ULD
VERSION

METHOD AND NOTATION
FOR THE FORMAL DEFINITION
OF PROGRAMMING LANGUAGES

P. LUCAS
P. LAUER
H. STIGLEITNER

Vi
M LABORATORY VIENNA

IBM LABORATORY VIENNA, Austria

METHOD AND NOTATION FOR THE FORMAL
DEFINITION OF PROGRAMMING LANGUAGES

by

P. LUCAS
P, LAUER
H, STIGLEITNER

ABSTRACT
This document is a tutorial introduction to the method used in the formal defini-

tion of programming languages., The method is presented, as far as possible, in-
dependently of its application to any particular programming language,

Locator Terms for IBM Subject Index

PL/I

Formal Definition
Syntax

Semantics o~

21 PROGRAMMING

TR 25,087
28 June 1968

IBM LAB VIENNA -1 - TR 25,087

PREFACE

The method for formally defining programming languages presented in
this document was developed by the Vienna Laboratory in order to produce a
formal definition of PL/I, A first version of this formal definition was
made available in the form of two technical reports /1/, /2/ and the method
was elaborated in a tutorial style in /3/. The second version of the complete
formal definition consists of the technical reports /4/, /S5/, /6/, /7/ and
/8/ all of which were issued by 28 June 1968,

The initial basis for the development of the method adopted is to be
found in publications of J.McCarthy /9/, /10/, C.C.Elgot /11/, and P.Landin
/12/+ The early ideas of the Vienna group on the method are documented in

/13/, /14/.

There has also been an extensive exchange of working papers between the
Poughkeepsie Laboratory, the Hursley Laboratory and the Vienna Laboratory. In
particular the Hursley group produced a number of relevant technical reports

/15/, /16/, /17/ and /18/.

The applicability of the method developed by the Vienna Laboratory in
the course of the formal definition of PL/I is, however, not limited to any
specific programming language and it is the intent of the authors to present
here those features of the method which reflect its generality.

IBM LAB VIENNA S [P TR 25.087

REFERENCES

/1/

/2/

/3/

/4/

/5/

/6/

/1/

/8/

/9/

/10/

PL/I-Definition Group of the Vienna Laboratory: Formal Definition of PL/I
(Universal Language Document No. 3) .-
IBM Laboratory Vienna, Techn. Report TR 25.071 (Version 1),
30 December 1966.

ALBER, K.: Syntactical Description of PL/I Text and its Translation into

Abstract Normal Form.-
IBM Laboratory Vienna, Techn. Report TR 25.074, 14 April 1967.

LUCAS, P.: Introduction to the Method Used for the Formal Definition of
PL/I.-
IBM Laboratory Vienna, Techn. Report TR 25.081, 31 October 1967,
28 June 1968 (Revised).

FLECK, M., NEUHOLD, E.: Formal Definition of the PL/I Compile Time Facilities.-
IBM Laboratory Vienna, Techn. Report TR 25.080, 28 June 1968.

ALBER, K., OLIVA, P., URSCHLER, G.: Concrete Syntax of PL/I.-
IBM Laboratory Vienna, Techn. Report TR 25.084, 28 June 1968.

ALBER, K., OLIVA, P.: Translation of PL/I into Abstract Text.-
IBM Laboratory Vienna, Techn. Report TR 25.086, 28 June 1968.

Lucas, p., ALBER, K., BANDAT, K., BEKIC, H., OLIVA, P., WALK, K., ZEISEL, G.:
Informal Introduction to the Abstract Syntax and Interpretation of PL/I.-
IBM Laboratory Vienna, Techn. Report TR 25.083, 28 June 1968.

WALK, K., ALBER, K., BANDAT, K., BEKIC, H., CHROUST, G., KUDIELKA, V.,
OLIVA, P., ZEISEL, G.: Abstract Syntax and Interpretation of PL/I.-
IBM Laboratory Vienna, Techn. Report TR 25.082, 28 June 1968.

McCARTHY, J.: Towards a Mathematical Science of Computation.-
In: Information Processing 1962 (C.M. POPPLEWELL, Ed.), pp. 21-28;
North-Holland Publ. Comp., Amsterdam 1963.

McCARTHY, J.: A Formal Description of a Subset of ALGOL.-
In: Formal Language Description Languages (T.B. STEEL Jr., Ed.),
pp. 1-12, Proc. IFIP Working Conference, Vienna 1964;
North-Holland Publ. Comp., Amsterdam 1965.

IBtf LAB VIENNA = 3l = TR 25,087

/1l1/ ELGOT, C.C,, ROBINSOM, A,: Random~Access Stored-Program Machines. An Approcach
to Programming Languages,-

/12/ LANDIN, P.J.: Correspcndence Between ALGOL 60 and Church's Lambda-Notation,
Part I.-
Comm,ACM 8 (1965) No.2, pp.89-101,

LANDIN, P.J.: Correspondence Between ALGOL 60 and Church's Lambda-Notation,

Part II.=-
Comm, ACM 8 (1965) No. 3, pp.158-165,

/13/ BANDAT, K, (Ed.): Tentative Steps Towards a Formal Definition of Semantics
of PL/Io-
IBM Laboratory Vienna, Techn, Report TR 25.056, July 1965,

/1l4/ LUCAS,; P.: On the Pormalization of Syntax and Semantics of PL/I.-
IBM Laboratory Vienna, Techn, Report TR 25,060, November 1965,

/15/ BEECH, D., ROWE, R,, LARNER, R.A,, NICHOLLS, J.E.: Abstract Syntax of PL/I,-
IBM UK Laboratories Hursley, Techn., Note TN 3002, June 1966,

/l16/ BEECH, D,, NICHOLLS, J.E., ROWE, R.: A PL/I Translator,-
IBM UK Laboratories Hursley, Techn. Note TN 3003, October 1966,

/17/ BEECH, D., ROWE, R,, LARNER, R,A,, NICHOLLS, J.E.: Concrete Syntax of PL/I.-
IBM UK Laboratories Hursley, Techn, Note TN 3001, November 1966,

/18/ ALLEM, C.D., BEECH, D., NICHOLLS, J.E., ROWE, R.: An Abstract Interpreter
of PL/I._
IBM UK Laboratories Hursley, Techn, Note TN 3004, November 1966.

/19/ NAUR, P,: Revised Report on the Algorithmic Language ALGOL 60,-
The Computer Journal (1963), pp. 349-367.

/20/ LAUER, P,: Abstract Syntax and Interpretation of ALGOL 60,-
IBM Laboratory Vienna, Lab. Report LR 25,6,001, 12 April 1968,

/21/ LAUER, P.: Concrete Representation of Abstract ALGOL-60 Programs,-
IBM Laboratory Vienna, Lab. Report TR 25,6.,002, 13 May 1968,

LR g ey
. B o= B g . 1T O T CTC R A
10 SEELY T OEL
TS . pF = T ey e
= BT M Y SR . Sl FoJE A et aate v JSuelthite S5
=
all] "W 1 A ' B e
(LT = . AN whilar warny 1 1emn Pl W TR Mg N YW JHE [Em
|:1 L
4 B %y 1 1 “dp - e
» - . Fnogp oL g - R N R LR R T T s [T oL B
= L T
LT - - - - .t A SdAsan Y ULy
Tl e SR ' B _' jon == Bite T o 1 W .M ' Y
L LI 1 - aitlml 0= g Rl L
S s TR W atn . | . Mt o« B pmae® . : BN g WDUNE e
« Bomd. gkf T T nto] Ny T Tl Yalla o
. oA wnrzhe L [1 - TTS M Y Nl
0F 20 1= _gpw® Bf esoh _yesn pa eut peeocpmideg Y
<y 7 b= Ml ot (W% AT T T 1 e B T I‘a\.i—f-'ll‘ll‘
PP IS TSP I L BN PR B S LT e R =d a od oS) OPE
'??lll"_lﬂ:l'l A pifen "t i Yefl TR e a0 ow TR o & s FIN
~ i andl B2
g wry ghdls 6 ;.jl:__" LAY 4 I'.|'|rr“ il_:l 1y £ nva su DEFE
! 0= & ueeg mp PP 3 X Vo4 Y. TR FiTH ¥ = ,".'I _‘IT,LF"K "l'l' L9
FoL wy 0K iTa _mpy s 187 L
10 A il T A% = ik "= =5 = I e TS, L: N
e &I M Bl BN A ST AN LW e Y) WY L. TES
R ST w o AL aEm e S TR
- . -4, = Lo B et S W o !

IBM LAB VIENNA "

CONTENTS

1Ly, INTRODUCTION

2.1

2.9

Exposition of the Problem

A Brief Description of the Example Programming
Lancguage EPL

Notational Conventions Presupposed in this Report
1.3.1 Conditional Expressions

1.3.2 Eguality

1.8 .8 Truth Values, Logical Operators and Quantifiers
1.3.4 Arithmetic Operators and Relations

1.3.5 Set Operators, Relations and Notation for Sets
1.3.6 Functional Composition

ya3l. 7 Rules of Precedence

OBJECTS

The General Class of Objects
Graphic Representation of Objects
The Null Object

Composite Selectors

The Characteristic Set of an Object
The Operator u

Definition of Classes of Objects
Further Notational Conventions
2.8.1 Extension of the Meaning of the = Operator
2.8.2 Manipulation of Lists
Implicit Definitions

APPLICATION TO ABSTRACT SYNTAX AND REPRESENTATION OF LANGUAGES

Abstract Syntax of EPL

The Definition of Concrete Representations

3.2.1 The Representation System

3M 20,2 A Concrete Representation of Programs of EPL

TR 25.087

Page

1-3
1-5
1=5
1-6
1-6
1-8

1-9
1=16

2=}
2-3
2-4
2-5
2-6
2~-10
2-12
2-18
2-18
2-20
2-21

IBM LAB VIENNA - vi -

The Correlation of Abstract Syntax and Backus Normal Form

A Concrete Syntax for EPL
3.4.1 The Extended Backus Notation
3.4.2 A Concrete Syntax

3.5 The Translation of Concrete Programs to Abstract Programs
39Sl Abstract Representation of Concrete Programs
311512 The Translator
4, ABSTRACT MACHINES
.1 Introduction
. The Conventional Concept of Abstract Sequential Machines
. The Extended Concept of Abstract Machines as Used for the
Formal Definition of Programming Languages
4.4 The Control of the Abstract Machine
4.4.1 First Survey
4.4.2 Control Trees
4.4.3 Defining Control Trees as Objects
4.4.4 Control Tree Representations
4.4.5 Instruction Schemata
4.4.6 The State Transition Function A
4.4.7 Examples
4.5 Note on Constructs of the State and Some Instructions of

the Abstract Machine

4.5.1 Unique Name Generation

4.5.2 Representing Functions by Objects

4,543 Realization of Stacks

4.5.4 Reference to State Components in Instruction
Definitions

4.5.5 The Null Instruction

4.5.6 Pass Instructicns

4.5.7 Element by Element Evaluation of a List

DEFINING THE INTERPRETATION OF EPL

The States of the Interpreting Machine

The Interpretation of the Language

Intuitive Description Based upon the Formal Definition
58l The Components of the State

S5l.352 Types of Identifiers and Their Dynamic Significance

513513 Flow of Control

TR 25.087

Page

3-12
3-14
3-15
3-17
3-18
3-20
3-24

4-2
4-3
4-3
4-5
4-8
4-10
4-12
4-14
4-15

4-21
4-21
4-22
4T25

4-26
4-27
4-28
4-28

S
5-2
558

5-10
5-12

IBM LAB VIENNA L= TR 25,087

1, INTRODUCTION

1P B Exposition of the Problem

The problem to be solved by the method presented in this report is the syntac-
tic and semantic definition ef programming languages. The method was developed in
view of the definition of PL/I; however, there are a number of principles which are
quite general and not restricted to the definition of any particular programﬁing
language. This report is an attempt to isolate thesz more general aspects of the
method,

The syntactic definition of a language is, in general, a set of rules which
define a set of strings constructed from a given alphabet. In addition the syntax
defines a structure for each of these strings, Only strings defined by the syntax
are considered to be valid expressions (programs in the case of programming langu-
ages) of the language and are subject to interpretation. The structure given to
an expression by means of the syntax is of importance in its subsequent interpre-
tation. The syntatic definition of a programming language is usually given by
means of productions, i.e., rules allowing the generation of all strings of cha-
racters which are considered to be programs of the programming language.

The semantic definition of a language is understood to be a set of rules
which allows the interpretation of the expressions specified by the syntax. The
method under discussion in this report is based on the definition of an abstract
machine which is characterized by the set of its states and its state transition
function., A program together with its input data defines an initial state and the
subsequent behaviour of the machine is said to define the interpretation of the
program for the given input data.

However, it would be cumbersome and unnecessarily confusing for the inter-
preting abstract machine to operate directly upon the character strings defined
by the syntax, i.e., for the syntax analysis to be defined explicitly by the
machine, Instead, it is assumed that there is a unique parsing tree according to
the syntax for any program and that there is an algorithm which computes the pars-
ing tree, It is part of the definition method here presented to assert exactly this
for any language to be defined by the method. It would still be awkward to attach
the interpretation directly to the parsing trees since there are in most higher
level programming languages conventions which allow the same process to be describ-
ed in many different ways. The parsing trees are therefore modified in such a way
that programs describing the same process which differ only in the use of the
notational conventions appear in standard form, In the method described in this

IBM LAB VIENNA =02 TR 25,087

paper the so-called translator performs precisely this task. What remains to be
interpreted by the abstract machine are objects which possess a tree structure and
represent programs in standard form. The definition of the class of objects which
are considered to represent programs (or expressions of a language in general) is
called the abstract syntax. The syntactic definition which specifies programs as a
set of character strings is called the concrete syntax.

One may,however, consider the objects themselves, as defined by the abstract
syntax, to constitute the expressions of the language. In this case there is no
concrete syntax specifying what constitutes the language. Then an interpretation
of the language can be given directly on the one hand and a possible concrete re-
pres<ntation in terms of character strings on the other, Furthermore, one may con-
sider languages which have the same abstract syntax and the same interpretation and
which differ only in their concrete representations to be equivalent.,

It proved to be convenient to represent the states of the interpreting ab-
stract machine as objects of exactly the same kind as used to represent programs.
The set of states the machine can assume may therefore be defined by means of the
same devices as used for the abstract syntax of programs.

The method as presented in this report porvides a general class of objects
having tree structures. Subclasses of this general class of objects may then be
used to represent programs (and have been used to represent programs of specific
higher level programming languages, cf. /3/-/8/, /20/): other subclasses may be
ised to represent the states of the interpreting machine (and have been used for
the states of the machines interpreting the specific programming languages in the

reports cited above).,

The outline of this report is such that it starts with the most general
aspects of the method and then specializes to programming languages.,

The above mentioned general class of objects, together with devices for de=-
fining subclasses of this class and for manipulating objects is presented in
Chapter 2. Only the general properties of objects are dealt with in this chapter
and no application to lanquages or abstract machines is necessarily implied.

The application of the devices, introduced in Chapter 2, to the definition of
the syntax and semantics of languages will be demonstrated throughout this report
by means of a simple example programming language. An intuitive characterization
of the features of this example language is included in this introductory chapter.

IBM LAB VIENNA 1=3 TR 25,087

In Chapter 3 the notions of abstract and concrete syntax of languages are
discussed and the problem of tie formulation and the relating of these two types of
syntax is dealt with by means of the devices introduced in Chapter 2,

Chapter 4 introduces the notion of abstract machines and the special kind
of machine which lies at‘the basis of the method for interpreting programming
languages here being presented, The application ¢f the devices introduced in
Chapter 4, is shown by giving a definition of the interpretation for the example
programming language in Chapter 5,

An attempt was made in this report not only to show how the definition of a
erugramming language can be constructed but also to indicate how one may possibly
discover the consequences of such a definition., The comments to the example in
Section 5.3 serve this latter purpose.

l.2 A Brief Description of the Example Programming Language EPL

Throughout the report the definition of a simple programming language (hence=
forth called EPL) serves as an example for the application of the methods described
in the report. The programming language to be described is structured similarly to
PL/I (and ALGOL 60); however the number of features covered in EPL is very small
when compared with PL/I,

In this section a brief survey of the structure and content of the language
is presented in order to give the reader an intuitive idea of EPL which will aid
his understanding of the various formal dewvices used later on to describe syntactic
or semantic tsatures of EPL., The terminology used in this survey presupposes some
familiarity with PL/I or ALGOL 60,

The data manipulable by the language are truth values and integer values. 1t
is assumed that there are unary and binary operations defined for these data, Which
specific operations are available is, however, left open.

Expressions may be built from constants, variables and function designators

using the operators.

Constants denote values, Variables are identifiers denoting values. The values
denoted by a variable may change dynamically through the execution of assignment
statements. The range of a specific variable is restricted either to truth values

or to integer values,

IBM LAB VIENNA 1-4 TR 25,087

A function designator consists of an identifier which is a function identi-
fier, and an argument list which is a (possibly empty) list of identifiers of some
type. A function identifier denotes a rule for computing a value depending on argu-
ments, In particular a function identifier denotes a statement and an expression.
The value of the function is determined by executing the statement and afterwards
evaluating the expression which then yields the value of the function.

An expression is a rule for computing a value., The computation may, besfdes

yielding & value, change the state of the machine in some way (side effects).

There are four kinds of executable statements, namely assignment statements,
conditional statements, procedure calls and blocks. An assignment statement con-
sists of a leftpart which is a variable and a rightpart which is an expression,
Upon execution the expression is evaluated and the value computed is assigned to
the variable which was the leftpart. The variable then denotes the value computed

by the expression until further changes.,

A conditional statement consists of an expression and two statements: the
then-statement and the else-statement. TTmon execution the expression is evaluated
and if necessary its value is converted to a truth values If the value is T, the then=-
statement is executed, otherwise, the else-statement is executed, A procedure call
consists of an identifier which is a~procédure identifier, and an argument list
which is a list of identifiers of some type. A procedure identifier denotes a rule
for computing (a statement) depending on the arguments. The argument-passing
for function activations and procedure calls is defined in such a way that the
parameters are defined to be completely synonymous with the corresponding argu-
ments of the respective activation or call within their scope.

A block consists of a declaration part and a list of statements of any type.
The declaration part declares certain identifiers to be either variables (inte-
ger or logical) or function identifiers or procedure identifiers., The function
or procedure denoted by an identifier is also given in its declaration, i.e. the
identifier is associated with a parameter list, statement and expression in the
case of functions and with a parameter 1list and‘a statement in the case of pro-

cedures.,

Upon execution of a block the identifiers declared by the declaration part
are introduced as names denoting new entities (in accordance with their declara-
tion) and keep this meaning until the end of the execution of the block. The
meaning of any identifier, which is identical to a newly declared one, is supressed
until the end of the execution of the block. The identifiers declared in the decla-

IBM LAB VIENNA 1-5 TR 25,087

ration part of a block are called local to that block., The parameters of a function
or procedure are treated upon execution of the function or procedure as if they
were declared in that function or procedure. This means parameters of a function

or procedure are considered to be local identifiers of the respective function or
procedure. The meaning of non local identifiers of a function or procedure is frozen
after introduction of the new identifiers of the block in which the function or
procedure is declared, A program in the language described is a block.,

1.3 Notational Conventions Presupposed in this Report

This section is a summary of the notational conventions and symbols taken
over from various fields, A major portion of the notation is adopted from LISP
(conditional expressions), predicate calculus, arithmetic expressions and rela-
tions and set theory with the conventional meaning. All symbols and conventions
referred to in this section will be used throughout the document without further
comment. This secticn does not contain the various conventions whose introduc-
tion and definition is a major purpose of this paper.

1,3,1 Conditional expressions

Form:
(pl €1’ Py Syt swer Py en)
Py expression denoting a truth value
e, expression denoting some object (the value of ei)

An alternative form may be used omiting the parentheses and commas:

Meaning: ‘

A conditional expression denotes the value of ey where i is the smallest integer,
1<isn, for which Py is true and all preceding pj, 1<j<i, are false, If there is no
such integer, then the expression has no value,

IBM LAB VIENNA

It is important to note that the left to right order in which the individual

1-6 TR 25,087

conditions p; are inspected is relevant, If Py is true then a consequence of the

above definition is that the values of the successors of Py Say Py i<ksn, are ir-

relevant for the valuation of the conditional expression and may even be undefined.

1.3.2 Equality

equal

O W

The equality and not equality relations are used with no specific restriction

not equal
£ by definition equivalent to

as to the range of arguments.

1.3,3 Truth values, logical operators and quantifiers

1,3,3,1 Truth values

T true
F false

le3.3.2 Logical operators

not = equivalence
& logical and F3 non equivalence
v logical or (vel) = implication

The operators have the conventional meaning except for two place operators

in cases where one of the operands is undefined. The meaning adopted is best

described using

(Pl & pz)

|\l

(P = pPy)
(py # pPy)

(p; 2 Py)

conditional expressions:

s, (p,—= F, T—= p)
5¢ (Pp—= T T —= p))
5¢ (Pp & Pp) v (0P & TIP))
B Py = P2)

B¢ (py—= T, T —=Dp,)

1.3,3,.2

IBM LAB VIENNA TR 25,087

The following rules for omission of parentheses hold for expressions built

from the above operators:

(pl & (p', & ae (pn"l & pn) s e))

=}l
H

p1&p2& se e &pn_l&pn
(pl v (p2 V see (pn_l v pn) eds® 1))

[l
Hh

Py V Py Voeer V Py VP

J

(plz (p2:>... (pn_lnpn) eee))

ol
Hh

plb p2'_')) Dpn_len

To ease printing the symbols "Et" and "yel” are used for multiple conjunction

and disjunction.

n
_EE P; 5¢ ((n>0) —= py & Py & eee & Py (n = 0) —= T)
l=

n
Yei Py S¢ ((n>0) —= Py V Py V ses VP, (n = 0) —= F)

1.3,3,3 Quantifiers

3 existential quantifier
v universal quantifier

The above symbols will be used in expressions of the following forms:

(Bxl, Xz, ...‘xn) (p(Xl' Xz,-cn,xn))

The variables X1 Xy, e0e,%X are called the bound variables 1 of the expres--

sion, The expression is true if there exists at least one n-tuple Xyr Xyreee Xy
_sach that p(xl, xz,...,xn) is true, otherwise the expression is false,

(VY X1 Xp 000, X) (P(Xy) XppeeesX))

The variables X1 Xy eee,X are called the bound variables b of the expres-

sion., The expression is true if for all possible n-tuples Ryr Xor eee, Xy (in the
range of the variables) p(xl, xz,...,xn) is true, otherwise the expression is false.

It is important that the range of the bound variable in an expression of the
above form should always be defined. This will either explicitly be done by the
expression or implicitly by using a convention that associates a range with a

specific class of variable names.,

1 bound variables are variables for which no substitution is allowed.,

1.3.3.3

IBM LAB VIENNA 1-8& TR 25,037

For convenience, composite constructs containing bound variables as compo-

nents may be written in place of the bound variable part of the expression, e.g.

(3<X,Y>) (P(X'Y'<x'y>))o
l,3.3.4 Description
L iota-operator

The symbol will be used in expressions of the following form:

(¢x) (p(x))

The x is called the bound variable of the expression. The expression denotes
the value {in the range of x) for which p(x) is true. The expression has no value
if no value or more than one value in the range of x has the property p.

1,3.4 Arithmetic operators and relations

l,3,4,1 Operators
+ prefix plus, infix plus

- prefix minus, infix minus
* multiplication

le3,4.2 Relations

< less
s less or equal

equal
not equal

VS

greater or equal

v

greater
The relational operators are occasionally used in expressions of the form:

R, e

Sy By By X

e

2t 3

where ey is an arithmetic expression and Ri is one of the above relational opera-

“ors. The meaning is as usual:

e Ry ey Ry ey 5. (e) Ry e)) & (e; R, ej)

1.3.4.2

IBM LAB VIENNA 1-9 TR 25,087

1.3.5 Set operators, relations and notation for sets

l.3.5.1 Set oerators

U union
q] intersection

1,3.5.2 Relationz

is element of

&
¢ is not element of
C is proper subset
< is subset or equal
=2 is superset or equal
) is proper superset
1,3,5.3 Notation for sets
{a, b, c, ...} The elements a, b, ¢, ... are the elements of the set,
{ } the empty set
{x | p(x)} implicit definition of a set

The x is called the bound variable of the expression. The éxpression denotes

the set of all elements such that p(x) is true. As usual, for convenience composite

constructs containing bound variables as components will be written in place of the
bound variable part of the expression, e.g

{<xpy> | p(xyycx,y>)}

the set of pairs <x,y> such that p (x,y,<x,y>).

le3:b6 Funct;onal Composition

° functional composition operator

The operator is defined by:

(f°g)(xl,...,xn) ;f f(g(xl,...,xn)

f and g may be either simple function names or expressions denoting functions. In

the later case, the expression must be parenthesized,

1.3.6

IBM LAB VIENNA 1-10 . TR 25,087

The following rules for omission of parentheses hold:

(1) The functional composition operator binds more strongly than

functional application, e.g.:

feg(x) = (feq) (x)

(2) £ °f2°-u|°f (xl' e xn) = fl(fz(cu-(fm(xla ooy xn))l-l))

L m

(3) f(xl) (xz) sa e (xn) - (col((f(xl))(xz))oo-)(xn)

1,3.7 Rules of precedence

Parentheses may be omitted according to the following rules of precedence:

Highest precedence:

° (binds most strongly)
+, - prefix

*

+, - infix

<

1
e

u

||
Lowest precedence:

(binds least strongly)

IBM LAB VIENNA 2-1 TR 25.087

2, OBJECTS

2.1 The General Class of Objects

In the following the general class of objects is introduced in such a way that
both the expressions of languages and the states of an important class of abstract
machines can be identified with subclasses of objects. In particular, the follow-
ing definition provides a convenient way of decompusing and manipulating thése

objects.

An object will in general be composed of components which are themselves
objects of similar nature. For convenience the components of an object are
uniquely named so that using the names one can refer to the components. The
names used to name components of objects are called selectors and it is assumed
that there is a countably infinite set S of symbols defined for that purpose,
In the following, the symbols s, Syr Sprees stand for selectors, the symbols
A, Al, A2"" stand for arbitrary objects.

For selecting components of given objects an operation is introduced which for
a given selector s and a given object A yields the component of A whose name in the
formation of A is s if such a component exists at all.

By analogy with functional application the operation is represented by:

s (A)

and reads " s applied to A", The application of s to A is said to yield the
s-component of A.

Because objects will be identified with lingquistic expressions, i.e. finite
constructs, and with the states of abstract machines whose states are finite
constructs, the only interesting class of objects are those having a finite num-
ber of components and a finite depth of nesting, The latter means that the suc-
cessive application of selectors to a given -object will, after a finite number of
steps, result in an object which does not have any further components, i.e. no se-
lector whatsoever can be meaningfully applied to it. Objects of this kind are
called elementary objects and it is assumed that there is a set of symbols EO to

represent elementary objects. The symbols eo, eo,, eoz,...,eoi, eoé,... will in the
sequel stand for elementary objects. Objects which are not elementary are called

composite objects.

TR 25.087

\

IBM LAB VIENNA 2=

A named object is a pair <s:A> where s is a selector and A is an object,

A composite object can now be uniquely described by a finite (and for the
moment non empty) set of named objects, either composite or elementary, where the
names must be mutually different, i.e. a composite object is described by the set:

{<si:Al>, <52:A2>, ...,<sn:An>}

where n 2 1 and s; # 85 for 1 # j.

The objects Ai’ l<isn are called the immediate components of the object
described. ’

A special form of expression has been chosen to represent composite objects.
An object described by the above set of named objects may be represented by:

po(<sl:Al>, <52:A2>, T <sn:An>) 1)

There is, in general, more than one representation for the same object. In particular
the order in which the named components are listed is irrelevant since the set
consisting of them describes the object uniquely. One may think of Mo to be the
operator which assembles the named objects listed into a new and composite object.

Example:

Consider the following special assumption about S and EO

w0
Il

{op-code, flag, tag, addr, ...}
{cLa, sTO, ADD, ...
1,2,3, ...}

EO

The following object A may then be identified with the corresponding IBM 7040 instruc-
tion, namely CLA referring to index register 2, flag 1 and address 350:

A =}Lo(<op-code=CLA>, <tag:2>, <flagsl>,<addr:3505)

1) For the moment it is required that the named objects, listed in the argument
list of/Lo have mutually different names. In a succeeding chapter an extension of
the meaning of/go will be given which among other things drops the restriction, and
as a consequence the order of items in the argument list will be relevant,

IBM LAB VIENNA 2-3 TR 25.087

Application of the respective selectors would yield:

op-code (A) = CLA
tag(a) = 2
flag(a) =1

addr (a) = 350

Note that the instruction can be nicely decomposed and that specificatidn

of separators between the components and any specific order of the components

has been avoided.

2.2 Graphic Representation of Objects

It is sometimes convenient to think of objects as being represented by trees,
namely trees with named branches, a finite number of temminal nodes and elementary objects
attacned to the terminal nodes, In the following a correspondence between the
linear representation introduced in the previous section and trees is defined.

(1) An elementary object eoe EO is represented by the degenerate trees

o
eo

(2} A composite object described by {<51:A1>, <52:A2>:...r<sn:An>} is represent=-
ed by :

n

where for) the respective tree representations have to be in-

serted,

The order in which the branches appear in the tree representation is irrele-

vant.,

IBM LAB VIENNA 2-4 TR 25.087

Examgle:

The previous example of the 7040 instruction:
/go(<op-code:CLA>, <tags2>, <flag:l>, <addr:350>)

in the tree representation reads:

o -coé;///:;Z7F:E;\\\\\;ddr
,/’//p / %\ ~—

CLA 2 1 350
2.3 The Null Object

So far, the application of a selector to an object is only meaningful if the
object has a component whose name is the selector, i.e. s{(pb(<slel>, <52:A >,
"’fsn'An>)) was only meaningful if s = s; for some i, 1<is<n, For convenience, the
definition of the application of selectors to objects will be extended so that
any selector s¢S can be meaningfully applied to any object of the general class.
For that purpose a special composite object is introduced, namely the null object.
The null object is the composite object that has no components, i.e. is des-
cribed by the null set{ }. Consistent with the rule in 2.1, the null object is

represented by:
}bo()

For convenience the special character Q2 is defined to represent the null

object:

0 =
Df fol

It is now possible to extend the definition of the application of selectors
by adding that the application of a selector s to an object which does not contain
a component whose name is s yields the null object & ,

This means in particular:

(a) The application of any selector to an elementary object yields the null object:

s{eo) = Q

IBM LAB VIENNA 2-5 TR 25.087

(b) For composite objects the application of a selector is defined by:

Ai if there is an i such that s = Sy

S(Ho(<slel>,<32:A2>...<sn;An>)l = l<is<n
G2 otherwise

This means in particular for n = O:
stQ2) =Q

Named objectsof the form <s:GQ2> are permitted in the argument list Offio,
however (consistent with rule (b) above) the following identity holds:

}lo(<sl:A1>,<52:A2>,...,<sn:An>,<s:g2>) =
PO(<sl:A1>,<52:A2>,...,<sn}An>)

We can think of a named object (s:S0> as being a unit element with respect
to the Operation,Jo.

The definition of the set describing a composite object needs to be re-
formulated. A composite object can be uniquely described by a finite set of

named non null objects whose names must be mutually different, i.e.:
{<sl:Al>,<sz:A2>...<sn:An>}
where n20, s; # 55 for 1 # j and Ay #L for l<icn,

The following proposition about the idecntity relation between composite ob-
jects holds:

(Vs)(sa)) =s@a,)) = a) =a,

where Al’ A2 are composite objects.

2.4 Composite Selectors

By analogy with the operation of functional composition, an operation for

selectors is introduced by:

Sy1°S5°.. .05, (A) ;fsl(sz(...(sn(A)).--))
Sy°S3°...°5, 1is called a composite selector.

IBM LAB VIENNA TR 25.087

In the following X/ Zjy:s Zyseeer Xj+X5,... stand for composite

selectors.

The identity function I is introduced as the unit element with respect to

composition, i.e,:

I(A) = A
I-¥%¥ = XeI = K

The set of all composite selectors will be called S*. The introduction of I
as = composite selector has a number of advantages. For example, the equivalence

-l
r e

holds for any object whether it is elementary or composite:

ated at the end of chapter 2.3 and reformulated for composite selectors now

(V%)(%(Al) =% (A,)) = A =A,

Furthermore, as will be shown in the following section, the inclusion of the

identity function I makes a fairly elegant treatment of the elementary objects

possible,

Note that the direction bottom to top in the tree corresponds to the direc-
tion left to right in the composition of selectors.

Examples

s4esz(A) = eo,

2.5 The Characteristic Set of an Object

In gegtion 2.1 a composite object was described by the set of named immediate

components—which are non null, There was a restriction, namely that the names of
different components must be different. An alternative unique description of
objects is introduced in the sequel using composite selectors which will

prove convenient in many respects.

IBM LAB VIENNA : 2-7 TR 25.087

The characteristic set of an object A is the set of all pairs< X:eo>
such that > (A) = eo, where x 1is a composite selector and eo is an elementary

object.

The characteristic set associated with an object determines uniquely the
object. Thus one may describe objects by specifying their respective characteristic
sets. Each object of the general class has a characteristic set. In particular
is {} the characteristic set of & and {<I : eo>} the characteristic set

of an elementary object eo.

An example using the tree representation may help the mental operation
that has to be performed at this point to be grasped.Consider the object

po(<sléeol>,<52:f40(<s3:e02>,<s4:eo3>)>) where €0;, €0y, and eoy € EO,

The tree representation of this object is:

S s
& B
902 803
Fig. 1

One¢ now takes this tree apart in the following way:

S S5 S2

f o]

eo
eo 3

Fig, 2

In other words, one searches for all paths in the trees which lead to an ele-
mentary object, i.e. to a terminal node. These paths together with the associated
elementary object obviously give the same information as the original tree. In
terms of sets, the object that was previously described by the set {<51:eol>,
<S5:A >}where A is described by {<s3:e02>,<s4:eo3>} is now described by its

characteristic set {<sl:eol>,<s3°szze02>,<s4osz:eo3>}.

2.5

IBM LAB VIENNA 2-8 TR 25.087

Not every set of pairs where each pair consists of a composite selector
and an elementary object is the characteristic set of some object. Consider
an attempt to describe an object by its characteristic set
{<sl:eol>, <53°S,:€0,5> <S5,°5,:€032, <52:eo4>}. Going back to the previous
description method namely {<sl:eol>, <52:A>, <52:eo4>}, where A is described
by {<s3:e02>, <s4:eo3>}, one may observe that two different components have
the same name and thus a rule for the construction of objects is violated,
The corresponding tree representation shows the ambiguity more clearly:

1 2 2
F By
eol 904
S3 54
7 e
e02 e03

Before stating the necessary restriction for characteristic sets, a depen-
dence relation between composite selectors will be defined by means of a predicate
dep., Two composite selectors 711, 22 are called dependent, if one of them is a tail

of the other, i.e.:

dep (%, ,% {33} (2) =ZoZ, v Z, =Z0Z,)

2! aF
For use in some subsequent proofs two consequences of the definition are

given,

If X1 %2 are dependent, then ZloT,xon are dependent, and vice versa:

(*) dep(zl' x = dep(ﬁlof,xzof)

2)
Proof: Assume dep(zl,zz). Then either there ‘exists a x such that xq =Xo%yy Or
there exists a ¥ such that 12 =iloZi. It follows that either
,0T =X oA . oT O X of:%ozlo"c' i.e. dep(%lo’t'xzo't'),

15 2 2
The proof in the other direction is analogous,

If'tozl,x are dependent, then %l,zz are dependent:

2
(x%) dep(Tozl,zz) 5 dep(zl,zz)

IBM LAB VIENNA 2~9 ' TR 25.087

Proof: Assume dep(tozl,zz), i.e., either there exists a 2 such that t°zl = 1025,
or there exists a % such that z_z =tzoto%l.

T‘O — o
(1) 11 z 3

Either Zl is a tail of X5y OF 12 is a tail of Z1 i.e, dep(zl,xz).

(2) 2, = zo’tozlq
A, is atailof z,, i.e. again dep(zl,zz), i

Let C be an arbitrary set of pairs of the form <%X:eo>, C is the characteristic
set of some object, if and only if the selectors occurring as the first elements of
the rairs of C are independent of each other, This condition is called the charac-
teristic condition for C and may be formulated as follows:

<Zlaeol>,<22:e02> eC & <zl:eol> # <x2:e02> > ﬂdep(«l,wz)

Obviously, dep(I,%) holds for any composite selector X, since Z = ZoI for all
2. Therefore, only the form {<I:eo>} is a possible characteristic set using I,
The advantage of using characteristic sets to describe objects is that the dif-
ference in treatment of elémentary and composite objects has disappeared, which
means that the case distinctions between elementary and composite objects will

similarly disappear in certain places.

The result of the application of a composite selector * to an object A may

now be specified by its characteristic set CK(A)’

C’L(A) = {<"L’:eo> | <”Co2:eo>ecA1

The characteristic condition for C is always fulfilled,

®(A)
Proof: Assume <Tlxeol>,<Té:e02>€icx(A) and <tl:eol>_# <Tyieo0,>. Then

A
<rio2:eol>,<2éoZ:e02>e:CA, and therefore -ﬂdep(rloX, 2«1). Because of ()

it follows that ﬂdep(Tl,tZ), ge.e.d.

IBM LAB VIENNA 2-10 TR 25.087

2,6 The Operator }L

A rather powerful operation is introduced as the next step of the development,
It is a two place operation and the operands are an object A and a pair <X B>
where X is a composite selector and B is an object; the result of the operation
is again an object, namely A, where the componert to which = pcints is replaced by

B. The appiication of the operation is written as follows:
MR < X :B>)

There are two important special cases to be mentioned. First, if there is no
~ component of A,i.e, if «(A) = Q@ , then the result of the operation is simply A
augmented by B which becomes the X component of the result, Second, if B= Q then
the result of the operation is just A where the % component has been deleted,

So far only the intuitive idea of what the operation is to accomplish
has been given, The operation will be made precise by specifying the characteri-

stic set of the result for any given A and <%¥:B>,

Let CA' CB be the characteristic sets of A and B, respectively. The charac-
teristic set ?NxA;<x=B>) of the result will be specified in terms of CA, Cg and 1
as the union of two sets:

CP(A3<x‘B>) = {<rieo> | <Tieo>e Cp & ~dep(x,T)} U

{<Texieo> | <Tieo> ey}

The first set, in the following abbreviated by CA" is the characteristic
set of an object which is A with the X component deleted. The second set, in the
following abbreviated by CB" is the characteristic set of an object which has B

as "M component and no other components,

The operation p yields an object for any arbitrarily chosen A and <%:B>,
i,e, does not lead outside the general class.of objects, because the characteristic
condition for CP(A;<13B>) is always fulfilled.
Proof: Assume <Ti=eol>,<Téseoz>‘aC (A; <":B>) and <tl:eol> # <Tzzeoz>.
ﬂdep(rl,tz) must be shown,

(1) <'2'1:eol>,< T,1€0,> €C, 8
Since CA' < CA ,-udep(Tl,Té) follows from the characteristic condition
for CA.

IBM LAB VIENNA 3 2-11 TR 25.087

(2) <T,%€0;2, <T,3e0,>¢€ Cgit

”Cl,’tz must have the form T,'eX, T,'°% respectively, where

1 2

~ 1 ", ' v
<ty :eol>,<’C2 .e02>eCB. Therefore —1dep('t:l 1Ty) » and because of

(%) it follows —1dep(’tl'o7c, Tz'oz), i.e, -xdep(Tl,Tz).

(3) <T,:eo0 >eCA.,A <T2=e02>ec

1°€°1 B'?

In this case = dep(q,Tl) holds for T and T. has the form Tz' e X with

1’ 2

<T,'teo0,>€C From —xdep(z,’tl) and (**) it follows that ﬂdep(tz'w(,’tl),

2 2 B*
i.e, again ﬂdep(’cl,’C‘z).

“he following examples illustrate the consequences of the definition.

Let B be a non null object and

S S
] + 2
¢ A
eo
1
S S
3 4
A
eo
Sg 8¢ 4
g %
605 eo

6
The result of fi(A,<%1B>) for various choices of %X is shown in the following:

(1) p&A;<sBos7=B>)

7

S; F Sy 8, F 8

1
S S
3 4
AL &
.) 304
> o
905 806

(2) J(A; <s3°52:B>)

>

IBM LAB VIENNA 2-12 TR 25.087

(3) }dA;<s7=ssﬂs3°sz=B>) - //\\

VA

s

Now, the above three cases will be repeated, but with B = Q

(4) }L(A;<58°S7SQ>) = A

S5 # Syr Sy # S,

(5) }L(A;<S3952:Q>) = /\

i
54\
eo,
(6) PJA;<S7055°S3°52=§Q>) = //\\
s s
1 2
d
eo
1 53 54
a ©
eo
Sg 4
%
€9

2.7, Definition of Classes of Objects

As already stated in the introduction the well-formed sentences of specific
languages will be identified with a subclass of the general class of objects.,
The specification of particular classes of objects will he qiven either in terms
of predicate logic or by equivalent devices of set theory. Appropriate notational
conventions and abbreviations will be introduced for certain forms of specifi-
cations which have turned out to occur quite frequently,

The specification of a certain subclass of objects, to be identified with
the well-formed sentences of a lanquage, is called the abstract syntax of that

2,7

IBM LAB VIENNA a=13 TR 25.087

language according to the use of the term in current literature (e.g. McCarthy /9/).
Although the entire apparatus of predicate logic could be used for abstract syntax
specifications only a certain number of forms are actually important, i.e, it is
sufficient for the purpose to consider only a certain type of syntax specifica-

tions,

In order to definé subclasses of obiects,nredicates will be defined which are
true exactly for the members of the subclass to be defined. TFor the pre-
sent exposition, the names P, Pl' PZ"" will stand for arbitrary predicates and
ﬁ, ﬁl' ﬁz, ses Will stand for the subclass of objects determined by the respective
predicate.,

In particular, the following basic definition schemata are used for the spe-

cification of abstract syntax.

(1) There are predicates P which are true for certain subclasses of elementary
objects, i.e. Pc EO, How these predicates are defined depends on how the set

of elementary objects EO is specified,

(2) Given predicates Pl' P2, ...,Pn a new predicate P may be defined by the dis-
junction of the given predicates:

P =P VP2VQ||VPn 1)

In terms of sets the equation reads:

B =Bubu...ub

Df
(3) Given n predicates Pl' P2, ...,Pn and n mutually different selectors Sy1 Sy
RVEN si # sj for 1 # j, a new predicate P may be defined by the following

n

equation:

P(A) ;f (HAI,AZ, cenyA) (A =/uo(<slzhl>,<52:A2>’”_'<sn;An>)

n
« Et rian
i=1

1) The meaning of the logical operator 'v' 1is extended to apply not only to pro-
positions but also to predicates, i.e. the definition P(X)D? Pl(x)va(x)v...
VPn(x) is abbreviated to : PD? PIVP2V...an.

2.7

N

IBM LAB VIENNA =14 TR 25.087

The tree representation of objects may help to understand the above equation,
The predicate P defined by the equation is true for objects of the following

where Al' Az,...,A are restricted to certain classes, namely:

A
Ale Pl, A e.Pz,...,A € P .

n

forms

2

The above form of definition is rather bulky for actual use, and therefore a
special notation for exactly this form is introduced:
P = (<sl:Pl>,<sz.P2>,...,<sn:Pn>)
A set of rules of the above forms, i.e, a set of predicates defined by
equations of the forms (1), (2) or (3) may be considered either as a set of rules
to produce objects of certain types or alternatively as a set of rules for analyz-

ing given objects of a certain type. It should be mentioned that by the set of
rules some predicates may be defined recursively.

In particular, rules of form (3) may be formulated as production rules using

the obvious implication:
Py(A)) & Py(Ajle.. . eP (A)) D PU (x5, tA)>,<5,8Ry>, ..., <5 A >))

Given objects Al such that Pl(Al) and A, such that Pz(Az) sese and An such
that Pn(An), then

/Lo(<sl:A1>,<52:A23...ﬁsn:An>) is an object of type P, i.e.

Pgmb(<sl:Al>,<§2:A2a..”<sn:An>)).

Conversely, if an object of type P is given and P is defined by a rule of
form (3), one knows how to analyse the object., In particular, the rule says that
the given object must have an s1 part of type P1 and an S, part of type P2 000
«ee and an S, part of type Pn' In other words, for analyzing a given object of

type P the important implication is:

P(a) D Pltsl(A)) & Pz(sz(A))&...&Pn(sn(A))

2.7

IBM LAB VIENNA 2-15 TR 25.087

The classes of objects which can be defined by means of form (1), (2) or
(3) have the following property in common. For any such class there is a number
N called bound such that no member of the class has more than N immediate compo-
nents, lL.,e, the number of components is bounded, It is easy to see that this pro-
perty holds if one makes the case distinctions according to the three admissible

forms:

(1) : There are only predicates for elementary objects (which do not have any
components) it is therefore sufficient to set N = 0O,

{ : =
‘2)~ P PIVPZVoan VPn

Under the assumption that the bounds for Pl, P2 ""Pn are Nl' Nz, seey

Nn the bound N for P may be set to
N = maximum of Nl, Nz,..., Nn'

(3): P = (<slzPl

It is obviously sufficient to set N = n,

>’ <52,P2>‘.. .’<Sn‘Pn>)

One should however note that the number of elementary components (terminal
nodes of the trees) for the members of a given class is not bounded in general.

Example:

f’l = {eoy} Py = O+ i, ?’2={9“}"

P, = (<5,1P

3 Ll

:P3>) v P

2 ‘

the following are examples for members of P3:

] /\ /\

s s s s
1 1l 2 l s
4 d), d >\
eo eo eo
1 1 1
sl Sl 52
d
. €0, eo,
s, .
d
eo, .
>
2y
d
eo,
The bounds are 0 £or
for P2

2 for P3

The number of elementary components is obviously unbounded.,

247

IBM LAB VIENNA 2-15 TR 25.087

The means so far introduced for defining classes of objects would in princi-
ple be sufficient to cover the intended applications. However, the property of
bounded number of immediate components for any definable class of objects is some-
times inconvenient, aespecially for the treatment of lists and arbitrary collec-
tions of objects of a certain type. The extensions to the defintion tools describ-
ed in the following have been introduced to overcome this limitation,

In the previous definition schemata it was sufficient in any special case to
talk about finite sets of selectors, i.e. where a set can be given by the list
of its members (see definition schema(3)). In order to be able to define classes
of m-jects with an unbounded number of subparts, it is necessary to talk about

infinite sets of selectors, For that purpose predicates over selectors are intro-

duced, and Q, Ql' Qyress will stand for these predicates 1,

The set of definition schemata is augmented by the following forms:

(4) Given a predicate P1 over objects and a predicate Q over selectors a new pre-
dicate P is defined which applies to all objects which can be built from

A

selectors out of 6 and objects of PLL

More precisely, the definition schema reads:

.7A s.)

P(A) = (3A1,A ¢ S1r Spreser Sp

Df 2’00

n
(Et (O(Si) & Pl(Ai)) & A =zﬂ0(<sl‘Al>'<52'A2>"'"<5n:An>))
i=1

In terms of the tree representation the equation says that P is true for
objects of the kind

In the actual use of the definition for the formalization of PL/I the set of
selectors F is assumed to be a subset of the elementary objects EO, In this con-
text it is therefore no longer necessary to distinguish between predicates over
objects and predicates over selectors. Since this is an additional assumption,it
seemed to be advisable to keep the distinction in this introduction,

IBM LAB VIENNA 2=-17 TR 25.087

for an arbitrary choice of n and the constraints: .

84

€ 6 for l<ic<n
Pa)
Ai e P

1 for l<is<n

A special rotation for exactly the above form has been introduced, namely:
P=({<s:py> I 0(s)})

Definition schemata (3) and (4) may also be used in combined form. The most

general case would be:

P = (<513Pl>'oo-'<5ntpn>,
{<s:Pn+1> I Ql(s)}.....
{<szp o> 110 (s)])

with obvious meaning,

For some applications it will be necessary to define objects with an ordered
set of immediate subparts, e.g. for the treatment of lists of elements of some
kind. The simplest way to satisfy this requirement is to define an order for
the selectors or for a subset of the selectors. It is neither necessary nor desir-
able to make specific assumptions about which symbols are members of C, i.e.
selectors. To avoid such an assumption a function is introduced mapping the natural
numbers into the set of selectors. It is of course required that the mapping is
one to one. More specifically, the function introduced is called "elem” and its

application to an integer is represented by:

elem(i)

It yields a selector fpr i:1 and has the property:
elem(i) # elem(3j) for i # j.

It is now possible to introduce still another definition schema that allows
classes of objects to he defined whose memhers have an arbitrary number of or-
dered immediate subparts. Such objccts are called lists. A special elementary (!)
object is introduced, called the null list. The null list will be denoted by:

< >

The following definition schema may now be introduced:

(5) Given a predicate P, a new predicate can be defined by appending the suffix
"-~1list" to the predicate, i.e., the new predicate reads:

P-list

2,7

IBM LAB VIENNA 2-18 TR 25.087

The suffix "-list" is defined by the following equation:

A=< Vv

n n
s p(a,) & Et (A, #Q2) & nzl &
(3 Al' . ’ An)(Eil i i=l i

P-1list (A7) B¢

A =}LO(<e1em(l):Al>,...,<e1em(n):An>))

In other words, the equation expresses that the predicate P-list holds for
the empty list, <>, and for objects of the kind:

elem(1l) elem(2) elen(n)

&5 & B

for some n21 and the constraint:

P(a;) and A, #Q for lsizn

2,8 Further Notational Conventions

2,8.1 Extension of the meaning of the u-operator

The purpose of the extension of the M-operator is to facilitate the replace-
ment of several components of an object in either specified or unspecified order.
One form of the extension will also allow the specification of the set of compo-

nents to be replaced implicitly.

So far, only the form piA;<%:B>)has bz2en permitted. The following extensions

are now defined:
(1) HJA;<%1:BI>, <WpiBy>y ...,<xn:Bn>)
The above form is defined iteratively by the equation:
P(A;<%13B1>; <%2=B2>; -no’<wn=Bn>) ;}L(}L(A;<wl:Bl));<”2=B2>,|av'<’bn=Bn>)

D

for the case n = 0 the form is defined by:

p(A3) = A

‘BM LAB VIENNA 2~19 TR 25.087

(2)

(3)

(4)

(5)

(6)

par{<us> | pyB)l})

The second argument of the above form defines a finite set of pairs«¢ x:B>,
namely the set of pairs for which a certain proposition p(%,B) holds., This
form is reducible to the form (1) in the following way: if the elements of
the set of pairs are written in any linear order and used in the form (1),
then the result is the result of the present form provided (!) that the order
of pairs is not significant, If the order is significant, the result is un-
defineds The form yields for the empty set:

Aa (D) = a
The second argument may also be the union of some implicit defined sets:

P(A,{<113B1> I Pl(,’tl'Bl)} Useseo UV
{<x 2B > | p (% 4B)]

}Lo(<’bllAl>: Wp3Ry>r eeey <xn:An>)

The restriction for the above form, that no 'wi is a tail of Zj for i # 3
and 1%i,jsn, is dropped.

The meaning of }Lo may be redefined by the following equation:

Pol<¥ 321> <Tatdy>y weey <u 3B > B¢

piggt <%

lsAl>, <%2;A2>, eoey <%n:An>)

Pb({<%=A> | p(w,A)})

The above form is analogous to (3)and defined by:
poti<xsa> | poo,a)}) 5. w(Qif{<wns | por,m}

S(Al'xly %2' seey %n)

The above form -deletes the %
following equation:

i components from A and is defined by the

S(Rs Wys Wpr eeer %) pag <x 38>, <1y Q>, ...,<fx,n:Q>)

[=j}]

i

Sar{w| pt)})

The above form is analogous to (5) and defined by:

§ifx | p}) 5p pai{<x:Q> | p)])

2.8.1

1BM LAB VIENNA 2-20 TR 25.087

268.2 Manigulation of lists

Lists are an important class of objects. To facilitate the manipulation of
lists a number of functions, operators and abbreviations are introduced which cor=

respond closely to the conventional means for the purpose.,

First a predicate, is-list, is introduced which holds for any list whatso-

ever, The predicate may be defined by:

is-list (A) (3 Pp) (P-list(Aa))

Df
Furthermore, an abbreviation for denoting an element of a list is introduced.
Let L be a list, then:

elem(i,L) elem (i) (L)

Df
The length of a list is defined as the largest index of an element which

is not the null object:

length (L) = is-list (L) —

(L = <> —= o0,

T —= (1i)(elem(i,L) # Q & elem(i+l,L) =Q))

The following three functions yield when applied to a list, the head (which
is the first element of a list if it exists), the last element of a list (if it
exists) and the tail of a list (which is the original list except the first ele-~

ment) &
head(L) = is=-list(L) & (L # <>) — elem(1l,L)
last(L) = is-1list(L) & (L # <>) — elem(length(L),L)
tail(L) = is-list(L) & (L # <>) —=

(length(L) = 1 — <>,
1ength(L)>l — pb({<elem(i):elem(i+l,L)>|
‘ 1si< (length (L) -1) }))

The concatenation of two lists is defined by:
L, = is—list(Ll) & is-list(Lz)-—*-

1 2
}L(Ll:{<elem(length(Ll) +i) selem(i,L,)>|
l<i<length (L,) 2!

IBM LAB VIENNA 2=21 TR 25.087

Multiple concatenation is defined by:

n
CONC L, =1L L ')
i 1 2 n
i=1
As a convenient form to denote lists one may enumerate the elements within

pointed brackets. The form is defined by:

-

<Byr Ayy weey A > B pb(<elem(l)=Al>, <e1em(2):A2>, ...,<elem(n)=An>)

for o 1, Ai # G (l<icn),

An alternative form is: L
i

) Implicit Definitions

=

Implicit definition means in the present context that for the definition
of a function (and later on also for instruction schemata) a problem is stated
rather than an algorithm specified, say by conditional expressions. The reason for
definition by stating a problem is that this 1is sometimes much more intelligible
than any special solution to the problem. However, in using implicit definitions
one has carefully to ensure that a solution to the problem indeed exists, more
precisely that an algorithm exists which solves the problem. In particular, all
definitions which contain the t operator or a set definition of the form
{x | P(x)} are implicit definitions.

The definition of the length of a list as given in section 2.8.2 may serve
as an example, The use of the t operator makes the definition implicit. The prob-
lem stated is to find the greatest index i such that the ith element of a given
list is not the null object, It is quite obvious that a solution and an algorithm
for this problem exist, since a list is a finite sequence of non null objects ac=

cording to the definition,

The following algorithm would indeed resolve the problem:

h(L,i) = (elem(i+l,L) = @ —e 1,
T —» h(L,1i+1))
length(L) = (is~list(L) —= h(L,0))

So this definition is not longer, it is not as transparent as the implicit de-
finition, In more complicated cases the difference between the two definition meth-

ods would become much more apparent especially with regard to their lengths,

2.9

) E At RoFul ="
= T TEERY i YR 7T
- I -
. en1 - B | B
e o= 4 . I A =L N A= m o1l B N Wi T RN Wty = Qj,
L anriph wa B e
1
o S| LI | i I-"l—:‘ |-'| |r l"—l “‘ B I L]
1 N [i A
-l
|‘ P o= AR -i:l tar =F i my = m"
- -."_I_I"‘,.T!r o Im_ _§ ‘__:::_
e drrdad el - . b G- T “im = BT ol B R
u my o= i & T fATE a e eyl ale? o 1 W = FEY Al nuldiared B
* e AN R T -l Jegme O o ‘a S g O dmaw ofa frartd AR
Jo *Jg L V™ puygvyy “r*pwn v Bifdr ok ' . 1 me _ "o L
"= b Ji ‘qg:[SR (TR 1'.-,'11:_‘-‘- =g wi= ‘1‘""‘1, 10y . ¥ .
= 4 a ghy mTE o s ogm o oep3p : rINge Poord g A
I iiyo ' oam - 1 = pamigy =§r . u ks v B {3 yim wuTy
=l oA 4§ Leb ¥ s T 4 B ume o il L
P I R LI TS Ty Jre g " ox
. ¥ ars R . divd f?! LR fin Fakbip J gfomon Y - gt - iy
ir v 2w Doy oot e plop add pauer andeusge) sed §n 0 our b 0 qumay e w
pre g Y ropemle oy owoad fea o ksher resdeeun erg L] W g S L
5 e ma lpep ¥ dorn 5 ormeT eIy gL UL N 2T e Eoem B oAy A 48]
, SHEVGE J . L Mg o eageemn SpIedE oy oexhl SIE 4 B PR fResmrE, RULA| YT
ST A= L . = = IE 4=
T gy 1 oaey mrozaen w N T
A o HNT AT B SER L AR
| od “pu”) ¥ wo—= %
LAFE, P " e T T,y J PR,
Se= St BLY N g - 1* b i g ==L am eb o e atel '
“={ aft oft A P = . PN S err g Bl g b, =030
LS T . = Oy B . . - T i e e 5 PR -

IBM LAB VIENNA 2= TR 25,087

3. APPLICATION TO ABSTRACT SYNTAX AND REPRESENTATION OF LANGUAGES

Throughout the rest of this report possiblz applications of the tools pro-
vided by the previous chapters to languages will be suggested by defining the syn-
tax and semantics of the simple programming language EPL described briefly in
Section 1,2, The present chapter is concerned more specifically with problems of a
syntactical nature and their solution by means of the methods of Chapter 2,

Two basic types cof snytax, viz, abstract syntax and concrete syntax, may be
considered to be constitutive of the syntactic definition of a language, An abstract
syntax is one which only specifies the expressions of the language as to the struc-
tures significant for their subsequent interpretation and not as to how they are to
be expressed for the purpose of communication either to oneself or others. A con-
crete syntax is one which specifies the expressions of the language as a set of
character strings, Once the syntax of a language has been given, i.e.,, once it is
possible to determine what categories of well-formed expressions a language is 'to
have, one can ask questions as to the possible meanings to be assigned to these ex-
pressions. However, depending on the type of syntax taken to constitute the syntac-
tical definition of the language, the solutions to the problems of meaning and re=

presentation wil: JS«frex,

Assume, for the moment, that the syntax of a language has been specified by an
abstract syntax., Then the language can easily be interpreted by attaching meaning
directly to the expressions as specified by the abstract syntax, However, in such a
case, it is of interest to ask not only what the meaning of expressions might be,
but also how one might specify their possible concrete representations as character
strings, This problem of representation is solved for the programs of EPL, as spe-
cified by the abstract syntax, by means of the replacement system given in section
31242, The meaning of the programs of EPL, as specified by the abstract syntax, is
defined by means of the interpreter of Chapter 5. The same method was used for
giving a formal definition of ALGOL 60 in /20/ and /21/.

If, on the other hand, the syntax of a language had been specified by means
of a concrete syntax, then the question of a concrete representation does not arise
since the concrete syntax itself defines this representation, The question of the
meaning of the expressions of the language still remains to be solved and one might
be tempted to think that an interpretation might be given outright by attaching
the meaning to the strings of characters producable by the syntax, .In the case of
the formal definition of the semantics of complex programming languéges such direct
interpretation has proved to be rather impractical and, hence, there has developed

3.

TR 25,087

(38}

IBM LAB VIENNA 3=

a tendency to translate the expressions specified by the concrete syntax into scme
kind of abstract normal form before attempting to define their meaning. In such a
case the set of expressions of the language in abstract normal form may be said to
constitute an abstract syntax of the language. The problem of specifying the corre-
lation between a given language whose syntax is considered to be constituted by a
concrete syntax and the normal form of these expressions as specified by means of
an abstract syntax is discussed in the closing s2ctions of this chapter. In partic-
ular, the problem of the meaning of programs of ErL as specified by the concrete
syntax is solved by first specifying a translator from these expressions to their
corresponding abstract normal form as specified by the abstract syntax of EPL and
then interpreting these latter expressions by means of the interpreter given in
Chipter 5 The same method was used for giving a formal definition of PL/I in

74/ = /8/.

Section 3,3 serves to correlate the notion of abstract syntax, as ‘defined by
means of the devices of Chapter 2, with the Backus Normal Form which has been used
to define the concrete syntax of a number of programming languages., In Section
3.4.1 the usual Backus Normal Form notation is extended by means of a definitional
extension, i.e., certain convenient shorthands are introduced. This extended Backus

notation is used in Section 3.4.2 to give the concrete syntax of EPL,

3.1 Abstract Syntax of EPL

One way of specifying an abstract syntax is by means of the methods presented
in the previous chapter, i.e. by defining a class of objects, Hence, for the pre-
sent purposes; an abstract syntax is defined to' consist of a specification of the
sets EO and S, a specification of predicates by means of the definition schemata
described in Chapter 2,7, and a choice of one specific predicate whose correspoqd-
ing class of objects is identified with the set of expressions of the language to

be defined,

In specifying the abstract syntax of EPL the aim is to define a class of
objects, which can in a useful way be identified with the programs of EPL (as
described intuitively in 1,2), i.e., the objects must mirror the structure of the
corresponding programs, Hence, there is essentially no arbitrariness in the choice
of the structure of objects, but the choice of the specific selectors, predicate
names and symbols for representing elementary objects is arbitrary and only govern=-
ed by mnemonic considerations. Let the set of objects representing the set of pro=-
grams that can be formulated in EPL be denoted by is-ﬁ%ogr.

IBM LAB VIENNA 3-3 TR 25,087

As a notational convention all predicates have a prefix "is-" and all selec-
tors have a prefix "s-" except possibly identifiers, which are also used as selec-
tors, because their structure has been left completely unspecified. The predicate
definitions are labelled (Al), (A2), ... for reference purposes,

is%ia an infinite set of identifiers;

isclog a set of constants dencting the truth values}

is=int an infinite set of constants denoting the integer valuesj
ia-uﬁ%ry-rt a set of unary (one-place) operators;

is-bfhary—rt a set of binary (two-place) operatorsp

{INT,LOG] two attributes used to distinguish integer variables

from logical variables.,

These sets are assumed to be mutually exclusive. The set EO consists of the
union of the sets enumerated above, thus:we can also write

EO = is%id u isﬁlog U isﬂintg v is-uﬁéry-rt u is-biﬁary-rt v {INT,LOG |

The set of selectors S necessary for the specification of the abstract syntax
of EPL is infinite since the set of identifiers, the members of which are also
sealectors, i1s itself infinite, However, the set of selectors that are not identi-
fiers is finite and actually quite small and may, therefore, be enumerated explicit=

ly. Hence, we can define the set S as follows:

S = { s-decl-part, s-st-list, s-param-list, s-st, s-expr, s-left-part,
s-right-part, s-id, s-arg-list, s-op, s-rd, s-rdl, s-rd2,
s-then-st, s-else-st} v 1s%i4,

Note that the set of identifiers is®id belongs to both EO and S, i.e., the
sets EO and S have a common part,

The predicates necessary for the specification of the abstract syntax of the
example language are defined using Schemata (2), (3), (4) and (5) from Chapter 2%

is-block

(<s=decl-part:is-decl-part>,
<gs=st=list:is=-st-1list>)

(A 3) dis-decl-part = ({<id:is-attr> || is-id(id)})

(A 4) 1is=-attr = is-var—-attr v is-proc-attr v is-funct-attr
(A 5) is-var-attr = {INT, LOG)

(A1) is-progr
(A 2) 4is-block

IBM LAB VIENNA 3-4 TR 25,087

(A 6) is-proc-attr = (<s-param-list:is-id-list>,

<s=stiis-st>)
(A /) is-funct-attr = (<s-param-list:is-id-list>,

<s=st:is-st>,

<s—-expr:is<expr>)

(A 8) 1is-st = is-assign-st v is-cond-st v is-proc-call v is-block
(A 9) is-assign-st = (<s-left-part:is-var>,

<s-right-part:is-expr>)
(Al0) is-expr = is-const v is~var v is-funct-des v is-bin v is-unary
(Al1l1) is-const = is-log v is-int
{Al2) is-var = is-id
(A13) is-funct-des = (<s=-idsis=-id>,<s—-arg-listsis-id-list>)
(Al14) is-bin = (<s~rdl:is-expr>,<s-rd2:is—-expr>,<s—-op:is-bin-rt>)

1)

(Al15) is-unary = (<s-rd:is-expr>,<s-op:is-unary-rt>)
(Al6) is=-cond-st = (<s-expr:is-expr>,<s-then-st:is-st>,<s-else-st=is-st7)

(A17) is-proc-call = (<s-id=is-id>,<s-arg-list:is~id—list>);) 2)

The programs of EPL are now identified with the members of is—ﬁ}ogr.

One may observe that in defining the abstract syntax of programs of EPL
no specification was necessary as to the order of components or of special punctua-

tion marks,

Some examples of components of members of the c¢lass is-é}ogr in tree represen=-
tation are given below, These components are variables, unary and binary expressions,
Their respective tree representations will be accompanied by their usual character.
string representations using parentheses. For the purpose of these examples let
MINUS be a uvnary operator and MULT and ADD be binary operators,

Key to abbreviations (prefixes and suffixes omitted):

attr attribute param parameter

arg argument proc procedure

bin binary (two places) progr program

cond conditional rd operand

decl-part declaration part rt operator

expr expression st statement

funct function var variable

id identifier
1 includes single identifiers and hence procedurz names and function names,
2)

completely identical to is-funct-des,

IBM LAB VIENNA 3=5 TR 25,087

Examples
(a) ig according to (AlO) and (Al2),
(b) //;\\\ according to (Al4) and (Al5)
d//§-op s=-rd
MINUS /t\
S=0op s=rdl s=rd2
c// \o ‘__\O
ADD id id

Usual notation: =(a + b)

according to (Al4)

d/i;op -rdl -rdZE\\\a\\\o
MULT >\
—op —rdl s=-rd2
‘\a
ADD ldl id2

Usual notation: (a + b) . c

It is of importance for later use of the abstract syntax that certain classes,
e.g., the subclasses of the class of expressions, be mutually exclusive, As a con-
sequence of this requirement one can ask whether a given expression is a constant,'
a variable, a binary or a unary expression, in any order without affecting the out-
come of the inquiry; in addition, the above series of questions is exhaustive,
Definitions (A2),(Al10), (Al4) and (Al6) are recursivel), since in each case
the definiens refers (indirectly) to the definiendum. On the other hand, these de-
finitions contain alternatives which are not recursive so that the definitions
are not circular, E.,g.,, the non-recursive alternatives of (AlO) are is-const,
is=var and is-=funct-des,

1)

Recursive is used in the sense in which it is used in literature or programming
and computers.

In formal logic, however, recursive is used synonymous with computable while the
above property is called self-referencial, reqressive or recurrent,

IBM LAB VIENNA 3-6 TR 25.087

The number of immediate components of any element of a class of objects de-
fined only by means of the definition schemata (1), (2) and (3) is of course bound-
ed, For example, the bound for the number of immediate components of any element
of is-ékpr is 3. The number of terminals of the class is-é&pr is, however, not

bounded,

If definition schema (4) is used for the definition of a class of objects,
the number of immediate components of a member of this class may be unbounded,
A
For example, the number of immediate components of members of the class is-decl-part

is unbounded.,

3.2 The Definition of Concrete Representations

To define a concrete representation for the expressions of a language speci-
fied by means of an abstract syntax means to associate with any expression of the
language one or more character strings of finite length. Since the expressions of
languages have so far been identified with objects, defining a representation means

more specifically the association of strings of characters with objects.

It is usually assumed that the expressions of a language are interpreted in
such a way that, in general, different expressions have different meanings.

A representation is therefore only useful if it is possible to decide whether
a given character string is the representation of an expression and if so, the ex-
pression must be uniquely determined by its representation. A representation satis-

fying these conditions is called unambiguous.

In the first part of this section a representation system suitable for de-

fining concrete representations of languages is presented.l) Tne central part of
the system is a set of conditional replacement schemata which permit the specifica-

tion of replacement processes leading from abstract expressions of the language

to their possible concrete representations.

In the concluding part of the section a concrete representation of EPL will

be defined by means of the representation system.

1) Such a system, with a few generalizations, has been used in /21/.

~J

IBM LAB VIENNA 3- TR 25.087

3.2.1 The representation system

The first step in specifying the representation system for a language is tc
give an alphabet of terminal :ymbols. This alphabet can be conceived as the union
of two sets. The elements of the first set represent uniquely the elementary ob-
jects of the abstract syntax of the language; this set will be, in general, infi-
nite. The second ix a finite set of so called delimiters which are used to reflect

the structure of the objects of the language when they are represented as strings.

In the preesent context terminal symbols will be considered as atomic characters.

Let the unique representation of the elementery objects eo by terminal sym-
pols be defined by means of a function rep(eo) and the set of delimiters be de-
noted by,J!. Then the set of terminal symbols 7' can be defined by:

T = {rep(eo) | eo€EO}u <

" ; . ’ o el . '
A terminal expression is an arbitrary meta-expression) denoting a terminal

symbol depending on the free variables occurring in the expression. Terminal sym-

bols are considered to ke special cases of terminal expressions.

In order to fcrwmulate the replacement schemata of the representation system

the notions of non-terminal and of non-~terminal expression are introduced.

A non-terriinal is composed of a non-terminal name and a (possibly empty) list

of arguments which are objects. Non-terminals have the following form:

NONTERM{obl,...,ob&]

i.e., non-terminal names are underlined capitalized words and the argument list is

enclosed in a pair of brackets (except that the brackets are omitted when the argu-

ment list is empty).

A non-terminal expresgion is a meta-expression denoting a non~terminal de-

pending on the free variables occurring in the expression and is written as follows:

NONTERM[exprl,...,exprn]

where eXpr,,...,8Xpr are arbitrary meta-expressions denoting objects.

1) To distinguish the language in which the definitional tools are expressed from
the object language to be interpreted, the prefix "meta” will be used for the
former. Thus, the notational devices introduced in 1.2 belong to the meta-
language.

e2iegl

IBM LAB VIENNA 3-8 TR 25.087

For each non-terminal name NONTERM there will be one or more corresponding

conditional replacement schema of the following general form:

P(Xyseees¥p,tyseeest) :NONTERMIE, ;.00 ,t 1 = “J‘(xl,.. crX ity seeest)

tl""’tn are the parameters and XyjseeorX, are the auxiliary variables of the rule.
p is a meta-expression, called the condition of the rule, and denotes a truth-value
depending on the free variables xl,...,xm,tl,...,tn. T denotes a string consisting

of non-terminal expressions and terminal expressions in the free variables

xl""’xm'tl""’tn“

A schema of the above type is to be understood in the following sense: For

each assignment of specific objects x?,...,xg,tg,...,tz as values of the variables
xl,...,xm,tl,...,tn, if the condition p is satisfied, then the non-terminal
NONTERM[tO,...,tOJ may be replaced at any of its occurrences in a given string by

. ~,.0 o ,o o
the string b (xl,.,.,xm,tl,...,tn).

In the special case of a schema not depending on a condition the form is:

NONTERM[t st :'ﬂ'(tl,...,tn)

17°°

with obvious meaning.

The representation system is now defined as the quintuple

(Al?rflﬁvn)

where A is the abstract syntax of the language to be represented,7'is the set
of symbols, KN is the set of non-terminal names, H is the unique non-terminal name
out of JT called the head of the system and R is the set of conditional replace-

ment schemata.

For each abstract expression £° specified by the abstract syntax, at least
one concrete representation of t° can be found by means of a replacement process.
A replacement process is a sequence of string 'Xo'—wl""’ Kk’ where 5!0 is the
non-terminal g[toj and K‘i+1 is obtained from I i (for Osi<k) by the application
of one of the conditional replacement schemata of R . The 1last string r " of the
sequence consists solely of terminal symbols and constitutes a concrete represen-

tation of to.

IBM LAB VIENNA 3=9 TR 25.087

3.2.2 A concrete representation cof programg of ERIL

The method used in /Z1l/ and described in the previous section of this chapter
will now be demonstrated by wans of its application to the abstract syntax of EPL

giver ian 3pi.

The functicn rep which, when applied ‘o elenentary objects, e.g. identifiers,
constants, and operators, yields their corresponding terminal symbols, is defined

as follows:

rep(t) =

is=id(t) ——= rep-id(t)
is-const(t) —— rep-const(t)

(is-bin~rt v is=unary-rt) (t) —— rep~rt(t)
t = INT -——= INTEGER

t = LOG — LOGICAL

Note: The functions rep-—-i7d, rep--const and rep-rt are one-to-~ocne. The domain of
rep-id is the set of identiriers is?id and the range is 3ome set of identi-
fiers as specified by some concrete syntax or some implementation. The
domairn of rep-const is the union of the set isélog and is®int and its range
is the unicn of the sets of logical and integer constants as specified by
some concrete syntax or some implementation. The domain of rep-rt is the
union of the sets is-b?h-rt and is-ungry-rt and its range is the union of

the sets of binary and unary operators as specified by some concrete syntax.

The members of the quintuple constituting the replacement system required
for the present example will now be defined without much comment so that the

manner of application of the method will become apparent to the reader.

The set of non-terminal names Jr is defined by means of a tabular enumera-
tion of its elements. Each member of the set will be accompanied by a suggested

reading. The first non-terminal name is the head of the system, hence

H = PROGR
(N1) PROGR program
(N2) BLOCK block
(N3) DECL declaration part
(N4) STL statement list

cont'd

IBM LAB VIENNA 3-10 TR 25.087

(N5) ST statement

(N6) EXPR expressiorn

(i)« 1) } identifier lists
(N8) ID'

The set % of terminal symbols is defined by means of the union of the set of

delimiters and the range of the function rep.

ﬂ'= {BEGIN,END,PROCEDURE,FUNCTION,CALL,IF,THEN,ELSE,RETURNS;
e e { .
(l)i,l""‘“ } u‘;reP(t) ltEEO}

5ince the terwminal symbols are not underlined they are ciearly distinguish-
able from the underlined non-terminal names when they are written Jjuxtaposed next
to each other. The only exceptions are the parentheseé;semicolon, comma, and
equality, and they are written especially heavy to indicate that they are terminai
symbols standing for themselves.

The abstract syntax 4 consists of definitions (Al) to (Al7) on page 3-7.

The schemas of the set of conditional replacement schemata R are listed next
and labelled (Rl}, (R2),... for reference purposes.

(R1) PROGR[t]==%BLOCK[t]
(R2) BLOCK[t]===>BEGIN DECL[s-decl-pt(t) JSTL[s-st-1list(t) JEND

(R3) t = § :DECLLt]=— A
is-var-attreid(t): DECLLt]==rep-id(t)rep(id)j DECL [{(t;id)]
is-proc-attreid(t) :DECL(t] =PROCEDURE rep(id) ID[s-param-listcid(t)]j
§Z[s-st°id(t)]; DECL[J (t;id)]
is-funct—~attreid (t) :DECL[t] == FUNCTION rep(id) lg[s-param-listoid(t)]i
ST[s-stoid(t)]
RETURNS EXPR[s-expreid(t)]j DECL{J(t;id)]

I
o

(R4) length(t)
length (t)

: ID(t] =—= A
O : ID[t] =—=(ID'[t])

\

1

(R5) length(t)
length(t)

: ID'[t] == repchead (t)
: ID'[t] ===>rep°head(t)’ ID'[tail(t)]

Vv
=
L1

IBM LAB ViENNA 3kl TR 25.087

(R6) length(t) = 1 : STLIt}=—=STlhead(t)]
length({t) > 1 : STL[t]=——r—*'_S_2[head(t)]" STL[tail (t) }

(R7) is-assign-st(t):ST[t]l==>repes-left-part(t) = EXPR{s-right-part(t)]
is-cond-st(t) :ST{t]=—=IF EXPR[s-expr (t) JTHEN ST[s-then-st(t)]
ELSE[ST s-else-st(t)]
is-proc-call (t} :ST[t]=-—=>CALL repecs-id(t) ID/ s-arg-list(t)] s
is=block (t) :ST{t]—>BLOCK[t]

(R8) is-const(t) :EXPR{t]=—=rep(t)

fs=var(t) :EXPR{t] ==rep(t)
is-func-des (t) :EXPR[t] ==>repes-id(t) ID[s-arg-list(t)]
is=bin(t) :EXPR{t] = (EXPR[s-rdl (t) Jrepos-op(t) (EXPR s-rd2(t)])

is-unary(t) :EXPR[t] ==repes-op(t) EXPR[s-xd(t)]

This completes the definition of the replacement system whkich in turn con-
stitutes a definition of a set of possible representations of members of the set

A
is~progr, i.e. of the programs of EPL.

IBM LAB VIENNA 3-12 TR 25,087

3.3 The Correlation of Abstract Syntax and Backus Normal Form

This chapter is intended for the reader who knows Backus Normal Form and
therefore will get some insight into the properties of abstract syntax specifi-
cations by considering its relation to syntax specifications in Backus Normal
Form, (called concrete syntax for short). The following formulation is used for
Backus Normal From specifications. A syntax specification is given by an alphabet
of terminal symbols 7" , a finite set of rules of a particular form specifyiné séts
of strings over 7 and one selected set of strings which is said to be the set of
wellformed expressions of the language to be defined,

The following symbols will stand for:

oLy obyr cbyy ses arbitrary elements of the alphabet T
M, Ml' Mz, ee e arbitrary names for sets of strings;
Wo Wer Wor ses arbitrary strings over T3

w " ow

1 5 s concatenation of Wy and w2 o

The rules of a syntax specification may assume the following particular formss

(1) M= {cc}
(2) M = Ml U 1\12 T ¥ e U Mn
(3) M= Ml M2 s Mn A A A
where Ml Mz) Mn= {Wl w2 e+ an | Wle Ml& erMz& R

Df
vee & Wne Mn}

There are two purposes served by a Backus Normal Form definition, The first pur-
pose is to define a set of strings (well formed expressions) and the second to define
a phrase structure for each of these strings, The correlation will be establiéhed
by reinterpreting the definition schemata of an abstract syntax to serve the same
purposes. The only addition to be made to our formalism is the definition of an
order for the set S, i,e., an ordering relation s,<s, is defined for any pair of se-

lectors s s

i R
Haring defined an order for selectors one can immediately associate an order
for the composite selectorsx = S °Sn-1°+9¢°S) namely the alphabetical order with

s, as the most significant position and s, as the least significant position,

IBM LAB VIENNA 3-13 TR 25,087

Considering an object characterized by {<x1:e1>,< xzzezﬁ...f'xn:en>} and
'x1< Xz < se0¥ %n the associated string of symbols is defined to be elﬁ ezr‘...
..f\en. and is called terminal string of the given object. By this device an ab-
stract syntax defines on the one hand a set of strings (over the set of symbols

EO) and on the other hand, by the very structure of each object,a structure for

each of the terminal strings,

For each syntax specification in Backus lormal Form one can now specify a

corresponding abstract syntax,

Let a concrete syntax be given by an alphabettﬂ,a set of names for sets of

strings ‘and a set of rules.,

A corresponding abstract syntax is then described by:
(a) EO = T 3
(b) some ordered set of selectors S;

(c}) each name M of a set in the concrete syntax is associated with a predicate
P, in the abstract syntax such that if M, # M, then P # P, 1
M 1 2 M1 M2

A
(d) rules of the form M = {w} are transformed to PM = {M};

(e) rules of the form M = M, U M, U ,,, U Mn are transformed to

1 2
P =P v P V s8¢ V P o
M Ml MZ Mn i

(f) rules of the form M = M1 M2 see M are transformed to Py = (<slzPM >,<52:PM >,

-..fsn:P >) where s, is the first selector and Sy Sy eee 5 are immediate

M 1
successor® using the order given for s;

(g) 1if M is the head of the concrete syntax then Py is the head of the abstract

syntax,

The set of strings defined by the concrete syntax is identical with the set
of terminal strings of the objects defined by a corresponding abstract syntax,
Thus all sets of strings, which can be defined using Backus DNormal Form can also
be defined by using definition schemata (1), (2) and (3) of chapter 2.7, The

IBM LAB VIENNA 3-14 TR 25,087

phrase structure defined by the concrete syntax will be identical to the phrase
structure defined by the corresponding abstract syntax because of the one to

one correspondence of the respective rules.The structure of the parsing tree ac-
cording to the concrete syntax for a given string will, apart from redundant nodes,
be the same as the structure of the respective object.

It is therefore possible to conclude that the concrete syntax is ambiguous
if there are two different objects defined by the corresponding abstract synéax
whose terminal strings are identical., However, the reverse conclusion is not

in general true as shown in the example below,
Consider the syntax given by:

T=1{x}, M, = My, M= {x] . M, = {x} » head is M,.

This concrete syntax is clearly ambiguous since there are two derivations for

X, namelys

1 1

M
|
]
|
X

The corresponding abstract syntax defines, however, only one object, namelys

3.4 A Concrete Syntax for EPL

Before proceeding to the statement of a concrete syntax for EPL the well=-
known Backus Normal Form notation will be extended by adding some convenient
shorthands., This extended Backus notation was developed in an attempt to give a
clear and readable description of the concrete syntax of PL/I (cf. /5/).

IBM LAB VIENNA 3=-15 TR 25,087

3.,4.1 The extended Backus notation

In the following the meaning of the extended forms of Backus notation will be

explained by giving the equivalent forms in Backus notation,

In section 3.3 the discussion of Backus Normal Form was carried out in set-
theoretic terms, Here; the point of departure will be Backus Normal Form in its
usual notation, i.c. we will start with a grammar whose rules have the form ’

V :3= 8 IS |lll|s

1 2 n

{with the reading: V is to be replaced by one of the alternatives Sl, Sz, Y Sn')

In the presentation of these and the following rules, '::=' and '|l' are meta-
linguistic connectives and
U denotes arbitrary syntactical units which may be combined

to form strings. These units are either terminal symbols

or non-terminals.

v denotes non-terminals,
Si denotes arbitrary strings.,
Tj denotes strings different from the empty-string,

The introduction of the meta-linguistic symbols '{', '}', 'C', '1'» ',
(the last is a fat dot) is determined by the following definitions:

(1) Viis=8, Ty S, | S) Ty S, | ees | S; T S,

may be replaced by

¢ | .18

V=S, {T, | T -

2;--
and vice versa. (Note: the rule remains valid for the case n = 1,)
Example: variable-declaration ::= (INTEGER | LOGICAL |} variable

instead of

variable-declaration ::= INTEGER variable | LOGICAL variable

3.4.1

IBM 1+3 VIENNA 3-16 TR 25,087

(ii V 1= Sl 52 I Sl Tl 52] K} I Sl Tn 82
may be replaced by

V s$3= S [Tl | T2 | “eaw i Tn] Sz

1

and vice versa. (Note: the square brackets differ from the curly brackets in
that it is allowed to replace the square brackets and their content by, the

empty-string,)
pExamples function-designator ::= identifier [argument-list]

instead of

function-designator ::= identifier | identifier argument-list

(iii) v ss=Uu | VU

or

may be replaced by
V ::1= U eee

and vice versa, (Note: in the case of the inversion, if U ... occurs in a
grammar which has no production rule corresponding to the schema

V 33= U eee)

then this missing rule is to be added to the grammar with a non-terminal
V which has not yet been used in the grammar, before the replacement can.be

performed,)

Example: integer ::= digit eee
instead of

integer ::= digit | integer digit

TBM LAB VIENNA 3-17 TR 25,087

(lv) V 3= 8 T1[{T2 Tl}ooo] S,

i
may be replaced by
V 1= Sl{ T, ® T]eee S,

and vice versa, (Note: instead of 'Sl[{ T2 P Tl oo}] SZ' also
'Sl [T2 ° Tl YY R 52' may be written,)

Example: declaration-list ::= { jedeclaration eee}
instead of

declaration-list ::= declaration [{;declaration}.oo]

3,4.2 A concrete syntax

We are now in a position to give a concrete syntax of the example programming
language using the above notation. The rules constituting the syntax specification
are numbered (Cl), (C2), ... for reference purposes and they are here stated without
elaborate commentary. The reader should compare this syntax with the intuitive
description of the features of the language as stated in the introduction (page 1-3)
and with the abstract syntax of section 3.1 to improve his intuitive understanding
of the sginficance of the concrete syntax specifications,

(Cl) program s::= block
(C2) block ::= BEGIN declaration-1list; statement-1list END
(C3) declaration=list s:= {7odeclaration ...]
(C4) declaration ::= variable-declaration | procedure-declaration |
function-declaration
(c5) variable-declaration :i3= { INTEGER | LOGICAL } variable
(C6) procedure-declaration ::=
PROCEDURE identifier [parameter-list]; statement
(C7) function-declaration ::=
FUNCTION identifier (parameter-list]; statement RETURNS expression
(C8) parameter-list ::= ({,e identifier eee))
(C9) statement-list ::1= [;e statement eee]
(C1l0) statement ::= assignment-statement | conditional-statement |
procedure-call | block
(Cll) assignment-statement ::=
identifier = expression

3.4.2

LBM LAB VIENNA 3-18 TR 25,087

(Cl2) expression ::= constant | variable | function-designator |
binary | unary

(C13) constant ::= logical-constant | integer-constant
(Cl4) variable :3= identifier
(C15) function-designator ::= identifier [argument-list]
(C16) argument-list ::= ({,eidentifier eee})
(C1l7) binary ::= (expression binary-operator expression)
(Cl18) unary ::= unary=-operator expression
(C19) conditional-statement :i=

IF expression THEN statement ELSE statement
(C20) procedure-call 3=

CALL identifier [argument-1list]

The set of basic symbols of EPL is defined to be identical with the set T
of section 3.2.2, The range of the function rep, used in the definition of T ,
is defined as the union of the sets of logical constants, integer constants,
identifiers, binary operators and unary operators (cf, (Cl13), (Cl4), (Cl7) and
(Cl1l8)) . These sets are not further specified here,

3le5) The Translation of Concrete Programs to Abstract Programs

The problem is to describe the translation of a concrete program into an
abstract program, i.e., the translation of a string producable by the concrete syn=

tax into an object whose structure is described by the abstract syntax.

A program as produced by the concrete syntax is a string of concrete charac-=
ters, i.e., of members of the alphabet of terminal symbols T (cf. Section 3,2) of
the language under discussion (for EPL, T is defined on p. 3-10). In order to re-
main within the range of the methods and concepts for formal definition as explain-
ed in Chapter 2, the strings of concrete characters are mapped onto lists of char-
acter values, i.,e,, of abstract elementary objects representing uniquely the con-
crete characters, Thus, in the remainder of this chapter, a concrete program is a
list of character values. The one-to-one mapping between concrete characters and
character values can be given by a table, e.g., for EPL, by the following table:

iBM LAB VIENNA 3-19 TR 25,087

Concrete character Predicate satisfied by the corresponding
character value

BEGIN 1s-BEGIN)

END is-END

PROCEDURE is=-PROC

FUNCTION is—~FUNCT

INTEGER is=-INT

LOGICAL is-LOG

CALL is-CALL These predicates are satis-

IF is-IF fied uniquely, i.e., for each

THEN is-THEN r there exists exactly one

ELSE is-ELSE elementary object to which it

RETURNS is~RETURNS applies.

(is=LEFT-PAR

) is=-RIGHT=-PAR

! is=-SEMIC

’ is=coMMA

= is=EQ)

identifier is-c-id

integer-=constant is-c-int

logical=constant is-c-log

binary operator is-c=bin-op

unary operator is=c-unary-op

The translation from concrete programs to abstract programs is performed in
two steps by the two functions parse and translate: If txt is a concrete program,

the corresponding abstract program is defined as
translatecparse (txt).
The link between these two steps, namely the result of parse and the argu-

ment of translate, is a structured object t which is called the abstract represen-=

tation of txt and may be throught of as the parsing tree of txt.

IBM LAB VIENNA 3-20 TR 25,087

3,5.1 Abstract representation of concretz programs

In principle one could explicitly define a syntax parser yielding for each
concrete program its parsing tree. It is, however, in practice toc much of a burden
upon the reader to have to read a complete definition of a parser at this point
of the formal definition of a programming language so that another way has been
sought resulting in an implicit definition of the function parse,

First, the predicate is-c-program characterizing abstract representations is
introduced. Next, the function generate mapping abstract representations into con-=
crete programs is defined. Finally, the function parse is implicitly defined as the

inverse of generate,

The abstract representatiocn t of a concrete program is an object, satisfying
the predicate is=-c-program, whose structuring reflects the syntactical structuring

of the concrete program and whose elementary components are the character values
constituting the concrete program, The predicate is-c~program is defined by a set
of predicate definitions obtained by rewriting the production rules of the con-
crete syntax (cf, Section 3.,4.2 and the definitions (ARl) - (AR20) below).,

In formulating these predicate definitions certain standard selectors,
Sys Sy es. are used which are assumed to be mutually different and may be considered
as the values s(i) of a selector function s. By means of the selectors si objects
are formed which have a structure similar to the lists formed by the selectors
elem(i) (cf. page 2-16) except that these "s-lists"” may have "gaps". In analogy to
the function length for lists, a function slength is defined for s-lists as follows:

slength(x) =
(V1) (is-.Qwsi(x)) — >0

T — (L i) (7 1s-SZosi(x) & (vj)(j>1ais-52osj(x)))

Also an additional definition schema is needed which will be numbered (6) in
order to indicate that we are extending the set (1) - (5) of Chapter 2. The short
version of the definition is:

(6) is=-pred = (<s-sell:is-pred1>, ...,<s-seln:is-predn>,
<s-se1-fct(l):is-predo>,...)

IBM LAB VIENNA 3-21 TR 25,087
In this definition sel~-fct is & selector function, e.g., elem or s, mapping
integer values into selectors., The full definition is:

is-pred(x) =

n m
{5 xl’ cen ,}:n,m,‘_'l, 340 "Ym) (m=1 & .Essl iS'Predi (xi) & lE=t1 is-predo (Yi) &

x =/Ao([<s-sell:xl>,...,<s-seln|xn>,

<sel-fct(1):yl>,...,<sel-fct(m):ym>])).
Tne short notatjon is often used with n = 0, i,e.,
is-pred = (<sel—fct(l):is-predo>,...)
which means

is-pred(x) =

m
(H:n,yl,...,ym)(mzl & Eg is—predo(yi) &
x =juo(<se1-fct(l)zyl>,...,<se1-fct(m):ym>)).
Using this notation, one could define the notation of is-pred-list by:

is-pred-list = is-<> v (<elem(1):is-pred>,...)al)

An abstract representation of EPL

The following predicate definitions (ARl) - (ARR20) can be obtained by a
mechanical rewriting rule from the productions (Cl) - (C20) in Section 3.,4.5, using
the table on page 3-19, (For a formulation of this type of rewriting rule see
Appendix I in /6/).

1) For the definition of the abstract representation of EPL only the selectors sy

are required. In /6/ both s and elem(i) are used in order to permit the inser-
tion of blanks in some places and not in others.

IBM LAB VIENNA 3=-22 TR 25,087

is=c=-block

(<s, :1is=-BEGIN>,

tis-c-decllist>,

t1s-SEMIC>,

tis-c=-stlist>,

¢ 1s=-END>)

(AR3) is-c-decllist = (<s-deliis-SEMIC>,
<slzis-c-decl>,...)

(AR4) is=-c-decl = is-c-var-decl v is-c-proc-decl v is-c-funct-decl

(AR5) is-c-var-decl = (<slzis-INT v 1is-LOG>,
<s,tis-c-var>)

(AR6) is=-proc-decl = (<sl:is-PROC>,

<52:is-c-id>,

(ARl) is=-c-progr
(AR2) is=c=block

<s

<s

<s

<s

U & W NN -

<s3:is-c-parlist v 15-52>,
<s4:is-SEMIC>,
<55:is-c-st>)
(AR7) is=-funct-decl = (<sl=is—FUNCT>,
<s,3is=-c-id>,
<s,tis-c-par-list v is-9>,
tis-SEMIC>,
<sgtis=-c-st>,
<56:is-RETURNS>,
<s,tis-c-expr>)
(AR8) is-c-parlist = (<slsis-LEFT-PAR>,
<szs(<s-delzis-COMMA>,
<s)tis=c=id>,.4.) >,
<s3:is-RIGHT-PAR>)
(AR9) 1is-c-stlist = (<s-del:is-SEMIC>,
<slzis-c-st>,...)

<s

g W N

(AR10) is=c-st = is-c-assign-st v is-c-conc¢-st v is-c-proc-call v is-c-block
(AR1l) is-c-assign-st = (<sl:s-c-id>,

<52815-EQ>I

<s3:is—c—expr>)
(AR12) is-c-expr = is=-c-const v is-c-var v is-c-funct-des v is-c-bin v is-c=~unary
(AR13) is=-c-const = is-c-log v is=-c-int
(AR14) is=-c-var = is-c-id
(AR15) is=c-funct-des = (<slais-c-id>,

<s,iis-c-arglist v is=$25)

IBM LAB VIENNA 3=-23 TR 25,087

(AR16) is-c-arglist = (<sl:is-LEFT-PAR>,
<52:(<s~del:is-COMMA>,
<sl:is-cﬁid>,...)>,
<s,:11s=-RIGHT-PAR>)

3

(AR17) is-c-bin = (<s,:is-LETT-PAR>,

<8,t1is-c~expr>,
<s,:is=-c~bin-rt»>,
<s,tis-c-expr>,

<S.:15=-RIGHT=PAR>)

U & W =

(AR18) is-c=unary = (<slzis-c-unary-rt>,
<32:is—c-expr>)
(AR19) is-c-cond=-st = (<slzis—IF>,
<52|is-c-eXpr>,
<s3:is-THEN>,
<s4:is~c-st>,
<55:is-ELSE>,
<56:is-c-st>)
(AR20) is=-c-proc=-call = (<sl:is-CALL>,
<52:is-c-id>,
<s3=is-c-arglist v is~8§2>)

The functions generate and parse

Al
In defining the function generate it is assumed that a special selector s-=del
has been used to select list delimiters (cf. e.g., (AR3) and (AR9)).,

The function generate mapping the object t, satisfying the predicate
is-c-program, into a set of character value lists is now defined as follows:

generate(t) =
is=§(t) ——= <>
slength(t) = O — <t>

T —

slenglh(t)
generateosl(t)A CONC (generateos=del (t)" qenerateosi(t))
i=2

The abstract representation of the concrete syntax, which follows in the
next section, together with the function generate constitutes a formal definition
of an algorithm for generating all concrete programs of the programming language.
Hence, they are equivalent to the production rules of the concrete syntax together

with the instructions for their use,

IBes LAB : | +NNA 3-24 TR 25,087
t'inally, the function parse, which is the inverse of the function generate,
is defined as follows:

parse(txt) =

(tt) (txt = generate(t) & is-c-program(t))
~ssuming that the concrete syntax is unambiguous, the meaning of this defi-

nitionr is that the function parse transforms a character value list into its pars-
ing tree t, prcvided the list is a syntactically correct concrete program,

3.5.2 The translator

This section describes the translation from the abstract representation of a
concrete program into an abstract program, This translation is performed by the

function
translate(t)

which maps an object t satisfying the predicate is-c-proqgram, described by the ab-
stract representation of the concrete syntax given in the last section, into an
object satisfying the predicate is-program, described by the abstract syntax given
in Section 3.1, page 3-3. As in the case of the interpretation of an abstract pro-
gram in Chapter 5, the definition of the translation is here reduced step by step
to the translation of the components of the program text t. But there are two
essential differences between the concept of the interpreter and the translator,

{a) The translator is specified by a function mapping a concrete program, in its
abstract representation, into the corresponding abstract program, while the
interpreter is specified by instructions mapping machine states into sucrces-

sor machine states (see Section 5).

(b) The translation of a part of a program of a programming language, of greater
complexity than our example (e.g. PL/I), gencrally depends not only on this
program part itself but also on the context in which it occurs within the
complete program text, while the interpretation of a part of a program general-
ly depends only on this program part itself (and the current machine state,

which may reflect contextual information if necessary).

IBM LAB VIENNA 3-25 TR 25,087

Even though the second point does not strictly apply to our example it is
mirrored in the translator to give the reader an insight into the way in which
such contextual information might be treated in a translator of this kind,

Hence, to accomodate the two above mentioned differences the following

concepts are applied in defining the translator:

(a) Instead of the current machine state € , which is a hidden argument of ‘each
instruction of the interpreter (cf. page 5-2), the complete program text t,
to be translated, is a hidden arqgument of each function of the translator,
which is not specified explicitly for each function. Throughout this section
the letter t denotes this hidden argument, called the text, which is the

same object satisfying is-c-program for all prcqrams,

(b) Instead of objects to be translated, which are components of t, generally the
selectors selecting them from t are specified as arguments of the functions,
These selectors, called "text pointers" or just "pointers”, are composed of
selectors of the form elem(i) and s(i), i being integer values, They are

usually denoted by the letters p, g and r.

The two arguments, the hidden text t and the explicitly specified pointer p,
constitute all the necessary information: A part of t, namely p(t) and the context

of this part within t.

In a more complicated programming languade than that of the example, especial-
ly one in which declarations need not be collected in a marticular part of the
program but may be scattered throughout the program or declared implicitly (as in
the case of PL/I), the main job of the translator is the recognition of all decla-
rations in a concrete program and the testing, comnleting and structuring of their
attributes. For the other components of a program and almost entirely in the cése
of the present example, the translation consists essentially of a one-to-one mapping
from the parsing tree into the abstract program. This mapping constructs objects
built up with mnemonically named selectors instecad of selectors determined only by

the ordering in the concrete program,

Lastly one should perhaps mention the kind of tests that may be built into
this type of translator. It may be remembered that the function parse rejects all
strings which are not programs as specified by the concrete syntax. Similarly, the
translator checks for multiple declaration (see (T3)) and for the use of the same
parameter in different positions of the same paramcter list (see (TS)). In this

IBM L#b VIENNA 3-26 TR 25,087

way it is possible to check if any context dependent criteria as specified by the
definition of the programming language have been violated, This type of error check-
ing is called '"static" and may be carried out during translation independent from

an in%erpretation. Errors which can only be checked during interpretation are called
"dynamical errors" and they will be discovered by the interpreter only if the pro-
gram part that contains the error is actually interpreted.

The function translate for EPL

(T1l) trapslate(t) =

is-c-progr(t) —— trans-block (I)

T —> error

(T2) trans-=block(p) =

ﬂo(<s-dec1-part:trans-decllist(szop)>,
<s-st—list:trans—stlist(s4ap)>)

(T3) trans-dgcllist(p) =

W31 # & syes; plt) = syesgep(t) #R) —>
ﬂo({<id:trans-decl(slep)> | id = szosiop(t) # 52})

T — error

Note: The condition makes sure that there be no multiple declarations,

(T4) trans=decl(p) =
is-INTeslep(t)————> INT
is-LOGoslep(t)————> LOG
is-PROCoslop(t)-———>

po(<s-param-listxtrans-parlist(s3np)>,
<s-stitrans-st(sgep)>)
is-FUNCToslop(t)~———~

/Jo(<s-param-list:trans-parlist(s3up)>,
<s-stxtrans-st(ssop)>,
<s-expr:trans-expr(s7op)>)

TR 25.087

IBM LAB VIENNA

(T5) trans=-parlist(p) =

is-Szop(t)-——~> <>
34,3 # 3 & s es,oplt) = 855, P (t) £2Q) —=

‘ﬂo({<elem(i):sioszop(t)> I lsisslengthosz.p(t)>)
T — error
Note: The condition prevents that the same parameter occurs more than once

in a given parameter list,

(T6) trans=-stlist(p) =
ﬂo({<elem(i):trans-st(siop)> | lsisslengthep(t”)

(T7) trans-st(p) =
is=c=assign-step(t) —=
)ﬂo(<s-left-partaslop(t)>,
<s-right-part:trans-expr(s3ep)>)
is-c-cond=step(t) ——=

ﬂo(<s-expr:trans-expr(szop)>,
<s-then-st:trans—st(s4°p)>,
<s-else-st:trans-st(ssop)>)

is=-proc=callep(t) —=

ﬂo(<s-id:szop(t)>,
<s-arg-list:trans-arglist(s3op)>)

is=-c-blockep(t) —— trans-block (p)

(T8) trans-arglist(p) =
1s=Roep(t) —= <>

T —=>
lpo({<elem(i):sioszep(t)> [lsisslengthoszop(t)})

(T9) trans=-expr (p)
is-c-constop(t) ——= p(t)
is=c=varep(t) —s= p(t)
is=c=funct-desep(t) —=

Mo (<s=idis ep(t)>,
<s-arg-list:trans-arglist(szop)>)

cont'd

IBM LAB VIENNA 3=-28 TR 25,087

is=c=bin.p(t) —

/“o (<s=rdl:trans-expr (szop) >,
<s-rd2:trans-expr(s4op)>,
<s=opis,ep(t)>)

is=-c-unaryop (t) —=

/Uo (<s-rdi trans-expr(s,°p) >,
<s-op:sl°p(t)>)

3.5.2

IBM LAB VIENNA 4-1 TR 25.087

4, ABSTRACT MACHINES

4.1 Introduction

The method adopted for the formal definition of the semantics of a higher
level programming language like Algol 60 or PL/I is based on the definition of an
abstract machine which is characterized by the set of states it can assume and its
state transition function. A specific program in the given language together with
its input data defines an initial state of the associated machine, and the subse-
quent behaviour of the machine is said to define the interpretation of that program

for the given input data.

This chapter attempts to describe those aspects of the abstract machine which
were felt to be significant independently of the application to a specific program-
ming language. In particular it will be described how the control of the machine
works. The control appears to be well-suited for the interpretation of programming
languages which possess a-nested structure of statements and, furthermore, a cer-
tain indeterminance in the sequencing of statements.

4.2 The Conventional Concept of Abstract Sequential Machinesl)

An abstract sequential machine may be specified by defining the set of states
2. which the machine can assume and a state transition function /\ which for any
given state € specifies a successor state, i.e. which maps states into states.
The criterion for deciding when the machine is said to stop may be given by de-
fining a subset I:E of the set of states, the end states of the machine.

For any given initial state one may visualize the behaviour of the
o

machine as running through a succession of states §(3,§1,..., §i’ §i+1"" where
§i+1 = N | §i). The succession of states, called the computation for the given
initial state §<ﬂ stops if an end state §Ile EZE is reached in which case the
computation is called terminating. A computation where no end state is ever reached
is called non-terminating and is the precise equivalent of a process which loor3
indefinitely.

Compare e.g. Elgot /11/.

IBM LAB VIENNA 4-2 TRA5LER7

4.3 The Extended Concept of Abstract Machines as Used for the Formal Definition

of Programming Languages

There are a number of cases in the interpretation of a programming language
like PL/I or Algol 60 in which the sequence in which certain operations are per-
formed is relevant but left open by definition. Examples for such situations are
the evaluation of operands in an expression, the evaluation of expressions ogcur-
ring in a data attribute, the evaluation of arguments in a procedure or function

call etc. The concept of abstract machines has been extended to meet this situa-

tion.

The abstract machine underlying the definition of a programming language is
defined by a quadruple <EO,S,is-state,/A >. EO is an infinite set of elementary ob-
jects. S is an infinite set of simple selectors. is-state is a predicate which de-
fines the class of objects (out of the general class of objects built from ele-
mentary objects of EO with the help of selectors of S, cf. 2.1) representing the
states the machine can assume. /A is a state transition function. Due to the iden-
tification of the set of states with a certain class of objects, this set can
always be defined by the devices described in section 2.7, "Definition of Classes
of Objects". Also, the mappings from given states into successor states can be
specified with the help of the M -operator.

In the sequel T , Ecﬂ §1,... will stand for arbitrary states of the machine,

i.e. for arbitrary elements of is“state.

1) specifies for a given state ¥ the set

The state transition function AN
of possible successor states, i.e. /A is a function which maps states into sets

of states. This possibility to define more than one successor state for any given

state reflects the above mentioned indeterminance of the sequence in which cer-

tain operations are performed.

A computation for a given initial state E'o is a sequence of states
§o’ §1,..., §i’ §i+l"" such that §i+l€ AN §i). This means that a computation
can be produced step by step from left to right by applying the function A to the
last state in the sequence. The successor state can then be determined by a choice
of one element of the result of A . Any initial state defines a set of computations

according to the possible choices of successor states for any step.

1) Called language function in /8/.

IBM LAB VIENNA 4-3 TR 25.087

A state ¥ is called an end state if the state transition function A yields
the empty set, i.e. A (E) = {} . There is obviously no possible continuation of a
computation if an end state is reached. Such a computation is a finite sequence of
states and is called terminating. Computations which are infinite sequences of

states are called non-terminating.

The state transition function /A may be a partial function for the set of
possible states which is its domain. Hence there is a third type of computations,
namely those which cannot be continued because the function A applied to the last

state does not have a value.
A program together with its input data defines an initial state. There are
initial states whose corresponding set of computations contains elements of all

three types described above.

Any state € has an immediate component s-¢(¥€), called the control part,

which satisfies the predicate is-c, i.e.:
is-c(s-c(¥€))

An explanation of the control of the machine, i.e. of the structure and func-
tion of the control part, together with the associated notational conventions, is

given in section 4.4.

The number of state components and their structure and function depends on
the specific language to be defined by the machine. In section 4.5 some general

constructs of the state are described.

4.4 The Control of the Abstract Machinel)

4.4.1 First survey

The control part of a state & of the machine can be visualized as a finite
tree where each node of the tree is associated with an instruction. Such a tree 1is
called control tree. The sequence in which the instructions are to be executed is
partially given by the convention that only the instructions associated with the

terminal nodes of the control tree are candidates for being executed next. The

successor state of a given state § is determined by choosing one of the terminal

nodes of s-c(§) and executing the associated instruction.

1) The concept of control described in this section is well suited for one-task
machines. For multi-task machines it must be slightly modified.

4.4.1

IBM LAB VIENNA 4-4 TR 25.087

Consider e.g. that the control tree shown in Fig. 4-1 forms the control part

of a certain state §.

—~—— e —-

\ instr, instry
\

Then the instructions instrz, instr4, and instr5 are the candidates for being

executed next.

Let tn(ct) be the set of selectors pointing to terminal nodes of ct. The

state transition function A is then defined by:
ACE) = {W(E,T)|Te tn(s-c(E))]}

where W (§, T) specifies the successor state according to executing the instruc-

tion associated with the terminal node T .

An instruction is composed of an instruction name and optionally a list of

arguments. The notation used for representing instructions is:

in(arg,,...,arg)

Instruction names are underlined words which identify respective instruction de-

finitions, the arguments are objects.

There is no logical restriction as to the type of changes to the state,
which the execution of an instruction may cause. In particular, the execution of
an instruction may modify the control part. However, it seems to be convenient to
get along with only two types of effects which the execution of an instruction
might have. The first type of cffect, called value-returning, is to delete the

instruction being executed from the control tree, to substitute a value specified

by the definition of the instruction into argument places of instructions in pre-
decessor nodes of the control tree, and to make some changes in the state, though,
in general, no further changes in the control part. The second type of effect,

called self-replacing, is suclh that the instruction being executed replaces itself

IBEM LAB VIENNA 4-5 TR 25.087

in the control tree by another control tree, a process which is very similar to a
macro expansion and serves the same purpose. Whether the effect of an instruction
is value-returning or self-replacing may, in general, depend on the state § in

whica the instruction is executed.

The remaining sections are organized as follows: First, the structure of con-
trol trees will be further specified, and a notation for writing control trees
will be introduced (section 4.4.2); this will complete the intuitive description
of control trees. Then, a more rigid description will be given, modelling control
trees as a certain class of objects (section 4.4.3). Also, control tree representa-

tions, i.e. expressions whose values are control trees (and of which the notation

introduced in 4.4.2 is a special case), will be introduced, and a rule will be
given how they can be interpreted as expressions of conventional shape (section
4.4.4). With these prerequisites, a notation for instruction schemata, i.e. in-
struction definitions, can be described, together with a rule how an instruction
schema can be interpreted as the definition of a state-transforming function (sec-
tion 4.4.5). The function W (§, T) can then be defined in terms of these state-
transforming functions, and together with the defintion of the function tn(ct),
this will complete the definition of the stzte transition function /A (section
4.4.6; cf. beginning of this section). Finally, some examples will be given (sec-

tion 4.4.7).

4.4.2 Control trees

Before going into detailed description of the function and definition of the
two types of effects an instruction may cause,the structure of control trees must

be further specified.

The argument places of a control tree into which a given instruction has to
subgtitute its value (in the case its effect is value-returning) are indicated in
the control tree itself. One may illustrate the situation in the control tree by
drawing dotted lines from the node with which the respective instruction is as-
sociated to the argument places of predecessor instructions where its value is to
be substituted. Those arguments are Q2 before substitution. More precisely, it is
assumed that a node allows retrieval of not only an instruction but also the nec-
essary information as to where this instruction has to substitute its value. Values
may be returned by an instruction to more than one place and over more than one

level in the control tree.

IBM LAB VIENNA 4-6 TR 25.087

A more detailed description of Fig. 4-1 may serve as_én example:
iny (argl, 63, S2)
,/‘ 'y

- ~

//, \1
// : |
_i_n'_i(Q 1 qrgi'ga) ,,
4 - o =
/ i L2
e L -~
| et
iny (argy)s : ~“lng (arg;)

Fig. 4-2.

The purpese qQf the value-return mechanism is tp provide a tool for the treat-
ment of intermedigte results. Due to the unspecified order in the execution of
terminal ingtructieng, a linear stack for holding intermediate results (cf. e.g.
Landin /12/) would not be sufficient.

Notatipn for control trees

The first step towards a notation for control trees is to replace the dotted
lines in the contrel trees by a device which uses dummy names. Instructions which
return a value to argyment places of predecessor instructions are prefixed with a
dummy name foljowed by a colon. The same dummy name is inserted in those argument
places into which the value of the instruction is to be returned.

Using as dummy names a, b, and c, Fig. 4-2 can be rewritten as shown in
Figo 4-3.
l iny Cargl, a,c)

a: in; Ch, arg}, c)

b:ing Cargy) G ing Cargf)

Fig. 4-3

As will turn out later on (cf. 4.4.3 and 4.4.5), dummy names have a «ompletely
local meaning within the control tree in which they are specified.

The notation for control trees may now be described as follows: If the control
tree consists of the top node only, then the instruction attached to the top node

4.4.2

IBM LAB VIENNA 4-7 TR 25.087

represents the control tree. If the control tree consists of more than one node,
then it is represented by the instruction attached to the top node, followed by
semi-colon, followed by the set of control trees which are the immediate components.

The notation for the control tree of Fig. 4-3 reads;
in, (argl,a,c); {in,,a:in_ (b,ar 3 28); {b:in (arg4) c:in {args)n
=1 9y +BC) g1 TN ALIN AP AL 9 /0) =4 1777°3=5 1

Curly brackets may be omitted if they contain only one instruction. Further-
more, instead of curly brackets, indentation may be used in such a way that instruc-
tions which are on the same level in the tree are written startipg on identical

left margins.

The above example rewritten using indentation reads:

in, (argi,a,C); [
iny
a:;g3(b,argg,0); direction of execution

. 4

4 5
c.ggs(argl)

Fig. 4-4

It is of importance to note that the direction of execution is from bottom

to top as indicated in Fig. 4-4.

Extension to the value-return mechanism

As described so far instructjons can only return values to argument places
of predecessor instructions. However, it occurs quite frequently that intermediate
results are to be built from the values of several instructions. For this purpose
a device is introduced which allows:the return of values from instructions-to
component positions of arguments of predecessor instructions. In other words,

values of instructions may replace components of arguments in predecessor in-

structions and not solely entire arguments.

If say a is a dummy name at several argument positions in a control tree,

then the notation
 (a)

points to the positions of the % components of the respective argument positions.

4.4.2

IBM LAB VIENNA 4-8 TR 25.087

Consider the following example:
in (a); {x,(a):in,, x,(a):in,]

Instruction iﬂz returns its value to the vcl-part and instruction ;g3 returns its
value to the 'Kz-part of argument position a of instruction ;glta).

4.4.3 Defining control trees as objects

First, some special sets of objects and selectors used in the following are
defineq.

Sets of elementary objects:

N
is-intg { ¥ 2. .}
is-in infinite set of instruction names
isl;ame infinjte set of metavariables
1s4§e1 set of all selectors (i.e. iscsel = S*)

The predicate is-ob holds for arbitrary objects.

The predicate is-sel-pair holds for arbitrary pairs of selectors, i.e.:

is-sel-pair = (<elem(l):is-sel>,<elem(2):is-sel>)
s-in, s-al, s-ri, s-sel, s-dum are constant simple selectors.

R is an infinite set of simple selectors, not containing s-in, s-al and

s-ri.

R* is the set of all selectoré—composed from selectors of R, including I.

Key to abbreviations:

s=in select instruction name
s-al select arqument list

s-ri select return information
s-sel select selector

s=-dum select dummy name

4'4.3

IBM LAB VIENNA 4-9 TR 25.087

The previously described control trees are now given a precise shape by de-
fining an abstract syntax for them. The value-return mechanism (cf. the dotted
lines in Fig. 4-2, p. 4-6) is modelled by kepping for each node a set of pairs
of selectors. The first selector of a pair says where the value to be returned
comes from, the second, where it has to be returned to (cf. 4.4.6 for the use of

the first selector). I.e., a control tree is an object satisfying the following

predicate is-ct:

is-ct = (<s-in:is-in>,
<s-al: ({<elem(i) :is-ob> || is-intg(i)})>,
<s-ri:is-sel-pair-set>,
{<r:is-ct> |l re<R})

The predicate is-c of section 4.3 which holds for the control part s-c(%)
of any state E is then defined by:

is-c = is-ct v is- QQ

Intermediate control trees

In section 4.4.2, a notation has been introduced which uses dummy names to
express the value-return mechanism. It is convenient to have a class of objects

which correspond more closely to this notation (cf. 4.4.4). These objects are

called intermediate control trees and satisfy the predicate is-int-ct:

is—-int-ct = (<&-in:is-in>,
<B-al:({<elem(i):is-ob> | is-intg(i)})>,
<gs-ris (<s-sel:is-sel>,<s—dum:is-name Vv is-QR>)>,

{<r:is-int-ct> | | r'eR})

The control tree corresponding to an intermediate control tree

For the transformation from intermediate control trees to control trees the

function tr(ct) will be defined in terms of some other functions.

The function nd(ct) is defined for is-int-ct(ct) (as well as for is-c(ct),

see section 4.4.6) and yields the set of selectors pointing to nodes of ct:

nd(ct) = { % | xeR" & x(ct) + Q}

The function arg(ct) is defined for is-int-ct(ct) and yields the set of
selectors pointing to arguments of instructions of ct not equal e :

arg(ct) = {elem(i)ess-ale t | X end(ct) & elem(i)°s-ale %X (ct) # 2}

4.4.3

IBM LAB VIENNA 4-10 TR 25.087

The function dum(ct) is defined foy is-int-ct(ct) apq yjelds the set of
dummy names oceurring in ct;

dum(ct) = {s-dumos-riox(ct) | * € nd(ct) & s-dumes-ri-¥(ct) # Q?}

The function ri(ct,x) is defined for is-int-ct(ct), ¥ € nd(ct) and yields
the set of pairs of selectors, which will be the retuyn ipfoymation of the cqntrel
trge at node % :

rifct,w) = {<I,Xl°12> | Xl=s—sel°s—riox(ct) [
‘(2 € arg(ct) &
Xz(ct)=s~dum°s-riol(ct)}
The functjon tr(ct) can now be defined for is-int-ct(ct) and yields the
cq;raspond;pg control tree;

trlct) = plet: {<¥: Q> | X € arg(ct) & %(ct) & dum(ct)} U

{<s-rie Yirifct,¥)> | K€ nd(ct]}]

%.i.i ?op?rol tree FEEF9§§§faFi°DSl)

A contro; free representation is a meta—expressionz) which, for gjven values
of its§ free variables, denates a control tree. It will be abbreviated by ct-rep,
or, ahow;qq its free varjables, by ct-rep(xl,...,xn,g). Control tree reprenSeppa-
tiong are used within instyyction schemata (cf. 4.4.3), and in fact may occur
within the metalanguyage in any context where unconditional expressions are allow-
ed. 4 special case of confro} tree representations has already been introdyced jn

404-39

The meaning of g control tree representation will be determined in terms of
an associateqd meta-expression of known shape for which it stands. The defipitiop
is gqjven in form of g tab}e listing the syntactical categories of the constityepts
of control tree representations, terminating with the category of control tree ye-
presentation itself. For sach syntactical category abbrevjation, form and meaning
of its members isg sPec¢f;eq.

1) Called conyfq} Feggasepgations in /8/.
2) Cf. foot-note 1), Pa_,ge 3-7.

4.4.4

28 2

syntactical category abbreviation form meaning
metavariable b< >3 X
unconditional expr ‘arbitrary uncon- meaning of the meta-expression
meta-expression ditional meta-

-expression
instruction name in in in
instruction instr (1) in (1) PO(<s—in:l£>)

(2) in(expr,,..., (2)fqo(<s—inzig>,<s-al:po(<elem(l):exprl>,..”

.exprm) <elem(m):exprm>)>)

prefixed pref-instf (1) dnstr (l)'H(instr;<s-rijpb(<s—sel:I>)>)
EnStructioh : {2) x:instr (2) p (instri<s-ri:p (<s-sel:I>,<s=dum:x>)>)

(3) expr(x):instr | (3) P(instr;<s—ri:pb(<s—se1:expr>,<s-dum:x>)>)
successor succ (1) pref-instr (1) pref-instr

(2) pref-instr; (2) p(pref—instr;i<sel(x,succ-set):x> |

succ-set x € succ-set}) L
:successor set succ-set (1) {succl,..., (1) {succl,...,sncck}
succk}
(2) {succ | expr} [(2) {succ | expr}
(3) succ-setlu oo o (3) succ-setl U seefx u succ—setr
U succ-set
b3

control tree ct-rep succ 2) tr(succ)

representation

1) x must not occur free in succ-set.

2) The initial pref-instr of succ is restricted to form (1).

1T-% YNNZIA gv1 Wal

L80°G6Z ¥l

IBM LAB VIENNA 4-12 TR 25.087

In the column "meaning", the transformation of subparts is implied without
notice, i.e. the abbreviations instr, pref-instr, etc. occurring there stand for
the already transformed subparts. Into what a given text is transformed, may de-
pend not only on the text itself, but also on the syntactical category as membar
of which the text is considered. So, a prefixed instruction transforms different-
ly from an instruction, even in the special case where it is an instruction.

The function sel (ob,succ-set) occurring in the table defines a one to one
mapping from opjects of the set succ-set to selectors of R. For the function
tr(ct), see 4.4.3.

In the case that a successor set of form (1) occurs in a control tree re-~
presentation, indentation may be used jnstead of curly brackets.

4.4.5 ng?;ucgiog schemata

As mentioned in section 4.4.1, each instruction name identifies an instruc~
tion schema whijch defines the effect of executing an instruyction with this name,
depending on the arguments of the jnstruction and the state ¥ .

An instructjon schema assocjgted with an instruction name in has in general
the following form:
},,Q(xl,---,xn) &

pl(xl,...,xh, §) —e groupl(xl,...,xn, g)

pm(xl,...,xn,g) — group (X, , ..., X, §)

Pi(xl""'xn' B),for 1lsism,are meta-expressions denoting truth values.

groupi(xl,...,>%“ §),for l¢ieém,are called groups and can have one of the following

two forms:

(1) valye-returning alternative of a group:

PASS g (X),.00sx , ¥)

s-sglael(xl,...,xn, g)

® o0 000 bbb e es 000800

) €)

s-sgr:Er(gl,...,xn

4.4.5

IBM LAB VIENNA 4-13 TR 25.08%

& (xl,...,x /&), for O<isr, are arbitrary meta-expressions.:

s-sci,for l<is<r, are simple selectors which point to immediate components of

the state (not necessarily all immediate components must be referred to).

If the first line of the group is missing, this is equivalent to:

pass: G2

(2) self-replacing alternative of a group:

ct-rep(X),..rX §)

ct-rep(X s«..r¥yy 8) is a control tree representation.

The special case:

ig(xl,...,xn)

) group(xl,...,xn,g)
may also be written:
in(x) 000,k) =
group(xl,...,xn,g)

Each instruction schema will now be associated with a function definition.

The definition of the state transitjon function A then can be given easily in

terms of these functions.

The function definition‘aSSOCiated with an instruction schemg of the pre-

viously given general form has the following form:

(pin(xl,...,xn, §' 'c,ri) =

(xl,...,x ,'§) — groupl(xl,...,x 3 § T,ri)

pm(xl,...,x - §) —— group (xl,...,x ,‘g, ,rl)
group (x reeer Xy 8,7 ri),for 1lsism,is obtained from group (x ,...,x , €) in the
following way:
If group, (xl,. . i X ,§) has form (1) (value-returning alternative), then

groupi(xl,...,xn, g T ,zi) has the form:
MPCE: (<o (T =X)) es=cre (X, ... bx 0 B)> <X, €ri);

<s-scl;El(xl,...,xn,§)>,...,<s-scr:Er(xl,...,xn,§)>)

4.4.5

IBM LAB VIENNA : 4=14 TR 25.087

The operation "~y is defined, if X, 1s head of %)+ and ylelds the tail of
%, acgafding o :
1-1-13 = (LY) “1"’2"’

b ¢ q:oup (x yreee ¥ %) has form (2) (self-replacing alternative), then
g:oup,'(xl,....xn. S /Tr¥i) has the form;

P8yt !'Nﬁ{ct-:op(xl: cossXos 8)j<s-risri>)>)

4.4.6 The te tre tion ction A

The definition of the state tramsition function A given in section 4.4.1,
1.‘.'

ALE) = {Y(¥, %)l vetn(s-o(g))
can now be completed by the formal definition of the functions tn(ct) and W(§,7).’

The function tn(ct) is defined for is-c(ct) and yields the set of selectors
pointing to terminal nodes of ct. The definition is given in terms of the function

nd(ct) defined in section 4.4.3:

tnot) = (£ (T 6 nd(ct) & (Vr)(raRaret (ct)i= D))

The funotion ¥V (¥, t) is defined for t ¢ tn(s-o(¥)) and yields the succes-
sor luto for the exeoution of the {pstruction at position € of l-c(B).

_With the Ibb:ov”ttonn

4n = s-ine T es-0(§)
n = number of parameters associsted with ip

al = g=ale Cep-o(§)
i ® g=gie Tes-0()
the definition can be given in terms of 9 i

Y(E,T) » 945 (elen(l,al) ... ,0len(n,al), 8 () Tes=0), § ,x1)

§:.4.6

IBM LAB VIENNA

4.4.7 Examples

Exame;e 1%

4-15 TR 25.087

An instruction schema int-expr shall be defined such that any instruction

int-expr(e) evaluates the given expression e and returns its value. Expressjons are

built from constants denoting values, variables, and some unary and binary opera-

tions defined for the set of values.

The abstract syntax for expressions may be specified as follows:

Sets of elementary objects:

LA

is-const

. A

is-var

- A

is-unary-rt
A

is-pin-rt

set of constants
set of variables
set of unary operators

set of binary operators

The set of expressions is defined by:

is-expr = is-const v is-var v is-bin v is-uhary

is-bin = (<s-rdl:is-expr>,
<s-rd2:is-expx>,
<s-op:is=bin-rt>)
is-unary = (<s-rd:is-expr>,

<s-op:is-unary-rt>)

Furthermore, the following functions and jnstructions are assumed to be

defined:

value(c)

content (v, g)

Key to abbreviations:

s-rdl select
s-rd2 select
s-rd select
s-op select

function which yields the value denoted by a given
constant c

function which yields the value of a gjven variable
v for the state ¥ of the machine

operand one
operand two
operand

operator

4.4.7

IBM LAB VIENNA 4-16 TR 25.087

int—gin-og(op,a,b) instruction which returns the value correspond-
ing to the application of the binary operator
op to a and b, where a and b are values

int-un-op(op,a) instruction which returns the value correspond-
ing to the application of the unary operator op

to a, where a is a value

The instruction schema int-expr may now be defined as follows:

int-expr(e) =
is-binfe) — = int-bin-op(s-op(e),a,b);
a:iat—exgr(s—rdl(e)),
b:iat—exgr(s—:dZ(e))
js-unary(e) — int-un-op(s-op(e),a);
asint-expr(s-rd(e))

is-var(e) — PASS:content (e, §)

is-copst(e) —= PASS:value (e)

Whether an instruction jint-expr(e) is value-returning or self-replacing de-
pends in this example only upon the argument e and not upon the state g of the
machine. The first two alternatives of an instruction int-expr(e) are self-re-
placing, i.e. a control tree is specified. The last two alternatives are value-
returning with no further changes of the state specified. The value returned for
the alternative is-var(e) depends on the specific variable and the state ¥ of
the machine.

The following example is only to illustrate the expansion and reduction of
the control thought of as actually working. It is, however, by no means recommend-
ed that more complicated examples in a more complicated machine environment should
be attempted in a similar manner, In particular, the test whether a given instruc-
tion definition works for all cases as jintended must be based on a more general
argument than just a few test examples, For the example co be worked out in the
Sequel it is assumed that the values are natural numbers, that the operators for
addjtion (+) and - multiplication (%) are available and that X)s X, are variable
names. The expressions to be interpreted will be represented in infix notation and
enclosed in quotes to distinguish them from the metalanguage. It is assumed that
valye {'1') =1, value (*'2') = 2 and so on, Furthermore, it is assymed that content
(xl,g) = 2 and content (x,,§) = 5 for all states § to be considered in the example,
Suppose now that the instruction int-expr ('(xl + (x2#3))') is in some terminal
position; the problem is to show how this position expands and contracts upon

execution of the above instructions.

4.4.7

IBM LAB VIENNA 4-17 TR 25.087

(1)

(2)

(3)

(4)

(5)

int-expr('(xl + (x2%3)) ")

If e = '"(x1 + (x2*3))"' then

is=bin(e) ,rdl(e) = 'x1',rd2(e) = '(x2*3)' and op(e) = '+',

Therefore, the instruction expands to:

int-bin-op('+',a,b);
a:int-expr('xl"'),
b:int-expr (' (x2%3) ")

There is now a choice either to execute int-expr('xl') or to expand
int-expr (' (x2%3) '). Doing the expansion with some suitable changes of the

dummy names results in:

int=bin-op('+* a,b)j
a:int-expr('x1'),
b:int-bin-oE('*',al,bl);

al:int-expr('x2'),
bl:int-expr('3"')

The order of evaluation of all the terminal instructions is now jirrevelant
for this special example. The execution of all the terminal instructions is

therefore done simultaneously:

int~bin-op ('+".72,b);
b:int-bin-op('*',5,3)

Execution of the only terminal instruction results in:
int-bin-op('+',2,15)

The above instruction will return the value 17 to the argument places speci-

fied for its position in accordance with the assumptions.

IBM LAB VIENNA 4-18 TR 25.087

ExamEle 248

For use in the next example an instruction schema pass is defined such that

any instruction pass(x) returns x as its value:

pass(x) =
PASS:x

There is only one group in the above definition, and this group is a value-
returning alternative. No other state transitions than those implied by the value-

return mechanism are performed upon execution of Eass(x).

Example 3:

Consider a non-empty list of expressions, e-list, and the problem of comput-
ing a corresponding list, v-list, where each expression is replaced by its value.
The order of evaluation of the individual expressions is to be left unspecified.
The problem will be solved by defining an instruction schema int-expr-list, which
will, for any specific choice of the expression list e-list, define the control
tree which solves the problem for the specific e-list. The control tree will ac-
tually upon execution return the result, i.e. the list of values corresponding to

e-list.

The instruction schema int-expr-list may be defined as follows:

int-expr-list(e-list) =

pass(v-list);
{elem(i) (v-1ist) :int-expr(elem(i,e-list)) | lsislength(e-list)}

There is again only one group, but this time it is a self-replacing alter-
native, i.e. a control tree representation. e-list is the only parameter of the
instruction schema, v-list is a dummy name used to designate the argument place
where the value list is being constructed, and i is the bound variable of the
implicit definition of the successor set of pass(v-list).

Executing the instruction int—expr-list(<el,e2>) with the specific list of
expressions <e1,e2> as argument, this instruction wil]l be replaced in the control

part by the following control tree:

4.4.7

IBM LAB VIENNA 4-19 TR 25.087

pass (v-list) ; : _
elem(l)(v-list):int—exg;(el),

elem(z)(v-list):intaexpr(ez)

Upon further computatjon there is the choice of e, or e, to be evaluated

first. The result of evaluating e, will be substituted in the elem(i)-component of

i [
the argument of pass{(v-list), which is, of course, initially G2 . The instruction
pass (v-list) will eventually pass the list of.valuyes so constructed into the argu-

ment place specified for its position.

Example 4:

An instruction schema merge is defined such that any instrucﬁidn merge(X.y,k},
where the arguments x and y are objects and the argument Kk is a set of selectors,
returns an object built from x by substjituting the ™ components of y for « € K :

merge (X,y, k) =
PASS:/u(x; {<X: wy)> | w € k})

Example 5:

The problem is to replace for a given PL/I data attribute, roughly speaking,
the expressions which occur in the data attribute (as lower bounds and upper bounds
of arrays and string lengthé) by their values. A data attribpte:of PL/I as speci-
fied by the abstract syntax of the formal definition is a quite complicated compos-
ite object. However, the only properties which are important for the present exam-
ple are: '

(1) that there are components which are expressions and are selected by composite
selectors of the forms s-ube¥, s-lbe X or s-lengtheoy,

(2) that these components are independent ‘of one another, i.e. that no.component
is part of another one.

Key to abbreviations:

s-1b select lower bound
s-ub select upper bound
s-length : select length

IBM LAB VIENNA 4-20 TR 25.087

The problem may be solved by defining an instruction schema eval-da as

follows:

eval-da(da) =

merge (da,x,K(da)) ;
{x(x):int-expr(x(da)) |« ¢ K (da) }

where: K(da) = {x | (3%) (= s-ube¥, v
= s—lbou1 v

Y= s-lengthe¥,) & x(da) 7 QE}

The function K(da) yields the set of all selectors pointing to lower bounds,
upper bounds and lengths of a data attribute da.

The actual process performed upon computation is to evaluate the expressions
for lower bounds, upper bounds, and lengths in some order, to construct an auxil-
iary object x containing the values of the expressions in the corresponding posi-
tions, to merge the given data attribute with the auxiliary object, i.e. to re-
place the expressions by their values, and finally to return the so modified data

attribute.

Consider now the special case of a data attribute dal specifying a linear
array of floating point numbers. There are two expressions contained in the data
attribute which are significant for our example, namely a lower bound and an upper
bound. It is assumed that the lower bound is selected by s-lbo'xl and the upper
bound by s-ubeX,. Therefore the set K(dal) is:

K(da;) = {s-1be¥,s-ube,}
The associated control tree according to the above schema is:

merge(dal,x,{s-lbotl,s-uboﬂz});
s-lbolltx):int-exEr(s—lboxl(dal)),
s-uboxz(x):int-expr(s-uboxz(dal))

21 TR 25,087

-3
1

IBM LAB VIENNA

4,5 Note on Constructs of the State and some Instructions of the Abstract Machine

4,5,1 Unigue name genegation

It is necessary upon several occasions during the interpretation of a program
to name something, For this purpose a mechanism is built into the machine which
on request generates a unique name, i,e, a name which is different from all names

generated before.,

The name generating mechanism may be defined as follows, It is assumed that
there is an infinite list of mutually different names <Nyy Mgy Ngreees Furthermore,
for any state § there is an immediate component s-n(g) which is a natural number
and points to the unique name of the above list to be used next, The instruction
un-name is then used to get hold of the unique name to be used next and to increase

the counter;

un=name =

PASS:n___ (&)

g;gzs-n(g) +1

There are two reasons for the use of unique names in the state of the

machine:

(1) Sharing patterns:
It is frequently the case that certain objects (representing some informa-
tion) are to be available in two or more parts of the state., If this infor-
mation is never updated during the interpretation it is sufficient to have
copies available in the respective parts of the state. If, however, the in-
formation may be updated during the process of interpretation, then the ob-
ject representing the information is named uniquely and is made available under
this name, The following consideration may serve as a simple example of a
sharing pattern, Assume that in a certain program two variables x and y are
supposed to occupy the same storage, i.e. updating of the value of x means
at the same time updating of the value of y and vice versa:

X = value
y = value

Key to abbreviations:

s=n select name counter
un-name generate unique name

IBM LAB VIENNA 4-22 TR 25,087

The mere association of x and y with their values as shown above would not
reflect the situation properly. The introduction of one step of indirectness,
however, is sufficient in our example to expresss the fact that x and y are

supposed to share storage:

% mn

M =in

n - value

(2) Self-referencing information structures:
Consjder an object which in one of its components refers to itself via its
name, The process which replaces the name by a copy of the object itself is
not terminating, i.e. the resulting structure becomes infinite, The use of a

name in those cases is therefore necessary,
As a simple example consider the recursive definition of the function Fact:
Fact(n) = (n =0 —e 1, T —e nx*Fact(n-l))

The attempt to replace Fact on the right hand side by its definition does not

remove the reference to Fact:

Fact(n) = (n =0 —e 1, T —e n*((n=1) = 0—— 1,
T —— (n-1l)*Fact(n-=2)))

4.5.2 Representing functions by objects

Let A be an object defined by the collection of its immediate components, ieee:
A =l.10(<slel> ' <52=A2>,,..,<Sﬁ:An>)

A function fA may be associated with any such object by:

Ai if 1l=sis<n
fA(Si) =
G2 otherwise
i.,e. these functions are mappings of selectors of S into objects:

fA : S —e Objects

Key to abbreviations:
Fact factorial

405.2

IBM LAB VIENNA 4-23 TR 25,087

All functions associated with objects in the above manner are functions whose
domain is the set of selectors and which yield a value # G2 only for a finite set

of arguments,

The state of the machine may contain several such mappings represented by
the associated objects. The assumption to be made is of course that the domains of
such mappings are subsets of the set of selectors.,

Two examples may illustrate the application,

g;g The environment component

The version of the environment compnent given in this section will correspond
to the needs of the example in chapter 5. The environment component s-env(g) of
a state % is a mapping of the identifiers, which may be referenced in the given
state, into unique names. The environment component serves to resolve the scope
problem within a block structure as will be explained in the example given in
chapter 5. The present problem is to represent environments as objects. For that
purpose all identifiers which might occur in a program are assumed to be members
of the set of selectors S. If now for a specific environment the identifiers
idl, idz, ceey idm are to be mapped into the unique names Ny N,y essy D Tespecs
tively, the mapping is represented by the object ENV:

ENV = }LO(<id1=nl>’ <ld2=n2>' oul'<ldm=nm>)

To retrieve the unique name for a given identifier idi' the identifier is
simply applied to the environment, since idi(ENV) =n,.

Since the environment is the immediate component s-env(g) of any state €,
the question as to which unique name is associated to a given identifier idi for a

given state € is answered by!

idi°s-env(§)

All possible objects which may serve as an environment can be defined by the

predicate is-env:
is-env = ({<id:is-n> || is-name(id)g)

A
where: is-n is the set of all unique names and ischame is the set of all possible
identifiers,

IBM LAB VIENNA 4-24 TR 25.087

(2) Directories

Certain components of states of the machine are directories., By the term
directory is understood a mapping of unique names into certain objects., Any pair
of a unique name and its associated object is called'an entry with respect to the
directory. The structure of the object representing a directory is always such
that the unique names serve as selectors and yield their associated object when
applied to the directory. For example, upon entrance inteo a block, identifiers
declared in that block are first associated with unique names in the environment.
For all of those unique names an entry in the so called attribute directory g-at(g)
is then made associating the unique name with the attributes declared for the

corresponding jidentifier and some additional information.

Given an identifier id and a certain state g one may retrieve the attributes

of that identifier by:
(idos-env(g))(s-at(%))

In other words one has first to apply s—-env to the state to get the environ-
ment; application of the identifier to the enviromnient yields the corresponding
unique name which in turn applied to the attribute directory s-at(g) yields the

desired attributes,

Another principle used in the above example should be noted, namely, in order
to associate identifiers with unique names which are furthermore asso¢:iated with
certain attributes, the unique names have been used in a double role, on the one
hand as a component of the environment, on:the other as a selector in the attributé
directory, One may illustrate the situation by means of the following picture:

environment:

////r\\\ attribute directory:

I
ny ey " i ’
N ABEE)atkr, attr

Key to abbreviations:
s-at select attribute directory

s-env . select environment

4,5.2

IBM LAB VIENNA 4-25 TR 25.087

With the above construct one may introduce as many steps of indirectness as
necessary and desired., The construct serves precisely the purpose of indirect

addressing known in usual machine programming,

4,53 Realization of stacks

Stacks play an important role in the interpretation of programming languages
like PL/I because of its nested structure, By the term stack is understood a
linear arrangement of elements say Pys Ppr sess Pp 19 Py where P, is called the top
element. The assumption is that at any point of time only the top element is re-
ferred to., The two operations by which a stack is manipulated are: the push_ down
operation which adds a new element Ph41 OR top of the stack and the PSp_up opera-=
tion which deletes the top element from the stack so that Ph-1 becomes the new top
element, This means that it will be useful to let a stack appear as an object
having the top element and the rest of the stack as its immediate components.,

The situation may be visualized by the picture given below.

pﬂ¢1 -
Pn - o Pn
Pn-4 - Pn-1 Pn-4 HT
| | .
| | ! J
- ! I
: i | !
P2 P2)
P4 } o4 P4 P4
push-down pop-up

The following schema will be used to represent a stack as an object. The se-
lectors s-p for the top element and s-p=stack for the rest of the stack will be

used for the purposes of this section.

ST = #\

s-p s-p-stack
¢ P\
P

H s-p s-p-stack
J L)

Pn-1

N

,;\ object representing a stack
s-p-stack

s T >

IBM LAB VIENNA 4-26 TR 25,087

The stack operations may be formulated as follows:

push down:

}Lo(<s—p:pn+l>, <s-p=-stack:ST>)
pop upt
s-p-stack(ST)

The members of the class of possible stacks, is*S*stack, which can be formed

from elements of isﬁp may simply be defined by:

is-p=-stack = (<s=p:is-p>, <s-p=-stacki:is-p-stack>) v is-Q

4,5.4 Reference tg state components in instruction definitions

It seems worthwhile to mention that the definition of auxiliary instructions
is not only a means of introducing abbreviations but may also influence the point

in a computation where references to the state become etrective,

Two fairly similar definitions of an instruction in, are considered as an

example,
(1) in, =
inz;
ing
in, =
in,(s-p(¢))

where s-p(g) refers to some component of the state § .

(2) in, =
ing (s-p(g));

_ 454

¥3M LAB VIENNA 4-27 TR 25.087

It is now assumed that in the course of a computation Lglis being executed
and the problem is to observe the difference of the two definitions ofggl.

ad (1)
(a) execution of.iglmeans its replacement by the control tree

in,s

s

(b) execution of £23

(c) execution of in, means its replacement by;gés-p(g))
g therefore refers to the state after execution of iﬂ3 (1)

ad (2):
(a) execution of ﬂl means its replacement by Lr}_s(s'-p (fg))%
in, 3

g therefore refers to the state before execution ofé£3 (1)
(b) execution of ing

(c) execution of ingwhich means its replacement by in,(...)

This means that in both cases the instructions are executed in the order
in,, iny, ..., in,, however, the reference to € is a reference to two different

states in the above two cases.

4,5,5 The null instruction

The problem is to construct a control tree for instructions instrl, instrj,
seey instrn to be executed in unspecified order. It is assumed that the instruc-
ions do not pass any value or construet a common auxiliary object., To construct
3 valid control tree for the above problem it is necessary to have an instruc-
zion which does nothing else than to delete itself from the control tree., This in-
struction is called the null instruction and is defined by:

nul; =

PASS: Q2
The above problem may now be resolved by:

null; {instrl, instrz, YY) instrn}

IBM LAB VIENNA 4-28 TR 25.087

4,5,6 Pass instructions

The instruction schema pass has already been used in a previous example; its
definition is repeated for completeness;

pass(x) =
PASS:x

The following problem occurs gquite frequently. An auxiliary object x is to be
constructed whose components are compyted by instructions to be executed in un-
specified order . However, it 1s not the object itself that is to be passed but

the result of applying a function f to it.
Since only argument places of an instruction may be occupied by a dummy name
in a control tree, the instruction pass is not sufficient to solve this problem,

Therefore, a special abbreviation has been introduced to avoid the definition of

auxiliary instructions for any special function f£:

pass-f(x) =
PASS: f (x)

where f may be replaced by any function applicable to x.
The following control tree may now be constructed if instrl, instrz, coey
instrn'compute the %l,ﬂa,...,zn components of the auxiliary objeat and fl

is the special function to be applied to it:

Eass-fl(x): { %1(x):instrl, mz(x):instrz, R xn(x)zinstrn}

4,5,7 Element by element evaluation of a list

In section 4.4.10 it has already been shown how a list may be evaluated by
evaluating the elements in unspecified order, It will now be shown, how a list may
b@ evaluated element by element in the natural order., The empty list will be in-
cluded and its evaluation is supposed again to yield the empty 1list, It is further
aésumed that the instruction evaluating a specific elemént el and passing the
desired value 1is gval(el).

IBM LAB VIENNA 4-29 TR 25.087

The instruction schema which solves the given problem is eval-list and its

definition reads:

eval-list(list) =
is=<>(list) — PASS: <>
T —= mk=-list(eh, et);
et: eval-list(tail(list));
eh:eval (head (list))

where:
mk=-list(x,list) =
PASS: <x>"1ist

Key to abbreviations:

eval-list
is=<>
mk-list
eh

eit

eval

evaluate list
is-empty list
make list
evaluated head
evaluated tail
evaluate

er-5 AMMATIV A1 MET

-—— -

3rii=dows i meidoxqg mavtp et esvicw doriw smarloe 3l iovrsaal sl

‘gbEsy noildiniish

= (Jell)geti-{svs
<= 1BBAT ~—— (Fall)<>-=2f
iide (fds)iail-dip - T
tizetl) Lis®) getl-Leve iip

{1z2r{}bsesd) Isvo: e

teannw
= (deil x}zeil-dm
jeil’ »-12844

g —

- —

1eaoltdsiverdds of ys

il stsulsvs deli-lsvsg
o i

se ki yzgims=z] et
reil SxE sl Pl

Lusn pedscisva o

263 Fajunlesve

3 2 TS0 0 TRAE L s

IBM LAB VIENNA 5-1 TR 25,087

5. DEFINING THE INTERPRETATION OF EPL

This chapter is devoted to the definition of the interpretation of EPL
using the notion of abstract machine introduced in the previous chapter. It might
be helpful at this point if the reader refers to Section 1.2 in order to refresh
his understanding of the general structure and content of EPL and to Section 3.1
for a precise statement of the absgract syntax of EPL.

Sections 5.1 and 5.2 present the formal definition of the semantics of: EPL
with almost no comments given concerning the formulas. The rest of the chapter is

devoted to different comments and the elaboration of consequences of the formal

definiton.

B’ The States of the Interpreting Machine

N
+This section defines the set of states, is-state, which the interpreting

machine can assume. These include the initial state for any given program and the

set of end states.
In addition to the sets of elementary objects and the set of selectors spe-
cified for the abstract syntax of EPL in Section 3.1, page 3-6, the following sets

of elementary objects and selectors are distinguished:

N
is-n infinite set of names
(used for the generation of unique names)
{PROC, FUNCT } two attributes used to distinguish function

names and procedure names

{s-env,s-c,s-at,s—dn,s-d,S-n} selectors for the components of the

interpreting machine.

(S1) is-state = (<s-env:is-env>,
<g=-c:is-c>,
<s—at:is-at>,
<gs=-dn:is~dn>,
<s=-d:is-d>,

1
<s-n:is-integer-value>)]

(s2) is-env = ({<id:is-n> || is-id(id)})
(s3) is-c = 2)
(s4) is-at = ({<n:is-type> || is-n(n)})

(s5) is-type = { INT, LOG, PROC, FUNCT }

1)This is the counter for the unique name generation (see 4.5.1).

2)is'-‘-\c is a set of control trees having the properties described in chapter 4.,

section 4.3.
5.1

IBM LAB VIENNA 5-2 TR 25,087

(S6) is-dn = ({<n:(<s-env:is-envs,
<s-attr: (is-proc-attr v is-funct-attr)>) v is-value> ||
is-n(n)})

(s7) is-d = (<s-env:is-env>,<s-c:is-c>,<s-d:is-d>) v is-Q

N
The initial state for any given program t & is-progr is:

}LO(<s-c:int-Erogr(t)>,<s—n:l>)

The initial state has only a control part which is the instruction int-progr(t).
“he instruction int-progr is defined in the next section.

States ? whose control part s-c(g) is €2 are end states,

5.2 The Interpretation of the Language

This section defines an instruction schema int-progr whose parameter is a

proaram, The execution of an instruction int-progr(t) specifies, in terms of
the abstract machine, the task of the program t.

The following additional notational conventions similar the formal defini-
tion of PL/I have been introduced. For better readability abbreviations for the
immediate components of a current state ? have been introduced. The lefthand sides

of the following list may alway’s be replaced by the corresponding righthand side.

Key to abbreviations (prefixes are omitted):

env environment n unique name

© control d dump (stack representing the
at attribute directory dvnamic nesting of block,

dn denotation directory procedure and function acti-
id identifier vations)

IBM LAB VIENNA 5=3 TR 25,087

ENV s-env(?)
e s*c(‘;)
AT s-at(?)
DN s-dn(g)
D s=d(g)

If the case distinctions made in the definition are not exhaustive,i.e.there are

cases for which the instruction definition is undefined, then this is indicated

by an additional final line in the definition:
T —= error.

The definition of instruction schemata will be given in the following

format:
(Ii) DEFINITION OF INSTRUCTION SCHEMA
where: LIST OF ABBR. LOCAL TO THIS DEFINITION
for: RANGES OF ARGUMENTS OF THE SCHEMA DEFINED
Ref.: REFERENCES

Note: ADDITIONAL NOTES

Any of the last four items may be omitted.

The following functions and instructions are not further specified:

convert (v,attr) the function yields v converted (if necessary) to
the type specified by attr which may either be INT
or LOG,

int-bin-op(op,a,b) Instruction which returns the result of applying the

operator op to a and b, It is left open whether-
there is a conversion performed in case the operator

. is not applicable to operands of type a and b,

int-un-op (op,a) Instruction which returns the result of applying
the operator op to a (for the problem of conversion

see above),

value(a) Function which yields the value given a constant a.

IBM LAB VIENNA 5=4 TR 25.087

(I1) int-progr(t) = int-klock(t)

for : is-progr(t)

(I2) int-block(t) =
s-dipb(<s—env:ENV>,<s-c:§>,<s-d:g>)
s-Ccsexit; 2
int-st-list(s~st-=1list(t));
int-decl-part(s-decl-part(t));
uEdate-env(s—declapart(t))z

for: is-=-block(t)

(I3) update-env(t) =
null;

{ugdate—id(id,n); n:un-name | id(t) #]

for: is-decl-part(t)
Ref.s null (see 4.4.5), un-name(see 4,4,1)

(I4) uEdate-id(id,n) =
s-env1FiENV;<id:n>)

for: is-id(id), is-n(n)

(IS) int-decl=-part(t) =

null;
{int-decl(id(ENV),id(t)) | id(t) # Q}

for: is-decl-part(t)
Ref.: null (see 4,.,4,5)

(I6) int-decl(n;attxr) =

is=var-attr(attr) —= s-at:F4§2;<n:attrﬂ

is=-proc-attr(attr) —e s-atzﬂiég;<n:PROC>)
s-dnzpiggg<an0(<s-attr:attr>,<s-env:ENV>)>)

is=funct-attr(attr) —e s-at:Pi§2;<n:FUNCT>)
s-dn:fﬂ2§:<nv¢0(<s—attr:attr>,<s-env:ENV>)>)

for: is-n(n), is-attr(attr)

IBM LAB VIENNA 55 TR 25,087

(I7) 4int-st-list(t) =
is=<>(£) —e null
T — = int-st-list(tail(t)):;
int-st(head(t))

for: 1is-st-list{t)
Ref.: null (see 4,4,5)

(I8) int=-st(t) =
is-assign-st(t) —= int-assign-st(t)
is-cond-st(t) —= int-cond-st(t)
is=-proc=-call(t) & (att = PROC) —= int-proc-call (t)
is=block(t) ——= int-block(t)

where: at, = ((s-id(t)) (ENV)) (AT)
for: is=-st(t)

(I9) Aint-assign-st(t) =
is-var-attr(ng (AT)) —=

assign(nt,v);
viint-expr(s~-right-part(t))

T —s error

where: n, = (s=left=-part(t)) (ENV)

for: is-assign-st(t)

(I10) assign(n,v) =

s-dn: (DN <n:convert (v,n(AT)) >)

for: is=-n(n), is=-value(v)
Ref.: convert (not specified further)

(I1l) int-cond=-st(t) =
branch(v,s=-then-st(t), s-else=st(t))}
viint-expr (s-expr(t))

for: is-cond-gt(t)

U'I'
.
N

IBM LAB VIENNA 5=5
(rl2) branch(v,stl,st2) =

(I13)

(114)

(I15)

for:

convert (v,LOG) —= int=st(stl)
—convert(v,LOG) —e int-st(at2)

is=value(v), is=-st(stl), is-st(st2)

int-proc-call{t) =

(length(arg-listt) = length(p—listt)) —

s-env:FAenvt;{<elem(i,p-listt)x elem(i,arg-list,) (ENV) > |

TR 25.087

lsislength(p—listt)}

s-dﬁ;o(<s-env:ENV>,<s-c:§>,<s-d:2>)

sS=csexit;
int-st(stt)

T — « error

where: n, = (s-id(t))(ENV),p-listt = s—param—listos—attront(Qﬂ),
env, = s-envont(_Dg),arg-listt = s=arg-list(t),
stt = s-stos-attront(gg)

for: is=-proc=call(t)

exit =

s-env:s-env(D)
s=¢c :s=-c(D)

s-d ts-d(D)

int-expr(t) =

is-bin(t) —= int-bin-op(s-op(t),a,b,);
asint-expr(s-rdl(t)),
biint-expr (s-rd2(t))

is-unarytt) —— int-un-op(s-op(t),a):
a:int-e%EE(s—rd(t))

is=-funct=-des(t) & (att = FUNCT) —

pass-value (n) ;
int-funct-call(t,n):

n:un-=name

is=var(t) & is-var-attr(nt{ég)) — PASS:nt(QE)
is=-const(t) —=s= PASS:value(t)

T —e error

IBM LAB VIENNA 5=7 TR 25.087

where: n_ = t(ENV),at, = ((s-id(t)) (ENV)) (AT)

for: is-expr(t)
Ref,: wvalue, int-bin-op and int-un-op are not further specified;

un-name (see 4.4,1)

(Il6) gass-value(n) =
PASS:n (AT)

(I17) int-funct=-call(t,n) =
(length(arg-listt) = length(p—listt)) —_—

s—envzpienvt;{<elem(i,p-listt):elem(i,arg—listt)(ENV)> |
1sislength(p-listt)}

s=ds:y, (<s—env:ENV> .<s=c:C>,<s-d:D>)
2288 S LA = =

S-c:iexit;
assign(n,v);
vaigt-exgr{exprt);
int-st(stt)

T —e error

where: n, = (s-id(t)) (ENV), p-listt = s~param-listos—attront(gg),
env, = s-env°nt(2§), arg-listt = s—arg-list(t),

st, = s-stes-attren, (DN) +€Xpr, = s-expres-attren (DN)
for: is=funct-des(t), is-n(n)

Note: the definition is almost identical with (I13)

IBM LAB VIENNA 5-8 TR 25.087

5.3 Intuitive Description Based upon the Formal Definition

5:3.1 The Components of the State

The Environment and Dump

The environment associates identifiers with unique names. For any state §
the environment component contains all those identifiers which can possibly’
be referred £o in this state. The associated unique name of any identifier
gives access to the meaning of the identifier in the present state via the
corresponding entries in the denotation directory and attribute directory. For
example, if a given identifier is a variable then the corresponding unique
name is associated with the value of the variable by an entry in the denotation
directory and with the type of the variable in the attribute directory.

To gain some insight into the significance of the block structure of the
language one may inspect all instructions which replace or rcdify the environment
component of the state (see for the occurencesof s-env). Initially, the environ-

ment is QQ.

Since a program in the given language is a block, the first action is to ac-
tivate this block /see (I1), (I2)/. Activating a block means rutting a copy of the
current environment and the current control on top of the dump and installing a
new control part. The next instruction executed updates the environment /see
(r2), (13), (I4)/. This means that for any identifier id declared in the declara-
tion part of the block a unique name n is generated /see (I3)/ and a component n
with id as selector is built into the environment by mecans of the P,function.

If the identifier is already present then the corresponding component is over-
written by the new n. Exit from the block /see (I2), (Il4)/ the environment
and the control of the top element of the dump are reinstalled as the current

environment and control and the dump is popped up.

During the execution of a block any further activation of a block and also
any call of a procedure /see (I13)/ and any call of a function /see (Il17)/ causes
a change of the environments. However, in all of the above cases, a copy of the
environment is put on top of the dump before it is changed and it is reinstalled
upon return. In other words, there is an environment established for any acti-
vation of a block, procedure or function and the environment remains constant for

this activation of the block, procedure or function.

IBM LAB VIENNA 5«9 TR 25,087

Interpretation of a block /see (I2]/ means updating of the environment and
afterwards interpreting the declaration part. In the interpretation of procedtre -
or function declarations, the environment becomes part of the denotation entered
into the denotation directory for the procedure or function name /see (I6)/. Upon
activation of a procedure or function the environment which is part of the deno-
tation is installed and updated, i.e., the environment which was valid at the time
of the declaration of the procedure, /see (I13), (I17)/. In other words, the
meaning of the global variables which occur in a procedure or function declara-

tion is frozen at the time when the declaration is interpreted.

The above technigque may be generalized as follows. Given some piece of text
whose meaning depends on the meaning of the references to certain identifiers
in it, the meaning of this text may be determined by associating the text with

an environment containing the respective identifiers.,

The argument passing performed upon any procedure or function call consists
simply in associating the parameters with the unique names of the arguments
/see (I13), (I17)/, and thus making the parameters "synonymous" with the arguments.,

An identifier which is not declared yields (2 when applied to the environ-
ment. Any application of (JQto either the denotation directory or attribute direc-

tory is undefined because (2 is not a valid selector.

The Denotation Directory

The denotation directory associates unique names n with a denotation dn. A
specific entry into the directory will be symbolized by: '

n— dn,

What the denotation for a specific case 1is, depends on the type of the name,

In the present example, the following cases occur:

variables: n—value
functions: n— (param-1list,st,expr) ,env b
procedures: n — (param-list,st),env 1

1) The parentheses and commas indicate the structure of the object. The precise
definition of the objects can be taken from the abstract syntax of the state

/see (S6)/.

IBM LAB VIENNA 5-1C TR 25.087

Entries are made upon activation of a block in the case of functions and
procedures and upon assignment in the case of variables. The entries for
functions and procedures are never changed or deleted. The values assoclated with
a variable name may change upon execution of an assignment to that variable
/see (I6), (I10}/. The value of a function is also returned via an auxiliary
entry to the denotation directory /see (Il5), (Il17)/.

The Attribute Directory

The attribute directory associates unique names with the type of these names,
The Ffollowing cases occur in the present example,

interger variables NaisemIHE
logical variables : nirrme LOG
procedures : n —— PROC
functions :, n —— FUNCT

The abstract syntax does not reflect the fact that identifiers of a certain
type may only be referenced in a context compatible with their type. This fact 1is,
however, expressed in the interpreter by suitable checks. The check is made in
(18) for type procedure, for type function and type variable in (Il5),

Entries into the attribute directory are only made upon activation of a
block and never deleted or changed.

"5,3.2 Types of Identifiers and their Dynamic Significance
This section answers the question as to which types of identifiers exist
in the language and what i1s the meaning associated dynamically with identifiers.
The possible sharing patterns will be discussed at the end of this section.

As explained previously, any identifier, id, that can be referred to at a
certain state § is associated with a unique name n via the environment component.,
This unique name is then furthermore associated with a denotation dn in the de-
notation directory and with a type in the attribute directory. This situation
can be symbolized as follows:

dn

DN
ENV

id n
Nar
type

5.3.2

IBM LAB VIENNA 5-11 TR 25.087

The following cases occur in the present example:

variabless value
////
DN
jq S ni::j
AT
—‘\\\\type where: type is either INT

or LOG

procedures: ////iparam-list,st),env

DN
ENV n,//’

id
\
S~rrocC

3

functions:
///,(param-list,st,expr),env

DN
iq B8V 7
AT

\\\\FUNCT

The following two important gquestions may be distinguished:

(1) When are the entities of the above information structures created?

(2) When are the diverse associations established and disolved?

The above two questions are guite informative when applied to the formal
definition of PL/I. The answers for the present example are comparatively simple,

The case of procedures is selected as illustration:

(1) program writing

; .
i

: R 153%
5 //(param-llst,st),gpv
DN™ 3

{
;q ENV 2<:::
& AT

v
'h.mj\\\PROC

block activation L

1)
The terms block activation and block exit refer to the block in which the

declaration of id occurs,
5.3.2

IBM LAB VIENNA $-12 TR 25.087

(2) 1

established at block activation 1)

..... - §”;/%;(param—list,st),env
DN

v N
g BY o

dissolved:at block exitl)

There is only one sharing pattern to be mentioned, namely between an argu-
ment of a procedure or function and the corresponding parameter. Again, the situa-

tion in the present example is extremely simple as compared to PL/I.

Consider a procedure call where an argument idl is passed to a parameter
idz. According to (Il13), the following sharing pattern via the unique name of idl
will exist after the parameter passing has actually been performed:

idl\\\\\\\ //////dn
/n\
:i.d2 type

"5,3.3 Flow of Control

In the previous chapter, the dynamic significance of id:ntifiers has been
isolated. This section will draw attention to another aspect of the language,
namely the order in which the actions specified by a program are taken,

Definition (I2) specifies that the execution of a block means updating of
the environment, interpretation of the declaration part, interpretation of the
statement list and exit, Definition (I5) specifies that the individual declarations
may be interpreted in any order. This is irrelevant in the present case; it be-=
comes, however, relevant in PL/I because interpretation of declarations may in-
volve expression evaluation (side effects)

1) The terms block activation and block exit refer to the block in which the

declaration of id occurs,

553,43

IBM LAB VIENNA 5=13 TR 25.087

Interpretation of the statement list means,as specified in (I7).,interpreting

the list element by element in the given order.

Next, one has to consider the individual statements. Starting with the assign-
ment statement definition, (I9) specifies that the expression has to be evaluated
and the resulting value is assigned to the variable on the lefthand side of the
assignment, The operands of an expression may be evaluated in any order according
to definition (I15). One should note that there are, however, expressions where
the choice of an order is relevant to its meaning. Upon the activation of a func-
tion in the course of expression evaluation one should note that the current con-
trol is prt into the dump and a new control is installed according to (Il17).

This means that the evaluation of other operands is temporarily stopped until the
exit of the function. A simple example may illustrate the situation.

Consider an expression:
fl(X) + fz(y) * f3(2).

The operands of this expression may be evaluated in any order, e.qg. f3(z),
fl(x), fz(y). The action of the evaluation of any two of the functions may not,
however, be interleaved. The interpretation of the conditional statement is tri-

vial and given in (Ill).

The interpretation of a procedure call causes the control again to be

dumped., In the case of procedures this is, however, irrelevant.

