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PREFACE 

The method for formally defining programming languages presented in 

this document was developed by the Vienna Laboratory in order to produce a 

formal definition of PL/I . A first version of this formal definition was 

made available in the form of two technical reports /1/, /2/ and the method 

was elaborated in a tutorial style in /3/. The second version of the complete 

formal definition consists of the technical reports /4/, /5/1 /6/1 111' 
and 

/8/ all of .-1hich ·l'lere issued by 28 June 1968. 

The initial basis for the development of the method adopted is to be 

found in publications of J.McCarthy /9/1 /10/, c.C.Elgot /11/, and P.Landin 

/12/. The early ideas of the Vienna group on the method are documented in 

/13/, /14/. 

There has also been an extensive exchange of working papers between the 

Poughkeepsie Laboratory, the Hursley Laboratory and the Vienna Laboratory. In 

particular the Hursley group produced a number of relevant technical reports 

/15/, /16/1 /17/ and /18/. 

The applicability of the method developed by the Vienna Laboratory in 

the course of the formal definition of PL/I is, however, not limited to any 

specific programming language and it is the intent of the authors to present 

here those features of the method which reflect its generality. 
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1 .  INTRODUCTION 

1 . 1  EXEosition of the Probl� 

l-1 TR 25.087 

The problem to be solved by the method presented in this report is the syntac­

tic and semantic defin�tion of programming languages .  The method was developed in 

view of the definition of PL/I; however, there are a number of principles which are 

quite general and not restricted to the definition of any particular programming 

language. This report is an attempt to isolatG thes3 �ore general aspects of the 

method.  

The syntactic definition of a language is ,  in general ,  a set of  rules which 

define a set of strings constructed from a given alphabet. In addition the syntax 

defines a structure for each of these strings . Only strings defined by the syntax 

are considered to be valid expressions (programs in the case of programming langu­

ages) of the language and are subject to interpretation. The structure given to 

an expression by means of the syntax is of importance in its subsequent interpre­

tation. The syntatic definition of a programming language is usually given by 

means of productions , i . e . , rules allowing the generation of all strings of cha­

racters which are considered to be programs of the programming language .  

The semantic definition o f  a language i s  understood to be a set of rules 

which allows the interpretation of the expressions specified by the syntax. The 

method under discussion in this report is based on the definition of an abstract 

machine which is characterized by the set of its states and its state transition 

function . A program together with its input data defines an initial state and the 

subsequent behaviour of the machine is said to define the interpretation of the 

program for the given input data. 

However, it would be cumbersome and unnecessarily confusing for the inter­

preting abstract machine to operate directly upon the character strings defined 

by the syntax, i . e . , for the syntax analysis to be defined explicitly by the 

machine . Instead, i� is assumed that there is a unique parsing tree according to 

the syntax for any program and that there is an algorithm which computes the pars­

ing tree. It is part o f  the definition method here presented to assert exactly this 

for any language to be defined by the method. It  would still be awkward to attach 

the interpretation directly to the parsing trees since there are in most higher 

level programming languages conventions which allow the same process to be describ­

ed in many different ways . The parsing trees are therefore modified in such a way 

that programs describing the same process which differ only in the use of the 

notational conventions appear in standard form. In the method described in this 

1 . 1  
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paper the so-called translator performs precisely this task . What remains to be 
interpreted by the abstract machine are objects which possess a tree structure and 
represent programs in standard form . The definition of the class of objects which 
are considered to represent programs (or expressions of a language in general) is 
called the abstract syntax. The syntactic definition which specifies programs as a 
set of character strings_is called the concrete syntax. 

One may,however, consider the objects themselves , as defined by the abstract 
syntax, to constitute the expressions of the language . In this case there is no 
concrete syntax specifying what constitutes the language. Then an interpretation 
of the l.anguage can be given directly on the one hand and a possible concrete re­
pre��ntation in terms of character strings on the other. Furthermore , one may con­
sider languages which have the same abstract syntax and the same interpretation and 
which differ only in their concrete representations to be equivalent . 

It proved to be convenient to represent the states of the interpreting ab­
stract machine as objects of exactly the same kind as used to represent programs . 
The set of states the machine can assume may therefore be defined by means of the 
same devices as used for the abstract syntax of programs. 

The method as presented in this report porvides a general class of objects 
having tree structures. Subclasses of this general class of objects may then be 
used to represent programs ( and have been used to represent programs of specific 
higher level programming languages, cf . /3/-/8/, /20/): other subclasses may be 
Jsed to represent the states of the interpreting machine ( and have been used for 
the states of the machines interpreting the specific programming languages in the 
reports cited above) . 

The outline of this report is such that it starts with the most general 
aspects of the method and then speciali zes to programming languages . 

The above mentioned general class of objects, together with devices for de­
fining subclasses of �his class and for manipulating objects is presented in 
Chapter 2. Only the general properties of objects are dealt with in this chapter 
and no application to lan�uages or abstract machines is necessarily implied. 

The application of the devices , introduced in Chapter 2, to the definition of 
the syntax and semantics of languages will be demonstrated throughout this report 
by means o f  a simple example programming language . An intuitive characterization 
of the features of this example language is included in this introductory chapter. 

1 . 1  
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In Chapter 3 the notions of abstract and concrete syntax of languages are 
discussed and the problem of tl1e formulation and the relating of these two types of 
syntax is dealt with by means of the devices introduced in Chapter 2 .  

Chapter 4 introduces the notion of abstract machines and the special kind 
of mach!ne which lies at. the basis of the method for interpreting programming 
languages here being presented. The application of the devices introduced in 
Chapter 4, is sho�n by giving a definition of the interpretation for the example 
programming language in Chapter s. 

hn attempt was made in this report not only to show how the definition o f  a 
p�\Jgramming language can be constructed but also to indicate how one may possibly 
discover the consequences of such a definition . The comments to the example in 
Section 5. 3 serve this latter purpose .  

1. 2 A Brief Description o f  the Example Programming Language EPL 

Throughout the report the definition of a simple programming language (hence­
forth called EPL} serves as an example for the application of the methods described 
in the report . The programming language to be described is structured simil arly to 
PL/I ( and ALGOL 60); however the number of features covered in EPL is very small 
when compared with PL/I• 

In this section a brief survey of the structure and content of the language 
i s  presented in order to give the reader an intuitive idea of EPL which wil l  aid 
his understanding of the various fonJal devices used later on to describe syntactic 
or semantic features of EPL. The terminology used in this survey presupposes some 
familiarity with PL/I or ALGOL 60. 

The data manipulable by the language are truth values and integer values, !t 
is assumed that there are unary and binary operations defined for these data. Which 
specific operations a�e available is , however, left open . 

Expressions may be built from constants, variables and function designators 
using the operators .  

Constants d�note values , Variables are identifiers denoting values . The values 
denoted by a vari�ble may change dynamically through the execution of assignment 
statements .  The range of a specific variable is restricted either to truth values 
or to integer values . 

1 . 2  
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A function designator consists of an identifier which is a function identi­
fier, and an argument list w�ich is a (possibly empty} list of identifiers of some 
type. A function identifier denotes a rule for computing a value depending on argu­
ments. In particular a function identifier denotes a statement and an expression. 
The value of the function is determined by executing the statement and afterwards 
evaluating the expressiop which then yields the value of the function. 

An expression is a rule for computing a value. The computation may, besides 
yielding a value, change the state of the machine in some way (side effects) .  

There are four kinds of executable statements, namely assignment statements, 
conditional statements, procedure calls and blocks. An assignment statement con­
�ists of a leftpart which is a variable and a rightpart which is an expression. 
Upon execution the expression is evaluated and th� value computed is assigned to 
the variable which was the leftpart. The variable then denotes the value computed 
by the expression until further changes. 

A conditional statement consists of an expression and two statements: the 
then-statement and the else-statement. noon execution the expression is evaluateq 
and if necessary its value is converted to a truth value. If the value is T,the then­
statement is executed, otherwise , the else-statement is executed. A procedure call 
consists of an identifier which is a·procedure identifier, and an argument list 
which is a list of identifiers of some type. A procedure identifier denotes a rule 
for computing ( a  statement} depending on the arguments, The argument-passing 
for function ac�ivations and procedure calls is defined in such a way that the 
parameters are defined to be completely synonymous with the corresponding argu­
ments of the respective activation or call within their scope, 

A block consists of a declaration part and a list of statements of any typ�. 
The declaration part declares certain identifiers to be either variables (inte­
ger or logical} or function identifiers or procedure identifiers. The function 
or procedure denoted by an identifier is also given in its declaration , i.e. the 
identifier is associa�ed with a parameter list, statement and expression in the 
case of functions and with a parameter list and a statement in the case of pro­
cedures. 

Upon execution of a block the identifiers declared by the declaration part 
are introduced as names denoting new entities (in accordance with their declara­
tion) and keep this meaning until the end of the execution of the block. The 
meaning of any identifier,which is identical to a newly declared one,is supressed 
until the end of the execution of the block. The identifiers declared in the decla-

1 . 2  
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ration part of a block are called local to that block, The parameters of a function 
or procedure are treated upon execution of the function or procedure as if they 
were declared in that function or procedure. This means parameters of a function 
or procedure are considered to be local identifiers of the respective function or 
procedure. The meaning of non local identifiers of a function or procedure is frozen 
after introduction of th� new identifiers of the block in which the function or 
procedure is declared, A program in the language described is a block, 

1 , 3 Notational Conventions PresuQgosed in this Report 

This section is a summary of the notational conventions and symbols taken 
over from various fields, A major portion of the notation is adopted from LISP 
(conditional expressions) , predicate calculus, aritlli�etic expressions and rela­
tions and set theory with the conventional meaning. All symbols and conventions 
referred to in this section will be used throughout the document without further 
comment. This secticn does not contain the various conventions whose introduc­
tion and definition is a major purpose of this paper. 

1.3,1 Conditional exgressions 

Form: 

expression denoting a truth value 
expression denoting some object (the value of ei) 

An alternative form may be used omiting the parentheses and commas: 

Pn --- en 

Heaning: 
A conditional expression denotes the value of ei where i is the smallest integer, 
lsisn , for which p1 is true and all preceding pj , lsj <i, are false. If there is no 
such integer ,  then the expression has no value, 
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It is important to note that the left to right order in which the individual 
conditions pi are inspected is relevant. I f  pi is true then a consequence of the 
above definition is that the values of the successors of pi say pk' i<ksn, are ir-. 
relevant for the valuation of the conditional expression and may even be undefined. 

1.3. 2 Eguality 

= equal 
� not equal 

of by definition equivalent to 

The equality and not equality relations are used with no specific restriction 
as to the range of arguments. 

1.3.3 Truth values, logical operators and quantifiers 

1. 3,3.1 Truth values 

T true 
F false 

1. 3.3. 2 Logical operators 

-, not 
& logical and 
V logical or (vel) 

- equivalence 

� non equivalence 
::::::> implication 

The operators have the conventional meaning except for two place operators 
in cases where one of the operands is undefined. The meaning. adopted is best 
described using conditional expressions : 

( pl & p2 ) fif (opl - F, T- p2) 

(pl V p2 ) fif (pl - T ,  T- p2) 

(pl - p2) fif (pl & p2) V (lpl & -,p2) 

(pl � p2) fif l(pl = p2) 

(pl ::::::> p2) fif (lpl - T ,  T - p2) 
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The following rules for omission of parentheses hold for expressions built 

from the above operators: 

p
l 

& p2 & ••• & Pn-1 
& Pn 5f 

(pl 
& (p2 

& .... (pn-1 
& pn) ••• )) 

p. V p2 
V v Pn-1 

v Pn i5f 
(p

l V (p2 
V o I o (pn-1 

V pn) ••• )) • • • J. 

pl => p2 => 
••• => Pn-1 :J Pn i5f 

(pl 
:;::) (p2 :J I I I (pn-1 ::::> p

n
) ••• ) ) 

the Symbols "Et" and "Vel" are used for multiple conjunction 
To ease printing 

and disjunction. 

n 
Et 

1=1 
i5f ( (n>O) - p1 & p2 & • •• & p

n
, (n = 0) - T) 

n 
Vel 
i=l 

i5f ( (n>O) - p1 v p2 
v ••• v p

n
, (n = O) - F) 

1. 3�3.3 Quantifiers 

3 existential quantifier 

V universal quantifier 

The above symbols will be used in expressions of the following forms: 

(3 xl' x2
, ••• cx

n) (p(x
l' x2''' • ,x

n)) 

The variables x
1

, x
2, ••• ,x

n 
are called the bound variables l) of the expres-· 

sion, The expression is true if there exists at least one n-tuple x
1

, x2, ••• ,x
n 

s�ch that p(x1, x
2, ••• ,x

n) is true, otherwise the expression is false. 

The variables x
1

, 

sion, The exPression is 

range of the variables) 

x2, • • •  ,xn 
are called the bound variables l) of the expres­

true if for all possible n-tuples x1, x� ••• ,xn 
(in the 

p(x
1

, x2
, ••• ,x

n) is true, otherwise the expression is false. 

It is important that the range of the bound variable in an expression of the 

above form should always be defined. This will either explicit�y be done by the 

expression or implicitly by using a convention that associates a range with a 

specific class of variable names. 

l) 
bound variables are variables for which no substitution is allot-red. 
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For convenience, composite constructs containing bound variables as compo­
nents may be written in place of the bound variable part of the expr·ession, e.g. 
C3<x1y> )  (p(x,y1<x1y> ) ) ,  

1.3.3.4 Description 

L iota-opera�:.or 

The symbol will be used in expressions of the following forma 

(LX) (p(x) ) 

The x is called the bound variable of the expression, The expression denotes 
the value (in the range of x) for which p(x) is true. The expression has no value 
if no value or more than one value in the range of x has the property p, 

1,3,4 Arithmetic 02erators and relations 

1,3 , 4,1 Operators 

+ prefix plus, infix plus 
prefix minus, infix minus 

* multiplication 

1.3,4 , 2  Relations 

< less 
� less or equal 
= equal 
yJ. not equal 
?: greater or a qual 
'> greater 

The relational operators are occasionally used in expressions of the forma 

where ei is an arithmetic expression and R1 is one of the above relational opera­
·-ors, The meaning is as usual: 

. 1.3.4,2 
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1. 3. 5 Set ogerators, relations and notation for sets 

1. 3. 5. 1  Set oerators 

U union 
n intersection 

€. is element of 
f. is not element of 
c is proper subset 
£ is subset or equal 
2 is superset or equal 
::::> is proper supers et 

1.3,5. 3 Notation for sets 

{ a, b, c, ... } The elements a, b, c, • • •  are the elements of the set, 

{ } the empty set 

{ x p (x) } implicit definition of a set 

The x is called the bound variable of the expression. The expression denotes 
the set of all elements such that p (x) is true. As usual, for convenience composite 
constructs contatning bound variables as components will be written in place of the 
bound variable part of the expression, e. g 

{ <x1y> I p (x, y,<x 1y>q 
the set of pairs <x,y> such that p (x,y, <x,y>) . 

1. 3,6 Functional Comgosition 

0 functional composition operator 

The operator is defined byt 

(fog) (x1 , . . •  , x ) = f ( g (x1 , • • •  , xn) n 
Df 

f and g may be either simple function names or expressions denoting functions. In 
the later case, the expression must be parenthesized, 

1. 3. 6 
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The following rules for omission of parentheses hold.: 

(1) The functional composition operator binds more strongly than 
functional application, e.g.: 

fog (x) = ( f• g) (x) 

1.3,7 Rules of grecedence 

Parentheses may be omitted according to the following rules of precedence: 

0 

+, - prefix 
* 

+, - in fix 
<1 s, =, f'1 � , >1c1£.1"21-:::J1E1i 

-, 

& 
V 

Highest precedence: 
(binds most strongly) 

Lowest precedence: 
(binds least strongly) 
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2 . OBJECTS 

2.1 The General Class of Objects 

In the following the general class of objects is introduced in such a way that 
both the expressions �f languages and the states of an important class of abstract 
machines can be identified with subclasses of objects . In particular, the follow­
ing definition provides a convenient way of decomposing and raanipulatir:g tl.bse 
object.s . 

�� object will in general be composed of components which are themselves 
objects of similar nature. For convenience the components of an object are 
uniquely named so that using the names one can refer to the components . The 
names used to name components of objects are called selectors and it is assumed 
that there is a countably infinite set S of symbols defined for that purpose. 
In the following, the symbols s, s1, s2, . • •  stand for selectors, the symbols 
A, A1, A2, . . •  stand for arbitrary objects . 

For selecting components of given objects an operation is introduced which for 
a given selector s and a given object A yields the component of A whose name in the 
formation of A is s if such a component exists at·all. 

By analogy with functional application the operation is represented by: 

s (A )  

and reads " s applied to A". The application of s to A is said to yield the 
s-component of A .  

Because objects will be identified with linguistic expressions, i.e. finite 
constructs 1 and with the states of abstract machines \'l!l.ose states are finite 
constructs, the only interesting class of objects are those having a finite num­
ber of components and a finite depth of nesting, The latter means that the suc­
cessive application of selectors to a given-object will, after a finite number of 
steps, result in an object which does not have any further components, i,e . no se­
lector whatsoever can be meaningfully applied to it. Objects of this kind are 
called elementary objects and it is assumed that there is a set of symbols EO to 
represent elementary objects . The symbols eo, eo1, eo2, • • •  ,eol ' eo2,··· will in the 
sequel stand for elementary objects . Objects which are not elementary are called 
composite objects . 

2.1 
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A named object is a pair <s:A> where s is a selector and A is an object, 

A composite object can now be uniquely described by a finite (and for the 
moment non empty) set of named objects, either composite or elementary, where the· 
names must be mutually different, i . e. a composite object is described by the set; 

where n � 1 and si � sj for i � j. 

The objects A1, lsisn are called the immediate components of the object 
described. 

A special form of expression has been chosen to represent composite objects. 
An object described by the above set of named objects may be represented by: 

There is, in general, more than one representation for the same object . In particular 
the order in which the named components are listed is irrelevant since the set 
consisting of them describes the object uniquely . One may think of � 0 to be the 
operator which assembles the named objects listed into a new and composite object. 

Exarnple1. 

Consider the following special assumption about S and EO 

S = {op-code, flag, tag, addr, • • •  } 
EO = {CLA, STO, ADD, 

1 , 2 , 3 ,  ... } 

The following object A may then be identified with the corresponding IBM 7040 instruc­
tion, namely CLA referring to index register 2, flag 1 and address 350: 

l) For the moment i t  is required that the named objects, listed in the argument 
list ofJL0 have mutually different names. In a succeeding chapter an extension of 
the meaning of fLo will be given which among other things drops the restriction, and 
as a consequence the order of items in the argument list \�ill be relevant . 
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Application of the respective selectors would yield: 

op-code(A) = CLA 
tag(A) = 2 
flag(A) = 1 

addr (A) = 350. 

TR 25 .087 

Note that the instruction can be nicely decomposed and that specification 
of separators between the components and any specific order of the components 
has been avoided . 

2.2 Graphic Representation of Objects 

It is sometimes convenient to think of objects as being represented by trees, 
namely trees with named branches, a finite number of teilTiinal nodes and elementary cbjects 
attacned to the term1nal nodes. In the following a correspondence between the 
linear representation introduced in the previous section and trees is defined, 

(1) An elementary object eo E. EO is represented by the degenerate tree a 

(2) A composite object described by 
ed by : 

0 
eo 

where for 
serted. 

I I I � the respective tree representations have to be in-

The order in which the branches appear in the tree representation is irrele­
vant, 

2. 2 
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Examples 

The previous example of the 7040 instruction: 

JLo ( <op-code: CLA> 1 ctag 1 2> 1 <flagll >, <addr: 350>) 

in the tree representation reads: 

� /-code 
/

tag fla\ addr � 
CLA 2 1 350 

2 . 3  The Null Object 

TR 25 . 087 

So far1the application of a selector to an object is only meaningful if the 
object has a component whose name is the selector, i.e. s( p0(<s1a A1>1 <s2sA2>, 
., . <s a A  >) ) was only meaningful if s =  s. for some i1 lsisn, For convenience, the , n n � 
definition of the application of selectors to objects will be extended so that 
any selector SES can be meaningfully applied to any object of the general class, 
For that purpose a special composite object is introduced, namely the null object. 
The null object is the composite object that has no components, i. e .  is des­
cribed by the null set { } . Consistent with the rule in 2.1 , the null object is 
represented by: 

f'o ( ) 

For convenience the special character Q is defined to represent the null 
object: 

Q = u() 
Of I o 

It is now possible to extend the definition of the application of selectors 
by adding that the application of a selector s to an object which does not contain 
a component whose name is s yields the null object Q . 

This means in particular: 

(a) The application of any selector to an elementary object yields the null object: 

s (eo) = Q 

- 2. 3 
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(b) For composite objects the application of a selector is defined by: 

This means in particular for n = 0: 

s cQ.> = Q 

= 
{ 

Q

Ai if there is 

otherwise 

an i such that s = si, 
lsisn 

Named objects of the form <s: Q> are permitted in the argument list of f-o' 
however (consistent with rule (b) above) the following identity holds: 

fAo(<sl : Al>,< s2: A2>,,, . ,<sn : An>,<s : �>) = 

f'lo (<sl :Al>' <s2 : A2>' • • • '<sn' : An>) 

We can think of a named object <s:£L> as being a unit element with respect 
to the operation fo . 

The definition of the set describing a composite object needs to be re­
formulated. A composite object can be uniquely described by a finite set of 
named non null objects whose names must be mutually different, i . e . :  

{<sl: Al>,<s2: A2>, • •  <sn : An>} 
where n;::o, si :1 sj for i t j and Ai t Q for l$i�n, 

The following proposition about the idr.ntity relation between composite ob­
jects holds : 

where A1, A2 are composite objects . 

2. 4  Composite Selectors 

By analogy with the operation of functional composition, an operation for 
selectors is introduced by: 

s1os2o,,,osn(A) ;
f

s1(s2( • • .  (sn(A) ) • . •  ) )  

s1os2o,,,osn is called a composite 3e�ec�� 

2.4 
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In the following x, xl' Z-2' • • •  I �i' X2, . . . stand for composite 
selectors. 

The identity function I is introduced as the unit element with respect to 
composition, i.e . :  

I (A) = A  
I•'K = 'X•I = /C 

* The set of all composite selectors will be called S • The introduction of I 

as , composite selector has a number of advantages . For example, the equivalence 
r�ated at the end of chapter 2 . 3  and reformulated for composite selectors now 

holds for any object whether it is elementary or composite: 

Furthermore, as will be. shown in the following section, the inclusion of the 
identity function I makes a fairly elegant treatment of the elementary objects 
possible . 

Note that the direction bottom t6 top in the tree corresponds to the direc­
tion left to right in the composition of selectors. 

Example I 

2.5 The Character�stic Set of an Object 

� .. 
s4.s2(A) = eo4 

In J�9tion 2.1 a composite object was described by the set of named immediate 
-

components which are non null. There was a restriction , namely that the names of 
different components must be different. An alternative unique description of 
objects is introduced in the sequel using composite selectors which will 
prove convenient in many respects. 

2. 5  
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The characteristic set of an object A is the set of all pairs<X:eo> 
such that x (A) = eo, where x is a composite selector and eo is an elementary 
object. 

The characteristic set associated with an object determines uniquely the 
object. Thus one may describe objects by specifying their respective characteristic 
sets. Each object of the general class has a characteristic set. In particu�ar 
is t } the characteristic set of Q and {<I : eo>} the characteristic set 
of an elementary object eo. 

An example using the tree representation may help the mental operation 
that has to be performed at this point to be grasped.Consider the object 

p0(<s1ieo1>, <s2: f-10{<s3: eo2>,<s4:eo3>) >) where eo1, eo2, and eo3 e EO. 

The tree representation of this object is: 

Fig. 1 

One now takes this tree apart in the following way: 

r r r sl s2 52 

! eo1 t t 
s3 l 

st 
eo2 eo3 

Fig. 2 

In other words, one searches for all paths in the trees which lead to an ele­
mentary object, i.e. to a terminal node. These paths together with the associated 
elementary object obviously give the same information as the original tree . In 
terms of sets, the object that was previously described by the set [ <s1: eo 1>, 
<s2:A >}where A is described by {<s3:eo2>, <s4: eo3>} is now described by its 
characteristic set {<s1: eo1>, <s3os2: eo2>, <s4os2: eo3>}. 

2. 5  
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Not every set of pairs where each pair consists of a composite selector 
and an elementary object is the characteristic set of some object, Consider 
an attempt to describe an object by its characteristic set 
{<s1 : eo1>, <s3•s2 : eo2> <s4•s2:eo3>, <s2;eo4>} . Going back to the previous 
description method namely {<s1: eo1>, <s2 : A>, <s2: eo4>}, where A is described 
by {<s3 : eo2>, <s4:eo3>}, one may observe that two different components have 
the same name and thus a rule for the construction of objects is violated, 
The corresponding tree representation shows the ambiguity more clearly: 

Before stating the necessary restriction for characteristic sets , a depen­
dence relation between composite selectors will be defined by means of a predicate 
dep . Two composite selectors X 1, x2 are called dependent, if one of them is a tail 
of the other, i . e . :  

For use in some subsequent proofs two consequences of the definition are 
given . 

If ;�:1, x2 are dependent , then �1o'r , x2o'T are dependent , and vice versa: 

Proof: Assume dep (�1,z2 ) .  Then either there ·exists a� such that �l = X ox2, or 
there exists a X such that x2 = x o x1• It follows that either 
X 1 o T ::: X o x2 o 't: or z 2 o 'C' = x o ::r1 o "t', i . e .  dep ( ::r 1 o T, .x2 or) • 

The proof in the other direction is analogous. 

If '1:: ox 1, x 2 are dependent, then X 1, .:r2 are dependent: 

2 . 5 
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Proof a Assume dep(�ox1 , x2) ,  i.e. either there exists a x such that �ox1 = Xol21 
or there exists a X such that X 2 = X ot"oX1• 

(1) 'LoXl = Xox2a 
Eitherx1 is a tail of x2 , or x2 is a tail of x1 , i . e .  dep(z1 ,z2>.  

( 2) X. 2 = X o't o :lfl 
xl is a tail of x2 , i . e .  again dep(.:rl.-X-2). 

Let C be an arbitrary set of pairs of the form <X: eo>. C is the characteristic 
set of some object, if and only if the selectors occurring as the first elements of 
the �airs of C are independent of each other. This condition is called the charac­
teristic condition for c and may be formulated as followsa 

Obviously, dep(I , x) holds for any composite selector x, since X. =  Xoi for all 
x. Therefore ,  only the form {<I: eo>} is a possible characteristic set using I .  
The advantage of using characteristic sets to describe objects is that the dif­
ference in treatment of elementary and composite objects has disappeared ,  which 
means that the case distinctions between elementary and composite objects will 
similarly disappear in certain places. 

The result of the application of a composite selector x to an object A may 
now be specified by its characteristic set CX(A): 

Proof: 

CX.(A) = f <'r: eo> I <'toX:eo> E: CA 1 

The characteristic condition for C'l{(A) is always fulfilled. 

Assume <'L1: eo1>1<t'2: eo2>E:Cx(A) and <r1aeo1> .� <'1:'2: eo2> .  Then 
<t'1oxreo1>1<'t'2oXaeo2>e:CA' and therefore •dep(1:'1ox , --r2o::t) . Because of (• ) 
it follows that ..,dep(-r1 , T2) ,  q . e .d. 

2.5 
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2. 6  The Operator f-l 
A rather powerful operation is introduced as the next step of the development. 

It is a two place operation and the operands are an object A and a pair <�tB> 
where � is a composite selector and B is an object, the result of the operation 
is again an object, n?mely A, where the componert to which x points is rP.placed ·by 
B. The application of the operation is written a� follows: 

JL-{A; < 'lC : B>) 

There are two important special cases to be mentioned .  First, i f  there is no 
"<:.component of A, i . e .  if �(A) = Q , then the result of the operation is simply A 
augmented by B which becomes the 'lG component of the result. Second, i f  B= Q then 
the result of the operation is just A where the � component has been deleted. 

So far only the intuitive idea of what the operation is to accomplish 
has been given . The operation will be made precise by specifying the characteri­
stic set of the result for any given A and <'X: : B>, 

Let CA' CB be the characteristic 
teristic set C (A v B ) of the result fl- � < " ' > 
as the union of two setsa 

sets of A and B ,  respectively. The charac­
will be specified in terms of CA' CB and � 

C (A } = {<-rseo> <'t: eo>e CA & •dep(X,"L)l u fJ 1 <:taB> J 
{ < to x a eo> I < t a eo> E. CB ) 

The first set, in the following abbreviated b c i th h t i · Y A'' s e c arac er st�c 
set of an object which is A with the X component deleted. The second set, in the 
following abbreviated by CB'' is the characteristic set of an object which has B 
as �component and no other components .  

The operation� yields an object for any arbitrarily chosen A and <:t:B>, 
i . e .  does not lead Qutside the general class. of objects, because the characteristic 
condition for C

�(AJ<:taB>) is always fulfilled. 

Proof: Assume <-r:1: eo1> 1 <T2a eo2>"'-C u(A ;<v: B>) and <'!:' � .....-
' � 1: eo1> r < �2: eo2> . 

-, dep (-r 1, 1:2) must be shown . 

(1) <'r-1: eo1>1< 1:'2: eo2> e cA , : 
Since CA, S:. c.� , -, dep (1." 1 , '1"2) follows from the characteristic condition 
for CA, 

2.6 
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( 1} 

(2) <r1 :eo1 >, <T2 : eo2 >e.CB1: 

T1#T2 must have the form T11o�, �21oX respectively, where 
<'r1 1 :eo1 > 1  < t 21 : eo2 > E CB , Therefore • dep (1:'1 1 ,r2 1), and because of 

(*}it follows •dep ('l11oX1T21oX) 1 i.e. -,dep (r1, T2} .  

(3) "T1 : eo1 >E:.CA1'· <r2 : eo2> E:CB1 : 

In this case ...., dep ( -;r, T 1 ) holds for T 1 , and 't' 2 has the form T 2 1 o X. w:lth 
<Y21 : eo2>ECB' From -,dep (X1T1) and (**) it follows that •dep (-r:-21oX(t"1) ,  
i.e. again •dep (T1, T"

2) .  

�!'e following examples illustrate the consequences of the definition. 

Let B be a non null object and 

. A = /\ 
s s 

r/1 2
b 

eo1 /"'. 
5
3 54 A e� ss 
56 

cl \, 
eos eo 

6 
The result of jJ- (A, < 'lC s B> )  for various choices of % is shown in the following; 

= 

= /\ 
s )\ 

2.6 
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57 

® 

2-1 2 

1\ 
s� 

Now , the above three cases will be repeated, but with B = Q 

(4)  jL(A;<s8os7sQ>) = A 

s7 � sl, s7 � s2 

(5) 

2.7. Definition of Classes of Objects 

TR 25.087 

As already stated in the introduction the well-formed sentences of specific 
languages will be identified with a subclass of the general class of objects. 
The specification of particular classes of objects will be �iven either in terms 
of predicate logic or by equivalent devices of s�t theory. Appropriate notational 
conventions and abbreviations will be introduced for certain forms of specifi­
cations which have turned out to occur quite frequently. 

The specification of a certain subclass of objects, to be identified with 
the well-formed sentences of a language, is called the abstract syntax of that 

2.7 
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language according to the use of the term in current literature ( e . g .  Mccarthy /9/) .  
Although the entire apparatus of predicate logic could be used for abstract syntax 

specifications only a certain number of forms are actually important , i . e .  it is 

sufficient for the purpose to consider only a certain type of syntax specifica­

tions . 

In order to define subclasses of obie�ts , oredicates will be defined which are 

true exactly for the members of the subc l � s s  to be defined , For the pre-

sent exposition , the names P ,  P1 , P2 , • • •  will stand for arbitrary predicates and 
/\ " A. 
P ,  P1 , P2 , • • •  will stand for the subclass of objects determined by the respective 
predicate . 

In particular, the following basic definition schemata are used for the spe­

cification of abstract syntax, 

( 1 )  There are predicat es P which are true for certain subclasses of elementary 
/\ 

obj ects , i . e .  P c EO, How these predicates are defined depends on how the set 

of elementary objects EO is specified.  

( 2 )  Given predicates P1 , P2 , • • •  ,Pn a new predicate P may be defined by the dis­

junction of the given predicates : 

p = p V P2 V 0 1 1  V p 
Df 1 n 

1 )  

In terms of sets the equation reads : 

� = �1u �2 u . . .  u �  
Of n 

(3) Given n predicates P1 , P2 , , , , , Pn and n mutually different selectors s 1 , s2 , 

••• , sn ' s
i

� s j for i �  j ,  a new predicate P may be defined by the following 

equation : 

P (A) = 
Of 

n 

& Et. pi �Ai ) ) 

i=l 

1 )  The meaning of the logical operator ' v ' is extended to apply not only to pro­

positions but also to predicate s ,  i . e .  the definition P (x ) 0� P1 (x) v P2 (x) v  . • .  

vPn (x)  is abbreviated to : P0� P1v P2v . . •  vPn . 

2 . 7  
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The tree representation of objects may help to understand the above equation . 
The predicate P defined by the equation is true for objects of the following 
form; 

where A1 , A2 , • •  , ,A are restricted to certain classes, namelyt 
A A n A 

A1 e. p 1 1 A2 e. p 2 ' 1  1 1 ,An €. p n • 

The above form of definition is rather bqlky for actual use, and therefore a 
special notation for exactly this form is introduced: 

A set of rules of the above forms , i . e .  a set of predicates defined by 
equations of the forms { 1 ) ,  ( 2 ) or ( 3 )  may be considered either as a set of rules 
to produce objects of certain types or alternatively as a set of rules for analyz­
ing given objects of a certain type . It shoul� be mentioned that by the set of 
rules some predicates may be defined recursively ,  

I n  particular, rules o f  form ( 3 )  may be formulated a s  production rules using 
the obvious implication : 

Given objects A1 such that P 1 (A1 ) and A2 such that P 2 (A2) • • • •  and An such 
that Pn (An ) ,  then 
p.0 ( <s 1: A1 > 1 <s 2 : A2 ;; . . .  ,<sn : An > )  is an object of type P ,  i . e .  

P (f'o ( < sl : Al> ' < �2 ' A2>,, , ,,<sn : An> ) ) • 

Conversely, if an object of type P is given and P i s  defined by a rule of 
form ( 3 ) 1 one knows hmv to analyse the obj ect , In particular, the rule says that 
the given obj ect must have an s 1 part of type P 1 and an s 2 part of type P 2 • • •  
• • •  and an s part of type P • In other words , for analyzing a given object of n n 
type P the important implication is : 

2 , 7  



IBM LAB VIENNA 2-15 TR 25 . 087 

The classes of objects which can be defined by means of form ( 1 ) 1 ( 2 )  or 
( 3 )  have the following property in common . For any such class there is a number 
N called bound such that no member of the class has more than N immediate compo­
nents , l . e .  the number of components is bounded. It is easy to see that this pro­
perty holds i f  one makes the case distinctions according to the three admissible 
forms : 

( 1 ) : There are only predicates for elementary objects (which do not have any 
components ) it is therefore sufficient to set N = o .  

( 2 ) : p = P 1 V P2 V e a o  V pn 
Under the assumption that the bounds for P 1 , P 2 • • •  , Pn are N 1 , N 2 , • • • 1 
Nn the bound N for P may be set to 
N = maximum o f  N1 , N2 , • • .  , Nn . 

( 3 ) : P = ( <s 1 : P 1 > '  <s 2 I P 2 'i • • • ,<s n : P n >)  
I t  is obviously sufficient to set N = n .  

One should however note that the number of elementary components ( terminal 
nodes of the trees) for the members of a given class is not bounded in general . 

Example:  
P 1 = { eol} ' 

the following are examples for members of P 3 : 

r 
s l b 

eo1 

The bounds are 0 
0 
2 

1\ 
t! 

s l s 2 

eo 1 I s l d eo1 

for .. 
for 
for 

J 
eo1 

1\ s l SA s l s 2 
cf )\, eo1 

The number of elementary components is obviously unbounded.  

. 
' 

' 
' 
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The means s o  far introduced for defining classes of objects would in princi­
ple be sufficient to cover the intended applications . However, the property of 
bounded number of immediate components for any definable class of objects is some­
times inconvenient , 3specially for the treatment of lists and arbitrary collec­
tions of objects of a certain type. The extensions to the defintion tools describ­
ed in the following have been introduced to overcome this li�itation.  

In the previous definition schemata i t  was sufficient in any special case to 

talk about .finite sets of selectors , i . e .  where a set can be f}iven b�r t.lle list 

of its members ( see definition schema ( 3 ) ) .  In order to be able to define classes 
of ��jects with an unbounded number of subparts, it is necessary to talk about 
tnfinite sets of selectors . For that purpose predicates over selectors arc intro-

1 )  duced, and Q ,  o1 , o2 , . , ,  will stand for these predicates 

(4)  

The set of definition schemata is augmented by the following forms : 

Given a· predicate P1 over objects 
dicate P is defined which applies 
selectors out of Q and objects of 

and a predicate Q over selectors a new pre­
to all objects which can be built from 
" 
P , . 

More precisely, the definition schema reads a 

P (A) = 
Of 

C 3 A1 , A2 , • • • , An , s 1 , s2 , • • •  , sn) 
n 

Et (Q (s 1) & P1 (Ai ) )  & 
i=l 

In terms of the tree representation the equation says that p is true for 
objects of the kind : 

In the actual use of the definition for the formalization of PL/I the set of 
selectors F is assumed to be a subset of the elementary objects EO, In this con­
text it is therefore no longer necessary to distinguish between predicates over 
objects and predicates over selectors , Since this is an additional assumption, it 
seemed to be advisable to keep the distinction in this introctuction . . 
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for an arbitrary choice of n and the constraints: 

for ls isn 
for lsisn 

TR 2 5 . 087 

A special r-otation for exactly the above form has been introduced, namely : 

1 1  Q (s) } ) 
Definition schemata ( 3 )  and ( 4 )  may also be used in combined form. The most 

general case would be : 

P = (<sl : Pl> , , , . , <sn : Pn> '  

{<s : Pn+l> I I 01 ( s ) } ,  • • •  , 

{<s: P + > 1 1  0 (s) } )  n m m 

with obvious meaning. 

For some applications it will be necessary to define objects with an ordered 
set of immediate subparts, e . g. for the treatment of lists of elements of some 
kind. The simplest way_ to satisfy this requirement is to define an order for 
the selectors or for a subset of the selectors. It is neither necessary nor desir­
able to make specific assumptions about which symbols are members .of � ,  i.e. 
selectors. To avoid such an assumption a function is introduced mapping the natural 
numbers into the set of selectors. It is of course required that the mapping is 
one to one . More specifically, the function introduced is called "elem" and its 
application to an integer is represented by : 

elem(i )  

I t  yields a selector fpr i � l  and has the property : 

elem(i) � elem(j) for i :1 j .  

It is now possible to introduce still another definition schema that allows 
classes of objects to be defined whose memhers. have an arbitrury number of or­
dered immediate subparts , Such obj�cts are called lists. A special elementary ( 1 )  
object is introduced , called the null list. The null list will be denoted by: 

< > 

The following definition schema may now be introduced : 

( 5 )  Given a predicate P, a new predicate can be defined by appending the suffix 
" -list " to the predicate, i . e. ,  the new predicate reads : 

P-list 

2 . 7  
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The suffix " -list" is definea by the follo>oJin<J equation: 

P-list (A) Df A = < >  

( 3 A1 , 
V 

. . .  , 
n 

A ) ( Et 
n i::;l 

n 
P ( A .  ) & Et (A . � Q )  & � i::;l � 

TR 25 . 087 

& 

A = fo ( < elem ( l )  : A1 > , • • •  1 <elem ( n) : An> ) )  

In other words , the equation expresses that the predicate P-list holds for 
the empty �ist, < > 1 and for objects of the kind : 

elem ( l )  elem ( 2 )  

e! � 
for some � 1  and the constraint : 

2 . 8  Further Notational Conventions 

ele.m ( n) 

. . . 

2,8 , 1  Extension of the meaninQ of the M-o2erator 

The purpose of the extension of the �-operator is to facilitate the replace­
ment of several components of an object in either specified or unspecified order. 
One form of the extension will also allow the specification o f  the set of compo­
nents to be replaced implicitly. 

So far , only the form fA'(A; < 'X, : B > )  has b<Jen perMitted . The following e:'{tensions 
are now defined : 

The above form is defined iteratively by the equation : 

for the case n ::; 0 the form is defined by : 

f (A; ) = A 

2 . 8 . 1  
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( 2 } jJ- (A; {< "ts B> I p (" '£, B} } }  

The second argument of the above form defines a finite set of pairs � � s B > 1  
namely the set of pairs for which a certain proposition ·p ( 'l<1B)  holds . This 
form is reducible to the form ( 1 )  in the following way : if the elements of 
the set of pairs are written in any linear order and used in the form ( 1) 1  
then the result i s

.
the result of the present form provided ( 1 )  that the order 

of pairs is not significant, If the order is significant , the · result is �­
defined, The form yields for the empty sets  

fi(AJ { } )  = A 

The aecond argument may also be the union of some implicit defined sets s 

t-dAJ { < X1 s B1> 

i <x s B  > � m m 

pl (
:t

l , B l) } 
u • • • u 

Pm (X m , Bm) 1 ) 

( J )  flo ( <'Xtl 1 Al > '  <'X/2 : A2 > '  ' ' ' ' <Xn s An > )  
�he restriction for the above form , that n o  � i  i s  a tail o f  xj for i � j 
anq l�i , j sn ,  is dropped, 
The meaning of �0 may be redefined by the following equation : 

( 4 )  f!o 
< { <'X-: A >  I p (� ,A) } )  

, , , 1 <'Xi I A > )  n n 

The above form is analogous to ( 3) and defined by: 

�o q <'X sA>  

(5)  S >(A; 'Xl ' I)V2 ' • • • '  'Xin) 

The above form -deletes the �i component� from A and is defined by the 
following equation : 

The above form is analogous to ( 5 )  and defined by : 

2 . 8 . 1  
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2 . 8 . 2  Manigulation of lists 

Lists are an important class of object s .  To facilitate the manipulation of 
lists a number of functions , operators and abbreviations are introduced which cor­
respond closely to the conventional means for the purpos e .  

First a predicate , is-list , i s  introduced which holds for any list whatso­

eve r .  The predicate may be defined by : 

is-list (A) Df ( 3 P) (P-list (A) ) 

Furthermore, an abbreviation for denoting an el enent of a l i s t  i s  introduced . 
Let L be a list, then : 

elem ( i  , L) Df elcm ( i )  (L) 

The length of a l i s t  i s  defined a s  the largest index of an element which 
is not the null obj ect• 

length (L) = is -l ist (L) ---

(L  = < > - 01 
T - ( � i )  ( elem ( i , L) � Q & e l em ( i+l , L )  = Q ) ) 

The following three functions yield when applied to a list, the head (which 
is the first element of a list i f  it exists ) , the last element of a list ( i f  it 
exists) and the tail of a list (which is the original list except the first ele­
ment) � 

head (L) = is-list (L) & (L � < > ) 
= is-list (L)  & (L  � < > ) last (L) 

tail (L)  = 

-

-

elem ( l ,  L) 
elem ( length (L)  , L )  

is-list (L) & ( L  � < > )  � 

( length (L) 1 - < > , 
�ength (L) > l ---- fA-0 C { < elem ( i ) : elem ( i+l , L) > I  . .  . 

lS iS ( length (L) -1) } ) �  

The concatenation o f  two lists is defined by : 

1\ L1 L 2 = i s - l is t ( L1 ) & i s -l i s t ( L2 ) ---

J-L (L1 ; {  < elem ( length ( L1 ) +i) : elern ( i 1 L2) > I  
1S iS length ( L2 ) } )  

2 . 8 . 2  
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Multiple concatenation is defined by : 

n 
CONC 

i=l 
L; = L "' L "' • •  • /""\ L 1 2 n 

l'R 2 5 . 087 

As a convenient form to denote lists one may enumerate the elements within 

pointed brackets . The form is defined by : 

<A1 , A2 , ••• , An> Df fto ( < elem ( l ) : A1 > ,  < elem ( 2 ) : A2 > ,  • • •  , < elem ( n) : An > ) 

for 1'2 1, A1 � Q (ls isn) . 

An alternative form i s :  

2. 9 Implicit Definitions 

n 
LIST 
i=l 

Implicit definition means in the present context that for the definition 

of a function (and later on also for instruction schemata) a problem is stated 

rather than an algorithm specified , say by conditional ex·pressions . The reason for 
definition by stating a problem is that this is sometimes much more intelligible 

than any special solution to the problem. However , in using implicit definitions 

one has carefully to ensure that a solution to the problem indeed exists , more 

precisely that an algorithm exists which solves the problem. In particular, all 

definitions which contain the L operator or a set definition of the form 
fx I P (x) } are implicit definitions . 

The definition of the length of a list as 9iven in section 2 . 8 . 2  may serve 
as an example. The use of the l operator makes the definition implicit. The prob­

lem stated is to find the greatest index i such that the ith element of a given 

list is not the null object . I t  is quite obvious that a solution and an algorithm 
for thi s  problem exist , since a list is a finite sequence of non null objects ac­
cording to the definition. 

The following algorithm would indeed resolve the problem: 

h (L , i )  = (elem ( i+l ,L )  = Q - i ,  
T - h (L , i+l) ) 

length (L) = ( is ... list (L) - h (L , O ) ) 

So this definition is not longer, it is not as transparent as the implicit de­

finition . In more complicated cases the difference between the two definition meth­
ods would become much more apparent especially with regard to their lengths . 

2 . 9  
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3 • APPLICATION TO ABSTRACT SYNTAX AND REPRESEN'l'ATION OF LANGUAGES 

TR 2 5 , 087  

Throughout the rest of this report possible applications of the tools pro­
vided by the previous chapters to languages will be suggested by defining the syn­
tax and semantics of the simple programming language EPL described briefly in 
Section 1 . 2 .  The present chapter is concerned more specifically with problems of a 
syntactical nature and their solution by means of the methods of Chapter 2 ,  

Two basic types o f  snytax, vi z .  abstract syntax and concrete syntax, may be 
considered to be constitutive of the syntactic definition of a language . An abstract 
�a� is one which only specifies the expressions of the language as to the struc­
tures signi ficant for their subsequent interpretation and not as to how they are to 
be expressed for the purpose of communication either to oneself or others . A £2D­
crete syntax is one which specifies the express ions of the language as a set of 
character strings . Once the. syntax of a language has been given, i . e . , once it is 
possible to determine what categories of well-formed expressions a language is ·to 
have , one can ask questions as to the possible meanings to be assigned to these ex­
pressions . However, depending on the type of syntax taken to constitute the syntac­
tical definition of the language , the solutions to the problems of meaning and re­
presentation wi t · .:: '· f :: e r .  

Assurne p for the moment, that the syntax of a language has been specified by an 
abstract syntax. Then the language can easily be interpreted by attaching meaning 
directly to the expressions as specified by the abstract syntax. However,  in such a 
case ,  it i s  of interest to ask not only what the meaning of expressions might be , 
but also how one might specify their pos s ible concrete representations as character 
strings . This problem of representation is solved for the programs of EPL, as spe­
cified by the abstract syntax, by means of the replacement system given in section 
3 . 2 . 2 .  The meaning of the programs of EPL, as specified by the abstract syntax, is 
defined by means of the interpreter of Chapter s .  The same method was used for 
giving a formal definition of ALGOL 60 in /20/ and /21/. 

I f ,  on the other hand, the syntax o f  a language had been specified by means 
of a concrete synt:ax , then the question o f  a concrete representation does not arise 
since the concrete syntax itself defines this representation. The question of the 
meaning of the expressions o f  the language still remains to be solved and one might 
be tempted to think that an interpretation might be given outright by attaching 
the meaning to t;he strings of characters producable by the syntax. ,In the case of I 
the formal definition of the semantics of complex programming languages such direct 
interpretation has proved to be rather impractical and, hence , there has developed 

3 .  
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a tendency to translate the expressions specified by the concrete syntax into some 

kind of abstract normal form before attempting to define their meaning. In such a 

case the set of expressions of the language in abstract normal form may be said to 

constitute an abstract syntax of the language . The problem of specifying the corre­

lation between a given language whose syntax is considered to be constituted by a 

concrete syntax and the normal form of these expressions as specified by means of 

an abstract syntax i� discussed in the closing sections of this chapter. In partic­

ular, the problem uf the meaning of programs of EPL as specified by the concrete 

syntax is solved by first specifying a translator from these expressions to their 

corresponding abstract normal form as specified by the abstract syntax of EPL and 

then interpreting these latter expressions by means of the interpreter given in 

Cr.�pter s . The same method was used for giving a formal definition of PL/I in 

/4/ - /8/. 

Section 3 . 3  serves to correlate the notion of abstract syntax, as defined by 

means of  the devices of Chapter 21 with the Backus Normal Form which has been used 

to define the concrete syntax of a number of programming languages . In Section 

3 . 4 . 1  the usual Backus Normal Form notation is extended by means of a definitional 

extension, i . e . , certain convenient shorthands are introduced . This extended Backus 

notation is used in Section 3 . 4 . 2  to give the concrete syntax of EPL. 

3 , 1  Abstract Syntax of  EPL 

One way of specifying an abstract syntax is by means of the methods presented 

in the previous chapter, i . e .  by defining a class of objects . Hence, for the pre­

sent purposes , an abstract syntax is defined to consist of a specification of the 

sets EO and s ,  a specification of predicates by means of the definition schemata 
described in Chapter 2 , 7 ,  and a choice of one specific predicate whose correspo�d­

ing class of objects is identified with the set of expressions of the language to 

be defined. 

In speci fying the abstract syntax of EPL the aim is to define a class of  

objects , which can in a useful way be  identified with the programs of  EPL ( as 

described intuitively in 1 . 2) 1 i . e . , the objects must mirror the structure of the 

corresponding programs . Hence, there is essentially no arbitrariness in the choice 

of the structure of objects , but the choice of the specific selectors , predicate 

names and symbols for representing elementary objects is arbitrary and only govern­

ed by mnemonic considerations.  Let the set of  objects representing the set of pro-
A r 

grams that can be formulated in EPL be denoted by is-progr . 
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As a notationaJ convention all predicates have a prefix " i s - "  and all selec­

tors have a prefix " s - "  except possibly identi fiers , whlch are also used as selec­

tors, because their structure has been left completely unspecified. The predicate 

definitions are labe lled ( A l ) , ( A 2 ) , • • •  for reference purposes . 

;\ 
is-log 

is�int 
A 

i a -unary-rt 
"' is-binary-rt 

{INT 1 LOG ] 

an infinite set of identi fiers , 

a set of constants denoting the truth values , 

an infinite set of constants denoting the integer values , 

a set of unary (one-place) operators , 

a set of binary (two-place) operators , 

two attributes used to distinguish integer variables 

from logical variables. 

These sets are assumed to be mutually exclusive. The set EO consists of the 

union o f  the sets enumerated above , �hQ.s: we can also write 

EO = /\ /\ A /\ 1\ is-id u i s-log u is-intg u is-unary-rt u i s -binary-rt u { INT , LOG l 

The set o f  selectors S necessary for the specification o f  the abstract syn�ax 
of EPL is infinite since the set of identifiers , the members of which are alao 

selector s ,  i s  itself infinite. However, the set of s electors that are not identi­

fiers is finite and actually quite small and may, therefore , be enumerated exp l i cit­

ly . Hence, we can define the set s as fol lows z 

S = { s -decl-part ,  s-st-list , s -param-list, s - s t ,  s-exp r ,  a -left-part, 

a -right-part , s - i d ,  s-arg- l i s t ,  s-op, s-rd, s-rdl , s-rd 2 1  

s -then-s t ,  s-else-st) u i s�i d .  

Note that the s e t  of identifiers i s�i d  belongs to both E O  and s ,  i . e .  the 

sets EO and S have a common part. 

The predicates necessary for the specification of the abstract syntax of the 

example language are defined using Schemata ( 2 ) , (3) , ( 4 )  and ( 5 )  from Chapter 2 1  

( A  1) is -progr = i s -block 

(A 2) is-block = ( < s -decl-par t : is-decl-part > , 

< s -st-li s t : i s -st-lis t > )  

( A  3) is-decl-part = C{ < id a i s -attr> I I is-id ( id) } > 

(A 4)  is-attr = is-var-attr v i s -proc-attr v i s - funct-attr 

(A 5 )  i s -v�r-attr = { INT 1 LOG 1 

3 . 1  
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(A 6) is-proc-attr = ( <s-param-list : is-id-list> , 
<s-st:  is-st > )  

( A  / )  is-funct-attr = ( < s -param-list: is-id-list> , 
<s-st : is-st> 1 
<s-expr : is �expr > )  

(A 8 )  is-st � is-assign-st v is-cond-st v is-proc-call v is-block 
(A 9 )  is-assi �n-st = ( < s-left-part : is-var> ,  

<s-right-part : is -expr > )  

TR 2 5 , 08 7  

(AlO) 
(Al l )  
(Al2) 
(Al 3 )  
(Al4)  
(Al5 ) 
(Al6 ) 
(Al7)  

is-expr = is -const v is-var v is-funct-des v is-bin v is-unary 
is-const = is-log v is-int 
is-var = is-id 

is-funct-des = (< s-id : is-id> 1 < s-arg-list c is-id-list> ) l)  

is-bin = (< s-rdl : is-expr> 1 < s-rd2 : is-expr> 1 < s-op : is-bin-rt> ) 
is-unary = ( < s -rd : is-expr> 1 < s-op : is-unary-rt> ) 
is-cond-st = ( < s-expr : is -expr> 1 < s-then-s t : is-st> 1 < s-else-s t : is-st> ) 

, 1 )  2 )  I 
is-proc-call = (< s-�d: is-id> 1 < s-arg-lis t : is-id-list> ) '  

/\ The programs o f  EPL are now identified with the members of is-progr. 

One may observe that in defining the abstract syntax of programs of EPL 
no specification was necessary as to the order of components or of special punctua­

tion marks. 

/\ Some examples of components of members of the class i s -progr in tree represen-

tation are given below. These components are variables , unary and binary expressions . 

Their respective tree representations will be accompanied by their usual character . 

string representations using parentheses . For the purpose o f  these examples let 

HINUS be a unary operator and t-1ULT and ADD be binary operators , 

Key to abbreviations (prefixes and suffixes omitted) • 
attr attribute 
arg argument 
bin binary ( two 
cond conditional 
decl-part declaration 
expr expression 
funct fUnction 
id identifier 

par am parameter 
proc procedure 

places) progr program 
rd operand 

part rt operator 
st statement 
var variable 

l) includes single identifiers and hence procedure names and function names . 
2 )  completely identical to is-funct-des . 

3 . 1  
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Examples 

(a )  0 
id 

according t o  (AlO) and (Al 2) . 

(b) according to (Al 4 )  and (Al 5 )  

s-op 

/ 
MINUS 

s-op 

/ 
s-rdl 

� 
ADD 

Usual notation: - ( a + b) 

according to (Al 4 )  

s-op 

/ 
MULT 

ADD 

Usual notation & ( a  + b )  . •  c 

TR 25 . 08 7  

I t  i s  of importance for later use o f  the abstract syntax that certain classes , 
e . g . , the subclasses of the class of expressions , be mutually exclusive . As a con­
sequence of this requirement one can ask whether a given expression is a constant, 
a variable, a binary or a unary expression , in any order without affecting the out­
come of the inquiry, in addition, the above series o f  questions is exhaustive. 

Definitions (A2 ) , (Al0) , (Al 4 )  and (Al 6 )  are recursive
1) , since in each case 

the definiens refers ( indirectly) to the definiendum. On the other hand, these de­
finitions contain alternatives which are not recursive so that th� definitions 
are not circular. E . g . , the non-recursive alternatives of (AlO) are is-const, 
is-var and is-funct-de s .  

!) Recursive is used i n  the sense i n  which i t  is used i n  literature or programming 
and computers.  
In  formal logic,  however, recursive is used synonymous with computable while the 
above property is called self-referencial , regressive or recurrent . 

3 . 1  
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The number of immedi�te components of any element of a class of objects de­

fined only by means of the definition schemata ( 1 ) , ( 2 )  and ( 3 )  is of course bound­

ed , For example, the bound for the number o f  immediate components of any element 
A A 

of is-expr is 3 ,  The number of terminals of the class is-expr is , however , not 

bounded, 

If  definition schema ( 4 )  is used for the definition of a class of objects , 

the number of immediate components of a member of this class may be unbounded; . A 
For example , the number of immediate components of members of the class is-decl-part 

is unbounded, 

3 . 2  The Definition of Concrete Representations 

To 'define a concrete representation for the expressions of a language speci­

fied by means of an abstract syntax means to associate with any expression of the 

language one or more character strings of finite length . Since the expressions of 

languages have so far been identified with objects ,  defining a representation means 

more specifically the association of strings of characters with objects . 

It is usually a.sst�ed that the expressions of a language are interpreted in 

such a way that, in general , different expressions have different meanings . 

A representation is therefore only useful if it is possible to decide whether 

a given character string is the representation of an expression and if so , the ex­

pression must be uniquely determined by its representation . A representation satis­

fying these conditions is called unambiguous . 

In the first part of this section a representation system suitable for de­

fining concrete representations of languages is presented . ! }  Tne central part of 
the system is a set of conditional replacement schemata which permit the specifica­

tion of replacement processes leading from abstract expressions of the language 

to their possible concrete representations.  

In  the concluding part of  the section a concrete representation of  EPL will 

be defined by means of the representation system. 

1 )  Such a system, with a few generalizations , has been used in /21/. 

3 . 2  
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3 . 2 . 1  The representation system 

The first step in specifying the representation system for a language is to 

give an alphabet of terminal ::;ymbol s .  This alphabet can be conceived a s  the union 

of two sets . The elements of the first set represent uniquely the elementary ob­

jects of the abstract syntax of the language ; this set will be , in general , infi­

nite . The second is a finite set of so called deli1niters which are used to re£lect 

the s tructure of the objects of the language when they are represented as strings . 

In the p1:·esent context terminal symbols will be considered as atomic characters .  

Let the unique representation of the elementa.ry objects eo by terminal sym­

bols be defined by means of a function rep (eo) and the set of delimiters be de­

noted by ,.). • Then the set of terminal symbols 'J can be defined by: 

-:r" = { rep (eo) eo E EO J u J 

A terminal expression is an arbitrary meta-expression1 )  ctenoting a terminal 

symbol depending on th� free variables occurring in the expression . Terminal sym­

bols are considered to be special cases of terminal expressions . 

In order to formulate the replacement schemata of the representation system 

the notions of non-terminal and of non-terminal expression are introduced. 

A non-terntinal i s  composed of a non-terminal name and a (possibly empty) l ist 

of arguments which are objects . Non-terminals have the following form : 

NON'I'ERM[ob 1 , • • •  , obJ 

i . e . ,  non-terminal names are underlined capitalized words and the argument list' is  

enclosed in a pair of brackets (except 
'
that the brackets are omitted when the argu­

ment list i s  empty) . 

A non-terminal expression is a meta-expression denoting a non-terminal de­

pending on the free variables occurring in the expression and is written as follows : 

where expr 1 , • • •  , exprn are arbitrary meta-expressions denoting objects . 

1) To distinguish the language in which the definitional tools are expressed from 
the object language to be interpreted ,  the prefix "meta" will be used for the 
former . Thu s ,  the notational devices introduced in 1 . 2  belong to the meta­
language . 

3 . 2 . 1 
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For each non-terminal name NONTERM there will be one ·or more corresponding 
conditional replacement schema of the following general form: 

t1 , • • .  , tn are the parameters and x1 , . • .  , xm are the auxiliary variables of the rule . 
p is a meta-expression, called the condition of the rul e ,  and denotes a trutl].-value 
depending on the free variables x1 , • • •  , xm, t1 , • . •  , tn . o denotes a string consisting 
of non-terminal expressions and terminal expressions in the free variables 

A schema of the above type is to be understood in the following sense : For 
. 0 0 0 0 each assignment of specific obJects x1 , • • •  , xm, t1 , • • .  , tn as values of the variables 

x1 , • • •  , xm , t1 , • • •  , tn ' if the condition p is satisfied , then the non-terminal 
0 0 NONTERMCt1 , • • •  , tn J may be replaced at any of its occurrences in a given string by 

. y 0 0 0 0 the str1ng u (x1 , • • •  , xm, t1 , • • •  , tn) .  

In the special case of a schema not depending on a condition the form i s :  

with obvious meaning . 

The representation system is now defined as the quintuple 

( .A I � ' ,K>, !::!. , R ) 
where .A i s  the abstract syntax of the language to be represented, J i s  the set 
of symbols ,  Jr is the set of non-terminal names , � is the unique non-terminal aame 
out of Jr called the head of the system and R is the set of conditional replace­
ment schemata . 

For each abstract expression t0 specified by the abstract syntax , at least 
one concrete representation of t0 can be found by means of a replacement process .  
A replacement process i s  a sequence of string 0 0 , 0 l ,  . • • , 0 k , where 0 0 is the 
non-terminal �[ t0 J and 0 i+l i s  obtained from 0 i ( for O�i<k) by the application 
of one of the conditional replacement schemata of � • The last string 0 k of the 
sequence consists solely of terminal symbols and constitutes a concrete represen­
tation of t0 • 

3 . 2 . 1  
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3 .  2 .  2 A concrete repre sentatiOI]._ of @·ograr.1.s of El?lJ 

The method used in /21/ a.nJ de s cribed in the previous section of this chapter 

will now be demonstratE:d. by •1.:._ns of its application to the abstract syntax of EPL 

given in 1 . 1 .  

'lha function rep which , ·�hen applied 'eo elementary objects , e . g .  identifiers , 

constant.:::, and opera.t..:>rs , y.i..t=.lds their corresponding· terminal symbols ,  is defined 

as fol lvv. s :  

rep (t)  = 

is-id {t) -- rep-id ( t )  

i s-cons t ( t ) -- rep-const { t) 

( is-bin-·rt v is-unary-rt) ( t) --- rep-rt ( t) 

t = INT -- INTEGER 

t = LOG LOGICAL 

Note : The functions rep-id , rep-·const and rep-rt are one-to-one . The domain of 

rep-id i s  the set of iden tifiers is�id and the range is some set of identi­

fiers as specified by some concrete syntax or some implementation . The 

domain of rep-ccnst is the union of the set is�log and is�int and its range 

is the union of the sets of logical and integer constants as specified by 

some concret� syntax or some implementation . The domain of rep-rt is the 
A /\ 

union of the sets is-bin-rt and is-unary-rt and its range i s  the union of 

the sets of binary and unary operators as specified by some concrete syntax. 

The members of the quintuple constituting the replacement system required 

for the present example will now be defined without much comment so that the 

manner of application of the method will become apparent to the reader .  

The set of non-terminal names Jr i s  defined by means of a tabular enumera­

tion of its elements . Each member of the set will be accompanied by a suggested 

reading . The first non-terminal name is the head of the system, hence 

H = PROGR 

(Nl )  PROGR 

(N2 ) BLOCK 

(N3 ) DECL 

(N4 ) STL 

program 

block 

declaration part 

statement list 

cont ' d  

3 .  2 .  2 
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(N5) ST statement 
(N6) EXPR expression 
(N7) ID } identifier lists 
(N8) I D '  

'l'he set "'j o f  t:c.rminal symbols is defined by means o f  the union o f  the set of 
delimiters and the range of the function rep . 

1" = t BEGIN I END I PROCEDUllli I FUNCTION I CALL I IF I THEN I ELSE , RE'l'URNS 9 

( 1 ) , ; 1 f 1 = J u t rep ( t) I t E EO} 

Since the termina.L symbols are not underlined they are clearly distinguish­
able from the underlined non-terminal names when they are written juxtaposed next 
to each other . The only exceptions are the parentheses , semicolon , comma , and 
equality , and they are written especially heavy to indicate that they are terminal 
symbols standing for themselves .  

The abstract syntax .A consists o f  definitions (A1 ) to (A17 )  on page 3 - 7 .  

The schemas of  the set of conditional replacement schemata � are listed next 
and labelled ( R1 ) ,  (R2) 1 • • •  for reference purposes . 

(R1 ) PROGR[ t ]  � BLOCK[ t ]  

(R2) BLOCK[ t ]  � BEGIN DECL [ s -decl-pt ( t ) J STL[ s-st-list ( t ) ] END 

(R3) t = n. : DECL[ t ]  ==> A 

(R4) 

(R5 )  

is-var-attro id (t)  : DECL [ t ]  =====;l>rep o id (t)  rep ( id); DECL [t(t; id) ] 
is-proc-attr o id ( t) : DECL [ t )  ==*PROCEDURE rep ( id) I D [ s-param-lis t o id ( t) J ; 

ST[ s-st o id ( t) ] # DECL[ t ( t ; id) ] 
is-funct-attr o id (t) : DECL L tl ==* FUNCTION rep ( id) ID[ s-param-list o id ( t) Ji 

ST [ s-st o id ( t) ] 
RETURNS EXPR[ s -expr o id ( t) J j DECL[ J ( t ; id) ] 

length (t)  = 0 ID [ t ]  ===* A 
length (t)  > 0 ID [ t ]  �(I D '  [ t J ) 

length {t)  = 1 I D '  [ t ]  ==i> rep o head (t)  
length (t)  > 1 !!2..:_[ t ]  � repo head (t) / ID ' [ tail ( t ) ] 

3 . 2 . 2  
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(R6)  length ( t )  1 STL [ t ] ===> ST[head (t) ] 
length (t)  > 1 STL [ t ]  ===> ST [ head ( t ) ] f STL [ tail (t) ] 

(R7}  is-assign-st (t}  : ST [ t ] --�repc s-left-part (t)  = EXPR[ s-right-part ( t} ] 
is-cond-st (t)  : S� [ t ]� IF EXPR[ s -expr (t} ] THEN ST[ s-then-st (t} J 

ELSE [ ST s-else-st (t) ] 
is-proc-call (t }  :·ST[ t. J  ===> CALL rep o s-id (t} rn:: s-arg-list (t)  J 
is-block (t)  : S'l' [ t ] � BLOCK[ t ]  

(R8) is-const (t)  
i s-var (t)  

: EXPR[ t ] ===>rep (t)  
: EXPR [ t ]  � rep (t)  

is-func-des ( t )  : EXPR [ t ]  ===> rep o s-id (t)  ID[s-arg-list (t) ] 

TR 2 5 . 08 7  

is-bin ( t )  : EXPR r t J ===> {EXPR[ s-rdl (t) Jrepo s-op ( t ) [ EXPR s-rd2 ( t ) J ) 
is-unary (t)  : EXP�T t J  ===> rep o s -op (t)  EXPR[ s-rd (t) ] 

This completes the definition of the replacement system which in turn con­
stitutes a definition of a set of possible representations of members of the set 

1\ is-progr , i . e .  of the programs of EPL . 

\ ' 

3 . 2 . 2  
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313 The Correlation of Abstract Syntax and Backus Normal Form 

TR 25 . 087 

This chapter is intended for the reader who knows Backus Normal Form and 
therefore will get some insight into the properties of abstract syntax specifi­
cations by considering its relation to syntax specifications in Baokus Normal 
Form, ( called concrete syntax for short) . The following formulation is used for 
Backus Normal From specifications . A syntax specification is given by an alphabet 
o f  terminal symbols T , a finite set of rules of a particular form specifying sets 
of strings over � and one selected set of strings which i s  said to be the set of 
wellformed expressions of the language to be defined. 

The following symbols will stand for : 

C{, I oVl I 1)(, 2 1 e 1 o 

M1 M1 1 M21 • • • 
w ,  w1 , w2 , • • •  
wl r-. 

w2 • • • 

arbitrary elements of the alphabet T 1 
arbitrary names for sets of strings ; 
arbitrary strings over j ;  
concatenation of w1 and w2 • 

The rules of a syntax specification may assume the following particular forms a 

(1) 
( 2 )  
( 3 )  

M =  [ c<. 1  
M = M1 u r-t2 u • • • u Hn 
M =  M1 M2 • • •  Mn 

where M1 M2 • • •  Mn = { Df 
• • • & w e M } 

· n n 

There are two purposes served by a Backus Normal Form definition . The f!rst ·pur­
pose is to define a set of strings (well formed expressions) and the second t� define 
a phrase s tructure for each of these strings . The correlation will be established 
by reinterpreting the definition schemata of an abstract syntax to serve the same 
purposes . The only addition to be made to our formalism is the definition of an 
order for the set s ,  i . e .  an ordering relation s 1 �s 2 is defined for any pair of se­
lectors s 1 , s 2 • 

Hav ing defined an order for selectors one can immediately associ.ate an order 
for the composite selectors '}: = snosn_1o. 1 1 o s1 , namely the alphabetical order with 
s 1 as the most significant pos i tion and sn as the least significant position, 

3 . 3  
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Considering an object characterized by { <�1 ae1 > , <  � 2 ae2=j .  • • f  X n aen> } and 
'X. 1 <  1G2 < , , , < 'X.n the associated string of symbols is defined to be e1r"' e2A • • •  

• , ,A e 1 and is called terminal string of the given object. By this device an ab-n - . 
stract syntax defines on the one hand a set of strings (over the set of symbols 
EO) and on the other hand1 by the very structure of each object1 a structure for 
each of the terminal strings , 

For each syntax specification in Backus }ormal Form one can now specify a 
corresponding abstract syntax , 

Let a concrete syntax be given by an alphabet �1 a set of names for sets of 
strings · and a set of rules, 

A corresponding abstract syntax is then described by a 

(a) EO = ':r I 

(b) some ordered set of selectors S t  

( c )  each name M of a set in the concrete syntax is associated with a predicate 
PM in the abstract syntax such that if r11 I= M2 then PM � PM 1 

l 2 

(d) 

(e) 

rules of the form M = {_ ctv) 1\ 
are transformed to PM = tCfvJ J 

rules of the form M = M1 u M2 u • • • 
PM = PM V PM V • • • V PM ; 

1 2 n 

u M are transformed to n 

(f) rules of the form H = M1 M2 • • •  Mn are transformed to PM = ( < s 1  aPM > 1 <s2 aPM > 1 

• • •/sn tPM > )  where s1 is the first selector and s1 , s2 • • •  sn are lrnrnediate
2 

successori using the order given for s ;  

(g) if M is the head of the concrete syntax then PM is the head of the abstract 
syntax. 

The set of strings defined by the concrete syntax is identical with the set 
of terminal strings of the objects defined by a corresponding abstract syntax , 
Thus all sets of strings, which can be defined using Backus N)rrnal Form can also 
be defined by using definition schemata ( 1 ) 1 (2) and ( 3 )  of chapter 2 , 7 ,  The 

3 , 3  
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phrase structure defined by the concrete syntax will be identical to the phrase 

structure defined by the corresponding abstract syntax because of the one to 

one correspondence of the respective rules . The structure of the parsing tree ac­

cording to the concrete syntax for a given· string will,  apart from redundant nodes , 

be the s�e as the structure of the re�pective obj ect. 

I t  is therefore possible to conclude that the concrete syntax is ambiguous 
if  there are two different objects defined by the corresponding abs tract syntax 

whose terminal strings are identical . However, the reverse conclusion is not 

in general true as shown in the example below. 

Consider the syntax given by 1 

T = { X  1 I 

This concrete syntax is clearly ambiguous since there are two derivations for 

x, namely t 

X 

The corresponding abstract syntax defines , however, only one object, namely t 

3 . 4  A Concrete Syntax for EPL 

0 

X 

Before proceeding to the statement of a concrete syntax for EPL the well­

known Backus Normal Form notation will be extended by adding some convenient 

shorthands. This extended Backus notation was developed in an attempt to give a 

clear and readable description of the concrete syntax of PL/I (cf.  /5/) . 

3 . 4  
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3 , 4 , 1  The extended Backus notatio� 

In the following the meaning of the extended forms of Backus notation will be 
explained by giving the equivalent forms in Backus notation. 

In section 3 . 3  the discussion of Backus Normal Form was carried out in set­
theoretic terms , Hera , the point of departure will be Backus Normal Form in its 
usual notation , i , e ,  we will start with a grammar whose rules have the form 

{with the readings V is to be replaced by one of the alternatives s 1 , s 2 , • • •  , Sn , )  

In the presentation of these and the following rules , ' : : = '  and ' I '  are meta­
linguistic connectives and 

u denotes arbitrary syntactical units which may be combined 
to form strings , These units are either terminal symbols 
or non-terminal s ,  

V denotes non-terminals . 

denotes arbitrary strings . 

denotes strings different from the empty-string , 

The introduction of the meta-linguistic symbols ' {  ' , ' } '1 ' [ ' , ' ] ' 1 

(the last is a fat dot) is determined by the following definitions : 

may be replaced by 

and vice versa. (Note : the rule remains valid for the case n = 1 . )  

Exampl e s  variable-declaration : : = ( INTEGER 1 LOGICAL } variable 

instead of 

variable-declaration r : = INTEGER variable 1 LOGICAL variable 

I I • 
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may be replaced by 

and vice versa . (Note a the square brackets differ from the curly brackets in 
that it is allowed to replace the square brackets and their content by, the 
empty-string, )  

Lxample : function-designator 1 1 = identifier ( argument-list ] 

i.nstead of 

function-designator • • = identifier I identifier argument-list 

( iii) V 1 1 = U I V U  

or 

V a a = U i u v · 

may be replaced by 

V : a = u • • •  

and vice versa, (Note : in the case of the inversion, if U , , , occurs in a 
grammar which has no production rule corresponding to the s chema 

V 1 1 = U ••• 

then this missing rule is to be added to the grammar with a non-terminal 
V which has not yet been used in the grammar, before the replacement can . be 
performed, )  

Example •  integer : : = digit • • •  

instead of 

integer : : = digit I integer digit 
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may be replaced by 

and vice versa .  (Note : instead of • s 1 [ { T2 e T1 •••} J s 2 ' also 
• s 1  [ T2 • T1 ••• J s 2 • may be written. )  

Example s declaration-list s s = { , .declaration •••} 
instead of 

declaration-list : a = declaration [ { J declarationl •• • J  

3,4 . 2 A concrete syntax 

TR 25 , 087 

We are now in a position to give a concrete syntax of the example programming 
language using the above notation. The rules constituting the syntax specification 
are numbered (Cl) , (C2) , • • •  for reference purposes and they are here stated without 
elaborate commentary . The reader should compare this syntax with the intuitive 
description of the features of the language as stated in the introduction (page 1-3)  
and with the abstract syntax of section 3 . 1 to improve his intuitive understanding 
of the sginficance of the concrete syntax specifications . 

(Cl)  program s s = block 
(C2 )  block s s = BEGIN declaration-list, statement-list END 
(C3)  declaration-list a a =  { , . declaration •••} 
( C 4 )  declaration a : = variable-declaration I procedure-declaration 

function-declaration 
( CS )  variable-declaration : 1 = { INTEGER I LOGICAL } variable 
(C6 ) procedure-declaration s s = 

PROCEDURE identifier [ parameter-list ] J  statement 
(C7)  function-declaration a : = 

FUNCTION identifier [ parameter-l ist] J statement RETURNS expression 
(CB)  parameter-list : a =  < f , e  identifier •••J > 
(C9)  statement-list : a = ( ;• statement •••} 
(ClO) statement s s = assignment-statement I conditional-statement 

procedure-call I block 
(Cll) assignment-statement s a = 

identifier = expression 
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(Cl 2 ) expression : : = constant l variable l function-designator 
binary l unary 

(Cl3)  constant : : = logical-constant l integer-constant 
(Cl4) variable : z = identifier 
(Cl5) function-designator : z = identifier [ argument-list J 
(Cl6 ) argument-list : : = C { , eidentifier •••l ) 
(Cl7) binary : : = ( expression binary-operator expression 
(Cl8) unary z z = unary-operator expression 
(Cl9) conditional-statement : r = 

IF expression THEN statement ELSE statement 
(C20)  procedure-call z a = 

CALL identi fier [ argument-list] 

TR 25 . 08 7  

The set of basic symbols of EPL i s  defined to b e  identical with the set T 
of section 3 . 2 . 2 . The range of the function rep, used in the definition o f  j ,  
is defined as the union of the sets of logical constants , integer constants , 
identifiers , binary operators and unary operators ( c f .  (Cl3) , (Cl4 ) , (Cl7)  and 
(Cl8) ) .  These sets are not further specified here. 

3 . 5  The Translation of Concrete Programs to Abstract Programs 

The problem is to describe the translation of a concrete program into an 
abstract program, i . e . , the translation of a string producable by the concrete syn­
tax into an object whose structure is described by the abstract syntax. 

A program as produced by the concrete syntax is a string of concrete charac� 
ter s ,  i . e . , of members o f  the alphabet of terminal symbols � ( c f .  Section 3 . 2 ) of 
the language under discussion ( for EPL , cr is defined on p .  3-10) . In order to re­
main within the range of the methods and concepts for formal definition as explain­
ed in Chapter 2 , the strings of concrete characters are mapped onto lists of £h!!­
acter value s ,  i . e . , of abstract elementary objects representing uniquely the con­
crete characters .  Thus , in the remainder of this chapter , a concrete erogram is a 
list of character values . The one-to-one mapping between concrete characters and 
character values can be given by a table,  e . q . , for EPL , by the following table a 

3 . 5  
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Concrete character 

BEGIN 
END 
PROCEDURE 
FUNCTION 
INTEGER 
LOGICAL 
CALL 
IF 
THEN 
ELSE 
RETURNS 

= 

identifier 
integer-constant 
logical-constant 
binary operator 
unary operator 

3-19 TR 25 . 087  

Predicate satis fied by the corresponding 
character value 

is-BEGIN 
is-END 
is-PROC 
is-FUNCT 
is-INT 
is-LOG 
is-CALL 
is-IF 
is-THEN 
is-ELSE 
is-RETURNS 
is-LEFT-PAR 
is-RIGHT-PAR 
is-SEMIC 
is-COM.\iA 
is-EQ 

is-c-id 
is-c-int 
is-c-log 
is-c-bin-op 
is-c-unary-op 

These predicates are satis­
fied uniquely, i . e . , for each 
there exists exactly one 
elementary object to which it 
applies . 

The translation from concrete programs to abstract programs is performed in 
two steps by the two functions parse and translate: If txt is a concrete program, 
the corresponding abstract program is defined as 

translateoparse (txt) . 

The link between these two step s ,  namely the result of parse and the argu­
ment of translate , i s  a structured object t which is called the abstract represen­
tation of txt and may be throught of as the parsing tree of txt . 

3 . 5  
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3 . 5 . 1 Abstract representation of concrete programs 

In principle one could explicitly define a syntax parser yielding for each 

concrete program its parsing tree . I t  i s ,  however , in practice too much of a burden 

upon the reader to have to read a complete definition of a parser at this point 

of the formal definition of a programming language so that another way has been 

sought resulting in an implicit definition of the function parse. 

First , the predicate is-c-program characterizing abstract representations is 

introduced. Next, the function generate mapping abstract representations into con­

crete programs is defined. Finally, the function parse is  implicitly defined as the 

inverse of generate . 

The abstract reeresentation t of a concrete program is an obj ect , satisfying 
the predicate is-c-prograrn, whose structuring reflects the syntactical structuring 

of the concrete program and whose elementary components are the character values 

constituting the concrete program, The predicate !s -e-program is defined by a set 

of predicate definitions obtained by rewriting the production rules of the con­

crete syntax (cf.  Section 3 . 4 . 2  and the definitions (ARl) - (AR20) below) . 

In formulating these predicate definitions certain standard selectors , 
s1 , s 2 • • •  are used �1hich are assumed to be mutually di fferent and may be considered 

as the values s ( i )  of a selector function s .  By means of the selectors s .  objects l. 
are formed which have a structure similar to the lists formed by the selectors 

elem ( i )  (cf .  page 2-16)  except that these "s-lists" may have "gaps " .  In analogy to 

the function leng�h for lists , a function slength is defined for s-lists as follows r 

slength (x) = 

( 'v' i )  (is- Q o s .  (x) ) - 0 l. 

T - ( L i )  { 1 is- Q o s .  (x) & ( V  j )  ( j  > i ::> is-52 o s .  (x) ) )  � J 

Also an additional definition schema is  needed which will be numbered ( 6 )  in 

order to indicate that we are extending the set ( 1 )  - ( 5 )  of Chapter 2 .  The short 

version of the definition i s :  

( 6 )  is-pred = ( < s-sel 1 : is-pred1> ,  • • •  , < s-seln : is-predn> '  

<s- sel-fct (l)  : is-pred > ,  • • •  ) 0 

3 . 5 . 1  
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In this definition sel- fct i s  a selector function, e . g . , elem or s, mapping 
integer values into selectors . The full definition i s :  

is-pred (x) = 
n E t  is-pred4 (xi ) & 

i•1 ... 

x = r0 C { < s-sel1 : x1 > ,  • • •  , < s-seln : xn> ' 
<Sel-fct ( l )  : y1 > , • • •  , <sel-fct (m) : ym> } > > .  

Tne short notation i s  often used with n = o ,  i . e . , 

is-pred = ( < sel-fct ( l )  r is-pred > , • • •  ) 0 

which means 

is-pred (x)  = 
m 
Et is-pred0 (yi ) & 
i.·1 

x = f0 ( <sel-fct ( l )  r y1> , • • •  , < sel-fct (m) : ym> ) ) . 

Using this notation, one could define the notation of is-pred-list by : 

is-pred-list = is-< > v ( ,elem ( l) : is-pred> , • • •  ) � l )  

An abstract representation of EPL 

The following predicate definitions (ARl) - (AP-20) can be obtained by a 
mechanical rewriting rule from the productions ( C l )  - ( C 20) in Section 3 . 4 . 5 1  using 
the table on page 3- 1 9 .  (For a formulation of this type of rewriting rule see 
Appendix I in /6/) . 

1) For the definition of the abstract representation of EPL only the selectors si 
are required. In /6/ both s .  and elem ( i)  are used in order to permit the inser­l. 
tion of blanks in some places and not in others . 

3 . 5 . 1  
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(ARl) is-c-progr = is-c-block 

(AR2) is-c-block = ( <s1 : is-BEGIN > 1  

<s2 z i s-c-declliet > 1  

<s 3 : is-SEMIC > 1 

<s4 z is-c-stlis t > 1  

<s5 : is-END>) 

3-22 

(AR3) is-c-decllist = ( <s-del a is-SEMI C > 1  

<s 1 : is-c-decl > ,  • • •  ) 
(AR4) is-c-decl = is-c-var-decl v is-c-proc-decl v is-c-funct-decl 

(AR5 )  i s-c-var-decl = ( <s1 : is-INT v is-LOG> ,  

<s 2 : is-c-var > )  

(AR6 ) is-proc-decl = ( <s1 z is-PROC > 1  

<s2 z is-c-id> 1  

<s3 ds-c-parlist v is- ..R > ,  

<s 4 t is-SEMIC > 1 

<s5 t is-e-st> ) 

(AR7) is-funct-decl = ( <s 1 z is-FUNCT> 1  

<s2 1 is-c-id> , 

<s 3 : is-c-par-list v is- S2 > 1 

<s4 a is-SEMIC> 1 

<s5 : is-c-st > 1  

<s 6 1 is-RETURNS > 1  

<s 7 : is-c-expr> )  

(AR8) is-c-parlist = ( <s1 : is-LEFT-PAR> 1 

<s 2 a ( <s-del : is-COMMA> 1 

<s 1 : is-c-id > 1  • • •  ) > 1 

<s3 t is-RIGHT-PAR> )  

(AR9) is-c-stlist = ( <s-del : is-SEMIC > 1  

<s 1 1 1 s-c-st> 1 • • •  ) 

TR 25 . 08 7  

(ARlO) is-e-st = is-c-assign-st v is-c-cono-st v is-c-proc-call v is-c-block 

(ARll) is-c-assign-st = ( <s 1 1 s-c-id> 1 

<s 2 t is-EQ> 1 

<s 3 1 is-c-expr> )  

(AR12 )  i s-c-expr = is -c-const v is-c-var v is-c-funct-des v is-c-bin v is-c-unary 

(AR13 )  is-c-const = i s-c-log v is-c-int 

(AR14 ) is-c-var = is-c-id 

(AR1 5 )  is-c-funct-des = ( <s 1 a is-c-id> 1 

<s2 : is-c-arglist v is- 52 >)  

3 . 5 . 1  
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(AR16 ) is-c-arglist = ( <s 1 : is-LEFT-PAR> ,  
<s2 : ( <s-del : is-COM!1A> 1  

<S,  : is-c-id > 1 ,  • •  ) > 1  
J.. 

<s 3 : is-RIGHT-PAR> )  
(AR1 7 )  is-c-bin = ( <s1 , is-LEFT-PAR> 1  

<S 2 : is -c-expr > ,  
<s 3 : is-c-bin-rt > ,  
<S 4 : is-c-expr> , 
<s 5 : is-RIGHT-PAR> )  

(AR1 8 )  is-c-unary = ( <s 1 ; is-c-unary-rt > ,  
<s 2 s is-c-expr> )  

(AR1 9 )  is-c-cond-st = ( < s1 : is-IF > 1  
<s 2 ' is-c-expr> , 
< s 3 : is -THEN > , 
< s4 : is-c-st > 1  
< SS I is-ELSE> 1 
<s 6 : is-e-st > )  

(AR20) is-c-proc-call = ( <s 1 : is-CALL > ,  
<s 2 : is-c-id> 1 
<s 3 : is-c-arglist v is- .Q > )  

The functions generate and parse 

TR 25 , 08 7  

\ 
In defining the function <jenerate it is assumed that a special selector s-del 

has been used to select list delimiters ( c f .  e . g . , (AR3) and (AR9 ) ) ,  

The function generate mapping the obj ect t ,  satisfyin9 the predicate 
is-c-program, into a set of character value lists is nm-1 defined as follows a 

generate (t)  = 

is- 52 ( t )  - < >  

slength (t)  = 0 -� < t >  

T - $lengll!(t) 
generate a s1 (t) � CONC (generate a s-del ( t ) � generatc o s .  (t) ) 

L·2 � 

The abstract representation of the concrete syntax, \'lhich follows in the 
next section, together with the function generate constitutes a formal definition 
of an algorithm for generating all concrete programs of the programming langua<je. 
Hence , they are equivalent to the production rules of the concrete syntax together 
with the instructions for their use,  

3 . 5 . 1  
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l' �nally , the function parse ,  which i s  the inverse of the function generate , 

i s  def�ncd as follows : 

J?ar s e (txt) = 

( L t) ( txt = generate ( t )  & is-c-program ( t } ) 

, s s uming that the concrete syntax i s  unambi�uous , the meaning of this d� fi­

nitior> is that t!1e function parse trans forms a character value list into its pars­

ing tr�e t ,  provided the l i s t  is a syntactically correct concrete program. 

3 . 5 . 2 The translator 

This section describes the translation from the abstract representation of a 

concrete program into an abstract program. This translation i s  per formed by the 

function 

translate ( t )  

which maps an obj ect t satis fyin� the predicate is -c-program, described b y  the ab­

stract representation o f  the concrete syntax given in the last section , into an 

obj ect satisfying the predicate is-program, described by tha abstract syntax given 

in Section 3 . 1 ,  page 3 - 3 .  As in the case of the interpretation of an abstract pro­

gram in Chapter s, the definition of the translation i s  here reduced step by step 

to the translation o f  the components of the program text t .  But there are two 

essential differences between the concept of the interpreter and the translator. 

(a)  The translator is specified by a function mappinq a concrete program , in its 

abstract representation, into the corresponding abstract program , whil e  the 

interpreter is specified by instructions mappin� machine states into succes­

sor machine states ( s ee Section 5 ) . 

(b)  The translation of a part o f  a program of a pro�ra�ing language, o f  greater 

complexity than our e:,ample ( e . g . PL/I ) , generally depends not only on this 

program part itself but also on the context in \'lhich it occurs within the 

complete program text , while the interpretation of a part of a program general­

ly depends only on this program part itself ( and the current machine state , 

which may reflect contextual in formation i f  necessary) . 

3 . 5 . 2  
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Even though the second point does not strictly apply to our example it is 
mirrored in the translator to give the reader an insight into the way in which 

such contextual information might be treated in a translator of this kind. 

Hence , to accomodate the two above mentioned differences the following 
concepts are applied in defining the translator: 

(a )  Instead of the current machine state 5 ,  which is a hidden argument of
'each 

instruction of the interpreter (cf .  page 5-2 ) , the complete program text t ,  

to be translated, is a hidden argument o f  each function of the translator, 

which is not specified explicitly for each function . Throughout this section 

the letter t denotes this hidden argument, called the text, which is the 
same obj ect satisfying is-c-prograrn for all proqrarns . 

(b) Instead of objects to be translated, .,.,hich are components of t, generally the 

selectors selecting them from t are specified �s arguments of the functions . 

These selectors , called "text pointers " or j ust "pointers " ,  are composed of 

selectors of the form elem ( i )  and s ( i) , i being integer values . They are 

usually denoted by the letters p, q and r .  

The two arguments ,  the hi�den text t and the explicitly specified pointer p,  

constitute all the necessary information : A part of t ,  n��ely p (t) and the context 

of this part within t .  

In a more complicated prograrnrnin� languaqe than thnt of the example, especial­

ly one in which declarations need not be collected in a rarticular part of the 

program but may be scattered throughout the progr�� or declared impli citly ( as in 

the case of PL/I) , the main job of the translator is the recognition of all decla­

rations in a concrete program and the testing, completing nnd structuring of their 
attributes . For the other components of a program and almost entirely in the case 

of the present example,  the translat�on consists essentially of a one-to-one mapping 

from the parsing tree into the abstract program. This mapping constructs objects 

built up with mnemonically named selectors instead of selectors determined only by 

the ordering in the concrete program . 

Lastly one should perhaps mention the kind of  tests that may be built into 

this type of translator . It may be remembered that the function parse rejects all 

strings which are not programs as specified by the concrete syntax . Similarly , the 

translator checks for multiple declaration ( see (T3 ) ) and for the use of the same 

parameter in di fferent positions of the same parameter list (see (TS ) ) .  In this 

3 . 5 . 2  
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way i t  i s  possible to check if any context dependent criteria a s  specified by the 
definition of the programming language have been violated. This type of error check­
ing is called 11static 11 and may be carried out during translation independent from 

i 
an interpretation. Errors which can only be checked during interpretation are called 
11dynamj.cal errors11 and they will be discovered by the interpreter only if the pro-
gram part that contains the error is actually interpreted. , 

The function translate for EPL I F 

(Tl) traqslate (t)  = 

is-c-progr (t)  - trans-block ( I )  
T - error 

(T2) trans-block (p) = 

�0 ( <s-decl-parts trans-decllist (s 2o p ) > ,  
< s-st-list s trans-stlist ( s4 o p ) > )  

(T3)  trans-dQcllist (p) = 

, ( 3 i , j ) ( i  � j & s 2 o s1 p ( t) = s2 o sj o p (t)  � Q ) 
ft0 c t <id: trans-decl (s1 o p ) > I ic;l = s2 o s1 o p (t) � ..Q })  

T - error 

Note : The condition makes sure that there be no multiple declarations . 

( T4 )  trans-decl (p) = 
is-INTo s1 o p (t) - INT 
is-LOG o sl o p (t) - LOG 
is-PROCo s1 o p (t)  � 

�0 ( <s-param-list : trans-parlist (s 3o p ) > ,  
<S-sta trans-st ( s5 o p) > )  

is-FUNCTo s1 o p (t)  ____. 

fo ( < s-param-list l trans-parlist ( s 3 o p ) > ,  
< S-st : trans-st ( s 5 o p ) > ,  
< s-expr : trans-expr (s 7 op) > )  

3.5.2 
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(T5)  trans-parlist (p)  = 

is- .Q o p (t )  -- < > 

3-2 7 

, ( 3 i , j )  ( i  � j & si o g 2 op (t) = sj o g2 op (t)  � .Q ) -

)A0 < {  <elem ( i )  : s1 os2 op ( t ) · > I l �i �slengthos2 op ( t )  > )  
T - error 

TR 25 . 08 7  

Note : The condition prevents that the same parameter occurs more than o�ce 
in a given parameter list . 

(T6)  trans-stlist (p)  = 

f0 ( { <elem ( i )  c trans-st ( s1 op) > I l �i �slength o p (t) J ) 

(T7)  trans-st (p) = 

is-c-assign-st op (t )  ---

f0 ( <s-left-part a s1 o p (t) > 1 
<s-right-part r trans-expr ( s3 op ) > ) 

is-c-cond-st o p  ( t) -

f0 ( <s-expr: trans-expr ( s 2 op) > ,  
<s-then-st s trans-st ( s 4 op)  > 1  
<s-else-st : trans-st ( s 6 op) > )  

is-proc-call op (t) � 

f0 ( <s-id : s2 op (t) > ,  
<s-arg-list: trans-arglist (s 3 op)  > )  

is-c-block o p  ( t )  _ __,,_ trans-block (p)  

( T8 )  trans-arglist (p) = 

is- Q. o p  (t )  -- ( )  
T ---

jJo ( { <elem ( :L )  c s1 o s 2 op (t)  > I 1 �i �slcngtho s 2 o p  ( t) } )  

(T9)  trans-expr (p)  = 

is-c-constop (t )  -- p (t)  
is-c-varo p  (t )  - p (t)  
is-c-funct-de s o p (t)  � 

f0 ( <s-id : s1 o p (t) > 1  
<s-arg-list r trans-arglist ( s2 o p ) > )  

3 . 5 . 2 
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is-c-bin o p (t) � 

f0 C <s-rdl : trans-expr ( s 2 o p ) > ,  
< s-rd2 a trans-expr ( s 4 o p ) > 1 
<s-op : s 3 o p (t) > )  

is-c-unary op (t)  -­

f0 ( <s-rda trans-expr ( s2 op) > ,  
<S-op a s 1 o p ( t) > )  

3-28 TR 25 , 08 7  
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4 .  ABSTRACT MACHINES 

4 . 1 Introduction 

4 -1 TR 2 5 . 087 

The method adopted for the formal definition of the semantics of a higher 
level programming language like Algol 60 or PL/I is based on the definition of an 
abstract machine which is characterized by the set of states it can assume al}d its 
state transition function . A specific program in the given language together with 
its input data defines an initial state of the associated machine , and the subse­
quent behaviour of the machine is said to define the interpretation of that program 
for the given input data . 

This chapter attempts to describe those aspects of the abstraQt machine which 
were felt to be significant independently of the application to a specific program­
ming language . In particular it will be described how the control of the machine 
works . The control appears to be well-suited for the interpretation of programming 
languages which possess a · nested structure of statements and , furthermore , a cer­
tain indeterminance in the sequencing of statements . 

4 . 2  The Conventional Concept of Abstract Sequential Machines 1 ) 
,r: 

An abstract sequential machine may be specified by defining the set of states 
� which the machine can assume and a state transition function 1\ which for any 
given state s specifies a successor state , i . e .  which maps states into states . 
The criterion for deciding when the machine is said to stop may be given by de­
fining a subset L: E  o f  the set o f  states , the end states o f  the machine . 

For any given initial state $ 0 one may visualize the behaviour of the 
machine as running through a succession of states s o ' s l , • • .  , si ' si+1 ' · · ·  w;her� 
�i+l = A ( S i ) .  The success ion of states ,  called the computation for the given 

initial state S 0 ,  stops if an end state S n � L e  i s  reached in which case the 
computation is called terminating. A computation where no end state is ever reached 
is called non-terminating and is the precise equivalent of a process which loop 3 
indefinitely . 

l 

Compare e . g .  Elgot /1 1/. 

4 . 2  
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4 . 3  The Extended Concept of Abstract Machines as Used for the Formal Definition 
of Programming Languages 

There are a number of cases in the interpretation of a programming language 
like PL/I or Algol 60 in which the sequence in which certain operations are per­
formed is relevant but left open by definition . Examples for such situations are 
the evaluation of operands in an expression , the evaluation of expressions 09cur­
ring in a data attribute , the evaluation of arguments in a procedure or function 
call etc . The concept of abstract machines has been extended to meet this situa­
tion . 

The abstract machine underlying the definition of a programming language is 
defined by a quadruple <EO , S , is-state , A  > .  EO is an infinite set of elementary ob­
jects . S is  an infinite set of simple selectors . is-state is a predicate which de­
fines the class of objects (out of the general class of objects built from ele­
mentary objects of EO with the help of selectors of S ,  c f .  2 . 1 ) representing the 
states the machine can assume . A is a state transition function . Due to the iden­
tification of the set of states with a certain class of objects , this set can 
always be defined by the devices described in section 2 . 7 ,  "Definition of Classes 
of Objects" . Also , the mappings from given states into successor states can be 
specified with the help of the;U -operator . 

i . e .  
In the sequel s , S 0 , S 1 , • .  ;_ will stand for arbitrary states of the machine, 

for arbitrary elements of is-state. 

The state transition function A 1 )  specifies for a given state $ the set 
of possible successor states , i . e .  A is a function which maps states into sets 
of states . This possibility to define more than one successor state for any given 
state reflects the above mentioned indeterminance of the sequence in which cer­
tain operations are performed. 

A computation for a given initial state � 0 is a sequence of states 
�o ' $ 1 , . • •  , S i ' si+1 ' · · ·  such that $ i+1 E A (  S i ) .  This means that a computation 

can be produced step by step from left to right by applying the function A to the 
last state in the sequence .  The successor state can then be determined by a choice 
of one element of the result of A . Any initial state defines a set of computations 
according to the possible choices of successor states for any step . 

1 )  Called language function in /8/. 

4 . 3  
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A state � i s  called an end state i f  the state transition function A yields 

the empty set , i . e. A ( s l  ; { }  . There is obviously no possible continuation of a 

computation i f  an end state is reached. Such a computation is a finite sequence of 

states and is called terminating . Computations which are infinite sequences of 

states are called non-terminating. 

The state transition function A may be a partial function for the set of 

possible states which is its domain. Hence there is a third type of computations ,  

namely those which cannot be continued because the function A applied to the last 

state does not have a value . 

A program together with its inpu·t data defines an initial state . There are 

initial states whose corresponding set of computations contains elements of all 

three types described above . 

Any state S has an immediate component s-e ( � ) ,  called the control part ,  

which satisfies the predicate is-c , i . e . : 

is-c (s-e ( S ) )  

An explanation of the control of the machine , i . e .  of the structure and func­

tion of the control par t ,  together with the associated notational conventions ,  is  

given in section 4 . 4 .  

The number of state components and their structure and function depends on 

the specific language to be defined by the machine . In section 4 . 5  some general 

constructs of the state are described . 

4. 4 The Control of the Abstract Machine
1 ) 

4 . 4 . 1 First survey 

The control part of a state S of the machine can be visualized as a finite 

tree where each node of the tree is associated with an instruction . Such a tree is 

called control tree . The sequence in which the instructions are to be executed is 

partially given by the convention that only the instructions associated with the 

terminal nodes of the control tree are candidates for being executed next . The 

successor state of a given state S is determined by choosing one of the terminal 

nodes of s-e ( s l  and executing the associated instruction. 

1 )  The concept o f  control described in this section is well suited for one-task 
machines . For multi-task machines it must be sl ightly modified . 

4 .  4 .  1 
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Consider e . g .  that the control tree shown in Fig . 4-1  forms the control part 

of a certain state 5 . 

,-. - - - - -\ in str2 \ \ \ \ 
' 

' 

instr 1 

\ instr '-1 '- - - - -inStr_5_ "1 \. 
...... _ _ _ _ _ _ _ _ _ _ _  J 

Fig . 4-1  

Then the instructions instr2 , instr4 , and instr5 are the candidates for being 

executed next . 

Let tn (ct)  be the set of selectors pointing to terminal nodes of e t .  The 

state transition function A is then defined by: 

A ( � )  = { IV ( S , 't ) I 't" e tn ( s-e ( S ) ) } 
where V ( � ,  T )  specifies the successor state according to executing the instruc­

tion associated with the terminal node 'r • 

An instruction is composed of an instruction name and optionally a list of 

arguments . The notation used for representing instructions is : 

in (arg1 , . . .  , arg ) -- n 

Instruction names are underlined words which identify respective instruction de­

finitions , the arguments are objects . 

There is no logical res triction as to the type of changes to the state , 

which the execution of an instruction may cause . In particular , the execution of 

an instruction may modify the control part . However ,  it seems to be convenient to 

get along with only two types of effects which the execution of an instruction 

might have . The f irst type of effec t ,  called value:returning, is to delete the 

instruction being executed from the control tree , to substitute a value specified 

by the definition of the instruction into argument places of instructions in pre­

decessor nodes of the control tree , and to make some changes in the state , though , 

in general , no further changes in the control part . The second type of effec t ,  

called self-replacing, is suclt that the instruction being executed replaces itself 

4 . 4 . 1  
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in the control tree by another control tree, a process which is very similar to a 
macro expansion and serves the same purpose . Whether the effect of an instruction 
is value-returning or self-replacing may, in general , depend on the state � in 
which the instruction i s  executed . 

The remaining sections are organized as follows : First,  the structure of con­
trol trees will be further specified , and a notation for writing control tre�s 
will be introduced ( section 4 . 4 . 2 ) ; this will complete the intuitive description 
of control tree s .  Then , a more rigid description will be given, modelling control 
trees as a certain class of objects ( section 4 . 4 . 3 ) . Also , control tree representa­
tions ! i . e .  expressions whose values are control trees (and of which the notation 
introduced in 4 . 4 . 2  is a special case ) , will be introduced , and a rule will be 
given how they can be interpreted as expressions of conventional shape ( section 
4 . 4 . 4 ) . With these prerequisites , a notation for instruction schemata , i . e .  in­
struction definitions , can be described , together with a rule how an instruction 
schema can be interpreted as the definition of a state-transforming function ( sec­
tion 4 .  4 .  5 )  • The function '+' ( s , 'r )  can then be defined in terms of these state­
transforming functions , and together with the defintion of the function tn (ct) , 
this will complete the definition of the st�te transition function A ( section 
4 . 4 . 6 ;  cf .  beginning of this section ) . Finally, some examples will be given (sec­
tion 4 . 4 . 7 ) . 

4 . 4 . 2  Control trees 

Before going into detailed description of the function and definition of the. 
two types of effects an instruction may cause , the structure of control trees must 
be further specified . 

The argument places of a control tree into which a given instruction has to 
substitute its value ( in the case its effect is value-returning) are indicated in 
the control tree itself . One may illustrate the situation in the control tree by 
drawing dotted lines from the node with which the respective instruction is as­
sociated to the argument places of predecessor instructions where its value is to 
be substituted . Those arguments are � before substitution. More precisely , it is 
assumed that a node allows retrieval of not only an instruction but also the nec­
essary information as to where this instruction has to substitute its value . Values 
may be returned by an instruction to more than one place and over more than one 
level in the control tree . 

4 . 4 . 2  
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� more q�taileq 4escription of Fig . 4-1 

.... 

i.!!..i ( arg� , Q , 
I 

fi� · 4-2 ' -

��¥ serve as an example: 
Q )  

t. _ _  _ - - .... \ I 
. I I / 

j 
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-
The purppse qf ��e value-return mecnani�m is tp p.roviqe . a tool for the trea�-

me�t of intermeq+qte fe�u+ts .' Due to ��e 4�specit:j.ed order �n tpe execution of 
t�fwinal in��ruct�P.n� , a l�near stack �0� no�q�ng �nter�ediate results (cf.  e . � .  
�qfi�;q /12/) wo�+4 not pe �u�ficient . 

Notation for control trees & I t f 
r .. .L 

The f�rs� $�ep towarqs a notation +or control trees is �o replace the dotte4 
l�nes in the cont+Pt treea by a devic� wn�cn use$ qummy p�es.  +nstructions which 
return a value to 4rg�ent p1aces of �re4ecessor in�tructions are prefixed with a 
qummy name £o++owe4 P¥ a colon. �he same du�y name is inserted in those argument 
places into which Fne value of the instruction is to be returned. 

Using as 4umm¥ names a ,  p ,  an4 c ,  fig. 4-2 can be rewritten as shown in 
Fig: . 4-3 . 

'· 

a: � c � ,  al"gl , c)  L 

b: i n  'I (ctrg� ) c: � ( argf)  
Fig . 4-3 

• t 

As w:j.11 turn out later on (cf . 4 . 4 . 3  and 4 . 4 . 5 ) , qurnmy names have a <�ompletel.y 
local meaning within tne c:ontrol tree in which they are specified. 

The notation tor control trees may now be described as follows : If the control 
tre� consists of the to� node only , then the i�struction attacheq to the top node 

4 . 4 . 2  
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represents the control tree . :S:! the control tree consists o·f more than one nooe , 

then it is representeo by the instruction attached to the top . noqe , �ol loweq by 
semi-colon , followed by the set of control trees which are the immeoiate components . 

The notation for the control tree of rig. 4 - 3  reaqs � 

Curly brackets may be omitted if they contain only one instruction . Further­

more ,  instead of curly brackets , inoentation may pe used in such a way that ins�ruc­

tions which are on the same level in the tree are written starting on identica+ 

left margins . 

The above example rewritten using indentation reaos � 

in1 (arg� , a , c) ; 

1£2 ' 

a : in3 ( b , arg� , c ) ; 

p : in4 (arg1 ) ,  

c � ins (argi ) 

qirection of execution 

It is of importance to note that the qirectton of execution is from botto� 

to top as indicateo in Fig . 4-4 . 

Extension to the value-returp mechanism 

As oescr ibed so far instructions can only return value� to argument places 
of predecessor instructions . However ,  it occurs quite frequentlY that intermediate 

results are to be built from the values Of several instructions . for this purpose 

a device is introduced which allows the return of va1ues from instructions · to 

component �ositions of arguments of �reqecessor instructions . In other woros , 

values of instructions may replace components Of a�g4ments in predecessor in­

structions and not solely entire arguments . 

If say a is a dummy name at several argument positions ip a control tree , 

then the notation 

)( ( a) 

points to the positions Of the � components of the respective argument positi9ns . 
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Consider the following example : 

+nstruction in2 returns its value to the � 1-part and instruction in3 returns its 
value to the x 2-�art of arg�ent position a of instruction in1 (a) . 

4 . 4 .� Definini control trees a s  objects 
c I 

first , some s�ecial sets of object� and selectors used in the fol lowing are 
defineq. 

$ets of elementary objects : 
A 

t,s-intg 
11 

is-in 
A 

,is-name 
11 

is-sel 

{ 1 , 2 ,  . . .  } 
infinite set of instruction names 
infinite set of metavariables 
set of a11 selectors ( i . e .  is�sel = s * )  

�pe predicate is-ob holds for arbitrary objects . 

Tpe predt,cate is-sel-�air holds for arbitrary pairs of selectors , i . e . : 

is-sel-pair = ( < e1em ( 1 ) : is-sel > , <elem ( 2 ) : is-se l > )  

s-in , s-al , s-ri,  s-se+ , s-durn are constant s imple selectors . 

R is an infinite set of s im�le selectors , not containing s-in , s-al and 
s-ri . 

n *  i s  the set of a l l  1 t d f 1 f i l A � � se �c ors compose rom se ectors o R ,  ne u�ing + •  

l<ey to abbreviations : 

s-in select instruction name 
s-al. select argument list 
s-ri select return information 
s-se1 select selector 
s-Clurn select dummy name 

4 . 4 . 3 
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The previous�y described control trees are now given a precise shape by de­
fining an abstract syntax tor them. The va�ue-return mechanism (cf .  the dotted 
lines in Fig . 4-2 , p .  4-6 ) is modelled by kepping for each node a set of pairs 
of selectors . The first selector of a pair says where the value to be returned 
comes from, the second, where it has to be returned to (cf . 4 . 4 . 6  for the use ot 
the first selector) . I . e . , a control tree is an object satisfying the following 
predicate is-et: 

is-et = ( < s-in : is-in> , 
< s-al : ( \<elem ( i) : is-ob> 1 1  is-intg (i ) j  ) > ,  
<s-r i : is-sel-pair-set> , 
{ <r : is-ct> 1 1  r '  R} )  

The predicate is-c of  section 4 . 3  which holds for the control part s-e ( � )  
of any state s is then defined by: 

is-c = is-et v is- Q 

Intermediate control trees 

In section 4 . 4 . 2 ,  a notation has been introduced which uses dummy names to 
express the value-return mechanism . It is convenient to have a class of objects 
which correspond more closely to this notation (cf . 4 . 4 . 4 ) . These objects are 
called intermediate control trees and satisfy the predicate is-int-ct : 

is-int-ct = ( < s-in: is-in> , 
<s-al : ( t <elem ( i) : is-ob> I I is-intg ( i ) } )  > ,  
< s-ri : ( < s-sel : is-sel> , < s-dum: is-name v is- Q > )  > 1 

( <r :  is-int-ct> I I r E R} ) 

The control tree corresponding to an intermediate control tree 

For the transformation from intermediate control trees to control trees the 
function tr ( ct) will be defined in terms of some other functions . 

The function nd (ct) is defined for is-int-ct (ct) (as well as for is-c (ct) , 
see section 4 . 4 . 6 ) and yields the set of selectors pointing to nodes of et :  

nd (ct) = { 1<. I )(  E i\ *  & ')(, (et) :j: Q }  

The function arg (ct) is defined for is-int-ct (ct) and yields the set of 
selectors pointing to arguments of instructions of et not equal � : 

arg (ct) = . { elem ( i )  o s-al a '}(. I 1C  e nd (ct) & e!em ( i )  o s-a! o x (ct) =!= Q }  
4 . 4 . 3  
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�ne functton dum (ct) �s qefineq !Of is -int-ct (ct} anq y+e+ds �he se� at 
d�y name� ocpurrin� in et; 

dum (ct) = [ s-durno s-rio  'X.( et� I '¥. e nq (et) & s-qumos-ft o l(ct) =+= Q }  

'+'ne !unction ri (ct 1 �) is qe!ineq for is-int-ct {ct) 1 � e nd ( ct) and yte+qs tpe set o! pairs of se+ectors , wnic4 will be the r��4fn �nFofffiation ot tne c9ptro+ 
tf�e �t node x : 

f� (ct , �) = { < l, l+o ¥�>  I l+=s-se+o s-rio �(ct) � 
12 € arg (et) & 
�� (ct) =s-dumos-rio �(ct) l 

'+'n� tunct+on tr (ct) can now be qet�ned for is-int-ct (ct) and yie�ds tpe 
COfr���onqfP9 contra+ tree ; 

t+ (et) = jl(ct ; { <J ;  Q > I � � arg (et) & � (et) !0- dUll) (et) ) u 
�q�-r{o "t: ri �ct , 'l) > 1(. f: nd (cfq } 

� contra+ }ree feFf�sept�tfon is a meta-expression�) wnichl for g+ven va+u�� 
a� lt� ff@e v�riab+e� , qenote� � contra+ tree . It will be abbreviateq bY et-re� , 
or , �pow+q� its free v�r��p}es 1 bY et-rep (x+ 1 • • •  1 Xn 1 S ) . Control tree reprenliefl}a­
ftOnJil �f!:� �seq Witp).n inSff�Ction SChemqta (cf • 4 ,  4 • �)  1 anq in fact may OCC�f 
w+tntn Fhe me�alqn���ge +� qn¥ context where unconditional expressions are a1lp�­
eq , � �pec�ql pase ot conr+Ot tfee repre�entations nas already been introd�ced tP 
'* · i · � ·  

�ne �eaning of � cop�rol tree representation will be qetermined in term� of 
an qseaPlqte4 meta-expres $+on of known spape for whic� it stanqs . The definttiop 
is ��ven +n torm of � t�Pt� +isting the syntactical cat-egories ot the const�t�epts 
of contra+ tree represent��ion s ,  terminating with the category of coptrol tree re­
present.at+on itse++ · fOf ��CA syntactical category appfev+atioq , tor� and �eanfng 
of +ts memPer� +� �pec+;{eq. 

l ) Called contf�� fepfeseprations in /8/ . 

2)  Cf . foot-note +)  r ���e �-7 .  

4 . 4 . 4  
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In the colwnn "meaning" , the transformation of subparts is implied without 
notice , i . e .  the abbreviations instr , pref-instr , etc . occurring there stand for 
the already transformed subparts . Into what a given text is transformed , may de­
pend not only on the text itself , but also on the syntactical category as member 
of which the text is consiqereq. So , q prefixed instruction transforms differen�­
lY from an instruction, even in the ppecial Cqse where it is an instruction . 

�he function sel (ob, succ-set) occurring in the table defines a one to one 
mapping frO� opjects Of the s�t succ-set to se+ectors of R .  for the function 
tr ( ct) , see 4 . 4 . 3 .  

In the case that a successor set of form ( 1 )  occurs in a control tree re­
presentat�on , inqentation may be used }n�teaq of curly brackets . 

4 . 4 . 5  lP1�fUC}!on schemata 

As mentioned in section 4 . 4 . � ,  each instruction name identifies qn instruc­
tion scpema Wh}cp defines the effect Of executing an instruction with this name , 
depenqip� on the arguments of the +nstructiop and the state � . 

�n instruction schema assoc}�ted with an instruction name in has in general 
the to++owing tOfW: 

� ( � � I • • • I �n} = 

p1 (xp • • • t Xn ' s ) - group:). (X:). 1  • • •  , xn ' S )  
. .  ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

Pm (x.J. , . • •  , xn ' � >  ___,. groupm (x+ , • • •  , xn ' s >  

groupi (x1 , . • •  , Xn ' S ) , for l � i�m,are called groups and Can have one Of the fOllowing 
two fOrfns ; 

( 1 )  value-returning alternative of a group : .. . 

!>AS� q :0 (x1 , • • •  , xn , � )  

s-si1 : 61 (x� , . • .  , xn , � )  
. . . . . . . . . . . . . . . . . . . . . .  

s-sc : E  (x1 , • • •  , x  , la )  __,.._.,_r r . n ;:) 
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ci ( xl , . . •  , xn I $ ),. tor O � ifo r; are arbitrary meta-expressions . 

s-sc1 , for l � i�r, are simple selectors which point to immediate components of 
the state (not necessarily all immediate components must be referred to) • 

If the first line of t�e group is missing, this is equivalent to : 

PASS : Q 
( 2 )  se}f-rerlacin� alternative of a group: 

ct-rep (xl , • . •  , xn , s >  

'I j 

ct-rep ( x1 , • • •  , �n ' ! >  is a control tree represen�ation . 

The special cas e :  

i£ (xl , • • .  , xn�  = 
T - group ( x� , . • •  , xn , S )  

may a}so be writtep: 

' � ( x1 , • • •  , x  ) = n 
group (xl , • • •  , xn , � ) 

f .u 

.l ) 
., 

' 

Each instruction schema will now be associated with q function definition . 
'!'he qefinition of the sta�e transition function A tpen caq be given easily in 
terms of these functions . 

' 
The function definition associated with an in�trpction schemq of the pre-

viously given general form pas the to+lowi�g form : 

<P 1£ ( X  l 1 • • • f Xn 1 S 1 t 1 f i) = 

p1 <x1 , . . .  , xn ' s > ----. group; (x1 , . . .  , xn , 5 ; r , ri )  

group;. (x1 , • • •  , xn ' � , r, ri) , fpr l � i�m, .j. s  obtained from QfOUpi (x1 , • • •  , x� ,  S )  i n  the 
fo�lowing way: 

(value-returning alter�ative) , then 

• •  

jJ- ( {J ( S ; t < 1(2 o ( 't: - 'Xl ) o s -c : Eo ( x 1 ' . • •  ' xn ' S ) > I < '\ ' �2 > € r i } ) ; 

< s-sc 1 : t1 ( x1 , . • •  ,xn ' � ) > , • • •  , < s-scr : E r (x 1 , • . .  ,xn ' S ) > ) 

4 . 4 . 5  
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•'- • "_,,. ' ••-o ( I )  
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4 . 4 . 7  Exam�les 

ExaJUl?le 1 : 

An instruction s chema int-expr shall be defined such that any instruction 
int-expr (e)  evaluates the given expression e and ret�rns its  value . Expressions are 
built from constants denoting va+ues , variable s ,  anq some unary and bina+y opera� 
tions defined for the set of va+ues . 

The abstract syntax for expressions may be specifieq as follows : 

Sets of elementary objects : 

1\ 
is-const 

1\ is-var 
• 1\ t +s-unary-r 

1\ 
is-pin-rt 

set of constants 
set of variables 
set of unary operators 
set of binary operators 

The set of expressions �s defined by : 

�s-expr = is-const v is-vqr v is-bin v is-�na+Y 

is-bin = ( < s-rd1 : is-expr> , 
< s-rd2 : .:j.s-exp:p , 
< s-op : is-p�n-+t> )  

i s-unary = ( < s-rd: is-exp+> , 
< s-op : i�-unafy-rt> )  

Furthermore ,  the fo+low�ng functions and +nstructions are ass��d to be 
defined : 

value ( c )  

content ( v ,  � )  

Key to abbreviations:  

s-rdl select 
s-rd2 select 
s-rd select 
s-op select 

operand 
operand 
operand 
operator 

function which yie+qs the va+ue denoted by a given 
constant c 

function which yielqs the value of a g �ven variable 
v for tne state � of the machine 

one 
two •' 

4 . 4 . 7  
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int-p!n-oe (op , a , b )  instruction which returns the vaLue correspond­
ing to the application of the binary operator 
op to a and p ,  where a arid p are va+ues 

int-un-op (op , a) instruction which �eturns the value correspond­
ing to the application of the unary operator op 

to a ,  wpere a i s  a value 

The instruction schema int-expr may now pe defined as !allows : 

int-expr te)  = 

lS-p�p (e)  ---+ int-bin-op ( s-op (e)  , a , b) ; 
a : int-expr ( s-rd+ (e ) ) ,  
p : int-expr ( s-�q2 (e) ) 

:\.s-unary (e) - int-un-oE ( s-op (e l  , a) ; 
a ;��t-exer ( s-.rq (e ) ) 

is-var (e)  - PAS S : content (e,  $ )  

is-const (e) ---+ rAS S : v�+ue (e)  

+ 

Whether an instruction tnt-exEr (e) is va!ue-returning or self-replacing de­
pends in this example only upon th� argument e and not upon the state 5 o! the 
macpine .· The f!rst two a+te.rnatives of an instruction int-exEr (e)  a.re self-re­
placing , i . e .  a control tree is specified . +he last two alternatives are value­
return�ng with no furtper changes of the state specified . The value returned for 
the alternat!ve is-var (e)  depends on the specif�c variable anq the state � of 
tne machine. 

The following example is only to illustrate the expansion and reduction of 
the control thought o f  as actually working. It i s ,  however ,  by no means recomrnend­
eq that more complicated examples in a more complicated machine env�ronment s�ould 

be attempted in a similar manner. In particular, the test whether � given instruc­

tion definition works for all cases as intenqed must be based on a more general 

argument than j ust a few test examples . For the example eo be wor�eq out in the 

�e�uel tt is assumed that the values are natural numbers , that the operators for 
adq�tion (+)  an4 , multiplication ( • )  are available and that x1 , x2 are variable 

names. The expressions to be interpreted w!ll be represented in inf�x notation and 

enc!oseq in quotes to distinguish them from the metalanguage . It is assumed that 

val�e � ' l ' )  = l ,  value ( ' � ' )  = 2 and so on . Furthermore , it is ass�ed that content 

Cx1 .�) = 2 and content (x2 1s) = 5 £or all states � to be cons!dereq !n the example. 

Suppose now that the instruction tnt�expr ( ' (xl + (x2• 3 ) ) ' ) !s in some terrn!nal 

position' the problem is to show how this posi�ion expands anq confr�cts upon 

execut�on of the above instrijctions . 
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( 1 ) int-expr ( 1  (xl + (x2 * 3 ) ) 1 )  

( 2 )  I f  e = 1 ( x 1  + (X2 * 3 ) ) 1 then 

4-17 

is-bi n ( e )  , rd1 (e}  = 1 Xl 1 , rd2 (e)  = 1 (x2 * 3 )  1 and op ( e )  = 1 + 1 • 

Therefore , the instruction expands to : 

int-bin-op { 1 + 1 , a , b) ; 
a : int-expr ( 1 X1 1 ) ,  
b : int-expr ( 1  (x2 * 3 )  1 ) 

TR 2 5 . 087 

( 3 )  There i s  now a choice either to execute int-expr ( 1 X1 1 )  or to expand 
int-expr ( 1  (x2 * 3 )  1 ) .  Doing the e¥pansion with some suitable changes of the 
dummy names results in:  

int-bin-op ( 1 + 1 , a , b) ; 
a : int-expr ( 1 Xl 1 ) , 
b : int-bin-op ( 1 * 1  , a l , bl) ; 

al : int-expr ( 1 x2 1 ) ,  
bl : int-expr ( 1 3 1 ) 

x. 

( 4 )  The order o f  evaluation of · all the terminal instructions i s  now trrevelant 
for this special example .  The execution of all the terminal instructions is 
therefore done s imultaneously : 

int-bin-op ( 1 + 1 , 2 , b) ; 
b : int-bin-op ( 1 * 1 , 5 , 3 ) 

( 5 )  Execution o f  the only terminal instruction results in : 

int-bin-op ( 1 + 1 , 2 , 1 5 )  

The above instruction will return the value 1 7 to the argument places speci­
fied for its position in accordance ' with the assumptions . 

4 . 4 . 7  
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Examele 2 :  

for use in the next exam�le an instruction schema pass is defined such that 
any instruction pas s (x) returns x as its value : 

eas s (x) = 

PASS : x  

There i s  only one grou� in the above definition , and this grou� is a value­
returning alternative . No other state transitions than tnose im�lied by the value­
return mechanism are �erformed u�on execution of pas s (x) . 

Example 3 :  

Consider a non-em�ty list of ex�ressions , e-list,  and the �roblem of com�ut­
ing a corres�onding list,  v-list,  where each expression is re�laced by its value . 
The order of evaluation of the indivtdual ex�ressions is to be left unspecified . 
The �roblem will be solved by defining an instruction schema int-expr-list,  which 
will , for any s�ecific choice of the ex�res sion list e-lis t ,  define the control 
tree which solves the problem for the s�ecific e-list . The control tree will ac­
tua�ly u�on execution return the result , i . e .  the list of values corresponding to 
e-1ist.  

The instruction schema int-expr-list may be defined as follows : 

int-expr-list (e-list) = 

pass (v-list) ; , ( elem ( i )  (v-list) : int-expr ( elem ( i ,  e-list) ) I 1 ::;i!>length (e-list) } 

There is again only one group, but this time it i s  a self-replacing alter­
native , i . e .  a control tree · representation. e-list is the only �arameter of the 
instruction schema , v-list is a dummy name used to designate the argument place 
where the value list is being constructed , and i is the bound variable of the 
im�licit definition of the successor set of pas s (v-list) . 

Executing the instruction int-expr-list ( <e 1 , e2 > )  with the s�ecific list of 
ex�ressions <e1 , e2 > as argument , this instruction w�l+ be re�laced in the control 
part by the following control tree : 

4 · 4 . 7  
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�as s (v-list) ; 
elem ( l )  (v-list) : int-expr ( e1 ) ,  
e+em ( 2) (v-list) : tnt-expr ( e2 ) 

Upon further computation there i s  
first . The result o f  evaluating e .  will . � 
the argument of Eass (v-list) , which i s ,  

4-19  TR 25 . 087 

1 

the choice of e1 or e2 to be evaluated 
be substituted in the elem ( i) -component of 
of course , initially Q �  The i�struqtion 

pass (v-1ist) will eventually pass the list of va�4es so constructecl into the argu-
ment �lace spectfied tor its pos ition . 

Example 4 :  

An instruction schema merge is defined such that any tnstruction merge (x , y , k) , 
where the arguments x and y are objects and the argument k i s  a set of se�ectors , 
returns an object built !rom x by substtt4ting the '){ componepts ot y to� 1< e I< :  

merge (x , y , k) = 

PAS S :f(x; {<X: 'X(y� > I ')( e. k } )  
i 

Example 5 :  

t ..... b J 

f • i! .l 

f 

. ' - 1 

n oJ 

The problem is to replace for a given PL/+ clata attribute , roughly speaking., 
the expres s ions which occur in the data attribute (as lower l:>ou.nds and upper bounds 

. . � 
ot arrays and string lengths )  by their values . A data attribute of PL/I as speci-· . . 
fied by the abstract syntax of the formal definition is a quite complicated compos-
ite ob j ect . However , the only properties which are important for the present exam­
ple are : 

( 1 )  that there are components which are expressions and are selected by composite 
selectors of the forms s-upo x ,  s-lbo ')(. or s-lengtho ¥ , 

( 2 )  that these components are independent 'of one another , i . e .  that no component 
i s  part of anotper one . 

Key to abbreviations : 

s-+b 
s-ub 
s-1ength 

�e!ect 1ower pound 
select upper bound 
select !ength 

4 . 4 . 7 
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The problem may be solved by defining an instruction schema eval-da as 
follows : 

eval-da (da) = 

merge (da , x , K (da) ) ;  
{-x.Cx) : int-expr ('X.(da) ) I 1<. � K (da) } 

where : K (da) = {-x 1 ·  ( 3 � )  ( 'K =  s-ub o 1C1 v 

'K. = s-lbo')(l V 

'K =  s-lengtho 1C1 ) & 'X(da) 1 Q S 

The function K (da) yields the set of all selectors pointing to lower bounds , 
upper pounds and lengths of a data attribute da . 

The actua+ process performed upon computation i s  to evaluate the expressions 
for lower bounds , upper pounds , and lengths in some order , to construct an auxil­
iary object x containing the values of the expres sions in the corresponding posi­
tion s , to merge the given data attribute with the auxiliary obj ec t ,  i . e .  to re­
place the expressions py their values , and finally to return the so modified data 
attribute . 

Consider now the special case of a data attribute da1 specifying a linear 
array of floating point number s .  There are two expressions contained in the data 
attribute which are significant for our example , namely a lower bound and an upper 
bound . It i s  assumed that the lower bound is selected by s-lb o 1C1 and the upper 
bound by s-ub o1C2 • �herefore the set K (da1 ) i s :  

r-

�he associated control tree according to the above schema i s :  

merge ( da1 , x , {s-lb o �1 , s-ub o 'l<2 } > : 
s-lbo�1 (x) : int-expr (s-lb o 1C1 (da1 ) ) ,  
s-ub o �2 (x) : int-expr (s-ub o 'X2 ( da1 ) )  

4 . 4 . 7  
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4 . 5  Note on Constructs of the State and some Instructions o f  the Abstract Machine 

4 . 5 . 1  Unigue name generation 

It is necessary upon several occasions during the interpretation of a program 
to name something. For this purpose a mechanism is built into the machine which 
on request generates a unique name , i . e .  a name which is different from all names 
generated before . 

The name generating mechanism may be defined as follows . I t  is assumed that 
there is an infinite list o f  mutually different names <n1 , n2 , n3 , • • •  > .  Furthermore , 
for any state � there is an immediate component s-n ( � ) which is a natural number 
and points to the unique name of the above list to be used next . The instruction 
un-name is then used to get hold of the unique name to be used next and to increase 
the counter ;  

un-name = 

PASS : ns-n (�) 
� a s-n (�) + 1 

There are two reasons for the use of unique names in the state of the 
machine : 

( 1 )  Sharing patterns : 
I t  is frequently the case that certain objects ( representing some informa­
tion ) are to be available in two or more parts of the state. I f  this infor­
mation is never updated during the interpretation it is sufficient to have 
copies available in the respective parts of the state . I f ,  however, the in­
formation may b� updated during the process of interpretation, then the qb­
ject representing the information is named uniquely and is made available under 
this name . The following consideration may serve as a simple 'example of a 
sharing pattern . Assume that in a certain program t\�O variables x and y are 
supposed to occupy the same storage, i . e .  updating of the value of x means 
at the same time updating of the valuo of y and vice versa; 

x - value 
y - value 

Key to abbreviations : 
s-n 
un-name 

select name counter 
generate unique name 

4 . 5 . 1  
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The mere association of x and y with their va�ues as shown above would not 

reflect the situation properly. Tne introduct�on of one step of indirectness ,  

however, i s  sufficient in our example to expresss the fact that x and y are 

supposed to share storage : 

x - n 

y - n n - value 

( 2 )  Self- referencing information structures :  

Cons�der an object which in one of its components refers to itself via its 
name. The process which replaces the name by a copy of the object itself is 

not terminating, i . e .  the resulting structure becomes infinite . �he use of a 

name �n those cases is therefore necessary. 

As a s imple example consider the recursive definition of the function Fact; 

Fact (n) = (n = 0 - 1 , T - n*Fact (n-1) ) 

The attempt to replace Fact on the right hand side by its definition does not 

remove the reference to Fact; 

Fact (n) = (n = 0 � 1 ,  T -- n* ( (n-1) = 0 - 1 , 

T ---+ (n-l) * Fact (n-2) ) )  

4 . 5 . 2  �epresenting functions by objects 

Let A be an object defined by the collection of its immediate components ,  i . e . : 

A function fA may be associated with any such obj ect by : { Ai i f  l�i�n 
fA ( si ) = 

Q othen1ise 

i . e .  these functions are mappings of selectors of S into obj ects : 

fA : S - Objects 

Key to abbreviations : 
Fact factorial 

4 . 5 . 2  
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All !unctions associated with objects in the above manner are functions whose 

domain is the set of selectors and 'ilhi ch yield a value t- .Q_ only for a finite set 
of arguments . 

The state of the machine may contain several such mappings represented by 

the associated objects . The assumption to be made is of  course that the domains of 

such mappings are subsets of the set of selectors . 

Two examples may illustrate the application. 

<l> The environment component 

The version of the environment cornpnent given in this section will correspond 

to the needs of the example in chapter 5 .  The environment component s-env (S) of 

a state S is a mapping of the identifiers, which may be referenced in the given 

state, into unique names .  The environment component serves to resolve the scope 

problem within a block structure as will be explained in the example given in 

chapter s .  The present problem is to represent environments as obj ects . For that 

purpose all identifiers which m!ght occur in a program are assumed to be members 

of the set of selectors s .  I f  now for a specific environment the identifiers 

id1 , id2 , • • •  , idm are to be mapped into the unique names n1 , n2 , • • •  , nm respec­

tively, the mapping is represented by the object ENV: 

To retrieve the unique name for a given identifier id . , the identifier is l. 
simply applied to the environment , since idi (ENV) = n1 • 

Since the environment is the immediate component s-env (�) of any stat� �' 
the question as to which unique name is associated to a given identifier id1 for a 

given state � is answered by a 

All possible objects which may serve as an environment can be defined by the 

predicate is-env: 

is-env = ( [ <id:  is-n> I I is-name (id) ! ) 

A A 
where: is-n is the set of  all unique names and is-name is the set of all possible 

identifiers, 

4 . 5 . 2  
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( 2� Directories l 

Certain components of states of the machine are directories . By the term 
directory is understood a mapping of unique names into certain obj ects . Any pair 
of a unique name and its associated object is called an entry with respect to the 
directory. The structure of the object representing a directory is always such 
that the unique names serve as selectors and yield their associated object when 
applied to the directory. For example1 upon entrance into a block , identifiers 
declared in that block are first associated with unique names in the environm�nt . 
For all of those unique names an entry in th� so called attribute directory s-at (S) 
is  then made associating the unique name with the attributes declared for the · 

corresponding identifier and some additional information. 

Given an identifier id and a certain state � one may retrieve the attributes 
of that identi fier bya 

' I 

( ido s -env (�) )  ( s-at (�) )  . .., I � 'v  r 0 

In other words one has first to apply s-env to the state to get the environ­
ment; applicat�on of the identif�er to the environment yields the corresponding 
unique name which in turn applied to the attribute directory s-at ()) yields the 
desired attribute s .  

Another principle used i n  the above example should b e  noted , namely , i n  order 
to associate identi fiers with unique names which are furthermore asso�:iated with 
certain attributes , the unique names have been used in a double role , on the one 
hand as a component o f  the environrnent, · on · the other as a selector in the attribute 
directory . One may i llustrate the situation by means of the following plcture s 

environment : 

····· ·· · ········ ·· ·· · · · · · ·· · ·· 

Key to abbreviation s :  
s-at 
s-env . 

( 

attribute directory: 

select attribute directory 
select environment 

4 . 5 . 2  
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• r. 

1 

1 

. . 

) 
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With the above construct one may introduce as many steps of indirectness as 

necessary and desired. The construct serves precisely the purpose of indirect 

addressing known in usual machine programming . 

4 . 5 . 3  Realization of stacks 

Stacks play an important role in the interpretation of programming languages 

like PL/I because of its nested structure. By the term stack is understood a 

linear arrangement of elements say p1 , p2 , • • •  , pn-l ' ph where pn is called the top 

element. The assumption is that at any point of  time only the top element is re­

ferred to . The two operations by which a stack is manipulated are a the push down 

operation which adds a new element Pn+l on top of  the stack anq the 2op up opera­

tion which deletes the top element from the stack so that pn-l becomes the new top 

element . This means that it will be useful to let a stack appear as an object 

having the top element and the rest of the stack as its immediate components .  

The situation may be visualized by the picture given below. 

' ' 

Pn+1 --
P n  
Pn-1 

: I 
� Q"L=1 
push-down 

Pn-1 -

pop-up 

The follo�.,ring schema \'rill be used to represent a stack as an object. The se­

lectors s-p for the top element and s-p-stack for the rest of the stack will be 

used for the purposes of this section. 

ST = A. 
c(

s-p s-)\stack 

Pn s-p s-p-stack 
d' 'b 

Pn-1 ',, 
' 

/)\_ s-n-stack ;-p > 
s-p d" 

object representing a stack 
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The stack operations may be formulated as follows : 

push dovm : 

pop up : 

}Lo ( <s -p :  pn+l > 1 <s-p-stack : ST>)  

s-p-stack (ST)  
':l"fl I ,  

TR 25 . 08 7  

A 
The members of the class of possible stacks , is-p-stack, which can be formed 

A from elements of is-p may simply pe defined by : ... 

is-p-stack = ( <s -p : is -p > ,  <s-p-stack : is -p-st�ck > )  v is- Q 

4,5 . 4  Reference to state com�onents in instruction definitions 

It seems worthwhile to mention that the definition of auxiliary instructions 
is not only a means of introducing abbreviations but may · also influence the point 
in a computation where references to the state become et tective . 

Two fairly similar ' definitions of an instruction in1 are considered as an 
example. 

( 1 )  

( 2 )  

in = -1 

in2 = 

in 4 ( s -p ( � ) ) 
where s-p (�) refers to some component of the state � • 

in = -1 

i!!s C s-p ( � ) l ; 
in3 

in5 (a)  = 

1!!4 (a)  

4 . 5 . 4  

j 



LJM LAB VIENNA 4-27 TR 2 5 . 087 

It is now assumed that in the course of a computation .in1 is being executed 

��d th� problem is to observe the difference of the two definitions of !U1 • · '  ' 

ad ( 1) 1 
(a)  execution of in1 means its replacement by the control tree 

(b) execution of in3 

(c)  execution of .!£2 means its replacement by in4C s-p (�) ) � therefore refers to the state after execution of in3 ( ! )  

ad ( 2 )  : 

(a)  execution of in1 means its replacement by in5(s:..p <) ) )  � 
in3 5 therefore refers to the state before execution o f �3 ( ! )  

(b) execution of �3 

(c )  execution of !us which means its replacement by in4< • • •  ) 

This means that in both cases the instructions are executed in the order 

!E1 , �3 , • • •  , !£4 , however , the reference to � is a reference to two different 

states in the above two cases .  

4&5,5 The null instrqction \ . 
• 

The problem is to construqt a control tree for instructions instr1 , instr2 , 

• • •  , instrn to be executed in unspecified order. I t  is assumed that the instruc­

� ions do not pass any value or construct a common auxiliary object. To construct 

a valid control tree for the above problem it is necessary to have an instruc­

:ion which does nothing else than to delete itself from the control tree. This in­

struction is called the null. instruction and is defined by : 

null = 

PAS S :  Q 

The above problem may now be resolved by: 

.!U!!!J f instr1 , instr2 , • • •  , instrn } 

4 . 5 . 5  
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The instruction s chema pass has a!ready been used in a previous example ; its 
definition is repeated for completenes s ;  

pass ( x) = 

PASS � x  

The followinq problem occurs quite frequently . An auxiliary object x is to be 
constructed whose components are compQted by instructions to be executed in un­
specified order , However , i� is not the object itself that is to be passed but 
the result of applying a functiop f to it,  

Since only argument places of an instruction may be occupied by a dummy name 
in a control tree, the instruction pas s  i s  not sufficient to solve this· problem, 
Therefore , a special abbreviation has been introduced to avoid the definition of 
auxiliary instructions for any special function f:  

pass-f {x)  = 

PASS z f (x) 

wh�re f may be replaced by any function applicable to x. 

The following control tree may now be constructed if instr1 , instr2 , • • •  , 
instrn ·compute the � 1 , �2 , • • •  ,xn components of the auxiliary object and f l 
is the special function to be applied to it;  

1,5,7 Element by ��eme�t evaluation of a list 

'I ..., 

gJ 

1 

In section 4 .4 . 10 it has already been shown how a list may be E�valuated by 
evaluating the elements in unspecified order. I t  will now be shown , how a list may 
bQ evaluated element by element in the natural order, The empty list will be in­
c�uded and its evaluation is supposed again to yield the empty list , I t  is further 

I 

assumed that the instruction evaluating a specific element el and passing the 
desired value i s  � (el) , 

4 . 5 . 7  
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The instruction · schema which solves the given problem is· ·eva1·-·1tst and its 
qef�nition read s :  

eval-lis t ( list) = 
is- < >  ( list) - PASS : < > 

T --- :mk-list (eh, et) ; 
e t :  eval-list ( tail ( list)); 

eh : eval (head ( list) ) -

where : 

�ey 

mk-list (x, list) = 
PASS : <x>"'list 

to abbreviations : 
eval-list 
is- < >  
mk-list 
eh 
et 

� 

evaluate list 
is-empty list 
make list 
evaluated head 
evaluated tail 
evaluate 

4 . 5 . 7 
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5 . DEFINING THE INTERPRETATION OF EPL 

5 - 1  T R  2 5 . 087. 

This chapter i s  devoted to the definition of the interpretation of EPL 

using the notion of abstract machine introduced in the previous chapter . It might 

b e  helpful at this point if the reader refers to Section 1 � 2  in order to refresh 

his understanding of the general structure and content of EPL and to Section 3 . 1  

for a precise statement of the abstract syntax of EPL . 

Sections 5 . 1  and 5 . 2  present the formal definition of the semantics of· EPL 

with almost no comments given concerning the formulas . The rest of the chapter i s  

devoted to different comments and the elaboration of consequences of the formal 

definiton . 

5 . 1  The States of the Interpretins Machine 

/\ 
• Th i s  section defines the set of states , is- state , which the interpreting 

machine can as sume . These include the initial state for any given program and the 
set of end states . 

In addition to the sets of elementary obj ects and the set of selectors spe­
ci fied for the abstract syntax of EPL in Section 3 . 1 ,  page 3-6 , the following sets 
of elementary objects and selectors are distinguishe d :  

( S 1 )  

( S 2 )  

( S 3 )  

/\ 
is-n infinite set of names 

(used for the generation of unique names )  

{ PROC , FUNCT } two attributes used to distinguish function 

names and procedure names 

{s-env , s-c , s-at , s-dn , s-d, s-n} selectors for the components of the 

interpreting machine . 

is- state ( < s-env : is-env> , 

< s -c : is-c > ,  

< s-at : is-at > ,  

< s -dn : i s-dn > , 

< s-d : is-d > , 

is-env 

is-c = 

. . 1 ) 
1 )  

< s-n : l s-lnteger-va ue> 

( t < i d : is-n> I i s - id ( i d ) } l 

2 )  

( S 4 )  is-at = ( {  < n : i s -type> 1 1  is-n (n) J ) 

( S S )  is-type = { INT, LOG, PROC , FUNCT } 

l ) This is the counter for the unique name generation ( see 4 . 5 . 1 ) . 
2 > i s�c is a set of control trees having the properties described in chapter 4 . , 

section 4 . 3 .  
5 . 1 
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( S 6 )  i s -dn ( { <n : ( < s-env : is-env > , 

< s -attr : ( i s -proc-attr v is- funct-attr ) > ) v i s-value > I I 
is-n ( n )} ) 

( S 7 )  i s -d = ( < s-env : is-env > , < s - c : is-c > , < s -d : is-d > )  v i s - Q  

A 
The initial state for any given program t E i s -progr i s :  

fL0 ( < s-c : int-progr ( t )  >1 < s -n : l > )  

Th� initial state has only a control part which i s  the instruction int-progr ( t ) , 

'L' he instruction int-progr i s  defined in the next section . 

States 5 \'lhose control part s-e <5> is .Q are end states , 

5 . 2  The Interpretation of the Language 

Th is section defines an instruction schema int-progr whose parameter i s  a 

proqram , The execution of an instruction int-progr ( t )  specifies , i n  terms of 
the abstract machine , the task of the program t .  

The fol lowing additional notational conventions s imilar the formal defini­

tion of PL/I have been introduced, For better readability abbreviations for the 

immediate components of a current state � have been introduced, The lefthand sides 

of the follmving list may alw a;.:s be replaced by the corresponding righthand s ide . · 

Key to abbreviations (prefixes are omitted) : 

env environment 

c control 

at attribute directory 

dn denotation directory 

id identi fier 

5 . 2  

n 

d 

unique name 

dump ( s tack representing the 

dynamic nesting of block , 

procedure and function acti­

vat ion s )  
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ENV s-env (�) -
c s-c (s ) 
AT s-at (�) 
DN s-dn ()) -
D s-d (�) 

I f  the case distinctions made in the definition are not exhaustive 1 i . e . there are 
cases for which the instruction definition is unde fined, then this is indicated 
by an additional final line in the definition : 

T - error. 

The definition of instruction schemata will be given in the following 
format s 

( I i )  DEFINITION OF INSTRUCTION SCHEMA 

where : LIST OF ABBR. LOCAL TO THIS DEFINITION 
for s RANGES OF ARGUMENTS OF THE SCHEMA DEFINED 
Ref .  a REFERENCES 
Note : ADDITIONAL NOTES 

Any of the last four items may be omitted . 

The following functions and instrnctions are not further specified: 

convert (v, attr) 

int-bin-op (op , a , b )  

int-un-op (op , a) 

value (a)  

the function yields v converted (if necessary) to 
the type specified by attr which may either be INT 
or LOG. 

Instruction which returns the result of applying the 
operator op to a and b .  It is left open whether · 
there is a conversion perforrned in case the operator 
is not applica�le to operands of type a and b .  

Instruction which returns the result of applying 
the operator op to a ( for the problem of conversion 
see above) . 

Function which yields the value given a constant a.  

5 . 2  
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( Il )  int-progr (t) = int-block (t) 

for : is-progr (t) 

( I 2 )  int-block (t) = 

s-d :U ( < s-eny: ENV> 1 < s-c : C> 1 < s-d : D> ) 
- J O - - -
!!.::E l�; 

int-st-list (s-st-list (t) ) ;  
int-decl-part (s-decl-part ( t) ) ;  

update-env ( s-decl-part (t ) ) ;  

for : is-block (t )  

( I3 )  update-env (t) = 

!!ill I { update-id (id1n) ; n : un-name 1 id (t) � Q }  
for a is-decl-part (t) 
Ref, a � ( see 4 , 4 , 5 ) 1 un-name ( see 4 , 4 . 1) 

( ! 4 )  update-id (id 1 n) = 

s-env:�(�; < id :n > )  

for : is-id ( id) , is-n (n) 

( I S )  int-decl-part ( t) 

� � { int-decl ( id (�) 1 id (t) ) 1 id (t)  � Q }  
fora is-decl-part (t) 
Ref. : null ( see 4 , 4 , 5 ) -

( I 6 )  int-decl (n l attr) = 

is-var-attr (attr) -- � :f(zg_; <n : attr>) 

is-proc-attr ( attr) � � :f(zg_; <n : PROC> )  

TR 2 5 . 087 

s-dn a u.(DN ; <nH.J.. ( <s-attr : attr > ,  <s-env : ENV>)  > )  - r- - 1 0  -
is-funct-attr (attr) � � :f(zg_; <n : FUNCT> )  

for: is-n (n) 1 is-attr ( attr) 

s-dn : �(DN ; < n:u. ( <s-attr : attr> 1 <s-env:ENV>) >) - r- - 1 0  -

5 . 2  
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( I 7 )  int-st-list ( t) = 

is-< > (t)  � � 
T � int-st-list (tail ( t) ) 1  

int-st (head (t ) ) 

for : is-st-list (t) 

Ref , :  � ( see 4 , 4 , 5) 

( I 8 )  int-st (t)  = 

s-s 

is-assign-st (t)  � int-assign-st (t) 

is-cond-st (t )  � int-cond-st (t)  

. ' 

is-proc-call (t) & (att = PROC) 

is-block (t )  � int-block (t)  

--- int-proc-call (t )  

•o�here ; att = ( ( s-id (t) ) (E:!Y) )  (�) 
fan is-st (t)  

(19)  int-assign-st (t)  = 

is-var-attr (nt (!!!). ) --­

assign (nt1 v) 1 
v : int-expr ( s-ri ght-part (t) ) 

T -- error 

where : nt = ( s-left-part (t ) ) (�) 
fora is-assign-st (t)  

( IlO) assigq ( n , v) = 

�: f (£tl1 <n : convert (vfn (!!!)) > )  

for :  is-n ( n) , is-value (v) 

�ef, : convert (not specified further) 

( Ill) int-cond-st (t)  = 

branch (v,s-then-st (t) , s-else-st ( t) ) J  

v : int-expr (s-expr (t) ) 

for: is-cond-st (t )  

5 . 2  

TR 2 5 ! 087 
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( !12 )  branch ( v , stl , st2)  = 

convert (v, LOG) � int-st (stl)  

-.convert ( v , LOG) � int-st (st2) 

for : is-value ( v) , i-s -st ( stl) , is-st (st2)  

(Il3 )  int-proc-call (t)  = 

( length ( arg-listt) = length (p-listt) )  � 

TR 25 . 087 

s-env:�(envt , { <elem ( i , p-listt) a  elem ( i , arg-listt) (EEY) > 

l 5i5length (p-listt) } 
s-d :LL ( <s-env : ENV> <s-c : C >  <S-d : D >) - ,-·o - '  - '  -

� :�; 
int-s t ( stt) 

T --- error 

where : nt = ( s-id (t) ) (�) , p-listt = s-param-lis t o s-attr ont (fill) ,  

envt = s-envont (fill) , arg-listt = s-arg-list (t) , 

stt = s-sto s-attro nt (�) 

for: is-proc-call (t)  

(!14 )  exit = 

s-env: s-env (,E) 

s-e : s-c (,E) 

s-d : s-d (,E) 

( IlS )  int-expr (t )  = 

is-bin (t) --- int-bin-op ( s-op (t), a , b , ) ;  

a : int-expr ( s-rdl (t) ) ,  

b : int-expr ( s-rd2 (t) ) 

is-unary (t)  --- int-un-op (s-op (t )  , , a ) ; 

a : int-expr ( s-rd ( t) ) 

is-funct-des ( t) & (att = FUNCT) � 

pass-value (n) ; 

int-funct-call ( t , n) ; 

n : un-narne 

is-var (t) & is-var-attr ( nt ��) ) __,_ PASS : nt (�) 

is-const (t)  � PASS : value (t) 

T - error 

5 . 2  
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where : nt = t (.§!:!Y) , att = ( ( s -id ( t) ) <B�O ) ([!!) 
for : is-expr (t)  
Ref . : value, int-bin-op and int-un-op are not further specified; 

un-name ( see 4 . 4 . 1 ) 

( I l 6 )  pas s -value (n) = 

PASS m (£!!) 

( I l 7 )  int-funct-call ( t , n) = 

TR 2 5 . 087 

( length (arg-listt) = length (p-listt) ) ­

s-env:f( envt 7 { < elem ( i , p-listt) : elem ( i , arg-listt ) (�> 
1S i$ length (p-listt) J 

s-d:�L ( < s -env: ENV> . < s-c a C> 1 < s-d : D> ) 
- r�o - � - -

� : exit; 
assign (n , v) 1 

v a iqt-expr ( exprt) ;  
int-st ( s tt ) 

T - error 

where : nt = (s-id (t) ) (.§!:!Y) 1 p-listt = s-param-listo s-attro nt (�) , 
envt = s-env ont (�) , arg-listt = s-arg-list (t) , 
stt = s-sto s-attro nt (�) , exprt = s-expr o s -attr o nt (D�) 

for: is-funct-dcs ( t) 1 is-n (n)  

Note : the definition is almost identical with ( I l 3)  

5 . 2  
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5 . 3  Intuitive Description Based upon the Formal Definition 

E!��JJ The Components of the State 

The Environment and Dump 

TR 2 5 . 087 

The environment associates identifiers with unique names . For any state S 
the environment component contains all those identifiers which can possibly 

. 

be referred to in this state . The associated unique name of any identifier 
gives access to the meaning of the identifier in the present state via the 
corresponding entries in the denotation directory and attribute directory . For 
Pnample , if a given identifier is a variable then the corresponding unique 
name is associated with the value of the variable by an entry in the denotation 
directory and with the type of the variable in the attribute directory. 

To gain some ins ight into the signi ficance of the block structure of the 
language one may inspect all instructions which replace or r.<odify the environment 
component of the state ( see for the occurences of s-env ) . Initially, the environ­
ment is Q .  

Since a program in the given language is a block , the first action is to ac­
tivate this block isee (Il ) , ( I 2 ) / .  Activating a bl ock means �uttin9 a copy of the 
current environment an1 the current control on top of the dump and installing a 
new control part . The next instruction executed updates the environment /see 
( I 2 ) , ( I 3 )  1 ( I 4 ) / .  This means that for any identifier id declared in the declara­
tion part of the block a unique name n is generated /see ( I 3 ) /  and a component n 
with id as selector is built into the envi ronment by means of the f function. 
If the identi fier is already present then the corresponding component is over­
written by the new n .  Exit from the block /see ( I 2 ) , ( I l 4 ) /  the environment 
and the control o f  the top element of the dump are reinstalled as the current 
environment and control and the dump is popped up . 

During the ex�cution of a block any further activation of a block and also 
any call of a procedure /see ( I l 3 )  I and any c'all of a function /see ( I l 7 )  I causes 
a change of the environments . However , in all of the above cases , a copy of the 
environment is put on top of the dump before it is changed and it is reinstal led 
upon return . In other words , there is an environment establi shed for any acti­
vation of a block , procedure or function and the environment remains constant for 
this activation o f  the block , procedure or function . 

5 . 3 . 1 
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Interpretation of a block /see (I2 ] /  means updating of the environment and 

afterwards interpreting the declaration part . In the interpretation of proced�re , 

or function declarations , the environment becomes part of the denotation entered 

into the denotation directory for the procedure or function name /see (!6 ) / . Upon 

activation of a procedure or function the enviror�ent which is part of the deno­

tation is installed and updated, i � e .  the environment which was valid at the time 

of the declaration of the procedure, /see ( !13 ) . ( ! 1 7 ) / .  In other words , the 

meaning of the global variables which occur in a procedure or function declara­

tion is frozen at the time when the declaration is interpreted. 

The above technique may be genP.ralized as follO\.,s . Given some piece of text 

�hose meaning depends on the meaning of the references to certain identifiers 
in it, the meaning of this text may be determined by associating the text with 

an environment containing the respective identifiers . 

The argument passing performed upon any procedure or function call consists 

simply in associating the parameters with the unique names of the arguments 

/see (!13 ) , ( I l7 ) /1 and thus making the parameters "synonymous " with the arguments . 

An identifier which is not declared yields Q when applied to the environ­

ment. Any application of 1.J to either the denotation directory or attribute direc­

tory is undefined because � is not a valid selector. 

The Denotation Directory 

The denotation directory associates unique names n with a denotation dn . A 

specific entry into the directory will be symbolized by: 

n - dn .  

What the denotation for a specific case is , depends on the type of the name . 

In the present example , the following cases occur : 

variables : 

functions : 

procedures : 

n - value 

n - (param-list , s t , expr) , env l) 

n - (param-list, et) , env l )  

l )  The parentheses and commas indicate the structure of the object . The precise 

definition of the objects can be taken from the abstract syntax of the state 

/see (S6 ) / .  

5 . 3 . 1  
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Entries are made upon activation of a block in the case of functions and 

procedures and upon assignment in the case of variables . The entries for 

functions and procedures are never changed or deleted . The values associated with 

a variable name may change upon execution of an ass ignment to that variable 

/see ( ! 6 ) , (IlO) / .  The value of a function is also returned via an auxiliary 

entry to the denotation directory /see (IlS } , ( !17 ) / .  

The Attribute Directory 

The attribute directory associates unique names with the type of these names . 

The following cases occur in the present example. 

interger variables n -- INT 

logical variables n LOG 

procedures n PROC 

functions n FUNCT 

The abstract syntax does not reflect the fact that identi fiers of a certain 

type may only be referenced in a context compatible with their type . This fact is, 

however, expressed in the interpreter by suitable checks.  The check is made in 

( I 8 )  for type procedure , for type function and type variable in (IlS ) . 

Entries into the attribute directory are only made upon activation of a 

block and never deleted or changed. 

· 'S' . -3' . 2 Types of Identifiers and their Dynamic Significance 

This section answers the question as to which types of identifiers exist 

in the language and what is the meaning associated dynamically with identifiers . 

The possible sharing patterns will be discussed at the end of this section . 

As explained previous ly, any identifier, id,  that can be referred to at a 

certain state � is associated with a unique name n via the environment component. 

This unique name is then furthermore associated with a denotation dn in the de­

notation directory and with a ty·pe in the attribute directory. This situation 

can be symbolized as follows : 

. d ENV � -
DN 

en / 

n
/ 

� AT 
� type 

5 . 3 . 2 
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The following cases occur in the present example : 

variables a 

id 1lliY 
/

value 
DN 

/-n
� AT 

TR 25 . 08 7  

� type where : type is either INT 
or LOG 

procedures : 

i d  1lliY 

functions a 

id .E!Y 

n 

�
(param-list, st) , env 

DN / "-
�

AT ---�PROC 

� (param-list , st , expr) , env 
!lli. 

n/ 
�AT -�FUNCT 

The following two important questions may be distinguished : 

( 1 ) When are the entities of the above information structures created? 

( 2 )  When are the diverse associations established and disolved? 

The above two questions are quite informative when applied to the formal 
definition o f  PL/I . The answers for the present example are comparatively s imple. 
The case of procedures is selected as i llustration : 
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block activation 1 )  

The terms block activation and block exit refer t o  the block in which the 
declaration of id occur s .  
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There is only one sharing pattern t o  b e  mentioned, namely between an argu­

ment of a procedure or function and the corresponding parameter . Again, the situa­

tion in the present example is extremely simple as compared to PL/I . 

Consider a procedure call where an argument id1 is passed to a parameter 

id2 • According to ( I l 3 ) 1 the following sharing pattern via the unique name of id1 
will exist after the parameter passing has actually been performed: 

dn 

/ 

. '5','
3 •. 3 Flow of Control 

In the previous chapter, the dynami c s ignifi cance of id�ntifiers has been 

isolated. This section w i l l  draw attention to another aspect of the language , 

namely the order in which the actions specified by a program are taken, 

Definition ( I 2 )  specifies that the execution of a block means updating of 

the environment , ·interpretation of the declaration part , interpretation of the 

statement list and exit , Definition ( I S )  spe c i f i e s  that the individual declarations 

may be interpreted in any order , This is irrelevant in the present case ; it be­

comes,  however, relevant in PL/I because interpretation of declarations may in­

volve expression evaluation ( side e ffects). 

l )  The terms block activation and block exit refer t o  the block in which the 

declaration of id occurs . 
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Interpretation of the stata�ent list means , as specified in ( ! ? ) , interpreting 

the list element by element in the given order.  

Next1 one has to consider the individual statements . Starting with the assign­

ment statement definition, ( 1 9 )  specifies that the expression has to be evaluated 

and the resulting v��ue is assigned to the variable on the lefthand side of the 

assignment . The operands of an expression may be evaluated in any order according 

to definition ( 1 15 ) . One should note that there are , however,  expressions where 

the choice of an order is relevant to its meaning. Upon the activation of a func­

tion in the course of expression evaluation one should note that the current con­

�=ol is p�t into the dump and a new control is installed according to ( 117 ) . 
This means that the evaluation of other operands is temporarily stopped until the 

exit of  the function . A simple example may illustrate the situation. 

Consider an expression : 

The operands of this express ion may be evaluated in any order, e . g .  f3 ( z ) , 

f1 (x) , f2 (y ) . The action of the evaluation of  any tvo of the functions may not ,. 

however , be interleaved . The interpretation of the conditional statement is tri­
vial and given in (Ill ) . 

The interpretation of a procedure call causes the control again to be 

dumped. In the case of procedures this is, hot-�ever,  irrelevant . 
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