
TECHNICAL REPORT

TR 25.095
30 June 1969

FORMAL DEFINITION OF THE

PL/1 COMPILE TIME FACILITIES

/

M. FLECK

/

LABORATORY VIENNA

N 0 T E

This document is not an official PL/I Language
Specification. For information concerning the
official interoretation the reader is referred to
the PL/I Language Specifications, Form No.
Y33-6003-1.

ABSTRACT

TBM LABORATORY VIENNA,
Austria

FORMAL DEFTNITION OF TH~ PL/I
COMPILE TIME !ACILITIES

by

M.. FL'SCK

This report supplements the formal definition of PL/I by a
formal definition of the PL/I compile time facilities. The
concrete syntax, its abstract re:n:·esentation, and the abstract:
syntax of the PL/I compile time facilities are specified. A
function is defined which maps a concrete PL/I compile time
program into an abstract compile time program and an abstract
machine is given which interprets abstract compile time
programs ..

PL/I
Compile Time
Formal Definition
syntax, concrete
syntax, abstract
21 PROGRAMMING

TR 25,095

30 June 1969

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

IBM LAB VIENNA Te 25.095

30 June 1969 l'ORMAL DEFINITION OF THE PL/I COMPILE TIME ~ACILITIES

This document is an updated version of:

/1/ FLECK, M~u N~UHOLD, E.: Formal Definition of the PL/I Compile Time Facilities.
IBM Laboratory Vieana 6 Techn~ Report TR 25~080, 28 June 1968.

It is part of a series of documents (ULD Version III) presenting the formal
definition of syntax and semantics of PL/I:

121 FLECK, M .. : Formal Definition of the PL/I Compile Time facilities
(ULD Version III).
IB~ Laboratory Vienna, Techno Report TR 25a095, 30 June 1969o

/3/ URSCHLER, G.: Concrete Syntax of PL/I (ULD Version III) •
IBM Laboratory Viennag Techno Report TR 25a096, 30 June 1969o

/4/ URSCHLER, Go: Translation of PL/I into Abstract Text (ULD Version III).
IBM Laboratory Viennau Techn~ Report TR 25o097, 30 June 1969o

/5/ WALK, Ko, ALBER, K .. , FLECK, Moe GOLDMANN, Hoo LAOER, Po 6 MOSER, E., OLIVA, P.,
STIGLEITNER 11 H., 11 ZEISEL, G .. : Abstract' syntax and Interpretation of PL/T
(ULD Version III).
IBM Laboratory Vienna, Techn .. Report TR 25.,098, 30 April 1969

/6/ 1LBER 8 K., GOLDMANN, H .. , LAUER, P~, LOCAS 0 P .. , OLIVA, P .. , STIGLEITNER~ H.,
WALK, K .. , ZEISEL, G .. : Informal Introduction to the Abstract syntax and
Interpretation of PL/I (ULD Version IIT) ..
IBM Laboratory Vienna, Techn .. Report TR 25 .. 099, 30 June 1969 ..

The method and notatiOn used in these documents are essentially taken over from
the first version of a formal definition of PL/I issued by the Vienna
tabora tory:

111 PL/1 Definition Group of the Vienna Laboratory: Formal Definition of PL/I.
IBM Laboratory Viennau Techn .. Report TR 25~071, 30 December 1q66

/8/ ALBER 8 K~: syntactical Description of PL/I Text and its Translation into Abstract
Normal Form ..
IBM Laboratory Viennau TechnQ Report TR 25 .. 074, 14 April 1967~

An outline of the method is given in:

/9/ LUCAS,. Pa, LAUER" P .. , STIGLEITUER 11 H .. : Method and Notation for the Formal
Definition of Programming Languages.,
IBM Laboratory Vienna, Techno Report TR 25~087, 28 June 1968.,

This document also contains the appropriate references to the relevant
literature.. The basic ideas and their application to PL/I have been made
available through several workshops on the formal definition of PL/Iv and
presentations and publications inside and outAide IBM~ The method is
demonstrated by application to an appropriately tailored subset of PL/T in:

/10/ LUCAS, PQ, WALKg Ko: On the Formal Description of PL/To
To be published in Annual Review in Automatic Programming - Volo6 ..
Pergamon Press, New York 1969o

The language defined in the present version is PL/T as specified
Language SpecificationsD Form Noo 133-6003-i, with the addition
handling, input stream and string scanning~ and file variableso

in the PL/I
of att,ention

The present document vill be made subject to validation by the PL/I Lan~uage
Department,. Hursley ..

iii

IBM LAB VIENNA TR 25.095

FORMAL ~EfiNITION OF THE PL/I CO~PILE TIME FACILITIES 30 June 1969

iv

This document 11as prepared by means of auto•ated text-processing sys-tems~
TEXT 360 was used for processing the prose parts. The formatting~ indexinq,
cross-referencing, and updating of formula texts vas handled by means of
FORMULA 360.

FOR"ULA 360 is a syntax-controlled formula processing system which was
developed in the Vienna Laboratory especially to facilitate the production and
maintenance of PL/I Formal Definition documents. The achievements of K.F. KOCH in
the overall design and implementation of FOR~ULA 360 are acknowledged in
particular. Esse~tial components of the systea are due to G. URSCHLER
(syntactical decomposition of formulas) and E. MOSER (formula input checker).
H. Roja and G. Zeisel contributed to the clarification and formulation of ~he
required formatting processes.

Coordination: F. Schvarzenberger, M. Stadler

Technical control: K.F. Koch, E. ~oser, W. Pachl, M. stadler

Data transcription: Miss W. Schatzl, Mrs. H. Deim, and sub-contractors

System support: H. Chladek, G. Lehmayer

IBM LAB VIENNA

30 June 1969 l'OR~AL DEFINITION OF THE PL/I COMPILE 'l'IME FACILITIES

1. INTRODUCTION

2.
2.1
2.2
2.3

NOTATION AND CONVENTIONS
The Class of Objects •
Basic Functions and Predicates
Re-ferencing

3. CONCRETE SYNTAX
3.1 'Generation Ot a ·concrete Program

3.1.1 The normal generation process.
3.1.2 Keyword abbreviations
3 .. 1 .. 3 .Programs in the· 48 character set

j.2 Production Rules .,
3 .. 2 .. 1 Higher level PrOduction rules
3 .. 2 .. 2 Lower level production rules
3.2.3 List of et-words •
3.2.4 Cross-reference index

•.

•.

4. CORRESPONDENCE BETWEEN A CONCRETE PROGRAM AND ITS ABSTRACT REPRESENTATION
4.1 Programs in the 60-Character Set
4.2 Programs in the 48-character Set
4.3 Keyword Abbreviations

5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX
5.1 Predicate Definitions
5. 2 -cross-Reference J:ndex

6. THE TRANSLATOR
6,.'1 COnstruction of the Declaration-Part

6.1.1 Recognition of deClarations and test for multiple declarations
'6. 1. 2 ·construCtion of declarations Q

6.1.2.1 Construction of index lists
·6 .. 1.·2.2 Translation of procedures

~.2·construction of the Text-Part-List.
6.2.1 Translation of declare statements
6.2.2 Translation of statements

6.2.2.1 If-statements
·6.2:2.2 Groups •
·6.2.2;3 Include statements
6.2.2.4 Assignment st~tements
6.2.2.5 Activate statements
6.2.2.6 Deactivate statements

6 .. 2.· 3 'Tr'ansla tion of ex.Pressions

7. ABSTRACT SYNTAX •

8. INFOR~AL INTRODUCTION TO THE INTERPRETATION OP ABSTRACT .COMPILE TIME PROGRAMS
8.1 Structure of Abstract Compile Time Programs

8.1.1 The text-part-list.
8.1 .. 2 The declaration-part

8.1.2.1 Variables
8.1.2.2 Labels •
8~1.2~3 Entry names
8.1.2~4 Procedure bodies

8.-1 .. 3 E:x:pressions

1
1
2
4

1
1
1
2
2
3
3
8

10
11

1
2
4
7

1
1

10

1
2
2
3
4
6
8
9

10
10
11
12
12
13
13
14

1

1
1
1
3
3
3
4
4
5

V

TE~ LA~i 'JTE:NNA

FORMAL n:FINITION 0~ THE PL/I COMPILE TIME FACILITIES

8.2 DynamiC Properties of Identifiers and their Influence on the State
8.2.1 Scope of identifiers •
8.2.2 Denotation of identifiers
8.2.3 The environment and the denotation directory

"8.3 Interpretation of the Declaration-Part
8.4 Interpretation of the Text-Part-List •

8.4.1 Sequential interpretation of text-parts
B.q.2 Nesting of text-part-lists •
8.4.3 The if-statement •
8.4.4 Structure of the control information CI
8.4.5 The goto statement •
8.4.6 The group
8.4.7 The include stateBent

8.5 Reference to runctions •
8.5.1 Reference to a procedure occurring in an expression
8.5.2 Interpretation of the procedure body

8.5.2.1 The dump D.
8.5.2.2 Installation of the body •
8.5.2.3 The return statement •

8.5.3 Reference to a builtin function occurring in an ex~ression
8.6 The Scan and Replacement Mechanism •
8.7 Summary of the State Components and their Properties

8.7.1 The external program directory EP
8.7.2 The result cell R
8.7.3 The unigue name counter ON.
8.7.4 The denotation directory DN
8.7.5 The procedure body directory P
8.7.6 The environment E
8.7.7 The control information CI
8.7.8 The control C
8.7.9 The dump D.
8.7.10 The return information RI

9. THE INTERPRETER •
9.1 Abstract syntax of the Machine States
9.2 Initial State and Computation of the Compile Time Machine
9.3 Program Initialization •
9.4 Sequential In-terpretation of Text-Parts
9.5 Interpretation of Flow of Control Statements

9.5.1 If statement.
9.5.2 Goto statement •
9.5.3 Group
9.5.4 Include statement

9.6 Activate and Deactivate Statements
9.7 Assignment Statement, Expression Evaluation, and Conversions

9.7.1 Assignment statement •
9.7.2 Expression evaluation
9.7.3 Conversions

9. 8 Evaluation of References •
9.8.1 Reference to a procedure
9.8.2 Interpretation of the procedure body

9.8.2.1 Initialization.
9.8.2.2 Return statement •

9.8.3 Reference to a builtin function
9.9 The Scan and Replacement Mechanism

APPENDIX: CROSS-REFERENCE INDEX

vi

TR 25.,195

30 J11ne 1969

7
7
7
9

11
11
12
12
13
13
15
16
16
17
17
18
18
19
20
20
21
22
22
22
23
23
23
23
24
24
24
25

1
1
3
4
6
9
9

10
12
14
15
17
17
18
23
27
28
29
29
32
33
35

IBM LAB VIENNA

30 June 1969 POR~AL DEFINITION OP THE PL/I COMPILE TIME FACILITIES

T'he present paper contains the complete formal definition of the PL/T compile
time facilities. This formal definition sup~lements the formal definition of PL/I
as given in 'the documents of the .PL/I-Definition Group of the Vi~nna Laboratory.

The compile time facilities here are considered to be a higher level language
used to modify programs written in another higher level language (namely PL/I),
before' the compilation of these programs is performed ..

Although the compile time' facilities are part of PL/I, fhe mo.difying "Compile
Time Language" (called eT-Language in the following} may conceptually be separated
from the modified language. In particular, the eT-Language is almoSt unaffected
by changes to PL/I (i.e., PL/I without compile time facilities), most of its
properties being independent of properties of PL/I.

A great number of concepts and characteristics of PL/I, though in a simolified
and restricted form, are also present in the eT-Language. Some other concepts, of
course, are strictly oriented towards program modification, as e.g., the scanning
and replaceMent mechanism for generating the output of a compile time program
execution ..

The principal methods and the notation for the formal definition of the
CT-Lal'lguage have been taken from "Method and Notation for the Formal Definition of
Programming Languagesn /9/ and from the Formal Definition of of PL/I /3,4,5/. The
resulting mechanisms in many respects are simpler than those defining PL/I, but
the various new concepts of the eT-Language required the introduction of new
parts, not to be found in the formalization of PL/I. It is assumed that the
reader is familiar with the methods and notations given in the Formal Definition
of PL/I /3,4,5/ but the study of the formal definition of PL/I itself is not
necessary.

The cOmplete definition of PL/I (including compile time facilities) now is
achieved by a two step mechanism, working on a concrete PL/I program including
compile time statements:

(a) The concrete text is considered to be a program written in the eT-Language.

(b)

The formal definition of the CT-Language as found in the present document._
is used for the interpretation. of that et-program. The outcome of the

.interpretation is a list of character values to be found in the result cell
(see chapters 8,9).

The resulting text of steo (a) is considered to be a concrete PL/I orogram
without compile time facilities, and the formal mechanisms for PL/I, a!=:
defined in the PL/I Translator /4/ and the PL/I Interpreter /5/ are
applied.

As for PL/I, the whole defining process for the eT-Language is oartit-ion~d into
a number of sequentially applicable steps.

(1) The concrete syntax (chapter 3) defines a class of concrete ct-prog~ams by
a set of formal production rules. The rules are written in an extended
Backus notation as defined in /.3/.

{2} In order to remain within the range o.f methods and concepts used throughout
the formal definition, a concrete compile time program which is a s+.ring of
concrete PL/I characters is transcribed into a list of character values,
i.e •• of abstract elementary objects representing uniquely the concr.ete
PL/I characters ..

(3) The list of character values (representing a concrete compile time nrogram)
is mapped by the function parse onto a structured object., called the
"abstract representation" of the concrete cof!lpile tillle prograM. (This
object may be seen as an abstract form of the parsing tree of the c~ncrete

1. TNTRODUCTION

IBM LAB VIENNA TR 25.09')

FORMAL DEriNITION OF THE PL/I COMPILE TIME FACILTTIES 30 June 1969

program). The structure of these objects is described in chapter~ by a
set of predicate definitions, called "abstract representation of the
concrete syntax" ..

(4} In chapter 6 the function translate is specified, which translat_@.s the
abstract representation of a concrete et-program into an "abstract
ct-progral!'! 11 • The main task is the recognition of all declarations in t.he
concrete et-program and the test for multiple declarations. For th~ other
components of a concrete et-program, the translation consists essentially
of a one-to-one mapping from the "parsing-tree" into the abstract
et-program. The structure of an abstract et-program is described in
chapter 7 by a set of predicate definitions, called the "abstract svntax".
{Although the specification of the abstract syntax is redundant - because
it is given implicitely by the function translate - it is not only a great
help towards the intelligibility of the formal definition but also very
useful for the treatment of language questions of t.heoretical na tur~.)

(5) In chapter 9 the formal definition of the interpreter is given by the
definition of an abstract machine which is characterized by the set of its
possible states and its state transitions. The behaviour of the abstract
machine which in its initial state contains an abstract compile tiMe
program defines the interpretation of that abstract et-prograM.

The above described concept of partitioning the definition process has
consequences for the way in which invalid et-programs are rejected. The concrete
synt.a x defines a class of concrete et-programs including, of course, programs
which have no interpretation. To some degree, the restrictiveness of t.he ~ynt.ax
is arbitrary. A certain class of syntactically correct programs are discarded by
the translator. However, in order to make the abstract syntax together with the
interpreter to a self-contained system, the interpreter relies only on the
correctness of the abstract programs it interprets according to the abstract
sy~tax. This means that no use is made in the interpreter of the fact that
certain programs, although correct according to the abstract syntax, could not
have resulted from the translator.

The exclusion of invalid programs by both the translator and the interpreter in
most cases is performed by conditional expressions occurring in the definition
with an alternative "proposition -- error'' (in function definitions) or
''proposition -- ~rror" (in instruction definitions) for the invalid cases.

A computation of an abstract et-program is successfully terminated only if the
control component of the last entered machine state contains the specia 1 11 ob ject"
Q. After a successfully ter~inated computation the result component of the
machine state holds a list of character values, the outcome of the interpretation,
which is to be considered a concrete PL/I program without coMpile time facilities.

2 1. INTBODUCTION

IBM. LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I CCMPILE TIME FACILITIES

Throughout the present document the notation and conventions introduced in

section 2 .. 1 and 2 .. 2 of /.3/ and

chapter 1 of /5/

are used without any special reference.. However, the following sections
constitute a slight modification of some parts of chapter 1 of ;s;.

2.1 THE CLASS OF OBJECI~

The class of objects used in the present document ~s characterized by the class
of simple selectors and the class of elementary objects.

The following sim.ple .selectors are used:

(1) Selectors denoted by strings of small letters, digits, and hyphens,
prefixed by s-

(2) The range of the following functions:

s(i) for is-intg-val (i}

elem(i) for is-intg-val (i)

mk-id(identifier) for is-identifier(identifier)

af (scope, id) for (is-* V is-ad) (scope) & is-id (id)

sel (idp) for is-id-pair (idp)

The ranges of these one to one functions are mutually disjoint.

(3) The infinite class succ 0 of simple selectors which are used to select the
immediate sub-trees of a control tree (cf~ 1o3 .. 2 of /5/)"

From these selectors the semigroup of all composite selectors is formed,
including the identity function I, which is the unity with respect to functional
composition"

The following classes of elementary objects are used, which are mutually
disjoint:

(1) Objec-ts denoted by strings of capital letters, hyphens, and digits,. without
definition place, and the special objects *, <>, w.

(2) Integer values 8 satisfying the predicate is-intg-val.

(3} Character values, satisfying the predicate is-char-val, but not mentioned
under (1) (extralingual characters) ..

{4) composite selectors ..

(5) Finite sets of objects and the empty set {} ..

2. NOTATION AND CONVENTIONS 1

IB!1 LAB VIENNA '1''1 25. 09'i

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

This section defines all functions whose ranges are simple selectors, as
mentioned in the foregoing section, and some predicates over element.ary objects.

(1) s(i) =

for:is-intg-val(i)

(2) is-intg-val(i1) & is-intg-val(i2) & 11 • 12 ~ s(i1) # s(i2)

(J) elem (i) =

for:is-intg-val{i)

Note: This function maps integer values into simple selectors, called
1 unique names'. It is partially described by the both following axioms.

{4) is-intg-val(i1) & is-intg-val(i2) I i1 # 12 ~ elem(i1) 'elem(i2)

(5) is-intg-val (i) =- is-n•elem (i)

(6) 1s-n =

Note: This predicate characterizes the range of the function elem.

(7) is-pointer =

Note: This predicate describes the subclass of composite selectors, which is
composed of simple selectors of the classes elem (i) and s (i). The .identity
function I is included.

(8) mk-id (cvl) =

for:is-identifier(cvl)

Ref.: is-identifier 9-36(144)

Note! This function maps special lists of character values, namely identifiers,
into •abstract identifiers•. The function is partially described by the
both following axioms.

In some applica~iOns of the function mk-id a shorthand notation is used for
the argument, e.g.,

mk-id(INDEX) stands for mk-id(<I-CHAR,N-CHAR,D-CHAR,E-CPAR,X-CHAR>).

2 2. NOTATION ANt CONVENTIONS

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

{9) is-identifier(cv11) & is-identifier(cvl2) & cvl1 '/< cvl2 ::;)
mk-id(cvl1) + mk-id(cvl2)

Bef.: is-identifier 9-36(144)

(10) is-identifier{cvl) ~ is-id•mk-id (cvl)

Ref.: is-identifier 9-36(144)

(11) is-id =

Note:. This predicate characterizes the range of the function mk-id.

(12) af (scope,id) =

for: (is-* v is-ad) (scope) & is-id (id)

Note: This •address function' maps an abstract identifier together with its scope
information onto an •address• under which the denotation of the identifier
is stored in the denotation directory of the CT-"achine. The scope
information indicates whether the identifier is global in tbe program under
consideration {*), or is local to a procedure body, in which case the
address of the body is used as scope information.. This one to one -function
insures the sta_tic storage class of et-variables ..

(13) (is-* v is-ad) (scope1) & (is-* ~ is-ad) (scope2) & is-id(id1) & is-id(id2) &
af·(scope1,id1) = af(scope2,id2} , scope1 = scope2 & id1 = id2

{14) (is-• vis-ad) (scope) & is-id (id) ~ is-ad•af(scope,id)

(15) is-ad

Note: This predicate characterizes the range of the function af.

(16) sel (idp) =

for:is-id-pair(idp)

Note: This function maps a pair of identifiers onto a selector.

(17) is-id-pair(idp1) & is-id-pair (idp2) & idp1 * idp2 ~ sel (idp1) c# sel (idp2)

(18) is-intg-val =

Note: This predicate characterizes the class of all (positive, zero, and
negative) integer values.

2. NOTATION AND CONVENTIONS 3

IBM LAB VIENNA T~ 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 J\lne 1969

All function and instruction names occurring in a formula are referenced under
the heading 1 Ref~:', where a reference has the following notation:

name chapter page (formula-number}

There are the following exceptions to this rule:

(1) All names defined in chapter of /5/ are not referenced.

(2) All names defined in chapter 2 are not referenced.

(3) All names defined in the abstract representation of concrete syntax
(chapter 5) and abstract syntax (chapter 7) are not referenced.

(4} All names defined in a sub-chapter are not referenced throughout this
sub-chapter.

4 2. NOTATION AND CONVENTIONS

IBM LAB VIENNA TR 2S.09S

30 June 1969 'FORMAL DEFINITION OF TBE PL/I COMPILE TIME FACILITIES

This Chapter· contain·s- .the syn-tactic description· ·of- .concrete P·Lji co-mpile time
·, :progra··ms,. Called· the- 11 concrete syntax".,·

The concrete syntax is
modified Backus notation.
"Concrete Syntax of PL/I"

given by a set of formal production rules,
The syntax ·and semantics .Of thJs notation

/3/.

written in a
is defined in

The generation process for a concrete compile time p··rogram, as "Well as the
rules for the 48 character set version, slightly differ -fro.:f!l the corresponding
sections of /3/ and hence are also given below~

3: 1.'1 'THE NORMAL GENERATION PROCESS

Since PL/I 'haS ·co·ntext "depend-ent ··rule:s for ·the ··insertion -.of blanks and
comments, which cannot be expressed by production rules of the modified Backus
form, the generation of a .concrete compile t-ime program will be performed in four
steps:

(1} starting with :the 'notation variab-le "p-ro"gram·n ·rep-lacements are to be
perform_ed. by using the higher level production rules listed in 3. 2. 1. The

·-proce·ss is -termir-ated if none ·of the higher level production rules is
.-fu'rth-er app-licable. The resulting te)(t con-sists cf "-ct-w.ords" -which are
listed in 3. 2. 3.

(2) Now, "spaces" are inserted into the generated text a·ccording the following
rule!

The 21 et-words

-= + - * I () , ; : & I > < I I >= <= :-> -.= .,(

are "delimiters".. All other et-words with exception of the notation
variable "text" are "non-delimiters 11 .. Between two adjacent non-delimiters
the notation variable "spacen must be inserted.. Preceding and following
the notation variable 11 text" -the insertion of "spacell i~ not allowed ..
Between all other combinations of et-words tbe notation variable "suace"
may be inserted.

'With the' product·io"n ··rule

space ::= (blank comment }•••

replacements are to be performed.

(3) The replacement is continued by application ·of the lover level production
rules listed in 3 .. 2 .. 2 and the implementation dependent lower level
production rule for the notation variable .nextralingual-character11

•

(4} Finally all notation constants are split· ·up into their single symbols. The
generation ends up with a text consisting of the 60 character PL/I
alphabet:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z $ ~ t

0 1 2 J 4 5 6 7 8 9 blank • - * ·I (' . . ' . & > < ? %.

and the implementation dependent extralingual characters.

3. CONCRETE SYNTAX 1

IBM LAB VIENNA T~ 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

3.1.2 KEYWORD ABBREVIATIONS

The compile time facilities contain the possibility of using
keyword-abbreviations. This facilty is not given in section 3.2 because it would
lengthen unnecessarily the production rules.

The following abbreviations may be inserted instead of the corresponding
keywords. The necessary replacement must be done before step 3 of the generation
process takes place.

ACTIVATE
CHARACTER
DEACTIVATE
DECLARE
PROCEDURE

3.1.3 PROGRAMS IN THE ~8 CHARACTER SET

ACT
CHAR
DEACT
DCL
PROC

The alternative use of a restricted character set for writing compile time
programs is possible. The character set consists of the following 48 characters:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z $

0 2 3 ~ 5 6 7 8 9 blank ~ + - • I . '
To generate a program in the 48 character set in addition to the process

described above the following rules have to be obeyed:

(1) 14 et-words have to be interpreted as notation variables. They must be
replaced by means of the following higher level production rules during
step (1):

: := < : := LT

=: = '. >~ ::= GE

% ::= /I <~ .. - LE

~ :: = NOT ~> :: = NG

& ::= AND ~< ::= NL

l ::= OB ~~ :: = NE

> :: = GT ll ::= CAT

For the insertion of spaces the et-word!'; n " and 11 ,." are handled as
delimiters and the other resulting et-words as non-delimiters.

{2) From the lower production rules (3 .. 2. 2) for

letter
alphameric-character
string-character
text-character
string-part-char
comment-symbol

the following 12 symbols have to be deleted

m # - ; : & 1 ~ > < ? %

(3) The 1 1 sequences of letters

NOT, AND, OR, GT, LT, GE, LE, NG, NL, NE, CAT

2 3. CONCRET~ SYNTAX

IB.11 LAB VIENNA TR 25.095

.30 Ju~e 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

are "reserved words", i.e., no notation variable 11 identifier" must finally
be replaced by any of them.

(4) The lower level production rule for text has to be replaced hy

text : :=

(*•••] J /••• J ([*••• I /•••] { text.-character I string-part } I

[*••• 1 /] { blank 1 comaent } } • •• (*••• J /•••]

where from the production rule for text-character the character "blank" is
deleted.

Note: By that way the terminal strings of text do not contain substrings with the
structure {/space outside string-parts and comments.

J~~-ggQ~OCTION RULES

3.2.1 HIGHER LEVEL PRODUCTION RULES

(1) program •• -

text (sentence text }•••]

(2) sentence : :=

statement 1 declare-statement 1 procedure

(3) statement ::=

% (labellist] { if-statement 1 unconditional-statement }

[identifier ~ }•••

(5) if-statement : :=

if-clause statement J if-clause balanced-statement % ELSE statement

(6) if-clause ::=

IF expression % THEN

(7) balanced-statement : :=

% [labellist] [if-clause balanced-statement % ELSE balanced-statement 1
unconditional-statement }

(8) unconditional-statement : !=

group J goto-statement J include-statement 1 assignment-stateAent
null-statement I activate-statement J deactivate-statement

3. CONCRETE SYNTAX 3

IBM LAB VIENNA T~ 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

(9) group : :=

simple-group 1 iterated-group

(10) simple-group : :=

DO ; program end-clause

(11) end-clause : :=

% [labellist] END (identifier]

(12) iterated-group : :=

DO do-specification p.rogram end-clause

(13) do-specification

identifier expression [BY expression [TO expression] 1
TO expression [BY expression]]

goto-statement

{ GOTO I GO TO) identifier

(15) include-statement : :=

INCLUDE (, • library-specification••• }

{16) library-specification : :=

[identifier] (identifier)) identifier

(17) assignment-statement ::=

identifier expression

(18) expression

expression-six expression 1 expression-six

(19) expression-six : :=

expression-five expression-six & expression-five

{20} expression-five : :=

expression-four 1 expression-five comparison-operator expression-four

(21) comparison-operator

> J >= J = I < I <= J ~> I ,= I ,<

4 3. CONCRETE SYNTAX

IBM LAB VIENNA TR 25.095

FORMAt DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(22} expression-four : :=

expression-tchree 1 expression-four 11 expression-three

(23) expression~ three : :=

expression-two J expression-three { + 1 - } expression-two

{24) expression-two : :=

expression-one expression-two { * I I expression-one

{25) expression-one : :=

primitive-expression . + '~ - 1 ... } expression-one

(26) pr imi ti ve-ex pression :: =

{ e~pression) 1 reference j constant

(27) reference : :=

identifier { ([11 e expression ell e })

(2B) null-statement : :=

' ' ;

(29) activate-statement : :=

ACTIVATE { , 0 activation&0Q }

(30) activation .: :=

identifier (RESCAN I NORESCAN]

(31} deactivate-statement .::=

DEACTIVATE { , $ identi£iere0~ }

(32) declare-statement : :=

% (labellist] DECLARE { , • declarationG•o }

(33) declaration ::=

{ identifier 1 ({ , <ll identifiere>a~OZI })] attribute

(34) attribute ::=

CHARACTER I FIXED I ENTRY

3. CbNCRETS SYNTAX 5

IBM LAB VISNNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(35) procedure : :=

% labellist PBOCEDUBE [parameterlist] RETURNS ({ CHARACTER I
FIXED }) ; [p-sentence• ••) end-clause

(36) parameter list : :=

{ { , • identifier••• })

(37) p-sentence : :=

p-statement J p-declare-statement

(38) p-statement ::=

[labellist] { p-it-statement 1 p-unconditional-statement }

(39) p-it-statement ::=

TR 25.095

30 June 1969

p-if-clause p-statement J p-if-clause p-balanced-statement ELSE p-statem~nt

(40) p-if-clause : :=

IF expression THEN

(41) p-balanced-statement ::=

[labellist] { p-if-clause p-balanced-st.a tement .ELSE p-balanced-statement
p-uncondi tional-statement }

(42) p-uncondi tional-statement : :=

p-group 1 goto~statement
return-statement

(43) p-group : :=

assignment-statement 1 null-sta~ement 1

p-simple-group I p-iterated-group

(44) p-simple-group : :=

DO : [p-sentence•••] p-end-clause

(45) p-end-clause : :=

(labellist] END [identifier]

(46) p-iterated-group : :=

DO do-specification [p-sentence•••] p-end-clause

(4 7) return-statement : !=

RETURN { expression

6 3. CONCRETE SYNTAX

IBM LAB VIENNA TR 25. 1)95

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

{48) p-declare-statement : :=

[labellist] DECLARE [, @ p-declarationGeao }

{49) p-declaration : :=

(identifier ({ , • identifier••• } } } p-attribut:e

(50) p-at tribute : :=

CHARACTER I FIXED I BUILTIN

3~ CONCR~TE SYNTAX 7

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

3.2.2 LOWER LEVEL PRODUCTION RULES

(51) identifier : :=

letter [alphameric-character•••]

(52) letter : :=

A
p

B l C
Q 1 R

D
s

E
T

(53) alphameric-character

letter I digit I _

(5q l digit ::=

r
u

G
V

H
w

I
X

J
y

0 l 1 2 I 3 I q J 5 1 6 I 7 I 8 I 9

(55) constant

integer 1 character-string 1 bit-string

(56) integer : :=

digit•••

(57) character-string

' [string-character•••] •

{58) string-character : :=

alphameric-character I blank 1 ''
Ill I,J.I:I:I&Ill~

(59) bit-string : :=

' [bi t• • •] ' B

(60) bit : :=

0 I 1

(61) text • ·-

>

K
z

L
$

+ I -
< I ? * %

N I 0 I
t

I I
extralingual-character

[*•••] 1 I ••• I ([*••• 1 I •••] { text-character 1 string-part 1
comment J }••• [*••• I I •••]

(62) text-character : :=

alphameric-character I blank I = I + I - I (I) 1 , I • I
;1:1&111~1>1<1?

8 3. CONCRETE SYNTAX

IBM LAB VIENNA TR 25~095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(63) string-part ::=

v [string-part-charoe•] '

(64) string-part-char : :=

alphameric-character I blank I = I + I - I * I I I (I) I
, I • I ; I : l & i 1 I , I > I < I ? I I I extralingual-cbaracter

(65) comment

/ * [{ [*•••] comment-symbol 1 I } •••] *••• I

(66) comment-symbol : :=

alphameric-character I blank 1 = I + I - I (I) I , I • I
; I : I • I & I 1 I , I > I < I ? I % I extralingual-character

(67) extra lingual-character

Note: This production is implementation defined.

3e CONCRETE SYNTAX q

IBM LAB VBNNA

7DBMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

3.2.3 List of CT-words

1J 3. CONCRETE SYNTAX

<
<=
(

•
l
ll
&

•

I

' %
>
>=

ACTIVATE
BUILTIN
BY
CHARACT3R
constant
DEACTIVATE
DECLARE
DO
ELSE
!ND
ENTRY
fiXED
GO
GOTO
identifier
IF
INCLUDE
NORESCAN
PROCEDURE
RESCAN
RETURN
RETURNS
text
THEN
TO

TR 25.095

30 June 1969

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

3.2.4 CROSS-REFERENCE INDEX

This index lists all terminals and non-terminals of the concrete syntax. For
all names all instances of use in a production are given. For non-terminals the
defining production is indicated by an underlined reference. A reference has the
form 3-yy(~z), where yy is the page number within chapter 3 and zz is the number
of the production.

3. CONCBETE SYNTAX 11

IBM LAB VIENNA TR 25.095

?ORMAL DEFINITION or THE PL/I COMPILE TIME FACILITIES 30 June 1969

<

<=

+

1

11

&

$

•

I

>

>=

?

..
=

A

ACTIVATE

••••••••••••• 3-8(53)

• 3- 8 (58) '3- 8 (6 2) ' 3-9 (64) '3-9 (66)

• 3-4 (21) '3- 8 (58) ' 3-8 (6 2) ' 3- 9 (6 4) '3- 9 (66)

•••••• - •••••••••• 3-4(21)

3-4(16) ,3-5(26) ,3-5(27) ,3-5(33),3-6(35) ,3-6(36) ,3-6(47) ,3-7(49) ,3-8(58) ,3-8(62).
3-9 (64). 3-9 (66)

• 3- 5 (23) • 3- 5 (25) • 3- 8 (58) • 3- 8 (62) '3- 9 (6 4) • 3-9 (66)

.3-4(18),3-8{58),3-8(62),3-9(64),3-9(66)

••••••••••••••••• 3-5(22)

.3-4(19) ,3-8(58) ,3-8(62) ,3-9(64) ,3-9(66)

• • • • • • • • • • • • • • • • • 3-8 (52)

.3-5(24) ,3-8(58),3-8(61) ,3-9(64) ,3-9(65)

J-4(16),3-5(26),3-5(27),3-5(3~,3-6(3",3-6(36),3-6(47),3-7(49),3-8(58),3-8(62),
3-9 (64). 3-9 (66)

3-4 (10) ,3-4(11) ,3-4 (12) ,3-4(14) ,3-4(15) ,J-4(17) ,3-5(28) ,3-5(29) ,3-5(31} ,3-5(32).
3-6 (35) ,3-6 (44) ,3-6 (45). 3-6 (46). 3-6 (47). 3-7 (48) ,3-8 (58). 3-8 (62) ,3-9 (64). 3-9 (66)

.3-5(25) ,3-8(58) ,3-8(62) ,3-9(64) ,J-9(66)

.3-4(21)

• 3-4 (21)

.3-4(21)

.3-5(23),3-5(25),3-8(58),3-8(62),3-9(64),3-9(66)

• • • • • 3- 5 (24) • 3- 8 (58) • 3- 8 (61) '3- 9 (64) '3- 9 (65)

3-4 (15) '3- 5 (2 7) • 3- 5 (29) • 3- 5 (31) • 3- 5 (32) • 3- 5 (33) • 3- 6 (3 6) • 3-7 (4 8) • 3-7 (4 9} • 3-8 (58) •
3-8(62) ,3-9(64) ,3-9(66)

.3-3(3) ,3-3(5),3-3(6) ,3-3(7),3-4(11),3-5(3~,3-6(35),3-8(5~,3-9(64),3-9(66}

.3-4(21),3-8(58),3-8(62),3-9(64),3-9(66)

••••••••••••• 3-4(21)

.3-8(58),3-8(62),3-9(64},3-9(66)

3-3(4) ,3-8(58) ,3-8(62) ,3-9(64) ,3-9(66)

• 3-8 (52)

• 3-8 (52)

.3-8(5n ,3-8(59),3-9(63) ,3-9(66)

••••••••••••• 3-8(58)

• 3-4 (13) • 3-4 { 17) • 3-4 (21) • 3- 8 (58) • 3- 8 (6 2) • 3- 9 (64) • 3-9 (66)

.3-8(52)

.3-5(29)

12 3. CONCRETE SYNTAX

IBM LAB VIENNA

30 June 1969

activate-statement

activation . ~ ..

alphameric-character

a:::signment-sta tement

attribute

B

balanced-statement

bit

bit-string

blank

BUILTIN

BY

c

CHARACTER

character-string

comment

comment-symbol

comparison-operator

constant

D

~EACTIVATE

deactivate-statement

declaration

DECLARE

declare-statement

digit

DO ••

do-specification

E

ELSE

END

end-clause

ENTRY

TR 25.095

FORMAL DEFINITION OF TRE PL/I COMPILE TIME FACILITIES

. 1::2.11~' 3- 3 (8)

• 3- 5j.JQJ., 3-5 (29)

-l::!lJ53J..,3-8(51) ,3-8(58) ,3-8(62) ,3-9(64) ,3-9(66)

3-~111J..,3-3(8),3-6(42)

• 3-5 (3!!.J.., 3-5 (33)

• 3-8 (52) ,3-8 (59)

3-3 (]J_,J-3 (5) ,3-3 (7)

• 3- 8!6QJ.. 3-8 (59)

·l::!ll22J.,3-8 (55)

.3-8(58),3-8(62),3-9(64),3-q(66)

• 3-7 (50)

• 3-4 (13)

.3-8(52)

• 3-5 (3 4) '3- 6 (35) • 3-7 (50)

• 3-8 !57).,3-8 (55)

• 3-9 t§.:;!J.., 3-8 (61)

• 3-2illJ.,3-9 (65)

• 3-4Q1J..,3-4 (20)

.J-8 (52J..,3-5 (26)

.3-8(52)

.3-5(31)

3-5 (3jl_,3-3 (8)

• 3-5 (31J.., 3-5 (32)

.3-5(32) ,3-7(48)

• 3-5Jl.Jl.,3-3 (2)

.].-8J2!!.J.,3-8 (53)' 3-8 (56)

. 3-. (1 0) • 3-4 {12) • 3- 6 (..) • 3-6 (46)

-l::!!.J11J.,3-4(12),3-6(46)

••••••••• 3-8(52)

• 3-3 (5) • 3- 3 (7) ' 3-6 (3 9) '3- 6 (41)

•••••••• 3-4(11) ,3-6(45)

• 3- !!.111J., 3- 4 (1 0) • 3-4 (12) ' 3-6 (35)

••••••••••••• 3-5{34)

expression l::!!.ll!ll. 3-3 (6) • 3-4 (13) • 3- 4 (17) • 3- 4 (18) • 3- 5 (26) '3- 5 (2 7) '3- 6 (4 0) , .3-6 (47)

3. CONCRETE SYNTAX 13

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OP THE PL/I COMPILE TIME FACILITIES 30 June 1969

expression-five

expression-four

expression-one

expression-six

expression-three

expression-two •

extra lingual-character

FIXED

G

GO

GOTO

go to- statement

H

T

.J-41~Q1,3-4(19),3-4(20)

.J-51111,3-4(20) ,3-5(22)

.3-5125} ,3-5(24) ,3-5(25)

-1::.'!1121. ,3-4 (1 B) , 3-4 (19)

•• 3-5 123} ,3-5(22) ,3-5 (23)

·1~lli.3-5 (23). 3-5 (24)

·l=2J.!i11.3-8(58) ,3-9(64) ,3-9(66)

••••••••• 3-8(52)

• 3-5 (34)' 3-6 (35) ,3-7 (50)

• 3-8 (52)

.3-4(14)

• 3-4 (14)

3-!!1lli,3-3(8) ,3-6(42)

• 3-41.21,3-3 (8)

.3-8(52)

• 3-8 (52)

id ent Hi er ·1=llill., 3- 3 (4) , 3- 4 (11) , 3- 4 (13) , 3-4 (14} , 3- 4 (16) , 3- 4 (17) , 3-5 {27} , 3-5 { 30} ,
3-5(31},3-5(33},3-6(3~,3-6(45),3-7(49}

I? • • • • •••• 3-3 (6}. 3-6 (40)

if-clause 3-3 (6), 3-3 (5) ,3-3 (7)

if-statement • 3-3.121,3-3 (3)

INCLUJE •••• 3-4(15)

include-statement 3-4 !121_,3-3 (8)

integer .3-8!56) ,3-8(55)

iterated-group]-4 !111,3-4 (9)

J .3-8(52)

K • 3-8 (52)

L • 3-8 (52)

label list

letter ~ .

1=11!!1· 3- 3 (3} • 3-3 {7) • 3- 4 (11} ' 3- 5 (32} • 3-6 (35} '3-6 (38) • 3-6 (41} • 3- 6 (4 5) '3-7 (4 8)

.3-8 (5£)_,3-8(51) ,3-8(53)

1i bra ry- speci fie a tion ·l=!!11.§l,3-4 (15}

.3-8(52)

.3-8(52)

• 3-5 (30)

M

N

NORESCAN

14 3. CONCBETE SYNTAX

IBM LAB VIENNA

30 June 1969

null-statement

0

p

p-attribute

p-balanced-statement

p-declaration

p-declare-statement

p-end-cla use

p-group

p-if-clause

p- if- sta t.ement

p-iterated-group

p-sentence . ~

p-simple-group

p-statement

p-unconditional-statement

parameterlist

primitive-expression

procedure

PROCEDURE

program

Q

R

reference

RESCA N

R3TURN

return-statement

RETURNS

s

sentence

simple-group

statement

string-character

string-part

TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

J:.2JlJH .• 3-3 < 81 , 3-6 < 42)

• 3-8 (52)

.3-8(52)

.3-71~Ql_,3-7 (49)

.3-6J!!JJ.,3-6(39) ,3-6(41)

• 3-7[4_2}_,3-7 (48)

• 3-1J!!Jll.,3-6 (37)

.J:.2J.'!2l.· 3-6 (44) • 3-6 (46)

••••• 3-6(4_;jl_,3-6(42)

.J-6 (!!.Ql, 3-6 (39) '3-6 (41)

.3-§JlJll,J-6(38)

• 3-6J!!fjl,3-6 (43)

• 3-2J37J., 3-6 (35) • 3-6 (44) '3-6 (46)

••••• J-6(44l_,3-6(43)

.J-6J1Jll., 3-6 (37) '3-6 (39)

.J-6(4lJ.,3-6(38) ,3-6(41)

.J:.§j]§l,J-6 (35)

.3-2Jl§l.,3-5 (25)

3-6(35}_,3-3(2)

• • • • 3-6 (35)

3-1.J1l,3-4 (10). 3-4 (12)

• 3-8 (52)

• 3-8 (52)

• 3-5 !211· 3-5 (26)

• 3-5 (30)

.3-6(47)

.J.:.§illJ.,J-6 (42)

.3-6(35)

• 3-8 (52)

• 3-3 !£1_, 3-3 (1)

3-Q (1Ql_,3-4 (9)

3-3JJ.J., 3-3 (2) ,3-3 (5)

• 3-.!lJ2Jll.,3-8 (57)

• J:.2Jfi;)_J., 3- B (61)

3. CONCRETE SYNTAX 15

IBM LAB VIBNNA

?ORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

string-part-char

T

text

text-character

THEN

TO

u

uncondi tiona 1-sta teme nt

V

w

X

y

z

0

2

3

4

5

6

7

8

9

16 3~ CONCRETE SYNTAX

TR 25.095

30 June 1969

.3-W!J..,3-9(63)

• 3-8 (52)

3-8 C.§1l,3-3 (1)

• 3-JUffi,3-8(61)

3-3 (6) ,3-6 (40)

.3-4(13),3-4(14)

.3-8(52)

3-1~.3-3(3),3-3(7)

• 3-8 (52)

.3-8(52)

.3-8(52)

• 3-8 (52)

• 3-8 (52)

• 3-8 (54). 3-8 (60)

.3-8 (54) ,3-8 (60)

.3-8(54)

• 3-8 (54)

.3-8(54)

• 3-8 (54)

• 3-8 (54)

• 3-8 (54)

• 3-8 (54)

• 3-8 (54)

J:~,!l LU VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF tHE PL/I COMPILE TI~E FACILITIES

The "abstract representation" of a concrete program iS an object, whose
structure representS the syntactical structure of the concrete program and whose
elementary components are character values which correspond to the concrete
characters of the concrete programe One may think of the abstract representation
as the parsing tree of the concrete program~

The abstract representation of a concrete program satisfie~ the predicate
is-c-program~ This predicate is defined in chapter 5 by a set of predicate
definitions, called «abstract representation of concrete syntax".

The abstract representation of the concrete syntax may also be considered as a
normal form with regard to the two different production systems~ corresponding to
the 60- and to the 48-character set version. ?or instance, the relatio11aJ
operator "greater than" is designated in the 60-chara6tdr set version by the
character n>", in the 48-character set version by the character t¥G 11

, followed by
the characte.r ~fT 11*.. In the abstract representation this relation is designated by
the elementary object uGT"!I independently from the concrete representation~

It should be noted that the abstract representation of a concrete .Program
contains solely information relevant for the semantics of the program, Le~,
"spaces'"' {blanks and comments) are not contained.. Hence, one abstract represented
program corresponds to an infinite set of equivalent concrete programs, which
differ in their spaces, according to point 3 of the generation process defined in
section 3~ 1, 1 ..

Each predicate definition out of the abstract representation of the concrete
syntax is closely related to a production ou-t of the 60-character set production
system~ This one to one mapping is described in Appendix I of /4/G (One could
map in a similar way the 48-character set production system onto a set of
predicate definitions with the head, say is-c-program-48, such that
is-c-program-48 ~ is-c-program)~ ,

In the following two parsing functions are defined, namely "parse" and
"parse-48n, mapping a concrete program of the 60- and of the 48-character set,
respectively, onto its abstract representation. The argument of these :funct·ions
is not a concrete program itself which is a string o"f concrete PL/T characters,.
but rather a representation of the concrete program as a list of elementary
objects satisfying the predicate is-char-vale The correspondence between the
individual cOncrete characters and the character values is. given in Appendix I of
/4/.

No constructive algorithm is given for the parsing functions parse and
parse-48,. because a special algorithm would le-ad to a loss of univer-sality without
contributing any information with 'tegar'd to the formal definition~ parse and

"parse-48 are· defined as t.he inverse of the functions generate and generate-48,
respectively, providint;· the unambiguity of the concrete syntax.

In order to ·avoid accumulation of confusing parenthesis in expr€ssions of the
form ('s (1)) • (s (n)) sp (t) the following abbra-viation is· used throughout chapters 4
and 6: ·

sn = s (n) for is-intg-val(n)

Using this convention the expression above reads; s1 •snop(t)~

4. CORRESPONDENCE BITWEEN A CONtREf! PRdGRi~ ANd iTS ABStRACT REPRESENTATION

IBM LAB VIENNA

FORMAL JEFINITION OF THE PL/I COMPILE TIME FACILITIES

Mej:gu,g£ii.Qle~:

is-char-val-list (txt) a concrete program

30 June 1969

is-c- program { t) the abstract representation of a concrete prpgram

is-intg-val(i) & i > 0

is-intg-val(j) & j > 0

is-pointer (P)

Sn = s (n)

(1) parse(txt) =

(l.t) (txt • generate (t))

(2) generate (t) =

[lin-3 (x) x E insert-space•lin-1(t)J

(3) lin-1(t) =

n.
text 0 - CONC (lin-2•s,_ •sn•s2 (t) -textn)

""'

where:
text 0 = (is-Q•sl. {t) -- <~r>,

T -- <w>-<s1 (t)>-<•>)
textn ; (is-O•s2 •sn•s2 ,t) -- <v> 6

T -- <w>-<s 2 •sn•s 2 (t)>-<•>}
n0 = slength•s2 (t)

Note: The function lin-1 planes t into a list o.f those components w.bich represent
syntactical units that may not be interrupted by spaces (blanks and
comments). This is done by planing the structure given by selectors of tbe
class s(n) or s-del, but not affecting the structure given by selectors of
the class elem(n). (This limit corresponds in a concrete program to the
lirn.i t between higher and lower level synta.lC). Furthermore, the dummy
object "~rtt is inserted between a sentence and a text, or between two
sentences, according to the main structure oft (cf. 5-1(2)), indicating
where the insertion of space is also forbidden (cf. rule 2 of the
generation process, defined in 3.1.1).

(4) slength (x) =

(Vi) (is-U• (s (i)) (X)) -- 0

T -- (t.i) (~is-U•(s(i)) (X) & (Yj) (j > i ~ is-D•(s(j)) (X)))

2 4. CORRESPONDENCE BETWEEN A CONCRETE PROGRAM AND ITS ABSTRACT REPRESENTATION

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEPINITION OF THE PL/I COMPILE TIME FACILITIES

Note: This function is defined for any object x. If x has no s(i}-ccmronent it
yields 0, else the maximum index of an existing s(i)-component •.

(5) lin-2 (x) ;

is-Q (x) <>

slength(x) = 0 -- <x>

is-c-simple-group(x) -- <s1 {x)>-<s 2 (x)>-lin-1•s3 {x)-lin-2•s4 (x)

is-c-iterated-group(x) -~ <s1 (x)>-lin-2•s2 (x}-<s3 (x)>-lin-1•s 4 (x}-lin-2as 5 {x)

no
T -- lin-2•s1 (x)- CONC (lin-2•s-del (x) -un-2•sn (x))

n=2

where:
n 0 ; slength (x)

Note: Groups outside procedures contain an abstract represented program, hence
the function lin-1 must be applied again.·

(6) insert-space (X)

is-<>(x) -- (<>)

oead (X) ; w insert-space•tail(x)

is-c-delimiter•head~x) v is-c-delimiter•head•tail(x) --

[mklist(head(x) ,y,z) (is-c-space v is-0) (y) & z .e. insert-space•tail(x)}

T -- {mklist (head {x), y, z) 1 is-c-space (y} & z E. insert-space•tail {X)}

for:is-list(x)

Note: The function insert-space intersperses its argument, which is a list, with
spaces. In general it yields the infinite set of all lists resulting from
this interspersion satisfying the condition that at least between all pairs
of consecutive rion-delimiters spaces are inserted, unless the object "tr11

occurs, which h~s to be omitted and no interspersion occurs ~here.

(7) is-c-delimiter (x) =

X <
{EQ,PLUS,MINUS,ASTER,SLASR,LEFT-PAR,RIGHT-PAR,COMMA,SEMIC,COLON,
AND,OR,NOT,GT,LT,<OR,OR>,<GT,EQ>,<LT,EQ>,<NOT,GT>,<NOT,EQ>,<NOT,LT>}

(8) is-c-space

{<elem {1) :is-BLANK v is-c-comment>, ••• }

q. CORRESPONDENCE BETWEEN A CONCRETE PROGRAM AND ITS ABSTRACT REPRESENTATION 3

IBM LAB VIENNA T~ 25,095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

(9) mklist (a, b, list) =

~· (<elem (1) :a>, <elem (2) : b>) -list

for:~is-U(a) & is-list(list)

{10) lin-3 (x) =

is-Q(x) -· <>

is-char-val{x) -- <x>

Co
T -+ CONC lin-3•elem(i,x)

i=-1

where:
i 0 = ~~~ (~is-G•elem{i,x) & {Vj) (j > i ~ is-n•elem(j,x)))

Note: This function linearizes its argument into a list of elementary objects.
This is done by planing the structure given by selectors of the class
elem (i).

For programs in the 48-character set some additional tests are necessary. On
the one hand the context dependent property is proved that the 11 nreserved words"
may not be used as identifiers (cf. rule 3 of section 3.1.3), on the other hand,
the abstract representation of concrete syntax which is eguivalent to the
60-character set production system, must be restricted to reflect the both
48-character set limitations, specified by rules 2 and 4 of section 3.1.3, which
are context free.

(11) parse-48(txt) =

(~t) (txt • generate-48 (t))

(12) generate-48 (t) =

~ (3p) (is-c-identifier•p (t) &
(is-c-NOT•lin-3•p(t) v is-c-AND•lin-3•p{t) v is-c-OR•lin-3•p(t) v

is-c-GT•lin-3•p(t) v is-c-LT•lin-J•p(t) v is-c-GE•lin-3•p(t) v
is-c-LE•lin-J•p(t) v is-c-NG•lin-3•p(t) v is-c-NL•lin-3•p(t) v
is-c-NE•lin-3•p(t) v is-c-CAT•lin-J•p (t})} - ...

[lin-3(x) 1 x E. insert-space-48•replace-48•lin-1-48(t} &
~{3i) (elem(i,lin-3(X)) •

{COMM-AT,NUMBER-SIGN,BREAK,SEMIC,COLON,AND,OR,NOT,GT,LT,QOEST,PERC})}

T error

Ref.: lin-3 4-4(10)

Note: cf. points 1 to 3 of section 3.1.3.

4 4, CORRESPONDENCE BETWEEN A CONCRETE PROGRAM AND ITS ABSTRACT REPRESENTATION

IB.M LAB VIENNA TR 25.095

30 ,June 19Q9 FORMAL DEFINITION OF .THE PL/I COMPILE TIME FACILITIE~

(13) lin-1-48(t) =

no
text-48•s 1 (t)- CONC (lin-2-48•sJ.•sn•s2 {t) ""text-48•s2 •sn•s 2 (t))

n"l\

where:
n0 = slength•s2 {t)

Ref.: slength 4-2 (4)

(14) text-48{x) =
is-!l (x) <•>

....., {3i) (is-SLASH•elem (1 ,el1) & is-SLASH•elem {2,el1) &
{is-BLANK v is-c-comment) (el 2)) --

T --- error

where.:
el~
el2 -=

(elem (1)) • (elem (i)) •elem {1, x)
(elem (2)) • (elem (i)) •elem (1, X)

for:is-c-text (x)

Note: The restriction on text is necessary for reasons of unambiguity;
cf~ point 4 of section 3.1.3.

(15) lin-2-48 (x) =

is-Q (X) -~ <>

slength(x) = 0 -- <x>

is-c-iterated-group(x) -•

T _ _.. 'lin-2-ll8•.s1 (li)- CONC. (lin:..2-48•s-del (x) "lin-2-48•sn (X))

"""

~len(/th (x)

Ref.:

4. CORRE$PONDENCE BETWEEN A CONCRETE PROGRAM AND ITS ABSTRACT REPRESENTATION 5

IB11 LAB VIENNA

FORMAL DLFINITION OF THE PL/I COMPILE TIME fACILITIES

(16) replace-48 (x) =

lo
LIST replace-48-1•elem (i,x)

>.~1

where:
i 0 = length (x)

(17) replace-48-1 (X) =

is-COLON (X) <POINT, POINT>

is-SE M IC(x) (COMMA, POINT>

is-PERC(x) -- <SLASH,SLASH>

is-NOT(x) <N-CHAR,O-CHAR,T-CHAR)

is-AND(x) <A-CHAR,N-CHAR,D-CHAR>

is-OR(X) (0-CHAR,R-CHAR>

is-GT(x) <G-CHAR,T-CHAR>

is-LT(x) <L-CHAR,T-CHAR>

X= <GT,EQ> <G-CHAR,E-CHAR>

X= <LT,EQ> <L-CHAR,E-CHAR>

X = <NOT,GT> <N-CHAR,G-CHAR>

X = <NOT,LT> <N-CHAR,L-CHAR>

X= (NOT,EQ> <N-CHAR,E-CHAR>

X = <OR,OR> -- <C-CHAR,A-CBAR,T-CHAR>

T -• X

(18) insert-space-48 (x) =

is-<>(x) -- (<>)

head (x) = • insert-space-48•tail{x)

head•tail(x) = w -- (<head(x)>-~ J z £ insert-space-4B•tail•tail(x)}

is-c-delimiter-48•head(x} v is-c-delimiter-48•head•tail(x) --

T• 25.095

30 June 1969

[mklist {head (x), y ,z) 1 {is-c-space v is-Q) (Y) & z < insert-space-48•tail (x) J

T -- (mklist(head(x) ,y,z) I is-c-space(y) & z < insert-space-48•tail(x)}

for:is-list(x)

Ref.: mklist 4-4 (9)
is-c-space 4-3 (B)

6 4. COBRESPONDENCE BETWEEN A CONCRETE PBOGRAM AND ITS ABSTRACT REPRESENTATION

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(19) is-c-delimiter-48 (x)

is-c-delimiter(x) v x = <POINT,POINT> v x = <COMMA,POINT>

Ref.: is-c-delimi ter 4-3 (7)

Note: cf. point 1 of section 3.1.3.

!Ll_KEYWORD ABBREVIATIONS

To include the possibility of abbreviating keywords one has to replace the
predicates is-c-(name] (5-1 (1)), where [name] is one of the concrete keywords
listed in the following table, throughout the sections 5 and 6 by the
corresponding predicates is-c-abbr-[name] de.fined by:

(20) is-c-abbr-[name) =

is-c-[name J v is-c-[ahbr-naae)

where: [name] and [abbr-name] are pairs of names given by the following table

[name) [abbr-name)
-----If---­
ACTIVATE ACT

CHARACTER CHAR

DEACTIVATE DUCT

DECLARE DCL

PROCEDURE PROC

4. CORRESPONDENCE BETWEEN A CONCRETE PROGRAM AND ITS ABSTRACT REPRESENTATION 7

IBM ·LAB VIENNA ·TR 25.095

.30 June 1969 FORMAL DEFINITION OF THE PL/I CCMPILE TIME FACILITIES

The abstract representation of the concrete syntax is a set of predicate
definitions which together define the predicate is-c-program. Objects satisfying
this predicate are valid arguments for the function translate defined in
chapter 6" and for the function generate defined in section 4 .. ·1.,

The abstract representation of the concrete syntax is closely related with the
production rules of the concrete syn·tax defined in section 3 .. 2.

Predicates of the form is-c-[name] where (name] is a string of capital letters
occurring in the sequel are defined by the following scheme: ·

(1) is-c-[name] =

(<elem (1) :is-char.i.> v ~ .. ~,
<elem (n) :is-cbarn>}

~here: char 1 ,~~-,char0 denote the character values corresponding tc the co~crete
characters of the string forming [name], and n (n>1} is the length·of the
string,.

Note: Example: is-c-IF -=
(Celem (1) :is- I-CHAR>,
<elem {2) :is-F-CHAR>)

(2) is-c- program =

(<s(1) :is-c-text> 11

<s (2) : is-n v
{<s (1} : (<s (1)::: is-c-sentence>,

<s(2):is-c-text>)>, •••)>)

{3) is-c-sentence =

is-c-statement v is-c-declare-statement v is-c-procedure

(4) is-c-statement =

(<s (1) :is-PERC>,
<s (2) :is-Q v is-c-labellist>,
<s(3) :is-c-if-statement v is-c-unconditional-statement>)

(5) is-c-labellist -=

(<s (1}:: {<s{1) :is-c-identifier>,
Cs(2) :is-COLON>)>, •••)

5. ABSTRACT REPRESENTATION OF COICIETE SYNTAX

IBM LAB VIENNA

FORMAL DEFINITION OP THE PL/I COMPILE TIME FACILITIES

(6) is-c-if-:statement =

{<s (1) :is-c-if-clause>,
<s(2) :is-c-statement>} v

(<s{1) :is-c-if-clause>,
<s {2) : is-c-balanced-statement>,
<s {3) :is-PERC>,
<s(4) ;is-c-ELSE>,
<s(5) ;is-c-statement>)

(7) is-c-if-clause =

(<s (1) ; is-c-IF>,
<s{2) :is-c-expression>,
<s(3) ;is-PERC>,
<s (4) ;is-c-THEN>)

(8) is-c-balanced-statement =

(<s(1) ;is-PERC>,
<s {2) :is-Q v is-c-labellist>,
<s(3);(<s(1);is-c-if-clause>,

<s(2) :is-c-balanced-statement>,
<s(3);is-PERC>,
<s(4);is-c-ELSE>,

30 June 1969

<s(S) :is-c-balanced-statement>) v is-c-unconditional-statement>)

(9) is-c-uncondi tional-statement =

is-c-group v is-c-goto-statement v ls-c-include-statement. v
is-c-assignment-statement v is-c-null-statement v is-a-activate-statement v
is-c-deactivate-statement

(10) is-c-group =

is-c-simple-group v is-c-iterated-group

(11) is-c-simple-group =

(<s (1) : is-c-DO>,
<s(2) ;is-SEMIC>,
<s (3) :is-c-program>,
<s(4) :is-c-end-clause>)

(12) is-c-end-clause =

(<s(1) ;is-PERC>,
<s (2) :is-a v is-c-labellist>,
<s(3) ;is-c-END>,
<s (4) :is-Q v is-c-identifier>,
<s (5) ;is-SEMIC>)

(13) is-c-iterated-group =

(<s (1) ;is-c-DO>,
<s (2) : is-c-do-specifica tion>,
<s (3) :is-SEMIC>,
<s (4) :is-c-program>,
<s (5) : is-c-end-clause>)

2 5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX

IBM -LAB VIENNA TR 25.095

30 June 1969 FORMAL]EFINITION OF THE PL/I COMPILE TIME FACILITIES

{14) is-c-do-specification =

{<s (1) : is-c- identifier>,
<s(2):is-EQ>r
<s {3) ~ is-c-expression> .v
<s (L~) :is-Q v

(<s(1j :is-c-BY>~'
<s(2) :is-c-express.ion>"
<s (3) :is-Q v

(<s(1) :is··c-TO>,
<s (2) : is-c-expression>) >) v

(<s (1) :is-c-TO>,
<s{2) ~is-c-expression>u
<s (3} ;:is-Q v

(<s(1) :is-c-BY>,
<s(2):is-c-expression>}>}>)

{15) is~c-goto-statement =

(<s (1} :is-c-GO'l'O v
(<s (1) :is-e-GO>,
<s{2) :1s-c-TO>)>,

<s (2} ~ is-c·~ identifier>"
<s {3) :is-SEHIC>)

(16) is-c~include-statement

{<s (1) :is-c-INCLUDE>o
<s {2): (<s-del:is-COMMA>e-

<s {1) : is-c-library- specification>,.,,. ..) >,.
<s !3) :is-SEMIC>)

{17) is-c-library- specification

{<s {1) :is-Q v is-c-identifier>u
<s (2} :is-LEFT-PAR>u
<s (.3} ·:is-c-identifier> 9

<s (4) !is~RIGFIT-PAR>) v is-c-identifier

{18) is-c-assignment-statement =

(<s{1} :is-c-identifier>,
<s (2) :is-EQ>,
<s { 3) :: is-c-expression>,
<s {4) :is-SEMIC>)

{ 19) !s-e-expression =

is-c-expression-six v
(<s (1} : is~c-expression> 5'

<s (2) :is-OR>,
<s (3} :is-c-exp:cession-six>}

(20) is-c-expression-six =
is-c-expression-five v
(<s(1} :is-a-expression-six>,
<s {2) :is-AND>g
<s {3) :is-c-expression-five>)

5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX 3

:?Cq,:~AL DZI'INITIO~ OF THE PL/I COL'lPILE TII1E FACILITIES

{21) is-c-expression-five =

is-c-expression-four v
(<s{1)!is-c-expression-five>,
<s (2} : is-c-comparison-operator>,
<s(3):is-c-expression-four>)

(22) is-c-comparison-operator .::=

is-GT v is-EQ v is-LT v
(<elem (1) : is-GT>,
<elem (2) :is-EQ>) v

(<elem(l) :is-LT>,
<elem (2) :is-EQ>) v

(<elem (1) :is-NOT>,
<elem (2) : is-GT>) v

(<elem (1) :is-NOT>,
<elem (2) : is-EQ>) v

(<elem (1) :is-NOT>,
<elem (2) :is-LT>)

(23) i!::;-c-expression-four -:::

is-c-expression-three v
{<s{1} :is-c-expression-four>,
<s (2) ; (<elem (1) :is-OR>,

<elem(2):is-OR>)>,
<s (3) :is-c-expression-three>)

(24) is-c-expression-three =

is-c-expression-two v
(<s(1) :is-c-expression-three>,
<s(2) :is-PLUS vis-MINUS>,
<s(3) :is-c-expression-two>)

(25} is-c-expression-two =

is-c-expression-one v
(<s {1} : is-c-expression-two>,
<s(2);is-ASTEB vis-SLASH>,
<s (3) : is-c-expression-one>)

{26) is-c-expression-one =

is-c-primitive-expression v
{<s {1} :is-PLUS v is-MINUS v is-NOT>,.
<s(2) :is-c-expression-one>)

{2 7) is-c- primitive-expression =

{<s {1) :is-LEfT-PAR>,
<s (2) : is-c-expression>,
<s (3} .:is-RIGHT-PAR>) v is-c-reference v is-c-constant

q S~ ABJT~ACT REPRESENTATION OF CONCRETE SYNTAX

TR 25.095

30 June 1969

IBM <LAB 'VIENNA TR 25.095

30 June' 1969 FORMAL DEFINITION OF THE PL/I CCMPILE TIME FACILITIES

(28) is-c- refer-ence =

{<s(1) :is-c-identifier>v
<s (2) : is-Q v

(<s(1) :is-LEFT-PAR>,
<s(2): (<s-del:is-COMMI>,

<s(i}:is-c-expression>,oo~)>,
<s{J) :is-RIGHT-PAR>)>)

{29) is-c-null-statement

is-SEMIC

(30) is-c-activate-statemeot =
(<s(1) :is-c-ACTIVATE>~
<s (2) :. {<s-del ~ is-COMt1A> u

<s{'!} :is-c-activation>., .. o..,)>,.
<s {3) :is-SEI~IC>)

{3 'l) is-c-acti vation ::::

{<s (1) : is-c-identifier> u

<s {2) :is-Q v is-.c-BESCAN v is-c-NORESCAN>}

(32} is-c-deactivate-stat.ernent =

{<s (1) :!s-e-DEACTIVATE>,
<s (2): (<s-del: is~COMU>, •

<s(1) :is-c-identifier>,~~-)>,
<s (3) : is-SEMIC>)

{33) is-c-declare-statement =

{<s (l} :is-PE:RC> 17

<s(2} :is-Qv is-c~labellist>~
<s (3) :is-c-DECLARE>Q
<s (4) : {<s-del~ is-CO!!MA>,

<s{1):is-c-declaration>q~o~)>u

<s (5) : is-SE~liC>)

{34) is-c-declaration =

{<s {1): is~c-identifier v
{<s(1) :is-LEFT-PAR>,
<s{2): t<s-del:is-COi"'MA>,

<s{1):is-c-identifier>,QQ~)>u
<s(3) 'is-RIGH~'-PAR>) >,

<s (2) :is-c-at tribute>}

(35~ is-c-attribute =

is-c-CHABACTEB v is-c-FIXED v is-c-ENTRY

5. ABSTRACT ~EPRESENTITION OF CO~CRETE SYNTAX 5

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(36) is-c-procedure =

(<s (1) :is-PERC>,
<s(2):is-c-labellist>,
<s(3) :is-c-PROCEDURE>,
<s(4):is-Q v is-c-parameterlist>,
<s (5) :is-c-RETURNS>,
<s(6) :is-LEFT-PAR>,
<s(7) :is-c-CHARACTER v is-c-FIXED>,
<s(8) :is-RIGHT-PAR>,
<s (9) :is-SE~Ic>,
<s (10) :is-ll v

(<s{1) :is-c-p-sentence>, •••)>,
<s(11):is-c-end-clause>)

(37) is-c-parameterlist =

(<s(1) :is-LEFT-PAR>,
<s(2):(<s-del:is-cOMMA>,

<s (1) :!s-e-identifier>, •••)>,
<s(3) :is-RIGHT-PAR>)

(38} is-c-p-sentence =

is-c-p-statement v is-c-p-declare-statement

(39) is-c-p-statement =
(<s(1) :is-n v is-c-labellist>,
<s{2) :is-c-p-if-statement v is-c-p-unconditional-statement>)

(40) is-c-p-if-statement =

(<s (1) :is-c-p-if-clause>,
<s(2) :is-c-p-statement>) v

(<s(1):is-c-p-if-clause>,
<s{2):is-c-p-balanced-state•ent>,
<s(J):is-c-ELSE>,
<s(4):is-c-p-statement>)

(41) is-c-p-if-clause =

(<s (1) :is-c-IF>,
<s(2):is-c-expression>,
<s (3) :is-e-T HEN>)

(42) is-c-p-balanced-statement =

(<s (1} :is-n v is-c-labellist>,.
<s(2):(<s(1):is-c-p-if-clause>,

<s (2) :.is-c-p-balanced-statement>,
<s(3):is-c-ELSE>,

TR 25.095

30 June 196 9

<s(4) :is-c-p-balanced-statement>) v is-c-p-unconditional-statement>)

(43) is-c-p-uncondi tional-statement =

is-c-p-group v is-c-goto-statement v is-c-assignment-statement v
is-c-null-statement v is-c-return-statement

6 5. ABSTRACT REPRESENTATION OF CONCRETE SYNT.AX

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PLji COMPILE TIME FACILITIES

(44) is-c-p-group =

is-c-p-simple-group v is-c-p-iterated-group

{45) is-c-p-simple-group =

(<s {1) :is-c-DO>,
<s (2) :is-SEMIC>,
<s(3) :is-Qv

(<s(1) :is-c-p-sentence>. o) >~r
<s{4) :is-c-p-end-clause>)

(46) is-c-p-end-clause ::::

(<s (1): is-Q v is-c-labellist>u
<s (2) : is-c- END>.,.
<s(3) :is-Q v is-c-identif.ier>,
<s (4) :is-SEMIC>)

{47) is-c- p-i tera ted-group ::::

(<s{1) :is-c-DO>,
<s(2} :is-c-do-specification>,
<s (3) :is-SEMIC>,
<s {4-} :is-U v

{<s(1} :is-c-p-sentence>,,)>,
<s (5) :is-c-p-end-clause>)

{4-8) is-c-return-statement =
(<s (1) :is-c-RETURN>,
<s(2) :is-LEFT-PAR>,
<s (3} :is-c-expressi-on>t'
<s (4) :is-BIGHT-PAR>,
<s (5) :is-SEMIC>)

(49) is-c-p-declar_e-sta tement =

(<s (1) :is-Q v is-c-labellist>,
<s (2) : is-c-DECLARE>,
<s (3) : (<s-del: is-COMMA>,

<s {i} : is-c-p-declarat ion>, .. "~)>,
<s (q) :is-SEMIC>)

(50} is-c-p-decla·ration =

{<s{1) .:is-c-id-entifier v
(<s(1) :is-LEFT-PAR>,
<s(2}:(<s-del:is-COMMA>,

<s{1):is-c-identifier>,~~~)>,
<s(3):is-RIGHT-PAR>)>,

<s(2) :is-c-p-attribute>)

(51) is-c-p-attribute ::::

is-c-CHARACTER v is-c-FIXED v is-c-BOILTIN

5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX 7

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME EACILITIES

(52) is-c-identifier =

{<elem(1} :is-c-letter>,
<elem {2) :is-Q v

(<elem{l) :is-c-alphame~ic-character>, •••)>)

(53) is-c-letter ;

TR 25.095

30 June 1969

is-A-CHAR v is-B-CHAB v is-C-CHAR v is-D-CHAR v is-E-CHAR v is-F-CHAR v
is-G-CHAR v is-H-CHAR v is-I-CHAR v is-J-CHAR v is-K-CHAR v is-L-CRAR v
is-M-CHAR v is-N-CHAB v is-0-CHAR v is-P-CHAR v is-Q-CHAR v is-R-CHAR v
is-S-CRAR v is-T-CHAR v is-U-CRAR v is-V-CHAR v is-W-CHAR v is-X-CHAR v
is-Y-CHAR v is-Z-CHAR v is-DOLLAR v is-COMM-AT v is-NUMBER-SIGN

(54} is-c-alphameric-character =
is-c-letter v is-c-digit v is-BREAK

(55) is-c-digit =

is-0-CHAR v is-1-CHAR v is-2-CHAR v is-3-CHAR v is-4-CHAR v is-5-CHAR v
is-6-CHAR v is-7-CHAB v is-8-CHAR v is-9-CHAR

(56) is-c-constant -=

is-c-integer v is-c-character-string v is-c-hit-string

{57) is-c-integer =

(<elem (1) :is-c-digit>, •••)

(58} is-c-character-string -=

(<elem (1) :is-APOSTR>,
<elem (2) : is-n v

(<elem(1):is-c-string-character>, •••)>,
<elem (3) :is-APOSTR>)

(59) is-c-string-character =

is-c-alpbameric-character v is-BLANK v
(<elem (1) :is-APOSTR>,
<elem(2) :is-APOSTR>) v is-EQ v is-PLUS v is-MINUS v is-ASTER v is-SLASR v

is-LEFT-PAR v is-RIGHT-PAR v is-COMMA v is-POINT v is-SEMIC v is-COLON v
is-AND v is-OR v is-NOT v is-GT v is-LT v is-QUEST v is-PERC v
is-c-extralingual-character

(60) is-c-bit-string =

{<elem (1) :is-APOSTR>,
<elem (2} .:is-0 v

(<elem (1) : is-c-bit>, •••) >,
<elem(3}:is-APOSTR>,
<elem(4) :is-B-CHAR>)

(61) is-c-bit =

is-0-CHAR v is-1-CHAR

8 5. ABSTRACT RLPRESENTATION OF CONCRETE SYNTAX

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL EEFINITION OF THE PL/I COMPILE TIME FACILITIES

(62) is-c-text

is-ASTER>~., .. ,.) v
is-SLASH>, .. ~ ..) v

is-n "'
(<elem (1)
(<elem(1)
(<elem (1) {<elem (1): {<elem (1) :is-0 v

(<elem(1):is-ASTER>, •••) v
(<elem (1) :is-SLASH>, •••)>,

<elem(2) :is-c-text-character v is-c-str.ing-part v
is-c-comment>)> 1 oo.)>,

<elem (2): is-Q v
(<elem (1) :is-ASTER>, •••) v
(<elem (1) :is-SLASH>, •••)>)

(63) is-c-text-character =

is-c-alphameric-character v is-BLANK v is-EQ v is-PLUS v is-MINUS v
is-LEFT-PAR v is-RIGHT-PAR v is-COMMA v is-POINT v is-SEMIC v is-COLON v
is-AND v is-OR v is-NOT v is-GT v is-LT v is-QUEST

(64) is-c-string-part =

(<elern {1) :is-APOSTR>,
<elem (2) :is-Q v

(<elem(1):is-c-string-part-char>,.~.)>,
<elem (3) :is-APOSTR>)

(65) is-c-string-part-char :::

is-c-alphameric-character v is-BLANK v is-EQ v is-P'LUS v is-MINUS v is-ASTER v
is-SLASH v is-LEFT-PAR v is-RIGHT-PAR v is-COMMA v is-POINT v is-SEMIC v
is-COLON v is-AND v is-0~ v is-NOT v is-GT v is-LT v is-QUEST v is-PERC v
is-c-extralingual-character

(66) is-c-comment =

(<elem (1) :is-SLASH> (I
<e le m {2) :is-ASTER>,
<elem (3) :is-Q v

(<elem {1): (<elem (1) :is-11 v
{<elem(1) :is-ASTER>,)>,

<elem (2} : is-c-comment-symbol>) v is-SLASH>,~)>,
<elem(4): {<elem(1) :is-ASTER>, •••)>,
<elem {5) :is-SLASH>)

(67) is-c-comment-symbol =

is-c-alphameric-character v is-BLANK v is-EQ v is-PLUS v is-MINUS v
is-LEFT-PAR v is-RIGHT-PAR v is-COMMA v is-POINT v is-SEMIC v is-COLON v
is-APOSTR v is-AND v is-OR v is-NOT v is-GT v is-LT v is-QUEST v is-PERC v
is-c-extralingual-character

(68) is-c-extralingual-character =

Note: This predicate is implementation definedG It is equivalent to the
predicate is-extralingual-char o£ the abstract syntax~

5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX 9

IBM LAB VIENNA TR 25.095

PORMAL DEFINITION OF THE PL/I CO.MPILE TIME FACILITIES 30 June 1969

This index lists all names of the abstract reoresentation of the concrete
syntax with the exception of the selector generating functions s and elem.

Formulas are referenced by the form 5-yy{~z), where
within chapter 5 and zz is the number of the formula.
hold:

yy is the page number
The following conventions

(1} Por all names all instances of use in a formula are given. The defining
formula is indicated by an underlined reference.

{2) Names of the form is-c-[name], where (name] is a string of capital letters,
are defined by the schema given in 5-1 (1).

(3) Occurrences of names of the form is-[name], where (name) is a strin~ of
capital letters, are listed under the entry [name].

10 5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX

IBM LAB VIENNA

30 June 1969

A-CHAR

AND

APOSTR

ASTER

B-CHAR

BLANK

BREAK

TR 25.095

FORMAL DEFINITION OF TilE PL/I COMPILE TI!lE FACILITIES

••••••••••••••••• 5-8"(53)

• 5-3 (20) '5-8 (59)' 5-9(63) '5-9 (65) '5-9 (67)

• 5- 8 (58) ' 5-8 (59) '5-8 (6 0) ' 5-9 (6 4) '5-9! 67)

• 5-4 c 251 , s- 8 1591 , s~ 9 16 21 , s- 9!65 l , s- 9 166 l

••••••••• 5-8(53) ,5-8(60)

• 5-8 (59) '5-9 (63) ' 5-9 (65) ' 5-9 (6 7)

. .5-8(54)

C-CHAR .5-8(53)

COLON 5-1 (5), 5-8 (59), 5-9 (63) , 5-9 (65), 5-9 (67)

COMM-AT ••• • • • •••••••••• 5-8 {53)

COMMA 5-3 (16) ,5-5 (28), 5-5 (30), 5-5 (32), 5-5 (33), 5-5 (34), 5-6 (37), 5-7 i 49), 5-7 (50) ,5-8(59),
5-9 (63) '5-9 (65) '5-9 (67)

D-CHAR • 5-8 (53)

DOLLAR • 5-8 (53)

E-CHAR • 5-8 (53)

'lQ • • • 5-3 (1 4) , 5-3 (18) , 5- q (22) , 5-8 (5q) , 5-9 (6 3) , 5-9 (6 5) , 5-9 (67)

~-CHAR .5-8(53)

G-CHAR • 5-8 (53)

GT • • • 5-4(22) ,5-8(5q) ,5-9(63) ,5-9(6S) ,5-9(67)

H-CHAR • 5-8 {53)

I-CHAR ~5-8 {5 3i

is-c-[name]

is-c-ACTIVATE

is-c-acti va te-state me nt

is-c-acti va tion

is-c-alohameric-character

is-c-assignment-statement

is-c-attribute 0 ~ <> ~ e

is-c- balanced- statement

iB-c-bit .. ., . .,

is-c-bit-string

is-c-BOILTIN

is-c-BY

is-c-CHARACTER

~ ~111L

.5-5(30)

2=21JQJ.,5-2 (9)

• 5-2111!.' 5-5 (30)

-2=!H2!!l, 5-8 (52), 5-8 (59) , 5-9 (63), 5-9 (65), 5-9 (67)

• 5-1111!1.,5-2(9) ,5-6 (43)

••• 5-5!12!_,5-5 (34)

2-2Jlll_,5-2(6) ,5-2(8)

. s-JW!ll.. s-s (50)

• 5-llilll_, 5-8 (56)

.5-7(51)

.5-3(14)

• 5-5 (35) '5-6 (36) '5-7 (51)

5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX 11

IBM LAB VIENNA

FORMAL DrPINITION 07 THE PL/I COMPILE TIME FACILITIES

is-c-character-string

is-c-comment • • • •

is-c-comment-symbol

is-c-comparison-operator

is-c-constant

is-c-DEACTIVATE

is-c-deactivate-statement

is-c-declaration

is-c-DECLARE ••
is-c-declare-statement

is-c-digit

is-c-DO

is-c-do-specification

is-c-ELSE

is-c-END •

is-c-end-clause

is-c-ENTBY •••

TR 25.095

30 June 1969

• .2- 8 J~.§l_, ~- 8 (56)

• 5-2J§.§.l.. 5-9 (62)

• .2=21.21l. • 5-9 (6 6)

·.2=.!!12n. s-4 1211

• 5-8 {561_, 5-4 (27)

•••• 5-5(32)

.2-snn. 5-2 <9>
• 5-.2il.!!l.. 5-5 (33)

• 5-5 (33). 5-7 (49)

• S-5 (311., 5-1 (3)

·2-81.2.21.,5-8(54),5-8(57)

.5-2(11),5-2(13),5-7(45) ,5-7(47)

•••• 5-311.!!1_.5-2(13) ,5-7(47)

.5-2(6),5-2(8) ,5-6(40) ,5-6(42)

• ••••••• 5-2(12) ,5-7(46)

·2=l11ll.,5-2(11) ,5-2(13) ,5-6(36)

••••••••••••• 5-5(3~

is-c-expression .2=1illl.. 5-2 (7), 5-3 (14), 5-3 (18), 5-3 (19),5-4 (27), 5-5 (28) ,5-6 (41) ,5-7 (48)

is-c-expression-five

is-c-expression-four

is-c-expression-one

is-c-expression-six

is-c-expression-three

is-c-ex~ression-two

is-c-extralingual-character

is-c-riXED

is-e-GO

is-c-~OTO

is-c-goto-statement

is-c-grout) •..

._2-4(21) ,5-3(20) ,5-4(21)

·1=Hl.ll.,5-4(21) ,5-4(23)

.5-!!jl§.l.,S-4(25) ,5-4 {26)

.5-3(2QJ.,5-3(19),5-3(20)

·1=.!!fl!!l.,5-4(23) ,5-4(24)

·2=.'!1.£~,5-4(24) ,5-4(25)

·2=21§..§1_,5-8(59) ,5-9(65) ,5-9(67)

.5-5(35) ,5-6(36) ,5-7 (51)

.5-3(15)

.5-3(15)

s-m~.s-2 t9l,5-6 (43)

•••• 2-2jjQl_,5-2(9)

i~-c-identifier • 2=!U2ll..5-1 (5) ,5-2 (12). s- 3 (14). 5-3 (15). 5-3 (17). 5-3 (18). 5-5 (28) • s-s (J1) •
5-5(32) ,5-5(34) ,5-6 (37) ,5-7(46) ,5-7(50)

is-c-rP ••• 5-2(7) ,5-6(41)

is-c-if-clause 2=2 (71_,5-2 (6) ,5-2 (8)

12 5. ABSTRACT REPReSENTATION OF CONCRETE SYNTAX

IBM LAB VIENNA

30 ,June 1969

i;:;-c- if-statement

is-c-INCLUDE ~ • •

is-c- in cl ude-sta t:ement

is-c-integer • ~ • ~

is-c-i terated-group

FORMAL DEFINITION OF THE PL/1 COMPILE TIME FACILITIES

• 2::.£121.. 5- 1 (4)

•••• 5-3 (16)

.2::.lll!il· 5-2 1 9)

• 5-8(57)_,5-8 (56)

• 5-2 (13}_, 5-2 (1 0)

is-c-labellist • .2=1..(.2)., 5-1 (4) , 5-2 (B) , 5-2 (12) , 5-5 (33) , 5-6 (3 6) , 5-6 (39) , 5-6 (42) , 5-7 (46) ,
5-7 (49)

is-c-letter

is-c-library-specification

is-c-NORESCAN

is-c-null-sta teme nt.

is-c-p-attribute q •

is-c-p-balanced-statement

is-c-p-declaration ~ 6 ~

is-c-p-declare-statement

is-c-p-end-cla use

is-c- p-group • ,.

i.s-c- p- if-clause

is-c-p-if-statement

is-c-p-iterated-group

is-c-p-sentence

is-c-p-simple-group

is-c-p-statement • ~

is-c-p-unconditional-statement

is-c-parameterlist o • & o

is·-c-primi ti ve-expression

is-c-procedure

is-c-PROCEDURE

is-c- program ..

is- c- reference

is-c-RESCAN

is-c-RETURN

is-c-return-statement

is-c-RETURNS • • ~ • •

• 5-8 (53)' 5-8 (52) • 5-8 (54)

• 5-_li1]l_, 5-3 (16)

••••• 5-5(31)

5-.21111.,5-2(9),5-6(43)

• • • ·2=1J.21l.' 5-7 (50)

·2=illlt. 5-6 (40). 5-6 (42)

• 5-l.ci.Ql.. 5-7 (4 9)

• 5-7 1.!!21.• 5-6 (38)

.5-7!~ft,5-7(45) ,5-7(47)

• • • • • 2=11.'!!!1. • 5-6 (4 3)

.5-6!41)_,5-6(40),5-6(42)

• 5-6J.!!Q).. 5-6 (39)

·.2=1J47) '5-7 (44)

·2=!i.11J!l .• 5-6 (36) '5-7(45) '5-7 (47)

••••• 5-7!4.2l_,5-7(44)

.5-6(32l_,5-6(38),5-6(40)

.5-6jlli,5-6(39) ,5-6(42)

._2-6 (37). 5-6 (36)

·2=!!Jnt, 5-4 (26)

5-6(36J..,5-1 (3)

•••• 5-6(36)

5-J1ll_,5-2(11) ,5-2(13)

._2-5 C6!ll_,S-q (27)

.5-5(31)

.5-7(q8)

• 5-lJ.!!lll_, 5-6 (43)

••••• 5-6 (36)

5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX 13

IR~ LAB VIENNA

FORMAL DEPTNITION 0~ THE PL/! COMPILE TIME fACILITIES

is-c-sentence

is-c-simple-group

is-c-statement ..

is-c-string-character

is-e-st-ring-part

is-c-string-part-char

is-c-text

is-c-text-cha ract<3r

is-c-'l'HEN

i.s-c-TO

is-c-unconditional-statement

J-CHAR

K-CHAR

L-CHAR

TR 25.095

30 June 1969

•• 5-1111..5-1 (2}

·2-21111..5-2 (10}

2::.1l.!!l.. 5-1 (3} '5-2 (6}

-2::.§1221.,5-8 (58)

• 5-9 <Hl., 5-9 (62l

• 5-9 !~21.,5-9 (64)

• 2::21§£1.' 5- 1 (2}

• 2::2 (6 3l.. 5-9 (62}

• 5-2(7) ,5-6(41}

.5-3(14) ,5-3 (15)

2::£121.,5-1 (4} ,5-2(8)

.5-8(53)

• 5-8 (53}

• 5-8 {53}

L~FT-PAR 5-3{17) ,5-4(27} ,5-5(28) ,5-5(34) ,5-6{36) ,5-6(37) ,5-7{48) ,5-7(50) ,5-8(59),
5-9(63) ,5-9(65) ,5-9(67}

LT • • .5-4 (22} ,5-8 (59) ,5-9(63) ,5-9(65) ,5-9 (67)

M-CHAR ••••••••••••••••• 5-8(53)

MINUS • 5-4 (24) , 5-4 (26) , 5-8 (59) , 5-9 (63) , 5-9 {6 5) , 5-9 (67)

N-CHAR ••••••••••••••••••••• 5-8(53)

NOT • 5-4 (2 2) , 5-4 { 2 6) , 5-8 (59) , 5- J (6 3) , 5-9 (6 5) , 5-9 (6 7)

NUMBER-SIGN .5-8 (53)

0-CHAR .5-8(53)

OR • • .5-3(19) ,5-4(23) ,5-8(59) ,5-9(63} ,5-9 (65) ,5-9(67)

?-CHAR ••••••••••••••••••••• 5-8(53)

PERC .5-1 {4) ,5-2(6) ,5-2(7) ,5-2{8} ,5-2(12),5-5(33) ,5-6{36},5-8(59),5-9(65} ,5-9(67)

PLUS .5-4(24),5-4 {26),5-8(59} ,5-9{63) ,5-9(65} ,5-9(67}

POINT • 5-8 (59}, 5-9 {63}, 5-9 {65), 5-9 (67}

Q-CHAR ••••••••••••• 5-8(53}

QUEST • 5-8 (59}, 5-9 {63), 5-9 {65}, 5-9 (67}

R-CHAR • • •••••••• • •• 5-8 (53)

RIGHT-PAR 5-3(17) ,5-4(27) ,5-5(28) ,5-5(34} ,5-6(36) ,5-6(37},5-7(48) ,5-7(50) ,5-8(59),
5-9{63},5-9(65},5-9(67}

S-CHAR ••••••••••••••••••••••••••••••••• 5-8 (53)

s-a e 1 • 5-3 { 16) '5-5 (2 8} ' 5-5 (3 0) ' 5-5 (32) ' 5-5 { 33) • s- 5 { 3 4) ' 5-6 (3 7) '5-7 (4 9) '5-7 {50)

14 5. ABSTRACT REPRESENTATION OF CONCRETE SYNTAX

IBM LAB VIENNA TB 25.095

3\J June 1969 FORMAL DEFINITION OP THE PL/I COMPILE TIME FACILITIES

s:rnc

SLH.SR

T-CHAR

V--CHAR

W-CHAR

X-CHAR

Y-CHAR

Z-CHAR

0-CHAR

1-CBAR

2-CHAR

3-CHAR

4-CHAR

5-CHAR

6-CffAR

7-CHAR

8-CHAR

9-CHAR

5-2 (11) • 5-2 (12) • 5-2 (13) • 5-3 (15) • 5- 3 (16) • 5-3 (18) • 5- 5 (2 9) • 5-5 (30) • 5-5 (32) • 5-5 (3 3) •
5-6 (36) • 5-7 (4 5) • 5-7 (4 6) • 5-7 (4 7) • 5-7 (4 8) • 5-7 (4 9) • 5-8 (59) • 5-9 (6 3) • 5-9 (6 5) • 5-9 (6 7)

.5-4(25) ,5-8(59) ,5-9(62),5-9(65) ,5-9(66)

• 5-8 (53)

.5-8(53)

.5-6(53)

• 5-8 (53)

.5-8(53)

.5-8(53)

.5-8(53)

• 5-6 (55), 5-8 (61)

.5-8 (55) ,5-8 (61)

• 5-8 (55)

.5-6(55)

• 5-8 (55)

.5-8(55)

.5-8{55)

• 5-8 (55)

• 5-8 (55)

.5-8(55)

5, ABSTRACT REPRESENTATION OF CONCRETE SYNTAX 15

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

This chapter defines the translation from the abstract representation of a
concrete program into an abst.ract program. This translation is performed by the
function translate which maps an object satisfying the predicate is-c-program
(cf. 5-1(2)) into an object described by the predicate is-program (cf. 7-1(1)).

All those functions defined in this chapter whose arguments are selectors,
possess a further argument which is hidden, namely the abstract represente1
program to be translated (similar to the machine-state ~ which is a hidden
argumen·t of most of the instructions of the interpreter).. Throughout this cha?ter
tbe letter t denotes this hidden argument.

These selectors, called npointers", are composed of simple selectors of the
classes elem{i) and s{i), where i are positive integer valuess according to the
structure of abstract represented programs~

In this way context dependencies are easily expressibleo Even on the
translation of parts of t where no context dependency exist, mostly this method is
preferredu i.e~, a pointer is specified as argument, say p, rather than the
component oft to be translated, namely p(t}~

is-pointer(b) & (is-c-program v
is-c-pr:ocedure) (b {t))

is-pointer(p)

is-pointer(g)

is- pointer {r)

is-intg-val(n) & n > 0

Sn = s(n)

(1) p => g = (3r) (r • I & g = r•p)

a pointer to a program
or to a procedure

Note: 'rhis axiom defines the pointer relation 11 -=>n which is used throughout this
chapter. p => q is true iff g is a "continuation" of pG I denotes the
unity selector ..

(2) translate (t) =

is-c-program { t)

~o(<s-decl-part:mk-decl-part(I)>,<s-text-part-list:mk-text-part-list(I)>)

T -- error

Ref .. : mk-decl-part 6-2 (3)
mk-text-part-list 6-9 (29)

6. THE TRANSLATOR

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

Note; I is the unity selector~ i4e~, the pointer pointing to t itself.

This section defines the construction of the declaration-part of the program,
as well as the construction of declaration-parts of procedure bodies. These two
kinds of declaration-parts,described by the predicates is-decl-part and
is-p-decl-part, respectively, differ in that declaration-parts of procedure bodies
may not contain declarations of entry names and procedure bodies, but may contain
builtin-declarations which in turn may not appear within the declaration-part of
the entire program.

The construction of a declaration-part is done in two steps~ First, all
declarations beeing local to the program or to the procedure under consideration
are recognized and the test for multiple declarations is performed. Second, the
various types of declarations are constructed and united to the declaration-part.

(3) mk-decl-part (b) =

Po ([<id: mk-decl (p) > J p • decl-set (b) & id mk-id-l•p(t)))

(4) mk-id-1 (x) =

mk-id•lin-3 (x)

for:is-c-identifier(x)

Ref.: lin-3 4-4 (10)

6.1.1 RECOGNITION OF DECLARATIONS AND TEST FOR MULTIPLE DECLARATIONS

(5) decl-set (b) =

~(3p,q) (is-local-to(b,p) & is-local-to(b,q) & is-mult-decl(p,q)) -­

[P l is-decl-cont(p) & is-local-to(b,p) &
(is-entry-cent (p) , , (3q) (is-entry-decl-cont {g) & q (t) = p (t))))

T -- error

Note: This function yields the set of all pointers pointing to identifier5
occurring in the context of declarations beeing local to b(t), minus those
pointers pointing to entry names which are also declared by declare
statements. An identifier is said to occur in the context of a declaration
if it occurs within a declare statement, or in a labellist, or in a list of
entry names (also described by the predicate is-c-labellist). Each element
of this set becomes a component of the declaration-part. The check for
multiple declarations is also performed here~ Note, that a procedure
together with the possible declarations of its entry names do not
constitute a multiple declaration~

2 6. THE TRANSLATOR

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(6) is-local-to (b, p) =

is-c-procedure• b (t)

is-c-programe b (t) --

b => p & {Vq) (is-c-procedure•g (t) & b => q => p ~ s 2 •q => p)

(7) is-mul t-decl (p, g) =

p # q & is-decl-cont (p) & is-decl-cont (g) & p (t)
~ (is-entry-decl-cont (p) & is-entry-cont (q))

(8) is-decl-cont (p) =

g (t) &

is-var-aecl-cont(p) v is-entry-decl-cont(p) v is-bif-decl-cont(p) v
is-entry-cont{p) v is-label-cont(p)

Note: The proposition is true, if the pointer points to an identifier occurring
in the context of a declaration~ The first 3 alternatives corresoond to
declare statementsv the fourth to the entry-name list of a procedUre, the
last to a statement-label~

(9) is-var-decl-cont (p) =

is-c-identifier•p(t) &
(3q) (is-c-declaration•q (t) & q => p & (is-c-CHARACTER v is-c-FIXED) (s 2 •q (t)))

(10) is-entry-decl-cont (p) =

is-c-identifier•p(t) &
{3q) (is-c-declaration•g{t) & q => p & is-c-ENTRY•s~•q (t})

(11) is-bif-decl-cont (p) =

is-c-identifier•p(t) &
{3q) (is-c-p-declaration•q (t) & q => p & is-c-BUILTIN•s2 •g (t))

(12) is-entry-cont(p) =

is-c-identi.fier•p (t) & (3g) (is-c-procedure•g (t) & s2 •g -=> p)

(13) is-label-cont (p) =

is-c-identifierep{t) &
(3q) ({is-c-statement v is-c-declare-statement v is-c-end-clause) (q {t)) &

s 2 eg => p v (is-c-p-sentence v is-c-p-end-clause) (g (t)) & s 1 •q => p}

Note: It can be proved by induction that
is-c-balanced-statement ~ is-c-statement and
is-c-p-balanced-statement == is-c-p-statement hold ..

6.1.2 CONSTRUCTION OF DECLARATIONS

In this section the construction of the four types of declarations is defined.
Declarations of variables consist solely either of the elementary object INTG or
of the elementary object CHAR. The declaration of an identifier to denote a
builtin function consists also of an elementary object, namely BUILTINe Label and

6. THE TRANSLATOR 3

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

entry declarations are more complex: they are discussed in the following
subsections.

(14) mk-decl(p) =

is-var-decl-cont{p) trans-type(attr~)

.is-bif-decl-cent (p) BUILT IN

is-entry-decl-cont(p) -- ~ 0 (<s-entry-decl:ENTRY>,<s-body:body1>)

is-entry-cont (p)

is-label-cent (p)

where:

Po(<s-bedy:trans-prec(p)>)

mk-indexlist (p)

attr~ = (vx) ((3g) (is-c-declaratien•q (t) & q => p & s 2 •q (t) = x))
bod¥1 = ((3g) (is-entry-cent {q) & g (t) = p (t)) -•

trans-proc ((C.g) (is-entry-cent (g) & q (t) = p (t))),
T -- Q)

for: is-decl-cont {_p}

Note: The declaration of an entry name (cfA formula 5 of chapter 7) is an object
with one or two immediate components. In the case that a declare statement
exists for the entry name {is-entry-decl-cont)r the entry-decl component is
the elementary object ENTRY. In the case that a procedure exists for the
entry name {is-ectry-cont), the body component exists.

{15) trans-type (a ttr) =

is-c-PIXED(attr) -- INTG

is-c-CHARACTER(attr) -- CHAR

In this section the declaration of a label, which is an index list, is built
up. An index list is a list whose elements are either integer values or truth
values, i.e., Tor F. The list, read from left to right, represents the location
of the labelled statement within the text-part-list of the program {cf. 7-1 (1)) or
within the procedure-text-part-list of a body (cf. 7-1(6)). ~hereby an integer
value,. say n,. indicates that the n-th element of the text-part-list contains t.he
labelled statement: a truth value indicates that the preceding elements of the
index list pointed to an if-statement, and that the labelled state1ent is
contained in the then component in the case of T or in the else component in the
case of F.

(16) mk-indexlist (p) =

~(3b) (is-c-procedure•b(t) & b => p) -- mk-indl-1 (p,!)

T -- mk-indl-2{p,su• ((vb) {is-c-precedure•b (t) & b => p)))

foc:is-label-cont(p}

Note: Because of the different structures of programs and procedures, a case
distinction is necessary, whether the label is local to a procedure or not.

4 6. THE TRANSLATOR

IBM LAB VIENNA TR 25.095

30 June 1969 FOR!1AL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(17) mk-indl-1 (p,q) =

where:

"• = (Ln) (Snos3 oq => p)
na = slength<fiS3 <~~~q (t) - 1
opt 1 = (is-Qes:l. Qq (t) o,

T -~ 1)
no = (Vn.) (Sn.QS 2 eg => p)

for:is-label-cont(p) &
(is-c-program v is-c~statement v is-c-declare-statement) (p (t))

Ref.: slength 4-2 (4)

Note: This function constructs the index list for labels outside procedures~

If a program starts with a text, rather than with a sentence, the first
text-part of the text-part-list to be constructed in 6~2 contains a null
statemento This fact is taken into account here by the abbreviation opt~.

The alternative ~q => p is reached, if the labelled statement is not part
of the program (the 3rd or 4th component of a group), but rather is the
corresponding end-clauseo

Note that the following proposition holds:
is-c-~balanced-statement :::t is-c-statement.

(18) mk-iodl-2 (p,g) =

is-c-labellistes~$q(t) & s 1 eq => p -- <>

is-c-p-if-statementes2 0q(t} -+ <s2Qs 20q => p>~mk-indl-2(p#(s(n1))os2•q)

is-c-p-groupQs2 oq(t) -- mk-indl-2(p~ {s(n2)) •s2 $g)

..,q => p -- <slength.Qg (t) + 1>

where:
n:1. = ~t.n) (sn<;ls 2 og => p)
n2 slength~s 2 eg(t) - 1
n 0 (On) (sno;og => p)

for:is-lahel-cont(p)

Refo: slength 4-2 (4)

6. TRE TRANSLATOR 5

IBM LAB VIENNA TR 25.095

FORMAL DEriNITION OP THE PL/I COMPILE TIME FACILITIES 30 June 1969

Note: This function constructs the index-list for labels which are local to
procedures.

The alternative ~q => p is reached, if the labelled starement is not part
of the list of procedure-sentences (in the case of a group), but rather is
the corresponding end-clause~

Note that the following proposition holds:
is-c-p-ba.lanced-statement ::> is-c-p-statement.

Procedures are translated into objects, characterised by the predicate is-body
(cf. 7-1(6)). A body has four immediate components: The parameter-list which is
a list of identifiers, the return-type which is either'INTG or CHAR, the
procedure-declaration-part whose construction is already defined in section 6g1,
and the procedure-text-part-list whose construction is defined in the sequel.

(19) trans-proc (p) =

p = en 1 -- mk-body(b0)

where.:
en 1 = s~•s1es2 eb0
b 0 = (l>b) (is-c-procedure•b (t) & b => p)

for:is-entry-cont(p)

Note: Only the first identifier of the entry name list is connected with the body
in the declaration-part of the programe All other entry names are
associated with the first identifier of the entry name list~

(20) mk-body (b) =

(3n) (s 1 •s0 •s2 0b(t) = s~•s11 <tb(t)) -­

~0(<s-param-list:mk-id-1-list~s2•s4eb(t)>,<s-ret-type:trans-type~s7~b(t)>,
<s-decl-part:mk-decl-part(b)>,
<s-text-part-list: trans-p-selist (S.1. 0tt b)- <null 0 >>)

T -- error

where:
nullo= p 0 (<s-st~s-st:NULL>)

for:is-c-procedure~b(t)

{21) mk-id-1-list(slist) =

no

LIST mk-id-1•s0 (slist)
n=1

where:
n0 = slength(slist)

cont'd

6 6. THE TRANSLATOR

IBr:J LAB VIENNA TR 25~ 095

30 June 1969 FORMAL DEFINITION OP THE PL/I COMPILE TIME FACILITIES

Ref.: slength 4-2 (4)

(22) trans-p-selist (p) =

no
LIST p 0 (<s-st:trans-p-sentence(sn•p)>)
""'

where:
n 0 = slength•p(t)

Ref.: sl~ngth 4-2 (4)

Note: The similar structures of procedure-text-part-lists and text-part-lists are
of advantage on interpreting abstract programs~ This is the reason for the
s-st component in procedure-text-parts~

(23) trans-p-sentence {p) =

is-c-p-declare-statement•p(t) -- p 0 (<s-st:NULL>)

T -- trans-p-st(s2~p)

for:is-c-p-sentenceQp{t)

Note: Concrete declare statements Mithin procedures are translated into abstract
null statements ..

Generally 0 labellists are omitted during translation because the relevant
information is contained in the corresponding procedure-declaration-part in
the form of an index-list (cf. 6.1.2.1).

(24) trans-p-st (p) =

is-c-p-if-statementoe>p (t) -- trans-p-if-st (p)

is-c-p-group•p(t) -~ traos-p-group(p)

is-c-return-statementsp(t) -- trans-return-st{p)

T -- trans-st (p)

for: (is-c-p-:Lf-sta tement v is-c-p-uncondl tiona 1-statem9:nt) (p (t))

Ref.: trans-st 6-10(34)

(25) trans-p-if-st (p) =

~0 (<s-st:IF>o<s-expr:trans-expr(s2•s1op)>,<s-then:trans-p-st(s2 •s2 •p)>,
<s-else:trans-p-else-st(s 2 ws 4 •p)>)

for:is-c-p-if-statementsp(t)

Ref.: trans-expr 6-14 (46}

6. THE T.RANSLATOR 7

IBM LAB V.IENNA TR 25 .. 095

fORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

Note: Balanced statements are a subclass of s-tatements, hence the translation of
balanced statements is performed by the function -trans-p-st above'"

{26) trans-p-else-st (p) =

is-U•p{t) -- "o(<s-st:NULL>)

T -· trans-p-st(p)

for: (is-c-p-if-statement v is-c-p-unconditional-stateaent v is-Q) (p (t))

Note: Abstract if-statements possess an else component in any case. The else
component is an abstract null statment, if the concrete if-statement has no
alternative statement.

(27) trans-p-group (p) =

is-c-p-siaple-group•p(t) -- trans-p-selist(s3 •p)-<null 0 >

T

~a(<s-iteration:trans-do-spec(sa•P}>,
<s-do-list:trans-p-selist(s.•p)-<null 0 >>)

where:
nullo = p 0 (<s-st•s-st:NULL>)

for:is-c-p-group•p(t)

Ref.: trans-do-spec 6-12 (38)

Note: A siaple group within a procedure is translated into a
procedure-text-part-list by the function trans-p-selisto

(28) trans-return-st (p) =

~0 (<s-st:RETUBN>,<s-expr:trans-expr{s3•p)>)

for:is-c-return-statement•p(t)

Ref.: trans-expr 6-14(46)

A text-part-list is a list of text-parts. A text-part has two immediate
components 1 an abstract statement and an abstract text which is a list of
character values (cf. chapter 7).

Roughly speaking, the text-part-list of an abstract program is the result of a
(nearly one to one) mapping process from the immediate components of a concrete
program, i ... e., sentences and text {cf. 5-1 (2)), into text-parts in t.he same order
of succession, whereby a concrete sentence and the subsequent text up to the next
sentence is concentrated into one text-part. The information concentrated in the
declaration-part of the program is omitted during this translation process: the
labels are omitted~ procedures are translated into abstract null statements, and

8 6. THE TRANSLATOR

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

declare-statements are translated into abstract activate statements, whereby the
declarative information is losto

{29) mk-text-part-list (b) =

no
opt-tpl,- LIST mk-text-part (sn•s 2 •bJ

n=-1

where:
opt-tpl~ = (~is-Qes1 eb(t) -- <p 0 (<s-st•s-st:NULL>v<S-text:lin-3•s~•b{t)>)>,

T -- <>)
n0 = slengthas2 •b(t)

for: is-c- progra me b (t)

Re£.: lin-3 ~-q (10)
slength 4-2(4)

Note: Since also the first text-part of the text-part-list must contain an
abstract statement, an abstract null statement is added if necessary. This
is taken into account by the abbreviation opt-tPl1 o

(30) mk-text-part{p) =

~0 {<s-st: tr:ans-sentence (s1 ap) >, <s-te.xt: lin- 3•s,a•p (t)' >)

for:is-c-sentence•sa.. *P (t) & is-c-text•s2 •p (t)

Ref.: lin-3 4-4 (10)

Note: The structure of the concrete text, given by selectors of the class
elem(i), is linearized by the function lin-3 into a list of character
values ..

{31) trans-sentence (p) ~

is-c-dec:lare-statementop (t) -- trans-declare-st•s,..•-p (t)

is-c-procedure•p(t) -- ~o(<s-st:NOLL>)

for:is-c-sentenceep(t)

6. 2. 'i TRA NSI.ATION Ol" DECLARE S'rAT E!!ENTS

Declare statements outside procedures are translated into activate statements
gith an activation list whose elements have as their rescan component the
elementary object Tv indicating that "rescan" is desir€d ..

6. THE TRANSLATOR 9

IBM LAB VIENNA

fORMAL DEFINITION OF THE PL/I COMPILE TIME fACILITIES

(32) trans-declare-st (dl) =

l-ength (id[1)

~o(<s-st:ACT>,<s-act-list: LIST mk-act(elem(i,idl~) ,T)>)
;,. .. >i

where:
idl1 = mk-idl(dl)

133) mk-idl (dl) =

!itlength(dl}
CONC (is-c-identifier•s1 •sn(dl) -- <mk-id-1•s1 •sn(dl) >,

n•1

Ref.: •k-id-1 6-2(4)
mk-id-1-list 6-6(21)

TR 25.095

30 June 1969

Note: According to the structure of concrete declare statements, given by the
predicate is-c-declare-stateMent, the identifiers contained in the list of
concrete declarations dl are collected and formed into a list in the same
order of succession.

6.2.2 TRANSLATION OF STATEMENTS

(34) trans-st (p) =

is-c-if-stateaent•p(t) -- trans-if-st(p)

is-c-group•p{t) -- trans-group (p)

is-c-goto-statement•p(t) -- ~a(<s-st:GOTO>,<s-label:mk-id-1•s 2•p(t)>)

is-c- include-statement• p (t) trans-include-st (p)

is-c-assignme·nt-statement•p (t) -- trans-assign-st (p)

is-c-null-statement•p(t) -- ~o{<s-st:NULL>)

is-c-activate-statement•p(t) ~- trans-act-st(p)

is-c-deacti vate-st-atemen t•p (t) -• trans-deact- st (p)

for: (is-c-if-statement v is-c-unconditional-statement) {p {t))

Ref.: mk-id-1 6-2 {4)

10 6. THE TRANSLATOR

IB~l LAB VIENNA

30 June 1969 FOEHbL DEFI~ITION OF THE Pt/I COMPILE TIDE FACILITIES

{35) trans-if-st {p) =

f..lo (<s~st: IF>" <s~expr:: t.rc~ns·~e:g:py: ~f32C.S:; ..::.p~ > v<s~t.h<'ln::: ·-t:CEt:;,s~-.st {53 OS.a""P) >:!
<s-else:traas-elseti·st {s3 es 5 op) >}

Note~ The follm;::ing proposition holds
is-c-balanced~statement ~ is-c-statement&
hence the translation of balanced statet~~ents is"performed by the function
trans~st above,

T -"""- trnns-st (p)

for::: (:i.s-c-if-sta tement v is~c~u-~1CO!Hii tional=statement v is-Q} (p (t))

Note:: If the concrete if-statemen-t possesses no alternative statement., this
function inserts an abstract null st.atement ..

The thi:cd c-osponeut of a simple group, respective the fourth component of an
iterated groupF described by the predicate is-c-programu is translated by the
funct.ion mk= text-part~ list.., gi~Nm at the top of section 6~ 2"

f.! a (!<s~i teration;; traDs~do=spec {s2u p} > l!'
<s·~ao~ list: ml',:-text-part~list (s~t®P) ~· <null-tp 0 >>j

uhere:
nu11-t.p 0 : ~a~<s-stl'.)s·~st~ NUL1>$<s-tex.t:<>>}

Hot.e~ null-it.p0 cox.:respoxtds to tb>e concrete end'"""clause of the gz:-oup.. Its
~xistenc..:> i.s necessary because of possible go-to~ s to the end-clause~

6. THE TRANSLATOR 11

IBM LAB VJENNA

?ORMAL DEFINITION OF rHE PL/I COMPILE TIME FACILITIES 30 June 1969

(38) trans-do-spec (p) =

p 0 (<s-contr-var:mk-id-1•s~•p(t)>,<s-init:trans-expr(s3 •p)>,<s-by:by-expr 1 >,
<s-to: to-expr1 >)

where:
by-expr 1 = (is-c-BY•s1 •s 4 •p(t)

is-c-BYos 1 •s 3 •s 4 •p(t)
T -• Q)

to-expr1 = (is-c-TO•s1 •s 4 •p{t)
is-c-TO•s 1 •s 3 •s 4 •p(t)
T -• Q)

for: is-c-do;.. specif ica tion• p { t)

Ref.: mk-id-1 6-2 (4)

(39) trans-include-st (P) =

Jlo{<s-st:INCL>~<s-id-pair-list:

where:
n 0 = slength•s2 •p(t)

for:is-c-include-statement•p(t)

Fef.: slength 4-2 (4)

(40) trans-lib-spec (ls) =

trans-expr (s2 •s 4 •p},
trans-expr (s2 •s 3 •S 4 •p) ,

trans-expr(s 2 •s 4 •p) #

trans-expr{s 2 •s 3 •s 4 •p),

Oo

LIST trans-lib-spec•sn•S 2 •p (t) >)
fl<o-1

where:
id.t. (is-c-identifier {ls) -- mk-id-1 (ls),

~is-n•s1 (ls) -- mk-id-1•s 1 {ls),

id2
T -• Q)

= {-ois-O•s3 {ls) -- mk.-id-1•s 3 (ls),
T -• Q)

for: is-c-libra ry-specifica. tion (ls)

Ref.: mk-id-1 6-2(4)

12 6. THE TRANSLATOR

IBtl LAB VIENNA

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(41) trans-assign-st (p) =

p0 {<s-st: ASSIGN> .. <s-lp: mk-id-1•s1 "'P (t) >" <s- rp: trans-expr {s3 .QI p}. >)

for:is-c-assignment-statementGp(t)

Ref.: mk-id-1 6-2{4)

Each activation of a concrete activate statement corisists of an identifier to
be activated 0 and optional one of the keywords RESCAN or NORESCANQThe result of
the translation by the function trans-act is an object possessing an id component
and a rescan component which is the truth value F in the case of NORESCAN 0 else
the truth value T.

(42) trans-act-st (p) =

no

~o(<s-st:ACT>o<s-act-list: LIST trans-act•sn•s2 •p (t) >)
n•<

where:
n0 = slengthos 2 ep{t)

for:is-c-activate-statementep(t)

Bef.: slength 4-2(4)

(43) trans-act (act) =

for:is-c-activation(act)

Ref.: mk-id-1 6-2 (4)

~c{<s-id:id>,<s-rescan:truth>)

for:is-id (id) & (is-T v is-F) (truth)

(45) trans-deact-st (p) =

~o(<s-st:DEACT>u<s-iU-list:mk-id-1-list~s2 ep(t)>)

for:is-c-deactivate-statementep{t)

cont'd

6. THE TRANSLATOR 13

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

Re£.: mk-id-1-list 6-6(21)

6.2.3 TRANSLATION OF EXPRESSIONS

Because of the structure of abstract expressions, given by t.he predicate
is-expr defined in cbapter 7, the precedence rules for the various operators,
defined by the productions is-c-expression-one, up to is-c-expression-six, are no
more necessaryo However, parenthesized expressions still remain because of their
special semantics on argument passing~

(46) trans-expr (p) =

is-c-reference•p(t)

no
~ 0 {<s-id:mk-id-1•s 1ep(t)>,<s-arg-list: LIST trans-expr (s 0 •s 2 .. s2•P) >)

n•<

is-c-constant•p(t) -- trans-const•p(t}

~o(<s-opr:trans-infix-opr•s 2 cp(t)>p<s-op-1:trans-expr(s 1 •p)>,
<s-op-2:trans-expr(s3 •p)>)

where:
n0 = slength•s2 •s2 ep{t)

for:is-c-expression•p(t}

Ref.: mk-id-1 6-2 (4)
slength 4-2 (4)

14 6. rqr TRANSLATOR

IBM LAB VIENNA

30 June 1969 FORMAL DEFINITION OF TRE PL/I COMPILE TIME FACILITIES

(47) trans-const {const} =

(48)

no
is-c-integer(const) L char-num•elem (n,const) • 10 t (no - n)

~"~"'"

is-c-character-string(const) LIST charn

is-c-bit-string(const) -·

(n1 = 0 -- BIT-NULL-STR,

T -- LIST char-bit (cvn))

where::
n0 = length(const)
n1 = {is-Q•elem(2,const) -• 0,

T -- length•elem(2,const))
charn = (cvn = <APOSTB,APOSTR> -- APOSTR,

T _...,. CVn)
cvn = (elem {n)} eelem {2,.const)

for:is-c-constant{const)

ReL: char-num 9-26 (104)
char-bit 9-26 (106)

Note: Constants are translated into values~ Values are integer values, or lists
of character values, or bit strings~ Because of the different semantics of
the null elements of character- and bit-data, for the null element of
bit-data the elementary object BIT-NULL-STR is introduced.

trans-infix-opr {x) =
is-PLUS (x) -- ADD

is-lliNUS (X) SOBTB

is-ASTER (X) MULT

is-SLASH (X) DIV

X = <OR,OR> CAT

X = <GT,EQ> V X <NOT 0 LT> GE

X = <LT,EQ> V X = <NOT.,GT> LE

X = <NOT,EQ> NE

T -- X

6. THE TRANSLATOR 15

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF TRE PL/I COMPILE TINE FACILITIES

The abstract syntax describes the syntactical structure of abstract compile
time programs as produced by the function translate defined in the foregoing
chapter ..

The contents of the abstract syntax is the definition of the predicate

is-program

given by a set of predicate definitions which~ applied iteratively, describe the
composition of a program by its elementary components.

The elementary components of a program belong to the following classes of
elementary objects:

(1) A finite class of elementary objects, denoted by names written in capital
letters {eogce GOTO,. MINOS)q including the empty list<>~

(2) The infinite class of identifiers, characterized by the predicate is-id.

(3) The infinite class of integer values~ characterized by the predicate
is-intg-valu and the finite classes of character values and bit values,
characterized by the predicates is-char-val and is-bit-val, and the empty
bit-string BIT-NULL-STB.

(1) is-program =

(<s-decl- part: is-decl- part> v
<s-text-pact-list:is-text-part-list>)

{2) is-decl-part =

({<id: is-decl> I I is-id (id) l)

(3) is-decl =

is-prop-var v is-entry v is-index-list

(4) is-prop-var =

is-INTG v is-CHAR

(5) is-entry =

(<s-entry-decl:is-ENTBY>) v
{<s-body:is-body v is-id>) v
(<s-entry-decl:is-ENTBY>Q
<s-body:is-body v is-id>)

(6) is-body =

(<s-param-list:is-id-list>,
<s-ret-type:is-INTG v is-CHAR>~
<s-decl-part:is-p-decl-part> 9

<s-text~part-list:is-p-text-part-list>)

1. ABSTRACT SYNTAX

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

{7) is-p-decl-part =

((<id:is-p-decl> I I is-id (id}}}

(8) is-p-decl =

is-prop-var v is-BUILTIN v is-index-list

(9} is-index =

is-intg-val v is-T v is-F

(10} is-p-text-part =

(<s-st :is-p-st>}

(11} is-p-st =

is-p-group v is-p-text-part-list v is-p-if-st v is-return-st v is-goto-st v
is-assign-st v is-null-st

(12) is-p-group =

(<s-iteration:is-iteration>,
<s-do-list:is-p-text-part-list>}

(13) is-iteration =

(<s-contr-var:is-id>,
<s-init:is-expr>,
<s-by:is-expr v is-0>,
<s-to:is-expr v is-Q>)

(14} is-p-if-st =

(<s-st:is-IF>,
<s-expr:is-expr>,
<s-then:is-p-st>,
<s-else:is-p-st>)

(15} is-return-st =

(<s-st:is-RETURN>,
<s-expr: is-expr>)

(16} is-text-part =

(<s-st:is-st>,
<s-text:is-char-val-list>)

(17} is-st =

is-group v is-text-part-list v is-if-st v is-goto-st v is-assign-st v
is-null-st v is-act-st v is-deact-st v is-include-st

2 7. ABSTRACT SYNTAX

IBM LAB VIENN& TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(18) is-group =

(<s-iteration:is-iteration>,
<s-do-list~is-text-part-list>)

(19) is-if-st =

(<s-st:is-!F> 11

<s-expr:is-expr>,
<s-then:is-st>,
<s-else: is~st>)

(20) is-goto-st =

(<s-st: is-GOTO> t
<s-label: is-id>)

(21) is-assign-st =

(<s-st:is-ASSIGN>,
<s-lp~is-id> 11
<s-rp:: is-expr>)

(22) is-null-st =

(<s-st:is-NULL>)

{23) is-act-st. =

(<s-st:is-ACT>~
<s-act-list:is-act-list-1>)

(24) is-act =

(<s-id:is-id>.,
<s-rescan:is-'1' v is-F>)

(25) is-deact-st =

{<s-st: is- DEliCT>"
<s-id-list:is-id-list-1>)

(26) is-include-st =

{<s-st:is-INCL> 11

<s-id-pair-list:is-id-pair-list-1>}

(27) is-id-pair =

{<s-id-1:is-id v is-n>u
<s-id-2:is-id v is-Q>}

(28) is-expr =

is-infix-exp~ v is-prefix-expr v is-paren-expr v is-ref v is-value

7. ABSTRACT SYNTAX 3

IBM LAB VIENNA

FORMAL ~EFINITION OF THE PL/I COMPILE TIME FACILITIES

(29) is-infix-expr =

(<s-opr:is-infix-opr>,
<s-op-1:is-expr>,
<s-op-2:is-expr>)

(30) is-infix-opr =

is-arith-opr v is-comp-opr v is-bit-opr v is-CAT

(31) is-arith-opr =

is-ADD v is-SOBTR v is-MULT v is-DIV

(32) is-comp-opr =

is-GT v is-GE v is-EQ v is-LE v is-LT v is-NE

(33) is-hi t-opr =

is-OR v is-AND

(34) is-prefix-expr =

(<s-opr:is-prefix-opr>u
<s-op:is-expr>)

(35) is- prefix-opr =

is-NOT v is-PLUS v is-MINUS

(36) is-paren-expr =

(<s-op: is-ex pr>)

(37) is-ref =

(<s-id:is-id>,
<s-arg-list:is-expr-list>)

(38) is-value =

is-intg-val v is-char-val-list v is-bit-string

(39) is-char-val =

TR 25.095

30 June 1969

is-alpham-char v is-BLANK v is-APOSTR v is-EQ v is-PLUS v is-MINUS v is-ASTER v
is-SLASH v is-LEFT-PAR v is-RIGHT-PAR v is-COMMA v is-POINT v is-SEMIC v
is-COLON v is-AND v is-OR v is-NOT v is-GT v is-LT v is-QUEST v is-PERC v
is-extralingual-char

(40) is-alpham-char =

is-letter v is-digit v is-BBEAK

4 7. ABSTRACT SYNTAX

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIHE FACILITIES

(41) is-letter =
is-&-CHAR v is-B-CHAR v is-C-CHAB v is-D-CHAR v is-E~CHAR v is-F-CHAR v
is~G-CHAR v is-H-CHAR v is-I-CHAR v is-J-CHAR v is-K-CHAR v is-L-CHAR "
is~M-CHAR v is-N-CPLiLR v is-0-CHAR v is-P-CHAR v is-Q-CHAR v is-B-CHAR v
is-S-CHAR v is-T·~CHAR v i.s-U-CFtAR v is-V-CHJtR v is~M-CRAB v is-X-Cf!AR v
is-Y-CHAR v is-Z-CHAR v is-DOLLAR v is-CONM-AT v is-NUMBER-SIGN

(42) is-digit •

is-0-CHAR v is-1-CHAB v is-2-CHAR v is-3-CHAR v is-4-CBAR v is-5-CHAR v
is-6-CHAR v is-7-CHAB v is-8-CHAR v is-9-CHA&

{43) is-bit-string =

is-bit-val-list.-1 v is-BI'I'-NULL-STR

{44) is-bit-val •

is-0-BIT v is-1-BIT

(!!.5) is-extralingual-chac =

Note: This predicate is implementation definedo It is equivalent to the
predicate is-c-extralingual-character of chapter 5~

7. ABSTRACT SYNTAX 5

IB~ LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COAPILE TI~E FACILITIES

This chapter gives an informal treatment of the concepts used in the formal
definition of the interpreter in chapter 9o The inforaal treatment is separated
from the formal treataent to allow a coapact formal part and also to explain
concepts which are not concentrated in a single part of the formal definition but
influence the mechanism as a whole.

Also the syntax of abstract compile time programs given in chapter 7 is
illustrated and the most important relations between concrete and abstract syntax
are explained in order to give the reader who is fa•iliar vith the concrete syntax
an intuitive idea of the interpretation process~ without presupposing knowledge
about the translator~

It is not
completelyo
defintion of

the aim of the informal discussion to define compile time facilities
Most detailed guest~ons can be answered by studying the formal
the interpreter.

An abstract compile time progr·a11, in the following called prollU, is an object
described by the predicate is-program given in chapter 7. It consists of two
im•ediate components, the declaration-part and the text-part-list.

Fig. 1 Main structure of a program

8.1.1 THE TEXT-PART-LIST

The t~!t-~It-list is a list of text-parts. A text-part consists of a
statement and of a text.

elem l1) eleml2) elevn (n l

I texl ~purl~ I
Fig. 2 Structure of a text-part-list

B. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

s-st s-text

E
Fig. 3 Structure of a text-part

A text-part corresponds in a concrete program to a sentence (cf. section 3.2.1)
and the subsequent text up to the next sentence. If a sentence immediately is
succeeded by a further sentence in a concrete program, then the text is the empty
list <>. If the concrete program does not begin with a sentence but rather with a
concrete text, then the statement of the first text-part is a null statement.

A !~ is only a list of character values.
identifiers, argument lists, commentsf strings
interpreter (cf ~ section 9. 9) ~

All necessary grouping, e.g.,
will be done aynamically by the

Throughout the formal definition the term §tat~! denotes a logically
complete unit of a program to be executed during the sequential flow of control at
the point given by its position within the program. The term includes.: The
simple statement (e.g., assignment statement, goto statement, null statement), the
if-statement, and the different types of do-groups. So, the term "statement" does
not denote the units syntactically delimited by semicolons in the concrete
program, but logical units that may appear anywhere ''in a statement context'',
e.g., as THEN alternative of an if-statement, and that may in some way be executed
independently from other program parts~

Statements may themselves contain statements (namely the if-statement) or even
text-part-lists (namely the group). Since these contained statements principally
may be any type of statements and thus may themselves contain statements or
text-part-lists, the text-part-list of a program may be not just a linear sequence
of text-parts but a rather complex structure of nested statements and text-parts.

The different types of statememts are not described in detail here because in
most cases they are the result of a nearly one-to-one mapping of the corresponding
concrete statements. The following are only some additional remarks, mentioning
some deviations between the abstract and concrete syntax~

21;:Qll£_llnd_ig!!:.:..E!!I:.:t::.list~ There are two essentially different 11 do-grouns 11 in a
concrete program: Those with iteration specification and those without ite Only
those with iteration specification are translated into 2rOQ£§~ Those without
iteration specification are translated into te~t-part-lists~ Thus a statement may
itself be just a text-part-list in the abstract program~

If=sta!~~E!· The if-tstatement has always two alternative statements. If
there is no else alternative specified in the concrete program, the transl~tor
inserts a null statement.

R~l!_gi~t~~nt. A null statement in an abstract program may result not only
from a concrete null statement, but also from a missing else alternative of an
if-statement, froM a concrete declare statement inside procedures er from an end
clause. Declare statements and end clauses may be labelled in a concrete nrogram
and hence may not be simply omitted on translation. Furthermore, also procedures
are replaced by null statements on constructing the text-part-list (procedure
bodies constitute declarations and hence belong to the declaration-part of the
program).

!£t1~~1g_~1~!g~~n!• Also an activate statement in an abstract ~rogram may
result not only from a concrete activate statement, but also from a concrete
declare statement outside procedures. Declare statements outside Frocedures play
a double role. on the one hand they declare identifiers to denote a variable or

2 8. IN?ORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROr.RAMS

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I CCMPIL! TIME FACILITIES

entry name, on the other hand they activate these identifiers and 'indic-ate RESCAN
each time the flow of control reaches the declare statement. On translation the
declarative information is collected in the declaration-part and the "dynamic''
information which remains is reflected in an activate statement vbcse sin·gle
activations have the truth value T as their rescan component.

8.1.2 THE DECLARATION-PART

In the decl~~~iion-p~! of a program all declarative information is collected,
including the bodies of the procedures vhich themselves possess declaration-parts
containing the declarative information vbich is local to the procedur~s. Each
identifier declared outside "procedures, whether its declaration in the concrete
program is explicit or implicit, has a Qggla£~1!Qn in the declaration-part of the
program ..

To each identifier of the concrete program corresponds uniquely an ~bstra£!
!denti!!~! which is an elementary object satisfying the predicate is-id. The
transfor~ation from the concrete identifier to its corresponding abstract
identifier is performed by the function mk-id, given in section 2.2.. In the
following the term identifier denotes such an abstract identifier, while the
identifiers of the concrete program are denoted as £Qn££ete identifiers where
necessary.

The structure of a declaration-part is the following: Each declared identifier
serves as selector-selecting its declaration from·the declaration-part.

icl1

a
Fig. q Structure of a declaration-part

This structure of a declaration-part provides easy access to an individual
declaration through the declared identifier itself; any other structure Would
require a more complicated device for accessing an individual declaration.

Each individual declaration is an object, whose structure depends essentially
on the type of the declarationD There are the following types of declarations:

Proper variables, in the following called !~iables,
~1! t r y_JH!fi.§ ,
statement labels, in the following called la~ls.

~~1.2.1 Variables

The declaration of a variable is simply one of the both elementary objects:
INTG and CHAR. The translator gets the information from the corresponding
concrete declare statement. In the case of INTG the variable is predestinated to
hold as its value an integer value (only decimal integer arithmetic of precision
(P,O) is performed in the compile time facilities}, in the case of CHAR a
char-val-list (only varying character strings that have no maximuM length are
possible).

8. 1_._;;. 2 La be],~

The declaration of a label is an ing~!_list (list of positive integers and
truth values) which localizes that statement of the text-part-list of the ~rogram
which was labelled in the concrete program. The index list is cons·tructed by the
translator from the position of the labelled statemen·t within the concret,~
program.

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROC,RAMS 3

IBM LAB VIBNNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

The declaration of an entry name is an object with (in general) two immP.diate
components ..

s-entry- de cl s-body

I ENTL;rQI

Fig. 5 Declaration of an entry name

At most one of the both immediate components may be Q, i.e., does not e~ist:

The existence of the entry-decl component indicates that the concrete program
contains a declare statement defining the corresponding concrete identifier to
denote an entry name, i.e., it is associated with the attribute EN1RY within the
declare statement.

A missing body component indicates that no procedure is specified within the
concrete program whose entry name list contains the entry name specified by the
declare statement. The missing body may appear vithin the declaration-part of ao
external prograa which may be incorporated during the computation by means of an
include statement.

The case that the body component is solely an identifier may appear if the
corresponding concrete procedure specifies at least tvo entry names. One entry
name, namely the first one in the entry name list, is associated vith the
translated procedure, i.e., with the body, in the declaration-part, all other
entry names get this special entry name as their body component instead of the
body itself. This indirect step from an entry name via anotl.er entry name to the
corresponding body is of advantage for the interpreter, because any body gets only
one entry in the state component "procedure body directory", independent of
whether the body is associated with more than one entry name or not.

The structure of a procedure body is discussed in the following.

~Ll~J~~-PrO£~gY£e bgdi~§

A procedure body, in the following called body, corresponds in a concrete
program to a procedure (without regard to the entry name list}. A body consists
cf four immediate components:

s- ret ·type s- cl eel- port s-text-rcarl-list

puram- List

Fig. 6

(1)

Structure of a body

The 2ar~m~~ li§~·
arguments are passed
the body.

I p- d~d-partj

It is the list of those parameter identifierB to whom
when the body is activated by rneans of a reference to

Q 8. INFORMAL INTRODUCTION TO THE INTERPRETATION Of ABSTRACT COMPILE TIME PROGRAMS

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(2) The ~~~~~~-~- It specifies the type of value to which tbe function
value is to be converted on return to the point of invocation&

(3) The procedure-declaration-part, shortly called E=Q~J~at!Qn=EartG It
contains all declarations local to the body. A p-declaration-part differs
fro• a declaration-part (of a program) in that, first, a p-declaration-part
may not contain declarations of entry names, and second, may contain (in
contrast to a declaration-part) builtin declarations, i.e., the following
types of declarations may occur:

Variables"
labels,
~uil~n fun£1!Qn names.

The declaration of a builtin function name is sole1y the elementary
object BUILTIN.

The procedure-text-part-list#
p-text-part-list is a list of
immediate component, namely a

s- st

shortly called
p-text-parts.
p-statement.

Fig. 7 Structure of a p-text-part

E::.i_~xt- part=li§1· A
A E=!£Z!~~! has only one

A p-text-part corresponds in a concrete procedure to a p-sentence. No text
to be scanned by the replacement mechanism exists within procedures. The
similar structure of text-parts and p-text-parts, by using in both cases
the sa•e selector s-st# is of advantage for the interpreter.

The class of p-s~ments differs from the class of statements in the
following points:

{a) The activate, deactivate, and include statements do not belong to the
class of p-statements, i.e.e they may not occur within a
p- text- part-.list.

(b) The £21Y~n_stat~nt belongs only to the p-statements.

(c) The E=if=~~~ and the ~!2~£ may not contain statements and
text-part-lists, but rather p-statements and p-text-part-lists.

6.1.3 EXPRESSIONS

Concrete expressions are decomposed by the translator into (possibly nested)
"elementary expressionsnQ There are five different forms of elementary
expressions:

(1) An infix_~press}Qn, consisting of two operand expressions and an infix
operator which is an elementary object.

B. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS 5

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

s-opr

I opeLlorl
s-op-1

8
Fig. 8 Infix expression

(2) A BI~fi!_~!E~!2rr, consisting of an operand expression and a prefix
operator which is an elementary object.

s-op

2
Fig. 9 Prefix expression

(3) A £!£enthg§~~g_~~pression, consisting of an operand expression onlv.

Fig. 10 Parenthesized expression

In principle, the parentheses of a concrete program could be eliminated by
the translator producing structured objects as already described. But
since in the language there is one case (argument passing) where
parentheses have more than syntactical meaning, the parenthesized
expressions are left in the abstract program in the form of an object
having only one component, namely the translation of the concrete
expression contained in the parentheses.

(4) A !~!~~nee, consisting of tvo immediate components, the identifier and the
~£gum~n1_li§l which is a list of expressions {the empty list <> included).

I
s-id. s-cwg-list

Fig. 11 Reference

6 8. INFORMAL INTROtUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS

IB~ LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I CONPILE TIME FACILITIES

A reference may refer to a variable {the argument list is the empty list
<>),to a procedure, or to a builtin function.

(5) A val~, corresponding in a concrete program to a constant. There are
three types of values

(a) integer values
(b) chaJ:::J!al-li!;!§
(c) .Qi!=stri nqs

These three classes of values are mutually disjoint, i.e., no further ndata
attributes" are necessary. To achieve this the null bit string is
elementary object BIT-NULL-ST 8 rather tban the empty list <>~

~~£_pYHA~IC P~~IIES OF IP~I111]RS AND T]EIR 1]1bQ]]f]_Q]_!HE S!ATE

8.2.1 SCOPE OF IDENTIFIERS

The §£Ope of an identifier declared in the main program is the entire
text-part-list of that program and the p-text-part-lists of those bodies which do
not redeclare that identifier& If there are external programs to be included by
means of include statements, then their text-part-lists and the p-text-part-lists
of those bodies which are contained in the external programs and do not redeclare
that identifier belong to the scope of that identifier too.

The scope of an identifier declared .in a body is limited to the corresponding
p-text-part-list.

The scope of an identifier declared in an external program is the same as
though this identifier were declared in the main program. A redeclaration of an
identifier by means of an external program is not legal and would lead during the
interpretation of that external program to a multiple declarations error. Note
however, that if an identifier is declared within an external prcgram, this
declaration is not "known" until the first interpretation of the corresponding
declaration-part ..

An identifier that is declared in a declaration-part will in the following be
called global. If it is declared in a p-declaration-part, then lo£al.

8.2.2 DENOTATION OF IDENTIFIERS

The g~RQ!~~ion of an identifier represents the entire information associated
with the identifier except of its scope. In general the denotation contains
static information as well as dynamic information. ~tatic information remains
unchanged during the entire interpretation process& The information contained in
the declaration of an identifier is static. Q~smi£ information, as e.ge, the
value of a variable, aay be altered daring the interpretation process. In the
following the five different types of denotations are discussed.

(1) ~~1lotatiQ1LOf _L.!yiable:

s -o.t s- resco..n s-value

I Tor~ or Q I I vo.lu~ or Q I
Fig. 12 Denotation of a variable

The at component represents the type of the variable specified by tLe
corresponding declaration~ It is the only static componente

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGnAMS 7

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OP THI PL/I COMPILE TIME FACILITIES 30 June 1969

When a variable (necessarily global), an entry name, er a builtin function
name is encountered during the scan of a text, the question whether it is
S£!i~2!ed or 122£1i~teQ is of importance. In the first case the
substitution process becomes active in which case a further distinction is
made, namely whether the value of the reference must be scanned for
replacements or not. This information is reflected by the rescan
component: Q denotes "not activated'', T denotes "activated and scan of the
replacement value", and F denotes nactivated and no scan of the replace111ent
value". The rescan component may be altered by activate and deactivate
statements. Initially, i.e., immediately after the interpretation of the
declaration-part, this component is Q. In the case of a local variable it
remains so.

The value component presents the value of the variable. Initially the
value component is Q. It may be altered by an assignment to the variable.

s-re&co.n

8
Fig. 13 Denotation of an entry name

The at component indicates whether the entry name is declared in the
concrete program by means o£ a declare statemento The body-lac component
presents the address under which the corresponding body is stored in the
"procedure body directory" P.. This component is n if no body exists; in
this case the at component is ENTRY$ The at and the body-lee components
are static only with regard to Q~ program execution. On incorporating a
new external program these components could be altered if they were il.

s-a.\ s- resc.ah

~ B
Fig. 14 Denotation of a builtin function name

Only an identifier which is the abstract representation of cne of the
concrete identifiers INDEX, LENGTH, BUILTIN can be associated with ~uch a
denotation. This denotation is created either on the interFretation of a
p-declaration-part from the declaration of a builtin function name, or on
the interpretation of an activate or deactivate statement, or on the
evaluation of a reference appearing in an expressione The at component is
static.

8 8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS

IBM LAB VIENNA TR 25.095

30 June 1969 FORHAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

s-progr-na..me

I
MAIN or

id- pair or
Q

s-index-list

Fig. 15 Denotation of a label

The entire denotation is static~ The progr-name component presents the
MJ!L.Qf tbe_nogram in which the label is declared: MAIN in the case of
the main program, or a pair of identifiers specified by an include
statement in the case of an external program. ~or local labels this
component is n. The index-list component presents the index-list taken
from the corresponding label declaration~ It represents the location of a
(p-)statement relative to the text-part-list of a program or to the
p-text-part-list of a body.

(5) ~g~Q1gtion of ~-du!~l:

The entire denotation is solely a value, either of the type INTG
(is-prop-intg-val) or of the type CHAR (is-char-val-list). A dummy is used
either for saving the function value when the interpretation of the body is
finished and the dump is popped upg or for storing intermediate results
during the application of the scan and replacement mechanism to the
arguments of a reference within a text.

8.2.3 THE ENVIRONMENT AND THE DENOTATION DIRECTORY

The association of an identifier with a denotation, initialized during the
interpretation of the declatation-part of a program, holds during the
interpre·tation of the whole text-part-list of the program, unless a procedure body
becomes active Yhose p-declaration-part redeclares that identifier. In this case
the old (global) denotation must be saved and the new one is initialized according
to the p-declaration-part. Because of the scope rules (see 8.2~1) the old
denotation of the identifier is reestablished vhen the control leaves the
procedure ..

In the interpreter this situation is taken into account by means of the two
state components "environment" E and naenotation directory" DN.

The ~yironment associates all identifiers which have a denotation with
addresses. This mapping is realized in the same way as in the case of a
declaration-part associating identifiers with declarations~

Fig. 16 The environment

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS 9

IBM LAB VIENNA T• 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

The £gDQtft!iQQ_di£g£!Q~ associates addresses with denotations.

address. 2

I de"oLt,on 2 1

Fig. 17 The denotation directory

This indirect step

E DN
id ad dn

from an identifier via an address to the denotation, together with the fact that
an environment can be dumped (within another state component called "dump") and
that a modified environment can be established, fulfills the above requirements.

During the interpretation of the declaration-part of a program each identifier
declared there is associated at first with a proper address in the environment.
Under this address the denotation of that identifier is initialized in the
denotation directory. When during the following interpretation of the
text-part-list a certain component of the denotation of an identifier is required
or a dynamic component of the denotation has to be modified, the denotation is
available by applying the identifier (using it as a selector) to the environment
and again applying the result, an address, (also used as a selector) to the
denotation directory.

The necessary addresses are the result of a one-to-one mapping
(cf. section 2.2} from a pair consisting of the identifier for which the address
is required and the scope information (global or the address of a body). one
bidden feature should be noted at this point: Entries of the DN ccmponent of the
state are never erased. The use of this one-to-one mapping ensures the "static
storage class" for variables. (Every time a function call. o"': one and the same
procedure is to be interpreted, which in consequence leads to the interpretation
of the p-declaration-part, a new updating of E is performed. But the mapping for
a local identifier always specifies the same address. Therefore, a reference to
DN always gives the same entry which had been established by the first execution
of that procedure).

When control is transferred into a body by means of a function reference the
environment is copied before it is stored in the dump. The copy which is modified
according to the p-declaration-part of that body is established as the new
environment. More exactly, each identifier declared in the p-declaration-oart
causes a modification of the copy in one of the two following ways: ·

If the identifier was not known till now, i.e., had no entry in the old
environment, then the copy is enlarged by the identifier and its associated
address.

If the identifier was known, i.e., it is redeclared by the p-declaration-part,
then the new address is substituted in place of the corresponding old addr~ss into
the copy.

In both cases, the corresponding denotation of the identifier is initialized
according to the p-declaration-part and is stored under the new address in the
denotation directory.

When the p-text-part-list is interpreted and control reaches the text-part-list
of the program again, the local environment is replaced by the dumped environment
and the interpretation of the text-part-list is continued.

10 8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS

IBM LAB VIENNA TU 25.095

30 June 1969 FORMAL DEFINITION OF THE ~L/I COMPILE TIME PACitlTIES

The necessary "change of environments" in the case of a procedure entry or
procedure exit, acts for an identifier redeclared within the procedure like a
switch which associates that identifier in both positions vith an address each:

ON
oddress ~

1d.en\ifiey
ON

2 oddress 2

Both addresses are connected in the denotation directory with a denotation
each, which are different in general.

The interpretation of the program, which is contained (together with possible
external programs) i~ the initial state e0 , starts with the interpretation of the
corresponding declaration-part.

Each identifier declared in the declaration-part is associated with an address
by aeans of the function af {cf. section 2.2). Each such identifier together with
its address constitutes an entry into the environment. Any declaration which is
associated with an identifier in the declaration-part becomes a part of the
denotation which is initialized now and is stored under the corresponding address
in the denotation directory. In case the decla~ation contains a body an entry is
also made in the procedure body directory under the same address. The execution
status of this entry is initialized with P.

The rescan component (in the case of variables, entry names, and builtin
function names), as vell as the value component (in the case of variables) is not
initialized, i.e4, is n.

In the case of a label the name of the program is assigned to the progr-name
component of the corresponding denotation.

The interpretation of the declaration-part is finished after the above
procedure is done for all components of the declaration-part. Since the whole
information the declaration-part represents is stored in the three state
components E~ DN, and P~ the declaration-part is of no further use and therefore
is erased.

As described in section 8.1.1 the text-part-list of a program constitutes a
rather coaplex system of nested statements and text-parts, since some types of
statements may themselves contain statements of any type or even text-part-lists.
The present chapter describes the flow of control of the compile time machine
through this system of statements and text-parts.

The normal flov of control is influenced by:

{1) the sequencing of text-parts within a text-part-list,

{2) the nesting of text-part-lists within statements,

{3) the nesting of statements occurring as then and else alternatives in
if-statements,

{4) the iteration specification of groups~

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS 11

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

(5) the incorporation of external programs by include statements.

The flow of control is governed by a state component, the ££D1I£1-infg£m~ion
CI. It reflects the current status of the compile time machine with respect to
these five points.

Additionally,
go to statement.
information cr.

the flow of control may be modified abnormally by means of the
This is performed essentially by modifying the control

8.4.1 SEQUENTIAL INTERPRETATION OF TEXT-PARTS

The sequential interpretation of text-parts within a text-part-list is governed
by two components of the control information CI, the txl_fQgRQQ~D! and the i~dex
£Qm£OD~!· Whenever a text-part out of a text-part-list (but not a nested
statement or text-part contained within it) is under execution the txt component
is that text-part-list and the index component is the number of the currently
interpreted text-part within the list; e.g., when the third text-part of the
text-part-list is executed the txt component is the text-part-list and the index
component is the integer value 3.

During the execution of a text-part-list the txt component of CI is in general
left unchanged, while the index component is always updated between two text-part
executions.

Whenever the execution of a text-part (except the last one of the
text-part-list) has been terminated, the index component is increased by 1, the
text-part denoted by the new index now is executed. The execution of a text-part
consists of:

(1)

(2)

execution of the statement contained in the text-part,

application of the scan and replacement mechanism to the text contained in
the text-part, if ·sequential flow of control is supposed.

a.q.2 NESTING OF TEXT-PART-LISTS

When a text-part-list is to be executed it is entered int.r. the txt component of
CI, the index component of CI is initiali~ed to 1 and the mechanism described
above is started.

These actions are not sufficient in the case where a text-part-list is to be
executed during the execution of a statement which itself is contained within a
text-part-list. Because in this case the txt and index components of'CI keep the
information needed for the sequential execution of the text-parts of the
containing text-part-list. This information would be lost by overwriting, if no
special provisions where made when the nested text-part-list is executed. In
order to keep the txt and index for the containing text-part-list and also
information in the control specifying how to continue after termination of the
nested text-part-list, the control information CI is handled as a stack: Whenever
the execution of a text-part-list starts, before the txt and index components of
CI are overwritten, the complete current control information CI and control c are
copied into two additional components of CI. When the last text-part of the
nested text-part-list has been executed, these two components are reinstalled as
state components CI and C and the execution of the containing text-part-list
continues correctly.

Thus, the control information (apart from one special component, the progr-name
component, which is used only for goto statements outside procedures) consists of
four components: The current txt and index, and the control infor~ation and
control of the containing text-part-list. Again this control information of the
containing text-part-list consists of four such components, and so forth. Each
level in the control information represents one level in the system of nested
text-part-lists.

12 8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS

IBH LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

8.4.3 THE IF-STATEMENT

The if-statement introduces into the language a form of statement nesting
differing from the nesting of text-part-lists. In order to reflect this fcrm of
statement nesting too, the concepts of the txt and index components of CI are
slightly aodified: The txt component may not only be a text-part-list but also an
if-statement. In this case, the index component is not an integer, but rather a
truth value, the index T denoting thE then component and the index F denoting the
else component ..

The execution of an if-statement causes the following actions to be performed:

(1) The decision expression of the if-statement is evaluated and converted to a
truth value ..

(2) The same actions, i~e., pushing down the control information for one level,
are performed as described for the execution of a text-part-list in the
foregoing subsections vith the following chang~s:

(a) The if-statement (instead of a text-part-list) is entered into the txt
component of CI;

{b) the index component is initialized to the tcutb value computed in (1);

(c) the meaning of "index denotes a text-part Out of the txt component" is
extended as explained above:

(d) both the then and else components are considered as nlast" statements
of the txt component, i.e~, the control information CI is popped up
after termination of either of them.

8.4.4 STRUCTURE OF THE CONTROL INFORMATION CI

The control information CI consists of five immediate components: txt, index,
control information, control, and program name, where the contained control
information again consists of these five components, and so forth. Each contained
level in the control information represents a containing level in the system of
nested statements and text-partse It ends up with the level representing the
outermost text-part-list of the main program (or inside procedures the outermost
p-text-part-list of the body).

s-lxl s-index

lsto~p-st\ ~
s -prog r- V'I<Lme

r
MAIN or

id-pair or
Q

Fig. 18 Structure of the control information

s -ci

The prog-name component is different from Q only if the txt component
represents the outermost text-part-list of the main program or of an external
program. In this case the progr-name component presents the name cf the program,
i.e., MAIN in the case of the main program, or a pair of identifiers specified by
the corresponding include statement in the case of an external program. A local
control information, i.ed, inside procedures, does not possess this component.
This component is necessary only for the interpretation of goto statements.

Either the txt component is a (p-) text-part-list and the inde'x component is an
integer, or the txt component is a (p-)if-statement and the index component is a

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS 13

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

truth value. The index component denotes that statement or text-part out of the
txt component which is currently und€r execution.

>-txt ~ -iYidex s- c

LLJ I coh!rol~l

;-txt S-C:! s-e

Gt=J I covLol :~I

s-txl s-incLex s-c:.l s-e

GtJ I inte~er, I I co~Lol21

5-ht

Gb
s-index

I in\~ger11
s-pro'}r- name

~
5- c

[con~ rol11

Fig. 19 Example of a global control information

This example presents a global control information~ i.e., a control information
that may occur outside procedures. tpl1 is the outermost text-part-list, i.e.,
the text-part-list of the main program, integer1 is an integer dencting that
text-part of tpl.1 which is currently under execution.. The st component of this
text-part is either a text-part-list or a group containing a text-part-list, this
text-part-list is denoted by tpl 2 • The text-part to which the integer integer 2
points within tpl2 contains as its st component an include statement which
specifies the pair of identifiers id-pair identifying an exterPal program. This
external program had been incorporated and its text-part-list tpl3 constitutes the
next level of cr. This level possesses a progr-name ccmponent indicating, that
this and any further levels without such a component belong to an external program
identified by id-pair. The integer integer3 points to a text-part within tpl 3

whose st component is an if-statement whose then component is interpreted.

So the control information er denotes exactly the innermost text-part or
statement (in the case of an if-stat€ment) currently being executed.. Since the
txt components of levels without a progr-name component are already uniquely
determined by the text-part-list of the program to which they belong and by the

14 8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABST.RACT COMPILE TIME PROGRAMS

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL EEFINITION OF THE PL/I COMPILE TIME FACILITIES

index components, those txt components are redundant. They are always copied for
convenience of use.

The way of localizing a text-part or statement relative to the text-part-list
of t.he main program or of an external program by a list of indices is used in the
declaration of labels and in the execution of the goto statement.

8.~.5 TBE GOTO STATEMENT

A goto statement consists essentially of an identifier vhose denotation is that
of a label (in proper cases).

The denotation of a local label, i.ee, local to a body, has one immediate
component: An index list giving the statement location relative to the
p-text-part-list of the body.

The denotation of a global label has two immediate components:

(1) The name of the program in which the label was declared.

(2) The index list giving the statement location relative to the text-part-list
of the program identified by the progra• name.

The aim of a goto statement is to simulate the normal flow of control to the
target statement denoted by the label denotation, i.e., to transform the compile
time machine into that state in which it would have been if the target statement
would have been encountered normally. This means first to look for that
text-part-list within CI which belongs to the program identified by the program
name of the label denotation, and second, to bring the control information into
such a form, that the sequence of its indices, if starting from the level marked
by the program name and going up to the top, is the index list of the label
denotation. This is performed in the following steps:

(1) The levels of text-part-lists and if-statements reflected in the control
information CI are terminated one by one until a level is rEached which
belongs to the prograM identified by the program name of the label
denotation~ If the control information is exhausted without success, the
progra• is in error. This occurs if the goto statement refers to an
external program which is not cu.rrently under interpretation.

This point has to be performed only on the interpretation of a goto
statement outside procedures.

(2) Again, levels of CI are terminated one after the ether, until the target
stateaent is contained (possibly nested) within the innermost not yet
terminated text-part-list or if-statement. This is performed by popping up
the control information Cl level by level, until the sequence of indices
contained in CI and belonging to the program into which the gate shall lead
(except the current index) is equal to an initial portion of the index list
of the label denotation. (This is the case at latest when the current Cl
offers in its progr-name component the program name of the label
denotation.)

(3) The text-part-lists and if-statements containing the target statement are
entered level by level until the innermost of them is reached. This is for
each level performed by:

(a) changing the current index component of CI to the value given by the
corresponding place in the index list of the label denotation,

(b) stacking the control inforroation CI for one level and entering into
the txt component of CI the statement out of the old txt component
which is denoted by the just changed index. This statement ha~ to be
a (p-)text-part-list or (p-)if-statement if the program is not in
error. In particular it cannot be a (p-)group (a goto into a group is
forbidden).

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS 15

IBM LAB VIENNA TR 25,095

FOR~AL DEFINTTION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

(4) Finally, the current index is adjusted, iQe~, set to the last value of the
index list of the label denotation, and the no~mal flow of control is
continued.

It should be mentioned that, of course 6 in special cases one or more of
these steps may be skipped~ In particular, in the simplest case of a goto,
namely a goto within the current {p-)text-part-list, only step 4 is
applicable.

Note, that a goto statement must not lead out of a procedure. This would
be the case if the label denotation had a program name.

8.4.6 THE GROUP

A giQYE is a statement specifying rep€ated execution cf a (p-)text-part-lis·t.
The two immediate components of a group are: The (p-)text-part-list to he
iterated and the iteration specification~ After each execution of the
(p-)text-part-list the value of a given variable, the gQgtroll!ng_yariaQl~r is
incremented by a given value. The {p-)text-part-list is executed repeatedly until
the value of the controlling variable exceeds a given value.

The execution of a group is performed in that way that all acticns controlling
the iteration of the (p-)text-part-list are performed at the level of the control
information CI which is the current one at the point when the execution of the
group starts. Each time when the iterated (p-)text-part-list is to be executed,
the control information is stacked for one levelv i.e., the (p-)text-part-list is
executed exactly as described in 8.4~2. During the execu~ion of tbe iterat~d
(p-)text-part-list, the control component of CI specifies the acticns controlling
the iteration of the (p-)text-part-list, in particular, it ccntains the
information about the Cutrent status of the iterationo Each time when the
execution of the iterated (p-)text-part-list terminates, the control information
is popped up for one level as described in 8o4c2a Thereby at the popped uo level
the iteration control is performed~

8.4.7 THE INCLUDE STATE"ENT

An include statement specifies a list of identifie~-pairs. Each pair
corresponds to an external program in the state component 1Kt:~al_E£Q9£~
gire£!ory EP.

The interpretation of an include statement comprehends, in a successive order
beginning with the first identifier-pair, the mapping of any pair cnto a selector*
which applied to EP yields the associated external program that has to be
interpreted.

When a program is incorporated, a new level of the control information CI is
established, i.e., the control information CI and control C are stacked into er,
and the text-part-list of the program is entered as the txt component of CI.
Furthermore, the program name, i~e~, the identifier-pair specified by the
corresponding include statement, is entered as the progr-name component of CI~ By
that, on interpreting a goto statement, the outermost text-part-li~t of that
program can be found in which the label was declared&

Before the interpretation of the program may start with the int€rpretation of
its declaration-part a check must be made whether all components of the
declaration-part are compatible with the three state cOmfonents E6 DN and P which
together contain the information of all declaration-parts interpreted up tc now.
Because of the global scope of identifiers declared outside procedures together
with the fact that multiple declarations are fobidden, for each identifier
declared in the declaration-part of the included program one of the following
three conditions must hold:

(1) The identifier has no entry in the environment 6 i.e., it was never jeclared
in a declaration-part till now.

16 B. INFOR"AL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS

IB~ LAB VIENNA TH 2S.095

30 June 1969 FORMAL DEFINITION OF TRE PL/I COMPILE TIM·E FACILITIES

(2) The identifier has an entry in E and itS denot'ation stored in ON r_-epresents
an entry declaration, and the corresponding component of the
declaration-part under consideration represents a body or an address to the
body .. · (That is exactly the case, when an ent.ry name wa·s declared former
and nov the corresponding procedure bOdy follo-ws.)

{3) The identifier has an entry in E and its denotation Specifies only a body,
and the corresponding component of the declaration-part under consideration
represents an entry declaration. {This is the case, when a procedure body
vas specified previously and nov the corresponding entry declaration
follows.)

Under the assumption that the conditions above'are fulfilled~ the
declaration-part is interpreted. The interpretation begins with an update of the
environment for all those identifiers declared in the ·declaration- par-t· and not
occurring in E up to now. Then the ent-ries in the denotation dire·ctory and
possibly in the procedure body directory are made for_. each identifier which is
associated with a declaration in the declaration-part·, as· described 1ri set;::tion
8.3.

The interpretation of the text-part-list is done in the usual way~ It is
terminated after the last text-part is interpreted, unless a ·previous· goto
stateaent transfers control out of the included program. In the first case the
"next" external program - if there is one - is incorporated and interpreted as ·
described abovee

The recursive use of an include statement is allo·Wed; i.e., in- the
text-part-list of a progra11 incOrporated by a certain inclUde statEment may- occur
an include statement specifying the same program. Note that tbe recursive use of
an external progra• is legal only if the corresponding declaration-part is the
null object~ i.e •• is 0. Otherwise, the multiple deClarations check desCribed
above leads to an error.

!!..5 REFJlRENCE_lQ FUNCTIONS

8.5.1 REFERENCE TO A PROCEDURE OCCURRING IN AN EXPRESSION

A procedure reference consists of an entry name, i.e., an identifier which
currently is associated with the denotation of an entry name {cf. section 8.2.2),
and a list of expressions specifying the arguments to be passed to the·parameters
of the called procedure body.

(1)

(2)

{3)

(4)

A procedure reference is proper if:

The body location exists within the entry denotation, and under this body
location a body is stored in the procedure body direCtOry P. · (The body-lac
coaponent of the denotation could be missing, because of the possibility of
the separate declaration of entries and their associated body vith~n
different_ de_claration-parts.) · - ·

The execution status of the body,. i.e., the execution component ··of the
corresponding entry of the procedure body directory, is F, indicating that
the body is currently not under interpretation.· :t;n this ~Way a·ny .recursive
invocations of a body are de-tected.. ·

The number of arguments is equal to the number ·of parameters spe~~~ied by
the paraa-list component of t'he body.

The body itself is proper, ioe., all parameters are mutually different and
denote variables {in the p-declaration-part of the -body) and if the
p-declaration-part of the body contains a builtiri declaration then the
associated identifier must be the abstract representation of-one of the
concrete identifiers: INDEX, LENGTH, SUBSTR.

If the reference is proper, its arguments are evaluated from left to right.
For the evaluation of an argument the declaration of tbe corresponding parameter

8 • .INFOBMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRAC.T COMPILE THE PROGBAMS 17

IBM LAB VIENNA TB 25.095

~ORHAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

within the p-declaration-part of the body is necessary. Two distinct. cases may
occur:

(1) The argument expression is a reference to a variable and its attribute,
i.e., either INTG or CHAR found in the at component of the denotation of
the variable, matches the declaration of the corresponding parameter. In
this case t.he address of the variable is passed to the corresponding
parameter. Any use of those parameters will result in a reference to the
denotation of the argument. (Passing of address)

(2) In all other cases the argument expression is evaluated and converted to
the type given by the declaration of the corresponding paraeeter. (Passing
of value)

The resulting list of addresses and values now is passed to the tody. Before
the interpretation of the body starts, a unique name, to be used as addres~ of a
dummy entry in DN, is created and passed to the called body. After return from
the called body the return value of the body is available via this unique name in
the denotation directory.

8.5.2 INTERPRETATION OF THE PROCEDURE EODY

During the interpretation of a body some components of the current state are
used to hold the necessary local information which is of no further use when the
interpretation of the body is finished. When this is the case, the former
contents of these state components must be reinstalled in order to secure proper
continuation of the interpretation. The storage necessary for the state
components to be reinstalled when the execution of the body is terminated, is
called gump D.

I
s-e s -C..! s-e s- V'! s-d

~kJ ~
Fig. 20 Structure of the dump

If the reference to a procedure occurs outside procedures, then neither a dump
nor a return information exists in the current state. Rence, also the dumo to be
constructed on entering the body does not contain the~e components. If the
reference to a procedure occurs during the interpretation of a procedure body,
then also the current damp and the current return information must be save.1 when
entering the new body.

The dump is an object manipulated as a push-down stack; it maintains
dynamically the history of the still active B2SY-~£!iygtions. Its dump component
has the same structure and consists of the local state components of the
predecessor of that body activation. The state components saved at the bottom of
the dump are the environment, the control informtion, and the contrcl to be used
outside procedures.

When a body activation is terminated, the components of the du~f are copied
into the corresponding state components of the compile time machine. All parts of
the dump are thus popped up one level.

18 8. INFORMAL INTRODUCTION TO THE INTERPRETATION 0? ABSTRACT COMPILE TI~E FROGRAMS

IBM LAB VIENNA TR 25.095

30 June 1969 IORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

As mentioned above, the five current state components environment, control
information, control, return information, and dump are saved in the dump. Then
these state components are initialized as follows:

E must be initialized with the environment current at the time the procedure
was declared, because any identifier not declared inside the procedure will have
the denotation specified via that environment. The proper environment is always
the outermost one, because procedure declarations may occur only in a
declaration-part, and never inside a p-declaration-part. In the case that the
function reference under consideration occu-rred in a text-part-list (D is 0), the
proper environment is the current one, but if the reference occurred in a
p-text-part-list tD is not 0) the proper environment is that one found in the
bottom of the dump D~

The control information CI is set to 0. Later, when the interpretation of the
p-text-part-list of the body starts, CI is initialized as described in section
8. 4. 2.

The state component ~eturn_in!2~!1Q~ RI is initialized with data necessary
for the interpretation of a return statement and which are available only at the
installation of the body. RI consits of tvo components:

•- bool y -loc s-vulue- Loc

\ ccollyess \

Fig. 21 The return information

The body-loc component holds the address under which the body and its e~ecution
status is stored in the procedure body directory P.

The value-lac component specifies the unique name which has been generated when
the function reference was encountered and which is used to store the function
value. into the denotation directory before the body is left.

The following actions are performed now:

~hang~ of_th~-~xecution_§gll.§:

To indicate that no other interpretation of the procedure body is allowed till
the current interpretation is finished, the execution component of the
corresponding entry in the procedure body directory P is set to T.

For arguments where an address was passed, this address now is connected with
the corresponding parameter in an entry into the environment ED

If a value vas passed, this value constitutes the value component. of the
denotation of the corresponding parameter which is constructed now and entered
into the denotation directory. The necessary address is the result of the address
function af which maps an identifier (in this case the parameter} and scope
information (the address of the body within the procedure body directory is used
as scope information) onto an address. This address is connected now with the
paramete:r in an entry into the environment.

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TI~E PROGRAMS 19

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

Ill1§££I~atiQD-21-!h2-E~de~12£S!ion~sr!:

The environment is updated by all identifiers declared in the
p-declaration-part which are not used as parameters. If a redeclaration of an
identifier occurs, the existing old entry in E is overriden.

After that, all necessary entries for the new declared identifiers into the
denotation directory are made. In the case of a label only the index-list
component of the denotation is initialized with the corresponding declaration. In
the case of a builtin declaration only the at component of the denctation is
initialized, namely with the elementary object BUILTIN. In the case of a variable
tbe at component of the denotation gets the corresponding declaration, namely INTG
or CHAR.

Note that by the definition of the address function af, each interpretation of
the procedure will lead, for the locally declared variables, to the same address
in DN. The variables have a nstaticu storage address and their values remain
unchanged between executions of the procedureo

Interpretation of th~-text~~1-li§~:

The interprettion of a p-text-part-list differs only slightly from the
interpretation of a text-part-listo While, on the one hand, a text-part consists
of a statement and a text which has to be scanned for possible replacements when
the interpretation of the statement is finished 0 a p-text-part, on the other hand,
consists only of a statement which itself must not contain any text. Hence the
interpretation of a p-text-part consists only of the interpretation of a
statement.

The only way to leave a procedure body and to return control and function value
to the place from which the procedure was invoked, is via a return statement.
Hence, a proper procedure body must contain at least one return statemen.t within
its p-text-part-list. The return statement specifies an expression, which if
evaluated and converted, represents the value of the function procedure.

The interpretation of a return statement starts with the evaluation of its
expression~ Using the return type specified by the body the necessary conversion
is done. The result is assigned to the dummy that was generated when the function
reference was encountered and which is stored in the value-loc comronent of RI,
i.e., an entry for the dummy in DN is made. The address found in the body-loc
component of RI allows ·the indication in the procedure body directory P, that the
interpretation of the procedure is completed and a new reference to it can be
made, by altering the corresponding execution component from T to F.

The old state components saved at the beginning of the procedure interpretation
in D have to be reinstalled~ The function value which is stored in the denotation
of the dummy is also available outside the procedure. because the unique name was
saved here too (in the control) ~ This value is restored~ and the interpretation
of the expression or the text that was interrupted by the function reference
con·tinues with the value in place of the reference ..

8.5.3 REFERENCE TO A BUILTIN FUNCTION OCCURRING IN AN EXPRESSION

A reference refers to a builtin function if

(1) the identifier of the reference is the abstract representation of cne of
the concrete identifiers: INIEX, LENGTH, SUBSTR, and

{2) either the identifier of the reference is not "known''~ i.e •• the identifier
has no entry in the current environment E, or the identifier is associated
with the denotation of a builtin function name (cf. section 8.2.2).

A reference to a builtin function is proper if the argument list of the
reference is proper in its length. In the case the identifier is not known, prior

20 8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS

IBM LAB VIENNA TR 25,095

30 June 1969 FORMAL DEFINITION OF THE PL/I CO~PILE TI~E FACILITIES

to the evaluation of the reference a default declaration is performed, giving the
identifier tbe denotation of a builtin function within the current scope.

The interpretation of a text-part starts with the interpretation of the
contained statement, and continues (if the normal flow of control is supposed)
vith- the interpretation of the corresponding text. The abstract text which is due
to be scanned by the replacement mechanism is a list of character values. The
grouping in tokens and argument lists, and the necessary check on comments and
strings will be done dynamically by the interpreter.

The interpretation of a text starts by copying it out of the corresponding
text-part, whereby the character value BLANK added as first element to the copy
ensures that in the generated output of the interpreter a blank occurs where in
the corresponding input a statement bad occurred.

Roughly speaking, the interpretation of the copied text will be done from left
to right. Beginning with the leftaost character value and continuing from left to
right the interpreter co•bines a number of consecutive character values (at least
one) to a token. Now it is checked whether this token 'represents a
PL/1-identifier. If it does not, the token is transferred into the output medium
of the machine and the next token is produced.

This output medium is represented by the state component I~~li-~!1 R~
Transfer into B means, that the char-val-list to be transferred is concatenated
with the already stored char-val-list in R. When the interpretaticn of the
program is finished the list of character values specified by R is considered to
be a concrete PL/I program which can be the input to the
translation-interpretation process of PL/I (/4/, /5/)~

When a token is encountered that represents a PL/I-identifier, it becomes an
expectant for possible replacement, provided that none of the following points
turn out to be true:

(1) The corresponding abstract identifier is not 11 known" by the interpreter,
ioe., it has no entry in the current environment.

(2) The corresponding abstract identifier denotes a label.

(3) The rescan component of the denotation cf the corresponding abstract
identifier is 2 (not activated).

In these cases the token is also transferred into R as described above.
reaains are the proper cases for the substitution process:

(1) The identifier denotes an activated variable.

(2) The identifier denotes an activated entry name.

(3) The identifier denotes an activated builtin function name.

What

In these cases the substitution process for the token under consideration must
not necessarily be successful. The i•portant point is, that if any of the various
additional conditions is not met, e.g., in the case of a variable the value
component of the denotation is 2, and therefore the substitution cannot be carried
out, the token under consideration is not transferred into R, but rather an error
is reached.

When the reference to a variable, a function procedure, or a builtin function
was successful, i.e., a value was returned, this value is at first converted to a
char-val-list, if necessary, and to both ends of the list the character value
BLANK is appended, in order to secure the blanks in vhich the substituted value
must be embedded. A case distinction is performed now:

(a) If the replacement value was an integer value before the conversion, or if
the rescan component of the denotation of the reference is F, ioee,

8, INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME FROGRAMS 21

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME IACILITIES 30 Jt1ne 196 9

indicating NORESCAN, the char-val-list is transferred to R (instead of the
corresponding reference).

(b) If the rescan component of the denotation of the reference is T, the
char-val-list is not yet transferred to R, but rather is !!!~Qia1~!1
rescanned for further replacements, as if it were the copy of a text,
copied out of a text-part.

When the token under consideration turned out to represent an activated entry
name of a specified procedure (the body-lac component of the corresponding
denotation exists}, and the body is proper, a check has to be made whether the
procedure possesses parameters. If it is the case, the list of character values
following that entry name in the text has to be scanned to get the argument list
of the function reference.

An argument is defined to be a char-val-list delimited by the character values
COMMA or BIGHT-PAR occurring outside a string. But the char-val-list found inside
of matching left-right parenthesis during the scan is not to be searched for these
delimiters. The result of this parsing process is a list, each element
representing a char-val-list to be used as argument of the function reference.

Provided that the length of that list coincides with that of the parameter list
of the body, these argument texts are rescanned for possible replacement. Each
char-val-llst representing an argument of the function reference is interpreted
exactly as if it were a text, with the only difference, that any tcken that is
encountered during this interpretation and which is not replaceable or should not
be replaced, is not transferred to R, but rather is transferred into a dummy entry
of the denotation directory, which was created when the scan and replacement
mechanism started for the argument under consideration. After the rescan is
completed for the argument, the char-val-list contained in the dummy, which
represents the modified argument, is restored and its necessary conversion to the
type required for the parameter will be donea

The further interpretation of the function reference is in analcgy with section
8.5.2.2.

For the builtin functions the same mechaoisw as above is 3pplied to their
arguments.

~I~OMMARY OI_IMj_~!A!]_fQ~2Q~j~!§_!li&_!B£12-£BQ£EB!l£§

8.7.1 THE EXTERNAL PROGRAM DIRECTORY EP

The external program directory EP contains all external programs which could be
incorporated by means of include statements~ The main program as well as ~he
external programs satisfy the predicate is-program. {These external prcgrams
could he regarded as the output of the translator when applied to the
corresponding concrete strings of external text stored in an external library.)

An include statement specifies at least one identifier-pair, where one of the
two elements may also be Q. The corresponding external program is contained in
the external text storage under the selector sel(id-pa.ir) ..

Note that EP is the uniaue state component that remains unchanged during the
enti~e interpretation process.

8.7.2 THE RESULT CELL R

During the interpretation of a program the text is scanned and possible
replacements are made. The result is copied in the output medium cf the machine.
This output medium is represented by the state component R~ When the
interpretation of the compile time program is terminated~ the list of character

22 8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS

IBM LAB VIENNA TR 25.095

30 June 1969 FOR!AL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

values specified by R is considered to be a concrete PL/I program Which can be the
input to the parsing-translation-interpretation process of PL/I (/4/, /5/).

8.7.3 THE UNIQUE NAME COUNTER UH

In two situations during the interpreation of a program unique names are
needed, namely for saving the function value in the denotation dirEctorY when the
interpretation of a procedure is finished and the dump is popped up, and for
storing intermediate results into the denotation directory during the scan and
replacement process of argument text.

The unique name counter UN has the only purpose to count the u·nique names
already used, thereby guaranteeing that no unique na•e is used mOre than once.
Whenever a nev unique name is needed, the instruction Yn=n~ returns one which is
different from .all unique naaes used before.

8.7.4 THE DENOTATION DIRECTORY DN

The denotation directory associates addresses (in the case of dummies also
unique .names) vith denotations. The denotation of an identifier represents the
entire information about it, except of its scope. The different types of
denotations are discussed in section 8.2.2.

8. 7. 5 THE PROCEDURE BODY DIRECTORY P

The component P contains the description of procedure bodies. Each entry,
which is identified by an address, consists of two components. Access to a
procedure body gives an indirect step via the body-loc component of the denotation
of, the specified entry name.

s-body

s-execution

selects the procedure body;

specifies the execution status of the corresponding body.
The elementary object T specifies that the specific body is just
under interpretation. With the aid of -this co~ponent any attempt to
reference a function recursively will be detected and marked as an
error.

8.7.6 THE ENVIRONMENT E

The environment associates identifiers occurring in a declaraticn-pi'l'd::. or in a
p-declaration-part with addresses under which the corresponding denotation is
found in the denotation directory. The addresses are generated by the one-to-one
function af, mapping scope information ("*" for global scope, or the address of a
procedure body) and an identifier onto an address. This function ensures the
".§:!!!.!i£." storage for variables.

Because of tbe scope rules for the use of identifiers the environme'nt will be
updated and changed by two different mechanisms during the interpretation· of
declarations, depending on whether a declaration-part or a p-declaration-part is
to be interpreted.

An interpretation of a declaration-part will appear at the very beginning of
the interpretation of a main program, but also during the interpretation of an
external program, incorporated by means of an include statement. This kind of
updating E does not override existing entries in the environment. Each attempt to
do so will be detected and a multiple declarations error will result, because it
is not possible to redeclare previously declared identifiers within the
declaration-part of an external program.

The interpretation of a p-declaration-part an the other hand is only possible
during the interpretation of a function call. Here it is possible to redeClare
identifiers to be used in the procedure body with a new meaning. 'Ihe old

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OF ABSTRACT COMPILE TIME PROGRAMS 23

IBM LAB VIENNA T~ 25.095

FORMAL DEriNITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

environment must be saved in the dump, to be reinstalled after the completion of
the function reference.

8.7.7 THE CONTROL INFORMATION CI

The control information CI governs the flow of control through the nested
structure of either text-parts and statements outside Procedures, or p-text-parts
and p-statements inside procedures.

It contains a txt component which usually is a (p-)text-part-list or a
(p-)if-statement and an index component which usually is either an integer value
or a truth value (Tor F). The index identifies a comFonent of the txt component.
which is currently beeing interpreted: If the txt component is a
(p-)text-part-list, the index is an integer value i identifying the i-th element
o£ the list; if the txt component is a (p-)if-statement, the index is Tor F
identifying the then or else component, respectively, of the (p-)if-statement.

Whenever during the interpretation of a (p-)statement a (p-)text-part-list or a
component of a (p-)if-statement is to be interpreted, by initializing the txt and
index components with the corresponding data, the old txt and index coaponents of
CI have to be saved. For this purpose the complete control information is stacked
into a third coaponent s-ci (CI) of the new control in forma ti_on whenever a new
level of nesting is entered.

Similarly, the control C is stacked in a fourth component of the control
information, whenever a new level of statement nesting is entered. This central
contains the actions to be performed after return form the nested statement level.

The program-name co•ponent of the control information exists only if the txt
component represents the outermost text-part-list of the main program or of an
external program. This component presents the name of the program, i.e., MAIN in
the case of the main program, or a pair of identifiers specified by the
corresponding include statement in the case of an external program. The
program-name component is necessary only for the interpretation of goto
statements.

8.7.8 THE CONTROL C

The control component of the state is an abstract object which ccntains a set
of instructions to be executed by the machine.. The instructions may be considered
as arranged in the form of a tree where instructions may have a set of successor
instructions and the in·structions at the terminal nodes of the tree, i .. e., those
which have no successor instructions at all, are candiates for immediate
execution. For more explicit information about the control and its cooperation
with the computation refer to /5/ and /9/.

8.7.9 THE DUMP D

At the time of an interpretation of a function reference some information must
be saved, to be reinstalled after the completion of the interpretation.. The dump,
designed as a push down mechanism, holds this information ..

There are five components of D:

s-e

s-ci

s-e

holds the environment that was active when the function reference
was encountered.

holds the control information which was active when the function
reference was encountered.

saves the old control, because a new control must be established
for the time of the interpretation of the procedure body.

24 8. INFORMAL INTRODUCTION TO THE INTERPRETATION OP ABSTRACT COMPILE TIME FROGRAMS

IBH LAB VIENNA

30 June 1969

s-ri

s-d

TB 25.095

FORMAL DE.FINITION OF THE PL/I CO~PILE TIME FACILITIES

if the current function reference itself appeared during the
interpreta-tion of a procedure body the selector gives access to the
return information of the outer procedure.

holds previous levels of the dump.

8.7.10 THE RETURN INFORftATION RI

For the interpretation of a return statement, transferring the control of
.interpretation back to the place of the function reference, some information is
necessary which is available only at the beginning of the interpretation of the
procedure. The state component RI will be used to save such information. It
consists o.f two coaponents:

s-va lue-loc

s-body-loc

specifies the unique name that vas generated when the function
reference was encountered, and to which the function value is
assigned before the procedure body is left.

is used to identify the entry in P, so that its execution component
can be altered to F to indicate tbe completion of the function call
and to allow in consequence a nev reference to that procedure body.

8. INFORMAL INTRODUCTION TO THE INTERPRETATION OP ABSTRACT COMPILE TI~E PROGRAMS 25

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/1 COMPILE TIME FACILITIES

This chapter provides the formal definition of the interpretation of abstract
compile time programs. The method used is based on the definition of an abstract
machine which is character-ized by tbe set of its states and its state tran·sitions ..
An abstract compile time program, possibly together with a set of external
programs, specifies an initial state of the machine, and the subsequent behaviour
of the machine ~s said to define the interpretation of the compile time program ..

The syntax_ and semantic.s of the 1eta _language is ·defined in chapter 1 of /5/.

All machine states are objects satisfying the predicate is-state defined below.

(1) is-state =

(<s-ep: is-ep>,
<s-r:is-char-val-list>,
<s-un:is-intg-val>,
<s-dn:is-dn>,
<s-p:is-p>,
<s-e,: is-e>,
<s-ci:is-ci>,
<s-c:i~-c>,
<s-d:is-d>,
<s-ri: is-ri>)

For the convenience of reference to parts of the state the following
abbreviations and terms for components of a given state E are introduced and used
throughout the interpretation.

l>f = s-ep{Ei the external program directory

ll = s-r {E) the result cell

UN = s-un {El the unique name counter

DN = s-dn{E) the denotation directory

!! = s-p {E) the procedure body directory

ll = s-e {E) the environment

n = s-ci {E) the control information

£ = s-e (E) the control

ll = s-d (I;) the dump

RI = s-ri (i;) the return information

In basic instruction definitions the selectors selecting immediate components
of the state are underlined for better readability.

IBM LAB VIENNA TR 25.095

FOR~AL DEFINITION OF THE PL/I CO~PILE TIME !ACILITIES 30 June 1969

(2) is-ep =

({<sel(idp):is-program> 1 is-id-pair(idp)})

Note: The external programs are translated in the same way as the main program,
i.e .. , if txt is the char-val-list denoting a concrete external program,

(3) is-dn =

translate•parse(txt)

is the corresponding abstract program to he stored in the ext.ernal progra111
directory ..

((<ad:is-den> 1 1 is-ad(ad) v is-n(ad)))

Note: Unique names, i.e., is-n (ad), are used only tc s·tore intermediate results
(is-dummy-den) in the denotation directory.

(4) is-den =

is-var-den v is-entry-den v is-builtin-den v is-label-den v is-dummy-den

(5) is-var-den =

(<s-at:is-prop-var>,
<s-rescan:is-T v is-P v is-U>,
<s-value:is-prop-intg-val v is-char-val-list v is-O>)

Ref.: is-prop-intg-val 9-19(65)

(6) is-entry-den =

(<s-at:is-ENTRY v is~2>,
<s-rescan:is-T v is-F v is-0>,
<s-body-loc:is-ad v is-O>)

(7) is-builtin-den =

(<s-at:is-BUILTIN>,
<s-rescan:is-T v is-F v is-2>)

(8) is-label-den =

(<s-index-list:is-index-list>,
<s-progr-name:is-MAIN v is-id-pair v is-Q>)

(9) is-dummy-den =

is-prop-intg-val v is-char-val-list

Ref.: is-prop-intg-val 9-19(65)

2 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(10) is-p =

([<ad:is-p-entry> 1 1 is-ad (ad)})

(11) is-p-entry =

(<s-body:is-body>,
<s-execution:is-T v is-F>}

(12) is-e =

({<id:is-ad> 1 1 is-id(id)})

(13) is-ci =

is-0 v
{<s-txt:is-st v is-p-st>,
<s-index:is-index v is-D>,
<s-progr-na•e:is-MAIN v is-id-pair v is-0>,
< s-ci: is-ci>,
<s-e: is-c>)

Note: The txt component is a text-part-list or an if-statement
(a p-text-part-list or a p-if-statement within procedures). Only in
erroneous cases during a goto statement the txt component may be any
statement (p-statement within procedures).

The progr-name component exists only if the txt component is the outermost
text-part-list of the main program (is-MAIN} or the outermost
text-part-list of an external program (is-id-pair).

(14) is-d =

is-n v
(<s-e.: is-e>,
<s-ci.:is-ci>,
<s-c:is-c>,
<s-r.i:is-ri>,
<s-d: is-d>)

(15) is-ri =

is-n v
(<s-body-loc:is-ad>,
<s-va lue-loc:is-n>)

The compile time machine describes the interpretation of a compile time program
t by defining the set of possible computations resulting from the program. A
computation is a sequence of states

~ !O> .~ Pl ,e <2> , •••
satisfying the following two corditions:

(1) ~(0) is an initial state oft, as given by the function initial-state.

9. THE INTERPRETER 3

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 3Q June 1969

(2) Any two adjacent states E(i),E(i+1) in the computation must represent a
valid step. The validity of d step is defined by the predicate is-step,
i.e., any two steps E(i),E(i+1) in the computation must satisfy the
condition

is-step (t; (i) , < (i + 1)) •

A computation is "successful 11 if it is finite:

€(0) ,1;(1) , ••• ,t;(n)

and if its end state E(nJ satisfies the condition

is-O•s-c(t;(n)).

(16) is-step(l;-1,€-2) =

{3a) (0' .: term-node•s-c (E-1) & E-2 compute(E-1,0'•s-c))

for: is-state(<)

Ref.: is-state 9-1(1)

Note: Cf. section 1.3.3 of /5/.

(17) initial-state (t,ep) =

is-program(t) & is-ep(ep)

~ 0 {<s-ep:ep>,<s-r:<>>,<s-un:O>,<s-c:i~t=E£Qgram(t,MAIN)>)

T -- error

Ref.: is-ep 9-2 (2)
int-prQl!J:l!Jl! 9-5 (18)

A program initialization is performed at the very beginning of the computation,
but also on each incorporation of an external program by means of an include
statement (cf .. section 9 .. 5. 4) ..

(1)

(2)

A program initialization comprehends the following actions:

The control information CI and control C are stacked into £! (This is of
importance only on initiilizing an external program).

The text-part-list of the program to be initialized is entered as the txt
component of £!, the index component is set to 0~

The program name, i.e., in the case of the main program the object MAIN, in
the case of an external program the identifier-pair specified by the
corresponding include statement, is ente.red as the progr-narne coM:ponen t of
£I- By this, on interpreting a goto statement, the outermost text-part-list
of that program can be found in which the label was declared.

4 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OP THE PL/I CO~PILE TIME FACILITIES

{q) The multiple declaration check is performed, i.e., it is tested whether the
identifiers declared in the program to be initialized have not been declared
previously (trivial in the case of the main program) •

(5) The state components ~~ DN, and g are updated according to the various
declarations of the declaration-part.

is-decl-part (dp) the declaration-part of the program to be
initialized

(is-MAIN v is-id-pair) (pn)

is-id (id)

is-ad (ad)

the program name

§-Ci:~ 0 (<s-txt:s-text-part-list(t)>,<s-index:O>,<s-progr-name:pn>,<s-ci:CI>,
<s-e:£>)

§=£=in!~~i=!g~-part;
in!-d~cl=£grt(s-decl-part(t))

for: is-program (t)

Ref.: int-next-tezt-part 9-7(26)

(19) in.t=g.£!cl-part (dp) ~

(Yid) (,is-Q•id (dp) ~ is-Q•id (Jl) v is-entry•id (dp) & is- entry-den (den 0) &
(is-Q•s-entry-decl•id (dp) & is-n•s-body-loc (den 0) v. is-U•s-body•id (dp) &
is-O•s-at(den 0))) -•

i~=declaratign2(dp);
l!J2d-e (dp)

where.:
den 0 ~ id (Jl) {DN)

Ref.: is-entry-den 9-2(6)

(20) J!llg::.~ {dp) ~

ID!ll;
{Jlll!:!.=11 (id,af {*,id)) I ~is-O•id (dp) & is-!l•id (Jl))

Note: The first argument of the address function af represents the scope of the
identifier under considei:-ation. The "*" indicates "global".

9. THE INTERPRETER 5

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

.e.=g:JA(,1;l;<id:ad>)

nul!;
(in_t-de£!(id(Jl),id(dp}} 1 ~is-O•id(dp}J

(23} !n!~~£!(ad,decl} =
is-prop-var(decl) -- 2=4n:~J(~!;<s-at•ad:decl>)

is-index-list(decl) --

TR 25.095

30 June 1969

s-g~:~J(~N;<s-index-list•ad:decl>,<s-progr-name•ad:s-progr-name(£1)>)

is-body•s-body(decl) -­

YE1=1n(ad,decl):
~~=y(ad,s-body(decl))

T -- npd-dn(ad,decl)

for:is-decl (decl)

(24) YJ!l!=Y(ad,body) =

~E=~<E:<s-body•ad:body>,<s-execution•ad:F>)

for:is-body(body)

(25) !!J!l!-dn(ad,decl) =

is-body•s-body(decl}

§-dn: IJ {]]!; <s-at•ad_: s-entry- decl (decl) >, <s-body-loc•ad: ad>}

is-id•s-body(decl) --

§-dn:,.,(DN;<s-at•ad:s-entry-decl(decl}>,<s-body-loc•ad:af(*,s-body{decl))>)

is-O•s-body(decl} -- e-d~:IJ{Qli;<s-at•ad:ENTRY>)

for:is-entry (decl)

Note: In the second alternative the declaration does not specify a body, but
rather the identifier which is associated in the declaration-part with the
proper body. This occurs if a body is associated with more than one entry
name.

This section defines the sequential flow of control through the nested
structure of {p-)text-part-lists~ Also some features of the if statement and goto
statement are reflected here.

This flow is governed by the control information £I, which contains as its txt
component the innermost nested (p-) text-part-list or (p-} if-sta·tement whose

6 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

components are currently interpreted. The index co~ponent of £! localizes that
part of the txt component currently beeing interpreted: If the txt component is a
(p-}text-part-list the index is an integer value i pointing to the i-th element of
the (p-)text-part-list; if the txt co•ponent is a (p-}if-statement the index is a
truth value T or F denoting its then or else component.

The nested structure of text-part-lists and if-statements is reflected by the
components s-ci(CI) and s-c(CI) which contain the control information and control
of the state immediately before entering the current level of the structure: they
are to be reinstalled after leaving the current level.

The interpretation of a text-part starts with the interpretation of its
statement and continues - on sequential flow of control - vith the interpretation
of its text. The scan and replacement aechanism for text is defined in
section 9.9 ..

Whenever a (p-)text-part or (p-)if-statement is completed, the instruction
in~xt-text-par~ is executed. It increases the index by one, in the case of a
(p-) text-part-list vhich is not yet exhausted, or i·t returns to the former level
by reinstalling tbe former CI and £.

~~riablg.§:

is-index (indx)

(is-st v is-p-st) (st)

(26) iJ!~Xt-!g][t-p!!£1 =

an index localizing a (p-}text-part within
a (p-)text-part-list or the then or else component
within a (p-)if-statement

a (p-)stateaent to be interpreted

is-intg-val•s-index(£!) & s-index(£11 < lengtb•s-txt{CI) -•

T

continue;
Y.Ed-index

§-ci: s-ci (£1)
§::£:s-e (£1)

Note: The second alternative is reached if the outermost p-text-part-list is
exhausted, i.e., no return stateaent bad been executed.

(27) upd-in!!!tJI =

2=.£i: !I(£!; <s-index: s-index (£];) + 1>)

(28) ,;ontinue =

int-next-text-part;
j.nt=opt-t~xt;

!B!=§!(take-st(s-index(fl),s-txt{£1)))

9. THE INTERPRETER 7

IBM LAB VIENNA TR 25.095

FOBMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

(29) take-st (indx,st) =

is-list(st} & is-intg-val(indx) & 1 $ indx ~ length(st) -- s-st•elem{indx,st)

(is-if-st v is-p-if-st) (st) & is-T (indx)

(is-if-st v is-p-if-st) (St) & is-P (indx)

T -- error

s-then (st)

s-else (st)

Note: Applied during the goto statement this function ensures that the index list
of the label is correct and that no forbidden gotos into groups are
performed.

(30) int-st (st) =

(is-text-part-list v is-p-text-part-list) (st) -- in!-t~~a£1-li§!(st)

(is-if-st v is-p-H-st) (st) -• .i.!!!.-if=;;;! (st)

is-goto-st(st) -• .i.!!t-qoto~(st)

(is-group v is- p-group) (st) -· in;t-qrQY!2 (st)

is-include-st(st) -- int-ingl~de=§!(st)

is-act-st{st} -- in!=~£1=§£(st}

is-deact-st(st) -- in!-dga£1=st(st)

is-null-st(st) -- J!Yl~

is-assign-st{st)

is-return-st (st)

Bef.:

(31) int-O£!=!.~!!. =

inl=a§§!gn=§!(st)

in~turn::.§!{st)

is-ll (Jl) , (is-T V is-F) (s-index rnJ) -- !ll!H

T -- j.nt-text(<BLANK>-s-text•elem(s-index(£1J,s-txt(~!JJ,*)

Ref.: j.nt=te!!. 9-36 (1 Q2)

Note: Within a procedure body, i.e., ,is-Q{Q), no text exists; furthermore, the
then as well as the else component of an if-statement is a statement rather
than a text-part. In these cases this instruction replaces itself by the
null instruction. In all other cases the associated text is interpreted by
the instruction in!=!gxt.

The leading BLANK is inserted to seperate the text from the text of the
previously inte.rpreted text-part. The second argument of !.n:t::.,tg!:!:;;,. namely
n*", defines that the resulting output text must be transfered into!! in

8 9. THE INTEBPRETER

IBH LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

distinction from the action required during the interpretation of function
arguments (cf. !nt-~rg-t~!i in section 9.9).

(32) int-t~~!=part-list(tpl) =

§!>!ck-ci (1, tpl)

for: (is-text-part-list v is-p-text-part-list) (tpl)

(33) §tack-ci(indx,st) =

2=£i:~ 0 (<s-txt:st>,<s-index:indr>,<s-ci:~!>.<s-c:£>)
§.:.£:continue

9.5 IHTEBPBETATION OF FLOW OF CONTROL STATEMENTS

This section defines the semantics of the if-statement in section 9.5.1, the
goto statement in section 9.5.2- the group in section 9.5.3, and the include
statement in section 9.5.4.

9.5.1 IF STATEMENT

The interpretation of an if-statement coaprehends the evaluation of the
expression into a truth value and the interpretation of the alternative statement
denoted by this truth value by introducing a new level into the control
information £!, using the truth value as new index component of £!.

(34) int-if-s! (st} =

~ck-ci(truth,st);
truth:eval-truth(s-expr(st))

for: (is-if-st v is-p-if-st) (st)

Ref.: §!>!ck-ci 9-9 (33)

(35) eval-truth (expr) =

pass-truth-va1(bs);
bs:Eass-convert(BIT.v);

v:eval-expr(expr}

for:is-expr(expr)

Ref.: convert 9-23 {93)
eval-expr 9-18 [62)

(36) truth-val (bs) =

(3i) {is-intg-val{i) & 1 S i S lgth(bS) & is-1-BIT•elem(i,bs))

for:is-bi t-string (bs)

cont'd

9. THE INTERPRETER 9

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

Ref.: lgth 9-21 (79)

9.5.2 GOTO STATEMENT

In general. the denotation of a label consists of two components:
A program name, identifying €ither the main program or the external progra~ into
which the goto shall lead~ i.e., the program where the label is declared, and an
index list localizing the statement to which the goto shall lead relative to the
text-part-list of the program or to the p-text-part-list of a body. Labels which
are local to a body do not possess a program name in their denotation.

The interpretation of the goto statement is performed in four steps:

(1) On goto statements outside procedures, the levels of text-part-lists and
if-statements reflected in the control information ~I are terminated one by
one until a level is reached which belongs to the program into which the
goto shall lead.

(2) Again, levels of £! are terminated until the statement to which the goto
shall lead is contained (possibly at a nested level) in the current txt
component of f!·

(3) New levels of text-part-lists and if-statements are established in ~;!;,,
according to the index list of the label, simulating the situation which
would have occurred if these levels would have been entered by the normal
flow of control, until the statement to which the goto shall lead i~ one of
the immediate COFponents of the current txt component of £!·

(4} The index component of £! is adjusted so that it denotes the statement to
which the goto shall lead.

Metavariablg§.:

is- index-list (i ndl}

is-ci (ci)

is-U(ad 0) v ,is-label-den(den 0) v ,is-U(Q) & ~is-G•s-progr-name(den 0) -- grrQ!

~is-D(]) -- gotQ(s-index-list(den 0))

T -- 5!Q1.2::..EJ:QSll.! (den 0)

where:
ad 0 = s-label (st) (J:l)
den 0 = ad 0 (Q!!)

for:is-goto-st(st)

Ref.:

Note:

is-label-den 9-2 (8)

A goto leading out of a procedure is erroneous.
label denotation contains a program name and ·the
within a procedure.

10 9. THE INTERPRETER

This is the case if the
goto statement occurs

IM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COePILE TIME FACILITIES

(38) 3gto-proq~(den) =

is-MAIN•progr-name (£!) & is-!UIN•s-progr-name (den) ·-- !t£!!2I

progr-name(£1) = s-progr-na•e(den) -- qQ!g(s-index-list(den))

T

§::£!: s-ci (£];)
§::£: qgto-prgq~.!!(den)

for: is-label-den (den)

Ref.: is-label-den 9-2(8)

Note: The first alternative is reached if the external program to which the label
refers is not incorporated# i.e., is not under interpretation.

(39) progr-name (ci) =

s-progr-na•e (ci)

T -- progr-naae•s-ci(ci)

Note: This function gives the name of the program to which the top level of the
argument belongs.

(~0) qotg (indl) =

(3list) (is-index-list(list) & length(list) ~ 1 & ci-indl(CI)-list

qlll!l=.ll {l.olist) (is-index-list (list) & ci-indl (£!) -ust = indl))

T

§::gj,:s-ci (Cl)
§::£: goto (indl)

(41) ci-indl(ci) =

.... is-Q•s-progr-name(ci) -• <>

T -- ci-indl-1•s-ci(ci)

(42) ci-indl-1 (ci) =

is-0 (ci) -- <>

~is-n•s-progr-name(ci) -- <s-index{ci)>

T -- ci-indl-1•s-ci(ci)~<s-index(ci}>

indl) --

Note: The first alternative is reached only inside procedures (no program name
exists), the second alternative only outside pr~cedures (a program name
exists in any case}.

9. THE INTERPR~TER 11

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

(~3) 3£!!.2=1 (indl) =

T

2=£i:~a(<s-txt:st 1>,<s-ci:p(f!;<s-index:index 1>)>-<s-c:int=ng~!=~t~~£!;
i.!!!::llPt- text>)

~~'32!2=1(tail{indl))

where:
index1 = head(indl)
st 1 = take-st(index 1 ,s-txt(f!))

Ref.: ,i.nt=.!!!lJ~;!=.!!!J!:!=El!tl 9-7 (26)
int-opt-tex! 9-8(31)
take-st 9-8 (29)

(~4) _gQ!Q=l(indx) =

2=£i:~(CI;<s-index:indx>}
~:£QDti~

for:is-index(lndx)

Be£.: continue 9-7 {28)

The group corresponds in a concrete program to the iterated grou~. The
interpretation of a group comprehends the following actions: First, the
initiation expression is evaluated (as well as the by- and to-expressions) and
assigned to the controlling variable. Second, the value of the controlling
variable is compared with the value of the to-expression. Third, the
(p-)text-part-list is interpreted, and fourth, the iteration is continued by
adding the value of the by-expression to the value of the controlling variable and
starting a new circle beginning with the second point.

If the to-expression is missing, the comparison is assumed always to yield T.
If the by-expression, but not the to-expression is missing, the by-expression is
assumed to be the integer value 1e If both, the by-expression and the
to-expression are missing, the iteration is not continued.

(is-text-part-list v
is-p-text-part-list) (tpl)

is-id (id)

(is-T v is-F) (truth)

12 9. THE INTERPRETER

the iterated (p-)text-part-list

the controlling variable

a truth value

IBM LAB VIENNA TR 25.095

30 June 1969 POIMAL DEFINITION OF THE PL/I CO"PILE TIME FACILITIES

<45J ini~££Y£(st) =
-,is-Q {ad0) & is-var-den•ad 0 {DN) -•

ite~5~=do(id 0,by-to-vs,s-do-list{st));
£Q~£~~a{id0 ,v);

by-to-vs:2!al-Qy=iQ(s-by•s-iteration(st),s-toGs-iteration(st)):
V!2!2l~!E~(s-init•s-iteration(st))

T -- gll.QE

where:
id 0 ; s-contr-var•s-iteration(st)
ad 0 = id a(£!)

for: (is-group v is-p-group) (st)

Ref.: is-var-den 9-2 (5)
convert-assign 9-18(61)
~1-~E£ 9-18(62)

(46J gul-J:n=!g(by,to) =

is-ll(by) & ,is-2(to)

I!ass(by-to-vs};
s-by (by-to-vs) :pass (1),
s-to(by-to-vs)!!l!!l-g~E£(to)

ll!U!2(by-to-vs);
s-by(by-to-vs) :eval-opt~xpr(by),
s-to(by-to-vs) :gval-opt::g~P£(to)

for: (is-expr v is-ll) (by) & (is-expr v is-ll) (to)

Ref.:

(47) gyal-opt-expr(expr) =
is-l!(expr) -- PASS:Il

is-expr(expr) -- ~val-expr{expr)

Ref.:

g.Q::£Q!!tin~ (truth,id,by-to-vs·,tpl);
i!!i-do-li.fll (truth·,tpl) i ·

truth:~val-comp(id,by-to-vs)

9. THE INTERPRETER 13

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(49) J<.Yal::_£omi! (id, by-to-vs) =

is-Q•s-to {by-to-vs) PASS:T

T -- PASS:truth-val•eval-infix-expr(v 0 ,s-to{by-to-vs),opr 0)

vhere:
v0 = s-value (id(]) (Jl!!l)
opr 0 = comp-opr•eval-infix-expr{s-by(by-to-vs),O,GE)

Ref.: eval-infix-expr 9-19(68)

(50) comp-opr (bvl) =

truth-val(bvl) -·LE

T -• GE

for: is-bit-val-list-1 (bvl)

(51) int-do-list(truth,tpl)

,truth -- J!Jl.l.!

T -• ill1=1~At-p~!=l!2!(tpl)

Be f.:

(52) do=!!!in]ll!(truth,id,by-to-vs,tpl) =

,truth v is-O(by-to-vs) -• !!Jlll

T

1!~~~-do{id,by-to-vs,tpl);
£2D~~t-assiqn(i~,eval-infix-expr{v 0 ,s-by(by-to-vs) ,ADD)}

w.here:
v0 = s-value (id (.!l) (Jl!!))

Ref.: £.2!!!~£!-assi!l.!! 9-18(61)
eval-infix-expr 9-19 (69)

9.5.4 INCLUDE STATEMENT

TR 25.095

30 June 1969

The include statement specifies a list of pairs of identifiers, where each pair
corresponds to an external program in the external program directory ~·
According to this list, the corresponding programs are incorporated and
interpreted, one after the other, whereby the pairs of identifiers are used as
program names, necessary for the interpretation of goto statements outside
procedures.

14 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION 0!' THE PL/I COMPILE TIME FACILITIES

(53) in:!;-ingluJl.e-st (st) =

int-include(s-id-pair-list(st))

for:is-include-st(st)

(54) int-inclJ!de(idplJ =

is-<>(idpl) -- null

int-include (tail (idplJ);
iYi=2£2gia!(ext-progr1,idp1}

where:
ext-progr~ = set (idh) (]E)
idp 1 = head(idpl)

for: is-id-pair-list (idpl)

Ref.: !nt-proqram 9-5 (18)

Activate and deactivate statements may appear only outside procedures. By them
the activation status of entry names, builtin functions, and global variables is
controlled, i.e., they determine whether a reference to a variable or function
whithin text is to be replaced by the corresponding value and if, whether the
value is rescanned .tor possible replacements before it is replaced.

The interpretation of an activate statement is simply performed by assigning
the rescan component of each activation to the rescan component of the denotation
of the corresponding identifier, whereby T denotes RESCAN and F denotes NORESCAN.
Note that concrete decl:are statements outside procedures are translated into
activate statements with T as their rescan components.

A deactivate statement sets the rescan components of the denotations of the
corresponding identifiers to Q.

If a builtin function name which does not possess a denotation is activated or
deactivated, in addition a declaration is simulated, giving the corresponding
identifier the denotation of the builtin function.

Metavariable:

{is·-T v is-F v is-2) (rescan)

(55) !~!::.§! (st) =

in:!;~!=Jl.~£!ls-act-list(st))

for:is-act-st{st)

the rescan component O.f the denotation o.f an
entry name, or builtin function name, or global
variable, where T denotes RESCAN, F denotes
NORESCAH, and 0 denotes "not activated11 •

9. THE INTERPRETER 15

IBM LAB VIENNA

FORMAL DEFINITION OP THE PL/I COMPILE TIME fACILITIES

(56) i1!i-dJlj!£!::g(st) =

ini=l!£1-d~fi(s-id-list(st))

for:is-deact-st(st)

(57) il!.k.l!£i=!leaci(list) =

is-<>(list) --nul!

illi=l!Ct-d~l!fi(tail(list));
~d-re~£An{ad~,rescan 1)

is-Q(ad•) & is-builtin(id•) -­

j,nt=l!£1-d~act(tail(list));
gecl-an4~§£~(id1 ,rescan 1)

where:
id~= (is-act•head(list) -- s-id•head(list),

T -- head (list))
ad• = id• (£:)
den 1 = adl. (121H
rescan 1 = s-rescan•head(list)

for: (is-act-list v is-id-list) (list)

Ref.: is-label-den 9-2(8)
is-builtin 9-28(11Q)

(58) YBg~scan(ad,rescan) =

s-dn:~(DN;<s-rescan•ad:rescan>)

for:is-ad (ad)

{59) 1~£l~nd=~~can(id,rescan) =

~~:~{~;<id:ado>)
s-dn:~{~:<s-at•ad 0 :BUILTIN>,<s-rescan•ad0 :rescan>)

where:
ad 0 = af (*,id)

for:is-builtin(id)

Ref.: is-builtin 9-28(11Q)

16 9. THE INTERPRETER

TR 25.095

30 June 1969

IB~ LAB VIENNA TR 25.095

30 June 1969 PORHAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

The first subsection defines the assignaent statement. The second subsection
defines the evaluation of expressions except of the evaluation of references,
which is described in section 9.8. The third subsection describes the conversiDns
between character, bit, and integer data.

~Hnri~bles:

integer

v,v1,v2

intg,intg1,intg2

s,.s1,s2

cvl

cv,cv1

bs,bs1,bs2

bv11, bvl2

bv,.bv1,bv2

vl1,vl2

9.7.1 ASSIGNMENT STATEMENT

is-intg- val

is-prop-value

is-prop- intg- val

is-char-val-list v
is-bit-string

is-char-val-list

is-char-val

is-bit-string

is-bit- val-list-1

is-bit-val

is-char-val-list v

is-bit-val-list

-.is-Q(ado) & is-var-·den•ada uun
£QDX~t=assiqn(s-lp(st) ,v);

v:eval-2JEI(s-rp(st))

where:
ad 0 = s-lp (st) (]!)

for:is-assign-st(st)

Ref .. : is-var-den 9-2(5)

an integer value

a char-val-list, a bit-string, or a
proper integer value

an integer value which is proper with
regard to an i.mplementation

a value, but not an integer value

a value of type CHAR

a character value

a value of type BIT

a value of type BIT, but not the
BIT-NULL-STR

a bit value

a value of type CHAR or BIT, but not
the empty element BIT-NULL-STR

9. TRE INTERPRETER 17

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION Of THE PL/I COMPILE TIME FACILITIES 30 June 1%9

(61} £QQYftrt-assign{id,v) =

~~n:~~~~~<s-value•(id(j)):convert(s-at(den 0),v)>)

where:
den 0 = id(]) (DN)

for:is-id (id)

9.7.2 EXPRESSION EVALUATION

This section defines the evaluation of all types of expressions except of the
evaluation of references, which is defined in section 9 .. 8. The necessary
conversions are defined in the next subsection.

expr

opr

(62) ~!sl-ez£I(expr) =

is-expr

is-infix-opr v
is-prefix-opr

an expression to be evaluated

an operator

is-infix-expr (expr}

Bass-ev~l-intix=gzEf(V1,v2,s-opr(expr));
v1:~yal=~!E~(s-op-1 (expr)),
v2:~al-exp£(s-op-2(expr))

is-prefix-expr(expr) -­

E~§~~al=E£~fix-e!EI(V,s-opr(expr});
v:~l-~ZP£(5-op(expr))

is-paren-expr(expr) -- gy~l-ezE£{s-op{expr))

is-ref(expr) -- gyal~g!(expr}

is-value(expr) - ... PASS:intg-test(expr)

Ref.: ~1-ref 9-28(112)

(63) intg-test (value) =

is-proper-value(value) --value

for:is-value(value)

(6'~} is-proper-value (value}

is-intg-val(value) ~ is-prop-intg-val(value)

for:is-value(value)

18 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(65) is-prop-intg-val (integer) =

abs(integer) < 10 1 P

Note: This predicate examines an integer value whether it is proper with regard
to an implementation.

(66) p =

Note: This letter denotes the implementation defined precision for integer
values.

(67) is-intg-val(P) & P > o

(66) eval-infix-expr(v1,.v2,opr) =

infix-op(convert(tg0 ,v1),convert(tg 0 ,v2),opr)

where:
tg 0 = target(v1,v2,opr)

(69) target(v1,v2,opr) =

is-arith-opr(opr) -- IHTG

is-coap-opr(opr) & (is-intg-val(v1) v is-intg-val(v2)) -- INTG

is-coap-opr(opr) & is-bit-string(v1) & is-bit-string(V2) --BIT

is-comp-opr(opr) --CHAR

is-bit-opr(opr) -- BIT

is-CAT(opr) & is-bit-string(v1) & is-bit-string(v2) -- BIT

is-CAT(opr) -- CHAR

(70) infix-op(v1,v2,opr) =

is-arith-opr{opr) -~ arith-op(v1,v2,opr}

is-comp-opr(opr) -- comp-op(v1,v2,opr)

is-bit-opr (opr) -- bit-op (v1, v2, opr)

is-CAT(opr) -- conc(vl,v2)

(71) arith-op(intg1,.intg2,opr) =

is-prop-intg-val•arith-op-1(intg1,intg2,opr) -- arith-op-1(intg1,intg2,opr)

T -- truncate•arith-op-1(intg1,intg2,opr)

for:is-aritb-opr{opr)

9. THE INTERPRETER 19

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OP THE PL/I COMPILE TIME FACILITIES 30 June 1969

{72) truncate (integer) =

for:~is-prop-intg-val(integer)

Note: This implementation defined function maps integer values which are improper
with regard to the implementation into proper integer values.

(73) ~is-prop-intg-val(integer) ~ is-prop-intg-val•truncate(integer)

(74) aritb-op-1 (intg1,intg2,opr) =

is-ADD(opr) -· intg1 + intg2

is-SUBTR(opr) -· intg1 - intg2

is-HULT(opr) -- intg1 • intg2

is-DIV(opr) -· trunc(intg1 1 intg2)

(75) comp-op(v1,v2,opr) =

is-intg-val {v1) intg-comp(v1,v2,opr)

T -- string-comp{v1,v2,opr)

(76) intg-comp (intg 1 ,intg2,opr) =

opr E. {EQ,GE,LE] & intg1 = intg2 v is-NE(opr) & intg1 -t- intg2 v opr E. (GT,GE} &
intg1 > intg2 v opr • [LT, LE} & intg1 < intg2

<1-BIT>

T -- <O-BIT>

for: is-comp-opr {opr)

(77) string-comp(s1,s2,opr)

truth-to-bit•is-true-comp(s1,s2,opr)

for:is-comp-opr(opr)

Note: The truth value T or F resulting from the co~parison operation, performed
by is-true-comp, is transformed into a bit string of length one.

20 9. THE INTERPRETER

IB~ !.AB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(78) is-true-comp (s1,s2,opr) =

is-NE (opr)

is-GE (opr)

is-LE (opr)

is-LT (opr)

T

~is-true-comp{s1,s2,EQ)

.... is-true-comp (s2, s1, GT)

.... is-true-comp(s1,s2,GT)

is-true-comp-1 (adjust-str.ing (aax-lgth 0 , s 1) , adjust~str ing (max-lgth 0 ,s2} , opr)

where:
max-lgth 0 = max(lgth(v1),lgth(v2))

for:is-comp-opr(opr)

Note: The interpretation of the operator NE is reduced to the interpretation of
EQ, and the interpretation of GE, LE, LT to the interpretation of GT. Both
char-val-lists or bit strings are adjusted by the function adjust-string to
the sa•e length,

(79) lgth (s) =

is-list(s) -- length(s)

T -- 0

(80) adjust-string (o,s) =

n
LIST (i $ length(s) -- elem(i,s),

i."'1

T -- fill-char 0)

where:
fill-char 0 = (is-char-val-list(s) --BLANK,

is-bit-string(s) -- O-BIT)

for:is-intg-val(~ I n > 0

(81) is-true-comp-1 (vl1, vl2, opr) =

is-EQ(opr) -- vl1 = vl2

vl1 = vl2 -- F

head (v11) = head (vl2)

is-char-val-list {v 11)

is-true-comp-1(tail(vl1),tail(vl2),GT)

collat•head(vl1) > collat•head(vl2)

is-bit-val-list(v11) -- bit-num•head(vl1) > bit-num•head(vl2)

for:length(vl1) = length(vl2) 1 (is-EQ v is-GT) (opr)

9. THE INTERPRETER 21

IBM LAB VIENNA n 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1%9

(B2) collat(cv) =

Note: This implementation defined function maps character values into integer
values, denoting the position of a character value in the collating
seguence.

(63) is-intg-val•collat(cv) & (cv # cv1 ~ collat(cv) * collat(cv1))

(84) truth-to-bit (x) =

is-T (x) (1-BIT>

is-F (X) <O-BIT>

(85) bit-op(bs1,bs2,opr) =

max-lgth 0 = 0 -- BIT-NULL-STR

T -- bit-op-1(adjust-string(max-lgth 0 ,bs1),adjust-string(max-lgth 0 ,bs2),opr)

where:
max-lgth 0 = max (lgth (bs1) ,lgth (bs2))

for:is-bit-opr(opr)

(86) bit-op-1 (bvl1,bvl2,opr) =

length (bvl1)
LIST single-hi t-op (elem (i, bvl1) ,elem (i, bvl2) ,opr)

l~-1

for:length(bvl1) = length(bvl2) & is-bit-opr(opr)

(87) single-bit-op (bv 1 ,bv2,opr) =

is-AND (opr) --

(is-1-BIT(bv1) & is-1-BIT(bv2) -- 1-BIT,

T -• O-BIT)

is-OR(opr) --

(is-1-BIT (bv1) v is-1-BIT (bv2) -- 1-BIT,

T -- O-BIT)

(88) conc(s1,s2) =

is-BIT-NULL-STR (s1) s2

is- BIT- NULL-STR (s2) s 1

22 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(89) eval-prefix-expr (v ,opr) =

prefix-op (convert {tgg,. v) , opr)

where:
tg 0 = ((is-PLUS v is-MINUS) (opr) -- INTG,

is-NOT(opr) -- BIT)

for: is-prefix-opr (opr)

(90) prefix-op (v ,opr) =

is-PLUS(opr) -- v

is-MINUS(opr) -- -v

is-NOT(opr) -- not-op(v)

for: (is-prop-intg-vai v is-bii-stdng) (V)

(91) not-op (bs) =

is-BIT-NULL-STR(bs) -- bs

lengl;h(bs)
T -- • LIST single-not-op•elem {i,bs)

1"1

(92) single-not-op(bv) =

is-0-BIT (bv)

is-1-BIT(bv)

9.7.3 CONVERSIONS

1-BIT

O-BIT

This section defines the conversions between the t.hree types of values: INTG,
CHAR., BIT.. Because of the different semantics of the null strings of character
and bit data, the null string of bit data is the elementarY" object BIT.:..NULL-STR,
rather than the empty list <>o

{93) convert (da, v) =

type(v) = da -- v

is-intg-val(v) & is-CHAR(da) -- intg-char-conv(V)

is-intg-val (v) & is-BIT (da) -- intg-bit-conv•abs (v)

is-char-val-list{v) & is-INTG(da) -- char-intg-conv(v)

is-char-val-list (v) & is-BIT (da) -- char-bit-conv {v)

is-bit-string(v) & is-INTG(da)

is-bit-string(v) & is-CHAR(da)

for: (is-INTG v is-CHAR v is-BIT) (da)

bit-intg-conv {v)

bit-char-conv (v)

9. THE INTERPRETER 23

IBM LAB VIENNA TR 25.095

FORMAL .DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

(94) type (V) =

is-intg-val(V) -• INTG

is-char-val-list(v) CHAR

is-bit-string(v) -- BIT

(95) intg-char-conv (intg) =

intg ~ 0 -• blank-fill•intg-char(intg)

T -• blank-fill(<!IHOs>-intg-char(-intg))

(96) intg-char (intg) =

intg < 10 -- <num-char(intg)>

for:intg ~ o

(97) num-char (intg) =

intg = 0 -• 0-CHAR

intg = 1 1-CHAR

intg = 2 2-CHAR

intg = 3 3-CHAR

intg = 4 4-CHAR

intg = 5 5-CHAR

intg = 6 6-CHAR

intg = 7 -• 7-CHAR

intg = 8 8-CHAR

intg = 9 9-CHAR

(98) blank- fill (cvl) =

P•3
LIST (i ~ blank-no 0 -· BLANK,

(1>1

T elem (i - blank-no 0 ,cvl))

where:
blank-no0 = P + 3- length(cvl)

for:length(cvl) ~ P + 3

24 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL .DEFINITION Ol? THE PL/I COMPILE TIME FACILITIES

Note: A char-val-list which is the result of an integer-character conversion must
be of length P • 3.

(99) intg-bit-conv(intg) =

intg < 2 -~ <num-bit (intg) >

T - intg-bit-conv•trnnc(intg 1 2) .. <num-bit••odulo(fntg,2)>

for:intg 2:: 0

(100) nua-bit(intg) =

intg = 0

intg = 1

O-BIT

1-BIT

(101) char-intg-conv(cvl) =

is-prop-intg-val•char-intg(cvl) -· char-intg(cvl)

T -- truncate•char-intg(cvl)

(102) char-intg (cvl) =

char-intg-1(cvl,Q)

(103) char-intg-1 (cvl,x) =

is-BLANK-list{cvl) & ~is-intg-val(x) -- error

is-BLANK-list(cvl) --X

is-BLANK•head(cvl) & is-2(x) -- cbar-intg-1(tail(cvl) ,x)

bead(cvl) • [PLUS, MINUS) & is-2(x) - char-intg-1 (tail(cvl) ,head(cvl))

is-digit• head (cvl) & ,is-intg-val (X) --

char-intg-1(tail(cvl),sign0. char-num•head(cvl))

is-digit•head(cvl) --

char-intg-1 (tail (cvl) ,10 • x + sign (x) • char-num•head (cvl))

T -· error

where:
sign 0 = (is7ftiNUS(x) -- -1,

T -• 1)

for: (is-intg-val v is-n v is-PLUS v is-MINUS) {X)

Note: The char-val-list to be converted must have the form of a possibly signed
sequence of digits 6 optionally surrounded by blanks.

q. THE' INTERPRETER 25

IBH LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME fACILITIES

{104) char- num (cv) =

is-0-CHAR (CV) 0

is-1-CHAR (CV) 1

is-2-CHAB (CV) 2

is-3-CHAR (CV) 3

is-4-CHAR (CV) 4

is-5-CHAR (CV) 5

is-6-CHAR (cv) 6

is-7-CHAR(cv) 7

is-8-CHAR (CV) 8

is-9-CHAR (CY) 9

{105) char-bit-conv(cvl) =

is-<>(cvl) -- B!T-NULL-STR

lengl\1{cvl)

T -- LIST char-bit•elem (i,cvl)
l'"1

(106) char-bit(cv) •

is-0-CHAR (cv)

is-1-CHAR (cv)

T -.. error

(1 07) bi t-intg-con v (bs) •

O-BIT

1-BIT

is-prop-intg-val•bi t-intg (bs) -- bit-intg (bs)

T -· truncate•bit-intg(bs)

(108) bit-intg (bs) =

is-BIT-NULL-STR(bs) -- 0

le!'fgl:ll(bs)

T -- 1: bit-num•elem (i, bs) • 2 t (length (bs) - i)
~ .. 1

{109) bit-num(bv) =

is-0-BIT(bv) 0

is-1-BIT (bv)

26 9. THE INTERPRETER

TR 25.095

30 June 1969

IB~ LAB VIENNA

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIAE FACILITIES

(110) bit-char-conv (bs) =

is-B.IT-NULL-STB(bs) -• <>

le~h(bs)

T -- LIST bi t-char•elem (i, bs)
i"'4

(111) bit-cbar(bv) =

is-0- BIT (bv)

is-1-BIT (bv)

0-CHAR

1-CHAR

2 ... JL!!!ll.!!ATION OF REFER!!]CE~

This section defines the evaluation of the three different types of reference~
which may appear in an expression:

Ref-erence to a variable,·

reference to a procedure (9.8.1},

reference to a builtin function (9.8.3).

Subsection 9.8.2 defines the interpretation of procedure bodies, ·independently
from the context in which the corresponding reference occurred, i.e., also
procedures invoked from text refer to this section. The same holds for the
function eval-builtin defined in 9.8.3.

i,j is-intg-val integer values

id is-id an identifier

parl is-id-list the parameter list of the body

the declaration-part of the body dp is-p-decl-part

is-<>•s-arg-list (re f) & -.is-D (ad 0) & -.is-il•s-value (den 0 } - ... PASS: s-v.alue (den 0)

-.is-O(ad 0 } & -.is-O(body-loc 0) & -.is-Q(body 0 } & -.execution 0 &
length•s-arg-list(ref) = length•s-param-list(body 0) & is-prop-body(body 0) -•

restore (n) ;
- call=proc(body-loc 0 ,argl,n);

n : Y!l=.!lgJ!!! ,
argl:~yal-a£g=li~(s-arg-list(ref),s-param-list(body 0),

s-decl-part(body0))

is-builtin(id0) & (is-U(ad 0) v is-builtin-den(den 0)) &
is-prop-builtin-argl-length(id0 ,s-arg-list(ref)) -·

R~§2=eval-builtin{id 0 ,argl);
argl:~val-builtin-arq-list(s-arg-list(ref),builtin-descrl(id 0));

def-decl (id 0)

T -- ll.t!ll:

cont•d

9. THE INTERPRETER 27

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COHPI.LE TIME FACILITIES

where:
id 0 = s-id (re f)
ado = ido till
den 0 = ad 0 (Jl.!!l
body-loc 0 = s-body-loc(den 0)
body0 = s-body•body-loc 0 (£)
execution 0 = s-execution•body-loc 0 (~}

for: is-ref (re f)

Ref.: is-builtin-den 9-2(7)

9.8.1 REFERENCE TO l PROCEDURE

(113) is-prop-body (body) =

(Vi) (1 5 i :S length (parl 0) , is-prop-var (elem (i, parl 0) (dp0)) &

TR 25.095

30 June 1969

,(3j) (1 :S j S length(parl 0) & i ~ j & elem(i,parl 0) = eleo(j,par10 })) &
(V id} (is-BUILTIN•id (dp 0 } , is-builtin (id))

where:
parl0 = s-param-list(body)
dp0 = s-decl-part(body)

for:is-body(body}

Note: This predicate performs a syntax check on the body which had not been
carried out by the translator.

(11~) is-builtin(id) =

id • (m~- id (SUBSTR) ,mk-id (LENGTH}, m k-id (INDEX)}

(115) ~!!1-arg-list(expr-list,parl,dp) =

is-<>(expr-list) --PASS:<>

T

!k-li§!(arg,argl);
argl:~al=!rg-~(tail(expr-list},tail(parl),dp):
arg:~al-!rg(head(expr-list),head(parl) (dp))

for: is-expr-list (expr-list)

28 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(116) !UJll-aJ;.g(expr,da)

is-ref(expr) & is-<>•s-arg-list(expr) & ~is-Q(ad 0) & s-at(den 0) = da -­

PASS:ad0

T

pass=.£Qnvert(da,v);
v:eval-expr(expr)

where:
ad 0 = s-id (expr) (lJ)
den 0 = ad 0 (DN)

for: is-expr (expr) & (is-INTG v is-CHAR) (da)

Ref.:

(117) J!n-name =

convert 9-23 (93)
eval-expr 9-18 (62)

PASS:elem (UH)
§:..!!.!! :!:!1! + 1

(118) !:!l§!Jlre(n) =

PASS: n (DN)

for: is-n (n)

9. 8. 2 INTERPRETATION OF THE PROCEDURE BODY

Function references encountered in expressions as well as function references
encountered within a text refer to this subsection. In both cases the arguments
of the reference are already evaluated, i.e., the argument list consists of
addresses possessing the denotation of a variable, and of values of the type INTG
or CHAR ..

9.8.2.1 Initialization

Rere, all initializing actions are defined: The execution status of the body
is set ·to T to prevent recursive invocations of the body,. a new level of the dump
D is introduced,. the outermost environment, i.e., the environment where the
Procedure vas declared, is assigned to !,. the return infcr•ation is constructed,
the argument list is installed, and at last the declaration-part of the body is
interpreted.

Metavariable§:

body-loc is-ad

ad is-ad

argl

the address under which the body is stored in
the procedure body directory E

the address of an identifier

the argument list; its elements are addresses,.
proper integer values and char-val-lists

9. THE INTERPRETER 29

IB~ LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME fACILITIES

(119) !all::.E~(body-loc,argl,n) =

s-p:~(R;<s-execution•body-loc:T>)
~g:eo
s-ci: 0:
~=£:int-text-part-li§!(tpl 0);

in!=p-de£larati2!§(dpo,parl 0 };

l!.!!!!=lt:!! (dp 0 ,parla);
inst~ll-ar~!i§!{argl,par1 0)

~-d:stack(],£!,f,Q,B!l
~Ii=~o(<s-body-loc:body-loc>,<s-value-loc:n>)

where:
eo = {is-Q(~) -~] 1

T -- get-e (Jl))
body 0 = s-body•body-loc(~
dp 0 = s-decl-part {bodfo)
tp1 0 = s-text-part-list(body0)
parl0 = s-parao-list (bodYo)

for: is-n (n)

Ref.:

{120) get-e(d)

is-n•s-d (d) -- s-e (d)

T -- get-e•s-d(d)

for:is-d & ~is-O(d)

Ref.: is-d 9-3 (14)

TR 25.095

30 June 1969

Note: This function yields the outermost environment, i.e., the environment
stored at the bottoa of the dump.

{121) stack(e,ci,c,d,ri} =

~o<<s-e:e>,<s-ci:ci>,<s-c:c>,<s-d:d>,<s-ri:ri>)

(122) install-arq-lis_t(argl,parl) =

nul!;
li!!l!!all-~!.9 (elea (i;argl), elea (i, parl)) 1 1 S i ~ length (argl))

30 9. THE INTE.RPRETEB

IB8 LAB VIENNA TR 25.095

30 June 1969 FOR~AL DEFINITION OF THE PL/I CO~PILE TiftE FACILITIES

(123) i~~11-a£g(arg,par) =

is-ad (arg) · -- J!ru!-id (par;arg)

T

du•ay-assig!(ad 1 ,arg);
upd-id (par,ad1)

where:
ad1 = af (body-loc10 par)
body-loc1 = s-body-loc(RI)

for: (is-ad v is-prop-intg-val v is-char-nl-list) (arg) & is-id(par)

Ref.: upd-id 9-6(21)
is-prop-intg-val 9-19(65)

Note: The body-location, i.e.·, the address of the procedure body within the
procedure body directory £, serves as scope information for the address
function af~

(124) gu••y-assiqn(ad,v) =
s-dn:p(DN;<s-at•ad:type(v)>,<s-yalue•ad:v>)

for: (is-prop-intg-val v is-char-val-list) (v)

Bef.: type 9-24 (94)
is- prop-intg-.al 9-19 (65)

(125) upd-p-~(dp,parl) =

nul!;
(upd-id (id,ad1) 1 ~is-D•id (dp) &
, (3i) (1 S i :s length (parl) & id = ele• (i, parl)))

where:
ad 1 = af(body-loc1 ,id)
body-loc1 = s-body-loc(RI)

Ref.: upd-id 9-6 (21)

(126) int-p-declarations(dp,parl) =

,ID!ll;
{int::J!-dJll<1 (id liD ,id (dp)) 1 ~is-ll•id (dp) &
, (3i) (1 s i :S length (pari) & id = ele• (i, parl)))

9. THE INTERPRETER 31

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(is- prop-var v is-BUILT IN) (decl) -• ~=i!!!.: IJ {m!; <s-at•ad: decl>)

is-index-list(decl) -- §-dn:~{~!:<s-index-list•ad:decl>)

for: is-p-decl (decl)

TR 25.095

30 June 1969

This section defines the return from the procedure by means of a return
statement. The value of the specified expression is converted to the return type
of the body and enters the denotation directory DN under the unique name S?ecified
by the return information .R1., where it is then available outside the procedure
activation.

A.Qbr!U;iati.QD.§:

value-loc 0 = s-value-loc(.R!J the unique name under which the function value
is entered into ~!

body-loc 0 = s-body-loc{R!) the address of the body within £

ret-type 0 = the return type of the body
s-ret-type•s-body•hody-loc 0 (f}

(128) iEi~iY~~(st) =
.!!.!ll!.t~s:!;

4~S!_£t-boQ_x;
~!Q!~(value-loc0 ,v-1);

v-1:Ea2~£Qn!~[!(ret-type 0 ,v) i
v:~yal=eXRr{s-expr(st))

for:is-return-st{st)

Ref.: convert 9-2 3 (93)
~Bl-expr 9-18 (62)

(129) ~£!! (n,v) =

2::f!n:,., Ulli; <n: v>)

foL: is-n (ll) & (is-prop-intg-val v is-cbar-val-list) (v)

Ref.: is-prop-intg-val 9-19(65)

Note: The execution status associated wich&the&body is set to F, indicating that
the interpretation of the body is completed and further references to thP.
body can be made.

32 9. THE INTERPRETER

IB~ LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OP THE PL/I COMPILE TIME FACILITIES

(13 1) l!!!ll!i!£! =

.§::.§:s-e (Q)
§::£i: s-ci {:Q)
.§::£:s-e (.!!)
§~:s-d (.!!!
§::~i: s-ri (Q)

9.8.3 REFERENCE TO A BUILTIN FUNCTION

This section defines the evaluation of references appearing in an expression to
the builtin functions INDEX, LENGTH, and SUBSTR~

If a proper reference to a builti.n function occurs and the corresponding
identifier is not known, i.e., has no entry in the environment~, a default
declaration is perfor•ed, giving the identifier the denotation of a builtin
function within the current scope.

The function eval-builtin, whose arguments are the name of the builtin function
and the already evaluated and converted list of arguments, yields the value of the
corresponding reference. It is also used if the reference occurs in the context
of a text ..

!eta variable§:

id

expr-list

argl

descrl

cvl,.cvl1,.cvl2

is-builtin

is-expr-list

is-char-val-list

the identifier of a reference to a builtin
function

the argument list of a reference

the evaluated argument list whose elements are
char-val-lists or proper integer values

the description list whose elements are the
ele11entary objects CHAR and INTG. It is given
by the function builtin-descrl.

(132) is-prop-buil tin-argl-length (id ,expr-list)

id= ak-id(INDEX) -• length(expr-list) = 2

id= mk-id(LENGTH)

id = m k-id (SUBSTR)

(133) Qef-decl(id) =

,is-Q•id Oll

T --

length(expr-list) = 1

2 ~ length(expr-list) ~ 3

a-dn:~(]!;<s-at•ad 1 :BUILTIN>)
~:~(~;<id:ad~>)

where:
ad1 = af{scope 1 ,id)
scope1 = (is-n (.)2) -- *,

T -- s-body-loc(RJ))

9. THE INTERPRETER 33

IBM LAB VIENNA T1 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 .June 1969

Note: Inside a procedure the default declaration holds only during the current
procedure activatione

(134) builtin-descrl (id) =

id= mk-id(INDEX) -- CCHAR,CHAR>

id = m k-id (LENGTH)

id = mk-id (SUBSTR)

<CHAR>

<CHAR,INTG,INTG>

(135) ~~l-£ui!iin=~!3-li§i(expr-list,descrl)

is-<>(expr-list) --PASS:<>

T

~k-list(arg,argl);
argl:gyal-byiltin=a~g-list(tail(expr-list),tail{descrl))t

arg.:gval=built!1!=.2.!:.9. (head (expr-list) , head (descr 1) }

(136) eval-bJ!i!iin-arq(expr,da) =

2~2§:£Qn!St!(da,v):
v:~al=expr(expr)

for:is-expr(expr) & (is-INTG • is-CHAR) (da)

Be f.: convert 9-23 (93)
~!Al-e~£! 9-18(62)

(137) eval-builtin (id,argl) =

id = mk-id(INDEX) -- eval-index(argi,arg2)

id = m k-id (LENGTH)

id = mk- id (SUBSTR)

where:
arg 1 = elem{1,argl)
arg 2 = elem(2,argl}
arg 3 = elem(3,argl)

(138) eval-index(cvll,cvl2) =

eval-length(arg~)

is-prop-intg-val•index (cv11,cvl2) -- index (cvl1,cvl2)

T -- truncate•index(cvl1,cvl2)

Ref.: is-prop-intg-val 9-19 (65)
truncate 9-20 (72)

34 9. THE INTERPRETER

IB~ LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I CO!PILE TiftE FACILITIES

(139) index (cv11 ,cvl2)

is-[) (i-set1) 0

T -- min-set (i-set.:a.J

where:
i-set1 = [i I i > 0 & cvl2 = eval-substr(cvl1,i,lengtb(cvl2))}

(1ij0) eval-lengtb(cvl) =

is-prop-intg-val•length(cvl) -· length(cvl)

T_-- truncate•length(cvl)

Ref.: is-prop-intg-val 9-19 (65)
truncate 9-20(72)

(1ij1) eval-substr(cvl,i,j) =

where:
i.t.
11

e ...

LIST elem (n,cvl)

=
=

=

max (1, i)
(is-R(j) -- length(cvl),

T -• min(length(cvl),e1))

i • j - 1

for: (is-intg-val v is-!l) (j)

9.9 THE SCAN AND REPLACEHENT MECHANISM

The interpretation of a text-part (cf.section 9.4) Starts with the
interpretation of its statement and continues - if sequential flov of control is
supposed - with the interpretation of the associated text. The interpretation of
text is defined in this section. The instruction i:!l!-op-t-text of section 9.4
constitutes the entry point to this section.

~eta!ariables:

cvl.token.list,arg

loc

n

argl

V

is-char-val-list

is-* v is-n

is-intg-val

a text

denotes the location to which the
text is to be transferred after the
termination of the replacement
process

is-char-val-list-list the argument list of a reference
occurring within a text

is-char-val-list v the value of a functicn or variable
is-prop-intg-val

9. THE INTERPRETER 35

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(142) int-!~!!(cvl,loc) =

is-<> (cvl) .!!Ul!

T

!nt-text(cvl-1,loc);
cvl-1:int-token(cvl,loc)

TR 25.095

30 June 1969

Note: The second argument specifies whether a token which is not further
replaceable or the value of a function a variable which should no·t be
scanned for replacement is to be transferred into the result cell E
(is-*(loc)t, or is part of an argument of a (builtin} function reference
(is-n(loc)) which must be stored as an intermediate result in the
denotation directory RB• using the unique name loc as selector.

(143) int-tgken(cvl,loc) =

is-identifier(token1) -- int~id(token~,tail1,loc)

T

ll.!li!§ {tail•) :
transfer (toke.n11.loc)

where:
token~ = s-token•find-token(cvl)
tail1 = s-tail•find-token(cvl)

Note: Only tokens having the form of a PL/I identifiet become candidates for the
replacement process.

(144) is-identifier {cvl)

is-letter•elem(1,cvl) & is-alpham-char-list{cvl)

{145) find-token(cvl) =

find-token-1 (cvl,<>,U)

36 9. THE INTERPRETER

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

(1 q6) find-token-1 (cvl, token, in d) =

is-<>(cvl) & is-2{ind) -- ~ 0 (<s-token:token>,<s-tail:<>>}

is-<> (cvl) v is-COMMENT (in d) & length (cvl) < 2

is-D(ind} & cvl-begins-vith-id 0 & is-<>(token)

p 0 (<s-token:id0 >,<s-tail:tai1 0 >)

error

is-O(ind) & cvl-begins-with-id 0 & is-delimiter•last(token)

~o(<s-token:token>,<s-tail:cvl>)

is-ll (in d) & length (cvl) > 1 & is-SLASH•head (cvl) & is-ASTER•elem (2 ,cvl)

find-token-1 (tail•tail (cvl) ,token-<SLASH, ASTER>,COMMENT)

is-COMMENT(ind) & is-ASTER•head(cvl) & is-SLASH•elem(2,cvl)

find-token-1(tail•tail(cvl),token-<ASTER,SLASH>,n)

T -- find-token-1(tail(cvl),token-<head(cvl)>,ind1)

where:
cvl-begins-with-id 0 = (3n) (length-of-idn)

length-of-idn = n ! length(cvl) & is-identifier(

(is-fi Y is-delimiter) (elem (n + 1,cvl))

id 0 =

n0 = {l>n) (length-of-idn)
tail0 = (t.list) (id 0 -list = cvl)
ind1 = (is-O(ind) & is-APOSTR•head(cvl) --STRING,

is-STRING(ind) & is-APOSTR•head(cvl) -- D,
T -- ind)

for: (is-ll v is-STRING v is-COMMENT) (ind)

n

LIST elem (i,cvl)) &
i"'-1

Note: This function yields an object with the structure

(< s- token: is-char- val-lis·t>, <s-tail: is-char- va 1-lis t>)

where the token component is the "first "token" of the text to be scanned;
the tail component is the remaining text. A 11 token" is either an
identifier outside strings and coaments immediately surrounded by PL/!
delimiters within the text, or any substring of the text del.l:,mited by those
identifiers ..

The function also checks the text for unmatched comment or character-string
delimiters ..

(147) is-delimiter (x) =

X <
{.PLUS, MINUS, ASTER,SLAS H, GT, EQ, LT, NOT, AND, OR, LEFT-PAR, RIGHT-PAR,COMMA,
SEBIC,COLON,BLANK,APOSTB,POINT,PERC]

9. THE INTERPRETER 37

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME fACILITIES

(148) transfer{token,loc) =

is-* (lee)

is-n (lee)

(149) int-id (identifier ,cvl,loc) =

is-D (ad 0) v is-Q (rescan 0 }

.!!Jl§§(cvl):
!~ansfe~(identifier~loc)

is-var-den (den 0) & ..,.is-0 {value 0)

.R~(cvl);
~!=!~1Y~(value0 ,rescan 0 ,loc)

TR 25.095

30 June 1969

is-entry-den(den 0) & ~is-fi(body-loc 0) & ~is-U(body 0) & is-prop-body(body 0) &
(is-<>(parl 0) v length(parl 0) = length(argl1) & is-LEFT-PAR•head(cvl)) --

.!!~ (tail2);

!nt-value(v,rescan0 ,loc);
v:,t:esto~ (n) ;

£all-eroc(body-loc 0 ,argl,n);
n:!!n=M~·
argl:~al-aiq-text-l!§~(argl2,parl 0,dp 0)

is-huiltin (id 0) & is-builtin-den {den 0) &
is-prop-builtin-argl-leng·th (id 0 ,argl1) & is-LEFT-PAR•head (cvl)

!223!§ {tail1) ;

where:

in!=!algg(v,rescan 0 ,loc);
v:n~~~l-~ui!!in(id 0 ,argl};
argl:~~!-bY!!1in-arg~xt-li§1{argl1 ,builtin-descrl{id 0))

id 0 = mk-id (identifier)
ad 0 := ida(])
de no = ado (ill!)
rescan 0 = s-rescan(den 0)
value0 = s-value {den 0)

body-loc 0 = s-body-loc (den 0)

body0 = s-body•body-loc 0 (El
par1 0 = s-param-list(body 0)
dp 0 = s-decl-part(body 0)

argl2 {is-<> (parl 0) -- <>,
T -- argl 1)

s-arg-list•arg-parse•tail(cvl)
{is-<>(parl 0 } -• cvl,
T -- tai1 1)

tail 1 = s-tail•arg-parse•tail(cvl)

for:is-ldentifier(identifier}

Ref.: is-var-den 9-2(5)
is-entry-den 9-2(6)
is-prop-body 9-28 (113)
~;:;£.Q£!! 9-2 9 (118)
call=.!!~Q£ 9-30{119)
~!!!! 9-29 (117)
is-builtin 9-28(11~

38 9. THE INTERPRETER

cont'd

IBM. LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

is-builtin-den 9-2 (7)
is-prop-builtin-argl-length 9-33(132)
eval-builtin 9-34(137)
builtin-descrl 9-34(134)

Note: The arguments of this instruction are: The text of an identifier which is
candidate for replacement (in the case of a function reference the entire
reference· is replaced by its value), the reaaining text following the
identi.fier which contains the argument list in the case of a function
reference, and the location to which the result of the replacement process
is to be transferred.

(150) J:!!.!=.!alue(v,rescan,loc} =

is-intg-val(v) -- transfer(app-blanks•convert(CHAR,v),loc)

rescan-- int-t~(app-blanks(v),loc)

T -- !Iaosfei{app-blanks(v),loc)

for: (is-T v is-F) (rescan)

Ref.: convert 9-23 {93)

Note: This instruction decides whether the value of a reference - if it is of
'type CHAR - is scanned for possible replacement, dependent on the truth
value of the rescan component of the corresponding denotation. In any
case, to both ends of the replacement value which is a char-val-list
BLANK's ar~ appended.

{151) a pp-blanks (cvl) =

<BLANK>-cvl-<BLANK>

(152) arg-parse (cvl) =
arg:-parse-1 (<>, <> ,cvl,O, F)

9. THE INTERPRETER 39

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

{ 153) arg-parse-1 {argrargl, cvl, pcount, s·tring) =

is-<>(cvl) --error

is-RIGHT-PAR•head(cvl) & pcount = 0 & ~string -~

Po(<s-arg-list:argl-<arg>>,<s-tail:tail(cvl)>)

is-COMMA•head(cvl) & pcount = 0 & ,string -­

arg- parse-1 {<> ,argl <arg>, tail (cv_lJ., 0,. P)

T -- arg-parse-1{arg-<head(cvl)>,argl,tail(cvl),pcount1 ,string1)

where:
pcount 1 = (is-LEPT-PAR•head(cvl) & -.string -- pcount + 1r

is-RIGHT-PAR•head (cvl) & -._string -- pcount - 1,
T - pcount)

string1 = {is-APOSTR•head(cvl) -• -.string,
T -- string)

for:is-intg-val{pcount) & {is-T v is-F) (string)

Note: This function yields an object with the structure

(<s-a rg-list: is-char-val-list-list> .. <s- tail: is- char- val-list>)

TR 25.095

30 June 1969

where the arg-list component is the desired argument list of the reference;
the tail component is the remaining text.

(15~) ~val-~~!ext-list(argl,parl,dp) =

is-<>(argl) -- PASS:<>

T

~k-list(arg,argl-1);
argl-1:eval-arq-text-list{tail(argl),tail(parl) .. dp};

arg :§l.!J!l-!ll;g-t§l;!(head {argl) , head (parl) (dp))

for:is-id-list(parl) & is-p-decl-part(dp)

{155) "Y~!=s!~~!(arg,da) =

B~§~~2~~!(da~cvl);
cvl:!nt-arg-text(arg)

for: (is-INTG v is-CHAR) (da)

Ref.: convert 9-23 (93)

(156) int-arg-t~(arg) =

~g(n);
,int-text (arg, n} ;

§!.Q!:g{n,<>);
n:_yn::!t§.!l!~

40 9. THE INTERPRETER

cont'd

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

Ref.: ll~ 9-29(118)
sto.£!! 9-32(129)
un-name 9-29 (117}

Note: Each char-val-list representing an·argument is scanned for possible
replacements, using the instruction i~!! again. At that point it is
necessary to indicate by the second argument of in!=text that the result of
the replacement process must not be transferred into Er but is rather
stored as an intermediate result into n! using the unigue name n as
selector.

(157) eval-builti n-arq-text-lis,t (argl, descrl)

is-<>(argl) -- PASS:<>

~k-list(arg,argl-1):
argl-1:!!!al-builtin-arq=!!!xt-list(tail(argl),tail(descrl));

arg:!!val-arg-text(head(argl),head(descrl))

9. THE INTERPR~TER 41

IBM LAB VIENNA TR 25.095

30 June 1969 PORHAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

This index lists all names used in the document, with the exception of:

Names defined in section 3.2 (concrete syntax),-
names defined in chapter 5 (abstract representation of concrete syntax},
naaes of selectors (i.e., names prefixed by s-),
names of abbreviations and metavariables.

Selectors to state components in basic instructions are referenced however.
Formulas are referenced by the form x-yy {zzz) , where x is the number of a main
chapter, yy is the page number within the main chapter and zzz is the number of
the formula within the main chapter. The following conventions hold:

(1) For all names all instances of use in a formula are given. The defining
formula is indicated by an underlined reference.

{2} A function name (but not a selector name} or ·an instruction name whose
defining formula is not specified is defined in chapter 1 of ;s;.

(3) Occurrences of names of the fora ~~~!, where f is a function name, are
listed under the entry f.

Occurrences of names of the form is-pred-suffix, where suffix stands for
list, list-1 or set, or one of these followed again by - suffix, are listed
under the entry is-preda

Occurrences of names of the form is-OBJ are listea under the entry OBJ.

APPENDIX: CROSS-REFERENCE INDEX

IBM LAB VIENNA TR 25.095

FORMAL DETINITION OF THE PL/I COMPIL.E TIME FACILITIES 30 June 1969

A-CHAR •• 4-6(17),7-5(41)

abs .9-19(65) ,9-23 (93)

ACT .6-10(32) ,6-13(42) ,7-3(23)

ADD 6-15(48),7-4(31),9-14(52),9-20(74)

adjust-string(n,s) •••• 2::111.§Ql_,9-21(78) ,9-22(85)

af (scope,id) • £::11111.,2-3 (13), 2-3 (H), 9-5 (20), 9-6 (25), 9-16 (59), 9-31 (123), 9-31 (125),
9-33(133)

AND

APOSTR

a pp-blanks (cvl)

arg-parse (cvl) .

• 4- 3 (7) • 4-4 (12) • 4-6 (17) • 7- 4 (33) • 7-4 (3 9) • 9-2 2 (87) • 9-37 (147)

6-15 (4 7) ' 7- 4 (39) • 9-37 (14 6) ' 9- 37 (14 7) ' 9-40 (153)

• 2::1211211.. 9- 3 9 (15 0)

• .2::1.211211.' 9- 3 9 (14 9)

arg-parse-1(arg,argl,cvl,pcount,string) ·2::40(1211.,9-39(152) ,9-40(153)

ar ith- op (intg 1, intg2, opr)

arith-op-1(intg1,intg2,opr}

ASSIGN

ASTER

B-CRAR

BIT

bit-char (bv)

bit-char-conv(bs)

bit-intg(bs) •••

bit- intg-conv (bs)

• 9-1.21111..9-19 (70)

.9-2011~1_,9-19(71)

• 6-13(41). 7-3(21)

• 4-3 (7) • 6- 15 (48) ' 7- 4 (3 9) • 9- 37 (146) • 9- 37 (146) • 9- 37 (14 7)

••••••••••••••••••• 7-5(41)

.9-9(35), 9-19 (69). 9-23 (89). 9-23 (93)' 9-24 (94)

·.2::1111111.,9-27(110)

• 2::11111Ql,9-23(93)

-2-2211Qill_,9-26(107)

• _2- 2.§11Q]l_, 9-23 (93)

BIT-NULL-STR

bit-num(bv)

.6-15(47). 7-5(43) ,9-22(85) ,9-22(88) ,9-23(91) ,9-26(105) ,9-26(108) ,9-27(110)

.2-2211Q.2l_,9-21{81),9-26(108)

bit-op(bs1,bs2,opr)

bit-op-1 (bvl1,bvl2,opr)

.9-2£1.§21_,9-19(70)

._2::llJ.!lH, 9-22 < 85J

BLANK • • 4-3 (8) , 4- 5 (14) , 7- 4 (3 9) , 9- 8 (31) , 9- 21 (80) , 9-24 (98) , 9- 2 5 (1 0 3) , 9- 2 5 { 1 03) , 9- 3 7 (14 7) ,

blank- fill (cvl)

BREAK

BUILTIN

builtin-descrl(id)

C-CHAR

£Sl1=E!Q£(body-loc,argl,n)

9-39(151)

• 9-~.'l..!ll_,9-24 (95)

•• 4-4{12),7-4 (40)

6-4 (14). 7-2 (8). 9-2 {7). 9-16 (59)' 9-28 (113). 9-32 (127). 9-33 (133)

.9-3i11~.9-28(112),9-39(149)

.9-5(18) ,9-9{33) ,9-30(119)

• • • • • • 4- 6 (17) • 7-5 (41)

·2::JQ111.'l.t.9-28(112),9-38(149)

2 APPENDIX: CROSS-REFERENCS INDEX

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OP THE PL/I COMPILE TIM~ FACILITIES

CAT • • •••••••••••••• • • ••••• 6-15(48),7-4(30),9-19(69),9-19(70)

CHAR • 6-4 (15) , 7-1 (4) , 7-1 (6) , 9-1.9 (69) , 9-23 (9 3) , 9-2 4 (94) , 9- 29 (116) , 9- 3 4 (134) , 9- 3 4 (136) ,

char-bit(cv) •••

char-bit-conv(cvl)

char-intg (cvl) ••

char-intg-conv (cvl)

char- i ntg-1 (cvl, x)

char- nu m (cv) .. ~ •

9-39(150) '9-40 (155)

2::£§11061,6-15(47),9-26(105)

• 9-2§J1.Q21,9-23(93)

-2-25 fl.Q.*1· 9-25 (101)

•]-2511Q11,9-23(93)

·2=~.QJ)_,9-25(102) ,9-25(103)

• 9-26Cl.Q.!!l_,6-15(47) ,9-25(103)

£1 • • 9-5 (18) '9-6 (2 3) '9-7 (26) '9-7 (27) '9-7 (28) ' 9-8 {31) ' 9-9 (3 3) • 9-11 (38) '9-11 (4 0) ' 9-12 (43) '
9-12 (4 4) ' 9- J 0 (119)

ci-indl (ci)

ci-indl-1 (ci)

colla t (cv)

COLON

COMM-AT

COMMA

COMMENT

comp-op(v1,v2,opr)

comp-opr (bvl)

compute

cone (s1_,s2}

g:gntinue .•

• • • • • 2::111!!11. 9-11 (40)

2=11ill1·9-11 (41) ,9-11 (42)

]-2.*1Jl.*1,9-21 (81) ,9-22 (83)

• 4-3(7) ,4-4(12),4-6(17) ,7-4(39) ,9-37(147)

••••••••••••• 4-4 (12) '7-5 (41)

4-3(7),4-6(17) ,4-7(19) ,7-4(39) ,9-37(147) ,9-40(153)

.9-37(146) ,9-37 (146)

·2::201121·9-19 (70)

.9-14(501,9-14(49)

•••••• 9-4(16)

·2::Z2(8~,9-19(70)

•• 2::1.l.fJll,9-7(26) ,9-9(33) ,9-12(44)

convert(da,v)]::23(9]!_,9-9(35) ,9-18(61) ,9-19(68) ,9-23(89) ,9-29(116) ,9-32(128) ,9-34 (136),
9-39(150),3-40(155)

D-CHAR

DEACT

1§lli::boQ_y

gggl-~~d-res~](id,rescan)

decl-set (b)

Q.§f- Q.!l£1 (id)

DIV

•••••••••• 9-1JlJ§jl,9·13(45) ,S-14(52) ,9-17(60)

9-7(26) ,9-B(31) ,9-10{37) ,9-30(119) ,9-33(131) ,9-33(133)

• 4-6 (17) '7-5 (41)

6-13 (45) '7-3 (25)

·2=1£J1].Q1,9-32(12B)

·2::121221·9-16(57)

• • • &:::1.1.21. 6- 2 (3)

• 2::ll.!1l.:ll. ' 9- 2 8 (112)

• 6-15 (4B) , 7-4 (31) , 9~20 {74)

APPENDIX: CROSS-REIEFINCE ~IDEI 3

IBM LAB VHNNA TR 25.095

FORMAL DEFINITION OF THE PL/1 COMPILE TIME FACILITIES 30 .lune 196 9

2!! •••• 9-5(19),9-6(23),9-6(25),9-10(37),9-13(45),9-14(49),9-14(52),9-16(57),9-16(58),
9-16 (59) '9 -17 (60) • 9-18 (61) • 9-2 8 (112) • 9-2 9 (116) • 9-2 9 (118) • 9-3 1 (12 4) • 9-3 2 (12 7) •

9-32(129) ,9-33(133) ,9-38(148) ,9-39(149)

do=£~tin~(truth,idvby-to-vs,tpl)

DOLLAR ••••••

·1-14J2£1,9-13(48)

•••••• 7-5(41)

·2=11111!1.9-31(123)

:!; • • • • • 9-5 (19) • 9-5 (20) • 9-6 (21) • 9-6 (2 2) • 9-1 0 (37) ' 9-13 { 4 5) ' 9-14 (4 9) ' 9- 14 (52) '9-16 (57) •
9-16(59) ,9-17(60) ,9-18(61) ,9-28(112) ,9-29(116),9-30{119),9-31 (126),9-33(133).

9-39 (149)

E-CHAR •• 4-6 (17), 7-5 (41)

elem(i) •• l=ill1w2-2(4),2-2(5),4-3{8),4-4(9),4-4(10),4-4(12),4-5(14),4-6(16),6-10(32),
6-15 (4 7) • 9-8 (2 9) • 9-8 (31) '9-1 0 (36) • 9-21 (80) • 9-22 (8 6) ' 9-23 (91) • 9- 24 (9 8) • 9- 2 6 (1 05) •
9-26 (10 8) • 9-2 7 (110) • 9-28 (113) , 9-29 (117) • 9- 30 (122) • 9- 31 (125) , 9- 31 (126) • 9- 3 4 (137) •

9-35 (141). 9-36 (144). 9-37 (146)

ENTRY .6-4(14),7-1(5),9-2(6),9-6(25)

.!;~ ••••••••••• 9-15(54)

EQ 4-3 (7) ,4-6 (17), 6-15(48), 7-4 {32) , 7-4 {39) , 9-20 (76), 9-21 (78), 9-21 (81), 9-37 (147)

~yal-~£q-t~~1=li§!(argl,parl,dp)

eval-builtin{id,argl)

2!~1=Quil!in-arg(expr,da)

~~l-buil1!n=arq-lisi{expr-list,descrl)

~Y£!-bQ!1!in=a£Y=text-lis!(argl,descrl)

~!~Q!E(id,by-to-vs)

•••••• 9-29J11H. 9-28 (115J

·2=ll!J112l. 9-28 (112) '9-28 (115)

·2=!2J122l,9-40(154),9-41(157)

• 2=!2J12&. 9- 3 8 (14 9) , 9-40 (154)

·2=11J1J]l,9-28(112),9-39(149)

••••• ·2=34Jl1§l,9-34(135)

• 9-1111121. 9-28 (112) • 9-34 (135)

·2=!111211.,9-39(149) ,9-41 (157J

·2=11J1.§l. 9-13 (45)

• 2=11J!!.2l._ • 9- 13 (4 8)

!EYal-2KJ!£ (expr) 2=Jl!Jffi, 9-9 (3 5), 9-13 (45) , 9-13 (46), 9- 13 (4 7) , 9-17 (60) , 9- 18 { 62) , 9-29 (116) ,
9-32 (128) ,9-34 (136)

eval-index {cvl1,cvl2)

eva 1- in.fix-expr (v 1, v2, opr)

eval-length (cvl) • •

2Y~!-op1=£~2I{expr)

eval-prefix-expr{v,opi}

~y~l-I,tl(ref)

eval-substr{cvl,i,j)

§!a1=!£E1h(expr)

F-CHAR •••••

4 APPENDIX: CROSS-REFERENCE INDEX

• • • ••••• ·2=1!J1Jl!l. 9-34 (137)

·'1::1212!!1. 9-14 (49). 9-14 (52) ,9-18 (62)

._'1- 32J1!Ql. 9-3 4 (137)

·2=11J!11. 9-13 (46)

-1=l1J§J11,9-18(62)

2=ll!J11£l._,9-18(62)

·1=1211!!11· 9-34 (137) • 9-35 (139)

-2=2na. 9-9 (34>

••••• 7-5(41)

IBM LAB VIENNA

30 June 1969

find-token (cvl)

find-token-1 {cvl,token,ind)

G-CHAR

GE • •

generate {t)

generate-48(t)

get-e (d) •

!!2!2 (indl)

GOTO • • •

![2to:.E£2g~(den)

!!2!2:.1 (i ndl)

gQto:..f (indx)

TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

••••• ·2:.1§.!1lli. 9-36 (143)

• 9-J1ll!!!!l· 9-36 (145) • 9-37 (146)

•••••••• 4-6(17) ,7-5(41)

6-15 (48). 7-4{32),9-14 (49) ,9-14(50) ,9-20 (76) ,9-21 (78)

• ·!!:..U£J.,4-2(1J

-!!:.!!ll£1,4-4(11)

• 9-30 (1£QJ_, 9-30 (119) • 9-30 (120)

.9-11l!!Ql,9-10(37) ,9-11 (38) ,9-11 (40)

•••••• 6-10(34) ,7-3(20)

2:.11fl!ll. 9-10 (37) • 9-11 (38)

•• 9-1£l!!Jl,9-11(40),9-12(43)

• - •••• 9-12!4!!).,9-12(43)

GT • • 4-3 (7) , 4-4 (12) , 4-6 (17) , 4-6 (17) , 6-15 { 4 8) , 7-4 (32) , 7-4 (39) , 9-20 (76) , 9-21 (78) , 9-21 (81) ,
9-21(81) ,9-37(147)

H-CHAR ,., • • • •• • 7-5(41)

head • • 4-3 { 6) , 4-6 (18) , 9-12 (4 3) , 9-15 (54) , 9-16 (57) , 9-21 (81) , 9-2 5 (1 0 3) , 9- 2 8 (115) , 9-34 (1 3 5) ,
. 9'- 37 (146) • 9-38 (149) • 9-40 (153) • 9-40 (154) • 9-41 (157)

I-CHAR

IF •

INCL

index {cv11 ,cv12)

INDEX

infix-op(v1,v2,opr}

initial-state (t,ep)

insert-space (x)

insert-space-48(x)

inst~!l-arq(arg,par)

in~!l-arg-list (argl, parl)

!nt-~£!=£g~£!(1ist)

!n!=~£!=§!(st) •.

int=~rg-t~zt(arg)

int~assign~2!(st)

in!~g~~§!(st) •

in!=decl(ad,decl)

ill1:.g~£1=E~~1(dp)

. ••••••••••••• 7-5(41)

6-7(25),6-11(3~,7-2(14),7-3(19)

• • 6-12(39);7-3(26)

• 2:.15 (1391., 9-34 (138)

.9-28(114) ,9-33(132) ,9-34(134) ,9-34(137)

._2-19J1QJ., 9-19 (68)

••••• ·2:.!!J11l.

!!:.ll£l,4-2(2),4-3(6)

·!!-6 llJlJ.,4-4 (12) ,4-6 (18)

·2:..:l1Jl23J., 9-30 (122)

._2- 3QJlnJ., 9-30 (119)

·2:.1H22J.,9-15(55J ,9-16(561 ,9-16(57)

• •• 9-12J22l.. 9-8 (30)

·2-40 (156)., 9-40 (155)

9-17(60),9-8(30)

2:.1§12§).,9-8(30)

·2:.H.<Jl., 9-6 (22!

• 2:.21121.· 9-5 (18)

APPENDIX: CROSS-REFERENCE INDEX 5

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

!nt-gg·l!~t{truth,tpl)

in t-gs.t2::~t c s t l

int-grO!!E (st)

ini=iQ(identifier~cvl,loc)

!nt-if-~1 (st)

!nt::!!!flud~(idplJ

i~i~!n£l!!4~~a!{st)

!n!=]~z1=:t~xt-E~£!

i!l!::.Q£t-:t!!!ll .. • •

int-p·d~l(ad,decl)

int-oroqram(t,pn)

in~lg!!(cvl,loc}

:i,nt=.t,Qken(cvl,loc)

.
• • 2::2.1~;(1, 9-5 { 1 9)

·2::~1211,9·13 {48)

2::1QJ111. 9-8 (30)

2::111!!..21' 9-8 (.3 0)

-2::1~1~21,9-36(143)

••• 9-9tHl. 9-8 (30)

2-15(5!l,9-15(53),9-15(54)

••••• 2::1.21211.9-8 (30)

. 2::111.§1. 9-5 (18) '9-7 (28) • 9-12 (43)

2::~111.9-7(28),9-12(43)

-2::11Jllll, 9-31 (126)

.;J-31JJ26l,9-30{119)

9-5{18),9-4(17) ,9-15(54)

-2::1~11§1,9-8(30)

• -2::~11Q1,9-7(28)

• 2::1tillll· 9-8 (31) • 9-36 {142) '9- 39 (150) • 9-41 (156)

.

2::2J1~l. 9-8 (30) • 9-14 (51) '9- 30 (119)

-2::12J1!!1l,9-36(142)

-2::12112Q1. 9-38 (149)

INTG ••• 6·4{15),7-1(4),7-1(6),9·19(69),9-23(89),9-23(93),9-24(94),9-29(116),9-34(134),
9-34 (136) ,9-40 (155)

intg-bit-conv(intg)

intg-char (intg)

intg-char-conv(intg)

intg-comp(intg1,intg2,opr}

intg-test (value)

is-act ..

is-act-st

2::£2J22l. 9-23 (93). 9-25 (99)

2::24J2.§1., 9-24 (95) • 9-24 (96)

·2::~!!.12.21,9-23 (93)

·2::~Q112l' 9-20 (75)

·2:::lllJ£Jl,9-18 (62)

·1::1Jl!!1. 7-3 (23) '9-16 (57) '9-16 (57)

• 1::1nn. 1-2 (17). 9-s po) ,9-ls (55>

is-ad •• £::JJJ_'il_,2·3 (12) ,2-'3 (13) , 2-3 {14), 9-2 (3), 9-2 (6) , 9-3 (10), 9-3(12) , 9-3 (15) , 9-16 (58) ,
9-31 (123)

is-alpham-char

is-arith-opr

is-assign-st

is-bif-decl-cont (p)

is-bit-opr

6 APPENDIX: CROSS-REFERENCE INDEX

• • • • • • • • ·1::!!.1!\Ql.. 7-4 (3 9) • 9-36 (14 4)

7- .'!1111. 7-4 (30) • 9- 19 (6 9) • 9-19 {7 0) '9-19 (71)

1::11111· 7-2 (11) • 7- 2 (17) • 9- 8 (3 0) • 9- 17 (6 0)

••••••••• 6-3<111,6-3(8) ,6-4(14)

-1::!!.1111.. 7-4 (30) • 9-19 (69) • 9·19 {70) • 9-22 (85) • 9-22 (86)

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

is-bit-string ·1=.2.l!!.ll• 7-4 (36), 9-10 (36), 9- 19 (69), 9-21 (80), 9-23 (90), 9-23 (93) , 9-24 (94)

is-bit-val •••••••••••• 7-.:l.i.'!.!!J.,?-5(43) ,9-14{50) ,9-21 (81)

is-body ·1-1.1§]., 7-1 (5), 9-3 (1 1) ;9~6 (23), 9-6 (24) , 9-6 (25), 9-28 (113)

is- builtin (id) .~-2Q.ill!!l.. 9-16 (57), 9-16 (59) , 9-28 (1 121 , 9-28 (113) , 9-38 (149)

is-builtin-den ·2=.Ull,9-2(4),9-28(112) ,9-39(149)

is-c..... 9-1(1),9-3{13),9-3(14)

is-c-abbr-[name] ••••••• ·!!=1!20].

is-c-delimiter (x) • 4-3(7) , 4-3 (6), 4-7 (19)

is-c-delimiter-48(x)

is-c-space . •

••••• !j-7!J.2J.,4-6(18)

-!!::l.il!J.,4-3(6) ,4-6 (16)

is-char-val • 7-!!..!~21..,4·4 (1 0) , 7•2 (16) ; 7·4 {38) , 9-1 (1) , 9-2 (5) , 9-2 (9) , 9-21 (80) , 9-21 (81) ,
9-2 3 (93) ' 9-24 (9 4) '9- 31 (1 23) '9- 31 (124) '9- 32 (1 29)

is-ci ••••••••••••••• ~=~11~].,9-1(1),9-3(13),9-3{14)

is-comp-opr 1-4 (321 , 7·4 (30) , 9-19 (69) , 9-19 (70) , 9-20 (76) , 9-20 (77) , 9-21 (78)

is-d.... ~=~11.!!l_,9-1(1),9-3(14),9-30(120)

is-deact-st 1=~.1~.21.. 7-2 (17) , 9-8 (30) , 9·16 (56)

is-decl ••• ·1=1.1~. 7-1 (2), 9-6 (23)

is-decl-cont(p) 6-3(ill_,6-2(5),6-3(7),6-4(14)

is-decl-part • • • •• -1=11~1• 7-1 (1)

is•delimiter (x) • 9·11J1.!!1l• 9·37 (146)

is-den • • ••• 9-~J!!J.,9·2(3)

is-digit .7-21!!JJ.,7·4(40),9-25(103)

is- d n • 2=JJ1J., 9- 1 (1)

is-dummy-den .9-2j_2].,9-2(4)

is-e • • 2=nlli. 9-1 {1J, 9-3 1 14)

is-entry ·1=11.2].,7-1 (3) ,9-5(19) ,9-6(25)

is-entry-cant (p) 6-~JjJJ., 6-2 (5) , 6-3 (7) , 6-3 (8) , 6·4 (14) , 6·6 (19)

is-entry-decl-cont {p)

is-entry-den

is-ep . .

• 6·3L1QJ.,6·2(5) ,6-3(7) ,6-3(8) ,6-4(14)

-.2=~1&1..9-2(4) ,9-5(19) ,9-38(149)

••• - • -2=J~J.,9-1(1),9-4(17)

is-expr 1·3.iJlU., 7-2 (13), 7-2 (14), 7-2 (15), 7-3 (19), 7-3 (21), 7-4 (29), 7-4 (34), 7-4 (36), 7-4 (37),
9·9(3~ ,9-13(4~,9-13(4~ ,9-28(115),9-29(116) ,9-34(136)

is-extrali ngua 1-char

is-goto-st

is-group •

•••••••••••• -1=21!!21.. 7~4 (39)

7-3 (20). 7-2 (11). 7-2{17) ,9-8 (30) ,9-10 (37)

••••• 1=~.l1l!l.. 7-2(17) ,9-8 (30) ,9-13 (45)

APPENDIX: CROSS-REFERENCE INDEX 7

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

is-id • • • 2-.Hl.ll.. 2- 3 (1 0) , 2-3 (12) , 2-3 (13) , 2-3 (14) , 6-13 (44) , 7-1 (2) , 7- 1 (5) , 7- 1 (6) , 7-2 (7) ,
7-2 (13), 7-3 (20) '7-3 (21). 7-3 (24). 7-3 (25). 7-3 (27). 7-4 (37) ,9-3 (12). 9-6 (25) ,9-16 (57).

9-18(61) ,9-31 (123) ,9-40(154)

is-id-pair 7-3(27),2-3(16),2-3(17),7-3(26),9-2(2),9-2(8),9-3(13) ,9-15(54)

• 9-36 (1lli,2-2 (8) • 2-3 (9) • 2-3 (1 0) • 9-36 (143) '9- 37 (146) • 9-39 (149)

·l=ll12t.7-2(17),9-8(29),9-8(30),9-9(34)

•••• l=l.llJit,7-2(17) ,9-8(30) ,9-15(53)

• 7- 2j2t, 7-1 (3) , 7-2 (B) , 9-2 {B) , 9-3 (13) , 9-6 (23) , 9- 11 (4 0) , 9- 12 (44) , 9-32 (127)

is-identifier(cvl)

is-if-st

is-include-st

is-index . . .

is-infix-expr

is-infix-opr .

l-4(29b7-3(28) ,9-18(62)

• •••• 7-4 f}Qt. 7-4 (29)

is-intg- va 1 • .£=J.J1J!t, 2-2 (1) , 2-2 (2) ,2-2 (3) , 2-2 (4) , 2-2 (5) , 7-2 (9) , 7-4 (38) , 9-1 (1) ,9-7 (26) ,
9-8 (2 9) '9-9 (36) • 9- 18 (64) • 9- 19 (6 7) • 9-19 (69) • 9-20 (7 5) • 9-21 (80) • 9- 22 (83) • 9- 23 (9 3) '

9-24 (94) • 9-25 (103) • 9-35 (141) • 9-39 (150) • 9-40 (153)

is-iteration ...

is-label-cont (p)

is-label-den

is-let·ter

is-list

is-local-to (b, p)

is-n

is-null-st

is-p o .. •

is-p-decl

is-p-decl-part .

is-p-entry

.is-p-group

is-p-if-st

is-p-st

is-p-text-part

is-paren-expr

is-pointer .. .

is-prefix-expr

is-prefix-opr

is-program .. 8

is-prop-body(body)

• ••••••••••• 7-2J1J.t, 7-2 (12). 7-3 (18)

6-31lli,6-3 (8) '6-4 (14). 6-4 (16) • 6-5 (17) '6-5 (18)

2=lJJ!t,9-2(4) ,9-10(37) ,9-11 (38) ,9-16(57)

••••••• 7-.:H..'!lt,7-4(40J ,9-36(144)

4-3(6) ,4-4(9) ,4-6(18) ,9-8(29) ,9-21(79)

•• 6-3 f§t,6-2 (5)

• Ji=J.Jll. 6-2 (5)

l-2ffi, 2-2 (5), 9-2 (3), 9-3 (15), 9-29 (11 B), 9-30 (119), 9-32 (129) , 9-38 (HB)

-1::1J1ll· 7-2 (11). 7-2 (17). 9-8 (30)

••••• 2=J.J1Ql,9-1 (1)

-l-2Jlll· 7-2 (7) • 9-32 (127)

.7-£J11,7-1(6),9-40(154)

. •.. ·2=ll11l. 9-3 (10)

1=£llli• 7-2 (11), 9-B (30), 9-13 (45)

·l=ll1!!t,7-2(11) ,9-8(29),9-8(30) ,9-9(34)

•••• ·I=Wll. 1-21101,1-2 (14l ,9-3 (13)

7-2jjQl, 7-1 (6). 7-2 (11). 7-2 (12) '9-8 (30). 9-9 (32)

7-4 !3.§t. 7-3 (28) • 9-18 (62)

•..•.•.•• l=lflt

• 7-411!!1,7-3(28),9-18(62)

l=!!J35). 7-4 (34). 9-23 (89)

.7-1J1t.9-2(2) ,9-4(17) ,9-5(18)

·2=£l!J11ll·9-28(112),9·38(149)

8 APPENDIX: CROSS-REFERENCE INDEX

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THEPL/I COMPILE TIME FACILITIES

is-prop- builtin-argl-length (id, expr·list) • • • • • • • • • 9- 33 (1321, 9-28 (112) , 9-3 9 (149)

is-prop-intg-val(.integer) • ·2::121ill·9-2(5) ,9-2(9) ,9-18(64) ,9-19(71) ,9-20{72) ,9-20(73),
9-23 (90) • 9-2 5 (10 1) • 9-26 (1 07) • 9-31 (123) • 9-31 (124) • 9-32 (129) • 9-34 (138) • 9-3 5 (14 0)

is-prop-var

is-proper-value(value)

is-ref

is-return-st

is-ri

is-st

is-state

is-step (E-1, E-2)

is-text-part . •

is-true-comp(s1.s2,opr)

is-true-comp-1(vl1.v12,opr)

is-value

is-var-decl-cont(p)

is-var-den

il~~g(id,by-to-vs,tpl)

J-CHAR

K·CHAR

L-CHAR

last

LE •

, LEFT-PAR

• 7·1J!!1, 7-1 (3), 7-2 (B), 9-2 (5), 9-6 (23), 9-28 (113), 9-32 (127)

•••••••••••••• 9-18!&!1.9-18(63)

1::!111!.. 7-3 (28) '9-18 (62). 9-28 (112). 9-29 (116)

·1::.£11.21. 7-2 (11) • 9-8 {30) • 9-32 (128)

••••• 9-111.21,9-1 (1) ,9-3(14)

• 7-21111. 7-2 (16) • 7-3 (19) • 9- 3 (13)

9-1111· 9-4 (16)

• • · -2::Hill
7-211.§1. 7-1 (1) '7-2 (17) '7-3 (18). 9-8 (30) '9-9 (32)

_2-21 (7§1.,9-20(77) ,9-21 (78)

.2-21~.9-21 (78) ,9-21 (81)

1-411~1. 7-3 (28). 9-18 (62) '9-18 (63) • 9-18 (64)

•••••••••• -&::11.21,6-3(8),6-4(14)

• .2::.£..1.21. 9-2 (4) • 9-13 (45) '9-17 (60) ' 9- 38 (1 49)

2-13..{!§1,9-13 (45) ,9-14 (52)

.7-5(41)

.7-5(41)

.4-6(17) ,7-5(41)

•••• 9-37(146)

• 6-15 (48) • 7-4 (3 2) • 9- 14 (50) '9- 20 (76) '9- 21 (7 8)

• 4-3 (7) • 6-14 (46) ' 7-4 (3 9) • 9- 3 7 (147) • '9- 3 8 (14 9) • 9-40 (153)

length. 4-6(16),6-15(47),9-7(26),9-8(29),9-11(40),9-21(79),9-21(80),9-21(81),9-22(86),
9-24 (98) • 9-2 6 (1 08) '9-28 (112) '9-2 8 (113) • 9-30 (1 22) • 9- 31 (125) '9- 31 (126) ' 9-33 (132) •

9-35 (139) '9- 35 (140). 9-35 (141) '9-37 (146). 9-38(149)

LENGTH • • 9-28 (114), 9-33 (132), 9·34 (134), 9-34 (137)

lgth (s) ·2::2111.21,9-10 (36) ,9-21 (78) ,9-22 (85)

lin-1(t) •• !!-2111,4-2(2),4-3(5)

lin-1-48 (t)

lin- 2 (X} • •

lin-2-48 (x)

lin- 3 (x)

LT •• •

.

. .
.!(-SJ1Jl,4-4 (12) ,4-5 (15)

• • !!::11.21. 4-2 (3) • 4-3 (5)

-!::.211.21.4-5(13) ,4-5(15)

• 4-411Q)., 4-2 (2) '4-4 (10) • 4-4 (12) • 6-2 (4) • 6-9 (29) • 6-9 (30)

4- 3 (7) , 4-4 (12) , 4-6 (1.7) , 4·6 (17) , 6- 15 { 4 B) , 7- 4 (32) , 7-4 (J 9) , 9-20 (7 6) , 9-21 (7 8) ,
9-37(147)

APPENDIX: CROSS-REFERENCE INDEX 9

IBM LAB VIENNA TB 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

M-CHAR ••••••••••••• 7-5(41)

MAIN

max

m in

m in-set

MINUS

• 9- 2 (8) ' 9~ 3 (13) ' 9- 4 (17) ' 9-11 (3 8)

• 9-21 (78) '9- 22 (85) '9-35 (jq 1)

.9-35 (141)

• 9-35 (139)

• 4-3 (7) '6-15 (48) '7- 4 (35) '7- 4 (3 9) '9- 2 3 (89) '9- 23 (90) ' 9-24 (95) '9-25 (10 3) '9-2 5 (1 03) '

mk-act (id,truth)

_ mk-body (b)

mk-decl (p)

mk-decl-part (b)

mk-id (cvl)

9-37 (147)

2=11~~1·6-10(32),6-13(43)

·2-6!2Ql,6-6 (19)

• 2~11~1.6-2 (3)

.J!=£JJl,6-1 (2) ,6-6 (20)

• 2-2 (8) • 2-3 (9) '2-3 (1 0) '6-2 (4) '9-28 (114) '9- 33 (132) • 9~ 34 (134) '9- 3 4 (137) •
9-39(149)

mk-id-1 (X) • 6-2 (4) • 6-2 (3) • 6-6 (19) '6-6 (21) '6-1 0 (33) • 6-10 (3 4) '6-12 (38) • 6-12 (4 0 l '6- 13 (41) '
6-13(43) ,6-14(46)

mk-id-1-list (slist)

mk-idl (dl) •••

mk-indexlist (p)

mk-indl-1 (p,q)

mk-indl-2 (p,q)

mk-text-part (p)

mk-text-part-list(b)

mklist {a, b, list)

modulo

MULT •

N-CHAR

NE •

·2=2J£11,6-6 (20). 6-10 (33) ,6-14 (45)

._§-10ill1·6-10 (32)

•• 6-4(16}.,6-4(14)

·2-SJ11l.• 6-4 (16) , 6-5 (17)

• 2=2l1Jll.., 6-4 (16J , 6-5 1 18)

.9-28(115) ,9-34(135),9-40(154) ,9-41(157)

•••• -2=2J1Q1,6-9(29)

.6-9 (22}., 6-1 {2) '6-11 (37)

-~-4j]l_,4-3(6),4-6(18)

••• 9-24(96) ,9-25(99)

• 6-15 (4 8) • 7- 4 (31) '9- 20 (7 4)

•••••• 4-6 (17) '7-5 (41)

6-15 (48)' 7-4 (32) '9-20 (76) '9-21 (78)

NOT 4-3 (7) ,4-4 (12) ,4-6 (17) ,4-6 (17) ,6-15 (48), 7-4 (35), 7-4 (39), 9-23 (89), 9-23 (90),
9-37 (147)

not-op (bs) •••••••••••••••••••••••••••• ·2=lli21J.,9-23 (90)

J!Ull 9-5 (20) , 9-6 (22) , 9-8 (3 Of, 9- 8 (31) , 9-14 (51) , 9- 14 (52) , 9-15 (54) , 9-16 (57) , 9-30 (122) ,
9-31 (125) ,9-31 (126) ,9-33 (133) ,9-36(142)

NULL 6-6 (20) , 6-7 (23) , 6- 8 (2 6) , 6- 8 (27) , 6-9 (29) , 6-9 (31) , 6- 10 (3 4) , 6- 11 (36) , 6-11 (37) , 7- 3 (2 2)

nu m-bit (intg)

num-char (intg}

10 APPENDIX: CROSS-REFERENCE INDEX

. 2=£2J1QQ1.,9-25 (99)

·2=l~]11.·9-24(96)

IBM LAB VIENNA TR 25.095

30 June 1969 FORMAL DEFINITION OF THE PL/I COHPILE TIME FACILITIES

NUMBER-SIGN .4-4(12),7-5(41)

0-CHAR .4-6(17),7-5(41)

OR 4-3 (7) ,4-4 (12), 4-6 (17), 4-6 (17), 6-15 (48), 7-4 (33), 7-4 (39), 9-22 (87), 9-37 (147)

p ••••••• 9-1~!166}_,9-19(65),9-19(67) ,9-24(98)

1!. • 9-6 (24) ,9-28 (112), 9-30 (119), 9-32 (130), 9-39 (149)

P-CRAR

parse (txt)

parse-48 (txt)

PERC

.. •• 7-5(41)

• 4-2!11

·.!!=lilll
9-13(46) ,9-36(14.3) ,9-38(149)

PLUS .4-3(7) ,6-15(48) ,7-4(35) ,7-4(39) ,9-23(89) ,9-23(90) ,9-25(103) ,9-25(103) ,9-37{147)

POINT

prefix-op (v,. opr)

progr-name (ci)

Q-CHAR

QUEST

!l.

R-CHAR

replace-48 (x)

replace-48-1 {X)

RETURN

!l.I • •

RIGHT-PAR

s (i)

• 4-6 (17) • 4-7 (19) • 7-4 (3 9) '9-37 { 147)

••••• j-23 !9.Q}_, 9-23 (89)

2=111J21.9-11(38),9-11(39)

••••• 7-5(41)

.4-4 (12) '7-4 (39)

•••• 9-38 (HB)

.4-6(17). 7-5(41)

• 4-6 (1Ji)_, 4-4 (12)

• .!!=!i.i.!ll· 4-6 (16)

·2=l2111JlL,9-2B{112J ,9-38{149) ,9-41 (156)

••••••••••••• 6-8 (28). 7-2 {15)

.9-30{119) ,9-31{123) ,9-31 (125),9-33(133)

4-3{7) ,7-4{39) ,9-37(147) ,9-40(153)

• • • • • • • • • • •••• 2-2 (1}_

• 9-5 (18) , 9-7 (26) , 9-9 1 33) , 9-11 {38) , 9-11 (40) , 9-12 (43 J , 9-12 { 4 4 J , 9- 3 o t 119) , 9- 3 3 (131)

S-CHAR •••••••••••••••••••••••••••••••••••• 7-5(41)

9-5(18) ,9-7(26) ,9-7(27) ,9-9(33),9-11 {38),9-11 (40) ,9-12{43),9-12{44),9-30{119).
9-33(131)

§=g ••••••••••••••••••••••••••••••••• 9-30(119),9-33(131)

2 =.!ln • 9-6 c 2 3) , 9-6 c 2 5J , 9-16 c 58) , 9-16 (59) , 9-1 8 1611 , 9-31 1124 J , 9- 32 (12 7) , 9- 3 2 1 129) • 9-3 3 1 133) ,
9-38{148)

9-6 (21) ' 9-16 {59) '9- 30 (119) • 9- 33 {131) ' 9- 33 (13 3)

.9-6{24) ,9-30(119) ,9-32(130)

•••••••••• 9-38(148)

APPENDIX: CROSS-REFERENCE INDEX 11

IBM LAB VIENNA TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES 30 June 1969

sel (idp}

SE MIC

sign •

single-bit-op(bv1,bv2,opr)

single-not-op (bv}

• 9-30 (119}. 9-33 (131}

•••••• 9-29(117}

• .£-3!j§.l_,2-3 (17), 9-2 (2} ,9-15 (54)

4-3 (7) '4-4 (12) • 4- 6 (17) • 7-4 (39} '9- 37 (14 7)

••••• 9-25 (103)

·2-2.£j§]1,9-22(86}

·2=2JJ2l1·9-23(91)

SLASH ••••• 4-3(7),4-5(14} ,4-6(17),6-15(48} ,7-4(39) ,9-37(146} ,9-37(146) ,9-37(147}

slen gth (X) • 4- 21.!!1, 4-2 (3) , 4-3 (5) , 4-5 (13} , 4-5 (15) , 6-5 (17} , 6-5 (18} , 6-7 (21} , 6-7 (22) , 6-9 (2 9) ,
6-12(39) ,6-13(42) ,6-14(46)

stack(e,ci,c,d,ri)

STRING • •

string-comp(s1,s2,opr)

SUBS TB

SUBTR

T-CHAR

•• ·2=JO (121),9-30(119)

.9-9(33) ,9-9(32) ,9-9(34)

.9-32ill21.,9-32(128) ,9-41 (156)

.9-37(146} ,9-37(146}

•• 9-2011]1,9-20(75)

.9-28{114} ,9-33(132) ,9-34 (134) ,9-34(137)

.6-15{48). 7-4 (31} ,9-20 (74)

•••••• 4-6 (17). 7-5 (41)

tail • • 4-3 (6) , 4-6 {18) , 9- 12 (4 3) , 9-15 (54) , 9-16 (57} , 9- 21 (81) , 9- 2 5 (1 0 3) , 9-2 8 (115) , 9-3 4 { 13 5) ,
9-37(146),9-39(149},9-40(153),9-40(154),9-41(157)

take-st (indx,st) Q

target(v1 0 V2,opr)

term-.node

text-48 (X)

trans-act (act)

trans-act-st (p)

trans-assign-st (p}

trans-const(const)

trans-deact-st{p)

t rans- declare-st (dl)

trans- do- spec (p)

trans-else-st (p)

trans-expr (p)

trans- group (p)

trans-if-st (p)

.

9-8(291. 9-7 (28} ,9-12 (43)

• 9-lli.§21· 9-19 (68)

••••• 9-4(16)

• .!!=211!!1. 4- 5 { 13)

·i1=1JJ!!J1,6-13(42)

.6-JJJ!!.£1,6-10(34)

.]-13J!!Jl,6-10(34)

·11=12J47) ,6-14 (46}

• .§-13(451,6-10(34)

• 6-10(321,6-9(31)

•• Ji=llJJ.§1,6-8(27) ,6-11 (37)

•••• -!i=11136t,6-11(35}

6-14J.!!ll,6-7(25) ,6-8(28) ,6-11 (35) ,6-12(38) ,6-13(41) ,6-14(46)

·!i=11JJ]1,6-10(34)

.6-11 (351,6-10(34)

12 APPENDIX: CROSS-REFERENCE INDEX

IBM LAB VIENNA

30 June 1969

trans-include-st (p)

'trans..:.infix-opr (x)

trans-lib-spec (ls}

trans-p-else-st(p)

trans-p- group (p)

trans-p-if-st (p)

trans-p-selist (p)

trans-p-sentence (p)

trans-p-st (p)

trans-proc(p) .,

trans-return-st (p)

trans-sentence(p)

trans-st(p)

trans-type(attr)

!!ansfer (token,loc) · .

translate (t) • ,

trunc

trunca·te (integer)

truth-to-bit (X)

truth-val (bs)

type (v)

U-CHAR

Q!! • •

!:H!:JlSl!!~

Yll2ll£.!

J!Ed-.!l!l (ad,decl)

J!Ed-e (dp)

J!Ed-id (id,ad)

!!.Ed-index

yJl.!l::l1 (ad, body)

J!Ed-p=!;! (dp, parl)

upd-resc~n(ad,rescan)

V-CHAR

W·CHAR

. ,

TR 25.095

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

.

• 6-12 {391.,6-10 (34)

·2=lli48l_,6-14 (46)

,.6-12 (40} ,6-12 (39)

·!!=!lilll.,6-7 (25)

·!!=8(27l_,6-7 (24)

·&=11251.,6-7(24)

.6-7.!1£1.,6-6 (20) ,6-8 (27)

•••• ·!!=7(231.,6-7 (22)

-&=1.!241.,6-7 (23) ,6-7 (25) ,6-8 (26)

• 6·6J12t. 6,-4 (1 4)

.6-8 !2Jll,6-7 (24)

·!i=9 (311., 6-9 (30)

&=1!!.1.1!!1.· 6-7 (24), '6- 9 (31) '6-1 1 (35) '6-11 (36)

••••••••• ·!!=!H1.21.,6-4{14) ,6-6(.20)

.9-38!1!!Jll.,9-36(143) ,9-38(149) ,9-39(150)

•••••••••• 6·1!D

9-20 (74). 9-24 (96) ,9-25 (99)

9-Z!L!1ll• 9-19 {71), 9-20 (7 3), 9-25 (1 o 1) , 9-26 (1 07), 9-34 (138) , 9-351 140)

•••••• - •• 9-22!§.!!l.,9-20(71)

.9-2.!JJil.,9-9 (35) ,9-14 (49) ,9-14 (50)

.9-lli94l_,9-23(93) ,9-31(124)

- .7-5(41)

.9-29(117)

-2=1211111.. 9-28 (112) '9-38 (149) '9-41 (156)

·2=1lJ1111.,9-32(12B)

• .2::ill.21.· 9-6 (23)

·2=.21£.Ql, 9-5 (19)

• 9-6 !£11.' 9-5 (20) ' 9- 31 (123) ' 9-31 (1 2 5)

·2-1 1£21., 9-7 (26)

• 9-6 (2.'!.l, 9-6 (23)

-2=11 (125) ,9-30(119)

·2=1§J.2Jll,9-16(57)

.7-5(q1)

.7-5(q1)

APPENDIX: CROSS"'REFERENCE INDEX · 13

IBM LAB VIENNA

FORMAL DEFINITION OF THE PL/I COMPILE TIME FACILITIES

X-CHAR

Y-CHAR

Z-CHAR

TR 25.095

30 June 1969

• 7-5(41)

.7-5{41)

.7-5(41)

O-BIT 7-5(44),9-20(76),9-21(80),9-22(84),9-22(87),9-23(92),9-23(92),9-25(100),9-26(106),
9-26(109) ,9-27(111)

0-CHAR •••••••••••• • ••••• 7-5(42),9-24(97),9-26(104),9-26(106),9-27(111)

1-BIT .7-5(44),9-10(36),9-20(76),9-22(84),9-22(87),9-22(87),9-23(92),9-23(92),9-25(100),
9-26 (106) '9-26 (109) '9- 27 (111)

1-CHAR 7-5(42) ,9-24(97) ,9-26(104) ,9-26(106) ,9-27(111)

2-CHAR 7-5(42) ,9-24(97) ,9-26 (104)

3-CHAR 7-5(42) ,9-24(97) ,9-26(104)

4-CHAR 7-5 (42), 9-24 (97), 9-26 (104)

5-CHAR 7-5 (42) , 9-24 (97) , 9-26 (1 04)

6-CH!R 7-5(42), 9-24 (97), 9-26 (104)

7-CHAR 7-5 (42) , 9-24 (97) , 9-26 (1 04)

8-CHAR 7-5 (42) , 9-24 (97), 9-' 26 (104)

9-CHAR 7-5(42),9-24(97),9-26(104)

14 APPENDIX! CROSS-REFERENCE INDEX

	SMonmouth16071909340
	SMonmouth1607201251063
	SMonmouth1607201254062
	SMonmouth1607201256061
	SMonmouth1607201259060
	SMonmouth1607201301059
	SMonmouth1607201302058
	SMonmouth1607201304057
	SMonmouth1607201307055

