

+ 
s-Lbd S -L~bd s- elem 

cb cb 
Fig. 4.Bd 

(4) The remaining reference list iJ' <5>. The sub-aggregate attribute 
defined by it is: 

16 4. STORAGE AND DATA 



IBM LAB VIENNA TR 25.099 

30 JUNE 1969 INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

eva,.: 

5- lbd. 5- u.bd s- elem 

cbcb 
Fig. 4.8e 

We have to modify each element of the above list of pointers. 
With 

p4 = map{eva 4~,5) 

eva 41 being the aggregate attribute corresponding to each element 
of the pointer list: 

eva•2..: 

s-lbd s- u.bd s- elem 

cbcb 
Fig. 4.8f 

The resulting sub-generation is composed of the aggregate attribute 
part eva., the mapping information eva 0 , and the pointer part consisting 
of the above pointer list. 

Suppose ve would use the reference X(1,*J.Z(5) as argument to a 
procedure, where the corresponding parameter P has the attribute eva 0 • 

The non-connected sub-generation corresponding to the reference is then 
installed as the generation of the parameter P. In case of a reference, 
say P(2), to the parameter again a sub-generation if formed. This 
sub-generation consists of 

aggregate attribute part: /BIT (5) UNALj 

mapping information: /BIT{5) UIIALj 

pointer part: p0 •p3 •p22 •p1 •p {being the second element of the list of 
pointers in the generation of P). 

The operand defined by the reference P(2! consists of the aggregate 
attribute BIT(5) UNAL and the value representation p4 •p3•p22•p~•p(2l· 

4. STORAGE AND DATA 17 



IBM LAB VISNNA 'I'R 25.099 

IN?O.RMAL TN'I'FO TO T'!E ABSTRACT SYNTAX AND INTERPRETATION 0!' PL/I 30 JUNE 1%9 

4.2.7 SURVEY OP ATTRIBUTES DEPENDING ON THE STORAGE MODEL 

A variable 8 or part of a variables declared as an area gets associated 
on allocation with a storage part, whose size depends on the declared 
size in an implementation-defined way. A certain part of this storage is 
always reserved for holding the allocation state of the area. The 
allocation state is a set of pointers (cf. 4.2.3). Im~ediately after 
allocation of an area the allocation state is made the empty set. 

Area variables are used to make allocations and freeings via based 
variables in the storage associated with the area variable 
(cf. 10. 1. 1. 4). 

The values of variables declared with the POINTER or OFFSET attribute 
are pointers as defined in 4.2.1. They can be used to identify storage 
part~ associated with connected generations.. Values of pointer variables 
are used to identify parts of main storage, the values of offset 
variables are used to identify parts of areas~ The use of ~ointer 
variables for qualifying references to based variables is described in 
10.2.5.3, the use of pointer variables for allocating and freeing via 
based variables in 10.1.1. 

If p(S) is the storage associated with an area, and o is an offset 
value identifying a part of the areaQ then oep is the pointer value 
identifying this storage pa~t in main storage. An area together with an 
offset relative to this area therefore define a pointer to main storage. 
Conversely# given the pointer to an area and a pointer to a part of th?. 
area, the offset of that part relative to the area can he found. This 
process is called £Q!!~£~iQ2_bet~~n-E2in!~[~-~ng_Q£fsgt2~ 

It is important to note that an offset value identifying the storage 
associated with a variable allocated in an ar:eall' only depends on tha 
aggregate attribute of the variable and on the allocation state of the 
area at the tiAe when the allocation was made~ The allocation stateg in 
turn, is made up of the offset values identifying those storaqe parts 
used by the allocations~ Similar allocations made in the same sequence 
in two different areas therefore define the same allocation state fo~ the 
areas. An offset identifying the storage ~art of, say, the Jast 
allocation in the one area therefore rnay be used to identify the storage 
part of the last allocation in the other area. 

The ADDR builtin-function applied to the reference to a variable gives 
a pointer operand~ provided the sub-generation associated with the 
reference is connected. The value of the operand is the pointer taken 
frorn the pointer part of the sub-generation~ 

18 4. STORAGE AND DATA 



IBK LAB VIENNA TR 25.099 

30 JIJNE .1969 INl"OR!IAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION 01" PL/I 

~~~1L~-Ihe_!~GNED_ang_~!!~IG!~Q-~ttribut~~ 

Variables may be declared with the attribute ALIGNED or IJNALIGNED.
These attributes, being part of the aggregate attributes, serve as
argument to the storage mapping function (cf. 4.2.4). The intention of
nnaligned mapping is to optimb:e with respect to storage space, at the
cost of access ti.me. The intention of aligned mapping is to opti111ize
with respect to the access time to the parts of stored aggregates, at the
cost of storage S!Jace. The exact meaning, however, is implementation
defined.

There is a special property of the mapping function for nnaligned
string aggregates. The location of the various parts in storage is
"structure-independent", i.e. the pointer identifying a part depends
only on the number of elements (bits or characters) in the part, and on
the number of elements {bits or characters) which are to the left of the
part in the aggregate. Specifically, the identification of a single bit,
or character, is determined by the nu•ber of bits or characters which are
to the left of it, i.e. by its linear index. This property gives a
well-defined relationshio between the locations of the elements of two
differently structured, unaligned string aggregates. The property is
significant for the definition of string overlay defining
(cf tO. 2. 5 •. 2. 3).

4. STORAGE AND DATA 19

IBM LAB VIENNA TR 25.099

IN?OReAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION Ol' PL/I 30 JUNE 1969

Corresponding sections of /5/!

3.6 Input and output

11.1 Data set mapping

11.2 Basic access to data

The following abbreviations are used in this section:

mapping parameter

ds,DS data set

ids, IDS inner data set or prop~r inner data set

el data element or proper data element

vr value representation

csa set of file attributes or complete set of file attributes

ea evaluated environment at.tribute

f file name

u file union name

char character value

tmt transmission error flag

File attributes are abbreviated in the text by the first three letters
disregarding official keyword abbreviations.
Exceptions! BST is the abbreviation for BITSTREAM, CST for STREAM, and
PFT for PRINT.

This section defines the organisation of the external storage which is
the repository for data sets and the association of a file with a data
set. The association is considered mainly between the file union and
external storage. Information concerning the relation between a file
value and a file name, and the organization of file directories can be
taken from section 5.5 and in more detail from section 12.2.1.

Within the scope of this section it will be of little importance
whether a file union name, say u, or the file union itself (i.e., the
entry in the file union directory selected by u) is considered. The main
difference • between the two is that the file union name is valid from
the creation of a file union to the en.d of the computation, and the file

1) Another difference is that file union names allow a distinction
between identical file unions, which nevertheless might have .been
created by different openings.

20 4. STORAGE AND DATA

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

union is valid only until the .file is closed, has no impact as long a
file is considered after opening and before closing has occurred.

4.3.1 EXTERNAL STORAGE

The external storage consist.s of two immediate components (l'ig. 4. 9).
One component is the data set directo~y consisting of data sets and
optional transmission error flag§ •. An entry of the data set directory is
selected by a data set name. The other component of external storage
conveysinformation concerning data set sharing. This component is
constant for a particular program but it is implementation-dependent. It
reflects the "program-dependency" of the relation between a file and a
data set.

~--F--,

::L:
~-~---l- --,

I
I
I
I
I
I

1 ds- n,

I~
I ·~
1 Da la ,et
I
I

I

;ho.ving I

information!
I

TNT orQ TMT or Q I

L_--- _j
_r:ata __:e~ divedory __ j

1>ig. 11.9 External storage ES

The external storage is initialized by the initial call. Changes of
the data sets may occur by data tr!!!!§.l!!l§§l!!l! and by indeterministic
environmental influences, such as data set switching in case of multiple
volume data sets, input on transient (i.e., tele-processing) data sets,
transmission errors which set the transmission error flag to T"T, and all
kind of operator interference. Environmental influences may cause the
insertion of data sets under data set names which previously yielded
empty data sets. However, data sets must not be deleted, and a
transmission error flag TMT must not be reset to empty.

It is important to note that speaking of a "multiple volume data set",
"keyed data set", etc. is only an inexact way of expressing the fact that
a data set. coul11 have been related (or in fact is related) with a file
(or files) treating the data set like a multinle volume data set, or like
a data set containing keyed records. That is, data sets do not have a
structuring as such: they are elementary objects. However, if a data
set is related at some instance with several files, they might treat the
data set as if it were structured. At the same instance, the structuring
may be different for different files, i.e., data transmitted to the data
set by one file may appear differently to another file. A file is said
to map a data set into t~e structured form of an inner data set. Data
set mapping depend.s on the file union and on the data set {cf.•4.3. 3).

A file union is always related with exactlv one data set whic~ can be
conceived as a single volume. The !!!l!i~2!1l!!!!ll±_attribut!! and the

4. STORAGE AND DATA 21

TB!! LAB VIENNA TR 25.099

INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1'169

data set title contained in the file union and the data set sharing rntorrnatron-of]2 are the arguments of an implementation-dependent
function which yields the data set name selecting the data set. The case
that the data set name refers to no entry of the data set directory is
excluded at opening 6 and no file union will be created in such a casee
The ~ata set related with the file union remains the "same" throughout
the existence of the file union. Sincev in general, there is no privacy
of a data set, the only entity which is guaranteed to remain the same in
the data set name.

A data set contains data, i.e., entities which explicitly take part in
data t.ran:::;mission.. In addition~ it contains descriptive information
about data. For this reason, it would not be instructive to imagine
e.g., a record data set as a list of re logical records".. A more realistic
view suoported by the model to be developed would be to conceive of a
data set which is composed of the complete contents of the medium on
which it is stored (e.g., the dump of a disk pack including all
meaningful data separators, and including all hidden buffers) and of the
description of the contents (e.g., location of the data set lables,
blocking format, physical record length, and keys of records). This
concept of a data set is a generalization of the usual notion of a data
set.

4.3.2 PILE UNION OF A FILE

The information necessary for accessing the data set as~ociated with a
file is assembled in the fil!L!!.lli!ll! of a file 1<hich is an entry of t.he
file union directory E[. The file union is created on opening of a file
and remains valid until closing. A file union consists of components
which are present in every file union and which remain constant between
opening and closing: the "file parameter" and the file name f
(rig. 4. 10).

,---·---· I
s- f

~----,

I I
I Dala I

s-p

il - - ..-------· i -~- -]
s-csa. s-ea. s-litle cb

tra n smi ss ion:

1 components 1

L ____ _j

! E~J [~ d:J
I
L ________ _ File pa.~o.melev

Fig. 4.10 File union

22 4. STORAGE ANJ DATA

TB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

All components of the file parameter are computed on opening. The
file parameter components ea and title serve for localizing one data set
in ~;a; the J!apoil!.~l!J!!~te.: (which is identical with the file parameter
except for buffering or exclusivity attrU>utes contained in csa) ascribes
a certain structuring to the localized data set.

The component csa of the mapping parameter can be one of the following
twenty sets of file attributes:

BST with I!IP or OUT'
CST with INP or GUT or OUT,PRT
REC, SEQ with INP or HIP, KEY or INP, BAC or IlllP, KFY, BAC or

OUT or OUT, KEY or
lJPD or UPD, KEY

REC, TRA with INP or INP, KEY or
OUT or OUT, KEY

REC, DIR, KEY with IIIP or OUT or UPD.

The other components of the file union are summarized in Fig. 4.11 in
tabular form, containing an abbreviation of the name of the component, a
description as to whether the component is constant or variable and of
what kind of file union it is a ?art, and references to sections which
describe the component in more detail.

4. STORAGE AND DATA 23

IBM LAB VIENNA

INFORMAL .INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Component Description

f

st

volno

col

count

lsz

line

psz

buf

copy of file name used
for on-condition raising

status of the file union
with respect to data set
switching and data set
label processing

number of current vo1um.e

current column

number of data fields
transmitted since start of
last statement

maximum number of bits or
characters in a line

current line

maximum number of lines
on a page

buffer pointers with or
without key

Type of file union

cons·tant

variable

variable non-keyed

variable stream

constant output

variable

constant

variable

stream

print

print

bu.ffered
sequential or
transient

TR 25.099

30 JUNE 1969

cf. 12. 2. 3. 2

cf. 12.2.3.2,
12.2.3.3,
12.5(2)

cf. 12.~

cf. 12.2.3.2,
12.6.3.1

cf. 12 .. 6 .. 1,
12.6.2.1,
12.6. 3.2

cf. 12.2.3.2,
12.6.3.1

cf. 12. 2. 3. 2,
12.6.3

cf. ·12. 2. 3. 2,
12. 6. 3

cf. 12.3.2,
12. s. 3

io-ev names of attached
I/0-events

variable record cf. 12.2.3.2,
12.3.2,
12. 5. 1

tn-key names of tasks and the
keys locked by them

non-transient
non- buffered

variable exclusive cf. 12.5.1,
12. 5. 2

~ig. 4 .. 11 Pile name and data transmission components of a file union

The file union contains nearly all information which characterizes a
particular ngeneration" t of a file,. and the variable components of the
file union keep the necessary history. Only task-local information for a
file cannot be stored in the file union. This information is part of the
file directory and is necessary for opening and closing and for the
interpretation of transmission errors on stream files~

4.3.3 cATA SET MAPPING

The necessity of data set ~~EEiEg originates from the various mays one
and the same data set {more exactly: a data set accessible by one and
the same data set name) may take part in data trasmission. The concept
of mapping is already needed in the case where considerably different

1) The unioue identification is a file union name

24 4. 3TORAGE AND DATA

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

file unions are successively associated with a part.icular data set... Data
set sharing by file unions existing concurrently, irrespective of whether
they are shared again over tasks, only influences the logical statements
which can be made with respect to the mapping.

!lAIN: PROC
PUT FILE (ll) EDIT (X, Y, Z) (ll (20)) : stream file union

CLOSE FILE {ll) ;

IF X:Y THEN READ FILE{A) INTO(U); record input file union
ELSE OPEN FILE{A) UPDATE KEYED; record update file union

RENRITE FILE{A) KEY(V) FROH(Z);

END;

The environment attributes for all file unions are the same (they
are not specified in concrete text), and also the data set titles
are identical ('A'), hence all file nnions refer to the same data
set name. The output produced with the stream file union may be
read in by the record input file anion or by the record npdate
keyed file union. As to whether reading or updating is legal, and
what would be the effect of reading or updating of the data set,
can be decided only at execution of the READ or REWRITE statement.
It is anticipated that PL/I guarantees very little about the final
state of the data set under consideration in this example.

The file unions a data set is associated with ana the "contents" of
the data set are not predictable nntil the data set is effectively
accessed somewhere dur.ing program execution. This situation can be
roughly compared with the assumption that somewhere during execution of a
program it might be possible to s~<itch from the 60-character
representation of a concrete prGgram it'!to the 48-character
representation" or to treat blanks like semicolons.. With this assumption
it would no.t be possible anymore to translate a program into abstract
text, and the concrete text itself "ould have to be interpreted.

The situation may also be compared to a value representation being
totally or partially accessed by several generations. Only for certain
generations can the value representation be mapped into a reasonable
value.

If a data set ds can be accessed, i.e., if the mapping exists, the
mapped data set is called an inn~~-Q!!!-~~t ids. The mapping depends
solely on t.he mapping parameter mp of the file union and the data set:

ids = decipher{mp, ds)

The structuring of inner data sets, and the notion of proper inner
data sets is described in the sequel. Since data transmission consists
of a change of as, this change has to be reflected in ~2 from where ds is
taken. The changes are always made explicitly in the ids, and the
changed data set which will replace the data set in]2· The mapping from
ids back to ds, and the most general properties of both mapping are
described in the sequel. Those properties of the mapping specifically
~elated with basic data transmission ace discussed in section 4.3.~.

4. STORAGE AND DATA 25

TB!'! LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

Given a mapping parameter MP, there will be a subset of data sets
which can be mapped into inner data sets. This subset is characteri~ed
by all data sets ds for which the predicate is-decipherable(MP,ds) is
true. If this subset is non-empty,• there is at least one <lata set, say
DS, which yields !DS, and this inner data set is in addition a proper
inner data set (see below). Not every proper inner data set can be
mapped back into a data set. However, IDS can be mapped back and yields
DS again. Hence, under the premise is-decipherable(mp,ds), for every
mapping parameter mp and data set ds

decipher(mp,ds) = ids ana cipher(mp,ids) = ds

is guaranteed.

is'"iols

decipher(MP, OS) -----
/

os<
" --///

<-tpher (MP,IDS)

Fig. 4.12 Domain and range of the map'fling functions decipher/cipher,
given a particular mapping parameter !lP

In Fig. 4.12 the sets of data sets, inner data sets and proper inner
data sets are symboli2:ed by isCas, is"ids, and is-prop-ids MP. 2 The
domain of the function decipherMP is is-decipherableMP• its range is
is-decipheredMP• . The function cipher is the inverse of decipher with
respect to the second argument.

Data sets are elementary objects, inner data sets are composite
objeats (Fig. 4.13 and 4.14).

1) This situation will referred to in the sequel by the term
"there exists a mapping".

2) The subscript denotes a dependency on the mapping parameter MP which
should be considered fixed for the moment. The set of all objects for
which a predicate is true is symbolized by the sign "-'6" above the
predicate name ..

26 4. STORAGE AND DATA

IBft LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

I
I
I

I----~

I
I
I I

+
r---------------+,-------------~~,---------+,---d t I VlOn· a a

1 I - - - -- - - - - - - -- - ll - - - - - -I 1 c:on tents of I
I s-header s-ti'Oliler 11 s-olata I [Jnner~~~e!J
I I I I I ,----'-1 --,
: I I I I 11 I I
1 elem(1)... elem (i) elevn(1) ··· elemyl 1 I elem(1) ... elem(n)

~~ G g ~ibb c±J
11 I

I Data set labels 11 1Vllrinsicdata1 L _________________ ~L--------~

L ____ ------ ---~--- ------

Pig. 4.13 Data contents of inner data set

s- os s-mp-no s-sav-bage

I
I gavlage I rosition moqoping

nu.mloev-
inte9er value
OY END integer value

?ig. 4.14 Non data contents o.f inner data set

All components summarized as data in Pia. 4.13, and the position ana
mapping nu11ber components of Fig. 4.l4_are inspected or changed by data
transmission. The garbage component comprises all the information which
is part of the contents of the data.set bat which is hidden to the
mapping parameter_ !lP ander consideratj.o)l. The garbage may contain for
example

(T) the positions and possibly the buffers of the file unions sharing
the data set for the moment,

(2) descriptive information about the data set,

(3) hidden information which is not accessible by the file union under
consiaeration but may be transparent to another file union, etc.

File unions with the §a~ mapping parameter sharing a data set yiela
the same inner data set. The mapping number of the inner data set is the

4. STORAGE AND DATA 27

TB!! LAB VIENNA TJ1 25.099

!NFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

number of the sharing file unions with the same mapping parameter, so to
sneak the number of equivalent data trasmission uaths.

Fig. 4.15 shows a part of]~ and!~. namely two file unions with
I!P1 and one with fiP2 as the mapping parameters. If it is assumed
that there are no other file nnions in !g having MP1 or MP 2 as
mapping parameter, the mapping number of IDS~ is two and of IDS 2
is one ..

/
/

/
/ ! __ / __

: IMP;'
1~1
L _____ j

/
/

/

I
I

r _L_I
I
1~1
1~1
I I
L _____ _j

I DS1 = decipher (MP11 05) 1

s-mp-no (IDS1)• 2

' ' " " ' 1_.:0:, __ 1

1~1
I MP2 I
I I
L __ - __ j

I 052 •

decil"her (MP2 , OS),

s-mp-no (IDS2) • 1

} ES

lclcda

transmission

paths

file

uVlions

of FU

Fig. 4.15 Example for the role of the mapping number

Mapping numbers are adjusted exclusively at creation or deletion of a
file union. Notice that the information on the mapping number is
containedin the data set and not in the file union {cf. 4.3.3.2).

The oosition component of the data set denotes the oosition of the
last element of intrinsic data which has been transmitted. The position
is END if the end of the data set has been reached by sorne previous
transmission.

The data set labels are lists of character values, the no-label case
is modelled-by-eipty-lists. The header label is always processed during
the data set opening phase (cf. 1+. 3. 3. 3).

Intrinsb~at~ consist of stream or record elements (el~ to eln in
Fig. Q.13). Bit or character values and the elementary objects
line-delimiter (LDEL}, page-delimiter (PDEL), carriage-return (CRET), and
tabulator (TABL} are 2!t~~-~1~!~ni§· ! value representation, a value
representation and a key being a list of character values, and the
elementary object specifying a deleted record !DELETED) are t~£Q£g
~1!!!!!~!!1§·

The value representation component vr of a record element usually is
an exact copy of the storage being transmitted. The record's vr may

28 4. STORAGE AND DATA

IBM LAB VIENNA TR 25.0~9

30 JUNE 1969 INFORi1i!L HlTRO TO TRE ABSTR!ICT SYNTAX AND I"TllRPRFTATION OF PL/I

serve as the source of subsequent nas=is•~ assignment to an aggregatee- a or
it may be used to determine a pointer v-alue to accomodate vr if suitable
buffer or area storage has to be allocated for vr~

!'llliN:PROC
DCL A KEYED,

l X, 2 X1 !'l.OllT (16), 2 I2 Ci!J\ll {3), 2 X3 FLOA'r (16),
Y (2, 51 C!Ull !2) ;

REWRITE FTLE(A) FRt:HlfK) * ~-o vr 0 k
X = • • • •

READ l'UE{ll! K!I ~k) SET{!>) ; vr
REl\D FILE (A) KEY ~k) !NTO f'I) ~ ~ vr
REll.D FILE {Aj KEY ~k) rwroon; Vir

END;

The REWRITE stateme~t is assumed to open A as a sequential update
keyed bu:ffe<"ed file. •rransmission of Jf means updating of the
record element b y the stcra.ge associated with lt,.. say vr., This
recorii element is ass!lmeii to have key ~'· Any of the followi!'!g
three READ statements is ass~_med to fetch vr"' If there is enouqh
free stora_gec stcr'age allocati<.nt! and initiali-e:ation 11ith vr will
be guaranteed for the first !Ll:i!H}, Frurther reference with pointer
P will depend on the aggregate attribute associated through the
reference~ The second READ is cr:~~ly guaranteed if the sizes of vr
and of the aggrega-te referenced by Y are: the same., The meaning of
further refeJ:ences to Y or ::mb-aggregates of 1l is
implementation-depen.Clent. {cf., the functica1 map in 4., 2, 4)., The
t!tiro READ is g!laranteea to reestablish ll with the meaning it had
at the moment Nhen the REJEBYTr~ t1as e.Recut:ed.,

A ~~)C i~!'.-~§;,tm _set is an irn1er data set YJ:U:h the folloBing
additional properties (the descr.iption is: based ~l!pon Figs .. ~ .. ~13 and
4. 14) '

{1) if the posi·tion is an in.•ctegerv it is posit:ive and does not
exceed n.,

{3) all data eleme!~t.s ele\l!?"'"'"'o~_~lr"'" are J2.I:puer ds_f.£L,el~!t!:..§! or they are
DELE-TED «optional only in the case the attritm-te REC is contained
in the mapping parameter»~

(4) all data elements el,., ••• ,el, must have a J:!);:OP!£L_key in case the
attribute KEY is contained in the mapping parameter.

The decision as to liJhether a k~Sy is pJeoper wmst be left to the
.implemen.tationo IJ:'he C0£'1tespo~.dEH1ce be-tween a:ttributes .and proper data
elements is giwen in Fig .. lL, Hi" \Votice th.ar:t -the data elements are
arranged in a list also in case t.h.e mapping parameter contains the
attribute Dill.

~. STORAGE AND DATA 29

IBI! LAB VIENNA

INFORMAL INTPO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

!lapping parameter
containing the attributes:

BST with INP or OUT

CST with INP or OUT

CST with OUT, PRT

REC with KEY, etc.

REC without KEY, etc.

Proper data element is a:

bit value or LDEL

character value or LDEL

character value, LDEL,
PDEL, CRET, or TABL

value representation and key

value representation

Fig. 4.16 ~apping parameters and proper data elements

!~.3-l_Q~ta set activity

Tll 25.099

30 JUNE 1969

A data set is said to be act!~ with respect to a certain mapping
parameter mp if the correspond.ing mapping number #mp is greater than
zero, inactive otherwise.• Fig. 4.15 shows a aata set DS being actiTe
with respect to !IP1 , MPu etc. The fo11owing statements on imp can be
Made: ·

(1) It. is guaranteed that an inactive data set can be opened.

(2) Opening increases imp by one,2 closing diminishes Jmp by one.

(3) A change of #mp does not affect data set mapping by active mapping
parameters different from mp, except for the garbage component.
However, opening with mp may cause that a mapping does no more
exist for previonsly inactive mapPing parameters different from
mp. Closing with mp may cause the data set to become a candidate
for potential mapping and opening by some mapping parameters
different from mp~ Hence, for any such mapping parameter the
mapping number will be zero.

(4) For mapping parameters different from mp, any kind of data
transmission including position changes might affect data set
mapping in the data, position, and garbage components but not in
the .mapping number components ..

.J;:J!.ample:

At some stage of the computation it is attempted to relate a file
with a data set DS through opening. Opening is unsuccessful and
raises the ITNDF on-condition. In the sequel, some files sharing
DS are closed. If the first opening is retried subsequently, it
might be successful.

1) Notice that tmp is a component of. an. inner data set, hence the
existence of a mapping is presupposed in this section.

2) If for an active data set the increased #mp would not ,.reserve the
existence of the mapping then opening would not be successful.

30 U. STORAGE AND DATA

IB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFOR~AL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Files which do not share a data set have different mapping parameters.
Such files have no relation except t.hat they might have the same file
naae.

!~1~1~1 Forv~ds_~~1-£a£k~~~ds.tran§!l§§l2D

For the notion of data set activity it was necessary to anticipate
parts of the criterion for opening with a particular mp: The existence
of the mapping, and the existence of the mapping even for the increased
mapping number.

In connection with data transmission. obviously only those mapping
parameters are of interest which satisfy this criterion.

In particular, for any mp containing the attribute BAC which satisfies
the criterion, and for mp~ differing from mp in the missing attribute BAC
only, it is guaranteed t that the proper inner data sets yielded by mp
and mp1 have mutually exchanged header and trailer labels, and intrinsic
data being arranged in inverted sequence. The position components are
the same.

Hence, instead of processing a data set backwards, i.e., decreasing
the current position and taking the .header label instead of the trailer
label and vice versa, the adaption of the above rule of inverted mapping
allows getting rid of all these exceptions at once.

4.3.3.4 Related maoping

In general, no conclusion about similarity or dissimilarity of inner
data sets can be made if they are yielded by the same data set but
different mapping parameters. However, if the mapping para11eters are
identical except for t.he set of attributes, and if the attributes neither
contain the attributes BAC nur PRT, the inner data sets have the same
data (labels and intrinsic data) if all mapping parameters belong to the
same mapping category.a The mapping category is bit stream, character
stream, keyed, and non-keyed if the attributes BST, CST, REC and KEY, and
REC but not KEY are contained in the mapping parameter, respectively.

!lore special relations of mapping parameters containing the attribute
UPD vith mapping parameters specifying INP or OUT will be detailed in
sections 4.3.4.1 and 4.3.4.3.

4.3.4 BASIC DATA TRANSMISSION

Basic dat.a transmission is the main application of data set 1!!apping.
Basic data transm.ission is always perfo):"meil by "basic groups", 1. e., as
one elementary step of the computation. The basic groups usually make an
explicit change in ~2· Depending on the type of basic data transmission

1) mp 1 is a "forwards" mapping parameter. The exact formulation of the
guarantee is complicated by the fact that from mp satisfying the
opening criterion it must not be derivable that mp.._ will satisfy the
opening criterion, too. This would be a general statement on the
sharing of backwards and forwards mapping parameters which certainly
could not be supported by an implementation on tape-like medium.

2) An exception is the mapping category keyed if some mapping parameters
contain the attribute DIR and some do not. In this case only identity
of proper data elements of intrinsic data is guaranteed but the
sequencing is not preserved.

~. STORAGE AND DATA 31

JB!I LAB VIENNA TR 25.099

INPOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

other state components may also be changed.
allocated, freed and assigned to, assignment
data transmission is performed, etc.

!'or example, buffers are
to the target aggregate of

Since this section is devoted solely to the static properties of data
set mapping, only the names of the !l~lli£_gat;L:ttit!!!!.!!!11!i.!!!Li!£!i2!!!l are
given, together with references where. they are discussed in more detail
in this document (Fig. 4.17).

Name of action:

stream-transmission

into-set-transmission

set-transmission

ignore-transmission

delete-transmission

rewrite-transmission

write-transmission

buffer-transmission

Refer
to section

12.6. 3.1

12o5.3.4 6

12.5.3.5
12.5.3.4

12. 5. 3. 5

12.5.3.5

12. 5. 3. 3

12.5.3.1

12.5.3.1

{

}

Basic data transmitting
function invol vea:

read{mp,ds,llj
vri te (mp, ds, el)

rea /I (mp, ds, key)

ignore (mp, ds, n)

rewrite {mp,ds,el)

} write(mp,ds,el)

Note: el is a proper data element with respect to mp,
key is an optional key, n is an optional integer.

Fig. 4.17 Basic data transmitting actions and functions

The actions are based on the five .l?i!!!i£_1i!i1J._tr~it!ing functiOJ!.l!
read, ignore, delete, rewrite and write. All these functions have in
com~on, that they map a data set as in dependence of additional
information (mp, el, key, n) onto a data set ds~ and some information
about the success. of this transition inf._. The resulting data set d.s._ is
not necessarily different from ds (Fig. 4.18).

32 4. STORAGE AND DATA

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

decipher (MP,ds) -- - ___,. -
~ -

--._,._-
cipher (MP, idS1)

" is- dec.il"hered
io- dec.t'pherable

Fig. 4. 18 Transition from ds to dsL ~aused by a ·
basic data transmitt.ing_fo;tllction

The resulting information inf,_ is empty or it indicates certain
!!.ll.!!.§Ual si!,~:!:JS.!l!!• or the proper data _!!!lement yielded by the function
read. ·

There are three types of unusual situations:

{ij something is wrong with the key; i.e., the key is not proper, or
there is ao matclling key to be found in the·case of a read,
delete, or rewrite, or there is a 11atching key found in a write,

(2) something is wrong with the s.i;!:e of the value representation
transmitted (rewrite, write),

{3) the end of the data set has been reached (read,ignore,write).

Situations {1) and (2) will give rise to subsequent on-conation calls,
situation (3) will cause waiting for input (in the case that mp contains
the attribate TRA and Il!IP) or data set volume switching (in all other
cases). ffence, unusual situations are detected at the point where basic
data transmission is performed. However, the interpretation of unusual
situations is not part of basic data transmission.

All basic data transaitting functions becoae undefined (erroneous) if
at least one of the following cases applies:

(a) ds cannot be mapped with mp,

(b) ds is inactive with respect.to mp, i.e., the mapping number is
zero,

(c) ds is in the position "EJ!ID" w.ith respect to mp.

Any of the above cases can be true because ds is erroneously shared by
mapping parameters other than mp •. Since environmental influences may

4. STORAGE AND DATA 33

IBM LAB VIENNA TR 25.099

INFORMAL INTBO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

arbitrarily change any data set, such a change may also give rise to a~
erroneous situationo

If the above kind of sharing and environmental influences are
excluded, cases (a) and (b) will not apply since they would prevent
opening to occur, and because it is an important property of all basic
data transmitting functions that they yield a data set ds 1 which can be
mapped again and which is active (also in the unusual situations,
cf. Fig. 4.18). Since the basic data transmitting action using the
function will replace ds (i.e., the data set as taken from ~2 before data
transmission occurred) by ds 1 , the properties of defined mapping and
activity are conserved in ~~o

Case (c) may apply also due to a sharing of ds with the same mp if
basic data transmission over another file union has reached unusual
situation {3) previously. This is demonstrated by the following erample.

MAIN:PROC
DCL {li, B) RECORD, I INIT (1)_;

ON ENDF(Aj IF I=l THEN GOTO E;
ON ENDF{B) GOTO END;

OPEN FILE(A), FILE{B) TITLE ('A');
READ FILE(B) INTO{X);

RDA: READ FILE (AI INTO (I);

GOTO RDA;
E:: I::O;
EliDl':READ FILE(l\1 INTO{X);
ERR: READ l'ILE(B) INTO(Y);
END: END;

Opening is assumed to produce two file unions with identical mp.
If label ll is reached then this has been caused by an end-.of-file
situation .on the file union accessible to A. The end-of-file
status being registered in the file union is a persisting form of
situation (3). The READ statement labelled llNDl' is issued in
end-of-file status, hence the on-unit is called again without
looking at the data set. The READ statement labelled ERR is
erroneous since the file union accessible to B has not been set
into the end-of-file status, hence the data set is mapped and
unusual situation (3) applies.

~~1~~~1-~2§iti2ningL-~~g~ing'-gn4_gel~t!ng

The basic data transmitting functions read and ignore yield a data set
which may differ from the source data. set in the positioning only. • It is
guaranteed that positioning will always be within the range described in
section 4.3.3.1 for proper inner data sets, and that the existence of the
mapping is preserved. This is true even in those cases where the
positioning itself is implementation-dependent because of an unusual
situation in connection with positioning by a proper key (cf. 4.3.4, (!)).

1) Both functions are not concerned with size violations.
between the sizes of the value representation component
data element read and any target storage specified will
by the action into-set-transmission {cf. Fig. 4.17).

34 4. STORAGE AND DATA

Any mismatch
of the proper
be interpreted

IB~ LAB VTENNA TR 25.099

30 JUNE 1969 INFORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The functions read and ignore, if used for INP file unions, have no
peculiarities as compared 11ith their. usage in connection vith !JPD file
unions. Rence it may be postulated that mapping parameters differing
only in the attributes INP and UPD yield proper inner data sets with
identical data provided that the mappings exist and that a potential
success of opening with the UPD mapping parameter implies the same
success for the I!IP mapping parameter.

The basic data transmitting function delete changes positioning in a
vay similar to read and ignore. It is guaranteed that the replacement of
the proper data element by the artificial data element DELETED will
preserve the existence of the mapping.•

The proper data element el vbich has to be transmitted to the data set
as by the function rewrite(mp,as,el) might violate the
implementaion-dependent re~uirements for the size of the value
representation component of el. If it does not violate the requirements
then the implementation-dependent predicate is-size- violation (mp, ds,el)
is false and el can be rewritten as it is.2 Otherwise the predicate
is-size-violation(mp,ds,el) is true and instead of el another proper data
element, say e1 1 , would be rewritten. The elements el and el, are
guaranteed to have the same key, and elL does not again violate the size
reqirements.

Irrespective of whether el or el1 is rewritten, the existence of the
mapping is preserved for the updated data set. p
kind of positioning occurring in unusual situations is described in
section 4. 3. 4. 1.

The proper data element el which has to be written in the data set ds
by the function write(mp,ds,el) might violate the data set extent and
size requirements of the implementation. If both requirements are met
then el is written as it is. In this case the implementation-dependent
predicates is-end {mp,ds,el) and is-s.ize-violation (mp,ds,elj are both
false. However, if the predicate is-end(mp,ds,el) is true no data
element will be written but t.he posi.tion will be set to END. This will
be done regardless of any size violation.

The last case, is-size-violation{mp,ds,el) being true and
is-end{mp,ds,el) being false, is handled in the same way as a size
violation at rewriting (cf. ~.3.4.2).

If the attributes BST or csr are contained in mp then the notion of
size violation becomes meaningless. .In the above description a value of
true should be substituted for the predicate is-size-violation though the
predicate is not really used in the definition of stream transmission.-

1) The replacement does not necessarilv .. mean that the deleted proper data
element {or parts of it; will not be. accessible anymore to mapping
parameters other than the mp under discussion.

2) Proper data elements being contained in ds obviously do not violate
the size re~ui~ements~

4. STORAGE AND DATA 35

IBI! LAB VIENNA TR 25.~99

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

The basic data transmitting function write if used for DIR, OUT file
unions has no peculiarity as compared with the usage of the function in
connection with DIR, tJPD file unions-. Hence it may be postulated that
mapping parameters containg the attribute DTR and differing only in the
attributes OUT and UPD yield proper inner data sets with identical data
provided that the mappings exist and that a potential success of opening
with the tJPD mapping parameter implies the same success for the O!JT
mapping parameter.

The kind of positioning occurring in unusual situations is described
in section 4.3.4.1.

~~J~1~1-!£~§~§iO~-~££Q£§

It has been outlined in section 4.3,1 that the transmission error flag
appended to data sets is !~ provide the infor•ation concerning
intervening transmission errors. Settillg of the flag is not under the
control of the interpreter, and is independent of any environmental
change of the data set.

Every basic data transmitting action (cf. Fig. 4.17) inspects the flag
and deletes it.

1) The function lfrite is not used with the attributes SEQ, UPD.

36 4. STORAGE AND DATA

IB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO T!IE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

This chapter considers a specific aspect of PL/I, namely the kind of
names which may occur in a program and their meaning daring the execution
of that program. The question may be formulated more precisely in terms
of the PL/I machine as follows: at soMe point of time, i.e., for a given
state of the PL/I Machine, what information is associated with the known
identifiers {or identifier lists in the case of qualified references). A
diagram of the information which is in general dynamically associated
with a name will be given for each specific kind of PL/I name. This will
be followed by a discussion as to when the individual components of the
diagram are created, changed or deleted. It will also be discussed under
which circumstances a name may have parts of the information associated
with it in common with another name {sharing patterns). Only single
tasks will be considered in this chapter, except for the last section
which will give some notes on the consequences of tasking for the subject
of this chapter.

The following k.ind of diagram will be useful in the discussions of
this chapter. Whenever it is necessary to say that with a given piece of
information A one may retrieve the information B from a directory Q of
the state of the PL/I machine then this is indicated by the diagram:

Q
A B

In other words A is associated with B in D.realized in the state of
the PL/I machine will, however, be suppressed. The above picture
therefore only indicates that it is possible to retrieve B given A from Q
in some way which is not specified further.

Occasionally, it will be necessary to represent composite objects, of
some specific kind, in a diagram. This will be done by enumerating
variables enclosed in parantheses, where the variables stand for the
immediate components of the object ana the names of the variables
indicate the kind of component. The specific selectors that lead to the
components will thus be suppressed.

The relation between the use of an identifier and its corresponding
declaration in a given program is static, i.e., can be determined without
interpretation of the program. The declaration which corresponds to a
given use of an identifier is always found in the declaration part of a
block containing the ase.t The innermost block is to be taken in case
there is more than one such block.

The initial step of the interpretation of a block is to make a copy of
the block. For each declaration of the declaration nart a new nnione
name is created and inserted as an additional component thronghont-the

1) More precisely one should talk about identifier lists corresponding to
qualified names rather than single identifiers.

5. IDENTIFIERS AND THEIR SIGNIFICANCE 1

IBM LAB VIENNA TR 25.1199

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I 30 JlJN!l 1969

block in any place of use of the identifier. Then a new entity is
created for each individual declaration and made available under the
corresponding unique name. The term entity means, in this context, a
collection of state components which are linked together in some way. In
particular, entries in the denotation directory and attribute directory
are made for each newly created unique name.

As a consequence, the name of an entity is uniquely associated with a
specific interpretation of a specific declaration, i.e., associated with
the declaration and a spec.ific block activation.

Throughout the block activation any use of an identifier will be
interpreted as references to this entity. block activation be
interpreted as references to this entity. It is essential t.o note that
any copy of a part of the block carries the meaning of the identifiers
used but not locally declared within that part of the block. Copies of
parts of the block which are kept in the state for later interpretation
will therefore retain the meaning of their non-local identifiers
irrespective of the place where they are executed.

Differnet entities may share components and the present chapter will
be partially devoted to the study of these sharing patterns and thereby
some properties of PL/I will be formulated.

Fig. 5.1 shows as an example the structure of the simple reference
s.A.B, after insertion of the unique name, n say.

s-id- list

eletli(1) elem (2)

88 ...
~ig. 5.1 Example for a reference after insertion of the corresponding

unique name n

All entities created by the interpretation of a declaration have a
denotation and an attribute part to be found via the unique name in the
denotation and attribute directories respectively. The following picture
of an entity (Fig. 5.2} is therefore valid independently of the kind of
its declaration.

2 5. IDENTIFIERS AND ~qEIR SIGNIFICANCE

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

n

\ill/ den

/
~

ct Hr

Fig. 5.2 General diagram valid for all types of entities, where n is the
unique name

At this point of the discussion the denotation (den) cannot be further
specified since its structure and significance depend on the kind of
declaration vhich created the entity.

The attribute, attr, is a copy of the attribute from the declaration
which created the entity. The meaning of the global identifiers in this
copy (because of the insertion of unique names) remains fixed for any
interpretation and is the meaning given during interpretation of the
respective declaration part. This is important since the attribute may
contain expressions which are evaluated outside the scope of their global
variables (e.g., bounds of controlled array variables).

The following abbreviations and metavariables are used:

gen generation

eva evaluated aggregate attribute

mi mapping information

vr value representation

PP pointer part

5. IDENTIFIERS AND THEIR SIGNIFICANCE 3

IBM LAB VIC:NNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTEFPRETATION OF PL/I

n

The general diagram of a proper variable is:

y b

~
AI~ atlr

~ig. 5.3a Proper variables

~ig. 5.3b Generations of variables

The Figures 5. 3a and 5. 3b are valid for all kinds of proper variables
and may therefore be taken to represent the general concent of proper
variables in PL/I. Without reference to the specific types of proper
variables the following general rules can be stated.

General rules:

(1) !2-~112£~t~ a variable means, with respect to Fig. 5.3,1 to create
a generation (genk+~ and to add the generation as the head of the
generation list in A~·

(2)

The new generation list is then:

<genk+ 1 • gen~.,:, genk-1., , gen1>

The creation of a generation usually involves the evaluation of
aggregate attributes.

To free a variable means, with respect to Fig. 5.3,1 to delete the
heaii-f"i::om the generation list. The new generation list is then:

1) There is also a change in an allocation state (main storag~ for prooer
variables) but this allocation state is not part of the diagram for
proper variables.

4 5. ID?.NTIFI~RS AND THEIR SIGNIFICANCE

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

(3) The curre.nt generation is the bead of the generation list
(i.e. ,gen.>.

{q) An ~iqnm~~~ to or !llit!ali~~i2n of a variable changes or sets
the value representations of the current generation.

(5) Any attempt to free genL by a free stateaent is an error.•

{6) eva of any generation is produced upon allocation.

The following rules vill distinguish the special types of proper
variables as special cases of the general diagram.

The differ~nt_!y~~~-Yaria~!g~:

(1) £gntro!!g~_y~£ia~i

(a) The ~ggreqa~~~ b is created during the prepass and
substituted into the declaration.

(b) The generation lis! is initially set to <genL> and updated by
the execution of explicit allocate and free statements. The
initial generation genL is essentially a null generation
containing an attribute part but no pointer part.

(c) eva is either taken from the previous generation or evaluated
from attr or from attributes which occur in the allocate
statement.

{2) ~U!<-lllliblesi

{a) For tile l!!I!U:eqatJLnl!,J!g see (1) (a) above.

{b) A generation is created by the prepass according to the
corresponiiing declaration; the ggllg£Uion li.!l! is set to
<gen,*> and remains constant during the entire interpretation
of the program.

(3) Automatic variabl!!ll

(a) A unique aggregate name b is created when the iieclaration is
interpreted {block entry).

(b) A generation gen is created upon the interpretation of the
declaration (block entry) and the qenerati~i§! is set to
<gen> and remains constant during the entire corresponding
block activation.

External variables are either static or controlled. The same
unique aggregate name b is substituted into all declarations of
the sa,.e identifier during the.prepass.

1) This is part of a mechanism which guarantees that no task frees
variables allocated by its mother.

5. IDENTIFIERS AND THEIR SIGNIFICANCE 5

IBM LAB VIENNA TR 25.099

INFOPMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

{Sl In!g£n~!-Y~£i~bl2£1

Automatic variables are always internal and have been dealt with
in (3}.

For static and controlled variables different aggregate names are
created for each declaration during the prepass.

The following is a summary of the possibilities for passing a
proper variable as an argument to a parameter.

(a) If the argument is controlled and the parameter is also
controlled the aggregate name b is passed to the parameter
which therefore §l!~J::g!L!l!~_g!J!!!.H!iQJLJ.ill with the
parameter~

(b) If the attribute of the argument and the corresponding entry
declaration match in a certain way, the current generation
(or a subgeneration thereof) is passed to the parameter. A
new unique aggregate name b is created for the parameter.
The parameter therefore §l!~!22-!~!Y~§ with the argument.

(c) In all other cases a nev variable (dummy variable) is created
and identified with the oarameter whose initial value is the
value (or part of the vaiue) of the argument. Therefore
there is ft2_2h~ing_~!-~!l between the parameter and the
argument.

The following are notes on some sharing patterns which might occur
hetween two different variables.

(1) Two different variables have the same aggregate name and therefore
share the generation list.

6 ?. IDENTIFIERS AND TffEIR SIGNIFICANCE

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

b AG

n1

y
~ o.ttr

b AG
< genk 1 ••• , gen 1 >

y
o,~

a ttr'

Fig. 5.4

This sharing pattern occurs in the following situations:

(a) two external variables having the same identifier;

{b) controlled or static variables created by the same
declaration;

(c) a controlled ~ariable {n1) passed to a parameter (n 2).

(2) Two variables pointing through their generations to
non-independent storage ana therefore sharing values.

5. IDENTIFIERS AND THEIR SIGNIFICANCE 7

IBM LAB VIENNA

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JITNE 1969

C evo., rni 1 pp) · · ·

-~

"•' 7~
b' AG ,........,__, y --==--+ C eva', mi ', pp') .•.

,,~ ""''
Pig. 5. 5

This sharing pattern occurs in the cases (a), {b), and (c) of {1)
and in the situation where the generation or a subgeneration of a
proper variable is passed to a parameter (case (b) of parameter
passing).

The general diagram for based variables is:

y Q

n

~ o.ttv-

,ig. 5.6

8 5. ID!NTT,IERS AND THEIR SIGNIFICANCE

IBM LAB VIENNA TR 25.099

30 JUNE 1969 IN!"ORMAL INTRO TO TRll ABSTRACT SYNTAX AND INTERPRETATiotl OF PL/I

Upon reference the attributes are evaluated and a generation is
te~porarily created from these evaluated attributes and the
pointer given by the pointer qualification of the reference.

The general diagram is:

~
& ~attr

Fig~ 5 .. 7

The denotation of a defined variable is the evaluated aggregate
attribute. The evaluation is done upon interpretation of the
respective declaration (prologue). The base, which is contained
in the attribute, is evaluated upon reference.

Upon reference a generation is temporarily created from the eva
and the evaluation of the base which contributes essentialy a
pointer. No sharing patterns and no parameter passing is to be
considered for based and defined variables.

5. IDENTIFIERS AND THEIR Sir.NIFICANCE q

IBM LAB VIENNA TR 2.5. 099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

The following abbreviations are used in this section:

fa file attributes

f file name

fd-ea,ea evaluated environment attribute

id file identifier

u file union name

own-inh own or inherited file

fd-tmt,tmt transmission error flag

csa complete set of attributes

ds data set

f2,fd- file directory

f!!. file union directory

~~ external storage

buf buffer information

io-ev attached I/0-events

tn locked tasks

env environment attribute

10 5. IDENT1F1ERS AND THEIR SIGNIFICANCE

IBM LAB VTENNA TP 25.099

30 JUNE 1969 INPORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The general diagram for a file is:

CS
t
I
I
I
I y

"~
-. · attr

Fig. 5.8

FD
fd- status

(fa
1

fa-ea, id 1 u, own-inh 1 fd-lmt)

(csa,eo.,lille, ... ,but, ... ,io-eo, ... , tn)
'--v--' I I I

i ES
• j. •
5 'PA TE, TN

{ ds, tmt)

A !!1~ is the information which is accessible by the unique name n
through the state components AT, 2!. x~. Ell· and ~2·' The various entries
are created or modified at the following stages of the comnutation:
prepass, block prologue, attaching and ter~ination of tasks, data
transmission including opening ana closing of the file. The entries to
the right of the dotted line in Pig. 5.8 are available only at points
when data transmission may take place, i.e., when the file has heen
opened and has not yet been closed.

(1) The fil!Llls!!!~ f is created during the prepass, ard is unigue for
each declaration of internal file constants and for all
declarations of the same file identifier in the case of external
file constants. The file name is substituted into the respective
declaration during the prepass. The declared environment
attribute is evaluated ana is enterea into the file directory of
the main task under the file name f (fd-ea) together with the file
attributes fa and the file identifier id.2

Q£~DiJ!.g_Q_f_!!_fil~ amends the entry in the file directory (fd-status in
Fig. S.R) and makes the entry in the file union directory (the file

1) The casual access to other state components is reoresen+.ed by dashed
arrows in Fig. 5.9.

2) Note: The value of a file variable is a representation of the unia'le
na~e n of the respective file constant. Therefore n is referred to a
fil~-Y!!lll~ in the chapters 4. and 12.

5. IDP.NTIP.IERS AND T~EIR SIGNIFICANCE 11

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 31J JUNE 1969

union) under a new file ll!!i!2.!L!!~~ u which characterizes a "generation"
of the file.

(.3) ll!!ta tJ;;!!lllU!issi2!l over the file goes to or from the data set ds
which resides in external sto~age ~2· Various components of the
file union keep track of the data transmission. In addition,
transmission errors are recorded in tmt and fd-tmt (Fig. 5.8).

(4) Closing of a_fil!j! deletes all entries made at opening, i.e., the
fd-status and the file union. Assuming that the file union name u
has been stored somewhere, it is no •ore possible to localize ds
in ES on the basis of the file union name. This remains true even
if a-following opening establishes another generation of the file.

(5) Attaching of a task provides the new taslt with a copy of l'D such
that all components fa, fd-ea, and id are exact copies. From the
fd-status of all open files only the file union name is copied.
The components own-inh will be empty for the life time of the
attached task (this is the indication for inherited files). The
components fd-tmt will be initially empty.

(6) Termination of a task causes closing of all files opened br this
task which have not been closed so far {closing of all £Vned
fil!j!§).

There are no pecularities of argu•ent passing since parameters can
only be file variables.

A more detailed description of file directories {and the modelling of
standard system print files) is given in section 12.2.1. Section 4.3
describes the ~election of a particular data set in ~, and the
structuring imposed on the data set by the characteristics of the file.

2h!!ring_£!!ttgJ::n§

(1) Files sharing the on-condition actions:

files having the same file name, i.e.,

{a) external file constants having the same identifier

(b) file constants created. by the same declaration.

{2) Files sharing the file union:

files having the same file union name, i.e., file inherited by
task calls.

As a consequence situation (1) applies.

(3) Files sharing the data set:

There is a function which yields for any ea and title a
datasetname by which the data set can be retrieved from ES.

Consequently, files having the saae ea and title in the file union
share the data set. This is, however, only a sufficient but not a
necessary condition. A more detailed description of the subject
may be found in 4.3.1.

12 S. IDENTifiERS AND TREIR SIGNIFICANCE

IBM LAB VTENNA TR 25.099

30 JUNE 1969 INPORMAL TNTRO TO TgE ABSTRACT SYNTAX AN~ INTEFPRETATION OF PL/I

The following abbreviations are used in this section:

ba block activation name

bpp block prefix nart

param-list parameter description list

rat-type return type

The general diagram for a procedure is:

(id, body I bet I bpp)

(a.tt r)

Fig. 5. 9

The entire entity is created upon block entry and remains unchanged
during execution (in that sense procedures may be considered to be names
of constants).

The identifier points to the statement with which the interpretation
of the body has to start.

The body is essentially the text to be interpreted when the procedure
is called. The body is defined in the corresponding declaration part in
c~se of internal procedures. Por external procedures a unique name is
found in the declaration which allows the retrieval of the body of the
external procedure. The abstract structure of the body has been given in
2. 1. 3.

The block activation name is the name of the activation in which the
corresponding declaration vas interpreted.

The block prefix part is relevant for condition enabling.

There are no interesting sharing patterns to be discussed for
proceduresr since the entire diagram remains constan-t during
interpretation.

5. IDENTIFIERS AND TREIF SIGNI?JCANCE 13

IBM LAB VI:SNNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

The general diagram is:

Fig. 5. 10

The denotation is Q.

The attributes are a list of pairs {ref,descr-list) where each pair
consists of an entry reference and a parameter description list. The

, reference of each pair refers to a procedure. Upon reference to a
generic name a specific pair is selected by comparing the argument list
of the reference witb the various parameter description lists of the
list. The procedure referenced by the reference of the selec~ed pair is
then called.

There is no parameter passing to be considered since there are no
generic parameters.!

The general diagram for builtin functions is:

BUlL TIN

Fig. 5. 11

The declared identifier id determines uniquely the builtin function to
be evaluated. The definition of the builtin function is contained in the
interpreter (and not given by standard declarations).

1) If an argument is a generic reference then the result of th e generic
selection is passed, i.e •• a procedure.

14 5. IDENTIFIERS AND THEIR SIGNIFICANCE.

30 JUNE 1969 INFOR~AL !NTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

5.9.1 LABELS WHICH SERVE AS DESIGNATION OF GOTO STATEMENTS

The general diagram is:

/
(bct 1 st-loc)

DN /-

Fig. 'i. 12

The denotation is a oair which consists of a block activation name and
an index list which identifies the statement location. The unique name
ba determines the block activation and the statement location de~ermines
the state~ent within this block activation to which control is passed in
case of a goto statement. refering to that label. !lo argument passing is
to be considered. A dummy label variable is always created and passed to
the par:a~eter, when a label occurs as argument.

5.9.2 FOR~AT LABELS

The general diagram is:

l'ig. s. 13

The format-list is taken from the labeled statement. The environment
is that which determines the interpretation of the format-list. The
st-pr:efix-p is constructed from the relevant part of the statement
updated when the declaration is interpreted. The additional comoonents
serve checking pur~oses.

5. IDENTIFIERS AND THEIR SIGNIFICANCE 15

IBM LAB VIENNA TR 25.099

InFORMAL INTRO TO THE ABSTFACT SYNTAX AND INTERPRETATION OF PL/T 30 JlJNE 1969

The following abbreviations and metavariables are used:

attention environment directory

attention directory

ea evaluated environment

attn attention

The general diagram is:

ea.}
id.

a. \t 11

Fig. 5.14

A unique name b is created during the prepass for each attention
identifier and inserted into the respective declaration (similar to
external). The prepass also evaluates the environment attribute and
makes the appropriate entry into ~!· There is a function which yield for
any identifier and evaluated environment attribute a name which gives
access to an entry in !!· The entry in !! is initially made by the
interpretation of an enable statement. The attention attn can be changed
by attention occurrences enable statements, disable statements,
asynchroneous attention interrupts and access-statements.

After having enumerated all types of names (except condition names)
which can be declared in a PL/I program, one may ask for which types of
names can the associated diagram change dynamically. The names for which
the diagram may change will be called (in this section) variables; the
remainder constants.

16 5. IDENTIFIERS AND THEIR SIGNIFICUCE

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

variables:

(1) proper variables
(2) files

constants:

(1) based and defined variables
(2) procedures
(3) generic names
(4) builtin functions
(5) labels

The study of sharing oatterns is only relevant for variables and not
for constants, since these patterns express whether updating a part of an
entity means automatically 11pdating of a part of another entity.
Consider the example given in Fig. 5.15a where both n1 and n 2 have the
2~~ y as a component. Since each name has its own copy of y, updating
of y of one name would only mean updating of its own copy of y. If,
however, there is only one copy of y owned by both names as indicated in
Fig. 5.15b then any updating of y via one name would also ~ean updating
of y for the other name. In the latter case only it is said that n1 and
n2 sh~£2 y.

y 'j

Fig. 5.15a n1 and n 2 have the same y

X X

~/
y

Fig. 5.15b n~ and n 2 share y

Chapter 5 has so far not considered tasking. In the senuel the
relation of tasking to the general diagrams will be discussed briefly.
of tasking to the general diagrams will be briefly discussed. There are

5. IDENTIFIERS AND THEIR SIGNIFICANCE 17

IBM LAB VIENNA TR 25. 099

INFORMAL INTRO TO TAE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

certain components in the state of the PL/I machine, called task. global,
which are shared by all active tasks and there are other components,
called .t.!!sk l0£!!1, which are privat to a specific task, i.e., not shared
among different tasks. There are two task local state.components, !~and
£12, with respect. to the state components mentioned in the general
diagrams. All other state components mentioned in the diagrams are task
global. When a task is attached a modified copy of the !~ and FD of the
attaching task is made for it.

The modification of the copy of AG consists in deleting all
generations from the generation lists excePt the cnrrent ones.
be an aggregate directory and let AGa be the Modified copy made
for a task to be attached.

Let !$i1
from !G._

The diagrams in Fig. 5.16a,b show the versions of a proper variable
for the two tasks.

b

DN/
/-

1\~
AT

~ attr

Fig. 5.16a att.aching task

/b
ON /-

¥1~
AT

~ (ctllr,env)

Fig. 5.16b attached task

The two versions of the variable obviously share storage via genk.
They have, however, their own copies of the generation list and will
therefore not share storage via generations allocated after the task is
attached. The rnle that gen._ of a generation list must not be freed
guarantees that the daughter task will not free generations allocated by
the mother task.

The modification of the copy of .E.Q consists in changing all
occurrences of* (own) ton (inherited). Since any opening creates an
entry (u,*, •••), the interpreter can always test whether a file was
ooened b1' the current or some mother task. Let .EJh be a file directorv
and let £:122 be the modified copy made froa £:12>. for a task to be attached.
The diagrams 5.17a,b show the versions,of a file for the two tasks.

18 5. IDENTIFIERS AND '!?HEIR SIGNIFICANCE

!BM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTFO TO TRE ABSTR~CT SYNTAX AND INTERPRETATION OF PL/I

n

~ attr (csa 1 lille 1···)

! ES
(cl.s 1tmt)

Fig. 5.17a attaching task

/f FD,

llN /-
~

AT
-~

o.ttr

(cls, tmt)

Fig. 5.17b Attached task

The tvo versions obviously share the inforaation in FU and the data
set. If, however, the mother closes the file and opens-another file with
this unique name, the two versions will no longer share information, via
the file union name, since the mother will create a nev file union name
upon opening.

S. IDENTIFIERS AND THEIR SIGNIFICANCE 19

TB~ LAB VIENNA T~ 25.099

30 JUNE 1,96q IN!<"ORMAL INTRO TO T'1E ABSTRACT SYN'IAY. AND TNTERPRET!IT!ON 0:' PL/I

corresponding section of /5/:

3.7 The computation of the PL/I machine

The interpretation of a program starts with an iPitial state e0 which
essentially is a clearPd machine (cf. 4~1 of /S/)~ Tt co~tains one
active task, the main 'f:'.ask... The only components iaihich are not cleared
and which essentially determine the computation ara the following:

(1) The external storage.. It contains'\" in ?articular, t.he ini"Jut da+:a
for the computation.

(2)

(3)

The main storage. The initial state of the main ~torage may
influence a computation, thoug!l a well wri~te:1 prog:;:am' qenel:-all"?
should eliminate this infl~1enc~ ('!'eference t0 a variable for which
storage is allocated but not initialized cteDends on the storage
before allocation).

The control of the main taska It contains onlv the instruction
itti:.2r.2.!l!:.S!ll(t,call,gen) which is ~?x:ecuted a;; first instruction 11nd
initiates the complete program interpretati~~~ The three
arguments of this instruction are

(1) the program t to be interoceted as described in cha})ter 2,

(2) a call stateJ'I'Ient or function refere-nce call, specifying the
entry point at which the program interp~etation is to be
started and possibly arguments to be oassed to the pararn<>ters
of tbe entry point (cf* 2.2) ~ The concrete specification of
this call statement or function reference is implementat-ion
dependent, e~g3, by control cards or (i~ the F
implementation) by a procedure option MAIN included in the
concrete -program itself~

(3) ootionally a generatio~ gen to which ~3e returned value is to
be assigned if the urogram is activated by a function
reference.

The initial instruction handles the program t si~ilar to the
interpretation of a begin block {cf. 8.2), but instead of the statement
list of a block the initial call stat~rnent or function reference is
interpreted. Moreove~, before the bodies for the d~clared exter~al errtry
identifiers are entered as parts of denotations into the denotation
directory ,2,!!, their text is modified by t.he so-called prepass.

6. THE COMPUTATION 07 THE PL/I MACHINE 1

!BM LAB VIENNA TR 25.~99

INFORMAL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

The transition from a state of the PL/1 machine to its successor s'tate
occurs in three steps, which are discussed in the following.

(1) The computation step. This step is controlled by the instructions
contained in the control parts of the various tasks. First, one
of the active tasks is selected for execution. This is done by an
implementation-defined function, which returns the name of a
specific task. This task name is inserted in the TN-component of
the state, specifying the current task. The task name per•its the
access to the state components local to this task in f! (cf. 3).
From the control part of this task, one of the instructions is
selected which are candidates for execution.

The control part is a tree-like collection of instructions, where
the instructions located at the terminal nodes of the tree are
those which are candidates for execution. There is, consequently,
a certain freedom as to how to proceed in the computation. This
freedom accounts for the fact that in some places in PL/I the
sequence of certain actions is left unspecified (e.g., the order
of evaluation of operands in an expression).

Each instruction defines a specific state transforaation. The
state transformation defined by the instruction selected for
execution is actually performed.

(2) The environment step. There are certain changes in the state
oossible which are not controlled by the program being executed.
The state obtained by the computation step can be Modified by
certain permissive changes in the internal or external storage
effected by the environment of the machine, by an updating of the
time component, and by incoming attentions and reply messages.

(3) The interrupt step. Tests are made, whether th~ normal
computation has to be interrupted because of changes made in the
environment sten. In this sten tasks which are in the wait state
may be activated (because of incoming reply messages, input to
transient files, incoming asynchronous attentions, or if the time
condition for a delay statement is satisfied), tasks recei~ing
asynchronous attentions are also interrupted in their normal flow
of execution to enforce the call of an associated on-unit.

The above three steps define tile next state in the computation. If
this is not an end state, again a next state is prodnced according to the
same rules ..

2 6. THE COMPUTATION OF THE PL/I MACHINE

30 JUNE 1969 INFORMAL INTRD TO THE ABSTRACT SYNTAX AND INTE~PRETATION DF PL/I

Corresponding sections of /5/:

s. Tasks

3.1 Parallel actions

The following abbre~iations are used in this chapter:

AG aggregate directory

BA bl~ck activation name

c,C control

CI control information

CS condition status

D dump

EI epilogue information

EN attention enabling state

ev event variable

PD file <hrectory

io-ev· input-output event

narallel action part

pri nriorit.y

s,.S storage

TD time and date part

te,TE task-event specification

t n, TN task-event name

tv task variable

This chapter describes the parallel execution of oarts of a PL/I
program and th~ ~ynchronization of such parallel ~xecutions.

In a PL/I orogram, it is possible to specify in a call statement that
the callei! orocedure hody is to be exE'cuted in parallel with the calling
block; i.e., ~he calling block continues with the execution of the

7. TASKS 1

IBM LAB VIE~NA TR 25.099

IN!'OR!IAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I 30 JUNE 1969

statements following the call statement while the called procedure body
is executed. Each parallel execution of a procedure body is called a
t~sk. Each task may itself call other tasks. The execution of the
procedure body by which the program is started is itself a task, the
so-called main task. A task is called active from the time when it is
started up-to-the-time when it has terminated its last actions.

Furthermore, it is possible to specify in an input or output statement
that the data transmission is performed in parallel with the execution of
the task which contains the statement; i.e., the task continues with the
execution of the statements following the input or output statement while
the data transmission takes place. This parallel data transmission is
called an !LQ=!'!Y~ll!•

Usually a task, which started a new ta~k or an I/0-event, has to make
use of the effects of that task or I/0-event at some later time. To be
sure that these effects have been completed when they are needed, there
are means for synQ~[Qll~~~!i2ll of tasks and I/0-events. The
synchronization is performed by ~ll!-~~riab!!'!~• which are set either
explicitly by assignment statements or automatically on completion of a
task or I/0-event. rhey are inspected by a wait statement which delays
the execution of its task until specified event variables are set.

The following sections describe the realization of these features of
the language by the formal model of the PL/I machine. To be concise,
usually only tasks are mentioned, though most of the discussions are
valid also for I/0-events.

Whenever the language specifies that tasks are to be executed "in
parallel", a concrete implementation, depending on its hardware
environment, may choose one of the following alternatives: Either it may
execute them really simultaneously, e.g., using different processing
units. or it may execute one task after another one. or it may execute
them nintermixed", e.g •• performing first some actions of one task, then
some actions of another one, then continuing the first task, and so on.
The onlv restriction is that no actions of tasks which have to wait for
actions-of other tasks (cf. 7.5) are to be performed. The choice, which
tasks are to be executed first, aay be influenced by priorities specified
in the program, though this influence is not defined by the language.

In the formal definition, the parallel execution of tasks is modelled
by a sequential machine: An instruction of one task is executed after
another instruction of possibly another task. In each state of the
computation, an implementation defin.ed function, the priority_!i!£!!edtt!!IT•
determines out of which task an instruction is to be executed next. It
does not determine a task which is in a wait state (cf. 7.5).

2 7. TASKS

10 JUNE 19fiq !N!'ORMAL INTRO TO TH'l ABSTRACT SYNTAX AND TN"rERPRETATION 0!' PL/I

2

I I I I I I I I I I I
2 1 2 1 2 2 1 2 2 1 1 2

Fig. 7.1 Seguentializing model of instruction executions of two narallel
tasks

This seguentializea model describes the language correctly (i.e., its
~ossible computations are equivalent to the different implementations
~ermitted) as long as the executions nf instructions of different tasks
do not influence each other. Mutual influencing of instructions of
different tasks occurs by changing and accessing of common state
components,. mainly by use of ·the same piece of storage or ext.ernal
storage.

When using the same piece of storage or external storage, the guestion
of ~intg££YR!ab1~-~£~!Q~~ occurs. Principally, in the formal model the
execut.ion of an instruction, which transforms one state into its
successor state, is understood as uninterruptable. Nevertheless, in a
concrete implementation o~e instruction execution of the formal model may
be realized by a series of elementary, uninterruptable, actions. Or
different instruction executions of the formal model may be realized bv a
single elementary, uninterruptable, action. Thus, it may ha~pen that the.
simultaneous or sequentially mixed execution of different tasks may lead
to results which could not occur in any computation of the formal model.

A:BEGTI; DCL X CHAR(3) INIT(1 ABC 1), Y CHAB(3);

CALL B TASK;

y = X;

B:PROC;

X·= 'XYZ';

In the formal model the assignment X='XYZ' in task B and the reference
to X in task A are performed botb by single instructions. That means,
that X='XYZ' is executed either before or after Y=X and thus finally the
value of Y is either '\BC' or 'XYZ 1 • In a concrete implementation the
assigning and referencing might be performed character:wise. Then it

7. TASKS 3

IB!'! LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

might occur that X is referenced in task A after the first character had
been assigned in task B, i.e., finally the value of Y might be •xac• or
'IYC' or even something else.

For these reasons the language says that the result of a program
assigning and referencing the saae piece of storage or external storage
by different tasks is undefined, if these tasks are not synchronized
appropriately to avoid such simultaneous access. This undefinedness is
not expressed by the formal model (it will always yield a set of well
defined results, as in the above example). Apart from this
undefinedness, the model reflects all situations which are allowed by the
language and which may occur in concrete implementations.

To have the possibility of synchronizing tasks in a defined vay,
however, certain actions are defined to be nninterruptable by the
language. These actions are the creation and termination of a task or
I/0-event and the changing and accessing of event variables.

Corresponding sections of /5/:

3.1.1 The parallel action part PA

3.1.2 The current task event name Tlf

3.1.3 The task-event specification~

Certain state components, e.g., the storage~. are common to all
tasks. They are .called the glQ~!! state components and serve (a•ong
other purposes) for co•munication between tasks. The other state
components, e.g., the control £, are owned by the single tasks, i •. e.,
each task has its individual ones. They are called the task local state
components and carry all information needed within the single tasks.
Usually no task uses the task local state coaponents of other tasks;
exceptions from this rule are the creation of new tasks, the abnormal
termination of other tasks and inspection of infor•ation abo•t event
variables, i.e., situations concerned with explicit synchronization
between tasks.

The global state components are im•ediate coaponents of the state ~ of
the PL/I machine, while all task local state components are snbco•ponents
of one immediate co•ponent of the state E, namely of the parallel acti2n
P~£! R! = s-pa(E).

4 7, TASKS

IB~ LAB VIENNA TR 25.099

30 JIJNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

s- s s- tn -
cb I t~1/i ~

--- s-pa

la.sk local

sl.a.le components
of the current ta.sk

Fig. 7.2 Tasks in the state of the PL/I machine

The parallel action part ll contains for each active task an immediate
component, selected by a unique selector, called ta§~=~i-n~m~ tn. The
task-event names uniquely identify the single tasks (and r;o-events).
The task-event name of the main task is the selector s-main, those of all
other tasks are unique names created immediately before the tasks are
started. At each state of the machine, the priority scheduler (cf 7.1)
determines the task-event name tn of that task from which an instruction
is to be executed; this task-event name is entered into a global state
component, the £!!£t!l!l.L!:~§~=!l~!l:Lm!.l!!!l TJ!=s-tn (E). By means of this
component !J!, one has access to that component of the parallel action
part ll which is associated with the task currently executed. This task
is called the £Y££!l!l!:_!:~~~-

The task local state components of each active task constitute the
component of the parallel action part ~! selected by the task-event name
of that task. so, the parallel action part t! contains the task local
state components of all active tasks, combined into one component for
each task. E.g., the control of the task identified by the task-event
name tn is the s-e component of the component selected by tn from £!,
i.e., s-c•tn•s-pa(€).

In the initial state € 0 of the machine, there is only one active task,
the main task. Therefore the current task-event name TN of the initial
state is the selector s-main and the parallel- action part R! of the
initial state has only one component, selected by s-main.

-7. TASKS 5

IBK LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

In each state, the task local state components of the current task are
called the current task local state components, e.g., the current
control. They are denoted by underlined capital letters, like the global
state components. They are fo11nd by applying the current task-event name
!!=s-tn(~) to£!, e.g., £=s-c•!!!f!l• A reader, who is not interested in
tasking questions, may assume TN to be constant {the selectors-main).
He may speak e.g., of nthe control£" instead of "the.current control£"
and ignore the fact that the selectors for the task local state
compone~ts, e.g., s-c•!!•s-pa, for the control £are more complicated
than those for the global ones, e.g., s-s for the storage 2· Also
throughout the present document the current task local state components
are naf'!ed as,. e.g., 11 tb.e control" instead of the current control, e~c._,
whenever only one single tas.k is under consideration.

It should be remembered that the parallel action part £! contains
besides the entries for the active tasks also similar entries for the
active I/0-events {cf. 12.5.1) and entries for attention events
(cf. 11.2.2.1).

There is one special task local state component which, for each single
task, carries information about its status. This component is the
t.ask-event. specification n:;.

,S-tv

I '"'~- gon I
I s
.. -

priority

Fig. 7 .. 3

I .,r . ., I I· :r~ I
I S .. -

c.omplet ion,
sta.tus

s- free set

8
Task-event specification !~ of a task

s-io-ev

B

It consists of the following five components:

(1) The generation of the ~~2£!Ated_!~~-!~ria~!~· This variable is
either specified by the call statement which initiated the task,
or a dummy variable is created. The value of this variable (to be
found in the part of the storage 2 belonging to the generation) is
an integer, the priori!Y of the task. The priorities of all
active tasks are considered (in·an implementation defined vay) by
the priority scheduler (cf. 7 .1) to determine which is the
current task for the next instruction execution. When a task is
started. its priority is determined in one of the following three
ways:

6 7. TASKS

(a) The initiating call statement specifies a relati-ve priority.
Then this relative .priority is added to the current priority
of the calling task, the resulting value is taken as priority
of the called task and assigned to its task variable.

IBM LA!l VTEN!IA T~ 25 .. 199

10 JUNE 1'l69 TN?ORM~L INTRO TO THE ABSTPACT SY~TAX AND INT:ERP~c~A7ION 0~ PL/I

(b) T'hB c:all stat.em0nt specifies no rela-tiY~ ?rioritv hut a task
variable. Then the value of the task vari~ble is left
unchanged and taken as priority of the called task.

(c) The call statement specifies neither a relative nrioritv nor
a task variable. Then the current prior.i~y of the calling
task is taken ~s ~riority also of th~ c~!le1 t~sk an1
a~signed to its task variable.

The value of the task variable, and thereby the ~ricritv of the
task, may he changed at any time by a~sign~ent of a new value,
~ith the only excention that as long as the task i~ active, ~his
is possible only by use of the priority rseudn variable. No task
variable can be associa~ed wi~h two ta~k~ at ~~~ ~a~~ ~1-a.

(2) The generation of the ~§££i~i~~-~!~n!-!~iah1~· This variable is
eitber ~necified bv the call statR~~nt which initiated the ta~k~
nr a dummy variahl9 is created. t~ is u~~r. f~r $ync~roni?.ation of
other tasks with the ter~ination of this tas< (cf. 7.5). When a
task is started ""-he comoletion value o.f it~ associated event
variable is set t.n "incomplete" (O-BIT); it. cr~nnot be chafl'ged a.:;
long as the task is active and is set tn "co~~lete• (1-!IT)
automatically at the end of the task. As lonq a~ a ta~k i~ active
only the status value of its event va~ia~le =an be changed (bv use
of the status pseudo variable). No e7o~t 7aria~le can be
associated with two tasks at the same ~i~~.

(l) The ~~ii_gi~ig_!l~g. It is usnallV em~ty. Only if the task is
waiting for synchronization with some effect of other tasks, this
component is present. The priorit.y scheduler (cf. 7.1) chooses
only such tasks for execution whose wait state flags pre.sentlv are
empty. The flag is set by the task itself whenever it comes i~to
a situation where it has to wait for some other action. The wait
flags of ~l tasks are deleted whenever an action occurs for which
possibly a task might be waiting. Thereby all waiting tasks are
reactivated, and each of them mav deternine whether it can
continue now or whether it has t.O wait further, i.e .. ~ to reset its
vait state flag.

(4) The Q~~-fr~g_g~i· All storage allocatgd by a task by based
allocation has to be freed by the task, at latest at its
termination. To preserve t.he information ~ece~sarv for this
purpose~ each based allocation enters the poir.te~ Of the allocated
storage into the based free set of the task-even~ specification !]
of the current task, and each based freeing deletes the pointer
from this set. At the start of a ta~k this set is empty, at the
end of a task the storage of all pointers left in the set: .is freed
automatically.

(5) The ILQ=gx~i-gft• All I/O-events started by a task, which are
yet running, are to be t.er111'inated. when the task terminates. For
this purpose, similarly as vith the based stor~g~. a~ each start
of an r;o-event its task-event name is ent.ered into the I/0-event
set of the task-event specification TB of tha current task. At
the ,;tart of a task this set is eml)tv~ at the end of a task all
!/0-events, whose task-event names ar~ etH:~r.o::~~O. .into the set and
which are yet active, are terminated.

"· TASKS 7

IBM LAB VIENNA

INFORMAL. TNTRO TO TilE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding section of /5/:

5.1 Attaching of tasks

. TR 25.099

,.30 ,JU.NE .. 1969

The creation o.f a new task is called l!!.tach!rui a task. The task which
attached the new task, by execution of a call statement with a task
option, is called the !!l2the!;;-ts!;~, the newly attached task the l!i!Uqhl;,!l!
l:i!!!li·

A task option of a call statement, which causes the attaching of a new
task rather than just the establishing of a new block actiyation within
the current task, consists of three components:

5- ta.sk g s-evenl

~
s-p,ri

I expr ~r Q I

Fig. 7.4 Task option of a call statement

(1) a reference for the task variable of the daughter task, or an
asterisk if a dummy task variable is to be created;

(2) a reference for the event variable of the daughter t.ask, or an
asterisk if a dummy task variable is to be created;

(3) an expression specifying the priority of the daughter task
relative to that of the mother task, or empty if the priority of
the daughter task is to be taken either from the specified task
variable or from that of the mother task.

When a new task is to be attached, the mother task creates a new
unique name tn and enters a new component for the daughter task into the
parallel action part E!, using the created unique name tn as task-event
name of the daughter task. The new component of PA consists of the
following task local state components for the daughter task:

(1) The task event specification !ll of the daughter task is
constructed mainly from the components of the task option of the
call statement. The task and event variables. are initialized by
priority and completion values as described in 7.2.

(2) The aggregate directory !Q of the daughter task is constructed
from that of the mother task by taking over only the head
generations of all entries. By this mechanism it is guaranteed
that both mother and daughter tasks can use the current
generations of all variables, that both can continue the
generation stack of controlled variables independently by

8 7. TASKS

TBM LAB VIENNA "'::' 25. 'J99

30 JDNE 1969 tNPOR~AL INTRO TO THE ABSTRACT SYNTAX ;3~ iNTERPRETATION OP PL/I

alloca+.io~s and that each task can fr~e onlv ~~cse generations
which it had allocated itself (no ~ask ~rees the last generations
in the generation lists .in its own aqg::-egatP directory).

(3) The file directory PD of the danghter ta:;k is constructed from
that of the mother task by taking nver all its e~tries, but
deleting "ill s-own components. By '".his ""P.C~~~is~ all e~isting
entries are denoted a.s inherited antl i~ is ou~r."lf"1teed t-.hat. the
daughter task ~ay use all files ope~ed ~y t~e ~other task before
the attaching, that both Mother anC daugh~er ta~~ rna! open
independentlv further files, and that each task can clo<;e only
those files which it had opened itself {no fil<> closes files which
are not denoted as "own" in its ow" file directory).

(4) The attention enabling state EN of the dauGhter task contai"s ""
enabled, no associated and no waiti~g at.tentio~s.

(5) The du~p D and the condition status CS of the jaught~r task are
copied from the current ones of the mothe~ t~~k~ T~erehv it is
guaranteed that the rules of the dynamic bloc'< structure of PL/1:
(cf. 8) apply to the nested block activations, which ~ill be
established within the daughter task, in the sa~e way as if they
have been nes-ted in the current block act.i-;ation within t.h~ mother
task. I.e .. , the dyt!.amic structure cf nest~d blcck ac'ti7atio1'!s
will be continued !dependently in the ~ether task and in the
daughter task. This applie~ especially to the ~cope rules for the
meaning of identifiers and to the inheritance rules for condition
enabling and condition actions. This co~tinuatio~ of the s~quence
of nested block activations into the daughte~ task is the reason,
why no block is terminated before all tasks attached by it have
been terminated (cf. 7.4); otherwise the sequence of nested block
activations woul~ be interrupted, the daughter task would still
use identifiers inherited from the Mother task which are alreadv
obsolete.

mother task I
I
I
I
I
I
I
I
I
I

do.u.ghter task

LJ
I I
I I
L---------------~

Fig. 7.5 Structure of dynamically nested block ~~tivations of
mother task and daughter task

7. TASKS 9

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JtJNE 1'!69

It should be noted that actually the inherited duap will be used
by the daughter task only for two purposes: for reestablishing
the condition actions of the surrounding block activation by the
revert statement, and for preventing the call of an entry
constant, declared in a block activation other than a dynamically
surrounding one, by a call statement calling an entry variable.

(6) The block activation name BA, the epilogue information EI and the
control information er of the daughter task are initially empty.
An empty block activation name and epilogue information is
characteristic for the outermost block activation level of a task.
This fact is used by the goto statement, when successively
terminating block activations in the dump to prevent a goto into
block activations which were established by the mother task.

(7) The control c of the daughter task contains instructions for
performing a normal (non-task) procedure call within the daughter
task, and after return from that procedure body the termination of
the daughter task {cf. 7.4). After the new coMponent for the
daughter task has been entered into the parallel action part f! by
the mother task, the daughter task is immediately active, has the
same rights as all other existing tasks and can execute these
instructions in its control.

In addition to the creation of the new component for the daughter task
in the parallel action part £! the mother task enters the task event name
tn of the attached daughter task into the epilogue information of its
current block activation. This is done to keep track of all daughter
tasks attached during a hlock activation, in particular, to terminate all
these daughter tasks before the block activation in the mother task
terminates {cf. 7.~).

Corresponding section of /5/:

5.2 Termination of tasks

A normal termination of a task occurs after normal return from the
procedure body calledWhen the task was attached. After this return, all
block activations established by the task (except the outermost one) have
already been terminated. Then, the task perfor•s the following actions:

(1) closing of all files opened and not yet closed by the task (to be
found in the file directory !2 of the task);

(2) abnormal termination of all I/0-events started by the task which
are not yet terminated (to be found in the I/0-event set of the
task-event specification!~ belonging to the task);

(3) unlocking of all keys locked by the task;

(4) disabling of all attentions enabled by the task (to be found in
the attention enabling state ~!f of the task);

(5) freeing of all controlled and based storage allocated ana not yet
freed by the task (to be found in the aggregate directory !§. and

10 7. TASKS

30 JUI!E 1969 IN"ORMAL INTRO TO THE ABSTRACT SYNTAX AN!' INTI:RPRETATION 0:' PL/I

+.he based fr@e set of the task-event specificatirn
res'!'ectively);

of the task,

(6) setting the comnletion value of the event variable associated with
the task to ncomplete"~

(7) The last action of the task is to delete it"' own co~pon"!n t from
the oarallel action oart PA; i.e., it reMove~ all its ovn task
locai state components frOM the state. Thereby ~he representation
of the ta~k is coMpletely removed fro~ the state and it is no more
active.

An abnormal termination of a task occurs, whenever. a task is
interrupteddUrrng-rts-normal flow by an action cau~irg i+. to termina-te.
These interrupting actions are:

(1) execution of an e'X:it statemen-t: by t!'\e task .'!- .. -~elf,

(2) execution of a stop statement by any ta>"k !'=<>r~ina+.ing the main
task),

(3) termination of that block activation in the mother +ask by which
the task was attachgd.

If a task is to be terminated abnormally the sa~e actions a~ for a
normal task termination are performed, but befor~ t.h::tt. all its active
block activat.ions are fi~ished one after the oth'>r by <>xecution of the
nor~al block epilogue (cf. 8.2.4). Among other actions, the epilogue of
each block activation causes all daughter tasks, attached by the block
acti.vation,. themselves to terminate abnor-!"ally. !'inal terMination of a
block activation does not take nlace before all daaghter tasks have in
fact completely ter,.inated. Since, in turn all daughter tasks then
finish their block activations and thereby ter,.inate all their own
daughter tasks and so on, the result is that alonor!'lal terrlination of a
task automatically terminates all descendent tasks before. More
precisely, this mechanism ensures that the general Principle of th<'! PI./I
block concept is obeyed: No block. activation is terminated before all
its dynamically nested block activations (cf. ~ig.7.5) have been
terminated, whether they belong to the same task or to any descendent
task.

In particular, this ~echanism of automatically terminating all
descendent. tasks when a task is to be t.erminated, is used by the stop
statement. Irrespectively by which task a stop statement is to be
executed, it causes the main task, and the!:eby aut.omat:ically all other
tasks, to terminate abnormally.

7. TASKS 11

IB!I LAB VIENNA

INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding sections of /5/:

5.3 The wait statement

3.1.5 The event trace~

TR 25.099

30 JONE .1969

The synchronization of two tasks is performed by means of an event
variable (which has to be known to both tasks): it is set by explicit or
automatically performed assignment in the one task and iBspected by a
wait statement in the other task. The valne of an event variable
consists of two components: the §!!!S§_~~ (which is not relevant for
synchronization) and the completion value. The completion value is a bit
denoting either •incomplete" (O-BIT) or •complete" (1-BIT). A wait
statement inspects whether specified event variables are "coaplete•,
otherwise it waits until they are.

Usually an event variable aay be set to •incoaplete• or •complete• by
explicit assignment of the value of another event variable or by explicit
assignment of a bit value by means of the coapletion pseudo variable.
The completion value of an event variable, however, which is associated
with a task (cf. 7.2), with an I/0-event (cf. 12.5.1) or with an
attention event (cf. 11.2.2.11 cannot be changed by explicit assignment
as long as that task or event is active (i.e., as long as the generation
of the event variable is entered into the task-event specification I! of
any component of the parallel action part !!I· Such an event variable is
automatically set to "incomplete• when the task or event is attached and
to "co•plete" when it is deleted. Thus, by a wait statement a task can
be synchronized either with a specified point (the point of an explicit
assignment to "complete") in another task or with the termination of
another task, of an !.tO-event or of an attention e'fent.

A wait statement recognizes an e'fent variable as complete if this
event variable satisfies one of the following three conditions on
inspection:

(1) its completion value is in fact "complete", or

(2) its completion value, though it is now possibly "inco•plete"
again, has been "complete" at soae previous tiae during the
current wait state•ent, or

(3) it is associated with an r;o-event, which:

(a) was attached by the task containing the wait statement, and

(b) is not yet terminated (and therefore the coapletion 'falue of
the e'fent variable is •inco•plete"), but

(c) has already finished its data transmission.

Such an I/0-event is called ~i-cowpl~.

The first case is recognized si•ply by inspecting the value of the
event variable in its storage. A special global state co•ponent, the
event trace ET, serves to recognize the second case. It records the
order in time of all actions setting event variables to "co•plete" and

12 7. TASKS

IB! LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

all starts of wait statements: It is a list to which, whenever an event
variable is set "complete" (by any action of the PL/I machine) the
generation of the event variable is added as new last element. Whenever
a wait statement starts, it creates a nnique na•e as its individnal
identification and adds this nnique name to the event trace. so at any
time, by inspecting the event trace, a wait statement can recognize which
event variables have been set coaplete later than its own start.

DCL(E1,E2,E3) EVEMT;
COMPL(E1), CO!PL(E2), CO!PL(E3)= 1 0 1 B;
CALL A TASK PRIORITY{3);
CALL B TASK PRIORITY(2);
CALL C TASK PRIOHITY(1);

A: PHOC; ...
W2:WAIT (E2);

CO!PL(E21='0'B;
L1:CO!PL(E11='1'B; ...

CO!PL(E1) =1 0 1 B; ...
li3:WAIT(E3); ...

EIID A;

B:PROC; ...
111: i AIT (El) ; ...

E!ID B;

C: PROC; ...
L2:CO!PL(E2)= 1 1'B; ...
L3:CO!PL(E3)='1 1 B;

END C;

J 2

J 5

J 3

] 6

J 8

Assume that task A has the highest priority and is selected for
execution by the priority scheduler whenever possible, that task B has
the next priority and is selected for execution whenever A bot not B has
to wait, and that task c has the lowest priority and is selected only if
both A and B have to wait. The interesting wait statement is the one
labelled 11'1 in task B. The machine executes the prograa sections in the
order given by the numbers at the right margin. When the .flow of control
initially comes to the statement W1 {after the sections 1 and 2), its
event variable El is "incompleteft, thus it has to wait and the sections 3
and 11 are e.xecuted. In section 11 the' event variable E1 is set "coaplete"
and then "incomplete" again. When (after section 11) the statement 111
inspects E1 agaia, El is "incoaplete• but has been "collpleten in the
meanti•e, thus task B can continue. The event trace up to this point is
the following (denoting the unique naaes created for the wait statements
by W1, 11'2, W3 and the generations of the event variables by E1, E2, E3):

7. TASKS 13

IB!I LAB VIENNA TR 25.099

INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUIIE 1969

W2 W1 E2 E1

Fig. 7.6 Example of the event trace !!·

A semi-complete I/0-event is characterized by the fact that its
component is yet contained in the parallel action part PA, but its
control is exhausted. When a wait state11ent recognizes that one of the
event variables it has to wait for is associated with a semi-complete
I/0-event, it has fully to complete that I/0-event, i.e., among others to
raise I/0-conditions (cf. 12.5.1), to re11ove the corresponding co11ponent
from the parallel action part RA and to set the associated event variable
to "complete". It should be noted that this co11pletion of a
semi-complete I/0-event is performed only by that task which started the
I/0-event. Wait statements occurring in other tasks which incidentally
wait for the same event variable do not recognize it as semi-complete;
they have to wait until it is col!pleted by a wait statement in the right
task as described above.

A wait statement has to wait until a given number {the wait count) out
of a specified list of event variables {the event list) is recognized as
complete, as described above. This is done in the following vay:

14 7. TASKS

IB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

I
L

yes

I& i
no associal.

.---<with ~mi -com­
j:>le

o-even

yes

complete the
!10 ·event

vemove from
event lisl

d€crea.se \JO.I

count by 1

watt count yes
:0

no

is !her
a complete
event vari­

able

no

set wait
state

C when reactivated.)
I

_j

Fig. 7.7 The wait stateMent

continue

7. TASKS 15

IBM LAB VI:':NNA TR 25.099

INFORMAL. INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 J!lNE 1969

When the task containing the wait statement is selected for execution
by the priority scheduler it inspects whether at least one of the event
variables to be waited for is recognized as complete. If so, that event
variable is removed from the event list, the wait count is decreased by 1
and, if the event variable is associated with a semi-complete r;o-event,
this I/0-event is fully completed. This is repeated until either the
wait count is 0 or no more event variable in the event list is recognized
as co~plet.e.

If the wait count is 0, the wait statement is said to be .§!;!tisfi~g.
It is finished and the task continues with the execution of the next
statement. It should be noted that this may happen before the event list
is exhausted (if the wait count was less then the number of event
variables in the event list). In this case not all event variables in
the event list need to be complete, in particular there may remain
associated r;o-events which are not fully completed.

If the wait count is not yet 0, but there are no more event variables
in the event list which can· be recognized as complete, then the task
containing the wait statement is set into the wait state, i.e., the wait
state flag of its task-even't specification !!!< is set (cf. 7.2). As a
consequence, the priority scheduler will no more select this task for
execution.

Whenever an action is performed by any task for which another task
might be waiting (in particular the "complete" setting of any event
variable and the semi-completion of any I/0-event) all tasks ani
reactivated, i.e., all wait state flags are removed. Then each formerly
waiting task may again be selected by the priority scheduler for
execution, it can inspect its event list whether there is now an event
variable recognozed as completed or not. Depending on this it either
continues the above described removing of event variables from the event
list or it goes back into the wait state another time.

A similar mechanism applies also for all other situations in PL/I
where a task has to wait for some specific action: The delay statement
waiting for a speci.fic time {this time is entered into a special
compopent of the time and date part !ll and all tasks are reactivated when
it is exceeded by the time component of the state), the block epilogue
waiting for the termination of all its daughter tasks, etc.

16 7. TASKS

IB~ LAB VIENNA TR 25.099

30 JONE 1969 INFOR3AL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

corresponding sections of /5/:

6.1 Block activation

6.2 Procedure call

3.2 Flow of control

The following abbreviations are used in this chapter:

!g_

arg

ap

AT

b

J!!,ba

bpp

£, c

£I, ci

~2., CS

CTL

J:!, d.

den

descr

!!!!

g, ei

elell

;:y

expr

fct

1:!!

aggregate directory

argument

argument part

attribute directory

unique aggregate name

block activation naae

block prefix part

control

control information

condition status

controlled

dump

denotation

descriptor

denotation directory

epilogue information

eleaent

attention environment directory

expression

function

file airectory

8. BLOCK ACTIVATIONS 1

IBM LAB VIENNA 'l'R 25.099

INFORMAL IN'l'RO 'l'O 'l'HE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

GEN,. gen generation

id identifier

n unique name

pref prefix

ptr pointer

ref reference

ret-type retnrn type

sl subscript list

st state11ent

'l'his chapter describes the dynamic handling of the block structure of
PL/I within a single task. The block structure of a PL/I program
(cf. 2.1) leads on interpretation to a dynamic system of nested block
activations. At any time for each active task, there is one 212£1!.
~£!ivatiQE established in the state of the PL/I machine, called the
£~~n1 block activation of that task. Whenever a task (including the
main task at prograw start) or the interpretation of a block
(begin block, procedure body, on-unit, attention) starts, a new block
activation is established. When the interpretation of a block terwinates
the previous block activation is re-established (if there was any for the
same task - the first block activation of a task terminates by
terminating the task itself). All block activations which are
established and not yet terminated are called ~!i!~· The Qyn~i£
~g~£~nda~ts or ~g~ted block activations of a given block activation are
all those block activa tions which are established by actions of the given
one and all those. established by actions of these latter ones and so on.
Within one task, at any time the systemof dynamic descendant block
activations which are yet active is linear, i.e., each active block
activation has at most one active immediate descendant in the same task.
They may have more immediate descendants in daughter tasks
(cf. 7.3,Fig. 7.5). It is a property of PL/I that no block activation is
terminated until its dynamic descendants have been terminated.

Corresponding section of /5/:

3.2.1 The dump Q

'l'he current block activation is represented in the state of the PL/I
machine by the following six local state co111ponents:

(1) the block activation name ~!.

(2) the epilogue information m;,

(3) the condition status £2,

2 8. BLOCK ACTIVA'l'IONS

IBK LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

(4) the dump !!•

(5) the control information ~];,

(6) the control ~.

These six state components contain all information which belongs to
the current block activation and is obsolete on its termination. When a
nested block activation is established, the local state components have
to be saved for use after termination of the nested block activation,
since the latter installs its own local state components.

The local state component of all active block activations which are
not the current one are kept in the dump ~· The du•p is an object
manipulated like a push-down stack, it maintains dynamically the history
of the still active block activations. It consists of six coaponents,
namely the six local state coaponents of the predecessor of the current
block activation. Its dump component has again the same structure and
consists of the local state components of the predecessor of that block
activation, and so on. The dump of the first block activation is empty;
the duMp of the first block activation of a task (except the Main task)
is copied from the current dump of the mother task when the task is
created. So the different levels of the dump represent the dynamic
predecessors of the current block activation up to the first block
activation of the program.

s-d

S-bo s-ei s-cs s-ci s-e

Bcbc±J c±Jc±J
J>ig. 8. 1 The dump

8. BLOCK ACTIVATIONS 3

TBM LAB VIENNA TR 25.099

JNFORM&L TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

When a new block activation is established the local state components
of the previous block activation are copied as components into the dump.
Thereby the former components of the dump automatically become components
of the dump component of the dump, and so on; i.e., all parts of the dump
are pushed down one level. Conversely, when a block activation is
terminated, the components of the dump are copied into the local state
components of the PL/I machine. All parts of the dump are thus popped up
one level. This mechanism guarantees that all local state components are
available as long as necessary, namely until the corresponding block
activation is terminated, ana that the right block activation is
re-established when a block activation is terminated.

One should note that all information contained in the local state
components (except the dump) is inherited into nested block activations,
since they are copied into the dump and not destroyed on establishing a
nested block activation. Afterwards, in general, the nested block
activation will modify the inherited state components. Conversely, no
information contained in the local state components (except the dump) is
inherited back into outer block activations, since they are overwritten
at block termination. The dump is left unchanged throughout a block
activation, except in some cases of abnormal block termination, e.ge~
goto out of a block.

Corresponding sections of /5/'

6.1 Block activation

3.2.2 The block activation name ~!

3. 2. 3 The epilogue information :u

As described in section 2.1.2, a begin block is" proper statement
consisting of five components: a declaration part, a procedure body
part, a condition prefi7 part, a statement list ana a reorder option
flag. Its interpretation consists of the creation of a new block
activation, unique qualification of the locally declared identifiers in
the text of the block, interpretation of the declarations and their
installation in the state of the PL/I machine, interpretation of the
stateMent list, and termination of the block activation.

In more detail, the following actions are performed, in the order
given'

4 8. BLOCK ACTIVATIONS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFOR"AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

AT and CS

terminate
alta.c.hed tasks

free local
automatic variables

c.onlinue adions of
previous block
aclivatioV1

}

main pad
(des cri bed in detail

by Fi~l 3.3)

Fig. 8.2 Interpretation of a begin block

8. BLOCK ACTIVATIONS 5

IBM LAB VIENNA 'I'R 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND IKTERPRETA'I'ION OF PL/I 30 JUNE 1969

(1} The local state components of the previous block activation are
copied into the dump as described in 8.1.

(2) The block activation name BA (cf. 8.2.2), the epilogue information
EI (cf. 8.2.4) and the control information CI (cf. 9.4) are
initialized for the new block activation. --

(3) For each declaration contained in the declaration part of the
block a unique name n is =eated and all occurrences of the
declared identifier in the text of the begin block to be
interpreted are qualified by this unique name n as described in
B. 2. 1.

(11) A unique block activation name !!! is created {cf. 8.2.2).

(5) The attribute directory !! is updated by entering each declaration
out of the declaration part of the block under its unique name n
(cf. 5). The block prefix part of the condition status £2 is
updated by merging the previous one with the prefix condition part
of the block (cf. 11.2.1).

(6) The denotation directory DN is updated by constructing and
entering the denotation of each declaration out of the declaration
part, under its unique name n, as described in 8.2.3.

(7) The statement list of the block is interpreted. This main part of
the block interpretation is described in chapter 9.

(8) All tasks which are attached during the interpretation of the
statement list and which are not yet completed are terminated
abnormally. The inforMation as to which tasks are to be
terminated is found in the epilogue information JU.
Interpretation is continued after terMination of these tasks.

(9) The storage of all automatic .variables allocated in this block
activation is freed. The inforMation as to which storage is to be
freed is fo~nd in the epilogue information EI.

{10) The local state components of the previous block activation are
copied back f~om the dump as described in section 8.1.

8.2.1 UNIQUE QUALIFICATION OF NANES

The scope rules of PL/I require, that by a declaration the declared
identifier receives its meaning for all occurrences within the text of
the block containing the declaration. This meaning is inherited also
into statically nested blocks as long as they do not contain another
declaration for the identifier. If the same block is activated twice,
both block activations are understood as completely independent of each
other: All declarations give for both block activations different
meanings to the declared identifiers. Another feature of PL/I is the
fact that the interpretation of a piece of text may be postponed until
another block activation than that one to which it belongs, i.e., that
the meaning of identifiers occnrring in this piece of text may differ
from their meaning in the block activation established when the text is
interpreted (e.g., declaration of a controlled variable, which is
interpreted on allocation possibly in a nested block).

All these features are accomodated by the following simple mechanism:
At the beginning of any block activation, a unique name n is created for

6 A. BLOCK ACTIVATION$

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

each of its declarations. on the one hanil, this unique name is used as
selector to enter all information representing the meaning of the
declared identifier into the different state components of the PL/I
machine, in particular the attribute directory !_T and the denotation
directory Q!• Thus the unique name n gives access to the meaning of the
declared identifier id, associated with it. on the other hand, before
any further use of the text of the block is made, each occurrence of the
identifier id in this text (including all contained blocks) is qualified
by adding the unique name n. Whenever, after this qualification has
occurred, some part of that text is to be interpreted, not the identifier
id itself, but the added unique name n is used to determine its meaning.
When the activation of a nested block starts, those identifiers which are
not redeclared keep the former unique names they had received earlier,
while ~or the redeclared identifiers the unique names are overwritten by
new ones according to the new meaning given by the redeclaration in the
nested block. Any identifier occurring ~ithout matching declaration will
receive no unique name by this mechanism and this will lead to an error
when an attempt is made to interprete the text containing the occurrence.
Any part of the text which is copied and interpreted during a later block
activation retains its qualifying unique names and thereby the meaning of
the contained identifiers. Thus the above mentioned scope rules o~ PL/I
are obeyed fully by this mechanism.

DCL A (N) CTL, CHAR (3), N INIT (5);
BEGIN; DCL !I CHAR {3) INIT ('llllC');

ALLOCATE A INIT (N); ...
END;

For the first declaration of N, in the outer block, a unique name
n._ is created and added to all occurrances of !1. When the inner
block is activated, for the second declaration of N a second
unique name n 2 is created and added to all occurrences of N in the
text of the inner block. Now, when the allocate statement is
executed, the identifier N occurring in the dimension attribute is
found to be qualified by n~ and leads to a fixed point variable
with value 5, while the identifier !I occurring in the initial
attribute is found to be qualified by n 2 and and leads to a
character variable with value 'ABC'.

The described schema has to be slightly modified for the following
reason: The most frequent occurrance of identifiers in the program text
is in the context of references. In these cases not single identifiers,
but identifier lists, so-called g~li~ie~-~a~§, occur possibly referring
to components of structures. Not the main identifier, Le., the head of
the identifier list, but the vhole identifier list determines to which
declaration the reference refers.

8. BLOCK ACTIVATIONS 7

IB!! LAB VIENNA

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

DCL 1 S, 2
BEGIN 1 S,

END;

A, 2 B:
2 A, 2 C;
S.A
S .. B ·~·
s.c •••
s •••

'J'R 25.099

30 JIJNE 1969

The first declaration of s {in the outer block) gives rise to a unique
name n1 , the second declaration of s [in the inner block) another nnigne
name n2 • In the inner block the references S.A, s.c and S are to be
qualified by n2 , referring to the second declaration, while the reference
s.B is to be qualified by n~ referring to the first declaration.

This is accomplished by qualifying all qualified names referring to
the same declaration by adding the unique name of that declaration. A
reference thus qualified has the following structure: besides the
com~onents described in 2.!J.1 it has another component, namely the
qualifying unique name n:

S-id.-list

I
s- sl

lexpr~ list I

s-ap

I <>rf3-~ pavtl
or- Q

l'ig. 8.3 Reference qualified by a unique name

8.2.2 THE BLOCK ACTIVATION NAME§!

For the meaning of some types of declarations (entry, label and format
constants) the knowledge of their block activation, i.e., of the block
activation containing the declaration, is essential. An entry or label
constant may only be used by a call or goto statement in its own block
activation or any of the dynamic descendants thereof. In the case of a
goto statement the block activation of the label constant has to be
re-established. A format constant may only be used by means of a remote
format in its own block activation. Since it is possible by means of
assignment to entry or label variables to transfer the values of entry,
label and format constants into wrong block activations, one has to make
the test when using these values.

For this purpose, each block activation which may contain declarations
(i.e., the activation of a begin block or procedure body, but not of an
on-unit or a~tention) is uniquely characterized by a unique name, the
hl2£~£!iY~tiQn_BA~2 li!• This unique name is created and inserted into
the state as local state component before the declarations a.re
interpreted. It is then inserted into the denotation of entry, label and

8 8, BLOCK ACTIVATIONS

TB~ LAB VIENNA TR 25.099

30 JUNE 1969 IN?ORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

format constants. A later test for correct use of such a constant can
then be performed by inspection of the current block activation name ~
and the block activation names stacked at the different levels in the
current dump 11·

The block activation name of the outermost block activation of a task
(including the main task) is left empty (i.e., Q). This is tested by the
goto statement to avoid a goto out of the task: A goto does not cross a
level in the dump 11 whose block activation name is a. As a consequence,
the block activation name component of the denotation of an external
entry constant is always empty (since it is declared in the outermost
block activation of the main task).

The block activation name of a block activation initiated by a
condition or attention call is an asterisk (*)• These block activations
need not be uniquely identified since they do not contain declarations,
nor must they be rejected as erroneous by a goto like the outermost block
activations of tasks.

special provisions have to be made for the case where an attention
interrupt occurs in the period between the establishing of a block
activat.ion and the creation of its unique name J!!, since it could happen
in this case that a goto leads out of the block activation called by this
interrupt. If the block activation name of the previous block activation
would be intermediately taken over, such a goto might lead into the new
block act.ivation instead of the previous one; if the block activation
name would be empty intermediately, a goto would run into error like a
goto out of a i:ask. Therefore, the block activation name of a new
established block activation is intialized to * until a unique name has
been created and inserted.

8.2.3 INTERPRETATION OF DECLARATIONS

The main action of the block prologue is to interpet the declarations
of i:he block. That means to form the information about the meaning of
the declared identifiers and to enter this information under the unique
na,es associated with the declarations, (cf. 8.2.1) into the different
directories.

The texts of the declarations, as modified by the unique qualification
of names (cf. 8.2.1), are entered into the attribute directory AT
(cf. 5).

The denotations of the declarations are constructed and entered into
the denotation directory 11~· The denotations of the different types of
declarations consist of all information which, besides the texts of the
declarations themselves, constitutes the meaning of the declared
identifiers. Its structure, for the single types of declarations, is
described in chapter 5.

For a proper variable the denotation is a unique name b, the aggreqat!!
n~~!!• which is used to access the generation list of the variable in the
aggregate directory AG. For static and controlled variables, the
aggregate names were created by the prepass and entered into the text of
the declarations. For automatic variables new aggregate names are
created, and, additionally, storage is allocated and initialized.

For an internal entry constant the denotation is composed from the
declared identifier itself, the corresponding procedure body to be found
in the procedure body part of the block as described in 2.2.2, the

8. BLOCK ACTIVATION$ 9

!BM LAB VIENNA TB 25.099

INFORMAL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

current block activation name~! (cf. 8.2.2) and the block prefix part of
the current condition status £2· For an external entry constant the same
denotation was constructed at program start, entered into Q! under a
unique name n which was entered by the prepass into the text of all
declarations of external entry constants of the same identifier
throughout the text. Thus the block prologue has only to copy that
denotation in the case of external entry constants.

For file constants and attentions the prepass created unique names as
their denotations, serving as selectors to the file directory !Q or the
attention environment directory !!• These unique names were entered into
the text of the declarations by the prepass.

For a label constant, the declaration is constructed from the current
block activation name~! and the index list as given in the declaration.
For a format constant, the denotation is constructed from the current
block activation name ~!. the format list and the identification which
are both given in the text of the declaration, and the statement prefix
part given in the declaration and merged with the current block prefix
part.

For a defined variable, the denotation is produced by evaluating its
aggregate attribute {cf. 2.2.1).

All other types of declarations {based variables, generic identifiers,
builtin functions and programmer-named conditions) need no denotations.
All inforAatio~ about their meaning is given by their declarations.

The interpretation of automatic and defined declarations requires
expression evaluation. Since in these expressions locally declared
identifiers mav occur, provisions are made that no denotation of an
automatic or defined variable is evaluated before the denotations of all
those declarations have been entered into the denotation directory, which
are needed for its evaluation. If this requirement is not satisfyable,
since some declarations are mutually dependent (directly or indirectly)
on each other in this sense, then the program is in error.

8.2.q BLOCK EPILOGUE AND THE EPILOGUE INFOR~ATION !1

The epilogue of a block activation terminates all tasks attached
auring the block activation which are still active (cf. 7.4), frees the
storage of all local automatic variables and re-establishes the previous
block activation by copying the local state components from the dump as
described in 8.1. The epilogue of a block activation is executed not
only on normal termination of the block activation, i.e., on exhaustion
of its statement list, but also on any occasion, when the block is to be
terminated abnormally. These occasions are: the return statement
(cf. 8.3.3), the goto statement (cf. 9.6) and the abnormal termination of
t.he task (cf. 7. 4).

There is a local state component, the epilogue information E!• which
contains for each block activation all information needed by the epilogue
for correct termination of the block activation. Additionally, it
contains all information needed by a return statement to perform a
correct return from a procedure body.

The epilogue information E! consists of the following components:

10 8. BLOCK ACTIVATIONS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

(1)

(2)

(3)

(4)

(5)

(6)

The freg_~~i· The storage of all automatic variables and all
dummy arguments is to be freed at the end of the block activation
in vhicn they are declared, or of the procedure to which they are
passed, respectively. The free set of I! maintains the
information as to which variables are to freed at block end.
Initially it is the empty set for a begin block or the set of
aggregate names of the dummy arguments for a procedure. Whenever
an automatic variable is allocated, its aggregate name is added to
the free set. On termination of a block activation all variables,
whose aggregate names are contained in the free set, are freed.

The ~~2~i· It has a similar purpose as the free set. Each
task attached during a block activation is to be terminated
abnormally at block end, if it has not been completed earlier.
The task set is initially the empty set. Whenever a task is
attached, its unique task name is entered into the task set of ~!·
At block end all tasks, whose unique task names are contained in
the task set of ~I and which are still active, are deleted.

The hl2Ck=A£tiY21kQn-tYE~· A return statement has to perform
different actions depending on whether the current block
activation is that of a begin block, a procedure body, or an
on-unit. To recognize this distinction the epilogue information
contains a component which is one of the elementary objects BLOCK,
PROC, ON. Tbis component is set when a block activation is
established and never changed. For the block activation of an
attention call, which never executes a return statement, this
component is empty.

The function denotation. If a procedure body is activated by a
function-reference, then, before the call, an aggregate name is
created for a dummy variable for the function value to be
returned. This aggregate name is reserved in the epilogue
information of the called procedure to be used by a return
statement for allocation of a dummy variable and assignment of the
function value to this dummy. Since such a return statement may
occur in nested begin blocks, the function generation is inherited
into the epilogue information of nested block activations of begin
blocks {but not of procedures). This component of ~! is empty in
procedures activated by call statements instead of function
references (and in nested begin blocks).

The ~~tY£n_iiE~· If a procedure body is activated by a function
call, the return type of the called entry point is entered into
the epilogue information to be used by a return statement for
con•ersion of the function value anJ allocation of a dummy
variable for it. The return type is inherited into the epilogue
information of nested begin blocks in the same way as the function
denotation. This component is empty in procedures activated by
call statements instead of function references (and in nested
begin blocks).

The ~ill_£~2£ed~re f!~g. If a return statement has to terminate
the maia_2~Q£~~~~~· i.e., the procedure activated by the initial
call of the computation, the finish condition has to be raised
first. The main procedure flag serves to indicate whether this is
the case. It is set to * by the initial call and reset to 0 by
all later procedure calls. Like the function denotation this flag
is inherited into the nested block activations of begin blocks.

8. BLOCK ACTIVATION$ 11

IB!'l LAB VIENNA TR 25.099

INFORM~L INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JONE 1969

corresponding section of /5/:

6.2 Procedure call

A procedure call establishes a block activation of a procedure body by
a call statement or function reference. This section describes all those
actions performed during a procedure call which differ from the actions
performed during a begin block activation as described in 8.2.

Both call statement and function reference consist essentially of a
reference specifying the entry to be called and a list of expressions
specifying the arguments to be passed to the parameter of the called
entry.

The reference for the entry may refer to either an entry constant or a
scalar entry variable or a function which returns an entry value. In all
three cases an !illtry..a.tllibJite is obtained out of the attribute directory
AT: either the declaration of the entry constant, or the data attribute
Of the entry variable or the return type of the function. This entry
attribute consists essentially of two components (further components for
the three different cases are of no interest here) : A parameter
descriptor list and a return type.

elem(1)

I des:r1 I
(or*

list

Fig. 8.4

s-descr-list

I
I

elevn (n)

B
if no olescri rtor

specified)

Entry attribute

s-ret-lype

I ret _;ype I

The evaluation of the entry reference yields as value, in all cases,
the unigue name of an entry constant: either that of the referenced
entry constant itself, or that of an entry constant which was assigned to
the referenced entry variable, or that of an entry constant returned by a
function call. Applying this uniqne name to the denotation directory ~!
one obtains an !illi£Y-~~notation, namely the denotation of the entry
constant to be called. The entry denotation consists of:

12 8. BLOCK ACTIVATION$

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL IN'I.'RO TO THE ABSTRACT SYNTAX AND INTERPRE'I.'ATIOll OF PL/I

(1) the procedure body to be called,

(2) an identifier specifying the called entry point into the procedure
body,

(3) a block activation naae (to be used only for testing as described
in 8.2.2),

(4) a block prefix part to be inherited into the condition status of
the called procedure.

5-body S-bpy>

I rre;- par~
body

I~·!::·~"
i d. .o-: • .

I

Fig. 8. 5 Entry denotation

The entry attribute and entry denotation obtained in this way,
together with the list of arguaent expressions, contain all inforaation
necessary for perforaing the procedure call. The entry attribute, which
is obtained for the reference out of the attribute directory without any
expression evaluation, is used only in the calling block activation. The
entry denotation, which is obtained out of the denotation directory after
evaluation of the reference, is only used in the called block activation.

A procedure call differs froa a begin block activation in the
following aain points:

(1) Instead of a begin block occurring directly as the statement to be
interpreted, a procedure body contained in the entry denotation
has to be activated.

(2) The expressions given in the call stateaent or function reference
are passed as arguments to paraaeters specified in the procedure
body, as described in detail in 8.3.1. ~

(3) In case of a function reference a value is returned after
termination of the block activation as described in 8.3.2.

(4) The interpretation of the stateaent list is not necessarily
started at the beginning, but at a point somewhere within the

8. BLOCK ACTIVATIONS 13

CBI! LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX llliD INTERPRETATION Ol' PL/I 30 JUNE 1969

statement list. This point is determined by the statement
location component of the entry point, which is specified by the
identifier of the entry denotation {cf. 2.1.3 and Fig. 8.5). The
start of the interpretation of the statement list, using an index
list determining the statement location, is performed by the
mechanism of the goto statement (cf. 9.6).

8.3.1 ARGUMENT PASSING

!'or passing the arguments of a procedure call to the parameters of the
called procedure body the following information is available:

(1) the ~g~~t~!E~~ion~ in the call statement or function
reference*

(2) the £~~~£ desc~iptors in the entry attribute {if * is
specified instead of a descriptor list, all descriptors are
assumed to be*),

(3) the paramet~~-ig~nti~i~~ in the specified entry point of the
procedure body,

(4) the param~!~eclar!tiQ~ in the declaration part of the
procedure body by means of the parameter identifiers.

For each single argument the following actions are performed:

(1) Before the call, i.e., in the calling block activation, the
decision is made as to which of the foll<>l<ing three types of
action is performed. This decision is based on the syntactical
form and attributes of the argument on the one hand and the
parameter descriptor on the other hand. It should be noted that
this decision is made without any expression evaluation (i.e., can
be performed "at compile time" in an implementation).

(a) ~~§§i~_of d~~i2n (controlled stack). This is performed
if: tbe arguaent expression in fact is a reference referring
to the complete declaration {and not any sub-component) of a
controlled variable; the parameter descriptor specifies
controlled storage class (or is*); and the aggregate
attributes of the argument and of 'the parameter descriptor
(if it is not *) match, except for extents.

(b) ~~§§iA~-Q~-~~ati£~· This is performed if: the argu•ent
expression in fact is a reference to a variable (m:: t.o a
sub-component thereof); the parameter descriptor does not
specify controlled storage class; the aggregate attributes of
tbe argument and of the parameter descriptor (if it is not *J
match; and, provided the parameter descriptor is specified as
connected, the argument refers to connected storage.

(c) Passing_Qf v~!Y~ (dummy variable). This is performed in all
other cases, if the parameter descriptor does not specify
controlled storage class.

(2) Before the call, the argument is evaluated resulting in an object
consisting of an aggregate name b and a type de signa tor (one of
the three elementary objects CTL, G~N, DUAMY denoting the three
types of passing).

14 8. BLOCK ACTIVATIONS

TB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFORHAL INTRO TO THE ABSTR&CT SYNTAX AND INTERPRETATION OF Pt/I

>-type

larg-~type I

Fig. 8.6 Evaluated argument to be passed

The evaluation uses the argument expression and the parameter
descriptor. It depends on the type of passing:

(a) Passing of denotation. In this case the aggregate name of
the controlled variable referred to by the argument
expression is taken as aggregate name of the argument.

(b) Passing of generation. In this case the generation
referenced by the argument expression is evaluated, entered
into the aggregate directory under a newly created unique
name, and this unique name is taken as aggregate name of the
argument.

(c) Passing of value. In this case, first the argument
expression is evaluated and, if a parameter descriptor is
present, converted to the type of the parameter descriptor.
If the parameter descriptor or the argument expression is an
aggregate, the evaluation and conversion is performed by
expansion into the scalar components {cf. 10.2.8), using the
parameter descriptor (if present) or the aggregate attribute
of the expression as master aggregate. The resulting
operands are intermediately set aside in an auxiliary object,
called ~~ope£~B~· Second, the evaluated aggregate
attribute of the resulting aggregate is determined fro• the
dn•n•y operand. Tt may happen that for an array of strinqs
each single component in the dummy operand has a different
string length. Tn this case the maximum length is taken.
Third, a dummy variable with the determined evaluated
aggregate attribute is allocated and its generation is
entered into the aggregate directory !Q under a newly created
unique name, which then becomes the aggregate name of the
argument. Fourth, the single scalar components of the
evaluated dummy operand are assigned to the corresponding
scalar components of the dummy variable.

lll!!l!!!lt:
DCt Q ENTRY((3) CHAR(*)),

I INIT (0);
P:PROC RETURNS(CHAR(*)J;

I:I+1;
RETURN(SUBSTR('ABCDE1 ,1,I));
END P;

CALL Q(PJ ;

8. BLOCK ACTTVATIONS 15

IB~ LAB VIENNA TR 25.099

INPORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

(3)

id

For the call of Q the argu•ent expression P has to be
evaluated using the para•eter descriptor (3} CHAR(*). In the
first step the argument expression P is expanded into three
scalar co•ponents and evaluated, i.e., the procedure P is
invoked three times returning the three scalar values 'A',
'AB 1 , 'ABC 1 • These three values (more exactly: the
corresponding operands) constitute an intermediate dn••r
operand. In the second step, the evaluated aggregate
attribute (3)CHAR(3) is determined from this, i.e., an array
with bounds 1:3 and scalar components being character strings
of length 3. In the third step, a dummy variable for this
aggregate is allocated and, in the fourth step, the
components of the dummy operand are assigned to it, yielding
the values • A •, • AB •, 'ABC'.

After the call, i.e., in the block activation established by
the procedure call, the parameter identifier, like all
locally declared identifiers, is associated with a unique
name n (cf. 8.2.1) and the attributes of the parameter
declaration are entered into !!· The argument, which has
been evaluated before the call as described, is passed to the
called block activation. Its aggregate name is, after
testing of the generation of the argument against the
parameter declaration, entered into the denotation directory
.!H! as the denotation of the parameter. Thus, in the called
block activation the parameter has the attributes of the
parameter declaration and the denotation resulting from the
above described argument evaluation.

7
denotation of avgumen!

----... n

~ attribute of pu.-o.meter

Pig. 8.7 Connection of para•eter identifier with denotation and
attribute

There is one exception from this general rule: For controlled
arguments passed to non-controlled parameters, after the call, the
last generation instead of the complete generation list in !Q is
connected with a newly created unique aggregate name b, which
becomes the denotation of the parameter, i.e., the passing of a
generation {instead of a denotation) is simulated.

16 8. BLOCK ACTIVATIONS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

A

X

y

z

Example

The effect of the three different types of argument passi·ng
may be illustrated by the following example:

DCL A CTL FIXED INIT(O),
P ENTR!(CTL FIXED, FIXED, FIXED);

ALLOCATE ll.;
CALL P {11, A, (!));
P:PROC(X, !, Z);

DCL X CTL FIXED, Y FIXED, Z FIXED;

END P;

To all three parameters x, !, z the same argument expression {or
nearly the samel corresponds, but to X the denotation is passed,
to Y the current generation and to z the current value 0. After
argument passing the chains for the four identifiers A, X, !, Z
from the identifier via unique name, denotation directory ana
storage to the value 0 are as illustrated in the following figure:

DN AG
n ~ b <gen, ..• >

n, /L 0
V1, b2 ~

V1, b, (gen, *>

Fig. 8.8 The three types of argument passing

Obviously X shares the denotation, Y the generation and Z the
value with A. Any assignment to A in the called procedure will
change the common current value of A, X, Y {as long as no
allocation or freeing of A has occurred), but not the value of z.
Any allocation or freeing of A will change the common current
generation of A ana X, but not the generations of Y and z. A and
X differ only with respect to their attributes in AT.

8.3.2 FUNCTION REFERENCE

The interpretation of a function reference, occurring during
expression evaluation, differs from the interpretation of a call
statement only in the fact that provisions are made to return an operand
for the function value.

For this purpose there are two return types available: one (the ~~
~tUJ;:!L~l in tbe entry attribute to be used in the calling block
activation, and another (the !nn~~turn_!y£~) in the entry point in the
procedure body to be used in the called block activation. If both return
types do not match (they have to be identical except for string length if
specified by*), the program is erroneous.

The returning of the operand by the .function reference is performed in
the following way:

8. BLOCK ACTIVATIONS 17

IB!! LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AllD INTERPRETATION OF PL/I 30 J!JNE 1969

(1) Before the call, a unique name b, to be used as aggregate name of
a dummy variable, is created and passed to the called procedure.
This unique name, and the outer return type, is the only relevant
information known to the calling block activation.

(2) When establishing the called block activation the aggregate name b
and the inner return type are entered into the epilogue
information ~I of the called block activation. They are also
inherited into nested block activations of begin blocks
{Cf. 8.2.11).

(3) A return statement in the called block activation {or in a nested
one) evaluates its return expression and converts the result
operand to the inner return type foond in the epilogue information
gi. Then it allocates a dummy variable, taking the evaluated
aggregate attribute from the evaluated operand, and enters its
generation into the aggregate directory AG under the aggregate
name b found in the epilogue information EI. Finally it assigns
the evaluated operand to this dummy variable.

(11) After return from the called block activation, the calling block
activation accesses the dummy variable by means of the aggregate
name b; it takes the operand, tests its aggregate attribute
against the outer return type and frees the dummy variable.

8.3.3 RETURN FRO~ A PROCEDURE

A procedure called by a call statement may be terminated regularly
either by a return statement without expression specified or by co111ing to
the end of the statement list of the procedure body. A procedure called
by a function reference may be terminated regularly only be a return
statement with an expression specified. Irregularly it may be ter•inated
by a goto statement or any kind .of abnormal task termination.

To have only one case of regular termination, the end of the statement
list of a procedure body is handled as a return statement without a
specified expression.

A return statement may occur with.in nested begin block activations; in
this case it also has to terminate all begin block activations nested in
the innermost procedure activation.

If the procedure to be terminated is the mai~ procedure of the
progra•, the finish condition has to be raised before any block
activation is terminated.

To ensure the availability of all necessary information, the epilogue
information l! contains the function denotation (or 2 in the case of a
procedure ~alled by a call statement) the return type (or n in the case
of a procedure called by a call statement} and the main procedure flag,
which are inherited into nested begin block activations, and the block
activation type, which is not inherited {cf. 8.2.4).

Using this information, a return statement works as described in
Fig. 8. 9.

1R B. BLOCK ACTIVATIONS

IB.!! LAB VIENNA TR 25. ()99

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

error

raise FINISH
condition

block-efilogu
Cud ions &,9,10
of Fi .gl)

Fig. 8. 9

procedure retum·expr hO
ea lled. loy l specified? error

yes

yes evaluo.te

return- expr

no

a ss ign va.l ue
'jes m am

rv-ocedure! to fct ·:~en

no

yes
begin bloc.kf

no

block-epil<><Jue continue act ions
procedure~ >-'y,_e_s-o! Cadions 8,9,10f---+l of previous blo<:k

of Fig. \l.2) adivation

no

Return statement

8. BLOCK ACTIVATIONS 19

IBM LAB VI!':NNA TR 25.099

TN70RMAL INTRO TO TBE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

8.3.4 GENERIC SELECTION

Tt is possihle in PL/I to declare a g~n~_!g~1i!ier for a family of
entry references and to use the generic identifier in call statements and
function references instead of an entry reference. In such a case,
before the call is performed the g~~ric selectiQn takes place which
selects, governed by the attributes of the arguments of the call, one out
of the entry references of the family. The selected entry reference is
to be evaluated and the resulting entry constant to be called as
described in the previous section.

The declaration of a generic identifier is the list of the gen~£
m~mbg£~, each consisting of an entry reference and a list of possibly
incomplete parameter descriptors. The generic selection has to select
the entry reference of the first generic member in the list, whose
parameter descriptors (as far as specified) are identical with the
attributes of the arguments of the call.

More specifically, this is performed in three steps:

(1) The attributes of the results of the argument expressions are
determined (without evaluating the expressions themselves).

(2) If the attribute of any argument (or a scalar component thereof)
turned out to be of type entry, the problem arises whether the
generic selection is to be made under the assumption that the
entry itself is to be passed as argument, or that it shall be
invoked and the result passed. For this decision a prescan is
made: For each attribute of an argument (or scalar component of
an argument attribute) of type entry the generic members are
inspected whether any of them specifies the type entry {or no type
at all) at the corresponding position in the descriptor list. If
so, the selection is done under the assumption that the entry
itself is to be passed. If not, it is assumed that the entry is
invoked (with empty argument list) repeatedly until the result is
not of type entry anymore. For the generic selection this means
that the entry in the list of argument attributes is to be
replaced by its final (non-entry) return type, before the list of
argument attributes is used as basis for generic selection.

20 8. BLOCK ACTIVATIONS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

EX1!.J!l!lg:

DCL G GENERIC (P1 WHEN(1,2 FIXED,2 FIXED),
P2 HHEN(1,2 ENTRY,2 FIXED)),

1 s, 2 El ENTRY RETURNS(FIXED),
2 E2 ENTRY RETUBNS{FIXED);

CALL G (S) ;

Before the generic selection, the prescan inspects for each
scalar component of the argument s whether there is a
corresponding position in the descriptor list of any generic
member of the type entry or not. Based on this inspection
the first component is assumed as entry type, while for the
second the return type is taken. I.e., the generic selection
is performed with the modified argument attribute

1, 2 ENTRY, 2 FIXED,

which then selects the member P2.

(3) With the so modified argument attribute list the proper generic
selection is performed: One generic member after the other is
tested (in the given order) whether the number and attributes of
its parameter descriptors, as far as specified, are the same as
those of the arguments. The entry reference of the first generic
member satis.fying this condition is selected and replaces the
generic identifier.

8. BLOCK ACTIVATIONS 21

IB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding sections of /5/:

6.3 Sequential interpretation of statements

3.2.4 The control information~!

6.5 Groups

6.4 The goto statement

The following abbreviations are used in this chapter:

ba block activation name

£,c control

£I,ci control information

~§ condition status

!l dump

!l!! denotation directory

elem element

F false

i integer

spp statement prefix part

st statement

T trne

As described in 2. 3 the statement~ list of a block constitutes a rather
complicated system of nested statements, since some types of statements
may themselves contain statements of any type or even lists of statements
of any type. The present chapter describes the flow of control of the
PL/I machine through this system of .statements.

The interpretation of a begin block or of an on-unit is performed by
establishing a new block activation and, after its termination,
re-establishing the old one and continuing, as described in chapter 8.
Thus, the flow of control within a single blGck activation remains to be
described. The normal flow is influenced by:

(1) the sequencing of statements within a statement list,

{2) the nesting of statement lists within statements,

9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION 1

TBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JtlNE 1969

(3) the nesting of statements occurring as then and else alternatives
in if- and access statements (the else alternative in an access
statement is on the vhole treated in the same vay as that i.n an
if-statement; it is omitted in this chapter),

(4) the iteration specifications of groups.

The flow of control is governed by a local state co•ponent, the
control information CI. It reflects the current status of the PL/I
aachine-vith-respect-to these four points.

Additionally, the flov of control may be modified abnormally by means
of the goto statement. This is performed essentially by modifying the
control information £!•

corresponding sections of /5/:

5.3.1 Statement list

6.3.3 Interpretation of a single statement

The segue,1tial interpretation of statements within a statement list is
governed by two components of the control infor•ation CI, the tex! and
the in~~~· Whenever a statement out of a statement list {but not a
nested statement contained within it) is under execution the text is tllat
statement list and the index is the number of the currently executed
statement within the list: e.g., when the third statement of a statement
list is executed the text is the statement list and the index is the
integer 3.

s-texl s-index

I ~
I //1---

c±;/65
I

elem (1)

clJ
---Q

Fig. 9.1 Text and index components of£! on execution of a statement
list

During the execution of a statement list, the text component of £! is
in general left unchanged, while the index is alvays updated between two
statement executions.

2 9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 Illl'OR!!AL INTRO TO THE ABSTRACT SI!fTAl!: AND INTERPRETATION 01' PL/I

Whenever the execution of a statement (except the last one of the
statement list) has been terminated, the index is increased by 1, the
statement denoted by the new index is taken from the text and executed.

The execution of a single stat.ement consists of:

(1) updating of the statement prefix part of the condition status £~,
merging the block prefix: part of £11 and the condition part of the
statement (cf. 11.2.1),

(2) raising of the check condition for the labels of the statement
(cf. 11.5),

(3) execution of the proper statement, which depending on the
statement type is described in. the individual chapters of this
docu•ent.

9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION 3

IBM LAB VIENIIA

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I

exec.u te state-ment

denoted by inolex:

1. ufd.ate Sff"
2. c.hec.k labels
3. execute i"v-orer

stalement

index
olehotes

last state vnenl of

lex t

hO

increase index by 1

yes

TR 25.099

30 ,J!J!IE 1'!69

Pig. 9.2 seguential execution of statements, governed by text and
index components of £!

4 9. rLOW OF CONTROL iiTRIN A SINGLE BLOCK ACTIVATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding section of /5/:

6.3.1 Statement list

When a statement list is to be executed it is entered into the text
component of £!, the index component of £! is initialized to 1 and the
mechanism described in 9.1.1 is started.

These actions are not sufficient in the case where a statement list is
to be executed during the execution of a statement which itself is a
member of a containing statement list. For in this case the text and
index components of £! keep the information needed for the sequential
execution of the statements of the containing statement list. This
information would be lost by overvriting, if no special provisions were
made when the nested statement list is executed. In order to keep the
text and index for the containing sta.tement list and also information in
the control specifying how to continue after termination of the nested
statement list, the control information CI is handled as a stack
(similarly to the dump Q, cf. 8.1): Whenever the execution of a
statement list starts, before the text and index components of £! are
overvritten, the complete current control information £! and control £
are copied into two additional components of £!• When the last statement
of the nested statement list has been executed, these two components are
reinstalled as state components £! and £, and the execution of the
containing statement list continues correctly.

9. l'LQ,Ii 01' CON.TROL WITHIN A SINGLE BLOCK ACTIVATION 5

IBM LAB VIENNA TR 25.099

IN?ORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JtlliE 1969

stack Q a.nd c
into fl

enter t
into text,

initialize index

perform actions 'f>Of Uf' Cl and~
of Fig '3.2 from Cl

Fig. 9.3 Interpretation of a statement list t

Thus, the control inforvation (apart from one special co•ponent, which
is used only in edit directed stream I/D-state•ents) consists of four
compon.ents: The current text and index, and the control information and
control of the containing statement ~ist. Again this control information
of the containing stateMent list consists of four such components, and so
forth. Each level in the control information represents one leYel in the
system of nested statement lists.

6 9. FLOW OF CONTROL WITlli!I A SINGLE B.LOCK ACTIVATION

IB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

s-text s- inclex

@ dJ
s -text s-index

B clJ

s- d

~-ci

J-.
~

s-e

cb
Fig. 9,q Control information for ne.sted statement lists

Corresponding section of /5/:

6.3.2 The if-statement

The if-statement (and access statement) introduces into the language a
form of statement nesting differing from the nesting of statement lists.
In order to reflect this form of statement nesting also, the concepts of
text and index components of fi is slightly modified: The text may not
only be a statement list but also an if-statement. In this case, the
index is not an integer, but a truth value, the index T denoting the
s-then component of the text and the index F denoting the s-else
component.

. ..

. . .

Fig. 9,5 Text and index components of fi on execution of an if-statement

9, FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION 7

TBM LAB VIENNA TR 25.099

INFOR"AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

The execution of an if-statement t causes the following actions to be
performed:

{1) The decision expression of the if-statement is evaluated and
converted to a truth value truth.

(2) The same actions, i.e., pushing down the control information for
one level, are performed as described for the execution of a
statement list in 9.1 and 9.2 with the following changes:

{a) the if-statement t (instead of a statement list) is entere~
into the text component of ~I;

(b) t.he index is initialized to the truth value truth (instead of
the integer 1) ;

(c) the meaning of "index denotes a statement out of text" is
extended as explained above;

{d) both the s-then and s-else components are considered as
"last" statements of text {Fig. 9. 2), i.e., the control
information ~! is popped up after termination of either of
them.

Corresponding section of /5/:

3.2.4 The control information ~!

As described in the previous sections, the control information ~!
consists of four components: text, index, control information and
control, where the contained control information again consists of these
four components, and so forth. Each contained level in the control
information represents a containing level in the system of nested
statements. It ends up vith the lev.el representing the outer•ost
statement list of the current block activation; this one did not stack a
control information, but the control causing finally the block epilogue.

8 9. FLOW OP CONTROL WITHIN A SINGLE BLOCK ACTIVATION

IB~ LAB VIENNA TR 25.~99

30 JUNE 1969 INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

s-text s-index s-ci s~c

~ B cb
s- text ~-index s- ~I s-e

clJ lind~x~l
• B
•

5-lext s- index 5- c.i 5-C

~ I ind~x21

>-text

Q
Scindex

lind~x1 I
s-e

c±J
Fig. 9.6 Structure of the control·i~formation

The structure of the control information is illustated by Fig. 9.6.
text~ is the outermost statement list of the current block activation,
index1 is an integer denoting the statement st1 of text~ currently under
execution, and c 0 is the control specifying the actions of the block
prologne to be performed after termination of the execution of text1 •

For each integer i between 1 and n, either textt is a statement list and
indexi an integer, or textt is an if-statement and indexi a truth
value. indexi denotes that statement sti out of textt which is currently
under execution. The proper statement of stt is either a statement list
or a group containing a statement list or an if-statement. This
statement list or if-statement-is the co~ponent textt+ 1 • The control
Ci- 1 specifies the actions to be performed after termination of the
execution of texti·

9. FLOW 01' CONTROL WITHIN A SINGLE BLOCK ACTIVATION 9

IBM LAB VIENNA TR zs.ryqg

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUNE 1969

In this wav the control information £1 denotes exactly the innermost
statement currently being executed within the system of nested statements
of the current block activation. Since the component text{+ 1 is always
already uniquely determined by text1 and indexi• all except the outermost
(text 1) text components are redundant. They are always copied for
convenience of use. Tn fact, the innermost currently executed statement
is determined uniquely by text 1 and the list of indices: <index 1 ,

index 2 , ••• ,indexn,index>. This way of localizing a statement relative to
the statement list of a block by a list of indices is used in the
declaration of label constants (cf. 2.2) and in the execution of the goto
statement (cf. 9.6).

BEGTN;L1 : ;
L2
L3 !)0; L31 :

132 I!:'
TH!::N L32T : . •
ELSE L32!' : DO I = 1 TO !!;

L32P1 : ... '
L32F2
END;

L33 :
END;

END;

If the statement labeled L32P1 is currently
control information is as given in Fig. 9.7
labels instead of the labeled statements).
localizing the statement under execution is

10 9. FLOW 0!' CONTROL WITHIN A SINGLE BLOCK ACTIVATION

under execution
(vri ting always
The index list
<3,2,F,1>.

the
the

IBM LAB VIENNA TR 2S,n99

10 JDNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I

s- text s-ind.ex s-ci s-e

0 next iteration s ter

s- text !! - ci s- c

I
L32 v.exl slaternent

>-text s~index

cb next statement

s- text s- index s-e

dJ bloc.k epilogue

Fig. 9.7 Example of control information£!

9, l'LOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION 11

TBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I 30 JUNE 1969

Corresponding section of /5/:

6.5 Groups

A ~£2Y£ is a proper statement specifying repeated execution of a
statement list. There are two types of groups, the J!h:iJ,!l_~£2YE and the
£Q~~tQlled_~t2YE• The text of a group consits of the statement list to
be iterated and an iteration specification. In the case of a while group
the stat.ement list is executed repeatedly until a given condition is
satisfied, i.e., until the evaluation of a given expression yields
"true". In the case of a controlled group after each execution of the
statement list the value of a given variable, the £Qn!£211ing_y~iaa!~.
is incremented by a given value, the statement list is executed
repeatedly until the value of the controlling variable exceeds a given
value.

The execution of a group is performed in such a way that all actions
controlling the iteration of the statement list are performed at the
level of the control information CI which is installed when the execution
ot the group ~tarts. Each time when the iterated statement list is to be
executed, the control information is stacked for one level, i.e., the
statement list is executed exactly as described in 9.2. During the
execution of the iterated stateMent list, the control component of £!
specifies the actions controlling the iteration of the statement list, in
particular, it contains the information about the current status of the
iteraHon. Each time when the exectuion of the iterated statement list
terminates, the control information is popped up for one level as
described in 9.2. Thereby the iteration control is performed at the.
popped up level.

12 9. l'LOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

iVlitio.lize
loop conlrol

control
l 00 p

once more

stack Q

execute
stateW>ent list

Pig. 9.8 Execution of a group

read.y

9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION 13

IBM LAB VIENNA TR 25.099

INFORMAL TNTRO TO TH~ ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE H69

Corresponding section of /5/:

6.4 The goto statement

A goto statement consists essentially of a reference, which refers
either to a statement label constant, or to a scalar label variable, or
to a function returning a label. The evaluation of this reference yields
in all three cases a unique name n which, applied to the denotation
directory Q]!, gives access to the denotation of a statement label
constant: either the referenced label constant it.self, or the one
assigned last to the referenced label variable, or the one returned by
the referenced function.

The denotation of a statement label constant consists of two
components identifying uniquely the statement denoted by the label:

s-ba s-st- loc

cb elem(1) elem (n}

~ li~d~x~l
~ig. 9.9 Denotation of a statement label

(1) The block activation name ba of that block activation in which the
label was decla~ed.

(7.) An index list giving the statement location of the statement
denoted by the label relative to the outermost statement list of
the block activation identified by ba. The locali~ation of a
statement ~elative to a statement list is described in 9.4. The
index list was produced by the translator from the position of the
label in the concrete text and inserted as declaration of the
label constant into the abstract program (cf. 2.2).

The aim of a goto statement is to simulate the normal flow of control
to the target statement denoted bv the label, i.e., to transform the PL/I
machine into that state in which it would have been if the target
statement would have been encountered normally. This means first to
re-establish the block activation identified by the block activation name
of the label denotation, and second, within that block activation, to
modify the control information in such a way, that the sequence of its
contained indices, ordered from bottom to top, is the index list of the
label denotation.

14 9. ~LOW 0? CONTROL WITHIN A SINGLE BLOCK ACTIVATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

This is performed in four steps:

(1) The block activations established in the state, as represented by
the dump Q, are terminated one after the other by the normal block
epilogue (cf. 8.2.4), until the block activation is re-established
in which the label was declared, i.e., until the current block
activation name BA is the blcok activation name of the label
denotation. If this block activation is not encountered up to the
outermost block activation of the task, the program is in error.

(2) In the block activation re-established by step 1, the nested
statement levels are terminted one after the other, until the
target statement is contained (possibly nested) within the
innermost not yet terminated statement list or if-statement. This
is done by popping up the control information £I (cf. 9.4), level
by level, until the sequence of indices contained in £I (except
the current index) is equal to an initial portion of the index
list of the label denotation. (At the latest, this is the case
when all but the outer~ost levels of statements in the block
activation have been terminated).

(3) The statement lists and if-statements containing the target
statement are entered level by level until the innermost is
reached. This is performed for each leYel by:

(a) changing the current index of CI to the value given by the
corresponding place in the index list. of the label
denotation,

(b) stacking the control information £I for one level and
entering into the text of ~I the statement, from the old
text, which is denoted by the index just changed. This
statement has to be a statement list or if-statement if the
program is not in error. In particular it cannot be a group
(a goto into a group is forbidden, since in such a case no
loon control would have been established in the stacked
control, and therefore the flow of control would not find its
way out of the group correctly).

These two actions are repeated until all levels given by the index
list of the label denotation are established.

(4) Finally, the current index is adjusted, i.e., set to the last
value of the index list of the label denotation, ana the normal
flow of control is continued.

9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION 15

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1%9

pop up 9 no

adjust no
index of 9

vighl
block activation

esta.blishe

textof Cl.
contains lo.rget

yes

to.r<jet
is immediate

component of
text of Cl

yes

a.djust
index of Cl

~ig. ~.10 Execution of the goto statement

16 9. rLOW 0? CONTROL WITHIN A SINGLE BLOCK ACTIVATION

j

slep l

l
~tep~

step4

IRM LAB VIENNA TR 25.099

30 JIJNE 1969 INFORMAL 1NTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

BEGIN;
L1
L2

END;

.....
DO I = 1 TO N;
L21 IF ••• THEN

L21T : BEGIN; ••• ; GOTO L231: ••• ;END;
L22 : ••• t

L23 : DO;
L231 : target-statement;
L232 '
END;

END;

In this example the denotation of the label in the goto statement
consists of the block activation name of the outer block and the index
list <2,3,1>. The goto statement is performed in the following four
steps:

(1) The inner block activation is terminated and the outer one
reestablished. Then the re-established control information CI is
as shovn in Fig. 9.11 (writing the labels instead of the labeled
statements as text components).

s-text ~- ind.ex ~-Cl

I cb L 2.1 next state menl

~-l:ext. s-e

Loor control of grou

s-!exl s -index 5-C.

I ctJ <L1,L2> block epilogue

Fig. 9.11 Co.ntrol inforMation during goto example

(2) This control information is popped up one level.

9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION 17

IBM LAB VIENNA TR 25.099

INFORMAL JNTFO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

(3) The index of the new control
and CI is stacked one level.
shown-in ~ig. 9.12.

information is changed from 1 to 3
Then the control information is as

s- text s- index s." s-e

next statement

s-text s- index s- c.1 s-e.

rlJ loop c.onh·ol of group

s-text s-index s-e.

I
<L1,L2> ctJ block epilogue

~ig. 9.12 control information during goto example

(4) The index is adjusted to t, and the flow of control continues
normally.

It should be mentioned that in special cases one or more of these
steos may be skipped. In particular, in the simplest case of a goto,
namely a goto within the current statement list, only step 4 is
a !'Plicable.

!JO; 11 :

END;

L2
L3
L4
LS

... '
" ... '
GOTO L2; ... '

In this example only step 4 is performed, changing only the
current index of £! from 4 to 2 and continuing.

18 9. FLOW OF CONTROL WITHIN A SINGLE BLOCK ACTIVATION

IBM LAB VTENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding sections of /5/:

1. Allocation, initialization, and freeing of variables

8. Assignment statement, expression evaluation, reference to
variables

9. Data, operations and conversions

Corresponding section of /5/:

7. Allocation, initialization, and freeing of variables

10.1.1 THE ALLOCATE STATEMENT

corresponding section of /5/:

7.1 The allocate statement

An allocate statement specifies a list of allocations. Fig. 10.1
shows the structure of the specification of a single allocation, with an
indication as to which components are significant for which types of
allocation.

S-Cl<J'Y s-illl s-n s-ptr s-area

I I I
allocatio11 poinler- referenc.e av-eo.-
attribute (offset - referenc~ reference

for allocation of a conholled variable

for d.llocalion of a based variable

for allocation of a ba.sed vo.viable in an area

Fig. 10.1 structure of specification of an allocation

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 1

TR 25.099

T'l~OPMU INTPO TO TH~ ABSTRACT SYNTAX AND INTERPRETATION 0!' PL/I 30 JUNE 1'l69

The identifier is the identifier of the variable to be allocated, the
unique name is t.he unique name of this variable. Three types of
allocation have to be distinguished.

22~1~1~1_Q£~~I-Qf_~~~£YtiQU_Qf_~!!Q£~tiQB2

?or determining the order of execution dependencies between the
allocations specified in the allocate statement are observed.

An allocation is dependent on another allocation of a variable
specified in the same statement if this variable is of controlled storage
class and if any of the evaluations implied by the allocation refers to
this controlled variable, and if this controlled variable itself is not
yet allocated. By i•olied evaluation there is to be understood the
evaluation of the aggregate attribute of the variable to be allocated,
the evaluation of the pointer and the area reference {for based
variables), and the evaluation of the initial attribute.

All allocations which are not dependent on others in th<> above sense,
may be executed in any order. After the execution of each individual
allocation the non-deoendent allocations are re-determined and a
selectlon is made. It is an error if all specified allocations are
de?endent on one another.

The allocation of a controlled variable proceeds in the following
!'lteps:

(1) The aggregate attribute to be used for allocation is evaluated.
This aggregate attribute is the one which is declared for the
variable, but array bounds, string lengths, and area sizes mar
stem from various sources. The following rules hold:

{a) if no allocation attribute is specified in the allocate
statement, then the declared aggregate attribute is
evaluated.

(b) if an allocation attribute is specified in the allocate
statement, then extents are taken:

from the attribute in the allocate statement if specified
there by an expression,

from the aggregate attribute of the current generation of the
variable if specified in the statement by an asterisk,

from the iieclared aggregate attribut.e if left unspecified in
the statement.

(2) A pointer identifying the storage to be given to the variable is
determined from the evaluated aggregate attribute and the main
sto~age ~ (cf. ~.2.3). This pointer is added to the allocation
state of~ by the elementary allocation function (cf. ij.2.3).

(1) A new generation is formed from the pointer and the evaluated
aggregate ~tt~ibute. This generation is put on top of the list of
gene~ations associated with the unique name of tbe •ariable in the
aggregate directory!~ {cf. 5.3).

? 1n. ALLOCA~toN, ASSIGNMENT AND EXPRESSION EVALUATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

(4) The variable is initialized using the generation just defined, the
allocation attribute specified in the allocate statement, and the
aggregate attribute declared for the variable. The allocation
attribute as vell as the aggregate attribute of the variable may
contain initial attributes in their scalar attribute components
(cf. 2.2.1). If an initial attribute is given in the allocate
statement, it overrides an initial attribute in the declared
aggregate attribute at the corresponding position. If no initial
attribute is given in the statement, the one in the declared
attribute is taken.

Each initial attribute refers to a scalar component or to an array
component of the variable. The assignments to be performed
according to an initial attribute are determined by this attribute
and the sub-generation of the variable to which it refers.

There are three different kinds of initial attributes:

(a) If the initial attribute is a nested list of expressions with
replication factors, the expressions are evaluated and the
replication factors evaluated and applied, the result being a
list of operands. The operands are assigned successively to
the scalar components of the generation to which the initial
attribute refers. The process stops if the operand list is
exhausted, or if the scalar parts of the generation are
exhausted.

(b) If the initial attribute is a call statement, the call is
performed.

(c) If the initial attribute is a list of "special initial
elements•, assignments of entry or label constants are
performed in the following way. Each initial element
specifies a subscript list and the identifier of a label or
entry constant. For each of these elements, the subscript
list is used to determine a sub-generation of the generation
to which the initial attribute refers, the unique name
associated with the specified identifier is used to form an
entry or label operand, and the operand is assigned to the
sub-generation.

1!l .. .hh:L!U.Qg_ti.Q!L.2L.l!i!l!!!.!LYlli!!l:!le !Li!LJ!!a i !Lltl ora q!!.

The pointer {offset) reference may or may not be specified in the
statement. The allocation proceeds in the following steps:

{1) The aggregate attribute of the based variable is evaluated. Since
the extents of a based variable may be specified only by constants
or REFER-options, this means that the expressions specified in the
REFER-options are evaluated and converted to integer values. The
result is an evaluated aggregate attribute.

(2) A pointer is determined from the evaluated aggregate attribute and
the main storage 2· This pointer is added to the allocation state
of 2, using the elementary allocation function (cf. 4.2.3).

The pointer is also added to the free-set of the current task.
The free-set is a set of pointers identifying storage parts that
have been used for allocation via based variables in s. It is
used for freeing all this storage at termination of the task.

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 3

TBM LAB VIENNA TR 25.099

TNl'ORMAL INTRO TO THE ABSTUCT SYNTAX AND INTERPRETATION 01' PL/I 30 JUNE 1969

{3) If a pointer {offset) reference is given in the statement, the
generation associated with the reference is evaluated. If not,
the generation associated with the pointer (offset) reference
given in the declaration of the based variable is evaluated. A
pointer operand is formed from the pointer determined in step (2) ,
and assigned to the generation just evaluated.

If the generation is an offset. generation (i.e., if an offset
reference was specified instead of a pointer reference), the
pointer is converted to an offset before assignment, using the
area declared with the offset reference for the conversion
(cf. 4. 2. 7).

(4) All components of the variable mentioned as targets in
REFER-ootions, are assigned the values of the extent expressions
specified in the respective REFER-options. These values are
obtained from the extents in the evaluated aggregate attribute
evaluated in step (1). steps (3) and (4) may be done in any
order.

(5) A generation is formed from the evaluated aggregate attribute and
the pointer. This generation is used for initialization of the
based variable. The initialization proceeds as described for
controlled variables, except that no initial attributes are
specified in the statement. Only initial attributes specified in
the aggregate attribute of the variable are used.

The pointer and the area reference may or may not be present in the
statement. The allocation proceeds in the following steps:

(1) If an area reference is specified in the allocate statement, the
generation associated with this reference is evaluated. If not,
the reference used for setting the pointer mu~t be an offset
reference {it is either given explicitly in the statement, or in
the declaration of the controlled variable, see step (4)). The
area reference given in the corresponding offset declaration is
evaluated in this case, and taken as the generation of the area in
which the allocation is made.

{2) The aggregate attribute of the based variable is evaluated as in
step (1) of the allocation of a based variable in main storage.

(3) An offset is determined from the evaluated aggregate attribute and
the allocation state of the area identified by the area generation
evaluated in step (1) • A test is made whether the allocation in
the area is possible (the test is implementation-define~. If the
allocation is not possible, the AREA condition is raised.

If the allocation is possible, the offset is added to the
allocation state of the area.

(4) The pointer (offset) reference is determined and evaluated as in
step (3) of the allocation of a based variable in main storage.
The offset determined in step (3) is used to form an offset
operand, which is assigned to the pointer (offset) generation.

If the generation is a pointer generation, the offset is converted
to a pointer using the area in which the allocation is made
(cf. 4. 2. 7).

q 10. ALLOCATION, ASSIGN~ENT AND EXPRESSION EVALUATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTffO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

(5) Initialization of components mentioned in REFER-options is done as
in step (4) of the allocation of a based variable in main storage.

Steps (4) and (5) 11ay be done in any order.

(6) The offset is converted to a pointer using the area in which the
allocation is made (cf. 4.2.7). This pointer and the evaluated
aggregate attribute are used to form a generation. The generation
is used for initialization, which proceeds as for allocations in
main storage.

On normal return from the on-unit called by the AREA condition,
the allocation is retried after reevaluation of the area
generation.

10.1.2 THE FREE STATEMENT

Corresponding section of /5/:

7.5 The free statement

A free statement specifies a list of freeings which are execnted in
any order. Fig. 10.2 shows the structure of the specification of a
single freeing with the indication as to which components are significant
for which type of freeing:

s- ref

I
reference

'----v----'
fo,. freei11g of a

area
reference

controlled or based.
va.riable iYl rna_in do..-age

for freeing of a based vaYiable
ina.n area.

?ig. 10.2 Structure of specification of a freeing

The reference is a level 1 reference to the variable to be freed.

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 5

IBM LAB VIENNA TR 25.099

INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

The following actions are taken:

(1) If the list of generations associated with the controlled variable
in the aggregate directory !2 contains the null generation only,
no action is taken. If the list contains just one generation,
then this generation belongs to another task, and the freeing is
erroneous. In all other cases, the top generation of the list of
generations is deleted.

(2) The pointer contained in the pointer part of the deleted
generation is deleted from the allocation state of the main
storage §..

The following actions are taken:

(1) The generation associated with the reference of the based variable
is evaluated.

(2) The pointer contained in the generation is deleted from the
allocation state of the main storage. It is also deleted from the
free-set of the current task, thus preventing any attempt to free
the associated storage part a second time at task termination. A
test is made whether the pointer vas actually present in the
allocation state and in the free-set.

1~1~~~-f~~~inq_Qf_g~§~g_ya~ia21~§-1B-~~§

The area reference may or may not be present in the statement. The
following actions are taken:

(1) If the area reference is present in the statement, its associated
generation is evaluated. If it is not present in the statement,
it is obtained from the pointer qualification of t.be based
variable reference in the following way. If the pointer
qualification is a reference to the POINTER built-in function, the
area reference contained in its second argument is taken. In all
other cases the qualifier must be an offset reference, and the
area reference specified in the offset declaration is taken and
evaluated.

(2) The generation associated with the based variable reference is
evaluated.

(3) The pointer contained in the generation is converted to an offset
using the area identified by the area generation obtained in step
(1), and this offset is deleted froa the allocation state of the
area.

A test is made whether the offset vas actually present in the
allocation state of the area.

6 10. ALLOCATION, ASSIGN~ERT AND EXPRESSION EVALUATION

IBN LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO TffE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding section of /5/:

8. Assignment statement, expression evaluation, reference to
variables

An assignment statement is specified by an abstract text consisting of
a left-uart, which is a list of references, ana a right-part, which is an
expression.

s-lr

elern (1) elem 111

d;]ciJ
?ig. 10.3 Structure of an assignment statement

The references in the left-part are references to variables ana;or to
pseudo variables (pseudo variables are discussed in 13.2).

In order to simplify discussion, the term ~gg£gg~~~11Eih~te_2f_!he
£~fe£~ll£~ to a variable will mean the aggregate attribute of the
referred-to part of the variable (cf. 4.2.4). We shall also say that a
reference is an array, or a structure, etc., if the aggregate attribute
of the reference is an array or a structure attribute, etc.

If the references in the left-part of an assignment statement are
non-scalar), the assignment statement is an aggregate assignment
statement. An aggregate assignment statement is not interpreted
immediately, but it is expanded into a sequence of scalar assignment
statements which are interpreted seguentially.

The expansion and interpretation is governed by the evaluated
aggregate attributes of the references in the left-part. (If a reference
happens to be the reference to a pseudo variable, the aggregate attribute
of the first argument is taken) •

The evaluated aggregate attribute of a based reference in general
cannot be obtained before the evaluation of the REFER-options specifying
its extents, i.e., not before the evaluation of the pointer qualification
(cf. 10.2.5.3). All references in the assignment statement which are
expanded therefore undergo a pre-evaluation before the proper
interpretation of the statement. The pre-evaluation fixes the generation
of the referenced variable for the subsequent interpretation.

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 7

!BM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

10.2.1 PRE-EVALUAT!ON OF EXPRESSIONS

Corresponding section of /5/:

8.2.1.1 Pre-evaluation of expressions

The pre-evaluation of an expression concerns all those references in
the expression which are expanded in the expansion of aggregate
assignment statements. It does not concern, therefore, arguments of
user-defined functions, and non-expanding arguments of built-in functions
(whether an argument expression of a built-in function is expanded ot not
is a property of the built-in function) •

The pre-evaluation of the reference to a variable results in a
generation. This generation is inserted as s-gen-coaponent of the
reference itself, as shown in Fig. 10.4:

s-id-list s-n s-ptr s -sl s-ap s-gen

I I I I I r
idel'llifier uv11gue pointer subsaipt a~gument

general ion
list name refereVlce l i ,;\ Ust

,. - 1g. 10. 4 Pre-evaluated reference

The inserted generation subsequently is used when the reference is
evaluated, or when assignments to the variable are made.

For proper variables (i.e., static, automatic, or controlled variables
and parameters) the current generation is obtained as the head of the
list of generations associated with the variable in the aggregate
director-y !!l.· This generation is inserted as the s-gen-component of the
reference. For defined variables, no action is taken in the
pre-evaluation. For based variables a new generation is formed from the
evaluated aggregate attribute of the based variable, and the pointer
resulting from the evaluation of the pointer qualifier. The evaluation
of the aggregate attribute involves the evaluation of REFER-options. The
evaluation of the generation of a based variable is dealt with in
10.2.5. 3.

8 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

10.2.2 EXPANSION OF AGGREGATE ASSIGNMENT STATEMENTS

Corresponding sections of /5/:

8.1.1 Expansion of aggregate assignment statements

8.1.2 syntactic modification of expressions

As soon as the references to variables in the assignment statement
have been pre-evalaated, the evaluated extents of all involved variables
can be obtained from the generations associated with the references.

Let eva be the evaluated aggregate attribute of the left-most
reference in the left-part. The expansion proceeds as follows:

(1) If eva is scalar, all references in the left-part must be scalar.
The assignment statement is executed.

{2) If eva is non-scalar, all references in the left-part must be
arrays with identical bounds, or all must be structures with an
equal number of components. For each integer i which determines
an immediate component of eva, proceeding seguentially from the
smallest to the greatest integer, the following actions are taken:

(a) The text of the assignment statement is modified, as
determined by eva and i (see below).

(b) This modified text is treated like the original assignment
statement (this means that if the modified text specifies a
scalar assignment statement it is nov interpreted, otherwise
it is.expanded as just described).

The left-part and the right-part of an assignment statement are
modified according to the same rules, the rules for modification of
references being subsumed under the rules for modifying expressions.

The modification of an expression is determined by the evaluated
aggregate attribute eva and the integer i and is done according to the
following rules:

(1) If the expression is an infix ex press ion, then both operand
expressions are modified according to the rules for modifying
expressions.

(2) If the expression is a prefix expression, then the operand
expression is modified according to the rules for modifying
expressions.

(3) If the expression is parenthesized, then the expression enclosed
in the parentheses is modified according to the rules for
modifying expressions.

{~) If the expression is a function reference, a generic reference, a
label, a format label, or a scalar reference to a variable, then
it is left unchanged.

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 9

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

(5) If the expression is an array reference to a variable and eva is
an array attribute with the same number of dimensions and the same
bounds, then the reference is replaced by the reference to the ith
component of the array.

(6) If the expression is a structure reference to a variable and eva
is a structure attribute with the same nn11ber of components, then
the reference is replaced by the reference to the ith component of
the structure.

(7) If the expression is a structure reference to a variable and eva
is an array attribute, then the reference is left unchanged.

(8) If the expression is a reference to a built-in function, then the
expanding arguments of the reference are modified according to the
rules for aodifying expressions. Whether an argument is expanding
or not is a property of the built-in function.

(9) All cases not mentioned above are erroneous.

Assignment state11ents given the BY IA~E option are expanded in a
different way. The difference with respect to the non-BY UI!E expansion
arises when eva is a structure attribute. Then,the infor•ation given to
the modifying function is not the number of a component, but the
sub-aggregate name id identifying the coaponent in the leftaost reference
of the left-part.

Rule (5) in the list of r~les for •odifying expressions has to be
deleted for BY NABE expansion, and rule (6) has to be replaced by:

(6') If the expression is a structure reference to a variable and eva
is a structure attribute, then the reference is replaced by the
reference with id appended as naae qualifier, provided that a
component vith name id of the structure exists. If no such part
exists, then the modifying process containing th~ reference is
abandoned, i.e., no assignment state•ent is constructed and
e.xecuted in this step.

10.2.3 SCALAR ASSIGNMENT

corresponding section of /5/:

8.1.3 Interpretation of scalar assignaeat statements

A scalar assign•ent state•ent is executed by

(1) evaluating the sub-generation associated vith the references in
the left-part (cf. •.2.6 and 10.2.5), in order from left to right.
If the references are references to pseudo-variables, the
evaluation results in pseudo-generations (assignaent to
pseudo-variables is described in 13.2).'

(2) evaluating the right-part expression, vhich results in an operand
(cf. 10.2.4).

(3) assigning the operand to the storage parts identified by the
evaluated generations, in order froa left to right.

10 10. ALLOCA.TION, ASSIGBIIEI1' AND EXPRBSSIO!f EVALUATIOJ

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The assignment of an operand implies the conversion of the operand,
using the data attribute of the generation as target data attribute
(cf. 10.3.2). The conversion process also contains a check as to whether
the assignment is at all possible and the raising of conditions.

Let the converted operand be op' and the pointer part of the
generation be p then a new storage part s• is created on assignment
(cf. 4. 2. 2):

;!' = el-ass{s-vr (op') ,n,;!)

10.2.4 EXPRESSION EVALUATION

Corresponding sections of /5/:

8.2.2 Evaluation of expressions in entry-context

8.2.3 Evaluation of expressions in non-entry context

The evaluation of an expression results in an operand (cf. 4.1.1). In
general it must be known whether an expression is evaluated in a context
expecting an entry operand or not. This is the case if the expression is
the right-hand side of an assignment statement whose left-hand references
refer to entry variables, or if the expression is in an argument
S?ecified as entry. It is said in this case that the expression is in
entry context.

1Q~£~~1-!!alua!i2~-Q~-g~E£g§§iQll§_in_gntrY_gQn!g~!

(1)

(2)

(3)

An expression in entry context may be one of the following:

A parenthesized entry expression. The expression enclosed in
parentheses is evaluated according to the present rules, which
gives the result of the expression.

The reference to an entry constant. If no argument list is
specified in the argument part of the reference, an operand is
formed from the attribute ENTRY and from the value representation
resulting from the representation of the unique name of the entry
(cf. 4.1.2). The operand is passed as the result of the
expression. If argument lists are specified in the argument part,
the entry is called as a function, using the first argument list
in the argument part, the denotation of the entry name , and the
entry attributes (parameter description and return type) of the
entry name. The operand returned by the function call must be an
entry operand. If there is no argument list left in the argument
part, this operand is passed as result. If there are argument
lists left, the value of the entry operand is used to perform
another function call, using the next argument list of the
argument part and the entry attributes given in the return type of
the original entry. The resulting operand is again treated. as
just described.

A reference to an entrv variable. The reference to the variable
is evaluated, giving an entry operand. This operand is treated as

10. ALLOCATION, ASSIGN"ENT AND EXPRESSION EVALUATION 11

IB!I LAB VIENNA TR 25.099

IN~ORftAL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

described in (2), i.e., function calls are performed until all
argument lists in the argument part of the reference are used up.

(4) A reference to a generic name. If there is no argument list
specified in the argument part of the reference and the reference
is in an argument position to a procedure, the generic selection
is made using the parameter descriptor list of the corresponding
entry parameter description. If an argument list is specified,
the attributes of the arguments are used for performing the
generic selection. The result of the selection is an entry
expression (cf. 8.3.4). This entry expression is evaluated
according to the present rules, giving an entry operand.

The entry operand is treated as described in (2), i.e., function
calls are performed until all argument lists in the argument part
are used up.

(5) A float-generic builtin function. This is possible only if the
reference is in an argument position of a procedure. The generic
selection is performed using the parameter descriptor list of the
co.rresponding entry parameter description (this selection is not
further described in this informal document).

The following are the possible forms of an expression and the rules
for their evaluation in non-entry context. An expression may be:

(1) An infix expression. Both operand expressions are evaluated in
any order according to the rules for evaluating expressions. The
operator subsequently is applied to the two resulting operands,
giving the result of the expression (cf. 10.3}.

(2) A prefix expression. The operand expression i.s evaluated, the
operator is applied subsequently to the resulting operand, giving
the result of the expression (cf. 10.3).

(3) A parenthesized expression. The expression enclosed in
parentheses is evaluated, which gives the result of the
expression.

(4) A constant. A constant in the abstract text consists of a data
attribute and a value. It is converted to the form of an operand,
using the value representation resulting from representing the
value of the constant (cf. ij.1.2). The operand is passed as the
result of the expression.

(5) A reference to a variable. References to variables are described
in 10.2.5. If the reference is to an entry variable, the
resulting entry operand is used to perform a function call. The
function call is performed with the first argument list of the
argument part of the reference. If no argument list is specified,
the empty argument list is assumed. If the function again returns
an entry operand, it is again treated as just described, i.e., it
is used for another function call.

(6) A reference to an entry constant. The entry is called as a
functio.n with the first argument list specified in the argument
part of the refernce. Tf no argument list is specified, the empty
argument list is assumed. If the resulting operand happens to be

12 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION

IBM LAB VIENNA TR 25.099

30 JDNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I

an entry operand, it is called again with the next argument list
in the argument part. A resulting non-entry operand is passed as
the result of the evaluation.

(7) A reference to a generic name. The generic selection is made
using the attributes of the arguments in the first argument list
of the argument part (cf. 8.3.4). The selection yields an entrv
expression, which is evaluated according to the rules for
evaluation in entry context (cf. 10.2.4.1). The resulting operand
is used for performing a function call as described in (6).

(8) A label, format, or file constant. An operand is formed from the
data attribute LABEL (for label and format constants) or PILE (for
file constants) and the value representation resulting from
representing the unique name of the constant {cf. 4.1.2). The
operand is passed as the result.

{q) An isub-variable. .!sub-variables occur only in connection with
isub-defining (cf. 10.2.5.2.1). The integer value attached to the
variable is used to form an integer operand, which is passed as
the result.

10.2.5 REFERENCE TO VARIABLES

Corresponding section of /5/:

8.3 Evaluation of references to variables

The evaluation of the reference to a variable proceeds in the
following steos:

(1) The generation currently associated with the variable is
evaluated. Por proper and based variables this evaluation is done
~lE~~£! during the Er~-evaluation (cf. 10.2.1).

(2) The subscript-expressions occurring i.n the reference are evaluated
ani! converted to integer values in order from left to right, the
sub-aggregate names (name qualifiers) occurring in the reference
are replaced by the integer values identifying the respective
sub-aggregate (cf. 4.2.4). This step results in a reference list
(cf. 4.2.6).

(3) The sub-generation determined by the generation and the reference
list is evaluated (cf. 4.2.6).

(4) The operand determined by the (scalar) sub-generation is
evaluated.

Step (2) also includes checking whether the subscripts are within the
range given by the evaluated aggregate attribute of the variable. If a
subscript is outside the range, the SDBSCRIPTRANGE condition is called
(if enabled). The evaluated data attribute of a variable is obtained:

(a) for proper variables (i.e., STATIC, AUTOMATIC, or CONTROLLED
storage class and parameters) from the aggregate attribute part of
the generation of the variable, which for proper variables is
immediately accessible,

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 13

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

(b) for defined variables from the denotation of these variables
(cf. 5. 4),

(c) for based variables by evaluating the REFER-options contained in
the aggregate attribute (cf. 10.2.5.3).

Proper variables, defined variables, and based variables differ in
step (1) ,i.e., in the way the generation associated with the variables is
obtained. Step (1) is discussed separately for these variables below.

The reference process does not include step (4) if the reference is in
the left-part of an assignment statement, or if it is the argument to a
procedure and the generation of the argument is to be passed to the
corresponding parameter {cf. 8.3.1). The sub-generation resulting froA
step (3) need not be scalar in the last case.

!~L£L~-£~2E2~-y~ri~~2

The generation currently associated. with a proper variable, if
existing, is obtainable as the head. of the list of generations contained.
in the aggregate directory !2 und.er the aggregate name associated with
the variable. The aggregate name is obtained as the entry made in the
denotation directory ~!! under the unique name of the variable (see the
diagram in 5.3).

No generation exists if the variable has not been allocated.

The declaration of a defined variable specifies an aggregate
attribute, optionally a position {which is singificant for overlay
d.efining only) , and a reference which is called the reference to the ~~2~
y~ria~!g, or ~~2g-~~~~n£~· Three kinds of d.efining must be
distinguished.

A defined vaLiable is isub-defined if no position is specified and if
the base reference contains subscript expressions which contain at least
one reference to an isnb-variable. A reference to an isnb-variable is
syntactically distinguishable from references to all other kinds of
variables, ani! is characterized by an integer value. An isub-defined
variable is always an array variable.

The reference to an isub-defined variable proceeds in the following
way (this covers steps {1) and (3) of the above general scheme):

(1) Let d be the number of diaensions of the defined. array variable.
'l'ben the first d elements of the evaluated reference list (see
step (2) above) are used to give the values to d. isub-variables
(those characterized by the integers 1 to d). These values are
inserted as s-v-components of the references to the isnb-variables
in the subscriot expressions of the base reference.

(2) The generation associated with the base reference is evaluated.

(3) A consistency check is made between the aggregate attribute of the
elements of the defined array variable, and the aggregate
attribute as given in the above sub-generation. '!'he same
conditions must be satisfied as in the simple-d.efined case between

14 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION

TBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

attributes of the defined variable and the generation associated
with the base reference.

(4) The rest of the reference list, not used to give values to
isub-variables, is used to determine the sub-generation of the
above sub-generation.

Note that if a reference to an isub-variable occurs in an expression
the operand resulting on evaluation is formed immediately from the value
found in the s-v-component of the isub-reference.

Let D and B be declared as:

DCL 1 D {2,2) DEFINED B (2SUB, 1SUB) 1 2 X, 2 Y,
1 B (2, 2) , 2 U, 2 V:

and consider the reference D {2, 1) • Y

The evaluated reference list is <2,1,2>.

The number of dimensions d of the defined array variable is d = 2,
so there are 2 isub-variables, which get associated with the first
two elements of the reference list:

1SUB 2

2SUB 1

The reference B (2SUB,1SUBJ is now evaluated. The relevant reference
list is <1,2>. Let gen be the generation associated with the variable B,
then we obtain the sub-generation gen' determined by gen and <1,2>.

The rest of the first reference list of the reference to the defined
variable (not used to give values to isub-variables) is <2>. The final
result is the subgeneration gen•• determined by gen• and <2>.

A defined variable is simple-defined if no position is specified in
the declaration, and if its evaluated aggregate attribute is equal to the
aggregate attribute of the base reference, disregarding arrav bounds and
string lengths. corresponding array bounds must be such that the bounds
in the base array comprise the bounds in the defined array, string·
lengths in the base array must be shorter than or equal to corresponding
string lengths in the defined array.

The evaluation of the generation associated with the defined variable
proceeds in the following way:

(1) the base reference is evaluated , giving the corresponding
sub-generation,

(2) the aggregate attribute in the aggregate attribute part of this
generation is replaced by the evaluated aggregate attribute of the
defined variable.

The new aggregate attribute part in the generation specifies which
parts of the storage associated with the base generation can be u~ed bv

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 15

IBM LAB VIENNA TR 25.099

INFORMAL IRTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1%9

the defined variable. This modified generation may be non-connected,
even if the base generation is connected. The modified generation is the
input to step (3) in the general scheme in 10.2.5.

Let D and B be declared as

DCL D (2, 2) DEFINED B, B (2, 3) ;

Let p be the pointer part of the generation associated with B.
Fig. 8.4 symbolically shows the storage p(S) associated with B and
the storage corresponding to parts of B, in a linear model. It
also shows the storage usable by D, which is a non-connected part
of 1 (cf. 4.2.5).

I B<WIB(1,2ll 8(1,3)1 8(2,1)18(2,2)1 8(2,>~
I 1 I I I 1 I

1 D(1,1)1 D(1,1)J I D(2,1)1 D(2,z)1
I 1 I I I I
I I I I

I• 0(1,*)' 1 I• D(2,*)•:

0

Fig. 10.5 Example for simple defining

A defined variable is overlay-defined if it is an aggregate of
unaligned strings, and if the base reference is a string aggregate of the
same type (BIT or CHARACTER), and if the condition for simple defining is
not satisfied. overlay defining has to be assumed in any case if a
position is specified.

The number of elements (bits or characters) in the base reference
Dlinus the specified position aust not be smaller than the number of
elements in the defined variable minus 1.

For describing overlay defining the term 1i~£a~nd~ of an element of
an aggregate is introduced, where element here means a single bit or
character. The mapping function introduces a left to right ordering of
the immediate components of aggregates (cf. 4.2.11) and thus a tree
structure with ordered branches for a whole aggregate. The linear index
of an element which is at a terminal node of the tree, is its position
number obtained by counting the terminal nodes from left to right.

Tbe evaluation of the generation associated with the defined variable
proceeds in the following way:

16 10. ALLOCATION, ASSIGN~ENT AND EXPRESSION EVALUATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

{1) the generation associated with the base reference is evaluated;
this generation must be connected,.

(2) a new pointer is found which identifies that storage part which is
associated with the ith up to the jth element of the base
reference, where i is the integer specified by the position
attribute, and j - i + 1 is the number of elements in the defined
variable,.

(3) a new connected generation is formed using the evaluated aggregate
attribute of the defined variable, and the new pointer.

It is a property of the storage mapping funct"ion that a pointer of the
required properties always can be found, and that the storage part now
associated with, say, the ktb element of the defined variable is exactly
the storage part associated with the (i +le- 1)th element of the base
reference (cf. 4.2.7). The new generation is the input to step {3) in
the general scheme in 10.2.5.

Let D and B be declared as

DCL D{3) BIT(1) UIIALIGNED DEFINED B POS{2),
1 B UNALIGNED,2 X BIT(2), 2 Y BIT(3);

Fig. 10.6 symbolically shows the storage associated with B and its
parts, and the corresponding parts of D.

B

I I I

I B.X 8 "y I
loo .,. .1

- - - - - t--1 ----t-1,.~_.,., ,..._I --ti
I D(1) I DW I D(3) I
I I D I I

------~

Fig. 10.6 Example for overlay defining

1~~~~~l_~~2gi_y~£iablg~

The declaration of a based variable specifies an aggregate attribute
and opt"ionally a pointer reference. Extents are either specified by
constants or by REFER-options. The reference to a based variable may be
pointer qualified, i.e., the reference, besides identifier list and
argument list specifies a pointer reference. The evaluation of the
generation associated with the reference to a based variable proceeds in
the following way:

(1) If the reference is pointer qualified, the qualifying pointer
reference is evaluated. If it is not qualified, the pointer
reference specified in the declaration of the based variable is

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 17

TB!! LAB VIENNA TR 25.099

INFORKAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JlJNE 1969

evaluated. rhe result is an operand which specifies a rointer
value.

(2) The REFER-options in the aggregate attribute are evaluated. Each
REFER-option specifies an expression and an identifier list. The
expression is used for initialization after the allocation of a
based variable (cf. 10.1.1.3). The identifier list identifies a
scalar structure component within the based variable. This
component, within the storage identified by the above pointer,
contains the value which is used as the current extent for which
the REFER-option stands.

In order to retrieve this value, storage identified by the above
poin~er is accessed. For this purpose an intermediate generation
is built from the pointer and the aggregate attribute evaluated up
to the point (from left to right) containing the REFER-option.
REFER-options therefore are evaluated from left to right, if this
order is relevant, in any order otherwise. The operand resulting
from the storage access via the intermediate generation is
converted to an integer value.

(3) If all REFER-options are evaluated, the resulting evaluated
aggregate attribute and the pointer evaluated in (1) are used to
construct a generation. This generation serves as input to step
(3) in the general scheme in 10.2.5.

it is only for certain cases that the resulting generation is a
sensible means for referencing storage. Let eva-b be the evaluated
aggregate attribute of the based variable and let the storage part
identified by the pointer value be originally associated with a variable
(or part of a variable) with aggregate attribute eva-p. If eva-p is
scalar, then the value representation associated with the storage part
makes sense together with eva-b only if eva-p and eva-b are equal, no
relationships between value representations associated with non equal
attributes being defined. If eva-p is non-scalar, then the meaningful
parts of the storage part are identified by the storage mapping function
map(ev.a-p,i), the storage parts identifiable with the based variable,
however, are given by map (eva-b, i), and again no relationship is defined
beween the values of the mapping function for non equal arguments.

There is an exception to the general rule that eva-b and eva-p have to
be equal, which is called the !~!t=~Q=~igh!_~g~ival~~ rule. This
exception is due to a property of the mapping function which is
guaranteed by the language. If eva is .a structure attribute, then the
location of a structure component depends only on the properties of eva
up to (from left to right) and including that component. Consequently if
eva-b and eva-p are structure attributes, a reference to a structure
component of the based variable gives defined results if eva-b and eva-p
are equal up to that component.

18 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALOATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding sections of /5/:

9.3 Evaluation of infix expressions

9.4 Evaluation of prefix expressions

'l. 5 Con version

9.6 Pictures

10.3.1 IN?IX AND PREFIX OPERATIONS

The part of expression evaluation which is to be described in this
section is the application of infix or prefix operators to already
evaluated, but not yet converted operands; these operands are objects
consisting of an evaluated aggregate attribute part and a value
representation part, as described in Q.1. The result of the operation is
again an operand, and whereas the aggregate attribute part of this result
operand is completely defined by the language (except for the
im~lementation-defined maximum and miniDn• precision associated with
arithmetic data attributes), the value represented by the value
representation part is generally not so defined. For character string
comparison, this aspect is treated by introducing an
implementation-defined collating function; hence the main problem was to
characterize the operations on numerical values ana pointers in a way
which treats accurately certain subcases without defining the rest, and
this was solved by postulating suitable axioms.

First, approp~iate target attributes are computed and the operands are
converted to these targets. These target attributes depend only on the
data attributes of the operands, except for the case of fixed-point
exponentiation {in which target and result attributes depend also on the
value of the second operand). It is convenient here that the target for
a conversion may be an incomplete attribute (cf. 10.3.2). For example,
for arithmetic infix operators, the common target for conversion of the
two operands is the object shown in Fig 10.7,

s- mode s-base s-scale

~~ G
Fig. 10.7 Target attribute for conversion during arithmetic infix

operations.

where mode, base, and scale are the higher of the respective
characteristics of the attributes of the two operands; for the arithmetic
prefix operators PLUS and MINUS, the target is the object AR-EDA
(cf. 10.3.2). In the first case, the precision {and where necessary, the
scale factor), in the second, all characteristics are obtained by means
of the £Q£Y2~i~1-instruction from the incomplete target and the source
attribute.

10. ALLOCATION, ASSIGN~ENT AND EXPRESSION EVALUATION 19

TB!! LAB VIENNA TR 25.099

INFOR!IAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JONE 1969

For an infix operation, let eva~, eda 1 and vr 1 be the aggregate
attribute, the data attribute and the value representation of the
converted first operand, eva 2 , eda 2 and vr2 those of the second. The
data attribute eda-res 0 of the result operand is computed as a function
of eda~ and eda 2 • To obtain the value representation vr-res 0 of the
result operand, the converted operands are transformed into their values
v1 = value(eva 1,vr~), v 2 = value(eva2 ,vr2), and a result value v-res0 is
computed from v~ and v2 {depending, possibly, also on eda1 and eda 2)~
then vr-res is obtained as the representation of v-res with eva-res0
consisting of eda-res 0 and the corresponding default density.

For arithmetic operators, the first step is the transition from v~ and
v 2 to v-res0 is a test, whether the operator is applicable; if not, the
ERROR or ZDIV condition is raised, otherwise, v-res 0 is computed. The
operation to be applied to v~ and v2 is not guaranteed in general to be
the exact mathematical operation corresponding to the operator, but mav
be an implementation-dependent approximation thereof, whose accuracy may
depend on eda~, eda 2 • !lowever, the following is postulated:

If v1 and v2 belong to the sets v-O-set{eda 1) and v-O-set(eda 2) of
values which are guaranteed to be exactly representable with eda~
and eda 2 , respectively (cf. 4.1.2), then, in case of fixed-point
eda~ and eda 2 and an operator which is not division, the result
v-res 0 will be the exact mathematical result.

JlJ!:a mple:

If eda1 is REAL DEC FIXED (.3, 0) , eda2 is REAL DEC FIXED (4, 1) , v1
is 237, v2 is 844.2, and the operator is PLUS, then v-res0 is
1081.2: if v2 were 844.25, then v-res 0 = 1081.25 would not be
guaranteed.

Before v-res 0 is represented with eda-res0 , a test for overflow or
underflov is made. !'his test is very similar t"o that for the SIZE
condition (cf. 4.1.2), except that instead of the precision of eda~res0 ,
the maximum precision associated with eda-res0 is used. The following
can be derived from the definition of eda-res 0 and the axioms for v-res 0 :

If v-res0 is guaranteed to be the exact mathematical result, and
if additionally no FIXED OVERFLOW situation arises, then v-res0 is
in the v-O-set(eda-res 0), i.e., is guaranteed to be exactly
representable with eda-res 0 •

In the example given above, if the maximum prec1s1on for real
decimal fixed attribute is at least 5, then the result attribute
eda-res 0 will be REAL DEC FIXED{5,1), no overflow will occur, and
the result value v-res0 = 1081.2 will indeed be exactly
representable with eda-res 0 •

For comparison operators, the numeric case is treated axiomatically
vith similar postulates: the character or bit string case, like the
string operators on the whole, and the file and the label cases t present

1) It should be noted, however, that in the file and label case not the
values themselves, but the denotations accessible by means of these
values are compared {cf. 9-17(77) of /5/).

20 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION

IBII LAB VIENNA TR'2S.ri99

30 JUNE 1969 IIIFORl'IAL INTRO TO THE ABSTRACT SYNTAX A!ID INTERPRETATION OF PL/I

no dificulties; The pointer case is again treated axiomatically, with the
following postulates (for the operator EQ;NE is defined as negation of
EQ):

(1) If the two pointers are the same, then EQ yields true.

(2) If the tvo pointers are indepe,ndent, (cf. 4. 2), then, EQ yields
false.

For prefix operators, the general sequence of steps is the same,
though the details are much simpler. For the prefix operator III!IUS, a
test for overflow or underflow most be made, because the nredicates
testing for them are not necessarily invariant against change of sign
(e.g., an implementation may use asymmetric two~complement representation
for binary numbers).

10.3.2 COHVERSIO!I

Conversion is performed by an instruction convert-1 (eva-tg,op) which
has as arguments the target attribute eva-tg and an operand op which is
to be converted to this.target. The result is the converted operand.
The eaa-part, eaa-tg, of the target eva-tg may be incomplete.· If ·so, it
is completed (see below) • E•cept in the case of area conversion ·(which
is treated at the end of this section),· conversion to a complete farget
eva-tg falls into three steps:

(1) The operand op is transformed into a value.

(2) The value is converted into a value of the type determined by
eda-tg.

(3) The converted value is represented with eva-tg; the result of
conversion is the operana whose evaluated aggregate attribute is
eva-tg and whose value representation is the obtained
representation.

The first ana the third step are performed by the function
valoe(eva,vr) and by the instruction !!l.fi:.re£(eva,v), as described in
11.1. 2. (The instruction !!!.!!1:.!:!!£ rather than the function rep is
necessary, because SIZE, STRZ or CONVERSION conditions say be raised).

The second step, called ~~lu!l._s2A!!l.!:~i2E• distinguishes between the
il.ifferent types of values, e. g., numeric, character string, etc. (cf.
Fig. 4.1). conversion is only possible if the source and the target are
either of the same type or if each of them is of one of the types
numeric, character string, or bit string. For identical source and
target type, the second step is the identity operation, and the thl.rd
step may be the inverse of the first.

l!l!.i!!!E.l!l.~:

(1) If the source attribute eda-op (the eda-part of eva-op) and the
target attribute eda-tg are both arithmetic, then step 1 yields a
numeric value which is left unchanged by step 2 and transformed
back into an operana by step 3; if eda-op and eda-tg are the same,
then this operand vill be op unil.er certain additional restrictions
(cf. 4. 1. 2).

10. &LLOCATION, ASSIGN!l'!'!NT AND EXPRESSION EVALUATION 21

IBII LAB VIENNA TR 25.1)99

INFOR"AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

(2) If eda-op is a bit string attribute and eda-tg a binary picture
attribute, then step 1 will yield a bit string value, step 2 a
numeric value, step 3 its representation in pictured form.

(3) If eda-op is a numeric picture attribute, eda-tg a character
string attribute, then step 1 will yield a numeric value which,
with the aid of eda-op, is transformed by step 2 into a character
string value; the representation of this character string value
will be, under certain restrictions, the same as the value
representation part of the original operand op.

(4) If eda-op and eda-tg are both numeric picture attributes, then the
numeric value computed by step 1 will be transformed back into
pictured fora. Even if eda-op and eda-tg are the same, this will
not under all circumstances be guaranteed to be the unchanged
original representation, because un-normalized floating-point
representations (produced by overlay-defining) will be normalized.

The definition of the operation of value conversion distinguishes
between the six possible combinations of different source and target
types. In ll~~i£_iQ_£ha~acter conve~2iQn, the source attribute is
needed; if it is numeric picture, then this is essentially the operation
of representing a numeric value in pictured form (cf. 10.3.3); if it is
arithmetic, then again a picture attribute is constructed, though it
differs somewhat from the treatment of the ordinary picture case. Also
in ~meric-12_~i~~si~, the source attribute is needed. In
£h~~£~~-to ngm~~£_conv~~ a scan from left to right is •ade, and at
each stage a test is made as to whether a correct continuation of the
string is still possible; if not, the CONVERSION condition is raised; the
method by which this test is made is that developed for strea• input
transmission. In £h~~£1~£-10 bit cony~~i2n• the target attribute is
needed, because only as many characters as necessary are converted (and
hence can raise the CONVERSION condition). The two remaining cases, bi1
12-~~meri£_£Qll~~2i2n and £i1_to_£h~racter conversion, present no
problems.

Area conversion is accomplished by the instruction area-cony(eva,op),
where or> is the operand to be converted and eYa is the target attribute.
An area operand is constructed whose vr-part has the size which
corresponds to eva, the sane allocation state as the Yr-part of op, and
which in the parts identified by the allocation state is identical with
the vr-part of op.

Before the actual conversion a test is made whether the conversion is
possible. The conversion is possible if by a sequence of allocations a
value representation of the size corresponding to eva can be given the
allocation state of the vr-part of op. If the conversion is not possible
the AREA condition is raised.

As was said above, the target attribute presented as first argument to
the £~!~!-instruction may be incomplete; that means, any co•ponent
may be specified by *· Examples of incomplete attributes are the
following objects AR-EDA and STRINCrEDA (Figs. 10.8a and 10.8b):

22 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Fig. 10.8a The incomulete arithmetic attribute AR-EDA

s- bo.se

Fig. 10.8b The incomplete string attribute STRING-ED!

They can be used to specify "conversion to arithmetic" or "conversion
string" without specifying particular characteristics. Another example
is given in 10.3.1. The completion of the components occupied by* can
be done by the £QllX~!!=1-instruction with the help of the source
attribute.

10.3.3 REPRESENTATION AND EVALUATION OF NUMERIC PICTURES

Only a very brief description of the concepts introduced and used in
9.6 of /5/ will be given.

we consider first the relation between picture attributes in c~ncrete
and in abstract text; the aim in choosing the particular form of abstract
syntax of pictures as defined in 2.2.3 of /5/ vas to.make explicit as
much as possible of the structure which is needed by tbe interpreting
functions and instructions, without too much of a burden on the
translator. Thus, the partition of a fixed-point picture into mantissa
field and scale factor, of a floating-point picture into ma.ntissa field.,
exponent separator, and exponent field is 11!ade explicit by showi.ng these
parts as different components. Also, the unit position of the mantissa
and the division of sterling fields into subfields is shown by separate
pointers rather than by characters in the field description.

l:l.!i!!!!El~§:

The three picture attributes (of mode REAL, say) which in concrete
representation read 1 -ZZ.V91'(-3) •, 'ZZ.9E99•, and 'G+!I99M8!17•, are
translated into the following abstract form (l'igs. 10.9a,b,c):

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATI'ON 23

!BM LAB VIE~NA TR 25.099

INFORMAL.INTRO TO THE ABSTRACT SYNTAX AN~ INTERPRETATION OF PL/I 30 JtJNE 1969

s-mod.e s-vd-fteld s-mt-u11il s-S(o.[e-f

8 8 dJdJ
Fig. 10.9a Decimal fixed-point picture

s • w10de s-Mt·field .>-exp-sep s-exp-field.

~ § a ~
?iq. 10.9b Decimal floating point picture

s- mt- f ielc{

/'+ss
1

si' I I

Fig. 10.9c Sterling picture

In these figures, strings have been represented by their concrete
equivalents. Certain picture characters are not translated into their
immediately corresponding abstract characters: so, s becomes SIGN, H
becomes s-CHAR, P becomes D-CHAR.

Next, we introduce ~xpli£it Pi£t~~~-attriRgi~§· These differ from the
picture attributes of the abstract syntax in that ~ere-suppression or
drifting information, where present, is given a more explicit form, the
subfield description is transformed into the corresponding unsuppressed
form, and explicit components containing the drifting information are
added.

{1) For a subfield description •szz.9•, the nnsuppressed form is
1 $99.9', the explicit form is shown by Fig. 10.10a {this time
strings being presented in their abstract form):

24 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALtJATION

TBI'I LAB VIENNA

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND :II!lTERPRETATION OF PL/I

elem (1) elem (1.) elem(3) elem(4) elem(5)

a~
5-dr-end. 5-d.r-chor

I OO[LARI 19-(~AR I 19-LRI IPOI,NT I lg-LRI m lz-c~ARI
Fig. 10.10a Subfield of explicit picture att.ribute

(2) For a subfield descrintion '$,$$$' the unsupressed form is
•$,999', the explicit form is shown by Pig, . . 10.10b:

elem (1) e le m (:z.) elem(3) elem('t) e le h'!(5)

iB 25
5-clr-chor

I oo!LARI I COM,MA 1-· 19-LARI 19-C~~R] 19-(JHAR~-· .

looLJLAR I 5

Fig. 10. 10 b Subfield of explicit picture attribute

The essential step in the representation of a numeric value with a
numeric picture data attribute is the transformation of the numeric value
into a string value. As an intermediate steo in t·his transformation, the
concept of pictured value is used. A Ei£tU~~g_YSlY~ has the same
structure as a picture attribute (in explicit form), but the picture
specification characters may be replaced by other characters; e.g., the
characters 9-CRAR may be replaced by the digits of the number to be
represented. In fact, the representation of a subfield consists in
writing digits, sign characters, etc., as they co•e from the numeric
value, into the picture attribute; only as a last step, the finally
resulting pictured value is "1inearized" to a string value.

l:l!&!!E~§ :

To represent 0,123 with a picture attribute which in concrete form
reads •qQ9ES9•, the following pictured value is constructed from
0.123 and the abstract form of the picture attribute (Pig. 10.11):

10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION 25

TB!l LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JtJNE 196 9

;-mt- field ; - exp-sep

IE-LARI

s-exf- field

Fig. 10.11 Pictures value

This pictured value is then linearized to the string value which, in
concrete representation, reads '123E-3 1 •

The sequence of steps in representing a subf.ield is (for decimal an<f
sterling pictures):

(1) The number to be represented is decomposed into a number list.

(2) The elements of this list are transformed into characters; this
may include e.g. overpunching. The characters are written into
the appropriate positions of the pictured value.

(3) The sign is represented (if not treated already in step 2).

(4) Zero suppression or drifting is performed, if specified. (Steps
1-3 will have used the unsuppressed form of the picture
attribute.)

A test for the SIZE condition is included.

The process of retrieving a numeric value from its representation in
pictured form is, in the main, defined implicitly as the inverse of the
representation process. Since conditions may be raised, the definition
is given by an instruction; also, certain "normalization rules" must be
postulated because there may be different values with the same
representation.

26 10. ALLOCATION, ASSIGNMENT AND EXPRESSION EVALUATION

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORIIAL INTRO TO THE ABSTRACT SYNTAX A!ID INTERPRETATION OF PL/I

Corresponding sections of /5/:

3.5 State components for attentions and conditions

10. Attentions and conditions

The following abbreviations are used in this section:

abn-ret

AN

attn-identifier

cap

cbif

cond

cond-bif-part

CS

D

eattn-cond

EI

EN

enable

EV

id

ident

info-list

intg-val

n

pref-part

ptr-val

ref

information for abnormal return

attention directory

atte.ntion identifier

condition action. part

condition builtin function

condition

condition builtin function part

condition status

dump

evaluated attention condition

epilogue information

attention enabling state

element of the enable-list

attention environment directory

identifier

attention identification

attention information stack

integer value

unique name

prefix part

pointer value

t:"eference

11. ATTENTIONS AND CONDITIONS 1

TB!! LAB VI)!NNA TR 25.n99

INFOR"AL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

st statement

tn task name

The attention directory !!. the attention enabling state EW and the
attention environment directory]! are solely used to describe the
enabling and disabling mechanism of attentions in the various tasks and
to stack the attention information.

The condition status £2 contains the enabling information for prefix
controlled conditions. The other two parts of £2, holding information
for interpreting on-units and condition builtin functions, are used for
all conditions including the attention conditions.

11.1.1 ATTENTION DIRECTORY!!

The major state component dealing with the interpretation of an
attention is the ~~~~nti2n_gir~g!Q~ !~· An ~tt~nti2n is installed in !!
by an enable statement.

A single attention is found in !! by the ~!~!iQn_i!enti!icatign, a
selector characterizing an attention (cf. 5.10), which is the major part
of the evaluated attention condition (cf. 11.1.5 Fig. 11.4). For each
att.ention identification four co•ponents are contained in !!=

s-info s-task

I infol-list j cb

I
ident

I
s- Sj'ec

I
ACC OV"

ASYN or
ACC -1

l"ig. 11.1 A single attention of!!

s-assoc..

Q

The s-info component contains the attention information which is
created with an attention occurrence and-stacked in-this-component. This
attention information is used by an asynchronous attention interrupt or
by an access statement.

The s-task component names the task in which the attention is enabled
at the mo11ent.

The s-spec component characterizes the enabling mode relevant for
interpretation.

2 11. ATTENTIONS AND CONDITIONS

IBM LAB VIENNA TR 25,099

30 JITN~ 1969 INFOR~AL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The last component collects the names of the tasks with which this
attention is associated.

The entries in the last three components may be changed by enable or
disable statements, or by task termination.

11.1.2 TRE ATTENTION ENABLING STATE~!

To handle the enabling and disabling correctly each task has a state
component~!. the ~ltenti2E-~n~~ling_§l~!~. which indicates whether
attentions are enabled or only associated with a task. This information
is kept in the first two components of ~!. which contain evaluated
attention conditions (cf. 11.1.5 Fig. 11.,).

s- enab-list s-assoc-list s-wait-li>l t, 1 ~ tn,

I I I . I I
ea.tln -cond eattn -c:.ol'\d- ealln-cond eatt~- c.ond- ealtn-wnd-

list List list list lis I

Fig. 11.2 Attention enabling state ~!

In the list containing associated attentions the evaluated attention
condition has the two non-em1>ty auxiliary co11ponents which .at:e need.ed
when the attention becomes enabled for this task. ·

The compo.nent selected by s-wa.it-list enumerates the ·attentions which
are only associated with the task but whic·h are not specified with an
event, so that the task must wait until all these attentions have been
enabled for the task.

The last component consists of a set of event names and contains, for
each event name, the corresponding evaluated attention conditions which
are only associated vitb the task.

11. 1 • .3 T!IE ATTllNTION llNVIRO!fMENT DIRECTORY Jl][

The ~!~!l.!!li2n_!l.Jl!i£Q!ll!!!l.!!~_g!!:!l.£!2H ~y contains, for each unique name
of an attention identifier (cf. 5.10), an evaluated environment used to
create the attention identification (cf. 11.1.1).

11.1.q T!IE CONDITION STATE£~

The major state component dealing vi th the interpretation of condition
situations is the condition state cs. The condition. state CS is a block
local st.ate component and consists -of four iiiajor-parts:--- --

11. ATTENTIONS AND CONDITIONS 3

IB!! LAB VIEKNA TR 25.099

INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/! 30 JUIIE 1969

"-bfjO s-s pp

~
s-c.bif

I pre~- part\ \ pre!-part I

l'iq. 11.3 Condition state £~

The block prefix part (selected by s-bpp), and the statement
prefix part (selected by s-spp), control the condition enabling status
for all conditions which may be prefixed to blocks or procedures and
statements, respectively.

The condition action part contains the actions which are established
by executing an on-statement or a revert statement.

The last part is the condition builtin function part, which contains
components for the values of every condition builtin function, and some
auxiliary ones for obtaining these values.

11.1.5 EVALUATED CONDITIONS AND CONDITION SELECTORS

The conditions appearing in the various condition and attention
handling statements are evaluated before interpretation. The ~~1~~~
£2Mi!i&!l differs from the description in the abstract syntax only with
respect to three conditions: the evaluated check condition is a
reference to a base element; the evaluated I/0-condition has instead of a
ref component the file name; and the ~~~l~~ted_~!!~ti2~-£2!ld!!!2!l
consists mainly of the attention identification (cf. 11.1.1).

&- ident s-spec. s-tn

G I B ACC ov

ASYN

or Q OV" Q

r'iq. 11. q Evaluated attention condition (eattn-cond)

To connect the condition with the proper condition action and to
handle the condition prefixes correctly in £2• a cond!ti2!Ll!elec!21;: is
created. As identifiers appear in several conditions, a dyna•ic
interpretation is necessary to ensure unambiguity of reference.

4 11. ATTENTIONS AND CONDITIONS

IBM LAB VIENNA TR 25.099

30 J!JNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION 01' PL/I

This is done by creating a unigue selector from the evaluated
condition, by connecting the unique name or the file name or the
attention identification or the identifier with a simple selector. Where
no unigue name is needed, for example with the conversion condition, the
condition selector consists only of the simple selector, e.g., s-conv.
Thus a dynamic interpretation of condition prefixes is ensured.

!1,._/L£1!!1!.!!1 IN JL!!!JL.!l!2. A B!,1!!!1

11.2.1 ENABLING AND DISABLING 01' CONDITIONS

Several PL/I on-conditions can be enabled or disabled under control of
condition prefixes. At the beginning of the program interpretation a
standard enabling status exists. This is reflected in the block prefix
part of the initial state of £§. This status may be modified by prefixes
in front of blocks, procedu~es, or statements.

condition prefixes control the enabling and disabling in a static
scope. As identifiers may appear in several prefixes, a dynamic
interpretation of prefixes is necessary to ensure unambiguity of
reference. This is done by using the condition selector for entries in
the prefix part of £§.

As condition prefixes heading a begin block or a nrocednre statement
have the scopes of the respective blocks, they are interpreted at block
entry or at procedure entry respectively (cf. 8.2). The updating of the
condition enabling status of a block or procedure is done by merging the
evaluated condition prefixes of the statically encompassing block with
the orefixes explicitly specified for the block or procedure.

!luring the interpretation o.f PL/I statements the enabling status as
defined by the block prefix part of £§ can be modified by explicit
statement prefixes (cf. 9.1). A similar merging is done, and the
resulting enabling status of the statement is kept in the statement
prefix nart. The statement prefix part is only valid for the specific
statement and is never stacked.

11.2.2 ENABLING AND DISABLING OF ATTENTIONS

The interpretation distinguishes between enabling with or without
event option. When the event-option is specified for one element of the
enable-list (cf. Fig. 11.5), the event generation is evaluated and the
~!tenii2!!:.~Y~!!1r essentially consisting of the event generation,. is
attached under a newly created unique name in fl! (cf. 7.3). The sole
effect of this is to hinder any subsequent assignment to the e.vent
variable.

11. ATTENTIONS AND CONDITIONS 5

TBM LAB VIENNA TR 25.1199

TNFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 J!JNE 1969

s- st s- list

r----- --..,
; enable-lis!. 1

)--~---- .J

~ I
elem (2) elem (1)

/
/

elem (n)

I ena~le 2 J I·""~'· I
s- cond s-s pec s-evenl

I'

G ACC ov
5- aHn-list ASYN

ov-Q

elem (k)

I
s-n

elem (1)

I
I

5- id

cb r=b
Fig. 11.5 The enable statement

The attention identifiers in each element of the enable-list are
~odified to attention identifications (cf. 11.1.1) and a list of
evaluated attent.ion conditions is generated for each element of the
enable-list.

The attention directory !! is searched for entries for every evaluated
attention condition:

(1) When no entry is found the attention is newly installed in !!!• and
the s-enab-list component in E! is updated with this condition.

(2) When the attention is already enabled for this task, then the
enabling mode is changed to the newly specified enabling mode. If
the altered enabling mode is asynchronous and the attention

6 11. ATTENTIONS AND CONDITIONS

IB~ LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

information stack of this attention in !~ is not empty, then an
asynchronous interrupt is immediately executed.

(3) When the attention is already enabled for another task, it is only
possible to associate this attention with this task. Two cases
are to be distinguished:

(a) The attention is not already associated with this task:

Then the set of task names in !li is amended by the new task
name. Into the list of associated attentions in EN the
evaluated attention condition, (with non-empty auxiliary
components), is entered.

When an event is specified, then an entry is made under the
event name in ~!· When it is specified without an event,
then the condition is concatenated with the s-vait-list
component of]!!•

(b) The attention is already associated with the task:

The new evaluated attention condition replaces the condition
with the corresponding attention identification in the list
of associated attentions in ~!·

If an event is specified the condition is also entered into
~! under this event name.

When the enabling of one element of the enable-list with event-option
is finished and it vas possible to enable all the attentions related to
this event successfully, the attached event is deleted.

After the whole enable-list is interpreted a check of the s-wait-list
comnonen t of EN is made: When this list is empty, the next. statement is
interpreted; otherwise the task is set into the wait state, where it
remains until the list is empty.

The disable statement disables or disassociates attentions from the
task and possibly enables them in another task. The attention
identifiers are evaluated, and evaluated attention conditions created, as
with the enable statement. Three cases have to be distinguished with the
disabling of each attention condition:

(1) When the attention is neither enabled nor associated with the
task, it is ignored.

(2) When the attention is only associated with the task, the
corresponding entries in !~ and ~li are deleted.

(3) The attention is enabled in the task:

(a) When no task requires this attention for enabling, i.e., the
s-assoc component of this attention in !~ is the empty set,
then the attention is deleted in !li and also removed from
the list of enabled attentions in EN.

{b) The task which currently enables the attention, is selected
in an implementation defined manner from the set of tasks
which have this attention only associated with them. The

11. ATTENTIONS AND CONDITIONS 7

IB!! LAB VIENNA TR 25.099

INFOR"AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

corresponding attention condition vith the enabling mode is
found in the s-assoc-list component in the attention
enabling state]! of the selected task. The attention
condition is transferred from this list to the list of the
enabled attentions. The tvo additional components are
correspondingly updated.

In !! the task name is replaced in the s-task component by
the nev one and also deleted from the set of task names
there.

The enabling mode for the attention is possibly updated.
When the enabling mode in the task, which gets this
attention enabled, is asynchronous and the attention
information stack in !! is not empty, an asynchronous
interrupt is prepared in the selected task and all tasks are
set into the active state.

In all other cases only the tasks are set into the active
state.

When one of the lists, kept in]! under an event name, gets
empty, the corresponding attention event is deleted fro• £!•

The standard system action is defined by the language, while the on
and revert statement allows the programmer to define actions.

11.3.1 STANDARD SYSTEM ACTION

The a!~ng~£g_2Y2!~m_~ti2n specifies various actions for the various
conditions. In most cases the error condition is raised and a comment
written, while in other cases only a comment is written.

Special actions are required as standard system actions by the endpage
condition, not raised by signal statement, the check condition and the
error condition.

The standard system action for some conditions like the attention
condition result in no action.

When the error condition is raised the condition name is passed in the
cbif argument to the error condition call, to handle the updating of
condition buil tin functions correctly (cf. 11. 6) •

11. 3. 2 ON AND REVERT STATEUNT

An on-statement specifies an action, vhich will be executed when the
specific condition has been raised. The interpretation of an
on-statement for a specific condition establishes the new condi!1~
~£ti~. consisting mainly of the on-unit and some additional information,
in the condition action part of the current condition state cs. The
condition written in the-on-statement is evaluated to yield a-list of
evaluated conditions. The condition action is then stored in CS for
every element of the list. --

8 11. ATTENTIONS AND CONDITIONS

IBK LAB VIENNA TR 25.0§9

30 JUNE.·1969 INFORMAL INTRO TO TRE ABSTRACT ·sYNTAX AND INTERPRETATION 01' PL/I

s-bpp

··I· .. · rJf,part 1

. · s.-snap

I T·.o~ Q.··~··
s- on-u.nit

Fig. 11.6 Condition action

The on-unit is a statement, without label prefixes, which is not a
grouJ?, a return statement, a procedure, a.n on~sta_te-ment, or an
if-statement.

A subsequent execution of an on-statement for the same condition in
the same block, replaces the old condition action by a nev one (which is
taken from the executed on-statement). The condition action, when not
newly specified, is inherited to all descendants of a block or procedure,
and is stored there in the local condition state.

Whenever a revert statement is interpreted, the condition action of
the block local condition state is deleted, and the condition action of
the encompassing block is taken out of the dump J! and.reinstalied.

The execution of a revert statement as the only statement of an
on-unit has no effect due:to the activation of a new block for the
interpretation of the on-unit.

11~-!!!~NT!ON !£!IV!!!Qli

11.4.1 ASYNCffRONOUS INTERRUPT

Attentions occur outside th2 PL/I machine. such an attention consiqts
of an attention identification part and the attention information
(cf. 11.1.1). The attention directory !!i is altered in. the environment
step (cf. 6.2) from outside in such a way that the attention informatio'n
is stacked in the attention information stack of the corresponding
attention. The a ttentio.n identification :oart is identical with the
attention identification of the evaluated attention condition
(cf. 11.1.5 Fig. 11.4). Entries in !!i are only pos·sible, when an enable
statement was previously executed and thus the attention installed in !li•

Because PL/I allows asy]!ghrQ.!lQUS i!!l!!l!:!:.!!Ptsfor attentions, in each
interrupt step of the computation (cf. 6. 2) ',' the attention directory !!!
is searched for 'attentions, whose attention information stack was
recently altered in the, environment step and whose enabling mode is

·,.asynchronous. If such· an attention is fo'1Jild an asynchronous inte:rrupt is
executed. · · ·

The asynchronous interrupt is.p"!'epared in.the task. the name of which
is found in l!i. for the specific attention. To immediatly actiyate, the

·attention condition i::a1·1, .. the, task is· dumped and a new block activated,
which solely calls ther attention condition.

11. ATTENTIONS AND CONDITIONS 9

TB!! LAB VIENNA TR 25.099

INFORMAL INTRO TO TRE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

The ~igni!QQ_£Qndition ea!!, after some prepatory actions, leads to a
norma 1 condition call. These preparatory actions are listed below:

Storage is allocated and the head of the attention information stack
of the attention in !! is assigned to it. The pointer to that storage is
passed to the cbif argument of the condition call together with a newly
created oncode value, for later use in the on-unit. Before the normal
condition call is executed, the enabling mode is changed from
asynchronous to accessed to make the condition call oninterruptable by
another asynchronous interrupt of the same attention. After
interpretation of the condition call the original enabling mode is
reinstalled, if not changed by the on-unit, and the allocated storage is
freed.

11.ij.2 ACCESS STATE!IENT

I

The access statement makes attention information available for
processing from an attention, whose enabling mode is accessed.

s- sl s-cond s -else

§
s -attn-list c±J

or Q

e(em(1)

I
. . . elem (k)

I

6
s-id

1±1
Fig. 11.7 The access statement

If t.he list of attention identifiers specified in the state•ent is
empty an arbitrary attention satisfying the following condition is
chosen: it must be enabled in the task with accessed mode aad the
attention stack must not be empty. Using this attention the attention
condition call is interpreted. If no such attention exists the else-unit
of the access statement is interpreted. In its absence, the task is set
into the wait state as long as such an attention can not be found.

When a list of attention identifiers is specified in the access
statement, a list of evaluated attention conditions is created. All
these must be specified with accessed enabling mode, otherwise it is an
error ..

10 11. ATTENTIONS AND CONDITIONS

IBM LAB VIENNA TR 25.099

30 JUNE 1969 IN~ORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The attention condition to which the condition call is made is chosen
in the following manner: The first condition is taken which is enabled
in the task and whose attention information stack is not empty. If no
such attention exists the interpretation is as described above with emnty
attention identifier list.

The attention condition call is handled analogous to that for
asynchronous interrupts {cf. 11.4.1).

The £~i~!~~-Qf_~_£Q~~i1!Q~ is caused either by an interrupt or by a
signal statement. The execution of a signal statement for a condition
causes the condition to be raised immediatly. The actual condition call
is interpreted in the same way as the condition call raised by interrupt
(cf. 11.4.1).

The activation of the various conditions is described in the several
places in the interpreter, where they can occur (see for example raising
of the check condition with the assignment statement; cf. 8~3{1) of /5/).
Also the attention activation (cf. 11. ij) leads to the condition call.

Special actions have to be performed for the check, the conversion and
the I/0-conditions, before the general interpretation of the condition
call (~ll::£2n~:.1: cf. 10-19(55) of /5/). The check condition, raised
with a list of references, has to be expanded, and then the call is
execut.ed for every element of the expanded reference list. The ordering
of elements in the list is relevant.

If a conversion condition is not raised by a signal statement but
through an actual conversion error, a specific action is activated which
either allocates a dummy and passes the corresponding generation or
passes the generation passed to it, to the onsource builtin function and
in both cases passes an integer to the onchar builtin function. The
value returned after the interpretation of the condition call may be
modi.fied through pseudovariables.

Before the call to an r;o-condition is interpreted, the values of some
condition builtin functions are completed (in all cases the onfile value
is set) and passed to the call.

The interpretation of the £Q~~!Q~-£~ll must distinguish between
orefix controlled and uncontrolled conditions. The statement prefix part of the condition status CS carries the information whether the
prefix controlled condition is enabled or hot. This information has to
be tested before raising. Only the raising of the underflow condition,
the check condition and the attention condition, if they are disabled,
result in no action. In all other cases, if disabled conditions are
raised, the program is in error. Furthermore, the condition call must
distinguish the conditions which on normal return from the condition
action permit further interpretation, from those conditions, which on
normal return arrive at an error situation. A special action ·is required
after the return from the call to the error condition.

Tile condition state is now inspected for an appropriate condition
action for the specific condition, which is done through the condition
selector created from the condition. If no action is present or the
on-urrit component of the condition action part of £~ is SYSTEK, then the
standard system action is executed, otherwise the condition action is
interpreted. In both cases a snap action may precede it.

11. ATTENTIONS AND CONDITIONS 11

IB!I LAB VIENNA TR 25.~99

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

Condition actions are interpreted in close analogy to parameterless
procedures. The current state is stacked, and a new block activation is
established. The condition status is updated with the block prefix part
of the corresponding on-statement, which was also reserved in the
condition action. A special epilogue information is constructed and
installed in .111·

After updating the condition builtin function part, the on-unit is
interpreted, so that it may use the updated values of the condi"t.ion
builtin functions. The on-unit is internreted like a single statement.
When this is finished, the block activation is terminated. The stacked
state is reinstalled and the next instruction is executed. In some cases
this may lead to an error which finishes the interpretation.

condition builtin functions change the value they return as a
consequence of condition raising. The new value obtained remains
unchanged in the dynamic descendence of the condition raising, i.e., in
a11 blocks entered from an on-unit executed as a consequence of the
condition raising. If a condition is raised and only the standard system
action is executed, no change of the condition builtin function values is
required. Only when the standard system action for a condition results
in raising the error condition, the condition bniltin functions return
the same values as in an on-unit for the condition.

The information needed to interpret condition builtin functions is
kept in the £Qndi!!Q~_Rg!!t!n_!gnct!Q~-£~! of £2 {cf. 11.1.4). This
part consists of one component for each condition builtin function, and
of some additional components.

s-onloc s-oncode ... s- onattn a; s-onfile-def s-lype >-abn-ret s-cond

dJ 1,,~ .. 1 8 01s,LALI I ob;-ret I \eoi!Lo~
or Q or Q or Q orQ ov-Q ov- Q or Q or Q

Fig. 11.8 The condition builtin function part of £2

The values of the components of the condition builtin functions in ~2
are updated every time a condition action different from the standard
system action is interpreted. The auxiliary components selected by
s-entry and s-onfile-def get their values directly in various places of
the interpreter. All the other values are entered into a special
argument (cbif argument) constructed at the point of the condition
raising and are then passed to the condition call.

According to the various conditions, the instruction now inserts the
proper values into the corresponding components. Thereby the entries in
the auxiliary components are used: The value for the onloc component is
taken from the s-entry coAponen t of the con.di tion bull tin function part

12 11. ATTENTIONS AND CONDITIONS

IBM LAB VIENNA TR 25.G99

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

of CS; the onfile value, in the case of the conversion condition, is
taken from the s-onfile-def coaponent.

The component selected by s-type is used to distinguish conditions
raised by interrupt from conditions raised by a signal statement. The
component selected by s-abn-ret is needed to provide proper completion of
I/0-events after a GOTO out of an on-nnit called during a wait statement.
The s-cond component in £~ is used to distinguish attention conditions
from other conditions, and therefore allows changing the enabling mode to
the mode before the condition call in the case of an abnor•al return fro•
an on-unit (cf. 11.11.1).

The value of oncode is defined by an implementation defined function
dependent on the point of interrupt.

The components of the condition builtin function part may then be used
by the condit.ion builtin functions to get their values. If condition
builtin functions are used out of proper context (that •eans outside an
on-unit for the specific condition) or if the corresponding coaponent of
cs is n, the functions return standard values as described for the
Individual builtin functions.

11. ATTENTIONS AND CONDITIONS 13

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFOR!IAL INTRO. TO TilE ABSTRACT SYNTAX .AND INTERPRETATION 01' PL/I

Corresponding sections of /5/:

11. Input and output

3.6 Input and output

The follovimg abbreviations are used in this section:

fd,l'D file directory

FU file union directory

ES external storage

s (internal) storage

message storage (or message part)

PA parallel action part

TE task-event specification

f file name

u file union name

env-at:tr (unevaluated) environment attribute

et evaluated statement text

ref reference

expr expression

This chapter describes the totality of I/O actions as snmmari2ed in
Fig. 12.1. The basic concept dealing with the external storage, the
association between data sets and file unions, and the logical statements
about data set mapping have been outlined in section 4.3. A fallilarity
with the notions developed there would help in reading this chapter.
However, a detailed knowledge is only needed for section 12.2.3.1, and
12.5.3.

A very short description of files is given in section 5.5. It is
particularly helpful for sections 12.2 and 12.3.

The structuring of this chapter follows more or less the steps in the
interpretation of I/O statements. Statements which do not refer to
files, i.e., stream I/O with string source or target and message I/O
(Fig. 12.1), will get only peripheral mention.

1l. INPUT; AND OUTPtJT 1

"' H
"' ctJ
·~ "' ~ 0

"' • 1/0 type.: rec.ord 1/0 stream 1/0 me!>!> age 1/0 "'
"'

,.
"" "' H ·~

"'
"' "" Cl •
"" _. ,..

"' "' .
"'

_.

stream file

recard file
string source or display certain standard

pvernecl by: st.andard sy•tem
,;i.ring target statement system on- units

print file

..
H H

"' "' "" "' "' z
0 ,..

"" 0
0
Cl tll tTIO$t "" "" " "'
Q ..
""

.,
"" 0

charoct.e.ri.!ltic
FU, ES

slate cnmponents
FD, FU, 2 M

involved: .

"' l~ ,..
"' lJl

"" "' "' .. ,.,
0

init.ia~ed or
opening or closing

gel: statement or

terminated by : pui &talement

Cl

"" lJl ...
"' >i ..

repLy of
inpul by: read statement gel statement get statement display

,.. ..
"' "' e.taternerrl. H

"" ..
put :;totement

>i

"" "'
locate bialernent copy action display of certain standard

output by:
or W'rif.e. statement c:hecl< $tctndard

dioplay system action,; of

statement on-condiiion.G
system action

"' "' "' >i ,..
""
0

"'
re<>d statement

0 .,
or rewrite Gt.atement

update by:
or wril:e sl:.,tement

"'
or de~l:e statement

w
0

c. >il
Cl "' "' "'

...,
\J1 - •

"' 0

"' "' "' "'

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

Corresponding sections of /5/:

11.3.1 open and close statement

1t.ij.1 Interpretation of statement options

The following abbreviations are used in this section:

lsz linesize

blsz type indication for lsz

psz pagesize

ident identification (e. g., key, display message)

id to target identification

spec specification

With respect to the statement text one may discriminate between open
and close statements (Fig. 12.2), record I/O and display statements
(e.g., into-read statement in Fig. 12.3), and stream I/O statements
(e.g., file-put and string-put statement in Pig. 12.4).

12. INPOT AND OUTPUT 3

IBM LAB VIENNA 'l'R 25.099

INFORI!AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I 30 J!JNE 1969

s-st

8 elem(1) elem(2)

B
s- file

!EJ ~~[£~
I

L_

orQ

s- sl

E3
,----
I
I
I
I
I
I
I

s-file

0
L __

or Q

elemW elem(2)

s- env- al\r

I env!attrl

I clLe,l
----1

I
I
I
I

Fig. 12.2 Open and close statements

4 12. TNP!JT AND OUTPUT

s-List

. . . elem (vJ)

B
--,

I
I

s-open-aHv s-env-attr s-volume I

file-uHr- se! I enj-utlv1 c±J [
t 0 ,..Q /

F1rst open elemen 1

-- ----_I

s-lisl

elrn (..,)

[;;]

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INPOFMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

I
s-st

~
or Q ov-Q

Fig. 12.3 Into-read statement

5- st

~
5-file

GJ
s- spec.

ldatJ-sd
.>-line

~ ~
OY Q or Q OV" Q

s- st

~
s- base

g
s- spec

kat}5pecJ
CHAR or BIT

Fig. 12.4 File-put and string-put statement

It can be seen that I/O statement text is nearly a one-one translation
from concrete text. The major exceptions are:

(1) In an QE!t!L2l!tl!!2!ti the component s-lsz will optionally indicate
the linesize. The distinction between LINESIZE and BLINESIZE can
be taken from s-blsz {0 or *l·

(2) The component s-open-attr will always be a set of file attributes
in the ca~e of an open element (including the empty set). In this
respect an open element always differs from a £~_2leme.aJ;.

(3) The component s-env-a ttr originates from a specified concrete
ENVIRONMENT option. It is presnpposed that the translation will
yield env-attr in soae normalizea but unevaluated form,

(4) In all I/D statement either a file reference, s-file, or a string
reference (or expression in the case of string-get statement),
s-string, is available. In the string case, the component s-base

12. INPUT AND OUTPUT 5

IB!I LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

allows the separation of a concrete STRING option from a BITSTRIMG
option.

{5) The translator is assumed to insert the constant one in the case
there is a SKIP option without expression in the concrete text.

(6) Record I/O and display statements have any KEYTO or REPLY options
available under s-idto, any KEY, KEYFRon or DISPLAY options are
available under s-ident.

The structuring of data specifications is described in 12.6.

Interpretation of I/O statements starts with a check of the statement
text for mutually incompatible options (e.g., in any open or close
element a non-empty component s-volume is in conflict with all components
except s-file and a component s-open-attr which must in this case be the
empty set) and for the incorrectness of single options {e.g. ref~ in
Fig. 12.3 mnst refer to a connected aggregate). Thereafter, those
options which are expressions or environment attributes are evaluated in
arbitrary order but one after the other. In particular, also options
belonging to different open or close elements vill be evaluated in
arbitrary order. Evaluated options are integer values (for s-lsz, s-psz,
s-ignore, s-sl<ip, s-line), lists of character values {fors-title,
s-ident), evaluated environment attributes {for s-env-attr}, scalar event
generations (for s-e1rent), scalar character string generatio.ns or pseudo
generations {for s-idto), generations (fors-from, s-into), file operands
(fors-file in an open or close element), ana file union names !for
s-file in I/O statements othe~ than open or close).

The evaluated options are inserted in the original statement text.
For any I/O statement except open ana close, the resulting object is
called the evaluated statement text et. The file union name inserted as
the s-file component-is-the-result-of normal implicit opening
(cf. 12.2.2). The et is particularly helpful in the interpretation of
record I/0 statements.

Corresponding sections of /5/:

3. 6. 1 The file directory 1:1!

3.6.2 The file union directory 1:!!

11. 3. 1 Open and close statement

11. J. 2 Implicit opening

11.3.3 Opening

The following abbreviations are used in this section:

fa set of file attributes

ea evaluated environment attribute

6 12. INPUT AND OUTPUT

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

id identifier

st-prt,ST-PRT standard print

tmt transmit

Ordinary I/0 statements can be properly interpreted only if a file !tas
been opened which matches with the I/O statement. The classification of
opening qiven in section 12.2.2 should relate the interpretation of
ordinary I/O statements and open statements {started in 12.1) with the
proper opening actions described in section 12.2.3. The most interesting
case of proper opening is the creation of a file which causes changes in
the file directory of the current task and in the file union directory.
The function and structuring of both directories is anticipated in
section 12.2.1 in order not to burden the description of proper opening.

12.2.1 FILE AND FILE UNION DIRECTORIES

The file directory !~ serves two purposes:

(1) It links any file name with its evaluated 'environment attribute
fd-ea, its file constant identifier id, and its file attribute fa
(Fig. 12.5). ,

(2) It may link any file name {optional fd-status in Fig. 12. 5) td th
an entry in the file union directory.

{1

I
s-st- prt

s-ea. s-a!tv s-e.a. s-fd-st

or
oV" ST-PRT

Fig. 12.5 File directory

The components fd-ea, id, fa are constant, and have been entered in,to
the 1:11 by the prepass. They are needed only as arguments for proper
opening.• Successful proper opening amends the 1:~-entry under ,
consideration by the fg~§i~~~ (Fig. 12.6) which contains a file union
name u, the indication that the file has been opened in the current task
(*), and a component dealing with errors in stream data transmission.
The first two components of the fd-status remain constant until the file
closed. Closing deletes the .fd-status.

1) fa is simply a copy of the file attributes available through
application of an appropriate file valne to the attribute directory.

12. INPUT AND OUTPUT 7

IB!l LAB VIENNA TR 25.099

INFORMAL TNTFO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

S-fu s-own s -tml

cbcbcb
orQ

Fig. 12.6 Status of a file directory entry

Up t.o now only "prograM file names" f>., ••• ,fn have been discussed.
There is one additional file name, the ~t~ng!Eg_!I§tem prin!_file na~
s-st-prt, which does not have explicit fd-ea, fa, and id components since
all these components are constant for an implementation {fd-ea), and fa
and id are constant for the language. Opening with the file name
s-st-prt creates an fd-status, closing deletes it as usual.

The file name s-st-prt, as opposed to program file naaes, cannot be
the denotation of any file value. Hence, the file name s-st-prt is not
accessed A!~tly as a result of an evaluated file option but only in the
following cases:

(1) copy action because of copy option on file-get statement,

(2) standard system action for check on-condition,

{3) indirect access by the particular program file name fn·'

case {3) is the only case which necessitates some kind of linkage
between the file directory entry for f 0 and the entry for s-st-prt. This
linkage is provided by the special fd-status ST-.PRT {entered under the
file name fn), and the ordinary fd-status entered under the file naae
s-st-prt. Notice that fn may refer in1!r~£!lY to s-st-prt, but s-st-prt
cannot refer indirectly to fn as long as no linkage exists.

The file union name u is unique for a particular opening. Opening
enters and closing deletes the file union selected by u in the file union
directory!~ {Fig. 12.7). File unions are described in section 4.3.2
(Figs. 11. 10 and 11. 11) •

1) In Fig. 12.5 idn corresponds to SYSPRINT and fan is one of the set of
file attributes (STR}, (OUT), (STR,OUT}, or {STR,OUT,PRT).

8 12. INPUT AND OUTPUT

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

u,

~ig. 12.7 File union directory

An attached t"ask will be supplied with a copy of all components of t"he
file directory of the attaching task which are not strictly private to a
task. The strictly private components are s-own and s-tmt. This allows
a classification of any fd-status into an Q!U or inh~~ed_fa=§!~tus. As
a consequence of copying the file union names, file nnions"might be
shared by tasks.

MAIN: PROC ... ,
PUT DATA;
CALL P TASK;
CLOSE ~ILE(SYSPRINT);

P:PROC;
GET LIST{X) COPY;
END MAIN;

The PIJT and CLOSE statements cefer indirectly to the standard
system print file name fn• Hence, the file is opened by the PUT
statement, will be inherited to the task P, and is closed by the
CLOSE st"atement in the attaching task I'!AIN. The COPY option of
the GET statement will not create a new file union. Either it
will refer directly to the standard system print file (if it is
still open), or the interpretation of the COPY option will be
erroneous if the standard system print file has been already
closed.

If the example is modified, and the POT statement is executed in
the attaching task l!1:tJ:t! the call of task P, then the PUT
statement ana the GET statement will create two independent file
unions ..

12.2.2 TYPES OF OPENING

There are three types of opening:

(1) explicit opening caused by a single open element,

(2) implicit opening caused by ordinary I/O statements,"

(3) implicit and direct opening of standard system print files.

12. IN~DT AID OUTPIJT 9

IBM LAB VIENNA TB 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

g!£licit_~£~~iu~ bv a particular open element may take place if all
o;>t.ions of the o;>en element have been evaluated, and if explicit opening
of any open elements to the left has been completed. After comnletion of
explicit opening the open element will be deleted from the statement text
or the arguments for transmit or undefinedfile on-condition calls will be
i~serted in olace of the open element. If opening of all open elements
is comnleted then the modified statement text will be inspected from left
to right for on-condition arguments, and the on-conditions will he
called.

Explicit opening supplies proper opening with the following arguments:

(1) the file value n (taken from s-file), 1

(2) the set of attributes derived from s-open-attr ana the set of file
attributes declared, i.e., contained in the IQ- entry for the file
name n()2!), shortly fin the sequel,

(3) the dat.a set title s-title (if non-empty), otherwise the file
constant identifier contained in f!l:Q),

(4) thP. evaluated environment attribute merged from s-env-attr and the
evaluated (declared) environment attribute in f(l:Q) ,2

(5) the volume option s-volume,

(~) the line and page sizes: s-lsz, s-blsz, s-psz.

lm£li~il_Q2~ni~~ may take place if the file option of the ordinary r;o
statement. has been evaluated, and if evaluation yielded a file operand.
Implicit opening may yield an open file or it may immediately cause
transmit or undefinedfile on-condition calls. After returning from an
undefinedfile on-condition call, the file might have been opened. In ~11
cases where an open file is left, a final check will be made as to
whether the file is consistent with all statement options, and the file
union name will be returned.3

Im~licit opening supplies proper opening with the following arguments:

(1) the file value n taken from the file operand,

(2) the set of attributes derived from the attributes deduced from the
statement and from the file attributes contained in f(FD),

(3) the data set title identical with the file constant identifier
contained in f(!Q),

(4) the evaluated environment attribute identical with that contained
in f(!Q),

1) The mention of "s-file", etc. means the "component s-file of the
ore-evaluated text", etc.

2) s-env-attr might contribute to the evaluated environment of the file
union in a similar way as s-open-attr does to the complete set of
attributes.

3) The check is always necessary since the deduced file attributes depend
on the statement type (s-st) but do not depend on the statement
options.

10 12. TNPO~ AN~ OUTPUT

TRM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

(5) the volume option does not apply (TMPL),

(6) the line and page sizes do not apply (R).

Di :rec+:. and consequen t.l y !.!!H2!!£i.t._Ql2~1!i!l.SLQ!_2_St~J!f!.Y:d systg.)!L£!:!!11
f!12 supolies The follnwing arguments to proper opening:

(1) the file value does not apply (Q),

(2) the set of attributes is {CST,OUT,PRTJ,

(J) the data set title corresponds to SYSPR!NT,

(4) thE> evaluatE>d environment attribute is implementation-dependent,

(S) and (6) are the same as for implicit opening.

12.2.3 PROPER OPENINr,

f~QE~~-Q~~giug first makes an error test on its arguments and creates
a unique name u. The second step tests whether a new file is to be
ooened, and if so makes all entries in rQ, rg, and external storage E2
(cf. 12.2.3.~. The second step may be unable to open a new file either
because a file is already open or because the opening criterion is
violated. The third step returns the arguments for undefinedfile
on-condition calls if the second step did violate the opening criterion.
In all other casE'S the actions of the third step will depend on the
volume option (P, *• IMPL) and the ~~~~g~ of the file union. These
actions are described in section 12.4.

1£~z~l~l-Q£2n!rrg_£r!tgr!2rr

The 2£2ning_££ii2£i2ll• i.e., requirements {1) through (4) and
optionally (5) must be satisfied if successful coening should occur:

(1) The set of attributes, being an argument of proper opening, is a
£Qm212i2_li2~_Qf_atir!bui~li· The complete sets of attributes can
be taken Erom the description of the mapping parametE>r in 4. 3. 2.
'lowever, in all instances where the attribute SEQ or TRA is a
member of an attribute set, one of the buffering attributes BUF or
UNR has to be added. In addition, [REC,DIR,KEY,UPD,EXC) is a
complete set of attributes.

(2) The data set title and the {merged) evaluated environment
attribute, being arguments of proper opening, access a data SE>t ds
in extern~l storage I§ (cf. 4.3.1).

(3) There exists a mapping ' dependent on ds and t.he mapping parameter
mp, where mp is composed of the (merged) evaluated environmemt
attr:ibute, the data set title, and the complete set of attributes
propE>rly adjusted.

(4) There exists a mapping dependent on the data set dss. and mp, where
ds 1 has a mapping number which is one greater than the mapping
nu~ber o.f ds (both maooing numbers with resoect to mp).

1) cf. footnote in 4. J. 3. 1.

12. INPUT AND OUTPUT 11

TB~ LAB VT:':!HlP. TR 25,099

INFORMAL TNTRO TO TH~ ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 Jf!NE 1%9

(5) Indirect opening of the standard system print file is only
successful if the standard system print file is not open.

The effect of §£££g§§i£1_£~Q£g~_Q£2n!ng with a new file union name u
and some file name f is summarized below:

(1)

(2)

The fd-status is entered under f in FD as described in 12.2.1. In
case of indirect opening of the standard system print file two
entries are made~

The file union is entered under u in FU. The components s-n {file
parameter) and s-f {file name) t have~een described in 4.3;2. Of
al1. additional components a file union may have (cf. the
compilation in Fig. 4.11), only the status (st), the current
column {col), tile linesize (lsz), the current line (line), tile
oagesiza (asz), or the names of attached I/0-events (io-ev) are
part of the initial file union.

The components col and line are initially one, io-ev is initiated
with the empty set, lsz and psz are set according to the arguments
of proper opening, st is set to SW-BOV (cf. 12.2.3.3).

An important property of the file union (throughout its entire
existence) is the compatibility of all its component.s with the
complete set of attribute~ contained in the file parameter
co~pone~t. Hence, for example, col might be an integer in case
the attributes BST or CST are specified otherwise cot is empty;
the component tn-key (cf. Fig. 4.11) is a directory of keys only
if EXC is specified, etc.

(3) The data set ds accessed is replaced by the data set ds 1 described
in 12.2. 3.1 (2,4).

1£~z~l~_Iilg_~niQn_§!~!~e

The file union status st (not to be confused with the fd-status)
characterizes the transition of the file union with respect to data set
label processing and data set switching. Fig. 12,8 shows the possible
values of st ana how they may be reached. Reading and writing of data
set labels, basic data transmitting actions (cf. Fig. 4.17), and data set
switching is checked if st actually con.forms vitb the particular action
to be performed. This eliminates errors in case the file union is shared
over tasks.2

1) This copy of the file name in the file union is a convenience ana not
a necessity ...

2) For exa~ple, multiple processing of a label of one and the same data
set is excluded.

12 12. INPUT AND OUTPUT

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO TBE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

successful

swikh \o
hex\ volume

basic cLa.to.
tro.Vls miss ion

>witch to
end- of-file rroper opening

----~--~--~~~~--~--~--~--~--~--~--~

SW-BOV BOV Q EOV SW E:NDF

rea. cl write veod write

headev- label trailer label

Fig. 12.8 File union status

This section is arranged similar to the section on opening. In all
instances where closing is similar to opening except for soae
straightforward changes, a description will be oMitted.

12.3.1 TYPES OF CLOSING

There are two types of closing:

(1) explicit closing caused by a single close element,

(2) i•plicit closing by the epilogue of that task which opened the
file.

Ex£licit_£lO§!~ is like explicit opening, except that no
undefinedfile on-condition call can result. Proper closing is provided
with the following arguments:

(1)

{2)

(3)

the file name f {taken from the component s-file of the
pre-evaluated text and~~),

the evaluated environment attribute merged from the component
s-env-attr of the pre-evaluated text and the evaluated environment
attribute of the file union,

the volume option s-volume of the pre-evaluated text.

!!Plici!_clos!ng depends exclusively on the FD of the task whose
epilogue is in progress. Proper closing is provided with the following
arguments:

(1) a file name f having an ovn fil-status,

(2) an evaluated environment attribute which is
implementation-dependent,

12. INPUT AND OUTPUT 13

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JrJNE 1'}69

(.3) the volume option does not apply (IIJPL).

12. 3. 2 PROPE.R CLOSING

f~Q£2~_£l22!Ug first makes a case distinction which separates
successful proper closing in case of no volume option (0 or IMPL) and an
own .fd-status from no action (if the fd-status is empty), and trailer
label processing followed by data set switching if there is a volume
option (*) which is compatible with the file (cf. 12.q, condition type
EOV).

~~££2§§fUl-E!Q£2t_£122ing can be separated into three steps. The
first step transmits the buffer and/or frees the buffer registered in the
file union of a buffered file, and deletes any still active r;o-events
registered in the file union. Buffer transmission is similar to the
first part of the execution of an evaluated locate statement. Hence,
.interpretation of locate transmission will allow for an artificial
CLOSE-LOCATE statement (cf. 12.5.3.2).

The second step is conc~rned with trailer label processing and data
set switching. This step ~s skipped if the status of the file union is
pot empty (cf. Pig. 12.8) or if the step is part of a task epilogue.

The third step is the reverse process of successful proper opening:
The fd-status and the file union are deleted, and the data set accessed
is replaced by a data set whose mapping number is one smaller than
before. In case the standard system print file is closed, and if it had
been opened indirectly, of course the special fd-status ST-PRT will be
deleted, too.

Data set label processing with or without data set switching depends
on a file union name and a £Qnd!ti2.!LtY£~ which is so,, EOV or EOV-BOV.

The condition type BOV indicates that a header label is to he read,
passed to a begin of volume on-condition call, and is to be written upon
leaving the on-unit. This corresponds to the status transition SW-BOV,
BOV, o in Pig. 12.8. These actions are performed as third step of proper
opening if the volume option is not empty and the status is SW-BOV.
After reading the label in case of sequential input or after writing the
label in case of sequential U!Jdate, the data set is oositioned to
position zero.

The condition type EOV inilica tes that a trailer label is to be read,
is oassed to an end of volume on-condition call, is to be written upon
leaving the on-unit, and the data set is to be switched. This
corresponds to the status transition u, EOV, SW, SW-BOV or ENDF. Q~t~
§2!-2!it£h!ng transforms the status from SW to ENDF if the file union
snecifies the attribute KEY or if it snecifies INP or UPD and the
accessed data set is the last volume •. The checking as to whether a data
set is t.he last volume is implementation-defined, and depends on the
mapping parameter, the data set, and the current volume number volno of
the file union {cf. Pig. q.11). Data set switching transforms the status
from sw to SW-BOV in all other cases, and increments volno appropriately.

Notice that. data set switching causes no change of the data set.
!!ence, it would be more precise to speak of file union switching. The
data set might be changed by environmental influences.

1q 12. INPUT AND OUTPUT

TBM LAB VIENNA ~R 25.099

3D JON! 196q INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

The conditon tyoe EOV-BOV indicates that the actions corresponding to
EOV ann BOV should occur in succession. The BOV actions are cancelled if
t.he EOV actions have not reached the status SW-BOV. The EOV-BOV actions
are performed

(1) as third step of proper opening if the volume ootion is * and the
status is other than SW-BOV (most reasonably Ill,

(2) as part of record transmission or stream transmission if the end of
the data set has been reached by a previous basic data transmitting
act. ion ..

Corresponding sections of /5/:

11.4.2 Diaplay and record handling statements

11.5 Record transmission

The following abbreviations are used in this section:

n name

en event name

tn task name

0 pointer or offset

an area pointer

'fli:r point.er reference

mp mapping parameter

ds data set

el proper data element

cbif on-condition built-in function

Record transmission depends on the evaluated statemePt text et
(cf. 12. 1) and the list of those references ref-list for which check
on-conditions are to be raised in the sequel but which are not contained
anymore in et. In particular, s-file (et) is the file union name.

The following case distinctions are made:

(1) If the file union status is ENDF then the endfile on-condition.
will be called.

(2) If s-event{et) is an event generation then an I/0-event will be
attached. This depends on et, ref-list, and a newly created ev~nt
name en (cf. 12.5.1).

12. INPUT AND OUTPUT 15

IBM LAB VIENNA TR 25.099

INFOR~AL INTRO TO TBE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

(3) If et is an evaluated unlock statement then the specified key,
s-ident(et), will be unlocked immediately (cf. 12.5.2).

(4) Otherwise the following actions will occur in succession:

(a} Proper data transmission depending on et, and the returninq
of a list of condition indications (cf. 12.5.3.1}. £Qndi!iQn
indi£~tiQB§ are arguments to on-condition calls or they
contain the special indication END. They indicate unusual
situations and/or transmission errors.

(b) Call of the on-conditions for which indications have been
returned by step (a).

(cl) If the special indication END has not been returned by steo
(a): conditional unlocking of key and check on-condition
calls for ref-list. This terminates interpretation of the
statement.

(c2) Otherwise~ Step (4) is retried. This is preceded by a call
of the pending on-condition and a wait for further input (in
case the attributes TRA and INP are contained in the file
union) or by data set label processing and data set switching
of condition type EOV-BOV (in all other cases). Data set
switching and further input usually depend on environmental
influences. Hence, it will depend on these whether step (c1}
will ultimately be taken.

16 12. TNPUT AND OUTPUT

IBM LAB V!ENNA TR 25,ry99

10 JITN~ 1969 TN~ORMAL TNTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

12.5.1 I/O-EVENTS

An I/0-event is a special kind of parallel action which is able to
execute proper data t.ransmission "in ~arallel" with other actions
(cf. cha oter 7) •

s- le

s- tn ,_ ev

en tY>

s-check

~
including<>

r __ j __ l
I attaching

1
1 task I
L---- _ _j

S· c
, __ l __ ,
I event I

Lt~~s~i~s!9~

Fig. 12.9 Part of E! showing an r;o-event just created

Fig. 12.9 shows the entry made in PA at attaching • an T/O-event
characterized by the event name en, the evaluated statement text et, and
ref-list. Besides that, attachi.ng of an I/0-event causes an assignment
to the event generation, and the addition of en to the component io-ev of
the file union (cf. Fig. 4.11, and 12.3.2) and to the relevant component
of T£;.

The name of the attaching task (component s-tn) is only used in
connection with locking of keys.

The box nevent-transmissionn in Fig. 12.9 denotes the actions of
proper data transmission depending on et followed by conditional
unlocking and some terminating actions. These terminating actions

(1) handle the returned list of condition indications, and insert the
list of arguments to on-condition calls under s-cond, and also
insert et under s-eov-bov if the special indication END has been
returned > (cf. l'ig. 12. 10);

1) Creating, activating, starting are used as synonyms of attaching.
2) This may occur foL write~ into-read, or ignore-read statements.

12. INPUT AND OUTPUT 17

IBM LAB VIENNA TR 25.099

INFORMAL INT~O TO TH~ ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969

(2) activate all oarallel actions, since the r;o-event has oerformed
all its actions (the component s-e will be empty), and any other
narallel actions which might have been waiting for the t;o-event
to becoMe semi-complete could continue.

en

s-te

s-tn s-ev

same as l'i:J. 12.9

tn

r __ j __ ,
I C1\\o.ching 1
1 task 1
L ______ j

s-check s-cor.d

I con~- list I
in cl u cling< >

s- eov-bov s-unloc.k

ctJctJ
OY Q 0\'" Q

Rig. 12.10 Part of R~ showing a semi-complete r;o-event

Completion of the semi-comolete I/O-event by a wait statement
(cf. fig. 7.7) executes I/0 on-condition calls (component s-cond),
nerforms immediat.e unlocking (component s-unlock), set.s the completion
value of the event variable associated with the I/0-event to "complete"
and deletes the entry for the T/0-event from E! (analogous to 7.4,
(6,7)), retries the data transmission but without attaching a new
r;n-event (essentiallv the same actions as step (4), (c2) of the
indroduction to 12.5), and executes check on-condition calls (component
s-check).

12.5.2 LOCKING OF KEYS

Any file union containing the attribute EXC may have a directory the
entries of which are sets of kevs. The entries are selected by task
names. A particular key (i.e.,.list of character values) is 12£&ed gy
!.;1§1 tn if it is a member of a directory entry selected by tn. In
particular, the kev is locked-.own if tn is the name of the current task T! or, in case the.guestiOn-rs-pOsed during the interpretation of an
I/0-event, tn is the name of the attaching task s-tn(!~J. The key is
1Q£&~2=fQ£~!grr if it is locked by some task but not locked-own.

The first step of proper data transmission, which is applicable to !XC
files only, checks if the key, s-ident(et), is locked-foreign. If so, a
wait takes olace until the key will be unlocked by the task for which the
key is locked-own (immediate or conditional unlocking, see below).
Otherwise, or after the wait, the key will be entered in the directory,
and will be locked-own from then on. Rowever, this entry is made only if
the statement at issue has no nolock ontion, i.e., s-nolock(et) is emnty~

1q 12. INPUT AND OOTPDT

TBM LAB VI~NNA TR 25.n99

30 JUN~ 196Q INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I

~gndii1£n~l unl££king has no effect except if it is perforAed by a
delete, rewrite, or write statement on an EXC file. If the statement has
no evAnt option then immediate unlocking will be performed, otherwise et
will be inserted under s-unlock of th" event specification !]:;
(cf. l'ig. 12.10).

l~~~~i~l~-~nlg£fing has no effect exceot if it is performed on an EXC
file, and the key is locked-own. The key will be deleted from the
directnry in the file union, and all waiting parallel actions are
acti va t:ed ..

The deletion of the whole file union which occurs at successful prooer
closing, and the deletion of all keys locked by some task which takes
places at the termination of that task (cf. 7.4, {3)) are special cases of
immediate unlocking.

12.5.3 PROPER DATA TRANSMISSION

The actions designated by !!!:Q£~!:-ll~l~-i!:arul.!!!i.§!!ion como>rise all
activities which have to do with the transmission of a particnlar record
data el.ement between internal and external storage. These activities
incluce a transition of the data set causing a modification of]!:!,
freeing and/or allocation of a buffer and/or several assignments causinq
a modification of ~. a modification of the file union component dealing
with buffers, and the construction of a list of condition indications.

Proper data transmission depends on et. Tt is defined for write
statements (l'ig. 12. 11), locate statements including the artifical
CLOSE-LOCATE statement (l'ig. 12.14), rewrite, read (i.e., set-read,
into-read, ignore-read), and delete statements (Fig. 12.15).

The organization of this section follows the flow outlined in the
figures. Actions denoted in the flow charts by names ending on
11 -t.ransrnission" refer to the basic data transmitting actions mentioned in
section 4.3.4 {Fig. 4.17). Such actions may be performed only if the
file union status is empty {~ig. 12.8).

12, INPUT AND OUTPUT 19

IBM LAB VIENNA TR 25.099

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PI./I 30 JUNE 1969

(BUF) (EXC) (othevwise)

l l
buffer- wait fov

transmission unlocking

Pli'OC EED ~ buffer- t mns-
missio

write- wvi te
transmission SKIP tva.Vlsmission

.

m o.ke complete

Lis\. of conditiol'l
make list of

i11d\cations COVldition indications

-"- ~ '---

Fig. 12.11 Proper data transmission - WRITE

The actions differ as to whether the file union contains the attribute
B!JF, EXC, or none of both. The boxes of Fig. 12.11 have the following
meaning:

(1) !ait fQ£...UDlQ£!ing. This potential wait is described in 12.5.2 as
first step of proper data transmission.

(2) !ri!e-t~~issiQn• The basic data tranmitting function write
(cf. q.J.ij.3) applied to its arguments mp, ds, el yields the new
data set and possibly an indication for one of the unusual
situations KEY, REC, END. The argument mp is the mapping
parameter, ds is the (old) data set, and el is the record data
element having (a possibly empty) key component, s-ident(et), and
a value representation component holding the storage designated by
the generation s-from(et).

The new data set replaces ds in ~~. and a set containing an
indication for an unusual situation •

20 12. INPUT AND OUTPUT

IBM LAB VIENNA TR 25.099

30 JUNE 1969 INFORMAL INTRO TO TB! ABSTRACT SYNTAX AID INTERPRETATION OF PL/I

together with any transmission error flag (cf. 4.3.4.4) is passed
to the following step.

(3) ~~~~-li§~_Q!_£2R~i~ion_illdi£~li2E2· The set of indications is
modified and ordered. The resulting list contains elements which
serve as arguments to on-condition calls or they contain the
special indication END (Fig. 12.12). The file name f is taken
from the file union, io-cond is one of the elementary objects K~Y,
REC, TMT, and END, and the component s-cbif provides those values
to condition built-in functions which are characteristic for the
situation.

(4)

S-f s-cond s- cbif

dJ I io -~coodl I
I

s-onkey

including 9

[

KEY
. REC
10-cond,

I
s-oncode

@
or Q

TMT
END

Fig. 12.12 Condition indication.made by WRITE

Buffer-transmigsion. The basic data transmitting function write
will-be-used-analogously to (2) but the record data element el is
a l!!!1!!1£·

Any file union containing the attribute BUF may contain a
component (buf in Fig. 4. 11) which specifies one or two pointers,
and a key consisting of a list of characters (only if the
attributes KEY and OUT are also specified). If only one pointer o
(l'ig. 12.13) is present in the file union then it denotes the main
storage o(~). Otherwise the area storage o•ap(~) is designated
where ap is the area pointer and o is the offset.

1) Instead of "REC" an integer value is pa!'lsed which results form the
comparison of the record- and storage-sizes involved.

12. INPUT AND OUTPUT 21

TPM L~.B VI~NNA TR 25.099

INF0°MAL INTFO TO THE ABSTRACT SYNTAX AND INTERPR~TATION 0? PL/I 30 JITNE H6 9

(6)

,~-------
S·buf r---+-

dJ [~:"1
or Q

?ig. 12.13 ?ile union entry for an allocated buffer

Buffer-transmission is skipped (i.e., no action) if the file
unions buffer component is empty. In all other cases the data
element el may be constructed. If the function write does not
yield one of the unusual situations KEY or ~ND then the new data
set replaces the old one in ~~, and a set of condition indications
is passed to the following step just as detailed in step (2). ~n
addition the]E!.Lt~r is .tr~ed and deleted from the file union.

If the function write yields one of the unusual situations K~Y
or END the same actions are performed except that the buffer is
neither freed nor deleted.

Check buffer-transmission. The exit labelled SKIP is taken if unusuar-srtuatrons-KEY-or END occurred in the nrevious
buffer-transmission, otherwise the exit PROCE~D is taken.

~~~~-£Qm£l~t~_li§t-2!_££n£i1i£n_in£i£~1i£U§• The two sets of 
condition indications resulting from buffer- and 
write-transmission are conbined and are treated in a similar way 
as described in step (3). 

72 12. T!PDT AND OUTPUT 



IBM LAB VIENNA TR 25.099 

30 JUNE 1969 INFOR!!AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION 01' PL/I 

loc.ate statement CLOSE-LOCATE 

l ((f y 3 2) 

buffe~- buffev--

t~ans h'1ission t~ansmission 

checK PROCEED 

buffer- tram-
mission 

allocate-
SKIP 

buffet" 

I'Yia.ke Lisl of 
conditio11 il'ldications 

l 
Fig. 12.14 Proper data transmission- LOCATE 

There is only one action namely the ~!l2£~tign_Q!~~ {box 
allocate-buffer in Fig. 12.14) which has not yet been described in 
section 12.5.3.1. 

Allocation of the based varible with unique name s-n(et) is either in 
main storage or in an area dependent on s-ptr(et), or in absence of a set 
option, on the declaration s-n(et) {!!l of the based variable. The 
components s-id, s-n, and s-ptr t of et and these same coMponents of a 
specification of a single based allocation have analogous functions. 
Hence, the corresponding description of actions can be taken over from 
chapter 10 if the following differences are observed: 

In case allocation is in main storage the type of allocation is BUFFER 
(instead of BASED), and the buffer pointer and;or key is entered into the 
file union (o, key in Fig. 12.13) instead of being added to the based 
free set of Ill· 

1) s-ptr{et) has not been evaluated previously. It is still a reference 
or empty. 

12. INPUT AND OUTPUT 23 



TBM LAB VI:ONNA TB 25.099 

TN?ORMAL INTRO TO TH~ ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

In case allocation is in an area the area pointer, the offset and/or 
key are entered into the file union (ap, o, key in fig. 12.13). 

lel-rea.d ( EXC) ( o\herwi se) 
J, J. J, 

sel- } wait fov vewv-ile-

l into- se!- unlocking into- set-
lvaVIS mission ignore -

delete -
rewrite -

} 
tvansmission 

into set-

dele le -

!raVl sm i ssi on 

make list of 
conclition indications 

1 
Fig. 12.15 Proper data transmission- REWRITE, READ, DELETE 

The actions correspond to the flov chart of Fig. 12.15, the middle 
branch being taken if the file union contains the attribute EXC, the 
right branch is taken in all other casest 

Wait for unlocking and the making of condition indications has been 
dealt with in 12. 5. 3. 1 {1) and (3). 

The !.!H!!:ite-t£~.!!.2.!!!i§§.i21! uses the basic data transmitting function 
rewrite (cf. 4.3.4.2). The arguments are mp, ds (as described in 
12.5.3.1), and a record data element el which is built from the storage 
designated by s-from(et) or from the buffer. The condition indications 
[EY or R:OC may result. The replacement of the old data set by the new 
data set in £;;?_, and the handling of on-conditions is analogous to 
12.5.3.1. 

24 12. TNPO• lND OUTPUT 



IBM LAB VIENNA TR 25.099 

30 JUNE 1.96q INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

The actions for a set-read statement and for a locate statement have 
some similarities: Both statements are restricted to file unions 
containing the attribute BUF, and both statements comprise data 
transmission, buffer freeing, buffer allocation {in main storage or in an 
area) , and the insertion of the new buffer in the file union. 

Since loacte is restricted to OUT and set-read to INP or UPU, the 
statements may not be related with one and the same file union. In case 
of locate the size of the buffer to be allocated depends on the evaluated 
aggregate attribute of the based variable. However, for a set-read the 
size is derived from the record data element read. 

The case distinction as to whether allocation for a set-read is to 
occur in main storage or in an area is made on the basis of the set 
option s-ptr(et). In the first case the treatment is very similar to an 
into-read on a buffered file (cf. 12.5.3.5, into-set-transmission and 
left branch of Fig. 12.15). In the latter case the record data element 
is read, i.e., the basic data transmitting function read {cf. 4.3.4. 1) is 
applied to mp, ds, and s-ident(et). This yields the new data set, and an 
indication for one of the unusual situations KEY, END or (this is the 
usual situation) the data element read in. 

(1) unusual situation: The new data set replaces the old one, and 
indications are passed to the following step. 

(2) Usual situation: In addition to {1) the old buffer (if any) is 
freed, a new buffer, with allocation type AREA, is allocated (if 
possible) , the value representation component of the data element 
read in is assigned to the buffer and the key component is 
assigned to the keyto option s-idto (et) (if applicable). The 
offset is assigned to the set option s-ptr(et), and the area 
pointer and the offset are entered into the file union (ap, o in 
!'ig. 12.13). 

The actions correspond to those described in 12.5.3.3 except that 
!nto=~~t-, !~~2£~=· and £glg~~~!i~~i2! is performed in place of 
revrite-transmisssion, i.e., the basic data transmitting functions read, 
ignore, and delete are used, respectively {cf. Fig. 12.15). 

No general description of the transmission actions is given since it 
follows in a rather straightforward vay from a re-interpretation of the 
above sections ana from the relevant sections of 4.3.4. 

It should be noted that ignore- and delete-transmission have no effect 
on buffers registered in the file union; assignment to any keyto option 
s-idto(et) as part of into-set-transmission occurs only if the as~ignment 
and conversion rules yield no on-condition calls. 

12. INPUT AND OUTPUT 25 



TR 25,099 

JllFOCI~U INTFO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1%9 

Corresponding sections of /5/: 

11.6 stream transmission 

11.7 snecial cases of stream transmission 

The following abbreviations are used in this section: 

gen, os-gen generation or pseudo-generation 

hi higher index (current position) 

lo lo11er index 

intg integer value 

fol format list 

init initial 

incr increl!le.nt 

char character value 

12,6.1 INITIATION AND TERMINATION OF PUT AND GET STATEMENTS 

Evaluation of statement options (cf. 12.1) affects the file, skip, and 
line options of put and get statements (Fig. 12.4). The resulting 
evaluated text et has a file union name u as its component s-file, and 
integer values as its components s-skip or s-line. It should be noted, 
that the data s~ecification, s-spec(et), and all opt1ons of string-put or 
string-get statements are left unevaluated. 

eljm (1) 

dato.­
it em 1 

s-da.\a-List 

I 
I 

et em (n) 

I 

X 
~ 

{

LIST 

DATA 
ALL -DATA 

~ig. 12.16 List-or data-directed data specification 

~he structuring of list- or data-directed data specifications 
(Fig. 12.16), an1 edit-directed data specifications (Figs. 12.17 to 19) 
~hows the close correspondenc9 to the structuring of concrete text. 
There is only one no~-trivial difference between concrete and abstract 
text which concerns data-directed data S!'ecifications with missing 

26 12. TNPDT AND ODTPDT 



n~ LAB VIENNA TR 25.099 

30 JOIE 196° INFORMAL INTDO TO THE ABSTRACT SYNTAX AND INT!RPR!TATION OF PL/I 

(concrete) data list: The translator is assumed to insert a data list 
cortaining all unsubscripted fully qualified references if they refer to 
proper variables which are not parameters and which are known in the 
block where the statement is eKecuted; in such a case the type will be 
ILL-DATA. If there is a data list in the concrete data-directed data 
specification then the type will be DATA, and the data list is the 
one-one translati?n of concrete text. 

The type ALL-DATA is needed in the interpretation of put statements in 
order to know that the ordering of the data list is irrelevant, and that 
operands which cannot be converted to character string are to be skipped. 

elem (1) elem (m) 
m ~1 

s-d.o.ta-List s- fovmat -list 

eleWI(1) . . . elem (n) elem (1) ••• elem ( k) 
nH I 

d a l o.- data-
i l:.em 1 item 0 

lfo<~nt, I llo·~·'·l 
Fig_ 12.17 Edit-directed data snecification 

s-conlv--vctv s- spec-list s-do-list 01" 

m elem ( 1) 

I 
. d.OLta.­

j te m 1 

~ig. 12.18 Controlled or simple data items 

n~1 
elem(nl 

I . 
d.a.ta­
ilem11 

12. INPUT AND OUTPUT 27 



IB~ LAR VI!:NNA TR 25.099 

•'J?OP~AL JNTFO '!'0 THe ABSTRACT SYNTAX AND INTERPRETATION Ol"' PL/I 30 JIJNE 1969 

5- format -li>t 01'" 

I 
elem ( 1) elem(n) 

I for~at 11 lform

1

at n I 

?ig. 12.19 Iterated or simple format 

r -----, 
1 

simple I 

r----11 format I 

lsee_:ificati~~ 

T"itiation and ter~ination of get and put statements depend~ largelv 
o~ th~ ~r.esence of a string or a file option. However, interpretation of 
the ~ata specification is only slightly affected by this difference 
("exnansion of data specification") except for the interpretation o·f 
elementary transmission. 

The following initiating actions occur for evaluated lli!!.::.!!!!i and 
fi1~=g~! statements: 

{1) If the file union status is ENDF then the endfile on-condition 
wi 11 be called. This termina t"s the statemPnt. 

(2} The co~ponent "count" of the file union is initiated to zero 
{cf. ?ig. 4.11). 

(1) Any page, skip, or line op~ion~ are executed just like the 
corresnonding simpl.e control formats. 

{4) The data specification is interpreted, i.e., expansion of the data 
~?ecification occurs iteratively with transmission of data fie11R 
(exceot for data-directed input). 

The initiating actions for ~i~!ng=EYi and §iring=~! statements are 
T'lrec~ded by a case distinction depending on the components s-string and 
s-ba"e (cf. Pig. 12. 4): 

(a) The component s-string is a reference to a scalar string ty~e 
variable or pq~udo-variable, and the com~onent s-hase agrees with 
thR type Df the reference. 

(h) A string-get for which {a) does not aoply. 

(c) !n erroneous string-put.. 

If case {a) aopties then the fnllowing steps will be taken: 

(-3.1) The generation or pseudo-generation of the reference is evaluated, 
af'!d it is entered under a !'lewly created unique name into the file 
union directory fiT {comoonent s-g in Pig. 12.20). 

2q 12. INPUT AND OTTTPUT 



IRM LAB VT!NNA TR 25.099 

30 JUNE 1969 TN?ORMAL INTRO TO TH~ ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

S-hi s-Lo 

~ ~ 
or ps-gen or Q 

rig. 12.20 "File union" corresponding to a s·tring-put or 
stcing-get statement 

This entry additionally contains a component s-hi of value zero. 
Transmission of data fields to or from the storage designated bv 
the component s-g increments the components-hi, i.e., the 
component has a similarity with the position of an inner data set 
(cf. 4.3.3.1). The component s-lo is an integer value in some 
cases of get statements: The component s-lo indicates the lowest, 
and s-hi indicates the highest position of the data field being 
read. The knowledge of both positions is necessary for the proper 
inter~retation of onsource and onchar pseudo-variables and 
built-in functions useil in conversion on-units called becau.se of 
inconsistences in the data field. 

(a2) Essentially the same actions as in step I') above. 

(a3) The check on-condition is called for the reference in case of a 
string-put .. 

If case (b) applies then the following steps will be taken: 

(b1) The operand of the expression (expression includes reference) is 
evaluated and converted to a string with BIT or CHAE base as 
specified by s-base in l'ig. 12. 4. 

(b2) A dummy is allocated (having the generation gen), and the 
converted operand is assigned to it. 

(b3) Essentially the same actions as in step (a1) above with the 
generation gen .. 

(b4) Essentially the same actions as in step (4) above. 

(bS) The dumMy is freed. 

Step (4), the interpretation of the data ~pecification, is dealt with 
in the following sections. In these sections it will not be the complete 
~ata specification which is of major importance but the current data list 
or f0rmat list or parts of them (components s-data-list and s-format-list 
in "ig. 12.16 and l'ig. 12.17). On the other ha~d, the data and forAat 
lists do not convey all the inforrnatior necessary to characterize the 
data transmis~ion. Hence, this information is collected in the 
i£~ll~~i§§i£ll_E~£~~gig£ (l'ig. 12.21) which is a modified skeleton of a get 
or put statement: The components s-base, s-spec, s-page, s-linP., and 
s-skip have been deleted from the statement text. The mutually exclusive 
coM~o~ents s-file and s-string contain the file union name relevant for 
the interpretation of the statement. An additional component s-type may 

12. INPUT AND OUTPUT 2q 



IBM LAB VIENNA 

T•Fo••AL TNT~O TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

be present in the transmission parameter which is a copy from the data 
specification (cf. FiJ. 12.16) or is the elementary object EDIT in case 
of an edit-directed get or put statement.• 

LIST 

s- st s- file 

r±i 
s- txpe a; EDIT 

I GET jor Purl cb ~ 
type• DATA 

ALL-DATA 
CHECK-DATA 

OY Q or Q or Q or Q 

?ig. 12.21 Transmission parameter 

12.6.2 ~ATA SPECIFICATIONS 

~n edit-directed data specification is a list which is inter~reted 
frow left to right. The first action is to put the format list of the 
head of the data specification into the component s-init of £1 
(cf. Fig. 12.22). Prom there the "initial format list• will be taken for 
for·mat. list expansion (cf. 12.6.2.2). The second action is the expansion 
of the data list of the head of the data specification which additionallv 
deoends on the transmission ~arameter. After completion of the 
expansion, the same action will be repeated with the tail of the data 
~necification until all the data specification is worked up. 

List- and data-directed data specifications are checked as to whether 
thev are related with a file union the base of which is CST or CHAR. The 
~!o!:~~!:Ll!i!.§!l. of a file union is BIT or CHAR (if the file union has been 
created by a bitstring or string nption), or it is PRT, CST or BST in the 
other cases of file unions which contain the attributes PRT,. CST (but ~ot 
PRT) or BST, ~espectively. 

If the check on the streaM base is satisfied then the exPansion of the 
data list is started in case of list-directed data suecifications6 and in 
the case of data-directed output data soecifications. A data-directed 
inout data specification will not be expanded (cf. 12.6.~). 

The data list which is a list of controlled or simple data items 
(cf. ~ig. 12.18) is expanded into its scalar components. This process 
uses the expansion of aggregate expressions, and the expansion of 
controlled do-groups (the structuring of a controlled data item is 
similar to the structuring of a controlled do-grouo). 

1) The tvpe cqEcK-DATA is used in connection with check standard syste~ 
action, the empty type is used where no other type would be reasonable 
(cf. 12. 6. 3. 2) 

30 12. TNPDT AND OUTPUT 



IBM LIB VIENNA TR 25.099 

30 JUN~ 196g 1NFORMI1 1NTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

In case of stream output transmission, any resulting 5Calar expression 
is evaluated and tcansmitted (cf. 12.6.3).• If a data transmisaion has 
~eally occurred, and if transmission was over a file then 

( 1) the current value of the component "count" in the file union is 
incrernented by one (cf. Fig. 4.11), and 

(2) any transmission error flag in the !Q-entry is inspected, and the 
transmit on-condition is called if necessary (cf. 12.6.3.1). 

Tn case of stream input transmission the generation of any resulting 
scalar reference is evaluated and the next data field is transmitted 
(cf. 12. 6. 4) .• If the data field should not be skipped then the 
assignment to the generation is performed, and if transmission was over a 
file, then the above ste~s (1) and (2) will occur in addition. 

1£~2~£~£_FO!~~t-1!2!-~KE~rr2iQn 

The expanded format list is local to an edit-directed put or get 
statement. Hence, it is appropriate to store the current expanded format 
list in a component of the control information £1 (s-expand in 
Fig. 12.22).> 

s-in it 

I 

.-:t:k·~~x 
~~ 

~------l 

I o!her I 
I I 
1 c. om yoonents 

1 r---------------------4 

s-fol 
of fJl I 

r---~ 

I ~---< Q I 
/ LQY __ ..J 

I I d. 9."1 1 
L_- ____ _j 

s-expo.nd, ---, 
I _...---' OY Q I 
L....... ~.- ___ _j 

• • • elem (i) 

I foY~alei I 
OY id 

Fig. 12.22 Initial and expanded format lists of£! 

1) Transmission is preceded, in the edit-directed cas-e, by a request for 
the next evaluated simple data format, i.e., by the ex,ansion of the 
format list and the interpcetation of all intervening non-data 
formats .. 

2) In fact only the stacking and unstackinq of £1 at btock boundaries is 
needed in connection with format list expansion .. 

12. INPUT AND OUTPUT 31 



'l'R 25.099 

T~l"OR~AL INTFrJ TO THE ABSTRACT SYNTAX AND IN'l'ERPREnTION Ol' PL/I 30 JUNE 1969 

It has hePr described at the beginning of 12.6.2 that the complete 
fnrmat li~t of the element of the data snecification under consideration 
is co~tainP.d i~ the component s-init, and that the coMponent s-expand is 
initia1ly empty. 

The format list expansion is always activated by a request for the 
next evaluated simple data format (cf. l'ig. 12.19). such a reauest will 
cause a change of s-expand but it will never change s-init. The actions 
are easily explained if they are split up into an expansio~ step and a 
data fo~mat step which are taken iteratively. 

The !t:!U!ll.!l§liQ!!_z!!t£ yields the next evaluated simple data or cont.rol 
for~at or em?~Y depen1ing on the following mutually" exclusive case 
di~t.inction~: 

( 1) 

( 2) 

( l) 

( 4} 

Tf the expanded format list is emoty or the emoty list then it is 
reDlaced by the initial format list (wrap-around). 

If the expanded head t is an i!~£ll.!~£_lQL!iJ.! (cf. Fig. 12. 19) tnen 
th~ resul~ing e~~anded fo~mat list consists o~ as many co~ies of 
format list,; of the iterated format as the reoetition factor 
indicates, concaterated with the expanded tail.2 

If the expanded head is a simple but remote format then the 
resulting expanded format list consists-Of-the-reMote format list, 
concatenated with the remote format identifier (see below}, and 
concatenated with the PXpanded tail. 

If the expanded head is a remote format identifier then the 
resulting expanded format list is the expanded tail. 

If the expanded head is a simPle but control or data format then 
the fo~Pla+: is checked tor internal coTISIStencv, and-fOr--­
consistency with the stream base of the file union. Tf the check 
is oosi~ive then the format is evaluated and returned. The 
resu\ting expande~ format list is the expande~ tail. 

T1 case (1} to (4) e"OJtY will be returned, 

~he 1ata format steo is oerformed one or more timeg a~ long as the 
e~panpiOn-steP-YieldS-empty or a control format. In the first case the 
exryanPion step is repeated immediately, in the second case it is repeated 
after executing the data transmission corresponding to the control 
format ... 

S+ens (3) and (4) deal with remote formats. I remote format contains 
a reference which is evaluated, and the value must denote a format 
('abel) consta~t. Tn addition, the block activation name and the 
conditio~ orefix part of the format co~st.ant denotation must be the same 
1s the current block activation name ~! and the statement prefixAs 
s-.::up (~[i), res!'eci:ively. '!'he !~]LQ!_g_fQ!:l!!i!.Ll!§! contained in the format 
-,..,n~~an~ denotation is considered valid only if the !.~.mQ:tg_.[Q£1!!!.! 
ilentifier of the format constant denotation is not vet contained in the 
~~Panded-format list. This check cat.~r.s for recursiVe u~age of one an1 
~he same remo~e format list. 

1 ) t1"~y nand ed head." is used for "head of the expanded format list, i.e. r 
head•s-exoan(i•s-fol(£!) ''· 

01 "~xuan<led t:.ail" is used far "tail of th~ expanded format list: , i.e., 
t~i1•s-expand•s-fol (~IJ "· 

1~. TNIHJ'T' AN::" OUTPUT 



TP~ LAB VI~NNA TR 25.199 

10 JnN: 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

12.6.3 STREAM OUTPUT 

List-direc~ed and data-directed transmission essentially consits of a 
conversion to character string type, and of the construction of names in 
character string form. '!'he resulting string is handled by elementary 
data field transmis~ion.t 

Edit-directed transmisRion governed by data formats is treated similar 
to the above types of transmission. If edit-directed transmission occurs 
over a file and by control formats then elementary data t.ransmission may 
occur immediately. All control formats directed to a print file may 
cause increase of the current line component of the file union ("line" in 
rig. 4.11) until the pagesize "psz" is just exceeded by one. only a page 
control format may reset line to one. 

~!~~~nt~rY-~~t~_t!2lg_1~an~i2SiQn depends on the tran~mission 
~a~amet~~ and on a bit or character string. If the target is a string 
characterized by a file union corresponding to a string-put then the 
assignment of the string occurs element bv element as long as the target 
may accn~odate the source elements. This occurs in parallel with thp 
incre~entation of the current position s-hi {cf. Fig. 12.20). The error 
on-condition is called if proper assignment is impossible. 

If the target is a data set then elementary data transmission will 
occur elem~nt by element with the current column properly updated. This 
Ul)dat.ing is an incrementation of the component "col" of the file union 
until the linesize "lsz" {cf. Fig. ij.11) is just exceeded. Transmission 
of a data element will be preceded by the execution of a ~kip control 
fo!:'mat if col cannot be incremented anymore.. This reset_s col to one. 

~l§.m.f!!l!.2.£Y_9.~!:.~-t~g_!!§J!isgiQ.!l is performed essentially in two steps 
which Might be executed iteratively: 

( 1 ) 

( 2) 

Basic data transmission. This is the action stream-transmi~sion 
(cf. Piq. 4.17) which uses the basic data transmitting function 
write (cf. 4.3.4.3). The third argument of the function (el) is a 
prooer stream output or stream output print data element as 
enumerated in 4.3.3.1. Th? data set is replaced in ~2 hy the data 
set. yielded by application of the function write t.o its arguments, 
and the information returned is the unusual situation END or 
enntv. In addition, a transmission error flag of the data set is 
deleted from the data set and cooled into the FD-entry 
(cf. 4.3.4.4, 12.6.2.1). ·· --

In case the unusual situation END has occurred oreviouslv, data 
set label processing and data set switching is ~erformed with 
condition type EOV-BOV (cf. 12.4), and steu (1) is retried iP no 
transmission error occurred through data set label proce~sing. 

The copy action, and check standard system actions cause output to a 
standar1 syste~ nrint file (cf. Pig. 12.1). 

The £Q£I-~£112E is elementary data field transmission of single 

1) 3ventually preceding tabulation is described in 12.6.3.2 

12. TNPUT AND OUTPUT 33 



IBM LAB VTE!INA 

TNF0FMAL TNTFO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 30 JUN~ 1969 

characters or bits read t with a transmission parameter having an emptv 
tvne. The action is preceded by a direct (hence implicit} o~ening of the 
standard system urint file. 

The £hg£k_§!~~£~r1_2Y§12!-~£1!Qn is expansion of the referenc~ under 
consideration (cf. 12.6.2.1), and data-directed out!)Ut of its components. 
There are some modifications of data-directed transmission which are 
indicated by a transmission parameter having the ty!)e CHECK-DATA. Before 
data transmission takes place the standard syste~ print file is opened 
and +.he "count" component of the file union is initiated to zero. 

The 2ll!l.!?.!!!lg_§.!.l!.J!dar:.\LJ1Ystg!L2£!1£1l executes a page format. on that 
print file which is acces~ible by the file name being the argument of the 
action. 

Elementary data field transmission over a print file is preceded by 
tabulation in case of list- or data-directed outout. If tabulation is in 
thecurreiit line then elementary data transmission of the data element 
TABL will occur with the current column property adjusted, otherwise 
tabulation is in the next line. This means execution of a skio format 
followed by elementary data transmission of TABL with the current column 
adjusted to the very firs~ tabulator position. 

12.o.4 STH~AM INPUT 

Innut of a single data field is performed in two steos: 
step and a conversion step. Depending an the data read in 
step, the second step may be skipped. 

A scanning 
the first 

The scannin~ step is in fact composed of subsequent scapnings, each 
with different arguments. In case of edit-directed input the scanning 
step is degenerated into simple counting which does not depend on the 
aata read. Scan~ing ~lays the rote of elementary data field tr~nsmissior 
of stream output with the natural difference that it depends on the 
transmission ~arameter and th~ scanning argument {see below)~ It is also 
an inherent rlifference that scanning returns the da·ta field which is a 
bit or character string (if edit-directed), or a character string 
ootionally ending with the special elementarY object ENDM-SCAN (if list­
or data- directed). Hence, scanning is to some degree merely the reverse 
process of elementary (outout) transmission described in 12.6.3.1.2 

The ~£2llllill!l-2£!lgmgl!!. (Fig. 12.23) is of particular interest in list­
and data-directed transmission. 

1) Bits are converted to characters. 
2) Elementary (input) data transmission may involve the copy action 

(cf. 12.6.3.2). 

34 12. TNP1T AND OUTPDT 



IBM LAB VIENNA TR 25.~99 

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION 01' PL/I 

s-end. &-stop s-stor-incr 5-lncr 

8 c:kJ 8 
or Q or Q or Q or S2 

Fig. 12.23 Scanning argument 

The components of the scanning argument have the following meaning: 

(1) s-end. An on-condition call will be executed if the end of the 
input stream has been reached, and if the coMponent is ERROR-ENDF. 
The endfile on-condition is called if. transmission is over a file, 
the error on-condition is called otherwise. 

If the component s-end is empty, scanning will terminate without 
raising any on-conditions. In this case ENDM-SCAII will be 
appended to the data field yielded in order to have an indication 
for this kind of termination. 

{2) s-stop, s-stop-incr, s-incr. These components define the scanning 
classes the meaning of which is given below. 

All scanning arguments actually used have the additional properties 
that no character occurs in more than one component, and that at most one 
of the components s-stop, s-stop-incr, and s-incr is empty.• This allows 
the formation of three 2£!~ing_cl!§§g§ C(s-stop), C(s- stop-incr), and 
C(s-incrj for any scanning argument by the following rule: If the 
corresponding component of the scanning argument is empty then the class 
is the set of all characters not contained in the other components, 
otherwise it is the component itself. 

The scanning classes have the following meaning: 

(1) C(s-stop). If a character is scanned which belongs to that class 
then the scan is stopped. This is a case of normal termination. 

(2) C(s-stop-incr). Same as (1), and in addition the current position 
will be incremented by one. 

(3) C(s-incr). If a character is scanned which belongs to that class 
then the current position will be incremented by one, and the scan 
is continu.ed. 

The particnlar scanning argument of Fig. 12.24 defines the class 
C(s-stop) which is the empty set, C(s-stop-incr) which is {APOSTR, COM~A, 
BLANK}, and C{s-incr) which is the set of all characters except those 
contained in C(s-stop-incr). In other words: Scan as long as no 

1) Besides that, s-stop and s-stop-incr are mutually non-empty. 

12. INPUT AND OUTPUT 35 



IBM LAB V!ENNA 

IN~ORMAL TNTRO TO TH~ ABSTRACT SYNTAX AND INTERPRETATION 0~ PL/I 30 JIJKE 1969 

apostcoohe, co,.ma, oc blank is read. A.ny subsequent scan will start at 
the position following the apostrophe, comma, or blank. 

s-stop 

rill 
s- stop- incr 

t A POSTR /ONMA 1 BLANK j 

!'ig. 12.24 Example of a scanning argument: 
Second scan for list directed input 

The conversion step checks the data field for syntactical correctness 
and builds an operand with the apparent attrijute and value of the data 
field. In apparent attribute anc value of tke data field. In case of 
data-directed input also the target reference i$ constructed which is 
checked against the data specification (the subsequent actions are as 
described in 12.6.2.1 under the paragraph streaM input traftseission). 

Corresponding sections of /5/: 

3.6.4 The message part~ 

11.8 Display transmission 

The following abbreviation is ttsed in this section: 

gen generation or pseudo-generation 

Message transmission is data transmission to and from the message 
storage (or message part) ~ effectuated by display statements by certain 
standard system on-units {cf. Fig. 12.1). It should be noted that the 
on-check standard system action performs output by a standard system 
print file, i.e., output goes toES and not to!!. (cf. 12.6.3.2). 

16 12. IWPDT ~ID OUTPIJT 



T3M LAB VT~NN~ ~R 25.0q9 

'" J1N: 1969 INPORMlL INTRO TO TRC ABSTRACT SYNTAX AND INTERPRETA•IoN 0? PL/I 

12.7.1 ~~SSAG£ STORAGE 

The message storage 1:1. (?ig. 12.25) is a global state component which 
servl?s +.o accumulate three tv;>es of messages in the components s-display, 
s-renly, and s-comment. All components are initially empty lists which 
are increMented on t-heir tails by ~Q!!!!!!~!!.~§. or llS!!!!.~L1!~.2§.2Jl~:2 during 
interoretation of the program~ 

s-disp\.o.~ 

elem\i) 

na.med-
I 

i 
I 

elem(ll 
I 

named-

message elL 

,---- ---------+------, 
r---- ---''---~ 

I 
ele,., ('I) 

I 

lcomment11 

s-comment 

Rig. 12.2~ Message storage~ 

elern(1) 

named­

mes'>oge r1 

I 
e\em(p) 

I 

s-rep\.!:l 

elem(k) elem{ml 
I 

no.rned- I 
I"T\€SSO.<;je r 

L 

~he structuring of comments put out by certain standard systeJT! 
on-units is implementation-defined. 

Named wessages transmitted by display statements contain the message 
which is a list of character values and a unique name .. 

12. INPUT AND OUTPUT 37 



TBM !.AB VIBNNA 'l'R 25,099 

INFORMAL JNTRO TO TH~ ABSTRACT SYNTll AND INTERPRETATION ow PL/I 30 Jl!NE 1969 

12.7,2 ~ISPLAY TRlNSMISSION 

s- st 

The ~isplay, reply, and event options of a display statement are 
evaluated as described in 12.1. The resulting evaluated text et has the 
form (a) or (b) of !'ig. 12.26. 

,---------,------------.---------. 

s- ident s-st s-ident s- idto s-event 

I OIS~LAYI 
I 

I OIS~LAY I I s ~'J dis)Ola.y- display-

str-ing str-iVlg n 
' 

(a) (b) or Q 
Fig. 12.26 Evaluated text of display st.atement 

~he form (a) having only a display option {s-ident), transmits the 
message (display-string) together with a newly created unique name to ~ 
(i.e., named-messagedl). 

The form (b) of ~ig. 12.26 may cause the attaching of an I/0-event if 
the event option (s-event) is not empty. The relevant actions can be 
derived easilv from 12.5.1. The presence of the reply option (s-idto) 
indicates that after the transmission of display-string (see above) a 
wait should occur as long as there is no matching named message in the 
co1'1ponen t s-reo1 y (!JJ. 

Snvironmental influences may append named messages to the list 
s-reoly(!J), i.e., after some time there might be the situation of 
~atching messages named-messagerk and named-messagedi shown in 
;iq. 12.25. In this case a vait entered after transmitting 
named-messagedi might be completed after assigning the message part of 
t.he reoly message named-messagerl< to the target generation replv-gen. 

Since this assignment may be executed as part of an TjO-event, 
on-condition calls must be avoided. This is similar to the assignment to 
a key to ontion (cf. 12. 5. 3. 5). 

3R 12. TNPryT AND OUTPUT 



I3M LIB VIEINA TR 2~.099 

30 JUN: 1969 I~?O~MAL INTRO TO TR3 ABSTRACT SYNTAX ANn INTERPO:TATTON 0? PL/I 

Corresponding sections of /5/: 

12.2 Evaluation of built-in function references 

12.3 Aggregate attributes of built-in fu•ctions 

12.5 Table of built-in functions 

12.6 Evaluation of the individual built-in functions 

12.7.1 Assignment to pseudo variables 

Built-in functions may occur as references in any expression contex~. 
They consist of an identifier, charac~eristic of the individual function 
to be applied, and an argument list. Evaluation of a reference to a 
built-in function returns an o~erand. 

In /5/, the evaluation of a reference to a built-in function is 
accomplished in two steps: A g~E~al_§i~2• the effect of which can he 
described in a way common to all built-in functions and an in4iyidgal 
§igg which is soecific to the individual built-in function and returns 
the result operand. 

( 1) general step 

The result of this steo is a new argument list. Denending on t~e 
individual built-in fuflction and the argument ~osition, P.ach 
element of the original argument list is converted to one of th<> 
following types and then inserted into the correspor.dirg ?OSition 
of the nev list. 

operand.: An operand is evaluated from the original argument. and 
converted to a target attribute characteristic of every 
built-in function and argument place. 

operand list: It can only occur if the original argumen+ is an 
aggregate expression; operands are com~utPd frnM its scalar 
elements and arranged as a list. 

integer: From the original argument expression an operand is 
evaluated and converted into an integer constant. 

evaluated aggregate attribute: In general, the original a~gu~e~t 
is an aggregate expression whose attributes are to be 
determined. 

generation: The generation of the original argumAnt is Avaluated. 

text: '!'he original argument is inserted unchanged into the new 
argument list. 

13. BUILT-IN ~ITNCTIONS AND PS~UDO VAP!~BLSS 



TBM LAB VIENNA 

INFORMAL INTRO TO THE ABSTRACT SYNT~X AND INTERPRETATION OF PL/I JO ciUNE 1%'1 

(2) individual step 

According to the nature of the individual built-in function, tha 
result operand is evaluated from the new argument list which wa~ 
generated by the first sten. 

A similar procedure, devided into a general and an individual steo, is 
followed in the evaluation of aggregate attributes of built-in function 
references. 

l;;.!aJ!£le.;_ 

Consider the following section of a program: 

DCL B BIN FIXE:> (5) , 
N FIXED, 
A BIT (6) ; 

N = J; 
B = 23; 
A= BIT(B,N); 

The built-in function BIT converts the first argument to a bit 
~tring and pads or truncates it according to the length s~ecified 
by the second argument. 

The reference BIT(B,N) is interpreted in the following 
way(cf. 12.2, 12.5, 12.6.2.1 of /5/): 

(1) General ste~: 

~he actions of the first step are controlled by a table 
(cf. 12.5.2 of /5/. The follo~ing part of the table is used to 
illustrate, how it governs the argument evaluation: 

BIT 1 OP STRING- 1~JA 

2 INTG * 

.For the first argument, OP caus:es an operand to be comput-.ed fro!ll 
B, and the result of this o~eration is then convert~d to 
string-type according to the entry STRING-EDA; let this final 
operand be op 1 • INTG effects that an integer , k2 , is computed 
fro~ N. 

(2) Individual step: 

The second step then begins with the execution of the instruction 
~Y;!.l::!?.!t(ops.,k 2 ). It- r-eturns t.he following operand Ol)-res: 

? 13. BUJLT-IN ~UNCTIONS AND PSEUDO VARIABLES 



TBM LAB VIENNA TA 25.0qq 

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION .OF PL/J 

op-res= 

I 
s -eva.. 

~ 

•• s-d.o. 

I 
s-base 

~ 
op-res is assigned to A; after assignment A has the value 
'10 1000' B. 

Pseudo variables are means of accessing various storage part~ which 
are otherwise inaccessible, for example: storage parts re~erved for 
special purposes are accessible by condition- and multitasking oseudo 
variables; suhparts of a scalar string may be assigned via the pseudo 
variable SUBSTR. 

A reference to a pseudo variable occuring in the left oart of an 
assignment statement consists of the name of the pseudo v~riable and a 
list of arguments. On evaluating the refe.rence a J!2!E!J!Jl.Q_9.JE!l!!E!£!!:!:iQll is 
formed. A pseudo generation contains all information necessary to make 
the assignment. Tt consists of the name of the pseudo variable and a 
list of evaluated argument~ which are either generations or integer 
values (depending on the type of the pseudo variable). 

The pseudo assignment is carried out using 

(1) the evaluated pseudo generation 

13. BUILT-IN PDNtTIONS AND PSFDDO VARIABLES 3 



IBM LAB VIENNA 

(2) the operand which resulted from the evaluation of the right part 
exprc~sion. 

The as~ignment includes conversion of the operand with target 
aggrega~es deoending on the useudo generation. 

Let I be declared as 

DCL A CHAR (5) INIT ( '12345 1 ); 

Consider the pseudo assignment 

SUBSTR(A,3,2) = 1 AB 1 ; 

After execution, the value of A will be> the strinq 

I 12AB5 1 • 

The pseudo generation corresponding ~o the left part 0f the above 
ps~udo assignment is 

s- icl 

s 
s-arg- li51 

I 
z gen, 3, 2 > 

where gen is the generation of A. 

on assign•ent, an operand is computed vhose agqrega+~ attributes 
are the same as those of gen, and whose vr-part is the value 
representation of '12AB5'. This operand is then assigned to gen. 

4 13. BUILT-IN rDNCTIONS AND PSEUDO VIRIIBL:BS 



IBM LAB VIENNA TR 25.099 

30 JUN!: 1969 IN!'ORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

Corresponding chapter of /5/: 

13. Optimization 

Optimization rules are introduced in the PL/I language t"o enable a 
compiler to produce more efficient object code. The definitions of these 
rules, however, are given in terms of values found at execution time, 
i.e., the formal description is based on the computation of a program. 

There are two kinds of optimization rules in PL/I. First, the 
language definition has been relaxed so that expressions may be commoned. 
Second, attributes are added to the language which enable a compiler to 
do more efficient program optimization. 

Both optimization rules are described formally by modifying the set of 
strict computations o'f a program (cf. 6.). To describe the rules for 
commoning of expressions, the concept of computation is extended, so that 
additional valid computations may be derived.Hovever, the set of strict 
computations is reduced by. rejecting computations which are invalid 
because of the wrong use of optimization attributes in the interpreted 
program text. 

To describe the rules. for coa"jlloning of ex.pressions (including the 
definition of the REDUCIBLE attribute), the concept of computation is 
extended in such a way, that it includes the possibility of steps in 
which expressions are commOn.ed. 

such a step may occur in the course of a computation, if an 
instruction for evaluating an expression is ready for execution, and if 
another expression which is common with this expression has been 
evaluated previously during the computation. In this case, instead of 
evaluating the expression, the value derived from the earlier evaluation 
may be taken. 

Although only scalar expressions may be commoned in a step of a 
computation, the n:>tion of common .. expressions must be defined for the 
general case of aggregate expressions, since these may appear as 
arguments of common function references. · 

Two ~12!:!!~iQ!!§ are £.21!.!!!Q!l, _if t-hey have the same structure, and if 
corresponding components are commo.n re-ferences, the same constants or the 
same isubs. 

For the definition of common references, if one of the references is a 
generic reference, it is replaced by the reference constructed from the 
selected entry reference by concatenating its argument part with the 
argument part of the original reference. 

Two £gl2£2E£22 are £2!!QU, if they have the same evaluated. list of 
name qualifiers, if their subscript lists are common (i.e. if 

14. OPTIMIZATION 1 



IBM LAB VIENNA TR 25.099 

TN:'ORMAL INTRO TO Tll": ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JONE 1969 

corresponding subscript expressions are common), and if, according to the 
kind of the references, one of the following conditions holdR: 

(1) Both are refernce~ to variables, these variables are com~on~ andp 
for entry components, the corresponding entry reference is 
reducible and the argument parts are common. 

(2) Both are entry references to the same function, the ceference in 
~uestion is re1ucible, and the argument parts are common. 

(3) Both are references to the same reducible builtin function, and 
the argument parts are common. 

(4) Both are references to label, format or file constants with the 
same denotation, 

Two Y~£iaQ!2~ are £2!!Qll in the following cases: 

(1) Both are proper variables with the same generation and the same 
value representation. 

(2) Both are defined variables with the same denotation, their bases 
are common references, and their positions are either empty or 
common expr~ssions~ 

(3) Both are based variables with the same generation and the sam~ 
value re~resentation, their pointer qualifiers are common 
references, and their refer options have the same evaluated list 
of name qualifiers. 

Note that basea variables can not be commoned if they occur in 
argument expressions of function refernces, since in this case 
their generations are unknown in the states in question. 

Whether an 2Ut£Y-~2!2£2U£2 is £2g~£iQ12 or not depends en the context 
of the entry reference (entry or non-entry), and, in the case of an entry 
context, it depends on the length of the argument part. An entry 
reference in an entry context is reducible, if either the argument part 
is emp+_y, or the corresponding entry attribute is declared as reducible 
and the number of its reducible declared ret.urn types is at least eaual 
to the length of the tail of the argument part, An entry reference in 
non-entry context is ~educible, if the corresponding entry attribute is 
declared as reducible and all its return types of tyoe entry are declared 
as reducible. 

Note that the explained notion of reducible entrv references 
constitutes the g2HniH2n of the l!.~Q!!!::I!l.!.JLatit.iQ!!t2• 

Two liY.Y,!!!.gni_£2.£!§. are £2!!!!2!1, if corresponding argurnent.s are common 
expressions and their descriptor aggregate attributes (given explicitlv 
or by default) are essentially equal. 

2 14. OPTIMIZATTON 



IBM LAB VIENNA TR 25.099 

1n JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OP PL/I 

P:PROCEDURE(X) REDUCIBLE RETURNS 

Q-: PROCEDURE; 

(ENTRY IRREDUCIBLE RETURNS (FLOAT)); 
; RETURN (Q); END; 

END; 

DECLARE P,G ENTRY VARIABLE, A,B,Y FLOAT; 

!' = p (2*Y .. 3) ; } common 
G = P(3 + 2*Y) ; 

A = P(2*Y + 3) ; } not common 
B = P(2*Y + 3) ; 

According to the RETURNS attribute of the procedure P, a reference to 
Pis reducible in entry context, but not in non-entry context. I.e., the 
first tvo references to P are common, the second two are not. 

The REORDER attribute may be specified for a block or procedure body 
if it is reauired that the execution of the body should give the same 
results as execution of the body according to the strict definition of 
PL/I unless there is a computational or system action interrupt during 
the execution of the body. The definition of the REORDER attribute is 
given by its relation to the interrupt handling facilities of PL/I. 

The formal definition consists in testing whether individual members 
of the set of strict computations of a program are erroneous because of 
the wrong use of the REORDER attribute, i.e., if the REORDER attribute 
associated with a bodv leads to undefined situations due to on-units 
executed during the computation of this body. 

To be precise, a ~QaE~tati2n is ~~~n~QY§ because of the wrong use of 
the REORDER attribute in the interpreted program text, if the following 
condltions~old:-----

(1) There exists a section <<(i1), ••• ,e(i2)> as part of the 
computation, called reorder-section, which constitutes 
{disregarding steps belonging to another task) the computation of 
a block or procedure body declared with the REORDER attribute. 

(2) There exists a section <!(j1), ••• ,E(j2)> as part of this 
reorder-section, called on-section, which constitutes the 
computation of an on-unit. 

(3) There exists a pointer p which is contained in the allocation 
state of the storage between f(k1) and f{k2) (exclusively), and 
which does not belong to an automatic variable declared in a block 

14. OPTIMIZATION 3 



IBM LAB VIENNA TR 25.099 

Hl?ORMAL .INTRO TO Tf!E ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 J!INE 1969 

or procedure whose body is declared with the ORDER attribute and 
computed ins.ide the reorder-section. 

(4) There is a reference to this pointer pin a state ~(k) between 
~(k1) and ~{k2) which is not guaranteed under such circumstances. 

A ~~fe~n£~ to the pointer pin the state ~(k) is yQi_gy~~~~ 
under the above circumstances, if one of the following 
alternatives holds: 

(a) o(k) lies in the on-section. 
p is not referenced by the use of on-builtin functions. 
p is allocated or freed or its content is modified in the 
reorder-section (but outside the on-section), or pis allocated 
outside the on-section (possibly also outside the reorder-section) 
and belongs to a controlled variable which is allocated or freed 
in the reorder-section. 

(b) < {k) lies in or after the reorder-section. 
p is allocated or freed or its content is modified in the 
on-section without the use of on-psendovariables, or p is 
allocated before the end of the reorder-section and belongs to a 
controlled variable which is allocated or freed or modified in the 
on-section without the nse of on-pseudovariables. 

(c) E {k) lies in or after the reorder-section. 
There is an abnormal return from the on-section. 
p is allocated or freed or its content is modified in the 
reorder-section, or p is allocated before the end of the 
reorder-section and belongs to a controlled variable which is 
allocated or freed in the reorder-section. 

4 14. OPTIMIZATION 



IBM LAB VIENNA TR 25.Q99 

30 JUNE 1969 IN?ORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

aa {a): 

reorder- section 

on- section 

k1 ii j1 k j2 i 2 k2 

I I I 
allocation of p, allocation freeing reference to fl freeing of p 
associated. to a of 8 of B (without on-builtin 

controlled variable B function) 

k1 

?ig. 14.1 

The reference to p is not guaranteea, since, due to the 
reordering process, the on-section could fall between allocation 
and freeing of B in the reorder-section. 

ad (b) : 

reon:l.er- sed ion 

on- section 

il k 

allocation 

of B 

allocation of p, 
associated to a 

controlled variable 8 

rn odiflca(lon of B 
(without on-pseudo· 

vo.riable) 

freeing of B reference 
lop 

Fig. 14.2 

The reference to p is not guaranteed, since, due to the 
reordering process, the on-section could fall between freeing of B 
and i2. 

14. OPTI~IZATION 5 



IBM LAB VIENNA 'l'R 25.099 

INFORMAL TN'l'RO TO THE ABSTRACT SYNTAX AND INTERPRE'l'ATIO!I OF PL/I 30 JUNE 1969 

ad (c) : 

reord.er- section 

on- section 
,---A-----.. 

i 1 k1 k j1 j2 k2 i 2 

I I I I 
a(l oca.tio~ of p reference top abnormal modification freeing 

return of the content of r 
of r 

Fig. 14.3 

The reference to p is not guaranteed, since, doe to the 
reordering process together with the abnormal return from the 
on-section, the reference to p and tbe modification of the content 
of p could be interchanged. 

A £Omputa!ion is ~~~2P~QY§ because of the wrong use of the RECURSIVE 
attribute in the interpreted program text, if it contains the computation 
of a ~rocedure which invokes itself though it is not declared with the 
RECURSIVE attribute. 

6 14. OPTieiZA'l'ION 



IBM LAB VIENNA TR 25.099 

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

This glossary is a compilation of technical terms used in the document. 
section quoted in the right column refers to the place where the term is 
explained. In the document, this place is emphasized by underscoring. 

The 

The primary intent of the glossary is to serve as an aid for reading the 
document. Occasionally, terms are characterized by a qualification added in 
parentheses in order to delimit the scope of the reference. 

abnormal termination (of a task) ••••••••••••••• ~··············•••••••• 
abstract identifier ••••••••••••••••••••••••••••••••••• ~·•••••••••••••· 
abstract program •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
abstract syntax ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
abstract syntax of the states •••••• ~ •••••••••••••••••••••••••••••••••• 
active (block activation) ••••••••••••••••••••••••••••••••••••••••••••• 
active (inner data set)••••••••••••••••••••••••••••••••••••••••••••••• 
active {task/event)••••••••••••••••••••••••••••••••••••••••••••••••••• 
aggregate attribute••••••••••••••••••••••••••e•••••••••••••••••••••••• 
aggregate attribute of a reference••••••••••••••••••••••••••a••••••••• 
aggregate name•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
allocate •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
allocate statement •••••••••••••••••••••••••••••••••••••••••••••••••••• 
allocation {of a buffer).•••••••••~••••••••••••••••••••••••••••••···~· 
allocation state•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
applicable •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
argument expression ••••• ~···••••••••••••••••~····••••••••••••••••••••• 
a~gument part (of a reference)••••••••••••••••••••••••e••••••••••••••• 
array ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
assignment •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
associated event variable ••••••••••••••••••••••••••••••••••••••••••••• 
associated task variable••••••••••••••••••••••••••···~·••••••••••••••• 
asynchronous interrupt•••••••••••••••••••••••••••••••••••••••••••••••• 
attaching (a task)••••··········~··········••••••••••••••••••••••••••• 
attention••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
attention 
attention 
attention 
attention 
attention 
attention 
attention 
attention 

(declaration) ............................................... . 
condition call •••••••••••••••••••••••••••••••••••••••••••••• 
directory ••••••••••••••••••••••••••••••••••••••••••••••••••• 
enabling state•••••••••••••••••••••••••••••••••••••••••••••• 
environment directory ••••••••••••••••••••••••••••••••••••••• 
event ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
identification•••••••••••••••••••••••••••••••••••••••••••••• 
information •••••••••••••••••••••••••• 

based 
based 
basic 

free set•••••••••••••••••••••••••••••••••••••••••••••••·~••••••• 
variable•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
data transmitting action •••••• ~••••••••••••••••••••••••••••••••• 

basic data transmitting function •••••••••••••••••••••••••••••••••••••• 
begin hlock.a•••••••••·~•••••••••••••••••••••••••••••••••••••••••••••• 
bit string value•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
bit to character conversion ••••••••••••••••••••••••••••••••••••••••••• 
bit to numeric conversion••••••••••••••••••••••••••••••••••••••••••••• 
bit value••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

7. 4 
2. 2 

1 
1 
1 
8 

4.3.3.2 
7 

2. 2. 1 
10. 2 
5. 3 
5.3 
2.3 

12. 5. 3. 2 
4.2.3 
4. 2. 1 
8. 3. 1 
2. 4. 1 
2. 2. 1 

5. 3 
7. 2 
7. 2 

11. 4. 1 
7.3 

12. 2. 2 
2.2 

11. 4. 1 
11. 1. 1 
11.1.2 
11.1.2 
12. 2. 2 
11.1.1 
11.1.1 

7.2 
2.2 

4. 3. 4 
4. 3. 4 

2. 1 
4. 1. 1 

10. 3. 2 
10. 3. 2 

Lj.. 1. 1 

APPENDIX: GLOSSARY 1 



IBM LAB VIENNA TR 25.099 

IN~OEMAL INTRO TO TffE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1969 

block"' ...................... ., .... ~ .................................... ,. ....................................................... .. 
block 
block 
block 
block 

activation .. e ............ e ........ ~-~~~~"'·········••o•ooa•~ .... ea~o~~··o 
activation name .. oell~eBO$OOeOOOO&~·eo•e~~••m~eO•&oeeeo•~ll0 .. 0ll08 .. e 

activation type .. ~~~~~~ ....... ~ ........ ~~••o•eo••··· .. ~·-····••o•~o~aoe~• 
local ..... .,~ .. •"""""'~""~~ .. ., ... .,~ ...... ~ .. o•.,••••ee•••••••~•••••ooooo•~•o 

buffer ..................... ~~·"'"~~~·~ .. 
builtin function .................... .. .. " c ............................................... ., ,.. ........ ., 

character string value .. ~ .. •~o·~· .. •••• .. •••e••••••··~····~·····~ .. ~·•••••• 
character to bit conversion .... ~ ...... ~ ......... ~··············3~·~~•eeeeoeoo 
character to numeric conversion ••••• ~~•••••••••••••••·~····~·····~~-~~ 
character value.~····§···~···~··~•e•••••••••••••••••••••••·~···••••••• 
check standard system action •••• B.•e••~•••••••••••••e••••••••••••••••• 
close element •••• ~§~····G•••~•••~•••••••s••••••••••••••••s•••~~·~~·~·· 
comment •• ~·····&··········~eeooameoomeeeoo••••••••u•~e••~·-§~0~~~-~~·· 
common argument parts~.~~~~·~~·~··~~~········~··~~·~···~·····~•~o••••• 
common express~ons.~··~9··~···G~·e~•~~··••~••••••••••••••~o~~·~··~·••• 
common references.~~~~~·~~··~e·~~~~~~~••••o•$•••~···•••·~·~·~~•••••••• 
common variables •••••••• ~·····~···4~·~···············~·····~··~······· 
complete set of attributes~.·~··~••••••••••••••••••••••••~•••••••••••• 
completion value ••••••• ~v•••••••••&••·~·••o•••••••••••~••o~o•••~··~··· 
computation ..... '"' .. 8., ... ~e ............. e ................... "' ....... "' e ............. " ............... " 
c om pu ta ti on ste P• ...... "' ............ '"' ..... 0 .............. § e ••• e •• B ••• ........ s • "' • ., ........... . 
concrete identifier~~~·~·~····~···~····· .. ···~••e•eew••••••••e·~~~~eee.e 
concrete program ..... w~~··~··~·········~············••a••~•m•~~•e•••~·· 
concrete syntax~ .. C8e••eee8•9eOe'll~······················••&e'll4e808~8'118~ 
condition action~-~~·~··ao•eo«eev••••••••e•~··••ee~e·•······~·~····~o• 
condition builtin function part~·~····••••••••••••••••·~·~·~····~··~·· 
condition call ••••••••• ~~··~···~··········~·•••••e•••··~······~·~····· 
condition indication •••• ~.e·~··••••••••••••••••••••·······~··~·······~ 
condition part ••••• 6••••••••••~·••e••••···~·······~···••&•••••••Q••••• 
condition prefix part.~··Q~·· ···~·····~···~···········~~&•••Q••••• 
condition selector •• ~~~·§•·G~ G~··~····••••••••••••a•••••o•••••••~§ 
condition state~~•o•••••eoo~-~~····~~··· .. ······~·····~~·······•~o~o··~ 
condition type9., ....... .,. ......... 0 = ....... " .... ~ ......... ., 8 .... m ....... ., ... e ....... ~ .... ., ...... " ..... ,. 

conditional unlocking.G~eOe~oOI~·-~·~···~·· .. •••esoe•o•Ce~••oo~G,.OOO.eO 
connected {flag of a parameter declaration) ....... ~·•••••e~~~·-~•e•••~• 
connected (generation) .......... ~·~·&···~··········~········~• .. •••••• ....... .. 
constant.,e~oeoeeoooo•o0004&•G~@0~0&080&40e~eeo•eeeoo&~~···~~~•mo•oo~oo 

control format ..... eGO~eOOi>O&OD~O~OOOeeee•OOOCeeOOo••·~······OB'II90~0A&ea 
control information f1···~-~~00404eOoeoeOCO~AOSOCC~0···~000088eOeG4~G8 
controlled group~~-·~eQG4~eaBGGG~•aeo~ee&OO&•Oe8•0ee~·-G000e~&ee~o•eme 
controlling variable.~-~······~···-~·············~•e•••••••zaeeeseoooo 
conversion between pointers and offsets ...................... ~•oeoceoeeoo 
copy action •• ~········~-·~···~·····5·····~·····~·-············~·~··~ee 
cross-section& •• ~~~-~-·~·-~e·~·••e•~~····-·8§~··••ee§e&~s·~•o•oo~·~··· 
current 
current 
current 

{block •••••••••••••eo•••~•••'""'""•"~.,,. 

generationee•••••••e••~~~·~•••••••••••~••••••••••••~··~-~~o••• 
taSke • •,. e • .. e e .. • "'"' o • .. • .. • "" "'• • a .. "-. eo., • • • "..,eo .. e.,., m'" • • "•" • .. • "., •"'"''"' 

data attribute~~··~~-~ .. ~~·····~~-~ ... 9 .. ~~··••e•••··-~·~·••o•• .. •••• 
data format step .... ~~OG~~00ae~00~69880~e<>e~·-········~··0~0~$04eO• 
data setme••••••e•m·~········~········~~~············~·-··~··•·o~·~~·· 
data set directory .... ~ ... ··~••e•~·····~··················•Qme••~~-u~~·· 
data set label ........ ~ .. ~• .. •••o••~~••••••••c~•••••••••"•4•••"'•••••••·~·· 
data set name •• ~~···~~···~·••••e•···~•••••••••••••••••·~···~~····~·e~• 
data set switching ... ~ooeoeeaee••··~··~~e••····················~··~·~•w 
data set title~~-·~~e$O&•~•eo~~-·~•Deae~e&OOOOOe~Oe00~~-~-~~•ee~&5e&~O 
data transmission •••••• ~••e~·~~··~~e•~••••••s••••••••••~·•••*•o~•~o••• 
daughter task ...... ~ ........................ ., ............................................................ .. 

2 APPEN~IX: GLOSSARY 

2. 1 
8 

B. 2. 2 
8. 2. 4 

3. 2 
12.5.~.1 

2. 2 

4. 1. 1 
10. 1. 2 
10. 3.2 

4. 1. 1 
12.6.3.2 

1 2. 1 
12.7.1 

14. 1 
14. 1 
14. 1 
14. 1 

12.2.3.1 
7.5 

1 
6.2 
2. 2 

1 
1 

11. 3. 2 
11. 5 

1. 4. 1 
12. 5 

2. 3 
2. 1 

11.1.5 
11.1.4 

12.4 
12. 5. 2 
2. 2. 1 
4. 2. 5 

2 .. 4 
12.6.2.2 

9 
9.5 
9.5 

4.2.7.2 
12.6. 1.2 

4. 2. 6 
8 

5.3 
3 

7.2 

2. 2. 1 
12.6.2.2 

4. 3. 1 
4. 3. 1 

4.3.3.1 
4. 1. 1 

12.4 
4. 3. 1 
4 .. 1 .. 1 

7.3 



IBII LAB VIENNA TR 25.099 

30 JUNE 1969 INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 

declaration •••••••• s•••••••••••••••••••••••••••••••••••••••••••••••••• 
declaration part •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
defined variable•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
definition of the REDUCIBLE attribute ••••••••••••••••••••••••••••••••• 
density •••••• ~···········~·······••••••••••••••••••••••••••••••••••••• 
direct (access to standard system print file name) •••••••••••••••••••• 
dummy operand••••••••••••••••••••••••••••~••••••••••••··~·•••••••••••• 
dynamic descendant (block activations)•••••••••••••••••••••••••••••••• 

elementary alloca·tion ......................................................... . 
elementary data field transmission •••••••••••••••••••••••••••••••••••• 
elementary data transmission •••••••••••••••• ~ ••••••••••••••••••••••••• 
elementary freeing •••••••••••••••••••••••••••••••••••••••••••••••••••• 
end state •• G•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
endpage standard system action •••••••••••••••••••••••••••••••••••••••• 
entry attribute ••••••••••••••••••••••••••••••• ~ ••••••••••••••••••••••• 
entry constant •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
entry denotation .................................... ~ •••••••••••••••••• 
entry identifier ••••• ~····•••••••••••••••••••••••••••••••••••••••••••• 
entry part/point ••••••• 4c•••••••••••~•·••••••••••••••••••••••••••••••• 
environment attribute.w••••••••••••••••••••••••••••••••••••••••••••••• 
environment step •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
epilogue (of a block activation)••••••••••••~••••••••••••••••••••••••• 
erroneous computation {by wrong use of RECURSIVE attribute) ••••••••••• 
erroneous computation (by wrong use of REORDER attribute) ••••••••••••• 
evaluated aggregate attribute •••• a••~••••••••••a•••••••••••••••••••••• 
evaluated attention condition ••••••••••••••••••••••••••••••••••••••••• 
evaluated condition ••••••••••••••••••••••••••••••••••••••••••••••••••• 
evaluated statement text ••••••••••••••••••••••• ~•••••••••••••••••••••• 
event variable •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
exactly representable ••••••••••••••••••••••••••••••••••••••••••••••••• 
e.xpansion step (of a format list) ......................................... . 
explicit closing ...................................................... . 
explicit opening •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
explicit picture attribute ••••• ~·••••••••••••••·····~·····•••••••••••• 

fd-status {file directory status) ••••••••••••••••••••••••••••••••••••• 
fileasese•••••••5•••••••••••••~••••••••••••••••••••••••••••••••••••••• 
file constant ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
file name ••••••• o••••••••••••••••••••••••••••••••••••••••••••••••••••• 
file un1on ••••• ~~-~~~··········~··········~···········~8·••••••••••••• 
file Ufl10fi name ••••• 4•8••••••e••••••~••••••••••~••~••••••••••••••••••• 
file value ••••••••••••• 9 •••••••••••••• 4 ••••••••••••••••••••••••••••••• 

file-get (statement)~·~············~·····~--~·-······--··~············ 
file-put (statement)-····-~-····~·4···············~••••••••••••••••••• 
format label constant ....................................... , ........................................ . 
free ••••••••••••••• § •••••••••••••••••••••••••••••••••••••••••••••••••• 

free set .............. ~·•••••••••••••••••••••••••••••··~······••••••••• 
freeing (of a buffer)••••••••••••••••••••••s••••••••••••••••••••••••a• 
fully qualified name •••••••••••••••••••••••••••••••••••••••••••••••••• 
function denotation ••••••• o••••••••••••••••••••••••••••••••••••••••••• 

generation ••• o•o•e•••••••••••••••••••••••••••••••••'••••••••••••••••••• 
generation list ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
generic (family) member •••••••••••••••••••••••••••••• s••~·•••••••••••• 
generic identifier ••••••••••••••••••••••••••••••••• ~······~·•••••••••• 
generic selection •••• ~~·~·····~~··•••••••••••••••·••••··~·-············ 
global •••••• § ••••• ~··········••••••••••••••··~·······••••·••••••••••••• 
group•••••••••••••••••••••••••••••••••••••••o••••••••••••••••••••••••• 
group (repeated execution)~····-·~······~·····~·-·~4··~··4•••••••••••• 

2. 2 
2. 1 
2.2 

14. 1 
2. 2. 1 

12. 2. 1 
B. 3. 1 

8 

4. 2. 3 
12.6.3.1 
12.6. 3.1 

4.2.3 
1 

12.6.3.2 
8.3 
2. 2 
8.3 

2. 1. 3 
2. 1. 3 
4. J. 1 

6.2 
8. 2. 4 

14. 3 
14. 2 

2. 2. 1 
11.1.5 
11.1.5 

12. 1 
7 

4. 1. 2 
12. 6. 2. 2 

12.3.1 
12. 2. 2 
10. 3. 3 

12. 2. 1 
5.5 
2.2 
5.5 

4. 3. 2 
5.5 
5. 5 

12. 6. 1 
12. 6. 1 

2.2 
s. 3 

8. 2. 4 
12.5. 3.1 

2. 4. 1 
8. 2. 4 

4. 2. 5 
5. 3 
2. 2 
2.2 

8. 3. 4 
3. 2 
2. 3 
9.5 

APPENDIX: GLOSSARY 3 



IBM LAB VIENNA TR 25.099 

INTORMIL IITRO TO THI ABSTRACT SYNTAX AID INTERPRETATION OF PL/I 30 JUNE 1969 

IjO-eVent~~~ac~oa~~~~n~~D~o~o~c~~~oo~~ooocoooo~c~oocm~neo~ooc~o~~oa~eo 

I/O-event-Sete~o•~~~•~o~•o~~~o~aaaaoooooooooococooooaco~o••oao~oo~~oo~ 
identifier list (of a reference) ~oea~Oo~~O~ooOOOOO~OOOeO~oO~Ooo~~OoC~a 
if-Statemento~oeoo~~~oaoaa~a•a~o•coeaa•••oo~o~Go~~•o••~•emea•o••~oa~~o 
immediate component (of a variable) ~oe~~sco~on~~,·~·o~cee~~·a~~~~aaoo~ 
immediate unlocking •• ~··~e~oo~~~co~oco~o~····~~~e~·~·~-~-~$~-~-·~-~~~~ 
implicit closinga~·~~Q~~~-a~~~~OQO~~~~~-~~Ge~G~OOee~4~~~~~~0Q~~~O~~~~~ 
implicit open1ng~~O~~C~~QOOO~~~C~C~~~~~~QQ~eC~O~Ca0CG000~0COO~~C~OU00~ 
inactive {inner data set) G~0~~00~~000000~0000~QDC~OOO~C000~0C$~C~C~COC 
independent~eoc~~~~o~~m~~~o~~~~~Q~~o~o~~4~~4~~~~c~~~~·o~G~•~~~~~uo~~oe 
index {component of control information)~ee~~OoC~CC~~OCOCOo~O~~o~OOoCc 
indirect (access to standard system print file name) •••••••••••••••••• 
infix expression~e~auocco~~~~Oo~OOQQ~o~a~ooooccoeQ~~~CeQ~O~OO~OCOOCO~s 
inherited fd-status~~-~·a~0··~~~~~--$~QG~~~~·~~·~~~•o~~~~s•~~·~···~~~o 
initial attributeooe~0GDSOD0e~~~·OOOC~~~Gm~~~e~a~000~008~~00~~~00~0~0Q 
initialization~o•~~e·•~··ooca~~~~-~~•~~~4•~~~·~ea•~•~oee~aeomo~••~~oos 
inner data set~~O®~~~~~~m~~O~~~~~~O~~Q~~$~~~D~~M~~OO~~~Q~~~~~00~~~Qe~& 
inner return type {~eturn type of an entry point).m~~os~a•9•emsm~•a•o• 
interrupt step~@Q~G~~$QO~C~~~O~eOO~O~OG~Oe~OC~$0~0~0~eG$e0~3~~~~e~~~~~ 
intrinsiC data~Ge~~Q~~eu~~~~~oooo~~oooQe~oc~oac~0~eco~$co~~eo~oo~oooeo 
ita~ated formate~~O~O~OOO~~O OSOOQ~~O~GQOOOG~$00d0QO$QGO~OG~~QOCGQCG~O 

7 
7.2 

2. 4. 1 
2. 3 

4_..2.4 
12. 5. 2 
12.3.1 
1 2. 2. 2 

4 .. 3 .. 3 .. 2 
4. 2. 1 

q_ 1 
12.2.1 

2.4 
12. 2. 1 
2. 2. 1 

5. 3 
4. 3. 3 
8. 3. 2 

6.2 
4.3.3.1 

12.,6o2c2 

2.3 
left-to-right equivalence000~Q~Q~O~O~W&QG~~~e$•oc~~QO~~~~~~~OQ~~4~~~0010~2~5~2~4 
locked (key by same task~ Q0~~0~~00~0000GOOGQ.Q000$e~G~~C000QO~Q~00~09C 12a5G2 

main identifierQ~~~~g~~QQQ~O~~~Q~~~~Q~D~~C~GeCO·~~W•W-D•G=~~~~~~~-~Q3~ 
main proceaure.~~-D~DOD~50QGaDQDGD~~D00~@~~~$CQ0~0~0~~D$D~~~-~D$~00DDD 
main procedure flag~~·~~~~~-·~a~oo~~·o~~-~~m··~~~~~·~~~·~-~••o~acoeaco 
main taskaDGDO~D~G~~DDO~Q~O~G.DDO~ODGD~~-~-~GDDDSQDD~~~G~~~~OeDODDOO~O 
mapping {of a data set) ~oeao~OD00~0000000Qa~~OD~00D00000~0DOOO~Q0D0n0m 
Mapping number~-~~~•••~ooaaoeoo•~~~••••~~••••••~••Q~~··~•••~~•~o•~•••• 
mapping parameteraoco~o~•~·~~o·~·~··~··~o·~~~········~~····~···~·~~··~ 
mother taskoD~OO~OD~~-·~~~~DOODO•ODOQO~~~~O~OODDDD~~~DD~~~GDDOD.DOODDD 

named message ... .,,..,.,.,.,""'""'"'"'"'"'"'"'"'"'"'".,"'"'"'"'"'"'""""""'"' .. "'""'"'~"'· ........ .,.., .. .,., .. .,."'"'"'"'"' 
nested (block activations)ao•·~~OO~g~o·~~-~~DeDODDDD~De~DDD~OO·D~&GeD~ 
normal termination {of a t.asl\).,,."'""'"•"" ........ ..,~~ ...... o.,Q .......... ,..,.,,.,, ............. .. 
not guaranteed reference~~~~~~~ .. ~~~G"'~"'~~~~~m~~ .. ~~~~~~$~Q~~~Q~~m~~~~ti~ 
null statementa~o~a~oOc~~~gOa•oe~~mooc~~ .. 0Q~eg~ee~QGCCeeeoooe~eaee•o•~ 
numeric to bit conversion~~~·Q~-~m~Dq~~·~~~<><OQ'-'<>~C~04QGO~~QG~00~800<!1G. 
numeric to character conversion~~~~""'Q~~~ .... ~o"~"~"'"QQ·~'"~""~"'"""~··~·o 
numerical value ... 000D.OGO~De~•o~esoe•~<>0•~~·0@$0GQWG~~~G~Q~~a~~~-~-~~~ 

open elementDQDOOe~~DD~O~Q~0~000QDe~G~9D0~G~G~D~~~$GO~~~ODO~DDGGQDQO~G 
opening criterion~~·~Q~··~~·g~·~~····~·~$"·~~•o~•~•••~a&~•••••·•~·•@•• 
operand--~~~D$~~~~~-~~aDD~O~GDDDD~D~~OGQO~~DOD~9GO~~Q~e~D~~OQ~~~&O~~~~ 
outer return type {return type of an entry declaration).G~CQ~~~~~Q~ro~• 
OVn fd-statUSaoooaaeoa•~•~••~••~~••~·••~•~~•~••w~••~••~•a~•••••~•G~•~~ 

pa~allel action part E~oroo~o~~C~O~CO~O~G~~~~&~~o~o~·~OGO~~·~~co~~00$~0 
parameter declaration,,,,.,""'"'"'"'"'"'"'"""'"'"""''""'"'.,"'"'"'e"'"""'"'"'"'"'"'"''"."'"'"'"',.,"'.,"'"'"'"''" 
parameter descriptoroooo~~<><>~<>oG~oooo~oo~~sooo~oooeoo~ooo~~.,~~~~~Qo=o<> 
parameter descriptor listoaaoo~ .. ·~~"'o"'"'"'"'"'"~~3"'o~ooq~oG3~,9~•o9o~~~~~G 
parameter identifierooooooo•~s~om••oooo~~o<>~G~<>oooooos~~eooo~oooo~~ooc 
parameter list~e~o~~G~o~o~o~~,.6~uoooo~~~oG~e&~9~0~9~ooos~~~a•~••co9o~o 
parenthesized expression.a•~~aa•m~aoooeoao~•~oe~~···~~~·•oo~•·~·•c•o~• 
passing of denotation/generation;value (dummy)~ ... ooo••o••~e~••~o•a•~o• 
pictured value.~~-@~@~···~~oaeo~o~ooo~e·~··~~···~~~~~~9~=Qe~Q~~~~~o~~~ 
pointer~~~~~~~~~~~o~~~~~~·-~-~~o~~0o~~~·~~~~·~&~•~o~~•~o~~ocooa~•~~~G~ 

pointer qualifiero••o~··•••·~···~~•o•~•Q~••••••••~•~Q•~•·~~o••~o·~o~•c 

4 APPENDIX: GLOSSARY 

2. 2 
8 .. 2. 4 
8. 2. 4 

7 
4.3.3 

4.3.3.1 
4. 3. 2 

7. 3 

12. 7.1 
8 

7 ~ 4 
14. 3 
2. 3 

10. 3. 2 
10. ~- 2 

4. 1. 1 

12. 1 
12.2.3.1 

4. 1. 1 
8. 3. 2 

12. 2. 1 

7. 2 
8. 3. 1 
8.1. 1 
2. 2. 2 
8. J. 1 
2. 1. 3 

2. 4 
8. 3. 1 

10.3.3 
l.f.., 2o 1 
2. 4. 1 



IBM LAB VIENNA TR 25.099 

30 JONE 1969 INFOR~AL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/T 

position (of an inner data set)••••••••••••••·~·•••••••••••••••••••••• 
pre-evaluation of expressions •••••••••••••••••• ~•·•••••••••••••···~··· 
prefix expression •••••••• ~·····~~····································· 
pr~pa~S•~eosooooo~•••••••••••••••~•••••••••••••••••••••••••••••••••••• 
pr1or1tYc••·~~·•=••••o•••••••••••••·~•oG•~····~~~••••••••••••••••••~·· 
priority scheduler.~··············~··········••••••••••••••••••••••••• 
procedure body.m•••••••••••••••••••••••••••••••••••••••••••••••••·•••~ 
procedure body partou•••••••••••••••••••••••••••••••••••·•~••••••••••• 
procedure call •••• ~··········•••••••••••••••••••••••4•·•······~~······ 
programue&•••••••••••••••••e•••••••••••••••••••••••••••••••••••••••••• 
program local ••••••••••••••• ~~···•••••••G••••••••••••e•••••••••••••••• 
programmer named condition •••••••••••• ~•••••&•••••••••••••••····~····· 
proper closing.&~••·••o•••••••••••··~·~···········~·--···~m•*••~·~·~~· 
proper data element ••• a·····~~~·~····•e••··~····•·•···-~····~~·····~-· 
proper data transmission ••••••••••••••• ~·····~·····~·················· 
proper inner data set.5eoooaocooooo•••········~soo~og··········Q······ 
proper interpretationw••••••••o•••••••••••••••••••••••••••••••••••••e• 
proper keyoaoe•~•••••••••••••••••••••••••··~~••••••~•••••••5•••••••••• 
proper open1ng ••••• oeo•••••••••••s••···········•e•••s······~·········· 
proper statement~--~--~-m~e•••••···~·-4••;•~·······~~-~··••••e•••••••• 
proper variable.aee••···········•••o••••••a~············••a•······••ao 
pseudo generation••••••••••••••••••~••••••••••••e•••~•·•••••••••••B••a 

raising of a condition•••••••••••••••••••••~•&s•••••s••••••••••••••••• 
record (data) element •••••••••••••••••••• ooeo•~••••c•···~············· 
reducible entry referenceaOOQOGOOG00900$000009~00&~~0e00~80~00oCD~0400 
reference ••• ~·············Q40004000000ooeeoeo~oeeeaocooooeo•oeo~···~·­
reference listoOee00000e0000GGG00000~GQ0000~~00G~4~00.~0$0000~$$0$0~0~ 
remote format•••••••••••••••••••••·•~··G·~••••~•••e•~···••••••••••o~•• 
representable~s4oe•••·········~·g············•s•••··········~-~-eooeoo 
representation~~G~~-~-~$00G05000~a0500$00090000~B·$008&*0000~~-···~~m~ 
return type (of an entry point) ••••••••••••••••••••••••••••••••••••••• 
return type {of an entry declaration)G$0~0~4~0-0~G~~--~~QO~•uo~~QeGOO~ 
return type {used in epilogue) 0D~G·~··•Ge0-~D~eo•oe•&•#•ae~G~m~~~U~-~~ 

sea lar., .. ., ........... ., ........ 0"' .. "' .................. 0 ~ ....... Cl ........ ~ .......................... "' .. "' .. e .. 

scanning a~gument ............ &=~··~···•••m••••"··~···•••••~••••G•••••.,e•••• 
scanning class .. ~ ................. ~ .... o .............. 4 ...... m.~··•••••e••••••• .. ••·b~· 
scope attribute ... ~~~~-~---·~-~•-e••·~~*~·ad•··~--~--~Q~~~o~~~--~~~~~c• 
semi-complete (I/0-event) ........... ~······~·•Q••o••••••••ee~Q••~·•••••••• 
share ...... 
sharing 

................................................................... qo ........................................ . 

(of a data set) .. 6~ .. ···•~•e••~Q··~~-~···~~~-~~·~·····~· .. ·~·•do& 
s .tze ............................................... GO ........... ~ ..................................................... .. 

standard 
standard 

system action~·-••s••~--~- .. m~-~~·-·-~·~·······s••~··~····•~eo 
system print file name •• ~~~----e~•·•·•··~·-·~~~·-~-~~-~~--··~ 

statement ........ e ... ~~-·o·············-~e•••••e••·········-~·4-·e·~-·~~~~ 
statement label constant .......................... ~ ............... D ........ ea., .......... . 

statement listeeeOG000D0000000B440•Q0000~000000000 .. 00000.00eO~eOD~D~~O 
statement locationa~·······~····~~···•••••••••••••••••••••••···~····~· 
status (of a file union) OG~~e00G00esoeooo000<00G~G·~-~00000G~OOgOeOOOO~ 
status value •• ~oeoooo43~········•·o••••o••~··•e••~·~····~-e~ ...... ~~·~~ 
storage class attribute •• e~•~~··•••e~o••••••·~···~·~•••••••••••••~•••• 
storage mapping functionoaeeOG080000~0G00000000QG08~eeOg~o0-Gea&OO~~-· 
StOrage OVerflOWec~••••ao•~•~•o~ooeeoeeoo•o•eo~~••oo9o0$01~eo~eoooooooo 
stream (data) element•••••···~··~••••••••ec••••••••••··~··••·~•e••••~• 
stream base~-·••o•~······~·~············••••e••··-~~·······•••ooa•<>•<O$ 
string-get (statement)••••••••·~···~··~·~e••••e••••~~••••Q•••••~ ...... . 
string-put (statement)oeGGGGD50 ... 0e00~000GOOGG&•OO~GGGOG0Sb004GObDG0Q~O 

structureco~o~G ... 00~5GO~GD~0&~00G~CCG0 ... GG~G~OOIGDeD•QGGG .. GO~d~G~GOO&Oa~o 
sub-generation~~e•ceoGeeoooeoeO&eeO~GOOOG~eOOOoOIQ~~Oeeo~0~04~~cOCGOOeG 

subscript list (of a reference) ·······~···••a•••••••&eooe•~···•ccao••• 

4.3.3.1 
10. 2. 1 

2.4 
1 

7.2 
7. 1 
2. 1 
2. 1 
8. 3 

2 
3.2 
2.2 

1 2. 3. 2 
4.3.3.1 

12. 5. 3 
4.3. 3.1 

1 
4.3.3.1 

12. 2. 3 
2.3 
2. 2 

13.2 

11. 5 
4.3.3.1 

14. 1 
2.4 

4. 2. 6 
12.6.2.2 

4. 1. 2 
4. 1. 2 
2. 1. 3 
2. 2. 2 
8.2.4 

2. 2. 1 
12.6.4.1 
12.6.4.1 

2. 2. 1 
7.5 

5. 11 
4. 3. 3 
4. 2. 1 

11. J. 1 
12.2.1 

2.3 
2.2 
2. 3 

2. 1. 3 
12.2.3.3 

7.5 
2. 2. 1 
4. 2. 4 
4. 2. 3 

4.3.3.1 
12. 6. 2 
12. 6. 1 
12. 6. 1 
2~ 2 .. 1 
4. 2. 6 
2. 4. 1 

APPENDIX: GLOSSARY 5 



IB~ LAB VIENNA TR 25.099 

INFORMAL INTRO TO THE ABSTRACT SYNTAX AND INTERPRETATION OF PL/I 30 JUNE 1%9 

successful proper closing ••• e••••••••••••••••••••••··~···•••s••••••••• 
successful proper opening •••••••••••••• ~~············~···~·······~···· 
successor.~····~e•o•~••••o•o•••·······························~~······ 

tabulation ••••••••••••••• m~•&~······~•••••·•~•••••••••••••••••·~•••••• 
task ••••••• ~••••••••••eG~•a~••••••~~·~•••••••••••••••••••••••••••••••• 
task 
task 
task 

global······~····~••••••••••••••••••••••••••••·~·····•••••••••••• 
localc•~••••••me•••~•••••••••••••••••••·~•••••••••••••••••••••••• 
setooooeooooooco••••···········································~· 

task-event name ••• ~-~·••e•~~-·~·~·eoo••···············~··············· 
text (component of control information)••••••••••••·§·~~·······~···•·• 
to the left (in aggregates)e~~······~·····~··••••••••••••••••••••••••• 
transmission error flag •• ~••••••••••••••••••••••••••·····~··~········· 
transmission parameter •••••• ~w••~··~··· •••G·~··•••••••••••••••••••• 

uninterruptable action •••••• oG•••&••••···~·••••••••••••••••••••••••••• 
unusual situation {after basic data transmitting action).~•••••••••••• 

valueoouooeceoo••··~·~···••ooo•~·-~······························~·~·· 
value conversio.n ...................... ,., .... ,. .... ,. .......................................................... . 
value representation ••• ~ ..................................... e ..... ~ •••••••••••• 

wait state flag000~0&~~G00000G0&800000000080008000000a0088~000•••••••• 
while groupoaooeaoGOOOOOOOO .. OOBO~oaoooO•oeOaOO•oooo•eooa•Oao~OOOOOIBOOO 

6 APPENDIX: GLOSSARY 

12. 3. 2 
12. 2. 3. 2 

2. 2. 1 
7 

12.6.1.2 
7 

5. 11 
5. 11 

8.2.4 
7. 2 
9. 1 

4. 2 .. 4 
4. 3. 1 

12. 6. 1 

7. 1 
4. 3. 4 

4. 1. 2 
10.3.2 

4. 2. 1 

7. 2 
9. 5 







:.1 
I 


	SMonmouth1607201415011
	SMonmouth1607201336010
	SMonmouth160720133609
	SMonmouth160720133608
	SMonmouth160720133607
	SMonmouth160720133606
	SMonmouth160720133605
	SMonmouth160720133604
	SMonmouth160720133603
	SMonmouth160720133602
	SMonmouth160720133601
	SMonmouth160720142600



