An introduction to rely/guarantee reasoning about concurrency

Ian J. Hayes (and Cliff B. Jones)
The University of Queensland, Australia (and Newcastle University, UK)

SETSS Spring School

Chongqing, China
2017-04-17-19
Pre I assume that this lecture starts at 8:30am
Guarantee you will understand to rely/guarantee reasoning
Rely that you ask questions when you don't understand
Post finish this lecture at 9:30am

- Deriving sequential programs
- Example: Sieve of Eratosthenes
- Deriving concurrent programs
- Example: Sieve of Eratosthenes
- Example: Communicating through a circular buffer
- Semantics of concurrent programs

Logic and set theory

- Propositional logic: \wedge, \vee and \neg
- Predicate logic: \forall and \exists
- Set theory: $\in, \subseteq, \cup, \cap$ and $\{\ldots\}$
- Specification languages: VDM, Z, B and TLA

Reasoning about programs

- Hoare logic: $\{p\} \subset\{q\}$
- Refinement calculus or B or Event-B: $\sqsubseteq, x:[p, q]$
- Rely/guarantee concurrency
- Separation logic
- Concurrent separation logic

Our main tool is abstraction:
sequential specify components using pre/post conditions

- e.g. sorting
- precondition noduplicates(s)
- postcondition ordered $\left(s^{\prime}\right) \wedge$ items $\left(s^{\prime}\right)=\operatorname{items}(s)$
data use abstractions such as sets and maps
- decouple the specification of what the user sees from the implementation
- avoid the details of the implementations, such as, linked lists and trees
process due to interference between processes need more than pre and post

Reasoning about the whole is decomposed into reasoning about the components

Why?

- Make reasoning tractable
- Partition the work (e.g. for multiple people to work on different components)
- Avoid reasoning about paths

$$
\begin{aligned}
& j:=0 \\
& \text { while } j \neq N \text { do } \\
& \quad \text { if } p \text { then } s \text { else } t ; \\
& \quad j:=j+1
\end{aligned}
$$

- 2^{N} possible paths

Hoare logic is compositional

Structured reasoning about programs

- Sequential composition

$$
\frac{\{p\} s\{q\} \quad\{q\} t\{r\}}{\{p\} s ; t\{r\}}
$$

- While loop using a loop invariant p

$$
\frac{\{p \wedge b\} s\{p\}}{\{p\} \text { while } b \text { do } s\{p \wedge \neg b\}}
$$

For termination one needs to add a loop variant or well-founded relation

Interference possible before or after every atomic step s_{i} and t_{i}

$$
s_{1} ; s_{2} ; \ldots ; s_{n} \| t_{1} ; t_{2} ; \ldots ; t_{n}
$$

- The number of paths in terms of n explodes
- If there is no interference between s and t

$$
\frac{\left\{p_{1}\right\} s\left\{q_{1}\right\} \quad\left\{p_{2}\right\} t\left\{q_{2}\right\}}{\left\{p_{1} \wedge p_{2}\right\} s \| t\left\{q_{1} \wedge q_{2}\right\}}
$$

- But this is the easy case
- Determine primes up to some given n
- Illustrates:
- starting with abstract type (a set)
- using guarantees (even for a sequential program)
- introducing loops
- data refinement to an array of small sets that can each fit in a word

Sieve of Eratosthenes - sequential

- Precondition $s \subseteq 2 \ldots n$ holds initially
- Assume that C is the set of all composite numbers (non-primes)
- Postcondition $s^{\prime}=s-C$
$s:\left[s \subseteq 2 \ldots n, s^{\prime}=s-C\right]$
$=$ equivalent post condition (set theory)
$s:\left[s \subseteq 2 \ldots n, s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C \wedge s^{\prime} \cap C=\emptyset\right]$
\sqsubseteq guarantee on every step
$\left(\right.$ guar $\left.s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C\right) \cap s:\left[s \subseteq 2 \ldots n, s^{\prime} \cap C=\emptyset\right]$
The guarantee condition is
- reflexive, i.e. $s^{\prime}=s \Rightarrow s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C$
- transitive, i.e. $s^{\prime} \subseteq s^{\prime \prime} \subseteq s \wedge s-s^{\prime \prime} \subseteq C \wedge s^{\prime \prime}-s^{\prime} \subseteq C \Rightarrow s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C$

Assume c_{i} is the set of all multiples of i, excluding i

$$
\begin{aligned}
& s^{\prime} \cap C=\emptyset \\
\equiv & s^{\prime} \cap \bigcup\left\{j \in \mathbb{N} \mid 2 \leq j \cdot c_{j}\right\}=\emptyset \\
\equiv & \bigcup\left\{j \in \mathbb{N} \mid 2 \leq j \cdot\left(s^{\prime} \cap c_{j}\right)\right\}=\emptyset \\
\equiv & \forall j \in \mathbb{N} \cdot 2 \leq j \Rightarrow s^{\prime} \cap c_{j}=\emptyset
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left(\text { guar } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C\right) \cap \\
& s:\left[s \subseteq 2 \ldots n, s^{\prime} \cap C=\emptyset\right]
\end{aligned}
$$

\sqsubseteq by above set theory
$\left(\right.$ guar $\left.s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C\right) \cap$

$$
s:\left[s \subseteq 2 \ldots n, \forall j \cdot 2 \leq j \Rightarrow s^{\prime} \cap c_{j}=\emptyset\right]
$$

The refinement now focuses on just the specification (the second line)

$$
\text { If } \begin{aligned}
& 2 \leq i \wedge 2 \leq j \text { and if } i * j \leq n \text { then either } \\
&-i^{2} \leq n \wedge j^{2} \geq n \text { or } \\
&- j^{2} \leq n \wedge i^{2} \geq n
\end{aligned}
$$

Hence one only has to remove multiples of i up to the (integer part of) the square root of i

$$
\begin{aligned}
& \quad s \subseteq 0 \ldots n \wedge n \leq i^{2} \wedge\left(\forall j \in 2 \ldots i \cdot s \cap c_{j}=\emptyset\right) \\
& \Rightarrow \\
& \quad\left(\forall j \in \mathbb{N} \cdot 2 \leq j \Rightarrow s \cap c_{j}=\emptyset\right)
\end{aligned}
$$

The predicate $\left(\forall j \in 2 \ldots i \cdot s \cap c_{j}=\emptyset\right)$ holds if i is 1
$s:\left[s \subseteq 2 \ldots n, \forall j \cdot 2 \leq j \Rightarrow s^{\prime} \cap c_{j}=\emptyset\right]$
\sqsubseteq introduce variable i to be used as loop index

$$
\text { var } i:=1
$$

$$
i, s:\left[\begin{array}{ll}
s \subseteq 2 \ldots n \wedge & n<(i+1)^{2} \wedge \\
\forall j \in 2 \ldots i \cdot s \cap c_{j}=\emptyset & \forall j \in 2 \ldots i \cdot s^{\prime} \cap c_{j}=\emptyset
\end{array}\right]
$$

\sqsubseteq introduce while loop
while $(i+1)^{2} \leq n$ do

$$
i, s:\left[\begin{array}{l}
s \subseteq 2 \ldots n \wedge(i+1)^{2} \leq n \wedge \\
\forall j \in 2 \ldots i \cdot s \cap c_{j}=\emptyset
\end{array}, \quad i<i^{\prime} \wedge, \quad \forall j \in 2 \ldots i \cdot s^{\prime} \cap c_{j}=\emptyset\right]
$$

Refining the loop body

$$
i, s:\left[\begin{array}{l}
s \subseteq 2 \ldots n \wedge(i+1)^{2} \leq n \wedge \\
\forall j \in 2 \ldots i \cdot s \cap c_{j}=\emptyset
\end{array}, \forall j \in i^{\prime} \wedge, i \cdot s^{\prime} \cap c_{j}=\emptyset\right]
$$

\sqsubseteq introduce sequential composition

$$
i:=i+1
$$

$$
s:\left[\begin{array}{l}
s \subseteq 2 \ldots n \wedge i^{2} \leq n \wedge \\
\forall j \in 2 \ldots i-1 \cdot s \cap c_{j}=\emptyset, \forall j \in 2 \ldots i \cdot s^{\prime} \cap c_{j}=\emptyset
\end{array}\right]
$$

Refining the specification:

$$
s:\left[\begin{array}{l}
s \subseteq 2 \ldots n \wedge i^{2} \leq n \wedge \\
\forall j \in 2 \ldots i-1 \cdot s \cap c_{j}
\end{array}=\emptyset, \forall j \in 2 \ldots i \cdot s^{\prime} \cap c_{j}=\emptyset\right]
$$

\sqsubseteq to achieve the post condition the elements in c_{i} need to be removed $s:\left[s \subseteq 2 \ldots n \wedge i^{2} \leq n, s^{\prime} \cap c_{i}=\emptyset\right]$
\sqsubseteq recall that c_{i} contains all the multiples of i, excluding i

$$
s:\left[s \subseteq 2 \ldots n \wedge i^{2} \leq n, \forall j \cdot 2 * i \leq j * i \leq n \Rightarrow j * i \notin s^{\prime}\right]
$$

Reminder: this is all in the context of (guar $s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C$)
$s:\left[s \subseteq 2 \ldots n \wedge i^{2} \leq n, \forall j \cdot 2 * i \leq j * i \leq n \Rightarrow j * i \notin s^{\prime}\right]$
$\sqsubseteq \quad$ introduce variable k to be used as a loop index
$\operatorname{var} k:=2$;
$k, s:\left[\begin{array}{ll}s \subseteq 2 \ldots n \wedge i^{2} \leq n \wedge \\ \forall j \cdot 2 * i \leq j * i<k * i \Rightarrow, \\ j * i \notin s\end{array}, \begin{array}{l}n<k * i \wedge \\ \quad 2 * i \leq j * i<k * i \Rightarrow \\ j * i \notin s^{\prime}\end{array}\right]$
\sqsubseteq introduce inner loop
while $k * i \leq n$ do

$$
k, s:\left[\begin{array}{cc}
s \subseteq 2 \ldots n \wedge 2 * i \leq k * i \leq n \wedge & k<k^{\prime} \wedge \\
\forall j \cdot 2 * i \leq j * i<k * i \Rightarrow & , \forall j \cdot 2 * i \leq j * i<k * i \Rightarrow \\
j * i \notin s & j * i \notin s^{\prime}
\end{array}\right]
$$

$$
\begin{aligned}
& k, s:\left[\begin{array}{ll}
s \subseteq 2 \ldots n \wedge 2 * i \leq k * i \leq n \wedge & k<k^{\prime} \wedge \\
\forall j \cdot 2 * i \leq j * i<k * i \Rightarrow & , \forall j \cdot 2 * i \leq j * i<k * i \Rightarrow \\
j * i \notin s & j * i \notin s^{\prime}
\end{array}\right] \\
& \sqsubseteq \text { introduce sequential composition } \\
& \begin{array}{l}
s:\left[\begin{array}{l}
s \subseteq 2 \ldots n \wedge 2 * i \leq k * i \leq n \wedge \\
\forall j \cdot 2 * i \leq j * i<k * i \Rightarrow \\
j * i \notin s
\end{array}, \quad \forall j \cdot 2 * i \leq j * i<(k+1) * i \Rightarrow\right. \\
k:=k+1
\end{array}, \quad j * i \notin s^{\prime},
\end{aligned}
$$

Now refine the specification

$$
s:\left[\begin{array}{cc}
s \subseteq 2 \ldots n \wedge 2 * i \leq k * i \leq n \wedge & \\
\forall j \cdot 2 * i \leq j * i<k * i \Rightarrow & , \forall j \cdot 2 * i \leq j * i<(k+1) * i \Rightarrow \\
j * i \notin s & j * i \notin s^{\prime}
\end{array}\right]
$$

\sqsubseteq to achieve the post condition the element $k * i$ must be removed
$s:\left[s \subseteq 2 \ldots n \wedge 2 * i \leq k * i \leq n, k * i \notin s^{\prime}\right]$

Define

$$
\operatorname{Rem}(m) \widehat{=}\left(\operatorname{guar} s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq\{m\}\right) \cap s:\left[s \subseteq 0 \ldots n \wedge m \in 0 \ldots n, m \notin s^{\prime}\right]
$$

The code so far is

$$
\operatorname{var} i:=1
$$

$$
\text { while }(i+1)^{2} \leq n \text { do }
$$

$$
i:=i+1
$$

$\operatorname{var} k:=2$;
while $k * i \leq n$ do

$$
\operatorname{Rem}(k * i) ;
$$

$$
k:=k+1
$$

Data refinement: representing the set as an array of words

Remove an element from the set

Define

$$
\operatorname{Rem}(m) \widehat{=}\left(\operatorname{guar} s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq\{m\}\right) \cap s:\left[s \subseteq 0 \ldots n \wedge m \in 0 \ldots n, m \notin s^{\prime}\right]
$$

Using the representation as an array v : array $0 \ldots\left\lceil\frac{n+1}{w s}\right\rceil-1$ of $(0 \ldots w s-1)$

```
(guar retr ( v')\subseteqretr (v) ^retr (v) - retr (v')\subseteq{m}) \cap
v:[retr}(v)\subseteq0..n\wedgem\in0..n,m\not\in\operatorname{retr}(\mp@subsup{v}{}{\prime})
```

From the definition of retr

$$
m \notin \operatorname{retr}\left(v^{\prime}\right) \Leftrightarrow(m \bmod w s) \notin v^{\prime}(m \operatorname{div} w s)
$$

Hence the specification can be written as

$$
\begin{aligned}
& \quad v:\left[\operatorname{retr}(v) \subseteq 0 \ldots n \wedge m \in 0 \ldots n,(m \bmod w s) \notin v^{\prime}(m \operatorname{div} w s)\right] \\
& \quad v(m \operatorname{div} w s):\left[m \in 0 \ldots n,(m \bmod w s) \notin v^{\prime}(m \operatorname{div} w s)\right]
\end{aligned}
$$

Conclusions

```
RemW(varw:\mathbb{F}(0..ws-1),i:0..ws-1)\widehat{}
    (guar w'\subseteqw^w-\mp@subsup{w}{}{\prime}\subseteq{i})\cap
    w:[w\subseteq0...ws-1^i\in0..ws-1,i\not\inw']
```

Therefore

$\operatorname{Rem}(m)$

\sqsubseteq
$\operatorname{RemW}(v(m \operatorname{div} w s), m \bmod w s)$
RemW can be implemented using bit-wise operations on a word (exercise)

- Importance of data abstraction
- Guarantee allows one to focus on the interesting part
- Determine primes up to some given n
- Illustrates:
- starting with abstract type
- need to document interference (R)
- interplay between G/Q
- development to code (using CAS)
- symmetric processes (identical R/G)

Intuition

- data abstraction: shared set of \mathbb{N}_{1}
- initialize: all (positive) natural numbers from 2 up to n
- remove all composites
- for sequential for $i=2 \cdots$ post condition of each $\operatorname{RemMults}(i)$ iteration is easy RemMults $(i) \triangle s:\left[s^{\prime}=s-c_{i}\right]$
- for Sieve $\triangle \|_{i}$ RemMults(i)
- need the rely of RemMults(i) to be $s^{\prime} \subseteq s$
- relax the equality in the postcondition of RemMults(i) to $s^{\prime} \cap c_{i}=\emptyset$
- avoid removing too much with a guarantee of RemMults(i) of s-s $s^{\prime} \subseteq c_{i}$
- because processes are identical, have to add a guarantee of no reinsertion

Rely/Guarantee (R/G) idea is simple

- assumptions pre/rely
- commitments guar/post
rely conditions an abstraction of interference to be tolerated relations are key to R/G

Interference between processes

An example of interference on process P by process Q

- One shared variable j
- process Q may do atomic steps that either
- do not change j, i.e. $j^{\prime}=j$, or
- increment j by one, i.e. $j^{\prime}=j+1$
- before or after each atomic step of process P, it may observe
- no steps of Q, i.e. $j^{\prime}=j$
- one step of Q, i.e. $j^{\prime}=j \vee j^{\prime}=j+1$
- many steps of Q, i.e. $j \leq j^{\prime}$
- Observing that both $j^{\prime}=j$ and $j^{\prime}=j+1$ imply $j \leq j^{\prime}$
- Hence we can use $j \leq j^{\prime}$ to represent the possible interference from Q on P

This abstract view of the interference becomes

- a rely condition of P
- a guarantee condition of Q

Advantage of the new style: brings out (algebraic) properties

```Distribute-G-seq (guar g) \cap (c;d)=((guar g) \cap c);((guar g) \capd)```
Distribute-G-par $($ guar $g) \cap(c \\| d)=(($ guar $g) \cap c) \\|(($ guar $g) \cap d)$
Conjunction-mono
$c_{0} \sqsubseteq c_{1} \wedge d_{0} \sqsubseteq d_{1} \Rightarrow c_{0} \cap d_{0} \sqsubseteq c_{1} \cap d_{1}$

## Conjoin-G:

Strengthen-G:

Distribute-G:
$\left(\right.$ guar $\left.g_{1}\right) \cap\left(\right.$ guar $\left.g_{2}\right)=\left(\right.$ guar $\left.g_{1} \wedge g_{2}\right)$

$$
\left(\text { guar } g_{1}\right) \sqsubseteq \underset{\text { if } g_{2} \Rightarrow g_{1}}{\left(\text { guar } g_{2}\right)}
$$

$\left((\right.$ guar $g) \cap\left\|_{i} c_{i}=\right\| \|_{i}($ guar $g) \cap c_{i}$

$$
(\text { rely } r) \cap\left[(r \vee g)^{*} \wedge q\right] \sqsubseteq(\text { rely } r) \cap(\text { guar } g) \cap[q]
$$

Intro-multi-Par:
(asymmetric version later)

$$
\begin{array}{r}
(\text { rely } r) \cap\left[\bigwedge_{i} q_{i}\right] \sqsubseteq \quad \|_{i}(\text { guar } \rho) \cap(\text { rely } \rho) \cap\left[q_{i}\right] \\
\text { if } r \Rightarrow \rho
\end{array}
$$

## Refinement calculus style development

$s$ initially contains set of natural numbers from 2 up to some $n$
$C$ is the set of all composite numbers

$$
\begin{aligned}
& \left(\text { rely } s^{\prime}=s\right) \cap s:\left[s^{\prime}=s-C\right] \\
= & \quad \text { set theory } \\
& \left(\text { rely } s^{\prime}=s\right) \cap s:\left[s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C \wedge s^{\prime} \cap C=\emptyset\right] \\
\sqsubseteq \quad & \text { by Trading-R-G-Post as } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C \text { is reflexive and transitive } \\
& \left(\text { guar } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C\right) \cap\left(\text { rely } s^{\prime}=s\right) \cap s:\left[s^{\prime} \cap C=\emptyset\right] \\
= & \text { as } s^{\prime} \cap C=\emptyset \equiv s^{\prime} \cap \bigcup_{i} c_{i}=\emptyset \equiv \cup_{i}\left(s^{\prime} \cap c_{i}\right)=\emptyset \equiv \forall i . s^{\prime} \cap c_{i}=\emptyset \\
& \left(\text { guar } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C\right) \cap\left(\text { rely } s^{\prime}=s\right) \cap s:\left[\forall i \cdot s^{\prime} \cap c_{i}=\emptyset\right] \\
\sqsubseteq \quad & \text { by Intro-multi-Par } \\
& \left(\text { guar } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C\right) \cap\left(\left\|\|_{i}\left(\text { guar } s^{\prime} \subseteq s\right) \cap\left(\text { rely } s^{\prime} \subseteq s\right) \cap s:\left[s^{\prime} \cap c_{i}=\emptyset\right]\right)\right. \\
= & \quad \text { Distribute-G and Conjoin-G } \\
& \|_{i}\left(\text { guar } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq C\right) \cap\left(\text { rely } s^{\prime} \subseteq s\right) \cap s:\left[s^{\prime} \cap c_{i}=\emptyset\right] \\
\sqsubseteq \quad & \quad \text { Strengthen-G } \\
& \|_{i}\left(\text { guar } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq c_{i}\right) \cap\left(\text { rely } s^{\prime} \subseteq s\right) \cap s:\left[s^{\prime} \cap c_{i}=\emptyset\right]
\end{aligned}
$$

## Onwards to code

The set $c_{i}$ contains all the multiples of $i$ (except $i * 1$ )

$$
\begin{aligned}
& \operatorname{RemMults}(i: \mathbb{N}) \\
& \{s \subseteq 0 . . n\} \\
& \left(\text { guar } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq c_{i}\right) \cap\left(\text { rely } s^{\prime} \subseteq s\right) \cap s:\left[s^{\prime} \cap c_{i}=\emptyset\right]
\end{aligned}
$$

Can be implemented by successively removing each multiple

$$
\begin{aligned}
& \text { var } k:=2 \text {; } \\
& \text { while } k * i \leq n \text { do } \\
& \quad \operatorname{Rem}(k * i) \text {; }
\end{aligned}
$$

$$
k:=k+1
$$

The interesting part is Rem. Its specification allows interference that removes elements from $s$. It guarantees to remove element $m$, only.

```
Rem(m:N)
{s\subseteq0\ldotsn\wedgem\in0\ldotsn}
(guar s'\subseteqs^s-\mp@subsup{s}{}{\prime}\subseteq{m})\cap(rely s'\subseteqs)\caps:[m\not\in\mp@subsup{s}{}{\prime}]
```


## Removing an element from a set atomically

The specification of Rem allows interference that removes elements from s. It guarantees to remove element $m$, only.

$$
\begin{aligned}
& \operatorname{Rem}(m: \mathbb{N}) \\
& \{s \subseteq 0 \ldots n \wedge m \in 0 \ldots n\} \\
& \left(\text { guar } s^{\prime} \subseteq s \wedge s-s^{\prime} \subseteq\{m\}\right) \cap\left(\text { rely } s^{\prime} \subseteq s\right) \cap s:\left[m \notin s^{\prime}\right]
\end{aligned}
$$

Represent the set $s$ as an array $v$ of words each representing part of the set

$$
v: \text { array } 0 . .\left\lceil\frac{n+1}{w s}\right\rceil-1 \text { of } \mathbb{F}(0 \ldots w s-1)
$$

Representation relation

$$
\operatorname{retr}(v)=\{j \in 0 \ldots n \mid j \bmod w s \in v(j \operatorname{div} w s)\}
$$

Implementation using RemW which removes an element from set (as a word)
$\operatorname{RemW}(v(m$ div $w s), m$ mod $w s)$
Specification

```
RemW(var w : \mathbb{F}(0..ws - 1),i:0..ws - 1)
```



## Compare and swap

The implementation without locks makes use of a compare-and-swap (CAS)

## $C A S(\operatorname{var} w, I w, n w, \operatorname{var}$ done $) \widehat{\equiv}$

$$
\begin{aligned}
& \left(\text { rely } / w^{\prime}=I w \wedge n w^{\prime}=n w \wedge \text { done }^{\prime}=\text { done }\right) \cap \\
& w, \text { done }:\left\langle\begin{array}{l}
\left(w=I w \Rightarrow w^{\prime}=n w \wedge d o n e^{\prime}\right) \wedge \\
\left(w \neq I w \Rightarrow w^{\prime}=w \wedge \neg \text { done }^{\prime}\right)
\end{array}\right\rangle
\end{aligned}
$$

Under rely condition $w^{\prime} \subseteq w$ assuming $l w, n w$ and done are local

$$
\begin{aligned}
& \quad w, \text { done }:\left\langle\begin{array}{l}
w \subseteq I w \wedge n w=I w-\{i\}, \\
\left(w=I w \Rightarrow w^{\prime}=w-\{i\}\right) \wedge\left(w \neq I w \Rightarrow w^{\prime} \subset I w\right)
\end{array}\right) \\
& \sqsubseteq \\
& \quad C A S\left(w, I w, n w,_{-}\right) ;
\end{aligned}
$$

Note that the first parameter is a var parameter, i.e. call-by-reference

```
{w\subseteq0..ws-1^i\in0..ws-1}
(guar w'\subseteqw^w-\mp@subsup{w}{}{\prime}\subseteq{i})\cap(rely w'\subseteqw)\capw:[i\not\in\mp@subsup{w}{}{\prime}]
\sqsubseteq ~ i n v a r i a n t ~ t r u e ~ a n d ~ v a r i a n t ~ w \supset ~ w '
while i\inw do
 (guar w'\subseteqw^w-\mp@subsup{w}{}{\prime}\subseteq{i})\cap(rely w'\subseteqw)@
 w:[w\supset\mp@subsup{w}{}{\prime}\veei\not\in\mp@subsup{w}{}{\prime}]
```

$\left(\right.$ guar $\left.w^{\prime} \subseteq w \wedge w-w^{\prime} \subseteq\{i\}\right) \cap\left(\right.$ rely $\left.w^{\prime} \subseteq w\right) \cap w:\left[i \notin w^{\prime}\right]$
while $i \in w$ do
$\left(\right.$ guar $\left.w^{\prime} \subseteq w \wedge w-w^{\prime} \subseteq\{i\}\right) \cap\left(\right.$ rely $\left.w^{\prime} \subseteq w\right) \cap$
$w:\left[w \supset w^{\prime} \vee i \notin w^{\prime}\right]$
$\left(\right.$ guar $\left.w^{\prime} \subseteq w \wedge w-w^{\prime} \subseteq\{i\}\right) \cap\left(\operatorname{rely} w^{\prime} \subseteq w\right) \cap w:\left[w \supset w^{\prime} \vee i \notin w^{\prime}\right]$
$\sqsubseteq$ strengthen guarantee, introduce local variable $/ w$ var $/ w$.
$\left(\right.$ guar $\left.w^{\prime}=w \vee w^{\prime}=w-\{i\}\right) \cap\left(\right.$ rely $\left.w \supseteq w^{\prime}\right) \cap$

$$
\left(I w:\left[w \supseteq I w^{\prime} \supseteq w^{\prime}\right] ; w:\left[l w \supseteq w, I w \supset w^{\prime} \vee i \notin w^{\prime}\right]\right)
$$

Refining the first specification

```
 \(\left(\right.\) guar \(\left.w^{\prime}=w \vee w^{\prime}=w-\{i\}\right) \cap\left(\mathbf{r e l y} w \supseteq w^{\prime}\right) \cap / w:\left[w \supseteq / w^{\prime} \supseteq w^{\prime}\right]\)
\(\sqsubseteq\)
 \(l w:=w\)
```


## Refining the second specification

$\quad\left(\right.$ guar $\left.w^{\prime}=w \vee w^{\prime}=w-\{i\}\right) \cap\left(\right.$ rely $\left.w \supseteq w^{\prime}\right) \cap w:\left[l w \supseteq w, I w \supset w^{\prime} \vee i \notin w^{\prime}\right]$ $\sqsubseteq \quad$ introduce variable $n w$ to contain the updated value
var $n w:=I w-\{i\} ;$
$\left(\right.$ guar $\left.w^{\prime}=w \vee w^{\prime}=w-\{i\}\right) \cap\left(\right.$ rely $\left.w \supseteq w^{\prime}\right) \cap$

$$
w:\left[l w \supseteq w \wedge n w=I w-\{i\}, \quad l w \supset w^{\prime} \vee i \notin w^{\prime}\right]
$$

$C A S(\operatorname{var} w, I w, n w$, var done $) \widehat{=}$
$\left(\right.$ rely $l w^{\prime}=l w \wedge n w^{\prime}=n w \wedge$ done $^{\prime}=$ done $) \cap$

$$
w, \text { done }:\left\langle\begin{array}{c}
\left(w=l w \Rightarrow w^{\prime}=n w \wedge d o n e^{\prime}\right) \wedge \\
\left(w \neq l w \Rightarrow w^{\prime}=w \wedge \neg \text { done }^{\prime}\right)
\end{array}\right\rangle
$$

The variables $/ w$ and $n w$ are local so the rely is satisfied; done isn't used

$$
\begin{aligned}
& \quad\left(\text { guar } w^{\prime}=w \vee w^{\prime}=w-\{i\}\right) \cap\left(\text { rely } w \supseteq w^{\prime}\right) \cap \\
& \quad \\
& \quad w:\left[l w \supseteq w \wedge n w=I w-\{i\}, I w \supset w^{\prime} \vee i \notin w^{\prime}\right] \\
& \\
& \left(\text { guar } w^{\prime}=w \vee w^{\prime}=w-\{i\}\right) \cap\left(\text { rely } w \supseteq w^{\prime}\right) \cap \\
& \\
& \quad w:\left[l w \supseteq w \wedge n w=I w-\{i\},\left(l w=w \Rightarrow w^{\prime}=n w\right) \wedge\left(l w \neq w \Rightarrow w^{\prime}=w\right)\right] \\
& \\
& \\
& C A S(w, I w, n w,-)
\end{aligned}
$$

Specification
$\operatorname{RemW}(\operatorname{var} w: \mathbb{F}(0 . . w s-1), i: 0 . . w s-1)$
$\left(\right.$ guar $\left.w^{\prime} \subseteq w \wedge w-w^{\prime} \subseteq\{i\}\right) \cap\left(\right.$ rely $\left.w^{\prime} \subseteq w\right) \cap w:\left[i \notin w^{\prime}\right]$
Code
while $i \in w$ do invariant true

$$
\operatorname{var} / w:=w ;
$$

$\operatorname{var} n w:=I w-\{i\} ; \quad-$ stable because variables local
$\operatorname{CAS}(w, I w, n w,-) ; \quad-r$ refines $w:\left\{\begin{array}{l}w \subseteq I w \wedge n w=I w-\{i\}, \\ \left(w=I w \Rightarrow w^{\prime} \subseteq w-\{i\}\right) \wedge \\ \left(w \neq I w \Rightarrow w^{\prime} \subset I w\right)\end{array}\right\rangle$ $\{i \notin w\}$

## Code

while $i \in w$ do invariant true wf-relation $\left(w^{\prime} \subset w\right) O R\left(\# w^{\prime}<\# w\right)$ $\operatorname{var} / w:=w$;
var $n w:=I w-\{i\} ; \quad-$ stable because variables local $\operatorname{CAS}\left(w, I w, n w,_{-}\right) ; \quad$ - refines $w:\left\{\begin{array}{l}I w \subseteq w \wedge n w=I w-\{i\}, \\ \left(w=I w \Rightarrow w^{\prime} \subseteq w-\{i\}\right) \wedge \\ \left(w \neq I w \Rightarrow w^{\prime} \subset I w\right)\end{array}\right\rangle$ $\{i \notin w\}$

Termination

- If the CAS succeeds, $i \notin w$ and the loop terminates
- If the CAS fails, $w^{\prime} \subset w$ and the hence the loop variant decreases


## Conclusions

- Rely/guarantee provides a simple but effective abstraction of concurrency
- Importance of data abstraction
- New algebraic style makes proving new laws simpler
- Interesting links/similarities to process algebras (SCCS)
- New style allows new forms of specifications

The with $x$ do $c$ statement ensures that the updates of $x$ are atomic. There is no interference on $x$ during the update.

$$
\begin{aligned}
& \text { with } x \text { do } c \widehat{=} \text { idle } ;\left(\left(\text { demand } x^{\prime}=x\right) \cap c\right) \text {;idle } \\
& \text { with } x \text { do } c \widehat{=}\langle\operatorname{id}\rangle^{\omega} ;\left(\left(\operatorname{demand} x^{\prime}=x\right) \cap c\right) ; \text { idle }
\end{aligned}
$$

This allows id steps forever, even when $x$ isn't in use elsewhere.
The await statement delays until its condition evaluates to true. It may fail by evaluating to false any number of times.

$$
\text { await } b \widehat{=}[[\neg b]]^{\omega} ;[[b]]
$$

where $[[b]]$ succeeds if and only if $b$ evaluates to true. Equivalent to

## await $b=$ while $\neg b$ do nil

For a rely relation $r$ and predicate $p, r$ maintains $p$ if

$$
r \Rightarrow \quad\left(p \Rightarrow p^{\prime}\right)
$$

Examples: for integer $x$, sets $s$, and sequence buf

$$
\begin{aligned}
x \leq x^{\prime} & \Rightarrow\left(0 \leq x \Rightarrow 0 \leq x^{\prime}\right) \\
x=x^{\prime} & \Rightarrow\left(0 \leq x \Rightarrow 0 \leq x^{\prime}\right) \\
s \supseteq s^{\prime} & \Rightarrow\left(s \subseteq 0 . . n \Rightarrow s^{\prime} \subseteq 0 . . n\right) \\
s=s^{\prime} & \Rightarrow\left(s \subseteq 0 . . n \Rightarrow s^{\prime} \subseteq 0 . . n\right) \\
\text { buf suffix buf } & \Rightarrow\left(\# b u f<N \Rightarrow \# b u f^{\prime}<N\right) \\
\text { buf prefix buf } & \Rightarrow\left(\# b u f \neq 0 \Rightarrow \# b u f^{\prime} \neq 0\right)
\end{aligned}
$$

## Doing nothing under interference

The command idle only makes a finite number of program steps that do not change the environment
If $r$ maintains $p$, i.e. $r \Rightarrow\left(p \Rightarrow p^{\prime}\right)$, then

$$
(\text { rely } r) \cap\left[p, r^{*} \wedge p^{\prime}\right] \sqsubseteq \text { idle }
$$

For example, the rely condition (buf' suffix buf) maintains \#buf $<N$, and hence

$$
(\text { rely } r) \cap\left[\# b u f<N, \text { buf }^{\prime} \text { suffix buf } \wedge \# b u f^{\prime}<N\right] \sqsubseteq \text { idle }
$$

Similarly, if $r$ maintains $p$, and $r$ maintains $b$,

$$
(\text { rely } r) \cap\left[p, r^{*} \wedge p^{\prime} \wedge b^{\prime}\right] \sqsubseteq \text { await } b
$$

## Multi-place buffer of size N

module Buffer
var buf : seq Value
invariant \#buf $\leq N$
initially buf $=[]$

$$
\text { write( } v \text { : Value) }
$$

rely buf' suffix buf $\cap$ - single writer
guar buf prefix buf' $\cap$
with buf await \#buf $<N$ do
buf: $\left[\right.$ buf $f^{\prime}=$ buf $\left.^{\frown}[v]\right]$
read()res: Value
rely buf prefix buf' $\cap \quad-$ single reader
guar buf' suffix buf $\cap$
with buf await \#buf $\neq 0$ do

$$
\text { res, buf : }\left[\text { buf }=[r e s]^{\wedge} \text { buf }\right]
$$

## write( $v$ : Value)

rely buf' suffix buf $\cap$ - single writer
guar buf prefix buf' $\cap$
with buf await \#buf $<N$ do

$$
\text { buf: }\left[b u f^{\prime}=b u f^{\frown}[\boldsymbol{v}]\right]
$$

$\sqsubseteq$
rely buf' suffix buf $\cap$
guar buf prefix buf $f^{\prime}$
await \#buf $<N ; \quad$ - await buffer not full - stable under rely
with buf do
buf: $\left[\#\right.$ buf $<N$, buf $^{\prime}=$ buf $\left.\cap[v]\right]$
read()res: Value
rely buf prefix buf $\cap \quad$ - single reader
guar buf' suffix buf $\cap$
with buf await $\#$ buf $\neq 0$ do

$$
\text { res, buf: }\left[b u f=[r e s]^{\frown} b u f^{\prime}\right]
$$

$\sqsubseteq$
rely buf prefix buf ${ }^{\prime} \cap$
guar buf' suffix buf $\cap$
await \#buf $\neq 0 ; \quad$ - await buffer not empty - stable under rely res: $\left[\right.$ res $^{\prime}=h d($ buf $\left.)\right]$
with buf do
buf: $\left[\#\right.$ buf $\neq 0$, buf $^{\prime}=t /($ buf $\left.)\right]$

## Multi-place buffer implementation

The buffer $b$ has $N+1$ slots but one is always unused. We define the notation $a \oplus b=(a+b) \bmod (N+1)$. The slots start at $r$ and $w$ is the index of the next slot to be written, so that

- if $r=w$ the buffer is empty and
- if $r=w \oplus 1$ the buffer is full.

The retrieve function is defined by

$$
\operatorname{retr}(b, r, w)=\text { if } r=w \text { then }[] \text { else }[b[r]] \frown \operatorname{retr}(b, r \oplus 1, w)
$$

module Bufferl implements Buffer
$\operatorname{var} b:(0 . . N) \rightarrow$ Value;
$r, w: 0 . . N$;
initially $r=0 \wedge w=0$;
representation buf $=\operatorname{retr}(b, r, w)$
write( $v$ : Value)
rely buf' suffix buf $\cap$
guar buf prefix buf' $\cap$
await \#buf $<N ; \quad$ - await buffer not full - stable under rely
with buf do buf: $[\#$ buf $<N$, buf $=$ buf $\frown[v]]$ - atomic update of buf
is data refined by
rely $w^{\prime}=w \wedge b^{\prime}=b \wedge\left(r=w \Rightarrow r^{\prime}=r\right) \cap$
guar $r^{\prime}=r \wedge\left(r=w \oplus 1 \Rightarrow w^{\prime}=w\right) \wedge r e t r(b, r, w)$ prefix $\operatorname{retr}\left(b^{\prime}, r^{\prime}, w^{\prime}\right) \cap$
$\operatorname{var} n w:=w \oplus 1$;
await $\langle r\rangle \neq n w ; \quad$ - await buffer not full - stable under rely
$b[w]:=v$;

- Ensure $b[w]$ is flushed before updating $w$
with $w$ do $w:=n w \quad$ - atomic update of $w$


## Read in circular buffer

## Multi-place buffer implementation with size

```
read()res : Value
rely buf prefix buf' \(\cap\)
guar buf' suffix buf \(\cap\)
await \#buf \(\neq 0 ; \quad\) - await buffer not empty - stable under rely
res: \(\left[\right.\) res \(^{\prime}=h d(\) buf \(\left.)\right]\)
with buf do buf: \(\left[\#\right.\) buf \(\neq 0\), buf \(^{\prime}=t /(\) buf \(\left.)\right] \quad-\) atomic update of buf
```


## is data refined by

rely $r^{\prime}=r \wedge\left(r=w \oplus 1 \Rightarrow w^{\prime}=w\right) \wedge r e t r(b, r, w) \operatorname{prefix} \operatorname{retr}\left(b^{\prime}, r^{\prime}, w^{\prime}\right) \cap$
guar $w^{\prime}=w \wedge b^{\prime}=b \wedge\left(r=w \Rightarrow r^{\prime}=r\right)$ ก
await $r \neq\langle w\rangle ; \quad$ - await buffer non-empty - stable under rely
res $:=b[r]$;
var $n r:=r \oplus 1$;

- Ensure $b[r]$ has been fully read before updating $r$
with $r$ do $r:=n r$ - atomic update of $r$

The buffer $b$ has $N$ slots and keeps a separate variable $s$ to track its current size. The slots start at $r$ and $w$ is the index of the next slot to be written, so that

- if $s=0$ the buffer is empty and
- if $s=N$ the buffer is full.

We define two retrieve functions, one for read and one for write. I have no idea what the theory is but the write and write processes have different views of the buffer.

$$
\begin{aligned}
& r e t r_{\text {retr }}(b, r, s)=(\lambda i \in 0 \ldots s-1 \cdot b[(r+i) \bmod N]) \\
& \operatorname{retr}_{-} w(b, w, s)=(\lambda i \in 0 \ldots s-1 \cdot b[(w+i+n-s) \bmod N])
\end{aligned}
$$

module Bufferl implements Buffer
$\operatorname{var} b:(0 \ldots N-1) \rightarrow$ Value;
$r, w: 0 . . N-1$;
$s: 0 . . N$;
initially $s=0 \wedge r=0 \wedge w=0$;
representation buf $=$ retr_r $(b, r, s)=r e t r _w(b, w, s)$

## Write in a circular buffer with size

## write(v : Value)

rely buf' suffix buf ח
await \#buf $<N ; \quad$ - stable under rely
with buf do buf: $\left[\#\right.$ buf $<N$, buf $^{\prime}=$ buf $\left.\cap[v]\right]$
is data refined using representation buf $=r e t r _w(b, w, s)$ by
rely $w^{\prime}=w \wedge b^{\prime}=b \wedge 0 \leq s^{\prime} \leq s \cap$
guar $r^{\prime}=r \wedge s \leq s^{\prime} \leq N \wedge r e t r _r(b, r, s)$ prefix retr_r $r\left(b^{\prime}, r^{\prime}, s^{\prime}\right)$ ก
await $\langle s\rangle<N ; \quad$ - await buffer not full - stable under rely
$b[w]:=v$;

- Ensure $b[w]$ is flushed before updating $s$
$(w:=(w+1) \bmod N \|$ with $s$ do $s:=s+1)-$ atomic update of $s$
Note that the representation relation is broken during the last parallel assignment but restored on completion of both assignments. Contention on update of $s$ via a compare-and-swap bounded by reader decreasing size to 0 .


## Read in circular buffer with size

```
read()res: Value
rely buf prefix buf' \cap
await #buf # 0; - stable under rely
res: [res' = hd(buf)]
with buf do buf: [#buf }=0,\mp@subsup{\mathrm{ buf' }}{\prime}{\prime}=tl(buf)
```

is data refined using representation buf $=r e t r _r(b, r, s)$ by

$$
\begin{aligned}
& \text { rely } r^{\prime}=r \wedge s \leq s^{\prime} \leq N \wedge \text { retr_r }(b, r, s) \text { prefix retr_ } r\left(b^{\prime}, r^{\prime}, s^{\prime}\right) \text { ก } \\
& \text { guar } w^{\prime}=w \wedge b^{\prime}=b \wedge 0 \leq s^{\prime} \leq s \cap \\
& \text { await }\langle s\rangle \neq 0 ; \quad-\text { await buffer non-empty - stable under rely } \\
& \text { res }:=b[r] ; \\
& \quad-\text { Ensure } b[r] \text { has been fully read before updating } s \text { or } r \\
& (r:=(r+1) \bmod N \| \text { with } s \text { do } s:=s-1) \quad \text { - atomic update of } s
\end{aligned}
$$

Note that the representation relation is broken during the last parallel assignment but restored on completion of both assignments. Contention on update of $s$ via a compare-and-swap bounded by reader increasing size to N .

The objective is, given an array $v$ with indices in the range $0 . . N-1$, to find the least index $t$ for which a predicate $P(v(t))$ holds, ${ }^{1}$ or if $P$ does not hold for any element of $v$, to set $t$ to $N$.

$$
\text { findp } \widehat{=} t:\left[\left(t^{\prime}=N \vee \operatorname{satp}\left(v, t^{\prime}\right)\right) \wedge \operatorname{notp}\left(v, 0 \ldots N-1, t^{\prime}\right)\right] \triangleleft
$$

where

$$
\begin{aligned}
\operatorname{satp}(v, t) & \widehat{=} t \in 0 \ldots N-1 \wedge P(v(t)) \\
\operatorname{notp}(v, s, t) & \widehat{\equiv}(\forall i \in s \cdot i<t \Rightarrow \neg P(v(i)))
\end{aligned}
$$

${ }^{1}$ For brevity, it is assumed here that $P(x)$ is always defined (undefinedness is considered by [?]
but it has little bearing on the actual design). but it has little bearing on the actual design).

$$
\text { findp } \widehat{=}\left(\text { rely } v^{\prime}=v \wedge t^{\prime}=t\right) \cap t:\left[\left(t^{\prime}=N \vee \operatorname{satp}\left(v, t^{\prime}\right)\right) \wedge \operatorname{notp}\left(v, 0 \ldots N-1, t^{\prime}\right)\right]
$$

## Representing the result using two variables

Two variables ot and et are introduced with the intention that on termination the minimum of ot and et will be the least index satisfying $p$.

$$
\begin{aligned}
& \quad\left(\text { rely } v^{\prime}=v \wedge t^{\prime}=t\right) \cap t:\left[\left(t^{\prime}=N \vee \operatorname{satp}\left(v, t^{\prime}\right)\right) \wedge \operatorname{notp}\left(v, 0 \ldots N-1, t^{\prime}\right)\right] \\
& \sqsubseteq \quad \text { by Law variable-rely-guarantee for ot and et } \\
& \text { var ot, et } . \\
& \quad\left(\text { rely } v^{\prime}=v \wedge t^{\prime}=t \wedge o t^{\prime}=\text { ot } \wedge e t^{\prime}=e t\right) \cap \\
& \quad \text { ot, et, } t:\left[\begin{array}{l}
\left(\min \left(o t^{\prime}, e t^{\prime}\right)=N \vee \operatorname{satp}\left(v, \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right) \wedge \\
n o t p\left(v, 0 \ldots N-1, \min \left(o t^{\prime}, e t^{\prime}\right)\right)
\end{array}\right] ; \triangleleft \\
& \quad t:=\min \left(o t^{\prime}, e t^{\prime}\right)
\end{aligned}
$$

## Using a guarantee invariant

A guarantee invariant is a guarantee that states a predicate $p$ is invariant.
$($ guar-inv $p) \widehat{=}\left(\boldsymbol{g u a r} p \Rightarrow p^{\prime}\right)$
A guarantee invariant of

$$
\begin{equation*}
\min (o t, e t)=N \vee \operatorname{satp}(v, \min (o t, e t)) \tag{1}
\end{equation*}
$$

can be employed; the invariant is established by setting both ot and et to $N$.

$$
\begin{aligned}
& \left(\text { rely } v^{\prime}=v \wedge o t^{\prime}=o t \wedge e t^{\prime}=e t\right) \cap \\
& \text { ot, et }:\left[\begin{array}{l}
\left(\min \left(o t^{\prime}, e t^{\prime}\right)=N \vee \operatorname{satp}\left(v, \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right) \wedge \\
\operatorname{notp}\left(v, 0 \ldots N-1, \min \left(o t^{\prime}, e t^{\prime}\right)\right)
\end{array}\right] ; \triangleleft
\end{aligned}
$$

$\sqsubseteq$ by Law trade-rely-guarantee-invariant; Law rely-sequential ot $:=N$; et $:=N$;
$(($ guar-inv $\min (o t, e t)=N \vee \operatorname{satp}(v, \min (o t, e t)))) \cap$
$\left(\right.$ rely $\left.v^{\prime}=v \wedge o t^{\prime}=o t \wedge e t^{\prime}=e t\right) \cap$
ot, et: $\left[\operatorname{notp}\left(v, 0 \ldots N-1, \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right] \triangleleft$

The motivation for the parallel algorithm comes from the observation that the set of indices to be searched, $0 \ldots N-1$, can be partitioned into the odd and even indices, namely evens $(N)$ and odds $(N)$, respectively, which can be searched in parallel.

```
\(\operatorname{notp}\left(v, \operatorname{odds}(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right) \wedge \operatorname{notp}\left(v, \operatorname{evens}(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right) \Rightarrow\)
 \(\operatorname{notp}\left(v, 0 \ldots N-1, \min \left(o t^{\prime}, e t^{\prime}\right)\right)\)
```

The next step is the epitome of rely-guarantee refinement: spliting the specification command.
$\left(\right.$ rely $\left.v^{\prime}=v \wedge o t^{\prime}=o t \wedge e t^{\prime}=e t\right) \cap$
ot, et: $\left[\operatorname{notp}\left(v, 0 \ldots N-1, \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right]$
$\sqsubseteq$ by Law introduce-parallel-spec-weaken-rely
$\left(\right.$ guar $\left.o t^{\prime} \leq o t \wedge e t^{\prime}=e t\right) \cap\left(\right.$ rely $\left.e t^{\prime} \leq e t \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap$ ot, et: $\left[\operatorname{notp}\left(v, \operatorname{odds}(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right] \triangleleft$ ||
$\left(\right.$ guar $\left.e t^{\prime} \leq e t \wedge o t^{\prime}=o t\right) \cap\left(\right.$ rely $\left.o t^{\prime} \leq o t \wedge e t^{\prime}=e t \wedge v^{\prime}=v\right) \cap$ ot, et: $\left[\operatorname{notp}\left(v, \operatorname{evens}(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right]$
$\left(\right.$ guar $\left.o t^{\prime} \leq o t\right) \cap\left(\right.$ rely $\left.e t^{\prime} \leq e t \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap$ ot: $\left[\operatorname{notp}\left(v, \operatorname{odds}(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right] \triangleleft$
$\sqsubseteq \quad$ by Law variable-rely-guarantee for oc var oc.
$\left(\right.$ rely $\left.e t^{\prime} \leq e t \wedge O c^{\prime}=O C \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap$
oc, ot: $\left[\operatorname{notp}\left(v\right.\right.$, odds $\left.\left.(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right] \triangleleft$
At this point a guarantee invariant

$$
\begin{equation*}
\operatorname{notp}(v, o d d s(N), o c) \wedge b n d(o c, N) \tag{2}
\end{equation*}
$$

is introduced where the bounding conditions on oc follow.

$$
\operatorname{bnd}(o c, N) \widehat{\equiv} 1 \leq o c \leq N+1
$$

This guarantee invariant is established by setting oc to one.

For the first branch of the parallel, the guarantee $e t^{\prime}=e t$ is equivalent to removing et from the frame of the branch.

$$
\begin{aligned}
& \left(\text { guar } o t^{\prime} \leq \text { ot } \wedge e t^{\prime}=e t\right) \cap\left(\text { rely } e t^{\prime} \leq e t \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap \\
& \text { ot, et }:\left[\operatorname{notp}\left(v, \text { odds }(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right] \\
= & \left(\text { guar } o t^{\prime} \leq \text { ot }\right) \cap\left(\text { rely } e t^{\prime} \leq e t \wedge \text { ot } t^{\prime}=\text { ot } \wedge v^{\prime}=v\right) \cap \\
& \text { ot }:\left[\operatorname{notp}\left(v, \text { odds }(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right]
\end{aligned}
$$

The body of this can be refined to sequential code, however, because the specification refers to $e t^{\prime}$ it is subject to interference from the parallel (evens) process which may update et. That interference is however bounded by the rely condition which assumes the parallel process never increases et.

The guarantee invariant combined with the postcondition $o c^{\prime} \geq \min \left(o t^{\prime}, e t^{\prime}\right)$ implies the postcondition of the above specification. The postcondition $o c^{\prime} \geq \min \left(o t^{\prime}, e t^{\prime}\right)$ uses " $\geq$ " rather than " $=$ " because the parallel process may decrease et.

```
\(\left(\right.\) rely \(e t^{\prime} \leq\) et \(\left.\wedge o c^{\prime}=o c \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap\)
 oc, ot: \(\left[\operatorname{notp}\left(v\right.\right.\), odds \(\left.\left.(N), \min \left(o t^{\prime}, e t^{\prime}\right)\right)\right]\)
\(\sqsubseteq\) Laws rely-sequential, trade-rely-guarantee-invariant, assignment-rely-guarantee
 \(o c:=1\);
 (guar-inv \(\operatorname{notp}(v\), odds \((N), o c) \wedge b n d(o c, N)) \cap\)
 \(\left(\right.\) rely \(\left.e t^{\prime} \leq e t \wedge o c^{\prime}=o c \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap\)
 oc, ot: \(\left[o c^{\prime} \geq \min \left(o t^{\prime}, e t^{\prime}\right)\right] \triangleleft\)
```

Given

- a loop invariant $p$ that is a state predicate
- a rely condition $r$ that is a reflexive, transitive relation on states
- a variant function $v$ of type $T$ and a binary relation $\succ_{-}$on $T$
- a boolean expression $b$ and predicates $b_{0}$ and $b_{1}$
if
- $p$ is $r$-stable, i.e. $r \Rightarrow\left(p \Rightarrow p^{\prime}\right)$
${ }^{-}{ }_{-} \succ_{-}$is well-founded on $p$, i.e. $p \triangleleft\left({ }_{-} \succ_{-}\right)$is well-founded
- $v$ is non-increasing under $r$ on $p$, i.e. $p \wedge r \Rightarrow v^{\prime} \preceq v$
- $b$ is single reference, i.e. it has only a single reference to a non-stable variable
- $p \wedge b \Rightarrow b_{0}$ and $p \wedge r \Rightarrow\left(b_{0} \Rightarrow b_{0}^{\prime}\right)$
- $p \wedge \neg b \Rightarrow b_{1}$ and $p \wedge r \Rightarrow\left(b_{1} \Rightarrow b_{1}^{\prime}\right)$
then
$($ rely $r) \cap\left[p, p^{\prime} \wedge b_{1}^{\prime} \wedge v^{\prime} \preceq v\right]$
$\sqsubseteq$ while $b \mathbf{d o}\left((\right.$ rely $r) \cap\left[p \wedge b_{0}, p^{\prime} \wedge v^{\prime} \prec v\right]$

A while loop is introduced using Law rely-loop. Only the first conjunct of the loop guard $o c<$ ot $\wedge o c<e t$ is preserved by the rely condition because et may be decreased. Hence the boolean expression $b_{0}$ for this application of the law is $o c<o t$. However, the loop termination condition oc $\geq o t \vee o c \geq$ et is preserved by the rely condition as decreasing et will not falsify it. Hence $b_{1}$ is oc $\geq$ ot $\vee o c \geq e t$, which ensures $o c \geq \min (o t$, et) as required. For loop termination a well-founded relation reducing the variant ot -oc is used.
$\left(\right.$ rely $\left.e t^{\prime} \leq e t \wedge o c^{\prime}=o c \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap$ oc, ot: $\left[o c^{\prime} \geq \min \left(o t^{\prime}, e t^{\prime}\right)\right]$
$\sqsubseteq$ by Law rely-loop
while $o c<o t \wedge o c<e t$ do
$\left(\right.$ rely et $\leq$ et $\left.\wedge o c^{\prime}=o c \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap$
$o c$, ot: $\left[O C<o t,-1 \leq o t^{\prime}-O c^{\prime}<o t-O C\right] \triangleleft$

At this stage we bring back in the guarantee invariants introduced above. The refinement is now uses Law rely-conditional.

```
(guar-inv \(\min (o t, e t)=N \vee \operatorname{satp}(v, \min (o t, e t)))\) ก
(guar-inv \(\operatorname{notp}(v\), odds \((N), o c) \wedge b n d(o c, N))\) ก
\(\left(\right.\) rely \(\left.o c^{\prime}=o c \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap\)
 \(o c, o t:\left[o c<o t,-1 \leq o t^{\prime}-O c^{\prime}<o t-o c\right]\)
\(\sqsubseteq\)
if \(P(v(O C))\) then
 guar-inv \(\min (o t\), et \()=N \vee \operatorname{satp}(v, \min (o t, e t))) \cap\)
 (guar-inv \(\operatorname{notp}(v\), odds \((N), o c) \wedge b n d(o c, N)) \cap\)
 \(\left(\right.\) rely \(\left.O c^{\prime}=O C \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap\)
 \(o c\), ot: \(\left[P(v(O C)) \wedge O C<o t,-1 \leq o t^{\prime}-O C^{\prime}<o t-o c\right]\)
else
 \((\) guar-inv \(\min (o t, e t)=N \vee \operatorname{satp}(v, \min (o t, e t))) \cap\)
 (guar-inv \(\operatorname{notp}(v\), odds \((N), o c) \wedge b n d(o c, N)) \cap\)
 \(\left(\right.\) rely \(\left.o c^{\prime}=O c \wedge o t^{\prime}=o t \wedge v^{\prime}=v\right) \cap\)
 oc, ot: \(\left[\neg P(v(o c)) \wedge o c<o t,-1 \leq o t^{\prime}-o c^{\prime}<o t-o c\right]\)
```


## Collected code

Finally, Law assignment-rely-guarantee can be applied to each of the branches. Each assignment ensures the guarantee invariant
$(\min (o t, e t)=N \vee \operatorname{satp}(v, \min (o t, e t)) \wedge \operatorname{notp}(v, o d d s(N), o c) \wedge b n d(o c, N)$ is maintained.
$\sqsubseteq$ if $P(v(o c))$ then $o t:=o c$ else $o c:=o c+2$

The development of the "evens" branch of the parallel composition follows the same pattern as that of the "odds" branch given above but starts at zero. The collected code follows.

```
var ot, et .
ot \(:=N\);
et \(:=N\);
 var \(O C\).
 oc :=1;
 while \(O C<o t \wedge o c<e t\) do
 if \(P(v(o c))\) then ot \(:=o c\)
 else \(O C:=O C+2\)
\(t:=\min (o t, e t)\)
```

var ec.
ec $:=0$;
while $e c<o t \wedge e c<e t$ do
if $P(v(e c))$ then et $:=e$ else $e c:=e c+2$

## Treiber stack

Abstract state is a sequence of values

$$
\operatorname{var} A: \operatorname{seq} \operatorname{Val}
$$

Specification uses atomic step style

```
Push(v:Val)
 \langleid\rangle}\mp@subsup{}{}{\omega};A:\langle\mp@subsup{A}{}{\prime}=[\boldsymbol{V}\mp@subsup{]}{}{~}A\rangle;\langle\textrm{id}\mp@subsup{\rangle}{}{*
rely }\mp@subsup{A}{}{\prime}=A\cap(\langle\textrm{id}\mp@subsup{\rangle}{}{*};A:\langle\mp@subsup{A}{}{\prime}=[\boldsymbol{V}]\frownA\rangle;\langle\textrm{id}\mp@subsup{\rangle}{}{*}
Pop()r:[Val]
```



```
\sqcup
rely }\mp@subsup{A}{}{\prime}=A\cap(\langle\textrm{id}\mp@subsup{\rangle}{}{*};A,r:\langleA=[\mp@subsup{r}{}{\prime}]\frown \mp@subsup{A}{}{\prime}\vee(A=[]=\mp@subsup{A}{}{\prime}\wedge\mp@subsup{r}{}{\prime}=null)\rangle;\langleid \rangle**
```

Representation as a linked list

```
type Node = {data: Val; next :*Node}
```

var s:*Node

## Abstraction relation

```
stack(s:*Node, A : seq Val) =
 (s=null }\wedgeA=[])
 (\existsv,n\cdots\mapsto\operatorname{Node(v,n)^head}(A)=v^\operatorname{stack}(n,\operatorname{tail}(A)))
```

Repeat statement semantics
repeat $c$ until $\left.\left.b=\left(\langle\mathrm{id}\rangle^{*} ; c ;[[ \urcorner b]\right]\right)^{\omega} ;\langle\mathrm{id}\rangle\right\rangle^{*} ; c ;[[b]]$
Push specification (possibly nonterminating)

$$
\begin{aligned}
& \left.\langle\mathrm{id}\rangle^{\omega} ; A:\left\langle A^{\prime}=[V]^{\wedge} A\right\rangle ;\langle\mathrm{id}\rangle\right\rangle^{*} \\
& \left.=\left(\langle\mathrm{id}\rangle^{*}\right)^{\omega} ;\langle\mathrm{id}\rangle^{*} ; A:\left\langle A^{\prime}=[V]^{\wedge} A\right\rangle ;\langle\mathrm{id}\rangle\right\rangle^{*}
\end{aligned}
$$

To implement this specification as a repeat statement, we want

$$
\begin{aligned}
\langle\mathrm{id}\rangle\rangle^{*} & \sqsubseteq\langle\mathrm{id}\rangle^{*} ; c ;[[\neg b]] . \\
\langle\mathrm{id}\rangle^{*} ; A:\left\langle A^{\prime}=[v]^{\wedge} A\right\rangle ;\langle\mathrm{id}\rangle^{*} & \sqsubseteq\langle\mathrm{id}\rangle^{*} ; c ;[[b]]
\end{aligned}
$$

but needs change of representation as well

Push(v: Val)
var $x: *$ Node;
$x:=$ new Node();
$x \rightarrow$ data $:=v$;
$\left\{\operatorname{stack}(s, A) * x \mapsto \operatorname{Node}\left(v,{ }_{-}\right)\right\} ;$
var done : $\mathbb{B}$;

## repeat

var $t: *$ Node;
$\langle t:=s\rangle$;
$x \rightarrow$ next $:=t$;
$\{\operatorname{stack}(s, A) *(x \mapsto \operatorname{Node}(v, t))\}$
CAS( $s, t, x$, done)
until done

## Matching the refinement conditions

$x$, done : $\langle\text { true }\rangle^{*}$
$\sqsubseteq$
$\langle\mathrm{id}\rangle^{*} ; \operatorname{var} t: *$ Node $;\langle t:=s\rangle ; x . n e x t:=t ; \operatorname{CAS}(s, t, x$, done $) ;[[\neg$ done $]]$
$x$, done $:\langle\text { true }\rangle^{*} ; x, s$, done $:\left\langle\begin{array}{l}\operatorname{stack}(s, A) \wedge \\ \exists A, A^{\prime} \cdot \\ A^{\prime}=[v]^{\wedge} A \wedge \\ \operatorname{stack}\left(s^{\prime}, A^{\prime}\right)\end{array}\right\rangle ;\langle\mathrm{id}\rangle^{*}$ $\sqsubseteq$
$\langle\mathrm{id}\rangle^{*} ;$ var $t: *$ Node; $\langle t:=s\rangle ; x . n e x t:=t ;$ CAS( $s, t, x$, done $) ;[[d o n e]]$

Theory for rely/guarantee concurrency motivated by

- Abstract algebra
- Program algebras
- Aczel traces and their synchronous parallel operator


## What algebras do you know?

- Groups
- Semi-groups
- Monoids
- Lattices - ordered plus infimum (meet) and supremum (join)
- Kleene Algebra - algebra of regular expressions
- Kleene Algebra with Tests (KAT)
- Concurrent Kleene Algebra (CKA)

From mathematics we have abstract algebras

- Monoid $(S, \oplus, e)$ over a set $S$ with binary operator $\oplus: S \times S \rightarrow S$
- Associative: $x_{0} \oplus\left(x_{1} \oplus x_{2}\right)=\left(x_{0} \oplus x_{1}\right) \oplus x_{2}$
- Identity: $x \oplus e=x=e \oplus x$
- Examples of monoids
- $(\mathbb{N},+, 0)$
- $(\mathbb{N}, *, 1)$
- (Programs,;, nil)
- (Programs, $\|$, skip)
- (Programs, ก, chaos)
- All except (Programs,; nil) are commutative monoids
- Commutative: $x_{0} \oplus x_{1}=x_{1} \oplus x_{0}$


## Kleene algebra - the algebra of regular expressions

	Regular expressions	Relations	Programs
Alternatives	$e_{0} \mid e_{1}$	$r_{0} \cup r_{1}$	$c_{0} \sqcap c_{1}$
Sequence	$e_{0} e_{1}$	$r_{0} \circ r_{1}$	$c_{0} ; c_{1}$
Kleene star	$e^{*}$	$r^{*}$	$c^{*}$
Identity of sequence	$\epsilon$	id	nil
Identity of alternation	$\emptyset$	$\emptyset$	$\top$
Basic elements	$a$	$(x, y)$	$\Pi\left(\sigma_{0}, \sigma_{1}\right)$
			$\mathcal{E}\left(\sigma_{0}, \sigma_{1}\right)$

where $a$ is a symbol; $x$ and $y$ are elements of the base type of the relation; and $\sigma_{0}$ and $\sigma_{1}$ are program states.

## Structure of concurrent program algebra

- Concurrent refinement algebra ( $\sqcap, \sqcup, ;, \|$, п)
- Plus tests - a subset of commands that forms a boolean algebra
- like Kozen's Kleene Algebra with Tests (KAT)
- Plus atomic steps - a subset of commands that forms a boolean algebra
- Program/environment steps partitions atomic steps

- Relational instantiation


## $c \sqcap d$ non-deterministic choice (lattice infimum or meet)

$$
\begin{array}{rll}
\left(c_{0} \sqcap c_{1}\right) \sqcap c_{2}=c_{0} \sqcap\left(c_{1} \sqcap c_{2}\right) & \text { - associative } \\
c_{0} \sqcap c_{1}=c_{1} \sqcap c_{0} & \text { - commutative } \\
c \sqcap c=c & \text { - idempotent } \\
c \sqcap \top=c=\top \sqcap c & \text { - identity } \top
\end{array}
$$

$c \sqcup d$ lattice supremum or join

- associative, commutative, idempotent, identity $\perp$
$c \| d$ parallel composition
- associative, commutative, identity skip
$c \cap d$ weak conjunction
- associative, commutative, idempotent, identity chaos
$c ; d$ sequential composition (sometimes elided to $c d$ below)
- associative, identity nil
$\sqcap$ and $\sqcup$ have the same precedence, which is lower than $\|$ and $\cap$, which are lower than ;

For any set of commands $C$

- $\Pi C$ is the infimum (greatest lower bound) of the set of commands
- $\sqcup C$ is the supremum (least upper bound) of the set of commands


## Aczel traces

## Represent

- a program doing a step from $\sigma_{0}$ to $\sigma_{1}$ by $\Pi\left(\sigma_{0}, \sigma_{1}\right)$ and
- its environment doing a step from $\sigma_{0}$ to $\sigma_{1}$ by $\mathcal{E}\left(\sigma_{0}, \sigma_{1}\right)$.

Every step of parallel synchronises steps of the two processes

$$
\begin{aligned}
& \mathcal{E}\left(\sigma_{0}, \sigma_{1}\right), \Pi\left(\sigma_{1}, \sigma_{2}\right), \mathcal{E}\left(\sigma_{2}, \sigma_{3}\right), \mathcal{E}\left(\sigma_{3}, \sigma_{4}\right), \mathcal{E}\left(\sigma_{4}, \sigma_{5}\right) \quad \| \\
& \mathcal{E}\left(\sigma_{0}, \sigma_{1}\right), \mathcal{E}\left(\sigma_{1}, \sigma_{2}\right), \Pi\left(\sigma_{2}, \sigma_{3}\right), \mathcal{E}\left(\sigma_{3}, \sigma_{4}\right), \Pi\left(\sigma_{4}, \sigma_{5}\right)= \\
& \mathcal{E}\left(\sigma_{0}, \sigma_{1}\right), \Pi\left(\sigma_{1}, \sigma_{2}\right), \Pi\left(\sigma_{2}, \sigma_{3}\right), \mathcal{E}\left(\sigma_{3}, \sigma_{4}\right), \Pi\left(\sigma_{4}, \sigma_{5}\right)
\end{aligned}
$$

Every step of a weak conjunction synchronises steps of the two processes

$$
\begin{aligned}
& \mathcal{E}\left(\sigma_{0}, \sigma_{1}\right), \Pi\left(\sigma_{1}, \sigma_{2}\right), \mathcal{E}\left(\sigma_{2}, \sigma_{3}\right), \mathcal{E}\left(\sigma_{3}, \sigma_{4}\right), \Pi\left(\sigma_{4}, \sigma_{5}\right) \quad \text { ก } \\
& \mathcal{E}\left(\sigma_{0}, \sigma_{1}\right), \Pi\left(\sigma_{1}, \sigma_{2}\right), \mathcal{E}\left(\sigma_{2}, \sigma_{3}\right), \mathcal{E}\left(\sigma_{3}, \sigma_{4}\right), \Pi\left(\sigma_{4}, \sigma_{5}\right)= \\
& \mathcal{E}\left(\sigma_{0}, \sigma_{1}\right), \Pi\left(\sigma_{1}, \sigma_{2}\right), \mathcal{E}\left(\sigma_{2}, \sigma_{3}\right), \mathcal{E}\left(\sigma_{3}, \sigma_{4}\right), \Pi\left(\sigma_{4}, \sigma_{5}\right)
\end{aligned}
$$

## Primitive atomic commands

For a binary relation $r \subseteq \Sigma \times \Sigma$ on states
$\pi(r)$ can perform any single atomic program step $\Pi\left(\sigma, \sigma^{\prime}\right)$ for $\left(\sigma, \sigma^{\prime}\right) \in r$
$\epsilon(r)$ can perform any single atomic environment step $\mathcal{E}\left(\sigma, \sigma^{\prime}\right)$ for $\left(\sigma, \sigma^{\prime}\right) \in r$
For example,

- $\pi(\mathrm{id})$ is a single stuttering program step (id is the identity relation)
- $\pi=\pi$ (univ) can perform any single program step (univ is the universal relation)
- $\epsilon=\epsilon$ (univ) can perform any single environment step
- $\boldsymbol{\pi}(\emptyset)=\boldsymbol{\epsilon}(\emptyset)=\top$ is infeasible (magic)

Atomic steps form a boolean algebra

$$
\begin{aligned}
\boldsymbol{\pi}\left(r_{0}\right) \sqcap \boldsymbol{\pi}\left(r_{1}\right) & =\boldsymbol{\pi}\left(r_{0} \cup r_{1}\right) \\
\boldsymbol{\pi}\left(r_{0}\right) \sqcup \boldsymbol{\pi}\left(r_{1}\right) & =\boldsymbol{\pi}\left(r_{0} \cap r_{1}\right) \\
!\boldsymbol{\pi}(r) & =\boldsymbol{\pi}(\bar{r}) \sqcap \boldsymbol{\epsilon}
\end{aligned}
$$

For a set of states $p \subseteq \Sigma$,
$\tau(p)$ terminates immediately if $p$ holds but is infeasible otherwise

## For example,

- $\boldsymbol{\tau}(\Sigma)=\mathbf{n i l}$
- $\boldsymbol{\tau}(\emptyset)=\top$
- $\boldsymbol{\tau}\left(p_{1}\right) \sqcap \tau\left(p_{2}\right)=\boldsymbol{\tau}\left(p_{1} \cup p_{2}\right)$
- $\boldsymbol{\tau}\left(p_{1}\right) \sqcup \boldsymbol{\tau}\left(p_{2}\right)=\boldsymbol{\tau}\left(p_{1}\right) ; \boldsymbol{\tau}\left(p_{2}\right)=\boldsymbol{\tau}\left(p_{1}\right) \| \boldsymbol{\tau}\left(p_{2}\right)=\boldsymbol{\tau}\left(p_{1} \cap p_{2}\right)$
- $\neg \tau(p)=\tau(\bar{p})$

Assertions/preconditions: for a test $t$

- pre $t=t \sqcap \neg t ; \perp$
- $\{p\}=\operatorname{pre} \tau(p)=\tau(p) \sqcap \tau(\bar{p}) ; \perp$

For $a$ an atomic step command

- assume $a=a \sqcap(!a) ; \perp$
- $!\left(\boldsymbol{\pi}\left(r_{0}\right) \sqcap \boldsymbol{\epsilon}\left(r_{1}\right)\right)=\boldsymbol{\pi}\left(\overline{r_{0}}\right) \sqcap \boldsymbol{\epsilon}\left(\overline{r_{1}}\right)$
- $!(\boldsymbol{\pi} \sqcap \epsilon(r))=\boldsymbol{\pi}(\emptyset) \sqcap \boldsymbol{\epsilon}(\bar{r})=\top \sqcap \epsilon(\bar{r})=\boldsymbol{\epsilon}(\bar{r})$
- assume $\boldsymbol{\pi} \sqcap \epsilon(r)=\pi \sqcap \epsilon(r) \sqcap \epsilon(\bar{r}) ; \perp$

Note that program and environment steps partition atomic steps

For atomic commands $a$ and $b$ (think $\pi$ and $\epsilon$ commands) and arbitrary commands $c$ and $d$

```
\((a ; c) \cap(b ; d)=(a \cap b) ;(c \cap d)\)
 \((a ; c) \cap\) nil \(=\top\)
 \(a \cap \perp=\perp\)
```

Laws

$$
\begin{aligned}
a^{*} \cap b^{*} & =(a \cap b)^{*} \\
a^{*} ; c \cap b^{*} ; d & =(a \cap b)^{*}\left((c \cap d) \sqcap\left(a ; a^{*} ; c \cap d\right) \sqcap\left(c \cap b ; b^{*} ; d\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{\pi}\left(r_{1}\right) \| \boldsymbol{\pi}\left(r_{2}\right) & =\top \\
\boldsymbol{\pi}\left(r_{1}\right) \| \boldsymbol{\epsilon}\left(r_{2}\right) & =\boldsymbol{\pi}\left(r_{1} \cap r_{2}\right) \\
\boldsymbol{\epsilon}\left(r_{1}\right) \| \boldsymbol{\epsilon}\left(r_{2}\right) & =\boldsymbol{\epsilon}\left(r_{1} \cap r_{2}\right) \\
\boldsymbol{\pi}(r) \| \perp & =\perp \\
\boldsymbol{\epsilon}(r) \| \perp & =\perp
\end{aligned}
$$

Weak conjunction interchange sequential

$$
\left(c_{0} ; c_{1}\right) \cap\left(d_{0} ; d_{1}\right) \quad \sqsubseteq\left(c_{0} \cap d_{0}\right) ;\left(c_{1} \cap d_{1}\right)
$$

Weak conjunction interchange parallel

$$
\left(c_{0} \| c_{1}\right) \cap\left(d_{0} \| d_{1}\right) \sqsubseteq\left(c_{0} \cap d_{0}\right) \|\left(c_{1} \cap d_{1}\right)
$$

Iteration zero or more times, $c^{\omega}$, allows finite iteration, $c^{*}$, or infinite iteration, $c^{\infty}$

$$
\begin{equation*}
c^{\omega}=c^{*} \sqcap c^{\infty} \tag{3}
\end{equation*}
$$

Examples

$$
\begin{aligned}
\pi^{*} & \text { performs a finite number of program steps } \\
(\boldsymbol{\pi} \sqcap \boldsymbol{\epsilon})^{*} & \text { performs a finite number of steps } \\
\epsilon^{\infty} & \text { performs an infinite sequence of environment steps }
\end{aligned}
$$

skip is the identity of parallel and chaos is the identity of weak conjunction

$$
\begin{aligned}
\text { skip } & =\boldsymbol{\epsilon}^{\omega} \\
\text { chaos } & =(\boldsymbol{\pi} \sqcap \boldsymbol{\epsilon})^{\omega}
\end{aligned}
$$

## Asynchronised atomic step

$$
\langle r\rangle=\boldsymbol{\epsilon}^{\omega} ; \boldsymbol{\pi}(\boldsymbol{r}) ; \boldsymbol{\epsilon}^{\omega}
$$

For example

$$
\begin{aligned}
\left\langle r_{1}\right\rangle \|\left\langle r_{2}\right\rangle & =\boldsymbol{\epsilon}^{\omega} ;\left(\boldsymbol{\pi}\left(r_{1}\right) \| \pi\left(r_{2}\right)\right) ; \boldsymbol{\epsilon}^{\omega} \sqcap\left\langle r_{1}\right\rangle ;\left\langle r_{2}\right\rangle \sqcap\left\langle r_{2}\right\rangle ;\left\langle r_{1}\right\rangle \\
& =\left\langle r_{1}\right\rangle ;\left\langle r_{2}\right\rangle \sqcap\left\langle r_{2}\right\rangle ;\left\langle r_{1}\right\rangle
\end{aligned}
$$


post

For relations $g$ and $r$

```
guarg=(\boldsymbol{\pi}(g)\sqcap\epsilon\mp@subsup{)}{}{\omega}
 rely r = (\boldsymbol{\pi}\sqcap\epsilon(r)\sqcap\epsilon(\overline{r})\perp\mp@subsup{)}{}{\omega}
 = (assume! }\epsilon(\overline{r})\mp@subsup{)}{}{\omega
```

recalling assume $a=a \sqcap!a ; \perp$ and $!\epsilon(\bar{r})=\pi \sqcap \epsilon(r)$

For example, $c \cap$ guar $g \cap$ rely $r$ imposes a guarantee of $g$ on $c$ and assumes the environment steps satisfy $r$.

The command term allows only a finite number of program steps but does not rule out infinite pre-emption by its environment.

$$
\begin{equation*}
\text { term }=\left(\boldsymbol{\epsilon}^{\omega} ; \boldsymbol{\pi}\right)^{*} ; \boldsymbol{\epsilon}^{\omega} \tag{4}
\end{equation*}
$$

The refinement
term $\sqsubseteq c$
states that $c$ terminates if the environment does not interrupt it forever, e.g.

```
term}\sqsubsetx:=
```


## Specification commands

- Frames on commands
$x: c=(\operatorname{guar} \operatorname{id}(\bar{x})) \cap c$
- Atomic operation
$\langle q\rangle=\epsilon^{\omega} ; \pi(q) ; \epsilon^{\omega}$
- Non-atomic specification (relational post)
$[q]=\prod_{\sigma \in \Sigma} \boldsymbol{\tau}(\{\sigma\}) ;$ term $; \boldsymbol{\tau}\left(\left\{\sigma^{\prime} \in \Sigma \mid\left(\sigma, \sigma^{\prime}\right) \in q\right\}\right)$
Lemmas for specifications

$$
\begin{aligned}
{[\text { univ }] } & =\text { term } \\
{\left[q_{1}\right] \cap\left[q_{2}\right] } & =\left[q_{1} \wedge q_{2}\right] \\
{[q] \cap \text { term } } & =[q] \\
{[q] \| \text { term } } & =[q] \\
q_{2} \subseteq q_{1} & \Rightarrow\left[q_{1}\right] \sqsubseteq\left[q_{2}\right]
\end{aligned}
$$

## Parallel introduction

$$
(\text { rely } r) \cap\left[q_{1} \wedge q_{2}\right] \sqsubseteq \quad \begin{aligned}
& \left(\left(\text { rely } r \cup r_{1}\right) \cap\left[q_{1}\right] \cap\left(\text { guar } r \cup r_{2}\right)\right) \| \\
& \left(\left(\text { rely } r \cup r_{2}\right) \cap\left[q_{2}\right] \cap\left(\text { guar } r \cup r_{1}\right)\right)
\end{aligned}
$$

Proof

$$
(\text { rely } r) \cap\left[q_{1} \wedge q_{2}\right]
$$

$$
\sqsubseteq \quad \text { as } c \cap c=c \text { and }\left[q_{1} \wedge q_{2}\right]=\left[q_{1}\right] \cap\left[q_{2}\right] \text { and weaken relies }
$$

$$
\left(\text { rely } r \cup r_{1}\right) \cap\left[q_{1}\right] \cap\left(\text { rely } r \cup r_{2}\right) \cap\left[q_{2}\right]
$$

$\sqsubseteq$ by Lemma Y (twice)

$$
\left(\left(\text { rely } r \cup r_{1}\right) \cap\left[q_{1}\right]\right) \|\left(\left(\text { guar } r \cup r_{1}\right) \cap \text { term }\right) \cap
$$

$$
\left(\left(\text { guar } r \cup r_{2}\right) \cap \text { term }\right) \|\left(\left(\text { rely } r \cup r_{2}\right) \cap\left[q_{2}\right]\right)
$$

$$
\sqsubseteq \quad \text { conjunction-interchange-parallel }\left(c_{1} \| c_{2}\right) \cap\left(d_{1} \| d_{1}\right) \sqsubseteq\left(c_{1} \cap d_{1}\right) \|\left(c_{2} \cap d_{2}\right)
$$

$$
\left(\left(\text { rely } r \cup r_{1}\right) \cap\left[q_{1}\right] \cap\left(\text { guar } r \cup r_{2}\right) \cap \text { term }\right) \|
$$

$$
\left(\left(\text { guar } r \cup r_{1}\right) \cap \text { term } \cap\left(\text { rely } r \cup r_{2}\right) \cap\left[q_{2}\right]\right)
$$

$\sqsubseteq$ by Lemma Q1
$\left(\left(\right.\right.$ rely $\left.r \cup r_{1}\right) \cap\left[q_{1}\right] \cap\left(\right.$ guar $\left.\left.r \cup r_{2}\right)\right) \|\left(\left(\right.\right.$ guar $\left.\left.r \cup r_{1}\right) \cap\left(\boldsymbol{r e l y} r \cup r_{2}\right) \cap\left[q_{2}\right]\right)$
$($ rely $r) \cap[q] \sqsubseteq \quad(($ rely $r) \cap[q]) \|(($ guar $r) \cap$ term $)$
Proof
$($ rely $r) \cap[q]$
$\sqsubseteq$ by Lemmas $X$ and Q2
$(($ rely $r) \|($ guar $r)) \cap([q] \|$ term $)$
$\sqsubseteq$ conjunction-interchange-parallel $\left(c_{1} \| c_{2}\right) \cap\left(d_{1} \| d_{1}\right) \sqsubseteq\left(c_{1} \cap d_{1}\right) \|\left(c_{2} \cap d_{2}\right)$ $(($ rely $r) \cap[q]) \|(($ guar $r) \cap$ term $)$

Lemma X

```
(rely r) }\sqsubseteq(\mathrm{ rely r)|(guar r)
```

Lemma Q1

$$
[q] \cap \text { term }=[q]
$$

Lemma Q2

$$
[q] \| \text { term }=[q]
$$

## Applying to process algebras

## CSP

Synchronising on common events

- $\pi(A) \| \pi(B)=\pi(A \cap B)$

Alphabet $A$ for a command $c$ - environment can do only events in $\bar{A}$ independently

- $A: c=c \sqcup \epsilon(\bar{A})^{\omega}$

Hoare's parallel for a process $c$ with alphabet $A$ and process $d$ with alphabet $B$

- $A: c \| B: d$

Roscoe's parallel alphabetised by $A$

- $c\left\|_{A} d=A: c\right\| A: d$

Finite iteration zero or more times, $c^{*}$, possibly infinite iteration zero or more times, $c^{\omega}$, and infinite iteration, $c^{\infty}$, are defined via their usual recursive equations and have the following unfolding and induction properties.

$$
\begin{aligned}
c^{*} & \widehat{=} x \cdot \mathbf{n i l} \sqcap c ; x \\
c^{*} & =\text { nil } \sqcap c ; c^{*} \\
x \sqsubseteq d \sqcap c ; x & \Rightarrow x \sqsubseteq c^{*} ; d \\
c^{*} & =\text { nil } \sqcap c^{*} ; c \\
x \sqsubseteq d \sqcap x ; c & \Rightarrow x \sqsubseteq d ; c^{*} \\
c^{\omega} & \widehat{=} \mu x \cdot \mathbf{n i l} \sqcap c ; x \\
c^{\omega} & =\text { nil } \sqcap c ; c^{\omega} \\
d \sqcap c ; x \sqsubseteq x & \Rightarrow c^{\omega} ; d \sqsubseteq x \\
c^{\infty} & \widehat{=} \mu x \cdot c ; x \\
c^{\infty} & =c ; c^{\infty} \\
c ; x \sqsubseteq x & \Rightarrow c^{\infty} \sqsubseteq x
\end{aligned}
$$

$$
\begin{align*}
\operatorname{update}(x, v) & \widehat{=}\left(x^{\prime}=v \wedge \operatorname{id}(\bar{x})\right)  \tag{6}\\
\text { skip } & \widehat{=} \epsilon^{\omega}  \tag{7}\\
\text { chaos } & \widehat{=}(\boldsymbol{\pi} \sqcap \boldsymbol{\epsilon})^{\omega}  \tag{8}\\
\text { term } & \widehat{ }(\boldsymbol{\pi} \sqcap \boldsymbol{\epsilon})^{*} ; \mathbf{s k i p}  \tag{9}\\
\mathbf{i d l e} & \widehat{ } \widehat{\boldsymbol{\pi}(\mathrm{id}) \sqcap \boldsymbol{\epsilon})^{*} ; \text { skip }}  \tag{10}\\
\langle r\rangle & \widehat{=} \mathbf{s k i p} ; \boldsymbol{\pi}(r) ; \text { skip } \tag{11}
\end{align*}
$$

$$
\begin{align*}
\text { guar } g & \widehat{=}(\boldsymbol{\pi}(g) \sqcap \boldsymbol{\epsilon})^{\omega}  \tag{12}\\
\operatorname{rely} r & \widehat{=}(\boldsymbol{\pi} \sqcap \boldsymbol{\epsilon}(r))^{\omega} ;(\operatorname{nil} \sqcap \boldsymbol{\epsilon}(\bar{r}) ; \perp)  \tag{13}\\
x: c & \widehat{=}(\boldsymbol{\operatorname { g u a r }} \operatorname{id}(\bar{x})) \cap c \tag{14}
\end{align*}
$$

The process (guar $g$ ) $\cap c$ behaves as both (guar $g$ ) and as $c$, unless at some point $c$ aborts, in which case (guar $g$ ) $\cap c$ aborts; note that (guar $g$ ) cannot abort. For example, the guarantee (guar $w^{\prime} \supseteq w \wedge w-w^{\prime} \subseteq\{i\}$ ) ensures that no step of the process may add elements to $w$ or remove elements other than $i$.

$$
\begin{align*}
\boldsymbol{\tau}\left(p_{1}\right) ; \boldsymbol{\tau}\left(p_{2}\right) & =\boldsymbol{\tau}\left(p_{1} \wedge p_{2}\right)  \tag{15}\\
\boldsymbol{\tau}(p) ; \boldsymbol{\pi}(r) & =\boldsymbol{\pi}(p \wedge r)  \tag{16}\\
\boldsymbol{\tau}(p) ; \boldsymbol{\epsilon}(r) & =\boldsymbol{\epsilon}(p \wedge r)  \tag{17}\\
\boldsymbol{\pi}\left(r \wedge p^{\prime}\right) ; \boldsymbol{\tau}(p) & =\boldsymbol{\pi}\left(r \wedge p^{\prime}\right)  \tag{18}\\
\boldsymbol{\epsilon}\left(r \wedge p^{\prime}\right) ; \boldsymbol{\tau}(p) & =\boldsymbol{\epsilon}\left(r \wedge p^{\prime}\right) \tag{19}
\end{align*}
$$

$$
\text { If } c ; \boldsymbol{\tau}(p) \sqsubseteq \boldsymbol{\tau}(p) ; c \text {, then } \quad \begin{aligned}
& \boldsymbol{\tau}(p) ; c ; \boldsymbol{\tau}(p)=\boldsymbol{\tau}(p) ; c .
\end{aligned}
$$

Proof.

$$
\begin{gather*}
\tau(p) ; c ; \tau(p) \sqsubseteq \tau(p) ; \tau(p) ; c=\tau(p) ; c= \\
\boldsymbol{\tau}(p) ; c ; \text { nil } \sqsubseteq \tau(p) ; c ; \tau(p) .
\end{gather*}
$$

If $r \Rightarrow\left(p \Rightarrow p^{\prime}\right)$, then both the following hold.

$$
\begin{array}{rll}
\boldsymbol{\pi}(r) ; \boldsymbol{\tau}(p) & \sqsubseteq \boldsymbol{\tau}(p) ; \boldsymbol{\pi}(r) \\
\boldsymbol{\epsilon}(r) ; \boldsymbol{\tau}(p) & \sqsubseteq \boldsymbol{\tau}(p) ; \boldsymbol{\epsilon}(r) \tag{21}
\end{array}
$$

Proof.
The assumption ensures $p \wedge r \wedge p^{\prime}=p \wedge r$. We give the proof for (??) which uses (??). The proof for (??) is similar but uses (??).

$$
\begin{aligned}
& \pi(r) ; \boldsymbol{\tau}(p)=\operatorname{nil} ; \boldsymbol{\pi}(r) ; \boldsymbol{\tau}(p) \sqsubseteq \boldsymbol{\tau}(p) ; \boldsymbol{\pi}(r) ; \boldsymbol{\tau}(p)=\boldsymbol{\pi}(p \wedge r) ; \boldsymbol{\tau}(p) \\
& =\boldsymbol{\pi}\left(p \wedge r \wedge p^{\prime}\right) ; \boldsymbol{\tau}(p)=\boldsymbol{\pi}\left(p \wedge r \wedge p^{\prime}\right)=\boldsymbol{\pi}(p \wedge r)=\boldsymbol{\tau}(p) ; \boldsymbol{\pi}(r)
\end{aligned}
$$

## Invariance over iterations

If $c ; \boldsymbol{\tau}(p) \sqsubseteq \boldsymbol{\tau}(p) ; c$, then both

$$
\begin{gather*}
c^{\omega} ; \boldsymbol{\tau}(p) \sqsubseteq \boldsymbol{\tau}(p) ; c^{\omega}  \tag{22}\\
c^{*} ; \boldsymbol{\tau}(p) \sqsubseteq \boldsymbol{\tau}(p) ; c^{*} \tag{23}
\end{gather*}
$$

Proof.
Property (??) holds by $\omega$-induction (??) if $\boldsymbol{\tau}(p) \sqcap c ; \boldsymbol{\tau}(p) ; c^{\omega} \sqsubseteq \boldsymbol{\tau}(p) ; c^{\omega}$, which can be proven using the assumption and $\omega$-folding (??).

$$
\boldsymbol{\tau}(p) \sqcap c ; \boldsymbol{\tau}(p) ; c^{\omega} \sqsubseteq \boldsymbol{\tau}(p) \sqcap \boldsymbol{\tau}(p) ; c ; c^{\omega}=\boldsymbol{\tau}(p) ;\left(\text { nil } \sqcap c ; c^{\omega}\right)=\boldsymbol{\tau}(p) ; c^{\omega}
$$

Property (??) holds by *-induction (??) if $c^{*} ; \boldsymbol{\tau}(p) \sqsubseteq \boldsymbol{\tau}(p) \sqcap c^{*} ; \boldsymbol{\tau}(p) ; c$, which can be proven using the assumption and *-folding (??).

$$
\boldsymbol{\tau}(p) \sqcap c^{*} ; \boldsymbol{\tau}(p) ; c \sqsupseteq \boldsymbol{\tau}(p) \sqcap c^{*} ; c ; \boldsymbol{\tau}(p)=\left(\mathbf{n i l} \sqcap c^{*} ; c\right) ; \boldsymbol{\tau}(p)=c^{*} ; \boldsymbol{\tau}(p)
$$

## Rely-invariant

$$
\begin{aligned}
& \text { If } r \Rightarrow\left(p \Rightarrow p^{\prime}\right) \text {, then } \\
& \qquad((\text { rely } r) \cap \text { idle }) ; \tau(p) \sqsubseteq \tau(p) ;((\text { rely } r) \text { © idle })
\end{aligned}
$$

Proof.
The proof uses the definitions of rely $r$ (??) and idle (??) and then pushes the test $\tau(p)$ left using applications of Lemma invariance-iteration. Note that the identity relation id maintains any invariant $p$.

$$
\begin{aligned}
& ((\text { rely } r) \cap \text { idle }) ; \boldsymbol{\tau}(p) \\
& =\left((\boldsymbol{\pi} \sqcap \boldsymbol{\epsilon}(\boldsymbol{r}))^{\omega} ;(\boldsymbol{n i l} \sqcap \boldsymbol{\epsilon}(\bar{r}) ; \perp) \cap(\boldsymbol{\pi}(\mathrm{id}) \sqcap \boldsymbol{\epsilon})^{*} ; \boldsymbol{\epsilon}^{\omega}\right) ; \boldsymbol{\tau}(\boldsymbol{p}) \\
& =(\boldsymbol{\pi}(\mathrm{id}) \sqcap \boldsymbol{\epsilon}(r))^{*} ; \boldsymbol{\epsilon}(r)^{\omega} ;(\mathbf{n i l} \sqcap \boldsymbol{\epsilon}(\bar{r}) ; \perp) ; \boldsymbol{\tau}(\boldsymbol{p}) \\
& =(\boldsymbol{\pi}(\mathrm{id}) \sqcap \boldsymbol{\epsilon}(r))^{*} ; \boldsymbol{\epsilon}(r)^{\omega} ;(\boldsymbol{\tau}(p) \sqcap \boldsymbol{\epsilon}(\bar{r}) ; \perp ; \boldsymbol{\tau}(p)) \\
& \sqsubseteq(\boldsymbol{\pi}(\mathrm{id}) \sqcap \epsilon(r))^{*} ; \boldsymbol{\epsilon}(r)^{\omega} ; \boldsymbol{\tau}(\boldsymbol{p}) ;(\text { nil } \sqcap \boldsymbol{\epsilon}(\bar{r}) ; \perp) \\
& \sqsubseteq(\boldsymbol{\pi}(\mathrm{id}) \sqcap \boldsymbol{\epsilon}(\boldsymbol{r}))^{*} ; \boldsymbol{\tau}(\boldsymbol{p}) ; \boldsymbol{\epsilon}(\boldsymbol{r})^{\omega} ;(\text { nil } \sqcap \boldsymbol{\epsilon}(\bar{r}) ; \perp) \\
& \sqsubseteq \boldsymbol{\tau}(p) ;(\boldsymbol{\pi}(\mathrm{id}) \sqcap \boldsymbol{\epsilon}(r))^{*} ; \boldsymbol{\epsilon}(r)^{\omega} ;(\text { nil } \sqcap \boldsymbol{\epsilon}(\bar{r}) ; \perp) \\
& =\boldsymbol{\tau}(p) ;((\text { rely } r) \cap \text { idle })
\end{aligned}
$$

$$
\begin{align*}
{[[\kappa]]_{v} } & \widehat{=} \text { idle } ; \boldsymbol{\tau}(\kappa=v) ; \text { idle }  \tag{24}\\
{[[x]]_{v} } & \widehat{=} \text { idle; } \boldsymbol{\tau}(x=v) ; \text { idle }  \tag{25}\\
{[[\ominus \boldsymbol{e}]]_{v} } & \widehat{\equiv}\left\{v_{1} \mid v=\operatorname{eval}\left(\ominus, v_{1}\right) \cdot[[e]]_{v_{1}}\right\}  \tag{26}\\
{\left[\left[e_{1} \oplus e_{2}\right]\right]_{v} } & \widehat{\equiv}\left\{v_{1}, v_{2} \mid v=\operatorname{eval}\left(\oplus, v_{1}, v_{2}\right) \cdot\left[\left[e_{1}\right]\right]_{v_{1}} \|\left[\left[e_{2}\right]\right]_{v_{2}}\right\} \tag{27}
\end{align*}
$$

An expression is stable under $r$ if its evaluation is not affected by interference satisfying $r$. For example, assuming access to $x$ is atomic, the absolute value of $x$, $|x|$, is stable under interference satisfying $x^{\prime}=x \vee x^{\prime}=-x$, and $(x \bmod N)$ is stable under interference satisfying $x^{\prime}=x \vee x^{\prime}=x+N$.
Definition (stable-expression)
An expression $e$ is stable under $r$ if, for fresh $v$,

$$
r \Rightarrow\left(e=v \Rightarrow e^{\prime}=v\right)
$$

## Stable expression

In the context of interference represented by a rely condition $r$, an expression $e$ is stable if all the variables used in $e$ are stable under $r$. If a variable $x$ is not subject to change, access to it does not need to be atomic.

- A constant $\kappa$ is trivially stable.
- A variable $x$ is stable under $r$ if for fresh $v, r \Rightarrow\left(x=v \Rightarrow x^{\prime}=v\right)$.
- A unary expression $\ominus e$ is stable under $r$ if $e$ is.
- A binary expression $e_{1} \oplus e_{2}$ is stable under $r$ if both $e_{1}$ and $e_{2}$ are.

If an expression $e$ is stable under $r$, then for any value $v$ where $v$ does not occur free in $e$,

$$
(\text { rely } r) \cap(\text { idle } ; \tau(e=v)) \sqsubseteq(\text { rely } r) \cap(\boldsymbol{\tau}(e=v) ; \text { idle })
$$

Proof.
This lemma follows directly from Definition stable-expression and Law rely-invariant.

Evaluating an expression in the context of interference may lead to anomalies because evaluation of an expression such as $x+x$ may retrieve different values of $x$ for each of its occurrences and hence it is possible for $x+x$ to evaluate to an odd value even though $x$ is an integer variable. Such anomalies may be avoided in the case that expressions are single reference [?, ?]. If $x$ is subject to modification then $x+x$ is not single-reference but $2 * x$ is. An expression being stable under $r$ is considered a special case of it being single reference so, for example, if $x$ is not subject to interference then $x+x$ is single-reference.

Definition (single-reference-expression)
The definition is based on the syntactic form of $e$.

- A constant $\kappa$ is single reference.
- A variable $x$ is single reference provided access to $x$ is atomic.
- A unary expression $\ominus e$ is single reference under $r$ if $e$ is.
- A binary expression $e_{1} \oplus e_{2}$ is single reference under $r$ if either $e_{1}$ is single reference under $r$ and $e_{2}$ is stable under $r$, or vice versa.

If an expression $e$ is single-reference then for any evaluation of $e$, its value is the same as the evaluation of $e$ in the single state $\sigma$ in which the single-reference variable $(x)$ is accessed.

## Defining commands

## Rely sequential

$$
\begin{align*}
& \left.x:=e \widehat{\mid} \prod_{v \in \operatorname{Val}}[[e]]_{v} ; \operatorname{update}(x, v)\right\} ; \text { idle }  \tag{28}\\
& \text { if } b \text { then } c \text { else } d \widehat{=}(([b]] \text { true } ; c) \sqcap([[\neg b]] \text { true } ; d)) \text {;idle }  \tag{29}\\
& \text { while } b \text { do } c \widehat{=}\left([[b]]_{\text {true }} ; c\right)^{\omega} ;[[\neg b]] \text { true }  \tag{30}\\
& {[q] \cong \prod_{\sigma \in \Sigma} \boldsymbol{\tau}(\{\sigma\}) ; \operatorname{term} ; \boldsymbol{\tau}\left(\left\{\sigma^{\prime} \mid\left(\sigma, \sigma^{\prime}\right) \in q\right\}\right)}  \tag{31}\\
& {[p, q] \widehat{\equiv}\{p\} ;[q]}  \tag{32}\\
& \text { if } b \text { then } c \text { else } d \widehat{=}\left(\left([[b]]_{\text {true }} ; c\right) \sqcap\left([[\neg b]]_{\text {true }} ; d\right)\right) \text {; idle }
\end{align*}
$$

A specification with a post condition which is the composition of two relations $q_{1}$ and $q_{2}$ may be refined by by a sequential composition of one command satisfying $q_{1}$ and a second satisfying $q_{2}$.
For rely condition $r$, predicates $p_{0}, p_{1}$ and $p_{2}$, and relations $q_{1}$ and $q_{2}$.

$$
(\text { rely } r) \cap\left[p_{0},\left(q_{1} \because q_{2}\right) \wedge p_{2}^{\prime}\right] \sqsubseteq\left((\text { rely } r) \cap\left[p_{0}, q_{1} \wedge p_{1}^{\prime}\right]\right) ;\left((\text { rely } r) \cap\left[p_{1}, q_{2} \wedge p_{2}^{\prime}\right]\right)
$$

An expression $e$ is single reference under interference satisfying the rely condition $r$ if the value of the expression corresponds to its value in one of the states during its evaluation and hence one can derive the following law.
If $e$ is a single-reference expression under $r$,

$$
(\text { rely } r) \cap(\text { idle } ; \boldsymbol{\tau}(\boldsymbol{e}=\kappa) ; \text { idle }) \quad \sqsubseteq \quad[[\boldsymbol{e}]]_{\kappa} .
$$

Proof.
The proof is by structural induction of the structure of the expression.

If rely condition $r$ is such that $r \Rightarrow\left(p \Rightarrow p^{\prime}\right)$,

$$
(\text { rely } r) \cap\left[p, r^{*} \wedge p^{\prime}\right] \sqsubseteq(\text { rely } r) \cap \text { idle }
$$

Proof.
All environment steps of the right side are assumed to satisfy $r$ and all program steps satisfy the identity relation, and hence the right side guarantees to maintain $p$ and satisfies $r^{*}$.

## Rely test

## Rely assignment

For a single-reference boolean expression $b$, predicates $p$ and $b_{0}$, and relation $r$, if $r$ maintains $p, p \wedge b \Rightarrow b_{0}$, and $p \wedge r \Rightarrow\left(b_{0} \Rightarrow b_{0}^{\prime}\right)$,

$$
(\text { rely } r) \cap\left[p, r^{*} \wedge p^{\prime} \wedge b_{0}^{\prime}\right] \sqsubseteq[[b]]_{\text {true }}
$$

## Proof.

The proof uses Law rely-sequential and Law rely-idle.

$$
\begin{aligned}
& (\text { rely } r) \cap\left[p, r^{*} \wedge p^{\prime} \wedge b_{0}^{\prime}\right] \\
\sqsubseteq & \left((\text { rely } r) \cap\left[p, r^{*} \wedge p^{\prime}\right]\right) ;\left((\text { rely } r) \cap\left[p, \quad i d \wedge p^{\prime} \wedge b\right]\right) ;
\end{aligned}
$$

$$
\left((\text { rely } r) \cap\left[p \wedge b_{0}, r^{*} \wedge p^{\prime} \wedge b_{0}^{\prime}\right]\right)
$$

$\sqsubseteq$ idle; $\boldsymbol{\tau}(b)$;idle
$\sqsubseteq[[b]]_{\text {true }}$

Let $r$ be a rely condition, $x$ be a variable that is stable under $r$, and $e$ be a single-reference expression such that $x$ does not occur free in $e$ and " $\approx$ " a reflexive, transitive binary relation, such that $r \Rightarrow\left(e \approx e^{\prime}\right)$, then

$$
(\operatorname{rely} r) \cap x:\left[e \approx x^{\prime} \approx e^{\prime}\right] \sqsubseteq x:=e
$$

For example, the relation may be equality (so that $e$ is stable) and we have $e=x^{\prime}=e^{\prime}$, or the relation may be may be " $\supseteq$ ", so the postcondition becomes $e \supseteq x^{\prime} \supseteq e^{\prime}$.

## Handling tests under interference

To handle the possible instability of $b$ within a test, a weaker but stable predicate $b_{0}$ can be used, i.e. $b \Rightarrow b_{0}$ and $r \Rightarrow\left(b_{0} \Rightarrow b_{0}^{\prime}\right)$. More generally, if condition $b$ is only ever evaluated in states satisfying a precondition $p$ that is maintained by $r$, these conditions can be relaxed to the following.

$$
p \wedge b \Rightarrow b_{0} \quad p \wedge r \Rightarrow\left(b_{0} \Rightarrow b_{0}^{\prime}\right)
$$

When handling the negation of the condition, one needs an additional stable predicate $b_{1}$ that is implied by the negation of $b$.

$$
p \wedge \neg b \Rightarrow b_{1} \quad p \wedge r \Rightarrow\left(b_{1} \Rightarrow b_{1}^{\prime}\right)
$$

For example, the negation of the earlier example is $O C \geq$ ot $\vee O C \geq$ et and that is maintained by interference that may only decrease et. Note that

$$
p \Rightarrow(p \wedge b) \vee(p \wedge \neg b) \Rightarrow b_{0} \vee b_{1}
$$

but there may be states in which both $b_{0}$ and $b_{1}$ hold. For the above example, taking $b_{0}$ as $o c<$ ot and $b_{1}$ as $o c \geq$ ot $\vee o c \geq e t$, both conditions hold in states satisfying $o c<o t \wedge o c \geq e t$.

The Hoare logic rule for reasoning about a loop, while $b$ do $c$, for sequential programs utilises an invariant $p$ that is maintained by the loop body whenever $b$ holds initially. To show termination a variant expression $v$ is used. The loop body must strictly decrease $v$ according to a well-founded relation ( $\succ_{\succ_{-}}$) whenever $b$ holds initially.

The law for while loops needs to be strengthened to rule out the interference invalidating the loop invariant $p$ or increasing the variant $v$. The requirements on the invariant $p$ and variant $v$ to tolerate interference satisfying the rely condition $r$ may be stated as follows.

$$
\begin{align*}
r & \Rightarrow\left(p \Rightarrow p^{\prime}\right) \\
p \wedge r & \Rightarrow v \succeq v^{\prime} \tag{34}
\end{align*}
$$

For predicate $p$, and relation $q$, if $r$ maintains $p$,

$$
(\text { rely } r) \cap\left[p, p^{\prime} \wedge q^{*}\right] \sqsubseteq\left((\text { rely } r) \cap\left[p, p^{\prime} \wedge q\right]\right)^{*}
$$

Proof.
The proof is via finite iteration induction (??) and the refinement holds if,

$$
(\text { rely } r) \cap\left[p, p^{\prime} \wedge q^{*}\right] \sqsubseteq \text { nil } \sqcap\left((\text { rely } r) \cap\left[p, p^{\prime} \wedge q\right]\right) ;\left((\text { rely } r) \cap\left[p, p^{\prime} \wedge q^{*}\right]\right)
$$

which holds by Law rely-sequential because $q \circ q^{*} \Rightarrow q^{*}$.

## Rely loop

Given predicates $p, b_{0}$ and $b_{1}$, a relation $r$, a variant expression $v$ of type $T$ and a relation $\left(-\succ_{-}\right) \subseteq T \times T$ that is well-founded on states satisfying $p$, if $b$ is a single-reference boolean expression under interference satisfying $r$, and

$$
\begin{array}{lrlll}
p \wedge r & \Rightarrow p^{\prime} & p \wedge b & \Rightarrow & b_{0} \\
p \wedge r & p \wedge r \wedge b_{0} & \Rightarrow b_{0}^{\prime} \\
v \succeq v^{\prime} & p \wedge \neg b \Rightarrow b_{1} & p \wedge r \wedge b_{1} \Rightarrow b_{1}^{\prime}
\end{array}
$$

then

$$
(\mathbf{r e l y} r) \cap\left[p, p^{\prime} \wedge b_{1}^{\prime} \wedge v \succeq v^{\prime}\right] \sqsubseteq \text { while } b \operatorname{do}\left((\mathbf{r e l y} r) \cap\left[p \wedge b_{0}, p^{\prime} \wedge v \succ v^{\prime}\right]\right)
$$

For predicate $p$, variant expression $v$ of type $T$, and a relation $\left(-\succ{ }_{-}\right) \in T \times T$ that is well-founded on $p$, if $r$ maintains $p$, and $v$ is non-increasing under $r$,

$$
(\text { rely } r) \cap\left[p, p^{\prime} \wedge v \succeq v^{\prime}\right] \sqsubseteq\left((\text { rely } r) \cap\left[p, p^{\prime} \wedge v \succ v^{\prime}\right]\right)^{\omega}
$$

Proof.

$$
\begin{aligned}
& \left((\text { rely } r) \cap\left[p, p^{\prime} \wedge v \succ v^{\prime}\right]\right)^{\omega} \\
= & \text { isolation, i.e. } c^{\omega}=c^{*} \sqcap c^{\infty} \\
& \left((\text { rely } r) \cap\left[p, p^{\prime} \wedge v \succ v^{\prime}\right]\right)^{*} \sqcap\left((\text { rely } r) \cap\left[p, p^{\prime} \wedge v \succ v^{\prime}\right]\right)^{\infty} \\
= & \quad \text { well-founded infinite iteration is infeasible } \\
& \left((\text { rely } r) \cap\left[p, p^{\prime} \wedge v \succ v^{\prime}\right]\right)^{*} \\
\sqsupseteq & \quad \text { by Law rely-finite-iteration } \\
& (\text { rely } r) \cap\left[p, p^{\prime} \wedge v \succeq v^{\prime}\right]
\end{aligned}
$$

Proof.

```
 \((\) rely \(r) \cap\left[p, p^{\prime} \wedge b_{1}^{\prime} \wedge v \succeq v^{\prime}\right]\)
 \(\sqsubseteq\) by Law rely-sequential
 \(\left((\right.\) rely \(\left.r) \cap\left[p, p^{\prime} \wedge v \succeq v^{\prime}\right]\right) ;\left((\right.\) rely \(\left.r) \cap\left[p, p^{\prime} \wedge b_{1}^{\prime} \wedge v \succeq v^{\prime}\right]\right)\)
 \(\sqsubseteq\) by Law rely-test using the assumptions on \(b_{1}\)
 \(\left((\right.\) rely \(\left.r) \cap\left[p, p^{\prime} \wedge v \succeq v^{\prime}\right]\right) ;[[\neg b]]_{\text {true }}\)
 \(\sqsubseteq\) by Law rely-well-founded-iteration
 \(\left((\text { rely } r) \cap\left[p, p^{\prime} \wedge v \succ v^{\prime}\right]\right)^{\omega} ;[[\neg b]]_{\text {true }}\)
 \(\sqsubseteq\) by Law rely-sequential as \(\left(v \succeq v^{\prime}\right) \circ\left(v \succ v^{\prime}\right) \Rightarrow v \succ v^{\prime}\)
 \(\left(\left((\text { rely } r) \cap\left[p, p^{\prime} \wedge b_{0}^{\prime} \wedge v \succeq v^{\prime}\right]\right) ;\left((\text { rely } r) \cap\left[p \wedge b_{0}, p^{\prime} \wedge v \succ v^{\prime}\right]\right)\right)^{\omega} ;[[\neg b]]\) true
 \(\sqsubseteq\) by Law rely-test using the assumptions on \(b_{0}\)
 \(\left([[b]] ;\left((\mathbf{r e l y} r) \cap\left[p \wedge b_{0}, p^{\prime} \wedge v \succ v^{\prime}\right]\right)\right)^{\omega} ;[[\neg b]]\) true
 \(=\) definition of loop (??)
 while \(b\) do \(\left((\right.\) rely \(\left.r) \cap\left[p \wedge b_{0}, p^{\prime} \wedge v \succ v^{\prime}\right]\right)\)
```

Given predicates $p, b_{0}, b_{1}$ and $b_{2}$, a relation $r$, a variant expression $v$ of type $T$ and a relation $\left(_\succ \succ_{-} \subseteq T \times T\right.$ that is well-founded on states satisfying $p$, if $b$ is a single-reference boolean expression under interference satisfying $r$, and

$$
\begin{array}{rllll}
p \wedge r \Rightarrow p^{\prime} & p \wedge b & \Rightarrow b_{0} & p \wedge r \wedge b_{0} \Rightarrow b_{0}^{\prime} \\
p \wedge r \Rightarrow & \Rightarrow \succeq v^{\prime} & p \wedge \neg b & \Rightarrow b_{1} & p \wedge r \wedge b_{1} \Rightarrow b_{1}^{\prime} \\
& p \wedge b_{2} & \Rightarrow \neg \neg b & p \wedge r \wedge b_{2} \Rightarrow b_{2}^{\prime}
\end{array}
$$

- Local variables
- Modules
then

$$
(\operatorname{rely} r) \cap\left[p, p^{\prime} \wedge b_{1}^{\prime}\right] \sqsubseteq \text { while } b \operatorname{do}\left((\operatorname{rely} r) \cap\left[p \wedge b_{0}, p^{\prime} \wedge\left(v \succ v^{\prime} \vee b_{2}^{\prime}\right)\right]\right)
$$

This rule may be shown using Law rely-loop by taking as the variant the ordered pair $\left(\neg b_{2}, v\right)$ under the lexicographical ordering, where true $\succ$ false.

## Conclusions

- One can develop algebras of programs
- Focus on the algebraic properties first, then semantics
- Need a semantics to show that the algebraic theories are consistent
- Start from a (refinement) lattice and add $\|$, , $\cap$, ;
- For rely/guarantee, start with very primitive commands $(\tau(p), \pi(r), \epsilon(r))$
- Links to process algebras, in particular Milner's Synchronous CCS (SCCS)
- We are developing Isabelle theories for the algebras

