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Rely/guarantee

Pre I assume that this lecture starts at 8:30am
Guarantee you will understand to rely/guarantee reasoning

Rely that you ask questions when you don’t understand
Post finish this lecture at 9:30am

2 / 1

Overview

I Deriving sequential programs
I Example: Sieve of Eratosthenes

I Deriving concurrent programs
I Example: Sieve of Eratosthenes
I Example: Communicating through a circular buffer

I Semantics of concurrent programs
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Your background

Logic and set theory
I Propositional logic: ∧, ∨ and ¬
I Predicate logic: ∀ and ∃
I Set theory: ∈, ⊆, ∪, ∩ and {...}
I Specification languages: VDM, Z, B and TLA

Reasoning about programs
I Hoare logic: {p} c {q}
I Refinement calculus or B or Event-B: v, x :

î
p , q

ó
I Rely/guarantee concurrency
I Separation logic
I Concurrent separation logic
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Reasoning about (concurrent) software

Our main tool is abstraction:
sequential specify components using pre/post conditions

I e.g. sorting
I precondition noduplicates(s)
I postcondition ordered(s′) ∧ items(s′) = items(s)

data use abstractions such as sets and maps
I decouple the specification of what the user sees from the

implementation
I avoid the details of the implementations, such as, linked lists and

trees
process due to interference between processes need more than pre and post
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Compositional reasoning

Reasoning about the whole is decomposed into reasoning about the components
Why? I Make reasoning tractable

I Partition the work (e.g. for multiple people to work on different
components)

I Avoid reasoning about paths

j := 0;
while j 6= N do

if p then s else t ;
j := j + 1

I 2N possible paths
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Hoare logic is compositional

Structured reasoning about programs
I Sequential composition

{p} s {q} {q} t {r}
{p} s ; t {r}

I While loop using a loop invariant p

{p ∧ b} s {p}
{p} while b do s {p ∧ ¬ b}

For termination one needs to add a loop variant or well-founded relation
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Parallel composition

Interference possible before or after every atomic step si and ti

s1; s2; . . . ; sn ‖ t1; t2; . . . ; tn

I The number of paths in terms of n explodes
I If there is no interference between s and t

{p1} s {q1} {p2} t {q2}
{p1 ∧ p2} s ‖ t {q1 ∧ q2}

I But this is the easy case
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Example: Sieve of Eratosthenes (sequential)

I Determine primes up to some given n
I Illustrates:

I starting with abstract type (a set)
I using guarantees (even for a sequential program)
I introducing loops
I data refinement to an array of small sets that can each fit in a word
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1 2 3 4 5 6 7 8 9 10 11 12 ...

REM(2)

REM(3)
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Specification in refinement calculus style
Concrete syntax

VDM

SIEVE
ext wr s : FN1
pre s ⊆ 2 . . n
post s′ = s − C

Refinement calculus

SIEVE “=
{s ⊆ 2 . . n}s :

î
s′ = s − C

ó
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Sieve of Eratosthenes - sequential

I Precondition s ⊆ 2 . . n holds initially
I Assume that C is the set of all composite numbers (non-primes)
I Postcondition s′ = s − C

s :
î
s ⊆ 2 . . n , s′ = s − C

ó
= equivalent post condition (set theory)

s :
î
s ⊆ 2 . . n , s′ ⊆ s ∧ s − s′ ⊆ C ∧ s′ ∩ C = ∅

ó
v guarantee on every step

(guar s′ ⊆ s ∧ s − s′ ⊆ C) e s :
î
s ⊆ 2 . . n , s′ ∩ C = ∅

ó
The guarantee condition is

I reflexive, i.e. s′ = s ⇒ s′ ⊆ s ∧ s − s′ ⊆ C
I transitive, i.e. s′ ⊆ s′′ ⊆ s ∧ s − s′′ ⊆ C ∧ s′′ − s′ ⊆ C ⇒ s′ ⊆ s ∧ s − s′ ⊆ C
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First some set theory

Assume ci is the set of all multiples of i , excluding i

s′ ∩ C = ∅
≡ s′ ∩⋃{j ∈ N | 2 ≤ j · cj} = ∅
≡ ⋃{j ∈ N | 2 ≤ j · (s′ ∩ cj)} = ∅
≡ ∀ j ∈ N · 2 ≤ j ⇒ s′ ∩ cj = ∅

Therefore

(guar s′ ⊆ s ∧ s − s′ ⊆ C) e
s :
î
s ⊆ 2 . . n , s′ ∩ C = ∅

ó
v by above set theory

(guar s′ ⊆ s ∧ s − s′ ⊆ C) e
s :
î
s ⊆ 2 . . n , ∀ j · 2 ≤ j ⇒ s′ ∩ cj = ∅

ó
The refinement now focuses on just the specification (the second line)
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Then some number theory

If 2 ≤ i ∧ 2 ≤ j and if i ∗ j ≤ n then either
I i2 ≤ n ∧ j2 ≥ n or
I j2 ≤ n ∧ i2 ≥ n

Hence one only has to remove multiples of i up to the (integer part of) the square
root of i

s ⊆ 0 . . n ∧ n ≤ i2 ∧ (∀ j ∈ 2 . . i · s ∩ cj = ∅)
⇒

(∀ j ∈ N · 2 ≤ j ⇒ s ∩ cj = ∅)

The predicate (∀ j ∈ 2 . . i · s ∩ cj = ∅) holds if i is 1
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Introducing a loop

s :
î
s ⊆ 2 . . n , ∀ j · 2 ≤ j ⇒ s′ ∩ cj = ∅

ó
v introduce variable i to be used as loop index

var i := 1;

i , s :

ñ
s ⊆ 2 . . n ∧
∀ j ∈ 2 . . i · s ∩ cj = ∅ ,

n < (i + 1)2 ∧
∀ j ∈ 2 . . i · s′ ∩ cj = ∅

ô
v introduce while loop

while(i + 1)2 ≤ n do

i , s :

ñ
s ⊆ 2 . . n ∧ (i + 1)2 ≤ n ∧
∀ j ∈ 2 . . i · s ∩ cj = ∅ ,

i < i ′ ∧
∀ j ∈ 2 . . i · s′ ∩ cj = ∅

ô
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Refining the loop body

i , s :

ñ
s ⊆ 2 . . n ∧ (i + 1)2 ≤ n ∧
∀ j ∈ 2 . . i · s ∩ cj = ∅ ,

i < i ′ ∧
∀ j ∈ 2 . . i · s′ ∩ cj = ∅

ô
v introduce sequential composition

i := i + 1;

s :

ñ
s ⊆ 2 . . n ∧ i2 ≤ n ∧
∀ j ∈ 2 . . i − 1 · s ∩ cj = ∅ , ∀ j ∈ 2 . . i · s′ ∩ cj = ∅

ô
Refining the specification:

s :

ñ
s ⊆ 2 . . n ∧ i2 ≤ n ∧
∀ j ∈ 2 . . i − 1 · s ∩ cj = ∅ , ∀ j ∈ 2 . . i · s′ ∩ cj = ∅

ô
v to achieve the post condition the elements in ci need to be removed

s :
î
s ⊆ 2 . . n ∧ i2 ≤ n , s′ ∩ ci = ∅

ó
v recall that ci contains all the multiples of i , excluding i

s :
î
s ⊆ 2 . . n ∧ i2 ≤ n , ∀ j · 2 ∗ i ≤ j ∗ i ≤ n⇒ j ∗ i 6∈ s′

ó
Reminder: this is all in the context of (guar s′ ⊆ s ∧ s − s′ ⊆ C)
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Introduce inner loop

s :
î
s ⊆ 2 . . n ∧ i2 ≤ n , ∀ j · 2 ∗ i ≤ j ∗ i ≤ n⇒ j ∗ i 6∈ s′

ó
v introduce variable k to be used as a loop index

var k := 2;

k , s :

s ⊆ 2 . . n ∧ i2 ≤ n ∧
∀ j · 2 ∗ i ≤ j ∗ i < k ∗ i ⇒

j ∗ i 6∈ s
,

n < k ∗ i ∧
∀ j · 2 ∗ i ≤ j ∗ i < k ∗ i ⇒

j ∗ i 6∈ s′


v introduce inner loop

while k ∗ i ≤ n do

k , s :

s ⊆ 2 . . n ∧ 2 ∗ i ≤ k ∗ i ≤ n ∧
∀ j · 2 ∗ i ≤ j ∗ i < k ∗ i ⇒

j ∗ i 6∈ s
,

k < k ′ ∧
∀ j · 2 ∗ i ≤ j ∗ i < k ∗ i ⇒

j ∗ i 6∈ s′


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Refine the inner loop body

k , s :

s ⊆ 2 . . n ∧ 2 ∗ i ≤ k ∗ i ≤ n ∧
∀ j · 2 ∗ i ≤ j ∗ i < k ∗ i ⇒

j ∗ i 6∈ s
,

k < k ′ ∧
∀ j · 2 ∗ i ≤ j ∗ i < k ∗ i ⇒

j ∗ i 6∈ s′


v introduce sequential composition

s :

s ⊆ 2 . . n ∧ 2 ∗ i ≤ k ∗ i ≤ n ∧
∀ j · 2 ∗ i ≤ j ∗ i < k ∗ i ⇒

j ∗ i 6∈ s
, ∀ j · 2 ∗ i ≤ j ∗ i < (k + 1) ∗ i ⇒

j ∗ i 6∈ s′

;

k := k + 1

Now refine the specification

s :

s ⊆ 2 . . n ∧ 2 ∗ i ≤ k ∗ i ≤ n ∧
∀ j · 2 ∗ i ≤ j ∗ i < k ∗ i ⇒

j ∗ i 6∈ s
, ∀ j · 2 ∗ i ≤ j ∗ i < (k + 1) ∗ i ⇒

j ∗ i 6∈ s′


v to achieve the post condition the element k ∗ i must be removed

s :
î
s ⊆ 2 . . n ∧ 2 ∗ i ≤ k ∗ i ≤ n , k ∗ i 6∈ s′

ó
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Bring back the guarantee

Now recall that this was all in the context of a guarantee.

(guar s′ ⊆ s ∧ s − s′ ⊆ C) e s :
î
s ⊆ 2 . . n ∧ 2 ∗ i ≤ k ∗ i ≤ n , k ∗ i 6∈ s′

ó
v strengthen guarantee and weaken precondition

(guar s′ ⊆ s ∧ s − s′ ⊆ {k ∗ i}) e s :
î
s ⊆ 0 . . n ∧ k ∗ i ∈ 0 . . n , k ∗ i 6∈ s′

ó
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Remove an element from the set

Define

Rem(m) “= (guar s′ ⊆ s ∧ s − s′ ⊆ {m}) e s :
î
s ⊆ 0 . . n ∧ m ∈ 0 . . n , m 6∈ s′

ó
The code so far is

var i := 1;

while(i + 1)2 ≤ n do
i := i + 1;
var k := 2;
while k ∗ i ≤ n do

Rem(k ∗ i);
k := k + 1
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Data refinement: representing the set as an array of words

I A finite set contained in 0 . . n can be represented by a bit map of n + 1 bits
I Assume a word has ws bits
I A word can represent a set with ws elements
I A word can represent a set contained in the set 0 . . ws − 1
I For a large set one needs a vector v of

†
n+1
ws

£
words

I The function retr(v) retrieves the set represented by v

retr(v) “= {j ∈ 0 . . n | (j mod ws) ∈ v(j div ws)}
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Remove an element from the set

Define

Rem(m) “= (guar s′ ⊆ s ∧ s − s′ ⊆ {m}) e s :
î
s ⊆ 0 . . n ∧ m ∈ 0 . . n , m 6∈ s′

ó
Using the representation as an array v : array 0 . .

†
n+1
ws

£
− 1 of (0 . . ws − 1)

(guar retr(v ′) ⊆ retr(v) ∧ retr(v)− retr(v ′) ⊆ {m}) e
v :
î
retr(v) ⊆ 0 . . n ∧ m ∈ 0 . . n , m 6∈ retr(v ′)

ó
From the definition of retr

m 6∈ retr(v ′)⇔ (m mod ws) 6∈ v ′(m div ws)

Hence the specification can be written as

v :
î
retr(v) ⊆ 0 . . n ∧ m ∈ 0 . . n , (m mod ws) 6∈ v ′(m div ws)

ó
v

v(m div ws) :
î
m ∈ 0 . . n , (m mod ws) 6∈ v ′(m div ws)

ó
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Removing an element from a set represented as a single word

RemW (var w : F(0 . . ws − 1), i : 0 . . ws − 1) “=
(guar w ′ ⊆ w ∧ w − w ′ ⊆ {i}) e
w :
î
w ⊆ 0 . . ws − 1 ∧ i ∈ 0 . . ws − 1 , i /∈ w ′

ó
Therefore

Rem(m)
v

RemW (v(m div ws),m mod ws)

RemW can be implemented using bit-wise operations on a word (exercise)
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Conclusions

I Importance of data abstraction
I Guarantee allows one to focus on the interesting part
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?
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Example: Parallel SIEVE of Eratosthenes

I Determine primes up to some given n
I Illustrates:

I starting with abstract type
I need to document interference (R)
I interplay between G/Q
I development to code (using CAS)
I symmetric processes (identical R/G)
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1 2 3 4 5 6 7 8 9 10 11 12 ...

REM(2)

REM(3)
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Intuition

I data abstraction: shared set of N1

I initialize: all (positive) natural numbers from 2 up to n
I remove all composites
I for sequential for i = 2 · · · post condition of each RemMults(i) iteration is easy

RemMults(i) 4 s : [s′ = s − ci ]

I for Sieve 4 f
i RemMults(i)

I need the rely of RemMults(i) to be s′ ⊆ s
I relax the equality in the postcondition of RemMults(i) to s′ ∩ ci = ∅
I avoid removing too much with a guarantee of RemMults(i) of s − s′ ⊆ ci
I because processes are identical, have to add a guarantee of no reinsertion
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Rely/Guarantee (R/G) idea is simple
face interference (in specifications and design process)

pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
ε(σi σi+1) · · · π(σj σj+1)︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

I assumptions pre/rely
I commitments guar/post

rely conditions an abstraction of interference to be tolerated
relations are key to R/G
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Interference between processes

An example of interference on process P by process Q
I One shared variable j
I process Q may do atomic steps that either

I do not change j , i.e. j ′ = j , or
I increment j by one, i.e. j ′ = j + 1

I before or after each atomic step of process P, it may observe
I no steps of Q, i.e. j ′ = j
I one step of Q, i.e. j ′ = j ∨ j ′ = j + 1
I many steps of Q, i.e. j ≤ j ′

I Observing that both j ′ = j and j ′ = j + 1 imply j ≤ j ′

I Hence we can use j ≤ j ′ to represent the possible interference from Q on P
This abstract view of the interference becomes

I a rely condition of P
I a guarantee condition of Q

30 / 1

R/G rethought

R/G (old)

RemMults(i)
ext wr s : FN1
pre s ⊆ 0 . . n
rely s′ ⊆ s
guar s′ ⊆ s ∧ · · ·
post s′ = s − ci

Proof rules (also used a 5-tuple form)

Par − I

{P,Rl} sl {Gl ,Ql}
{P,Rr} sr {Gr ,Qr}
R ∨ Gr ⇒ Rl
R ∨ Gl ⇒ Rr
Gl ∨ Gr ⇒ G
P ∧ Ql ∧ Qr ∧ (R ∨ Gl ∨ Gr )

∗ ⇒ Q
{P,R} sl || sr {G,Q}
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R/G rethought
“pulling apart” old R/G notation — literally!

R/G (old)

RemMults(i)
ext wr s : FN1
pre s ⊆ 0 . . n
rely s′ ⊆ s
guar s′ ⊆ s ∧ · · ·
post s′ = s − ci

R/G decomposed [?, ?]

{s ⊆ 0 . . n}
guar(s′ ⊆ s ∧ · · · ) •

rely s′ ⊆ s •
s : [s′ = s − ci ]

Now [?]

RemMults(i : N)
{s ⊆ 0 . . n}
(rely s′ ⊆ s) e
(guar s′ ⊆ s ∧ s − s′ ⊆ ci) e
s :
î
s′ ∩ ci = ∅

ó
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R/G rethought

Advantage of the new style: brings out (algebraic) properties

Distribute-G-seq
(guar g) e (c ;d) = ((guar g) e c) ; ((guar g) e d)

Distribute-G-par
(guar g) e (c ‖ d) = ((guar g) e c) ‖ ((guar g) e d)

Conjunction-mono
c0 v c1 ∧ d0 v d1 ⇒ c0 e d0 v c1 e d1
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(Some) Laws of the new algebraic R/G
. . . a few of many!

Conjoin-G: (guar g1) e (guar g2) = (guar g1 ∧ g2)

Strengthen-G: (guar g1) v (guar g2)
if g2 ⇒ g1

Distribute-G: ((guar g) e
f

i ci =
f

i(guar g) e ci
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Trading rely, guarantee and post

Trading-R-G-Post: (rely r) e
î
(r ∨ g)∗ ∧ q

ó
v (rely r) e (guar g) e

î
q
ó
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Introducing a parallel composition

Intro-multi-Par: (rely r) e
î∧

i qi
ó
v f

i(guar ρ) e (rely ρ) e
î
qi
ó

if r ⇒ ρ
(asymmetric version later)
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Refinement calculus style development

s initially contains set of natural numbers from 2 up to some n
C is the set of all composite numbers

(rely s′ = s) e s :
î
s′ = s − C

ó
= set theory

(rely s′ = s) e s :
î
s′ ⊆ s ∧ s − s′ ⊆ C ∧ s′ ∩ C = ∅

ó
v by Trading-R-G-Post as s′ ⊆ s ∧ s − s′ ⊆ C is reflexive and transitive

(guar s′ ⊆ s ∧ s − s′ ⊆ C) e (rely s′ = s) e s :
î
s′ ∩ C = ∅

ó
= as s′ ∩ C = ∅ ≡ s′ ∩⋃i ci = ∅ ≡ ⋃

i(s′ ∩ ci) = ∅ ≡ ∀ i . s′ ∩ ci = ∅
(guar s′ ⊆ s ∧ s − s′ ⊆ C) e (rely s′ = s) e s :

î
∀ i · s′ ∩ ci = ∅

ó
v by Intro-multi-Par

(guar s′ ⊆ s ∧ s − s′ ⊆ C) e (
f

i(guar s′ ⊆ s) e (rely s′ ⊆ s) e s :
î
s′ ∩ ci = ∅

ó
)

= Distribute-G and Conjoin-Gf
i(guar s′ ⊆ s ∧ s − s′ ⊆ C) e (rely s′ ⊆ s) e s :

î
s′ ∩ ci = ∅

ó
v Strengthen-Gf

i(guar s′ ⊆ s ∧ s − s′ ⊆ ci) e (rely s′ ⊆ s) e s :
î
s′ ∩ ci = ∅

ó
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Onwards to code

The set ci contains all the multiples of i (except i ∗ 1)

RemMults(i : N)
{s ⊆ 0..n}
(guar s′ ⊆ s ∧ s − s′ ⊆ ci) e (rely s′ ⊆ s) e s :

î
s′ ∩ ci = ∅

ó
Can be implemented by successively removing each multiple

var k := 2;
while k ∗ i ≤ n do

Rem(k ∗ i);
k := k + 1

The interesting part is Rem. Its specification allows interference that removes
elements from s. It guarantees to remove element m, only.

Rem(m : N)
{s ⊆ 0 . . n ∧ m ∈ 0 . . n}
(guar s′ ⊆ s ∧ s − s′ ⊆ {m}) e (rely s′ ⊆ s) e s :

î
m 6∈ s′

ó
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Removing an element from a set atomically

The specification of Rem allows interference that removes elements from s. It
guarantees to remove element m, only.

Rem(m : N)
{s ⊆ 0 . . n ∧ m ∈ 0 . . n}
(guar s′ ⊆ s ∧ s − s′ ⊆ {m}) e (rely s′ ⊆ s) e s :

î
m 6∈ s′

ó
Represent the set s as an array v of words each representing part of the set

v : array 0..dn+1
ws e − 1 of F(0 . . ws − 1)

Representation relation

retr(v) = {j ∈ 0 . . n | j mod ws ∈ v(j div ws)}
Implementation using RemW which removes an element from set (as a word)

RemW (v(m div ws),m mod ws)

Specification

RemW (var w : F(0..ws − 1), i : 0..ws − 1)

(guar w ′ ⊆ w ∧ w − w ′ ⊆ {i}) e (rely w ′ ⊆ w) e w :
î
i 6∈ w ′

ó
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Compare and swap

The implementation without locks makes use of a compare-and-swap (CAS)

CAS(var w , lw ,nw , var done) “=
(rely lw ′ = lw ∧ nw ′ = nw ∧ done′ = done) e

w ,done :

Æ
(w = lw ⇒ w ′ = nw ∧ done′) ∧
(w 6= lw ⇒ w ′ = w ∧ ¬ done′)

∏
Under rely condition w ′ ⊆ w assuming lw , nw and done are local

w ,done :

Æ
w ⊆ lw ∧ nw = lw − {i},
(w = lw ⇒ w ′ = w − {i}) ∧ (w 6= lw ⇒ w ′ ⊂ lw)

∏
v

CAS(w , lw ,nw , );

Note that the first parameter is a var parameter, i.e. call-by-reference
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Introduce loop

{w ⊆ 0..ws − 1 ∧ i ∈ 0..ws − 1}
(guar w ′ ⊆ w ∧ w − w ′ ⊆ {i}) e (rely w ′ ⊆ w) e w :

î
i 6∈ w ′

ó
v invariant true and variant w ⊃ w ′

while i ∈ w do
(guar w ′ ⊆ w ∧ w − w ′ ⊆ {i}) e (rely w ′ ⊆ w) e

w :
î
w ⊃ w ′ ∨ i 6∈ w ′

ó
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Refine loop body

(guar w ′ ⊆ w ∧ w − w ′ ⊆ {i}) e (rely w ′ ⊆ w) e w :
î
w ⊃ w ′ ∨ i 6∈ w ′

ó
v strengthen guarantee, introduce local variable lw

var lw ·
(guar w ′ = w ∨ w ′ = w − {i}) e (rely w ⊇ w ′) e
(lw :

î
w ⊇ lw ′ ⊇ w ′

ó
;w :
î
lw ⊇ w , lw ⊃ w ′ ∨ i 6∈ w ′

ó
)

Refining the first specification

(guar w ′ = w ∨ w ′ = w − {i}) e (rely w ⊇ w ′) e lw :
î
w ⊇ lw ′ ⊇ w ′

ó
v

lw := w
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Refining the second specification

(guar w ′ = w ∨ w ′ = w − {i}) e (rely w ⊇ w ′) e w :
î
lw ⊇ w , lw ⊃ w ′ ∨ i 6∈ w ′

ó
v introduce variable nw to contain the updated value

var nw := lw − {i};
(guar w ′ = w ∨ w ′ = w − {i}) e (rely w ⊇ w ′) e

w :
î
lw ⊇ w ∧ nw = lw − {i} , lw ⊃ w ′ ∨ i 6∈ w ′

ó
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Introducing a Compare-and-Swap (CAS)

CAS(var w , lw ,nw , var done) “=
(rely lw ′ = lw ∧ nw ′ = nw ∧ done′ = done) e

w ,done :

Æ
(w = lw ⇒ w ′ = nw ∧ done′) ∧
(w 6= lw ⇒ w ′ = w ∧ ¬ done′)

∏
The variables lw and nw are local so the rely is satisfied; done isn’t used

(guar w ′ = w ∨ w ′ = w − {i}) e (rely w ⊇ w ′) e
w :
î
lw ⊇ w ∧ nw = lw − {i} , lw ⊃ w ′ ∨ i 6∈ w ′

ó
v

(guar w ′ = w ∨ w ′ = w − {i}) e (rely w ⊇ w ′) e
w :
î
lw ⊇ w ∧ nw = lw − {i} , (lw = w ⇒ w ′ = nw) ∧ (lw 6= w ⇒ w ′ = w)

ó
v

CAS(w , lw ,nw , )
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Removing an element from a (small) set atomically

Specification

RemW (var w : F(0..ws − 1), i : 0..ws − 1)

(guar w ′ ⊆ w ∧ w − w ′ ⊆ {i}) e (rely w ′ ⊆ w) e w :
î
i 6∈ w ′

ó
Code

while i ∈ w do invariant true
var lw := w ;
var nw := lw − {i}; – stable because variables local

CAS(w , lw ,nw , ); – refines w :

±
w ⊆ lw ∧ nw = lw − {i},
(w = lw ⇒ w ′ ⊆ w − {i}) ∧
(w 6= lw ⇒ w ′ ⊂ lw)

ª
{i 6∈ w}
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Termination

Code

while i ∈ w do invariant true wf-relation (w ′ ⊂ w) OR (#w ′ < #w)
var lw := w ;
var nw := lw − {i}; – stable because variables local

CAS(w , lw ,nw , ); – refines w :

±
lw ⊆ w ∧ nw = lw − {i},
(w = lw ⇒ w ′ ⊆ w − {i}) ∧
(w 6= lw ⇒ w ′ ⊂ lw)

ª
{i 6∈ w}

Termination
I If the CAS succeeds, i 6∈ w and the loop terminates
I If the CAS fails, w ′ ⊂ w and the hence the loop variant decreases

46 / 1

Conclusions

I Rely/guarantee provides a simple but effective abstraction of concurrency
I Importance of data abstraction
I New algebraic style makes proving new laws simpler
I Interesting links/similarities to process algebras (SCCS)
I New style allows new forms of specifications
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?
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The With and Await statements

The with x do c statement ensures that the updates of x are atomic. There is no
interference on x during the update.

with x do c “= idle ; ((demand x ′ = x) e c) ; idle
with x do c “= 〈id〉ω ; ((demand x ′ = x) e c) ; idle

This allows id steps forever, even when x isn’t in use elsewhere.
The await statement delays until its condition evaluates to true. It may fail by
evaluating to false any number of times.

await b “= [[¬ b]]ω ; [[b]]

where [[b]] succeeds if and only if b evaluates to true. Equivalent to

await b = while¬ b do nil
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Invariant under interference

For a rely relation r and predicate p, r maintains p if

r V (p ⇒ p′)

Examples: for integer x , sets s, and sequence buf

x ≤ x ′ V (0 ≤ x ⇒ 0 ≤ x ′)
x = x ′ V (0 ≤ x ⇒ 0 ≤ x ′)
s ⊇ s′ V (s ⊆ 0..n⇒ s′ ⊆ 0..n)

s = s′ V (s ⊆ 0..n⇒ s′ ⊆ 0..n)

buf ′ suffix buf V (#buf < N ⇒ #buf ′ < N)

buf prefix buf ′ V (#buf 6= 0⇒ #buf ′ 6= 0)
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Doing nothing under interference

The command idle only makes a finite number of program steps that do not
change the environment
If r maintains p, i.e. r V (p ⇒ p′), then

(rely r) e
î
p , r∗ ∧ p′

ó
v idle

For example, the rely condition (buf ′ suffix buf ) maintains #buf < N, and hence

(rely r) e
î
#buf < N , buf ′ suffix buf ∧ #buf ′ < N

ó
v idle

Similarly, if r maintains p, and r maintains b,

(rely r) e
î
p , r∗ ∧ p′ ∧ b′

ó
v await b
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Multi-place buffer of size N

module Buffer
var buf : seq Value
invariant #buf ≤ N
initially buf = [ ]

write(v : Value)
rely buf ′ suffix buf e – single writer
guar buf prefix buf ′ e
with buf await #buf < N do

buf :
î
buf ′ = buf a [v ]

ó
read()res : Value
rely buf prefix buf ′ e – single reader
guar buf ′ suffix buf e
with buf await #buf 6= 0 do

res,buf :
î
buf = [res] a buf ′

ó
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Initial refinement of write

write(v : Value)
rely buf ′ suffix buf e – single writer
guar buf prefix buf ′ e
with buf await #buf < N do

buf :
î
buf ′ = buf a [v ]

ó
v
rely buf ′ suffix buf e
guar buf prefix buf ′ e
await #buf < N; – await buffer not full – stable under rely
with buf do

buf :
î
#buf < N , buf ′ = buf a [v ]

ó
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Initial refinement of read

read()res : Value
rely buf prefix buf ′ e – single reader
guar buf ′ suffix buf e
with buf await #buf 6= 0 do

res,buf :
î
buf = [res] a buf ′

ó
v
rely buf prefix buf ′ e
guar buf ′ suffix buf e
await #buf 6= 0; – await buffer not empty – stable under rely
res :

î
res′ = hd(buf )

ó
with buf do

buf :
î
#buf 6= 0 , buf ′ = tl(buf )

ó
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Multi-place buffer implementation

The buffer b has N + 1 slots but one is always unused. We define the notation
a⊕ b = (a + b) mod (N + 1). The slots start at r and w is the index of the next slot
to be written, so that

I if r = w the buffer is empty and
I if r = w ⊕ 1 the buffer is full.

The retrieve function is defined by

retr(b, r ,w) = if r = w then [ ] else [b[r ]] a retr(b, r ⊕ 1,w)

module BufferI implements Buffer
var b : (0 . . N)→ Value;

r ,w : 0 . . N;
initially r = 0 ∧ w = 0;
representation buf = retr(b, r ,w)
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Write in a circular buffer

write(v : Value)
rely buf ′ suffix buf e
guar buf prefix buf ′ e
await #buf < N; – await buffer not full – stable under rely
with buf do buf :

î
#buf < N , buf ′ = buf a [v ]

ó
– atomic update of buf

is data refined by

rely w ′ = w ∧ b′ = b ∧ (r = w ⇒ r ′ = r) e
guar r ′ = r ∧ (r = w ⊕ 1⇒ w ′ = w) ∧ retr(b, r ,w) prefix retr(b′, r ′,w ′) e
var nw := w ⊕ 1;

await〈r〉 6= nw ; – await buffer not full – stable under rely
b[w ] := v ;

– Ensure b[w ] is flushed before updating w
with w do w := nw – atomic update of w
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Read in circular buffer

read()res : Value
rely buf prefix buf ′ e
guar buf ′ suffix buf e
await #buf 6= 0; – await buffer not empty – stable under rely
res :

î
res′ = hd(buf )

ó
with buf do buf :

î
#buf 6= 0 , buf ′ = tl(buf )

ó
– atomic update of buf

is data refined by

rely r ′ = r ∧ (r = w ⊕ 1⇒ w ′ = w) ∧ retr(b, r ,w) prefix retr(b′, r ′,w ′) e
guar w ′ = w ∧ b′ = b ∧ (r = w ⇒ r ′ = r) e
await r 6= 〈w〉; – await buffer non-empty – stable under rely
res := b[r ];
var nr := r ⊕ 1;

– Ensure b[r ] has been fully read before updating r
with r do r := nr – atomic update of r
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Multi-place buffer implementation with size

The buffer b has N slots and keeps a separate variable s to track its current size.
The slots start at r and w is the index of the next slot to be written, so that

I if s = 0 the buffer is empty and
I if s = N the buffer is full.

We define two retrieve functions, one for read and one for write. I have no idea
what the theory is but the write and write processes have different views of the
buffer.

retr r(b, r , s) = (λ i ∈ 0 . . s − 1 · b[(r + i) mod N])
retr w(b,w , s) = (λ i ∈ 0 . . s − 1 · b[(w + i + n − s) mod N])

module BufferI implements Buffer
var b : (0 . . N − 1)→ Value;

r ,w : 0 . . N − 1;
s : 0 . . N;

initially s = 0 ∧ r = 0 ∧ w = 0;
representation buf = retr r(b, r , s) = retr w(b,w , s)
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Write in a circular buffer with size

write(v : Value)
rely buf ′ suffix buf e
await #buf < N; – stable under rely
with buf do buf :

î
#buf < N , buf ′ = buf a [v ]

ó
is data refined using representation buf = retr w(b,w , s) by

rely w ′ = w ∧ b′ = b ∧ 0 ≤ s′ ≤ s e
guar r ′ = r ∧ s ≤ s′ ≤ N ∧ retr r(b, r , s) prefix retr r(b′, r ′, s′) e
await〈s〉 < N; – await buffer not full – stable under rely
b[w ] := v ;

– Ensure b[w ] is flushed before updating s
(w := (w + 1) mod N ‖ with s do s := s + 1) – atomic update of s

Note that the representation relation is broken during the last parallel assignment
but restored on completion of both assignments. Contention on update of s via a
compare-and-swap bounded by reader decreasing size to 0.
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Read in circular buffer with size

read()res : Value
rely buf prefix buf ′ e
await #buf 6= 0; – stable under rely
res :

î
res′ = hd(buf )

ó
with buf do buf :

î
#buf 6= 0 , buf ′ = tl(buf )

ó
is data refined using representation buf = retr r(b, r , s) by

rely r ′ = r ∧ s ≤ s′ ≤ N ∧ retr r(b, r , s) prefix retr r(b′, r ′, s′) e
guar w ′ = w ∧ b′ = b ∧ 0 ≤ s′ ≤ s e
await〈s〉 6= 0; – await buffer non-empty – stable under rely
res := b[r ];

– Ensure b[r ] has been fully read before updating s or r
(r := (r + 1) mod N ‖ with s do s := s − 1) – atomic update of s

Note that the representation relation is broken during the last parallel assignment
but restored on completion of both assignments. Contention on update of s via a
compare-and-swap bounded by reader increasing size to N.
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Find least first element of an array that satisfies P

The objective is, given an array v with indices in the range 0 . . N − 1, to find the
least index t for which a predicate P(v(t)) holds,1 or if P does not hold for any
element of v , to set t to N.

findp “= t :
î
(t ′ = N ∨ satp(v , t ′)) ∧ notp(v ,0 . . N − 1, t ′)

ó
C

where

satp(v , t) “= t ∈ 0 . . N − 1 ∧ P(v(t))
notp(v , s, t) “= (∀ i ∈ s · i < t ⇒ ¬ P(v(i)))

1For brevity, it is assumed here that P(x) is always defined (undefinedness is considered by [?]
but it has little bearing on the actual design).
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Specification

findp “= (rely v ′ = v ∧ t ′ = t) e t :
î
(t ′ = N ∨ satp(v , t ′)) ∧ notp(v ,0 . . N − 1, t ′)

ó
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Representing the result using two variables

Two variables ot and et are introduced with the intention that on termination the
minimum of ot and et will be the least index satisfying p.

(rely v ′ = v ∧ t ′ = t) e t :
î
(t ′ = N ∨ satp(v , t ′)) ∧ notp(v ,0 . . N − 1, t ′)

ó
v by Law variable-rely-guarantee for ot and et

var ot ,et ·
(rely v ′ = v ∧ t ′ = t ∧ ot ′ = ot ∧ et ′ = et) e

ot ,et , t :

ñ
(min(ot ′,et ′) = N ∨ satp(v ,min(ot ′,et ′))) ∧
notp(v ,0 . . N − 1,min(ot ′,et ′))

ô
;C

t := min(ot ′,et ′)
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Using a guarantee invariant

A guarantee invariant is a guarantee that states a predicate p is invariant.

(guar-inv p) “= (guar p ⇒ p′)

A guarantee invariant of

min(ot ,et) = N ∨ satp(v ,min(ot ,et)) (1)

can be employed; the invariant is established by setting both ot and et to N.

(rely v ′ = v ∧ ot ′ = ot ∧ et ′ = et) e

ot ,et :

ñ
(min(ot ′,et ′) = N ∨ satp(v ,min(ot ′,et ′))) ∧
notp(v ,0 . . N − 1,min(ot ′,et ′))

ô
;C

v by Law trade-rely-guarantee-invariant; Law rely-sequential
ot := N ;et := N;
((guar-inv min(ot ,et) = N ∨ satp(v ,min(ot ,et)))) e
(rely v ′ = v ∧ ot ′ = ot ∧ et ′ = et) e
ot ,et :

î
notp(v ,0 . . N − 1,min(ot ′,et ′))

ó
C
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Concurrency

The motivation for the parallel algorithm comes from the observation that the set of
indices to be searched, 0 . .N−1, can be partitioned into the odd and even indices,
namely evens(N) and odds(N), respectively, which can be searched in parallel.

notp(v ,odds(N),min(ot ′,et ′)) ∧ notp(v ,evens(N),min(ot ′,et ′)) V
notp(v ,0 . . N − 1,min(ot ′,et ′))

The next step is the epitome of rely-guarantee refinement: splitting the
specification command.

(rely v ′ = v ∧ ot ′ = ot ∧ et ′ = et) e
ot ,et :

î
notp(v ,0 . . N − 1,min(ot ′,et ′))

ó
v by Law introduce-parallel-spec-weaken-rely

(guar ot ′ ≤ ot ∧ et ′ = et) e (rely et ′ ≤ et ∧ ot ′ = ot ∧ v ′ = v) e
ot ,et :

î
notp(v ,odds(N),min(ot ′,et ′))

ó
C

‖
(guar et ′ ≤ et ∧ ot ′ = ot) e (rely ot ′ ≤ ot ∧ et ′ = et ∧ v ′ = v) e
ot ,et :

î
notp(v ,evens(N),min(ot ′,et ′))

ó
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Refining the branches to code

For the first branch of the parallel, the guarantee et ′ = et is equivalent to removing
et from the frame of the branch.

(guar ot ′ ≤ ot ∧ et ′ = et) e (rely et ′ ≤ et ∧ ot ′ = ot ∧ v ′ = v) e
ot ,et :

î
notp(v ,odds(N),min(ot ′,et ′))

ó
=

(guar ot ′ ≤ ot) e (rely et ′ ≤ et ∧ ot ′ = ot ∧ v ′ = v) e
ot :
î
notp(v ,odds(N),min(ot ′,et ′))

ó
The body of this can be refined to sequential code, however, because the
specification refers to et ′ it is subject to interference from the parallel (evens)
process which may update et . That interference is however bounded by the rely
condition which assumes the parallel process never increases et .
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(guar ot ′ ≤ ot) e (rely et ′ ≤ et ∧ ot ′ = ot ∧ v ′ = v) e
ot :
î
notp(v ,odds(N),min(ot ′,et ′))

ó
C

v by Law variable-rely-guarantee for oc
var oc ·

(rely et ′ ≤ et ∧ oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e
oc,ot :

î
notp(v ,odds(N),min(ot ′,et ′))

ó
C

At this point a guarantee invariant

notp(v ,odds(N),oc) ∧ bnd(oc,N) (2)

is introduced where the bounding conditions on oc follow.

bnd(oc,N) “= 1 ≤ oc ≤ N + 1

This guarantee invariant is established by setting oc to one.
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The guarantee invariant combined with the postcondition oc′ ≥ min(ot ′,et ′)
implies the postcondition of the above specification. The postcondition
oc′ ≥ min(ot ′,et ′) uses “≥” rather than “=” because the parallel process may
decrease et .

(rely et ′ ≤ et ∧ oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e
oc,ot :

î
notp(v ,odds(N),min(ot ′,et ′))

ó
v Laws rely-sequential, trade-rely-guarantee-invariant, assignment-rely-guarantee

oc := 1;
(guar-inv notp(v ,odds(N),oc) ∧ bnd(oc,N)) e

(rely et ′ ≤ et ∧ oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e
oc,ot :

î
oc′ ≥ min(ot ′,et ′)

ó
C
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Law for introducing a while loop

Given
I a loop invariant p that is a state predicate
I a rely condition r that is a reflexive, transitive relation on states
I a variant function v of type T and a binary relation � on T
I a boolean expression b and predicates b0 and b1

if
I p is r -stable, i.e. r V (p ⇒ p′)
I � is well-founded on p, i.e. p C ( � ) is well-founded
I v is non-increasing under r on p, i.e. p ∧ r V v ′ � v
I b is single reference, i.e. it has only a single reference to a non-stable variable
I p ∧ b V b0 and p ∧ r V (b0 ⇒ b′0)

I p ∧ ¬ b V b1 and p ∧ r V (b1 ⇒ b′1)

then

(rely r) e
î
p , p′ ∧ b′1 ∧ v ′ � v

ó
v while b do((rely r) e

î
p ∧ b0 , p′ ∧ v ′ ≺ v

ó
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A while loop is introduced using Law rely-loop. Only the first conjunct of the loop
guard oc < ot ∧ oc < et is preserved by the rely condition because et may be
decreased. Hence the boolean expression b0 for this application of the law is
oc < ot . However, the loop termination condition oc ≥ ot ∨ oc ≥ et is preserved
by the rely condition as decreasing et will not falsify it. Hence b1 is
oc ≥ ot ∨ oc ≥ et , which ensures oc ≥ min(ot ,et) as required. For loop
termination a well-founded relation reducing the variant ot − oc is used.

(rely et ′ ≤ et ∧ oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e
oc,ot :

î
oc′ ≥ min(ot ′,et ′)

ó
v by Law rely-loop

while oc < ot ∧ oc < et do
(rely et ′ ≤ et ∧ oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e

oc,ot :
î
oc < ot , −1 ≤ ot ′ − oc′ < ot − oc

ó
C
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The specification of the loop body only involves variables which are stable under
interference.

(rely et ′ ≤ et ∧ oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e
oc,ot :

î
oc < ot , −1 ≤ ot ′ − oc′ < ot − oc

ó
v by Law weaken-rely

(rely oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e
oc,ot :

î
oc < ot , −1 ≤ ot ′ − oc′ < ot − oc

ó
C
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At this stage we bring back in the guarantee invariants introduced above.
The refinement is now uses Law rely-conditional.

(guar-inv min(ot ,et) = N ∨ satp(v ,min(ot ,et))) e
(guar-inv notp(v ,odds(N),oc) ∧ bnd(oc,N)) e
(rely oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e

oc,ot :
î
oc < ot , −1 ≤ ot ′ − oc′ < ot − oc

ó
v

if P(v(oc))then
(guar-inv min(ot ,et) = N ∨ satp(v ,min(ot ,et))) e
(guar-inv notp(v ,odds(N),oc) ∧ bnd(oc,N)) e
(rely oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e

oc,ot :
î
P(v(oc)) ∧ oc < ot , −1 ≤ ot ′ − oc′ < ot − oc

ó
else

(guar-inv min(ot ,et) = N ∨ satp(v ,min(ot ,et))) e
(guar-inv notp(v ,odds(N),oc) ∧ bnd(oc,N)) e
(rely oc′ = oc ∧ ot ′ = ot ∧ v ′ = v) e

oc,ot :
î
¬ P(v(oc)) ∧ oc < ot , −1 ≤ ot ′ − oc′ < ot − oc

ó
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Finally, Law assignment-rely-guarantee can be applied to each of the branches.
Each assignment ensures the guarantee invariant
(min(ot ,et) = N ∨ satp(v ,min(ot ,et)) ∧ notp(v ,odds(N),oc) ∧ bnd(oc,N) is
maintained.

v if P(v(oc)) then ot := oc else oc := oc + 2
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Collected code

The development of the “evens” branch of the parallel composition follows the
same pattern as that of the “odds” branch given above but starts at zero. The
collected code follows.

var ot ,et ·
ot := N;
et := N;â

var oc ·
oc := 1;
while oc < ot ∧ oc < et do

if P(v(oc)) then ot := oc
else oc := oc + 2

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

var ec ·
ec := 0;
while ec < ot ∧ ec < et do

if P(v(ec)) then et := ec
else ec := ec + 2

ì
;

t := min(ot ,et)
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Treiber stack

Abstract state is a sequence of values

var A : seq Val

Specification uses atomic step style

Push(v : Val)
〈id〉ω ;A :

〈
A′ = [v ] a A

〉
; 〈id〉 ∗

t
rely A′ = A e (〈id〉 ∗ ;A :

〈
A′ = [v ] a A

〉
; 〈id〉 ∗)

Pop()r : [Val ]
〈id〉ω ;A, r :

〈
A = [r ′] a A′ ∨ (A = [ ] = A′ ∧ r ′ = null)

〉
; 〈id〉 ∗

t
rely A′ = A e (〈id〉 ∗ ;A, r :

〈
A = [r ′] a A′ ∨ (A = [ ] = A′ ∧ r ′ = null)

〉
; 〈id〉 ∗)
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Treiber stack representation

Representation as a linked list

type Node = {data : Val ; next : ∗Node}
var s : ∗Node

Abstraction relation

stack(s : ∗Node,A : seq Val) =
(s = null ∧ A = [ ]) ∨
(∃ v ,n · s 7→ Node(v ,n) ∧ head(A) = v ∧ stack(n, tail(A)))
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Repeat

Repeat statement semantics

repeat c until b = (〈id〉 ∗ ;c ; [[¬ b]])ω ; 〈id〉 ∗ ;c ; [[b]]

Push specification (possibly nonterminating)

〈id〉ω ;A :
〈

A′ = [v ] a A
〉

; 〈id〉 ∗

= (〈id〉 ∗)ω ; 〈id〉 ∗ ;A :
〈

A′ = [v ] a A
〉

; 〈id〉 ∗

To implement this specification as a repeat statement, we want

〈id〉 ∗ v 〈id〉 ∗ ;c ; [[¬ b]]

〈id〉 ∗ ;A :
〈

A′ = [v ] a A
〉

; 〈id〉 ∗ v 〈id〉 ∗ ;c ; [[b]]

but needs change of representation as well
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Implementation

Push(v : Val)
var x : ∗Node;
x := new Node();
x → data := v ;
{stack(s,A) ∗ x 7→ Node(v , )};
var done : B;
repeat

var t : ∗Node;
〈t := s〉 ;
x → next := t ;
{stack(s,A) ∗ (x 7→ Node(v , t))}
CAS(s, t , x ,done)

until done
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Matching the refinement conditions

x ,done : 〈true〉 ∗
v
〈id〉 ∗ ;var t : ∗Node; 〈t := s〉 ; x .next := t ; CAS(s, t , x ,done) ; [[¬ done]]

x ,done : 〈true〉 ∗ ;x , s,done :

±
∃A,A′ ·

stack(s,A) ∧
A′ = [v ] a A ∧
stack(s′,A′)

ª
; 〈id〉 ∗

v
〈id〉 ∗ ;var t : ∗Node; 〈t := s〉 ; x .next := t ; CAS(s, t , x ,done) ; [[done]]
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Overview

Theory for rely/guarantee concurrency motivated by
I Abstract algebra
I Program algebras
I Aczel traces and their synchronous parallel operator
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Your algebra background

What algebras do you know?
I Groups
I Semi-groups
I Monoids
I Lattices – ordered plus infimum (meet) and supremum (join)
I Kleene Algebra – algebra of regular expressions
I Kleene Algebra with Tests (KAT)
I Concurrent Kleene Algebra (CKA)
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Monoids

From mathematics we have abstract algebras
I Monoid (S,⊕,e) over a set S with binary operator ⊕ : S × S → S

I Associative: x0 ⊕ (x1 ⊕ x2) = (x0 ⊕ x1)⊕ x2
I Identity: x ⊕ e = x = e ⊕ x

I Examples of monoids
I (N,+,0)
I (N, ∗,1)
I (Programs,;,nil)
I (Programs, ‖,skip)
I (Programs,e,chaos)

I All except (Programs,;,nil) are commutative monoids
I Commutative: x0 ⊕ x1 = x1 ⊕ x0
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Kleene algebra - the algebra of regular expressions

Regular expressions Relations Programs
Alternatives e0 | e1 r0 ∪ r1 c0 u c1

Sequence e0 e1 r0
o
9 r1 c0 ;c1

Kleene star e∗ r∗ c∗

Identity of sequence ε id nil
Identity of alternation ∅ ∅ >

Basic elements a (x , y) Π(σ0, σ1)
E(σ0, σ1)

where a is a symbol; x and y are elements of the base type of the relation; and σ0
and σ1 are program states.
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Structure of concurrent program algebra

I Concurrent refinement algebra
(u, t, ; , ‖, e)

I Plus tests – a subset of
commands that forms a boolean
algebra

I like Kozen’s Kleene Algebra
with Tests (KAT)

I Plus atomic steps – a subset of
commands that forms a boolean
algebra

I Program/environment steps –
partitions atomic steps

I Relational instantiation

nil α

⊑
⊑ ⊑

⊑ ⊑

⊤

algebra
of commands

algebra
of atomic steps

algebra 
of tests

⊑
... ...

chaos

⊥
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Operators

c u d non-deterministic choice (lattice infimum or meet)
(c0 u c1) u c2 = c0 u (c1 u c2) – associative

c0 u c1 = c1 u c0 – commutative
c u c = c – idempotent

c u > = c = > u c – identity >
c t d lattice supremum or join

I associative, commutative, idempotent, identity ⊥
c ‖ d parallel composition

I associative, commutative, identity skip

c e d weak conjunction
I associative, commutative, idempotent, identity chaos

c ;d sequential composition (sometimes elided to c d below)
I associative, identity nil

u and t have the same precedence, which is lower than ‖ and e, which are lower
than ;
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Complete lattice

For any set of commands C
I

d
C is the infimum (greatest lower bound) of the set of commands

I
⊔

C is the supremum (least upper bound) of the set of commands
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Aczel traces

Represent
I a program doing a step from σ0 to σ1 by Π(σ0, σ1) and
I its environment doing a step from σ0 to σ1 by E(σ0, σ1).

Every step of parallel synchronises steps of the two processes

E(σ0, σ1),Π(σ1, σ2), E(σ2, σ3), E(σ3, σ4), E(σ4, σ5) ‖
E(σ0, σ1), E(σ1, σ2),Π(σ2, σ3), E(σ3, σ4),Π(σ4, σ5) =

E(σ0, σ1),Π(σ1, σ2),Π(σ2, σ3), E(σ3, σ4),Π(σ4, σ5)

Every step of a weak conjunction synchronises steps of the two processes

E(σ0, σ1),Π(σ1, σ2), E(σ2, σ3), E(σ3, σ4),Π(σ4, σ5) e

E(σ0, σ1),Π(σ1, σ2), E(σ2, σ3), E(σ3, σ4),Π(σ4, σ5) =

E(σ0, σ1),Π(σ1, σ2), E(σ2, σ3), E(σ3, σ4),Π(σ4, σ5)
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Primitive atomic commands

For a binary relation r ⊆ Σ× Σ on states
π(r) can perform any single atomic program step Π(σ, σ′) for (σ, σ′) ∈ r
ε(r) can perform any single atomic environment step E(σ, σ′) for (σ, σ′) ∈ r

For example,
I π(id) is a single stuttering program step (id is the identity relation)
I π = π(univ) can perform any single program step (univ is the universal

relation)
I ε = ε(univ) can perform any single environment step
I π(∅) = ε(∅) = > is infeasible (magic)

Atomic steps form a boolean algebra

π(r0) u π(r1) = π(r0 ∪ r1)

π(r0) t π(r1) = π(r0 ∩ r1)

!π(r) = π(r) u ε
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Tests as a boolean algebra

For a set of states p ⊆ Σ,
τ (p) terminates immediately if p holds but is infeasible otherwise

For example,
I τ (Σ) = nil
I τ (∅) = >
I τ (p1) u τ (p2) = τ (p1 ∪ p2)

I τ (p1) t τ (p2) = τ (p1) ;τ (p2) = τ (p1) ‖ τ (p2) = τ (p1 ∩ p2)

I ¬ τ (p) = τ (p)

Assertions/preconditions: for a test t
I pre t = t u ¬ t ;⊥
I {p} = pre τ (p) = τ (p) u τ (p) ;⊥
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Assumptions

For a an atomic step command
I assume a = a u (! a) ;⊥
I !(π(r0) u ε(r1)) = π(r0) u ε(r1)

I !(π u ε(r)) = π(∅) u ε(r) = > u ε(r) = ε(r)

I assumeπ u ε(r) = π u ε(r) u ε(r) ;⊥
Note that program and environment steps partition atomic steps
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Synchonise atomic steps

For atomic commands a and b (think π and ε commands) and arbitrary commands
c and d

(a ;c) e (b ;d) = (a e b) ; (c e d)

(a ;c) e nil = >
a e⊥ = ⊥

Laws

a∗ e b∗ = (a e b)∗

a∗ ;c e b∗ ;d = (a e b)∗((c e d) u (a ;a∗ ;c e d) u (c e b ;b∗ ;d))
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For program and environment steps

π(r1) ‖ π(r2) = >
π(r1) ‖ ε(r2) = π(r1 ∩ r2)

ε(r1) ‖ ε(r2) = ε(r1 ∩ r2)

π(r) ‖ ⊥ = ⊥
ε(r) ‖ ⊥ = ⊥

π(r1) e π(r2) = π(r1 ∩ r2)

π(r1) e ε(r2) = >
ε(r1) e ε(r2) = ε(r1 ∩ r2)

π(r) e⊥ = ⊥
ε(r) e⊥ = ⊥
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Interchange laws

Weak conjunction interchange sequential

(c0 ;c1) e (d0 ;d1) v (c0 e d0) ; (c1 e d1)

Weak conjunction interchange parallel

(c0 ‖ c1) e (d0 ‖ d1) v (c0 e d0) ‖ (c1 e d1)
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Iteration

Iteration zero or more times, cω, allows finite iteration, c∗, or infinite iteration, c∞

cω = c∗ u c∞ (3)

Examples
π∗ performs a finite number of program steps

(π u ε)∗ performs a finite number of steps
ε∞ performs an infinite sequence of environment steps

skip is the identity of parallel and chaos is the identity of weak conjunction

skip = εω

chaos = (π u ε)ω
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Asynchronised atomic step

〈r〉 = εω ;π(r) ;εω

For example

〈r1〉 ‖ 〈r2〉 = εω ; (π(r1) ‖ π(r2)) ;εω u 〈r1〉 ; 〈r2〉 u 〈r2〉 ; 〈r1〉
= 〈r1〉 ; 〈r2〉 u 〈r2〉 ; 〈r1〉
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Rely/guarantee

g

ε ε ε επ π π
pre

r r

r

r r

g

post

g
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Guarantee and rely

For relations g and r

guar g = (π(g) u ε)ω

rely r = (π u ε(r) u ε(r̄)⊥)ω

= (assume ! ε(r))ω

recalling assume a = a u ! a ;⊥ and ! ε(r) = π u ε(r)
For example, c e guar g e rely r imposes a guarantee of g on c and assumes the
environment steps satisfy r .
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Termination

The command term allows only a finite number of program steps but does not rule
out infinite pre-emption by its environment.

term = (εω ;π)∗ ;εω (4)

The refinement

term v c

states that c terminates if the environment does not interrupt it forever, e.g.

term v x := 1
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Specification commands

I Frames on commands
x : c = (guar id(x)) e c

I Atomic operation
〈q〉 = εω ;π(q) ;εω

I Non-atomic specification (relational post)î
q
ó

=
d
σ∈Στ ({σ}) ; term ;τ ({σ′ ∈ Σ | (σ, σ′) ∈ q})

Lemmas for specificationsî
univ

ó
= termî

q1
ó
e
î
q2
ó

=
î
q1 ∧ q2

óî
q
ó
e term =

î
q
óî

q
ó
‖ term =

î
q
ó

q2 ⊆ q1 ⇒
î
q1
ó
v
î
q2
ó
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Parallel introduction

(rely r) e
î
q1 ∧ q2

ó
v ((rely r ∪ r1) e

î
q1
ó
e (guar r ∪ r2)) ‖

((rely r ∪ r2) e
î
q2
ó
e (guar r ∪ r1))

Proof

(rely r) e
î
q1 ∧ q2

ó
v as c e c = c and

î
q1 ∧ q2

ó
=
î
q1
ó
e
î
q2
ó

and weaken relies
(rely r ∪ r1) e

î
q1
ó
e (rely r ∪ r2) e

î
q2
ó

v by Lemma Y (twice)
((rely r ∪ r1) e

î
q1
ó
) ‖ ((guar r ∪ r1) e term) e

((guar r ∪ r2) e term) ‖ ((rely r ∪ r2) e
î
q2
ó
)

v conjunction-interchange-parallel (c1 ‖ c2) e (d1 ‖ d1) v (c1 e d1) ‖ (c2 e d2)

((rely r ∪ r1) e
î
q1
ó
e (guar r ∪ r2) e term) ‖

((guar r ∪ r1) e term e (rely r ∪ r2) e
î
q2
ó
)

v by Lemma Q1
((rely r ∪ r1) e

î
q1
ó
e (guar r ∪ r2)) ‖ ((guar r ∪ r1) e (rely r ∪ r2) e

î
q2
ó
)
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Lemma Y

(rely r) e
î
q
ó
v ((rely r) e

î
q
ó
) ‖ ((guar r) e term)

Proof

(rely r) e
î
q
ó

v by Lemmas X and Q2
((rely r) ‖ (guar r)) e (

î
q
ó
‖ term)

v conjunction-interchange-parallel (c1 ‖ c2) e (d1 ‖ d1) v (c1 e d1) ‖ (c2 e d2)

((rely r) e
î
q
ó
) ‖ ((guar r) e term)
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Lemmas X and Q

Lemma X

(rely r) v (rely r) ‖ (guar r)

Lemma Q1î
q
ó
e term =

î
q
ó

Lemma Q2î
q
ó
‖ term =

î
q
ó
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Applying to process algebras

The above approach can also be applied to CSP-style processes.
I Π(a) is interpreted as an atomic event or action a
I E(a) is a corresponding environment event
I π(A) allows any event Π(a) for any a ∈ A
I ε(A) allows any environment event E(a) for any a ∈ A
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CSP

Synchronising on common events
I π(A) ‖ π(B) = π(A ∩ B)

Alphabet A for a command c - environment can do only events in A independently
I A : c = c t ε(A)ω

Hoare’s parallel for a process c with alphabet A and process d with alphabet B
I A : c ‖ B : d

Roscoe’s parallel alphabetised by A
I c‖Ad = A : c ‖ A : d
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Iteration

Finite iteration zero or more times, c∗, possibly infinite iteration zero or more times,
cω, and infinite iteration, c∞, are defined via their usual recursive equations and
have the following unfolding and induction properties.

c∗ “= νx · nil u c ;x
c∗ = nil u c ;c∗

x v d u c ;x ⇒ x v c∗ ;d
c∗ = nil u c∗ ;c

x v d u x ;c ⇒ x v d ;c∗

cω “= µ x · nil u c ;x
cω = nil u c ;cω

d u c ;x v x ⇒ cω ;d v x

c∞ “= µ x · c ;x
c∞ = c ;c∞

c ;x v x ⇒ c∞ v x

(5)
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Some basic commands

update(x , v) “= π(x ′ = v ∧ id(x)) (6)
skip “= εω (7)

chaos “= (π u ε)ω (8)
term “= (π u ε)∗ ;skip (9)
idle “= (π(id) u ε)∗ ;skip (10)
〈r〉 “= skip ;π(r) ;skip (11)
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Relies and guarantees

guar g “= (π(g) u ε)ω (12)
rely r “= (π u ε(r))ω ; (nil u ε(r) ;⊥) (13)
x : c “= (guar id(x)) e c (14)

The process (guar g) e c behaves as both (guar g) and as c, unless at some point
c aborts, in which case (guar g) e c aborts; note that (guar g) cannot abort. For
example, the guarantee (guar w ′ ⊇ w ∧ w − w ′ ⊆ {i}) ensures that no step of the
process may add elements to w or remove elements other than i .
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Tests and steps

τ (p1) ;τ (p2) = τ (p1 ∧ p2) (15)
τ (p) ;π(r) = π(p ∧ r) (16)
τ (p) ;ε(r) = ε(p ∧ r) (17)

π(r ∧ p′) ;τ (p) = π(r ∧ p′) (18)
ε(r ∧ p′) ;τ (p) = ε(r ∧ p′) (19)
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Invariance

If c ;τ (p) v τ (p) ;c, then

τ (p) ;c ;τ (p) = τ (p) ;c .

Proof.

τ (p) ;c ;τ (p) v τ (p) ;τ (p) ;c = τ (p) ;c =
τ (p) ;c ;nil v τ (p) ;c ;τ (p) .
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Invariance over steps

If r V (p ⇒ p′), then both the following hold.

π(r) ;τ (p) v τ (p) ;π(r) (20)
ε(r) ;τ (p) v τ (p) ;ε(r) (21)

Proof.
The assumption ensures p ∧ r ∧ p′ = p ∧ r . We give the proof for (??) which uses
(??). The proof for (??) is similar but uses (??).

π(r) ;τ (p) = nil ;π(r) ;τ (p) v τ (p) ;π(r) ;τ (p) = π(p ∧ r) ;τ (p)
= π(p ∧ r ∧ p′) ;τ (p) = π(p ∧ r ∧ p′) = π(p ∧ r) = τ (p) ;π(r)
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Invariance over iterations

If c ;τ (p) v τ (p) ;c, then both

cω ;τ (p) v τ (p) ;cω (22)
c∗ ;τ (p) v τ (p) ;c∗ (23)

Proof.
Property (??) holds by ω-induction (??) if τ (p) u c ;τ (p) ;cω v τ (p) ;cω, which
can be proven using the assumption and ω-folding (??).

τ (p) u c ;τ (p) ;cω v τ (p) u τ (p) ;c ;cω = τ (p) ; (nil u c ;cω) = τ (p) ;cω

Property (??) holds by ∗-induction (??) if c∗ ;τ (p) v τ (p) u c∗ ;τ (p) ;c, which can
be proven using the assumption and ∗-folding (??).

τ (p) u c∗ ;τ (p) ;c w τ (p) u c∗ ;c ;τ (p) = (nil u c∗ ;c) ;τ (p) = c∗ ;τ (p)
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Rely-invariant

If r V (p ⇒ p′), then

((rely r) e idle) ;τ (p) v τ (p) ; ((rely r) e idle)

Proof.
The proof uses the definitions of rely r (??) and idle (??) and then pushes the test
τ (p) left using applications of Lemma invariance-iteration. Note that the identity
relation id maintains any invariant p.

((rely r) e idle) ;τ (p)
= ((π u ε(r))ω ; (nil u ε(r̄) ;⊥) e (π(id) u ε)∗ ;εω) ;τ (p)
= (π(id) u ε(r))∗ ;ε(r)ω ; (nil u ε(r̄) ;⊥) ;τ (p)
= (π(id) u ε(r))∗ ;ε(r)ω ; (τ (p) u ε(r̄) ;⊥ ;τ (p))
v (π(id) u ε(r))∗ ;ε(r)ω ;τ (p) ; (nil u ε(r̄) ;⊥)
v (π(id) u ε(r))∗ ;τ (p) ;ε(r)ω ; (nil u ε(r̄) ;⊥)
v τ (p) ; (π(id) u ε(r))∗ ;ε(r)ω ; (nil u ε(r̄) ;⊥)
= τ (p) ; ((rely r) e idle)
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Defining expressions

[[κ]]v “= idle ;τ (κ = v) ; idle (24)
[[x ]]v “= idle ;τ (x = v) ; idle (25)

[[	e]]v “= l
{v1 | v = eval(	, v1) · [[e]]v1} (26)

[[e1 ⊕ e2]]v “= l
{v1, v2 | v = eval(⊕, v1, v2) · [[e1]]v1 ‖ [[e2]]v2} (27)
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Stable-expression

An expression is stable under r if its evaluation is not affected by interference
satisfying r . For example, assuming access to x is atomic, the absolute value of x ,
|x |, is stable under interference satisfying x ′ = x ∨ x ′ = −x , and (x mod N) is
stable under interference satisfying x ′ = x ∨ x ′ = x + N.

Definition (stable-expression)
An expression e is stable under r if, for fresh v ,

r V (e = v ⇒ e′ = v) .
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Stable expression

In the context of interference represented by a rely condition r , an expression e is
stable if all the variables used in e are stable under r . If a variable x is not subject
to change, access to it does not need to be atomic.

I A constant κ is trivially stable.
I A variable x is stable under r if for fresh v , r V (x = v ⇒ x ′ = v).
I A unary expression 	e is stable under r if e is.
I A binary expression e1 ⊕ e2 is stable under r if both e1 and e2 are.
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Rely stable expression

If an expression e is stable under r , then for any value v where v does not occur
free in e,

(rely r) e (idle ;τ (e = v)) v (rely r) e (τ (e = v) ; idle)

Proof.
This lemma follows directly from Definition stable-expression and Law
rely-invariant.
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Single-reference expressions

Evaluating an expression in the context of interference may lead to anomalies
because evaluation of an expression such as x + x may retrieve different values of
x for each of its occurrences and hence it is possible for x + x to evaluate to an
odd value even though x is an integer variable. Such anomalies may be avoided in
the case that expressions are single reference [?, ?]. If x is subject to modification
then x + x is not single-reference but 2 ∗ x is. An expression being stable under r
is considered a special case of it being single reference so, for example, if x is not
subject to interference then x + x is single-reference.
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Single-reference expressions

Definition (single-reference-expression)
The definition is based on the syntactic form of e.

I A constant κ is single reference.
I A variable x is single reference provided access to x is atomic.
I A unary expression 	e is single reference under r if e is.
I A binary expression e1 ⊕ e2 is single reference under r if either e1 is single

reference under r and e2 is stable under r , or vice versa.

If an expression e is single-reference then for any evaluation of e, its value is the
same as the evaluation of e in the single state σ in which the single-reference
variable (x) is accessed.
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Defining commands

x := e “= l
v∈Val

[[e]]v ;update(x , v)} ; idle (28)

if b then c else d “= (([[b]]true ;c) u ([[¬ b]]true ;d)) ; idle (29)
while b do c “= ([[b]]true ;c)ω ; [[¬ b]]true (30)î

q
ó “= l

σ∈Σ
τ ({σ}) ; term ;τ ({σ′ | (σ, σ′) ∈ q}) (31)î

p , q
ó “= {p} ;

î
q
ó

(32)
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Rely sequential

A specification with a post condition which is the composition of two relations q1
and q2 may be refined by by a sequential composition of one command satisfying
q1 and a second satisfying q2.
For rely condition r , predicates p0, p1 and p2, and relations q1 and q2.

(rely r) e
î
p0 , (q1

o
9 q2) ∧ p′2

ó
v ((rely r) e

î
p0 , q1 ∧ p′1

ó
) ; ((rely r) e

î
p1 , q2 ∧ p′2

ó
)
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Single-reference test

An expression e is single reference under interference satisfying the rely condition
r if the value of the expression corresponds to its value in one of the states during
its evaluation and hence one can derive the following law.
If e is a single-reference expression under r ,

(rely r) e (idle ;τ (e = κ) ; idle) v [[e]]κ .

Proof.
The proof is by structural induction of the structure of the expression.
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Rely idle

If rely condition r is such that r V (p ⇒ p′),

(rely r) e
î
p , r∗ ∧ p′

ó
v (rely r) e idle .

Proof.
All environment steps of the right side are assumed to satisfy r and all program
steps satisfy the identity relation, and hence the right side guarantees to maintain
p and satisfies r∗.
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Rely test

For a single-reference boolean expression b, predicates p and b0, and relation r , if
r maintains p, p ∧ b V b0, and p ∧ r V (b0 ⇒ b′0),

(rely r) e
î
p , r∗ ∧ p′ ∧ b′0

ó
v [[b]]true .

Proof.
The proof uses Law rely-sequential and Law rely-idle.

(rely r) e
î
p , r∗ ∧ p′ ∧ b′0

ó
v ((rely r) e

î
p , r∗ ∧ p′

ó
) ; ((rely r) e

î
p , id ∧ p′ ∧ b

ó
);

((rely r) e
î
p ∧ b0 , r∗ ∧ p′ ∧ b′0

ó
)

v idle ;τ (b) ; idle
v [[b]]true
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Rely assignment

Let r be a rely condition, x be a variable that is stable under r , and e be a
single-reference expression such that x does not occur free in e and “≈” a
reflexive, transitive binary relation, such that r V (e ≈ e′), then

(rely r) e x :
î
e ≈ x ′ ≈ e′

ó
v x := e

For example, the relation may be equality (so that e is stable) and we have
e = x ′ = e′, or the relation may be may be “⊇”, so the postcondition becomes
e ⊇ x ′ ⊇ e′.
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Proof.
The proof uses Law rely-sequential and Law rely-idle and the definition of
assignment (??).

(rely r) e x :
î
e ≈ x ′ ≈ e′

ó
v (rely r) e x :

î
∃ v · e ≈ v ≈ e′ ∧ x ′ = v

ó
v (rely r) e

d
v∈Valx :

î
e ≈ v ≈ e′ ∧ x ′ = v

ó
v (rely r) e

d
v∈Val

î
e ≈ v ≈ e′

ó
;x :
î
e ≈ e′ ∧ x ′ = v

ó
v (rely r) e

d
v∈Val

î
e ≈ e′

ó
;
î
v = e = e′

ó
;
î
e ≈ e′

ó
;x :
î
e = e′ ∧ x ′ = v

ó
;
î
e ≈ e′

ó
v (rely r) e

d
v∈Val idle ;τ (v = e) ; idle ;update(x , v) ; idle

v (rely r) e
d

v∈Val [[e]]v ;update(x , v) ; idle
v x := e
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Handling tests under interference

To handle the possible instability of b within a test, a weaker but stable predicate
b0 can be used, i.e. b V b0 and r V (b0 ⇒ b′0). More generally, if condition b is
only ever evaluated in states satisfying a precondition p that is maintained by r ,
these conditions can be relaxed to the following.

p ∧ b V b0 p ∧ r V (b0 ⇒ b′0)

When handling the negation of the condition, one needs an additional stable
predicate b1 that is implied by the negation of b.

p ∧ ¬ b V b1 p ∧ r V (b1 ⇒ b′1)

For example, the negation of the earlier example is oc ≥ ot ∨ oc ≥ et and that is
maintained by interference that may only decrease et . Note that

p V (p ∧ b) ∨ (p ∧ ¬ b) V b0 ∨ b1

but there may be states in which both b0 and b1 hold. For the above example,
taking b0 as oc < ot and b1 as oc ≥ ot ∨ oc ≥ et , both conditions hold in states
satisfying oc < ot ∧ oc ≥ et .
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Loops

The Hoare logic rule for reasoning about a loop, while b do c, for sequential
programs utilises an invariant p that is maintained by the loop body whenever b
holds initially. To show termination a variant expression v is used. The loop body
must strictly decrease v according to a well-founded relation ( � ) whenever b
holds initially.
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The invariant and the variant

The law for while loops needs to be strengthened to rule out the interference
invalidating the loop invariant p or increasing the variant v .The requirements on
the invariant p and variant v to tolerate interference satisfying the rely condition r
may be stated as follows.

r V (p ⇒ p′) (33)
p ∧ r V v � v ′ (34)
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Rely finite iteration

For predicate p, and relation q, if r maintains p,

(rely r) e
î
p , p′ ∧ q∗

ó
v ((rely r) e

î
p , p′ ∧ q

ó
)∗

Proof.
The proof is via finite iteration induction (??) and the refinement holds if,

(rely r) e
î
p , p′ ∧ q∗

ó
v nil u ((rely r) e

î
p , p′ ∧ q

ó
) ; ((rely r) e

î
p , p′ ∧ q∗

ó
)

which holds by Law rely-sequential because q o
9 q∗ V q∗.
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Rely well-founded iteration

For predicate p, variant expression v of type T , and a relation ( � ) ∈ T × T that
is well-founded on p, if r maintains p, and v is non-increasing under r ,

(rely r) e
î
p , p′ ∧ v � v ′

ó
v ((rely r) e

î
p , p′ ∧ v � v ′

ó
)ω

Proof.

((rely r) e
î
p , p′ ∧ v � v ′

ó
)ω

= isolation, i.e. cω = c∗ u c∞

((rely r) e
î
p , p′ ∧ v � v ′

ó
)∗ u ((rely r) e

î
p , p′ ∧ v � v ′

ó
)∞

= well-founded infinite iteration is infeasible
((rely r) e

î
p , p′ ∧ v � v ′

ó
)∗

w by Law rely-finite-iteration
(rely r) e

î
p , p′ ∧ v � v ′

ó
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Rely loop

Given predicates p, b0 and b1, a relation r , a variant expression v of type T and a
relation ( � ) ⊆ T × T that is well-founded on states satisfying p, if b is a
single-reference boolean expression under interference satisfying r , and

p ∧ r V p′ p ∧ b V b0 p ∧ r ∧ b0 V b′0
p ∧ r V v � v ′ p ∧ ¬ b V b1 p ∧ r ∧ b1 V b′1

then

(rely r) e
î
p , p′ ∧ b′1 ∧ v � v ′

ó
v while b do((rely r) e

î
p ∧ b0 , p′ ∧ v � v ′

ó
)
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Proof.

(rely r) e
î
p , p′ ∧ b′1 ∧ v � v ′

ó
v by Law rely-sequential

((rely r) e
î
p , p′ ∧ v � v ′

ó
) ; ((rely r) e

î
p , p′ ∧ b′1 ∧ v � v ′

ó
)

v by Law rely-test using the assumptions on b1

((rely r) e
î
p , p′ ∧ v � v ′

ó
) ; [[¬ b]]true

v by Law rely-well-founded-iteration
((rely r) e

î
p , p′ ∧ v � v ′

ó
)ω ; [[¬ b]]true

v by Law rely-sequential as (v � v ′) o
9 (v � v ′) V v � v ′

(((rely r) e
î
p , p′ ∧ b′0 ∧ v � v ′

ó
) ; ((rely r) e

î
p ∧ b0 , p′ ∧ v � v ′

ó
))ω ; [[¬ b]]true

v by Law rely-test using the assumptions on b0

([[b]] ; ((rely r) e
î
p ∧ b0 , p′ ∧ v � v ′

ó
))ω ; [[¬ b]]true

= definition of loop (??)
while b do((rely r) e

î
p ∧ b0 , p′ ∧ v � v ′

ó
)
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Rely loop early

Given predicates p, b0, b1 and b2, a relation r , a variant expression v of type T
and a relation ( � ) ⊆ T × T that is well-founded on states satisfying p, if b is a
single-reference boolean expression under interference satisfying r , and

p ∧ r V p′ p ∧ b V b0 p ∧ r ∧ b0 V b′0
p ∧ r V v � v ′ p ∧ ¬ b V b1 p ∧ r ∧ b1 V b′1

p ∧ b2 V ¬ b p ∧ r ∧ b2 V b′2

then

(rely r) e
î
p , p′ ∧ b′1

ó
v while b do((rely r) e

î
p ∧ b0 , p′ ∧ (v � v ′ ∨ b′2)

ó
)

This rule may be shown using Law rely-loop by taking as the variant the ordered
pair (¬ b2, v) under the lexicographical ordering, where true � false.
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Some things I haven’t covered

I Local variables
I Modules
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Conclusions

I One can develop algebras of programs
I Focus on the algebraic properties first, then semantics
I Need a semantics to show that the algebraic theories are consistent
I Start from a (refinement) lattice and add ‖, e, ;

I For rely/guarantee, start with very primitive commands (τ (p),π(r), ε(r))
I Links to process algebras, in particular Milner’s Synchronous CCS (SCCS)
I We are developing Isabelle theories for the algebras
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