17‘ i 0 U, ‘ b

TECHNICAL REPORT (e

TR 25.139
20 December 1974

A FORMAL DEFINITION OF A
PL/I SUBSET

PART |

H. BEKIC

D. BJORNER
W. HENHAPL
C. B. JONES

P. LUCAS

vl
M LABORATORY VIENNA

IBM LABORATORY VIENNA, BAustria

4 FORMAL DEFINITION OF A PL/I SUBSET

PART I

by

H#., Bekie

D. Bigrner
W. Henhapl
C. B. Jones
P. Lucas

ABSTRACT

This report provides a formal definition of large portions of the ECHA/ANSI proposed
Standard PL/I language. The metalanguage used is described in the style of the
"Mathematical Semanties". That is, the definition of PL/T is given by generating a
function from a source progras. R commentary is also provided to cover the less
clear parts of the chosen model. For the convenience of the reader who wishes to
have the commentary side by side with the formulae, the report is divided into two
parts: Part I contains the description of the notation, the commentary and a cross-
refterence; Part II ccatains all the formulae.

NOTE

This document is not an official PL/Y language specification. The lanquage defined
15 based on the working documents (BASIS/1~9 to BASIS/1-11 [1]}) of +the Joint
ECHMA/ANST worCking droup. It has not, however, been offered td them for review and
has in no way been approved. Furthermore the subset chosen is not an indication of
any IBH product plan.

TR 25.139

20 December 1974

IBM LAB VIENNA TR 25.139

A FORMNAL DEFINITION 0 F A PL,/I SUBS ET

COBNBTENTS

PART I
Chapter I Intrcduction
Chapter N Netation
Chapter C Commentary to Part 1T
Chapter X Cross-Reference Index
PART IT
Chapter D Domains
D1 Abstract Progranms
D2 States, Auxiliary Parameters
Chapter F Faunctions
1 Block Structure
k2 Declarations and Variables
F3 Statements
Fi Conditions
F5 Expressions

¥6 Input/OCutput

IBM LAB VIENNA I-1 TR 25.139

The aim of this report is to illustrate ideas about language definition on a “real®
prograatiing language. The language chosen is a subset of PL/T as defined in [1]. The
main language features excladed are

COETROLLED storage

AREA data

BY NAME agsignment

DEFINED variables (other than overlay)
ALIGNED attribute

REPEAT option on DO

some Builtin functions

PICTURE attribute

ENTRY sStatenent

The {(limited) parts covered of Input/Output have been written up separately and will
be made available later. Certain detailed restrictions are given belor in lines
marked "BASYIS-11"™,

The ocurrent definiticn differs in a number of respects from the earlier ones {e.q.
{2]) written in the Viemna Laboratory. The need for change was largely observed in
the attempts to base implementatiocon proofs on "YDLM Jefinitions {see [3) .

The removal of some of the shortcomings which had been noticed was attempted in {#].
The period since 1969 has also seen the development of "Mathematical Semantics" as
proposed by D.Scott and C.Strachey ([5]. The definition given below follows this
style by defining PL/I ‘~programs via a mapping to the functions they denote.
Although . not fully described in the same style, the extension of these concepts to
parallel computation has been the particular interest of one of +the authors (sea
{6} . This report should be seen as summarising "work in progress® in the area of
applying formpal definition to compiler development.

The report is divided into two major parts: Chapter N of Part T describes the meta-
language used in the definition; Chapter C of Part I contains a commentary on the
more difficalt parts of the model; the model is contained im Part IT. A crosse
reterence of all the forpulae is included as Chapter ¥ of Part I.

Chapter I: Introduction

IBH LAB VIENNA I-2 TR 25.139

The authors are grateful to the following for their contributions

H.Izbicki ccllected frem the BASITS document all of the "static checks"™ which
are defined in D1.2;

V.Kudielka produced an early draft of P55 and co-ordinated the commentaries

section;

F.Schwarzenberger and
M.Stadler contrclled the updates to the documents:

F.Mayrhofer,
E.Moser and
¥.P1Bchl ‘reviesed F3;

W.Pachl provided frequent and very thorough raviews of the consistency of the
formulae, he also wrote the cross-reference program;

K.Walk revieved D2.2:
T.Weissenb8ck co-operated in the production of the comnmentary for FS.

Last, but by no means least, the accurate data entry of the formulae from our
somewhat varied handwritings was performed by Nrs. H.Neiss.

[1] ECHA.TC1O0/ANSL . X331
PL/I BASIS/1-11
Eurcpean Computer Manufacturers Association
Feb.1974, 346 p.

[2] K.Halk,K.Albgr,H.Fleck,ﬂ.Goldmann,P.Lauer,E.Hoser,P.Oliva,
H.Stigleitner,G,Zeisel
Abstract Syntax and Interpretation of PL/I (ULD Version III)
Techn. Report TR 25.098, IBM Lab. Yienna,
Apr.1969.

Chapter I: Introduction

IBH LAB VIENNA I-3 TR 25.139

{31 P.Lucas
On Program Correctness and the Stepwise Devezlopment of Implementations
Proceedings of the Congress on Theoretical Informatics, Pisa,
March 1973, pp.219-251

fu4} C.D.Allen,b.N.Chapman,C.B.Jones
4 Formal Definition of ALGOL 60
Techn., Report TR 12.105, IBN UK Lahs Ltd.,
Aug.1972, 197 p.

[5] D.Scott,C. Strachey
Toward a Mathematical Semantics for Computer Languages
Techn. Monograph PRG-6, Oxford Univ. Computing Lab.
Aug.1971, 42 p.

[6] H.Beki&
Semantics of Parallel Programs
Techn. Report, IBEM Lab. Vienna {forthcoming)

{71} P.Jd.Landin
The Mechanical Evaluation of Expressions
The Computer Journal, Vol.6 (1964) No.u; pp. 308-320

[81] H.Beki& , K.®alk
Formalization of Storage Properties
Symposium on Semantics of Algorithmic Languages
Springer Lecture Nctes in Mathematics, No. 188 {1970), p. 28-61

Chapter T: Introduction

IBH LAB VIENNA I-4 TR 25.7139

THIS PAGE HAS BEEN INTENTYIONALLY LEFT BLANK.

Chapter I: Introduction

IBM LaB VIENNA N-1

0. Introduction

1. Objects

E
1.2

Elementary Objects
Composite Objects
1.2.1 Sets
1.2.2 Lists
1.2.3 Maps

2. Apstract Syntax Descriptions

2.1
2.2
243

Rules with =
Trees, Constructors
Selectors, Predicates

3. Functions and Expressions

3.1
3.2
3.3
3.4

Functions

Expressions (general)
Logical Expressions
Arithmetic Expressions

4. Transformations

4.1
4.2
4.3
4.4
4.5

Declaration, Ccntents, Assignment
Seguencing

Exit

Arbitrary Ordering

Transformations in Value Positions

5. Constructive Interpretation

5.1
5.2
3.3
5.4

APPENDIX

Macro-Expansion

Unfounded Uses of int-@
Recursive let: - Clauses
Static vs. Dynamic Properties

: Concrete Syntax

TR 25.139

Chapter N: Notation

IBY LAB VIENNA N-2 TR 25.139

. Introduction

The purpose of this Part is to document the intended meaning of the metalanguage
used in Part I1 to define PL/I: the list of "non-objectives™ is rather longer!

Firstly, it should be made clear that the description given below is not intended to
be tutorial. It has been written for an audience which is assumed to have heen
already exposed tc Formal Definition ideas. In particular no attempt is made to
introduce those parts of the notation which are in common use. {(One of the authors
hopes to produce a mcre tutorial guide in the future}.

Secondly, it «can not be <claimed that the metalanguage is the final word of the
authors: even in the PL/T definition the construct used to express arbitrary
ordering 1is not defined in a completely satisfactory manner. Moreover, although
application to ' new problems has been considered, it is likely that other «constructs
would be proposed for a mere general specification language,

4 related, but perhaps less Credible, restriction to our aims is that there is no
wish to fix a potation. The approach to the definition and its use in justifying

implementations has lead us to certain concepts. It has, of course, been necessary
to agree a notation to emrloy these concepts.

That brings us to the subiect of how the definition is written. The definitions
written in “VDL" (Vienna Defirnition Language, c¢f. Iz notation were abstract
interpreters. The imterpreting mnachine was made rather powerful hecause of the
inclusion of a Contrcl Component which could be explicitly manipulated. Subsequent
work aimed at provingg implementations correct (see [3)) showed that not only the
control, but a number of other concepts were inconvenient: in nearly all cases the
need was to make the definitions even more abstract by giving only properties
required by the language. Ideas already existed for removing the need for explicit
¢hanges to the control as a model for GOTO (cf. [4)). Furthermore, the whole field
of Mathematical Semantics style definitions of languages had been developed (cf.

(s5h.

PL/T is defined here by showing ho¥ to nmap any (abstract) program to a
"transformation", that is, a function from states to states.

Classes of objects (includinrg programs) can be described by Abstract Syntax
Descriptions: such deécriptions are discussed in Section 2. Section 1 describes the

other classes of objects used, for instance, to describe states,

The functions which define the generation of transformaéions, and the
transtormations themselves are defined by means of a notation which 1is defined in

Chapter #:; Notation

IBX LAB VIENNA N-3 TR 25.139

terms of the lambda calculus in sections 3 and 4. lhe arbitrary order parts of the
meta-language are discussed in 4.4,

The created transfermations are defiased by recursive equations with the intention
that their value is the minimal fixed point. A& constructive way of obtaining +this
is discussed in section 5.

The Appendix defines the concrete syntax of the metalangquage,

In order to achieve a language definition which shows only properties required by
the language, the cbjects on which the definition is based should be as abstract as
possible. For example, a set would be preferred to a ligt vhere no essential use
was made of the crdering. The objects to be considered in the language definition
are states and other arguments/results of functions. In order to provide appropriate
abstractions for all of these, three different ways of forming composite objects are
given in section 1.2; elementary objects are discussed in section 1.1.

The classes of elepmentary and composite objects are disjoint and together form the

The only operators defined on all objects are the two infix relations

0y = 0Og equality

04 # Og inequality

In detining a language, certain classes of objects are required whose elements can
be considered to be elementary in the sense that any structure they wmight have has
no ettect. Examples' from the PL/I definition include the integers and the set of
identifiers. The set of truth values is defined;

B = {true,false}

Chapter N: Notation

IBM LAB VIENNA N-4 TR 25.139
Other, individual, elementary objects are written with underlinings
EIX

il

Composite objects are constructed from other objects (i.e. elementary or composite),
In contrast to elementary objects, the structure of composite objects is considered:
tor each of the classes below, both the nmethod of defiring instances and the
operations thereon are given, A further class of composite objects will be
introduced in section 2. (Note that the following constructs are ekpressed in ternms
of values: section 4.5 discusses the use of transformations) .

This section characterizes the class SET. Sets can be defined by enumerating their

elements:
{XivXaseeesXn}
A special case of this is the enpty set:
£}
Sets can also be defined implicitly by a predicate:
(x | p(x)}
or more generally:
f£(x) | p(x)}
(using context to determine which variable(s) are bound).

The domain from which elements x are chosen, can be constrained by:

{xeX | p(x}}

Chapter N: Notation

IBM LAB VIENNA N~5 TR 25.139

The notation for closed integer interval is (unusually) :

{m:n} = (i | mSis<n}

The operators:

XeS test for membership

SeT proper subset

ST subset {including equality)
SuT anion

SaT intersection

S\T difference

Bs Boolean cr power set

are used with their conventional meaning.

This section characterizes the class LIST, Lists can he defined by an enumeration
ot their elements, where the written corder gives the order of the defined list:

KXz eXasswerXn>
A special case of this is the empty list:
<>
Lists can be defined implicitly, in which case the order of the defined list isgs
<E(E) | Llefmindd> = <£(m),£(m+1) ,0..,F(n)>
This is alsoc written:
<f£(i) | m=isn>

The special case where £ does not depend on i, simply provides a list of n - nm + 1

identical elements:
<x | ie{m:n}>
All instances of lists will be of finite length.

Chapter N: Notation

IBN LAB VIENNA N-6 TR 25.139

The usual operators:

i1l length

k1l head (1 non-empty)

t1 tail (1 non-empty)

1fi] i-th element {1<i€11)

1,71, concatenation

conc L LE1]7e.a"L{1L] (L a list of lists)

are used to define composition and decomposition of lists.
Lists of known length (tuples) can also be decomposed via let, see section 2.

Ir order to provide a convenient notation, a list can be vieved as a map with domain
{1:n}: the operators D and R, defined bhelow for maps in general, can be used:

D1 = {1:113, Rl = (1fi] } 1s=i<1ly

The subject of furcticns is discussed in section 3; the distinction which prompts
the convention of using the term "map" is wkether the graph of a function is a
finite set of pairs. A more pragmatic distinction is that in the case of a map the
graph is assumed to be computed at definition time (cf. section 5.3).
One way of defining a map is by eRumeration:

{de = Tasd2 = Lagecs, dn =~ In)
{the d mutually different), cf which a special case is the erpty map:

[]
Another way is by implicit definition:

fd—~ £{d} | p(a)]}]

ol more generally:

{g(x) = h(x) | p(x)]

Chapter N: Notation

iB# LAB VIENNaA N-7 : TR 25.139

(exror if the resulting set of pairs does not have mutually different first

The dopain and rande of a Map pn = [ds=ry,e.c.,dp=ry] are:

Further operators used op maps are:

e + M2 = [d + (if deDm, then ma(d) else m, (d)) i d e DmsuDmy)

(a left-associative overwriting)

My ¥ My = same, but assuming DmynDm; = {} (union)

i

B\ S fd-n(d) | 4 e Dm\3] (removal of a set of pairs)

The purpose of an abstract syntax description is to define classes of (composite)
objects, together with constructors, selectors, and predicates fer composing,
decomposing, and testing for the ijects. Methods for composing objects are those
described in the Preceding sections, and also a method for forming trees, The
syntax description may be supplemented by Mconstraintsn narrowing the classes
detined thereby.

An abstract syntax 'description consists of a set of rules, one for each "non-~
terminal" pame ¥. Rules are of two kinds., The first kind has the form:

Chapter N: Notation

I8% LAB VIENNA N-8 TR 25.139
vhere A is an ggpression composed from {names for) elementary objects, non-terminal
names, and the operators described in the following. By interpreting elementary
objects as unit sets:

ABC ~ {ABC}

all the rules can be intergreted as eqlations defining sets (and ¥ as a name for the

set) .

(Rere and in the following sections, "~" is used to explain a new notation in terms

ot more basic notation.)

Ynion 1s denoted by | :

A | B -~ Ay B
Tupling is denoted by juxtaposition:
Al - .. An ~ {(al,-.-'an>] alﬁAi A e A anékn}

{Note this is not associative: ABC are triples, (AB)C are pairs whoSe first elements
are pairs. In certain centexts formaticn of trees rather than tuples is implied, see
2.3).

over a given class are denoted hy:

A% -~ lists with elements in A
A+ -~ non-empty lists with elements in A
A-set -~ BA

Maps of given type are:
A -> B ~ {meMAP | DmedA A RmeB)
{vhich is a sub-class of the function space A->B, see Section 3}.
Optipnal components are indicated by [}:
[a] | | ~ a1 nil
Type Clauses. All the above conventions for forming set-expregssions are also used

in type clauses, except that A->B usually stands for the full function space.

Chapter N: Notation

IBY LAB VIENNA §-9 TR 25.139

2.2 Trees, Const

The second kind of rule has the form

N o:: 4 ..., An

N :: AI - An bad N = {mk'N(aI,--q&n) i aiﬁatA--.AanGAn}

The assumption on the constructors mk-N is that different constructors vielqd
different objects anq that components canp be retrijaveq uniquely:

mk—H(a1)=mk*N'(al') S N=N' A al=ai

The class of a1) trees is denoteg by TREE. Because of unique decomposition, trees
can be treated very much like tuples. The notation:

Or even (omitting the censtructor where jt is obvious) ;

€an be used to intreduce hames for the components of a trea of type ¥, Similarly ip

__.‘.!.__e_g <al' ’aa'-co'an> = Q

2.3 Selectors, Predicates.

A rule of the Second kind may prefix the Components hy (simple) ge ectors, i.e.

tames starting with %g-e H

N ::z S-ajsti, S=8z:A5 ... S=antip

Chapter N; Notation

IBM LAB VIENNA N=-10 TR 25.139

Where no explicit selectors are given, implied gelectors s~A;,...,5-A, formed by
prefixing "s-" to the name of the component class are assumed. (In any other case
than, possibly postfizxed, nohterminal names, such selectors are not used for
decomposing objects, but their existence is required for formation of conposite

selectors}.

Trees ip nested positicns. If {Ag «.. Ap) or [As ... BAp) appear in a position

nested within the right-hand side of a rule, the conventions about de-tupling inply
that 1t does not matter vhether tree- or tuple-formation is assumed. Trees are

assumed, however, whenever explicit selectors are used.

The functional style of selector application leads to a notion of composite
selector:

S=X; 95~X2%...5-Xn {0} ~ $-Xy {s-Xa{--.S5"Xn(0)-..))

{n20; the case n=0 gives the identity selector I}.

The set of composite selectors applicable to a given object (and yieldirg elementary
or composite objects}) is

conp~sels{o) =
o composite -> [I} u [sel®s | 5 ¢ imm-sels (o)} A~ sel e comp-sels(s(o)}}
T -> (1}
where imm~sels(o) is the set of simple se€lectors applicable to the coﬁposite ob ject
o: the set of simple ({explicit cr implied} selecters to the immediate components of
a +tree o, resp. the set of (implied} simple selectors uniquely selecting the
alements of a set, the elements of a list, and the values assumed by a map (e.g. = o
itselt for a set o, = D¢ for a list or map o). Sometimes one wants te consider only
those selectors which give an object in a class 8:
comp-6~-sels{o} = {[sel ¢ comp-sels(o} | is-B{(sel(o))}
The set of contained objects of class & themselves is given by
comp-8s{o} = ([sel{o) | sel e comp-8-sels(o)}
The follo¥ing predicate tests whether object o4 is contained in object o:
is-contained {o0,,0) = (3sel ¢ comp-sels{o)} {0y = sel (o)}

Names for predicates testing for nrembership in an object class are derived by
prefixing "is-" to the pame cf the class:

Chapter N: Notation

IBM LAB VIENNA -1 : TR 25.739

is-¥N {0} - 0 €
is-ABC (0) .- o

1}
I =
i
9]

2. Functions and Expressions

The operators for sets, lists and maps have been discussed in section 1; logical and
arithmetic operators are cevered in 3.3 and 3.4 respectively, vays of forming
expressions which are applicable for any type are covered in 3.2. Firstly, however,
3.1 discusses functions.

It will be necessary in the PL/I definition to consider functions which accept or
return functions, ircluding themselves. The following definitions are based,
therefore, not on the conventional set-theoretic notion of function, but on the
{interpreted) lanmbda-calculus {cft. [5]). Function, them, means partial, centinucus
(with respect to the ordering "is less defined than") fanction, ana self-referential
equations for functicns can be solved in terms of the minimal fixed point (but see
Section 4.4 for a hecessary elaboration).

(The maps introduced in section 1.2.3 are a special case of functions., They are
simpler in one Sense, but the kind of circularity due to self-applicable or sgelf-
returning functions arises also there, see section 5.3.)

The basic operations, then, are abstraction anpd application. As in [7]+ liberal
addition of syntactic sugar makes such functiors more palatable., Tt is the PUrpose
of this section, 3.2, and 4 to explain these sugared forms in terms of the basic
notions. In some cases this explanation requires nulti-stage expansion. This is dome
not only for economy of writing, it is alse fairly natural since the constructs nay
already be familiar.

The set of functions from D to R is denoted by D ~> R,

When defining a functionm to which a name is given, the parameter is shown with the
function name:

£(d) = e ~ £ = Ad.e

#

Chapter ¥: Notation

IBH LAB VIENNA ¥-12 TR 25.139

A tunction of several variables is viewed as function over tuples:

f(dﬂ.l“"dﬂ) = e -~ f =)\(d_’_'n-.,dn>.e

Also, constructors emay be used in the parameter list, see section 2.

Given two functicns:

£ : Dy ~-> Dy
g Da =2 Dj

their composition is writtens:

g9 : Dy -> Da - A.g(£(d))

3s2 Expressions (general)

For all forams of expressions the concrete syntax shows that it is possible to give
conditional expressions and local definitions. The simplest of the three foras of
conditional expression is:

if b then e, else e,

{(vhich produces a defined value even if the non-selected alternative is undefined).

The "McCarthy conditiopal® is defiped in terms Of the above in order to fix the
ordering:

(by => e,, ~ if by then e,
by => e, elge if by then e,
T -> ep) €lse ep

Only if all cases are covered should the "P" clause he omitted.

The cases construct provides a very suitable way of structuring some conditionals:

Chapter N: Notation

IBM LAB VIENNL N~13

(cases e: ~ ((Hal)qe=mk-a(a1)}
nk-a(al) -> o, (1et nk-a (a1)=e.

gt r = e; ~ (Ar.B) (e)

TR 25,139

ey},

If e depenqgs ©h r, the ¥y {ninimal fizxed Point) operator ig implied:

let r = f{r) ~ let r = IAr.f (r)
Siealtaneous Yecursicen is defined ¥lth the yge of " _u.
let a = t(a,b),
b = g{a,b);

The constructs

let r be s, ¢, p{r)

arbitrarily Chooses an r fatisfying P ferror if there ig fonej.,

The logical operators are ygeg Hith their "conditional exXpressionw reanings

{cf.[27]}.
T not prefix
A and infix
¥ or
2 implies
¥ equivalence

Chapter R:.Notation

IBM LADB VIENNA N-14 TR 25.7139
Quantitiers are morsally used with bounded domains:

{IxeS) (P (X)) there exists
(¥xeS) {p{x)) for all

where no bound is given, it is implied by the choice of name for the bound variable.
{The comstraint to a set over which p is defimed, avoids the problems of "three-
valued" interpretaticns).

Also used are:

(31xeS) (p(x)} there exists exactly one
{LxeS) {p(x)) the unigue object such that {only defined where (31xeS) {p(x))

The nsual relaticnal operators are also used.

Apart ifrom the usual prefix and infix operators:

DEOALVy, Vo eea,Tnd = Vi*Va%¥...%vp
_§QE<V1,V2,---'VI}> = VatVat,.eetVp
EEE(V:.:VQ) = (V‘S‘fa -> Var
T -> Vx_)

are used.

4. fransformations.

In this Section we introduce ways of expressing trapsformations, i.e. functions of

i S s e i et e e s e s

type £ ~> ¥ or (value-returning transformations) ¢ ~> ¥ R, vhere ¥ is the set of

S e s o i e

states. A state is a mapping from a set of references to other objects, References
are elementary objects. We write BEF for the set of all references, ref V for the
set of references whose "contents", in any state ¢, are restricted to values in ¥z

(¥reds) (Teref¥ = o(r)eV)

Chapter N: HNotation

IBM LAB VIENNA H-15 TR 25.139
As an abbreviation in type clauses, we use:

=>R ~ § ~> 1 R, D=>R ~ D ~>(£ -> 5§ R)
(51mi1arly it R is cmitted) . fMhys transformations become =3, value—returning

transtormations become =>R, and fumctions from D +to transformations (like the
int seval functions, see also section 5) become p=> pr D=>R,

8.3 Declaration, Contents, Assignment.

-r S i

Programming languages provide a “variable-freen notatien for state-transformations,
i.e. a way of writing state-transformations vithout explicit reference to the state
97 and this is very much what the fconbinatorsw introduced in this and the following
Subsections achieve. we assume typess -

8 =3, e: =>R (for variounsg R}
(s for "statement®, e for "expression®), similarly for Spe Sz S{i), ey, e,, e{i),

Declaration extends the state;

(del r := v; ~ Ao.{let © he 5.t. ~{redo):
£ (r) yio=> let o'= £(r) (cofr=v] ;
g®\{r}}

(tor f(r): =>, similarly f£{r): =>R}

Contents takes the value of ¢ 2t a given referemce TeDo:

Er: =>y o hoo€o, 0 () >

{this has been npade of tyPe =>y - returning the unchanged ¢ -~ rather than £->V in
order to be usable by the other combinators).

Agsignment changes the contents of a reference r ¢ Doz

{r := v}z => 7 ~ Ave @ + {r=v]

Deriveg referenceg. Given a reference ¢ to a napping m:¥-¥, we sometinmes use iop
(for ieI) as a "derivyed referance® to miij)sz

Chapter ¥: Wotation

IBM LAB VIENNA ¥~16 TR 25.139
¢cf{ior}y ~ (cr) (i), {i°r = v) ~r = gr 4 [i+v]

{see 4.5 for the use of ¢gr inm a fposition where its result nm is intended).

First we introduce a variant cf Jlet (distinguished by the use of ":v instead of "=%)
which permits side-effects:

For e: =>V, f:V=> , we have:

(let v: e; ~ Aeo. (Let<at ,v> = & (o}
f{v})i o=> £(v) (e7))

{siailarly for £:V=>R}.

The return statement raises a value veV to a transformation:
{return v}: =>V ~ Ao.<g,v>

The following all are transforrations of type =>,

I is identity on states:
o -~ hoao

semicolon is sequential execution:

81182 ~ Ao.S3 {5y (o)}

(similarly s;e)-.

if b then s, else s;

(for b:B), similarly if b then e, else ey, and its variants are as described for

expressions in general {see 3.2). He also allow:

if b then s -~ if b then s else

I~

Chapter N: Notation :

1
—t
-

IBH LAB VIENNA) TR 25,1319

and

.
B
[43]

then s; else s, ~

I
tra
o
b
I
e o
12

Sy else s,

{tor e: =>B - a special case of the convention described ip 4.5).

Iterative statements and expressions are

for i = m to n do s(i) ~ S{M: ... :s(n)
<e(i) | for i = m to m ~ let v(m: eqm);

iet v(n): e(n);
return <v{i) | m<i<n>

(for men:intqg), and:

2
Lf b then siw else 1);

—

=

(for e: =>H). See 4.4 for the for all stateman+,

=

The exit mechanisnp described in this section deals with the situation that exXecution
ot a (sub-)phrase has to be ternminated “abnormally", i.ea abandoned; it alse permits
Specification of the action that has to be performed on abnormal termination. Thisg
mechanism has bheen used to model the PL/I GO TOQ fcf. CF3) and RETURY statements, it
can also be used to deal with error situations,

Formally, ¥e can explain abnorpal termination by slightly complicating our
transtormations, i.e, re-interpret =>;:

D=> ~ D ->(£ -> & {(nil | abp ABN)}

P=>R ~ D =>(X ~> & {res R | abn ABN))

Chapter N: Notation

IBY LAB VIENNA ¥-18 TR 25.139%
{similarly with D omitted}; the flags reg and abn are used to make normally and
abnormally retarned values disjoint. Transformations not involviag seguencing
combinators (like ¢r, r:=v, I, return v} can be re-interpreted immediately:

s ~ Ag.<S {a) ,nil>

e -~ Aa. (Let <at,v> = e(q);

<o <Les,v>>)
The exit statement returns a value abnormally:
exit {(abn) ~ he.<e,<abn,abn>>
The trap exit becomes:
(trap exit{abn) with f(abn); - let r: s

(nil -> I, <abn,abn> ~> f(abn))

{f{abn): =>}, similarly with e instead of s:

(trap exit{abn) ¥ith f(abn); ~ 18t r: e;
e }: =>R gases r:

(<res,v> -> return(v},<abn,abn> ->f(abn))
{f{abn}jz: =>R}.
A variant like trap exit{(gc.abn') wuith f(abn') causes a test on the arguments passed
to exit, the £(abn') being executed only when the constants match; several trap
exit®s can be specified for one block as long as the argument ranges do not overlap.
Also semicolon (simjlarly: let:) haVe to be slightly more complicated:

S;3iSa ~ let

{ail ~> 8, <abn,abn> -> exit{abn))}

The error handling is defined by:
vhere no trap exit for BHRROR is provided.

See next section for exit fro# a parallel phrase,

Chapter H: Notation

IBM LAB VIENNA 19 TR 25,139

The comma between two transformations denotes quasi-paralled execution of them: the

"elementary" steps of the two transformations are merged in arbitrary order,
preserving only the two orderings within the given transformations. Which steps are
considered elementary is left open, a sensible choice would be to take +the
"terminal® operations of the metalanguage (like Cr =) as elementary. Thus:

(S1,8a2)1 => - elementary steps merged in arbitrary order

For ey =>Vg, ez: =>V, :

<e;,e3>: =>VyV, ~ same, With pair <v,,v,> of returned values
as returned value

{(similar for several e(i}).

The context where this is most used are parallel letts:

let vy ey, ~ Llet <v,,vp>: <o,,e55:
Vas @a; E{visva)
F{vs,va)

Sometimes the s{i) or e({i) are not enumerated explicitliy:

for all iel do s{i} -~ execute (i) in parallel

For e{i): =>V {for each ieI) :

barfe(i) | ielj}: =>V~set - execute the e(i) in parallel:
return the map
[i -~ v{i) | ie¢1]

where v(i}) is returned by ef{i)
(The operator par is only used implicitly, ses next saection.)

Agbitrary order and exit. If in (s,,S.) (sinilarly: <e,,ea.>} one of the two
transformations, say s;, terminates abnormally with vaiue abr, then an (implied)
gxit (abn) is executed in $a, which vwill cause execution of the relevant trap exit's
in sp. It this eventually terminates s, abnormally with +the sane value abn, the
whole tramsformation ({s,,s;) terminates abaormally with abm. (If the irplied exit

leads to normal termination of Sa0 Or to abnormal termination with a different value

Chapter N: Yotation

IBEM LAB VIENKA N-20 TR 25.139

abn', then (s;,s2) terminates with error; no such, error producing, use of exit in
parallel transformations has been made in the PL/1-Definition.)

Hon-determinism and recursion. The arbitrary choice operator let v be s.t, p(v)
{see 3.2) introduces an element of non-determinism and thus, strictly speaking,

torces ftransformaticns to be functions from states to sets of states, rather than
from states to states. The quasi-parallel merging operater, which also 1introduces
non-determinism, additionally complicates transformations because now we have to
consider their component steps, rather than the functional product of those steps. A
particular problem arises with recursive definitions and non-determinisn: The
ordering relation ("v is less defined than v'" on vhich the familiar way of solving
Tecursive equations is based does not immediately carry over from elements to sets,
One way to solve this problem is to evaluate the expressions of the metalanguage
under an additional hidden parameter serving as a Ychoice tape" (e.g. an infinite
sequence of truoth values); evaluwation under a given choice tape is deterministic,
the set of all sclutions is obtained by considering all choice tapes (cf.[61]).

4.5 ¥alue-Returning Transformations in Value Positions.

Otter it is convenient to write a value-returning transformation in a place where a
value is regquired, with the understanding that the transforpation is executed as a
side-etfect. Thus:

For £:V->R, e: =>V , we have:

f{e): =>R] let v: e;
Leturn(f(v))

This npakes f(e) a transformation (of type =>R) whereas the context reguires a value
(of type R}, and so we can apply the same rule +o this context, say g(f{e)).
Eventually we will come to a context which is intended to produce a transforpation
{e.g. g({v) might be return (v)); this is cavered by the analoguous rule:

For q:V=>R, e; =>V , we have:

g(e): =>R ~ let v: e;
g (v)

(For t or g with several arguments we get a parallel transformation as the right-
hand side of the let.}

Chapter N: Notation

IBM LAB VIEKNA N=-21 TR 25.139

Where the e(i) are given implicitly, par is implied:

For e{1): =>V (for each iel}:
{e(i) | ieIl}: =>¥-set ~ let m: par{e(i}y | ields
Leturn Rm
<e{i) | ieI>: =>y= o~ let m: papfe(i) | ie13:

tetucn <n{i) | ieD

(vhere I is an interval {m:n} this really only re-explaing <e{m),...,e(n)>y.

[i~ efi) [iel]: =>(I->V) ~ 18t m: pacfe(i) | iel};
return m

2. Comstructive Interpretation gf the Hetalanguage.

221 Bacro~Expansion.

The int/eval functions of the PL/I Definition are correspondences from text-classes
€ (and auxiliary parameters) to transformations:

int-9: g ENY ... -2 (X -> §)
eval-8: 0 BNV ... => (f ~>)

The aim of this section is to omtline a method to coastructively interpret the
highly recursive definitions of these correspondences. The idea igs to §¢1) macro-
expand, for given te®, env, ..., the call int-8(t,env,.,.), i.e. replace it by its
detinition, sinilarly for nested calls of int/eval functionrs; this will eventually
lead +to a description of the ¢orresponding transformation which no longer refers to
any 1int/eval functions, whereupon {2} application of this transformation
(description} to a given state can be left to a conventional call-by-value
interpreter,

Chapter W: Notation

IBN LAB VIENNA ¥-22 TR 25.139

5.2 "Unfounded" Uses of int-9.

Usually, int-0{t,...) 1is defined by structural induction on the text t, i.e. in
terms of int-9i(ti,..) where the ti are the {(immediate) components of t, so that the
expansion process will get +to ever smaller components and eventually stop. There
are, hovwever, a few cases where int-@(t,..} itself recurs in its definition.

Example 1 (while-statement) (cf F3; this and the following examples are somewhat

simplified extracts from corresponding examples in the F Chapters) :

int-wh-st (<e,st>,env) =
let b: eval-expr(e,env):

¥e can formally avoid the recurring use of int-wh-st by a (recarsiver) let:

int-wh-st {<e,st>,envy) =
let £ = (let b: eval-expr(e,env);

=y

Exanmple 2 (compound-statement,omitting env, cE, Fi}:

int-cpd-st (t) = cue-iBt-cpd-st(t,labl)

cure=~int-cpd-st{t, lab) =
trap exit(abn) uith if ... then cue-int-cpd-st{t,abn} else exit(abn);
int-st{t{liab});
if ... then cue-int-cpd-st(t,lab+1) else I

{(labi = label of first statement, lab+1 = label of next statement), which beconmes

int-cpd-st(t) =
let f(lab) = (trap exit(abm) with if ... then f(abn) else exit(abn);
int-st(t{lab] ;
if ... then f(lab+1) else I);
t(lab1)

{Of course the let f style Could be used directly. In Example 1, the re-use of int-
wh-st has actually been avoided by using the while-construction of the
metalanguage.,}

Chapter N: Notation

IBM LAB VIENNA H-23 TR 25,139

Whereas the rewriting just discussed was only necessary to get a closed expression
tor the resulting transformation ("to stop the expansiont) but did - not make any
ditference for an interpreter, the case

ie

ber

v: £ {v)

ot a transformaticon defined in terms of the valUe (to be) returned by its execution

15 mOore serious:
Exanple 3 (blocks, cf. F1):

int-bl (<de¢ls, proce,st>,eny) =
det lenv: [id - eval-dcl(dcls(id),env) | id ¢ pdcls] v
[id - eval-prcc (procs{id} ;envilenv) | id ¢ Dprocs I
1nt-st{st,envileny)

(assuming dcls is a map from id to dcl, similarly for procsy},

eval-dcl (dd,env) =
let edd: ...dd...;
alloc{edd)

eval-proc{<idl,st>,env) =
Alocl.{let peav = [idl[i] = locl[i] | 1£i€11id1 3;

int-st(st,envipenv))

Observe that call-by-value would immediately run into a loop with int-bl: to compute
lenv, we would first have to conpute lenv in order to pass it to the eval-proc
calls. Expanding we get:

int-b}(<dcls,procs,sid,env) =
det lenv: [id - (let edd: ...dcls(id)...; alloc{edd}) { id ¢ Ddcls] v
lid - Alocl. {let penv = [s-idl(procs(id})[i) = 1oCI{i] | ...}
int—st(s«st(procs(id)),env+1eav+penv))
] id € Bprocs]:
int-st({st,envilenv}

(note that side effects in eval-dcl, e.g. alloc{edd), are to be execuyted at let lenv
- time}, and we see that the use of lenv within the definition is now "shielded" ny
oceuring within the scope of Xlocl. This can be dealt with by 2 call-by-value
interpreter (provided a M-expression is not evaluated before it gets applied}). (It

Chapter N: Notation

IBN LAB VIENEA N-24 TR 25,139

is easy to see that this is the only kind of unshielded use in the PL/I-Definition ~
the only recursive definitions in PL/I are procedure declarations.)

5.4 Distinction between Static and Dynanmic Properties.

e started this section by asking for a consiructive interpretation of the very
implicit definitions, but the precess of expansion we have described ig of interest
also in other respects., It gives a {more) closed description of the transformation
denoted by given t under given env,... . It exploits, and makes visible, the
distinction betvween static and dynamic case distinctions, i.e. between decisions
that are made to arrive at the transformation, and decisions that are part of +the
transtormation., Obviously, this distinction 1is important for deriving a compiler
trom the language definition, but it is also relevant for showing which "steps" make
up the resulting transformation (see 4.2). One could go further in the expansion
(and sharpen the distinction), e.gq. expand the let-clause for the local environment
lenv into several let-clauses, one per local identifier, arriving at a description
which does not use env at all. A1l the uses made of the for all and (implied) par
operator (cf., 4.4) are such that they can be statically expanded into {S1se4e,8)

IesSP. {€4 s res€n)

Chapter K: Notation

IBYM LAB VIENNA N-25 TR 25.139
APPENDIX : Concrete Syntax

The concrete syntax of the meta-language is given in the notation of ref. [2]. The
class "expr" is subdivided only for the definition of the operators - it is

cthervise context-free.

Written definitions use a number of relaxations on this syntax which are not
tormally defined.

a} Brackets around blocks and cond-stmts as well as commas are omitted where
identation or line breaks makes the result unamphiguous,

b} A cases style cond-stmt may define more than one condition Per expression by

using "|n,

¢} Comments, encloged in Y“/* */" pay be used freely -~ in particular assertions will

be written in ccoments.,
d) Where an expression cccurs after let etc. , "result is"™ can be used,

€) The order of precedence of operators (standard) is modified by use of blanks and

line~breaks in order tc avoid excessive bracketing.

opn~defn ::= int-id {(defs)}ese : gt-hlock |
eval-id {(defs)}ees : e-block

int-id ::= id usually begins “in¢-n

eval-id :2:= id usually begins "ewval-®

defs :t:= [,*defeoec]

def z2:= 1-id | <{,edefeee}> | constructor

1-id 2:= id

constructor ::= Wmk-" as-class~nm(defs)
e-block ::= block bleck is value returaing
st-block 1:= block block is a transformation

Chapter N: NWotation

IBY LAB VIENNA N~26
block ::= ([exit~spec]
[declarationses]
[let~cleee)
;estmtaeq}j
exit-spec ::= trap exit (defs) with stmt;
declaration ::= dcl 1-id {:=exPrl;

let-cl ::= let {,elet-bodyees};

let-body ::= def;expr |
l1-id (defs}:block

stmt z2:= st4b10ck1cond—stmt1iter—stmtild—stmt]assign-stmti

cond-stmt z:= if expr thep stmt[else stmt])
({,2{expr -> stnt}ess}[,T -> stnt] |

fr*{expr ~> statjeea}f,T -> stmt])

iter~stmt ::= for 1-id = expr to expr do stnt |
for all def e expr do stmt |

while expr do stmt

ld-stmt 2:= (local-defs;stmt)

assign-stmt [I= l-id := expr

int-stat 1:= int-id {(args)}ese

args z:= [,eexprees)

return-stmt ::

it
It

etyrn (expr}

pure expr

exit-stet ::1= exit (args)

Chapter N: Notation

TR 25,139

IBM LAB VIENNA N-27

fn-defn ::= fn-id(defs) = expr
pure expr

expr ::= e-blocklieval-stmt| (expr) |cond-exprild-expr|
prefix-expr}infix-expr]quant-expr|fan~refi
var-ref|const
eval-stmt ::= eval-id{(args)}oee
cond-expr ::= 1f expr then expr else expr |
({,*{expr -> expr}e=s}[,T -> expr]) |
(cases expr:
{s2{expr => expr}»ee}[,T -> expr]
ld-expr ::2= {local-defs;expr)
local-defs ::= {;elocal-defecs}

local-def ::= let {,eloc-let-bodyeas}

loc-let-body 3= def{= }| be g.t.}lexpr |

1-id (defs) = expr
fr-ref 2::= fn-id{(args)
var-ref ::= [c] 1-id [[args] | {args)]
“pure expr" does not Contain (directly) e-block

eval-stot
c

Chapter N:

TR 25.139

¥otation

IBM LAB VIENNRA N-28 TR 25.139

logical expressiong

prefix~expr ::= -log-expr

intix~expr ::= lcg-expr (Alv]={Z} log-expr |
eXPr e set-expr |
set-expr [<ic} set-expr |
arith-expr {<|<£|2|>} arith-expr |

eXPr {=|+} expr

quant-expr i:= ({v|3]31} def [e set-expr]) (log-expr)

pretix-expr ::= llist-expr | - arith-expr i med (arith-expr arith-expr) |
{suBlpred} list-expr | max (arith-expr,arith-expr)

infix-expr ::= arith-expr (+]~i®]/]4) arith-expr

const ::= ints

general cxpressions

prefix-expr z:= h list-expr } wg-w as-class-nn {(expr)
quant-expr ::= (Ldef{¢ set-expr)) (log-expr)

const ::= constructor

S e e

preftix-expr ::= unior set-expr | Bset-expr i}
(DIR} map-expr

infix-expr z:= set;expr {uin|\} set-expr
const ::= B | { [,vexpreee]} |
Jexpr | log-expr} |

Jarith-expr:arith-expr}

Chapter N: Notation

IBM LAB VIENNA TR 25.139

iist-expr
pretix-expr ::= tlist-expr | gonc list-expr
intix-expr :1:= list-expr~list-expr

const :1:= <f,vexprees]> |
<expr | l-ideset-expr> }
<expr } for 1-id := arith-expr to arith-expr>

Rap-expr

intix~expr ::= map-expr f+iu} map-expr |

map-expr \ set-expr

const 1= [{,efexpr -> exprjese}] |
[lexpr -> expr] log-expr]

Chapter N¥: Notation

IBM LAB VIENNA N-30] TR 25.139

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

Chapter ¥: Notation

IEM LAB VIENHA Cc-1 TR 25.139

0. .0veryviey

The purpose of the commentary part of the report is to provide a description of some
ot the less obvicus aspects of the nodel given in the formal part. Given a knovledge
of the npeta-langvage the reader is assumed to be able to interpret the formulae as
such, and no translaticn intc vords is attempted. ({If at any place there should be
some contradiction, it is the formulae rather than the text which define the mcdel.)

One aid to reading provided by the commentary is the elucidation of the
abbreviations used. The set given at the end of thkis section apply uniformly to
tunction names and nanres cof abstract syntax classes. The use of names for locally
derined objects has been less consistent: these are defined at the point of uniforn
usage {e.g. section, sub-section or formula).

The structure of the commentary is the same as that of the formal part. The major
division is petween the objects which are manipulated by, and the defining functions
thenselves. The first of these {®Domains®™) separates abstract prograns from the
other objects. A set Satisfying is-prog is first defined by abstract syntax rules, A
large number of static properties can be described for valid programs. Assuming that
these properties are fulfilled makes it possible to write the defining functions in
a clearer way. (It is also a way of making the language properties clearer than if
they were mixed with the dyranic fests). The class of programs €p be used as +the
domain of int~rrog, 1is, then, defined as a subset of is-prog whose members also
satisty the given context conditions. The PStates® portiom of the Domains section
describes the other objects manipulated. Priacipal among these is "Storage®™ which
models PL/I variables. The reasons for choosing an implicit definition For this are

discussed bhelovw.

The “Functions® section is divided into siX parts, in this way formulae relating to
a particular language concept are grouped together. Fhe section on input/output is
only a place holder for the required functions. (Phe actusl formalae ¥ill be the

subject of a separate report).

The functions themselves are sometimes supported by pre and post conditions and
assertions. When given the function is only defined aver a vestriction of the domain
given in the type clause: those elemeants satisfying pre. That the function is only
used over this restricted domain results from other constraints. Post conditions and
assertions provide an insight into the formula by stating relations the authors were

trying to preserve.

Chapter C: Commentary to Part IT

IBY LAB VIENRA c-2 TR 25.139

Abbreviations

aa activaticn identifiers
abs absolute

act action

addr address

ag aggregate

aid activation identifier
alloc alleocate

approx approximate

arg argument

arith arithmetic

ass assign, assigpent

atm atonmic

augm augmentfed]

auto automatic

bi builtin

bit builtin fanction

bin binary

bl{ s} block[s]

bool boolean

boe block cn-establishment
bp bound~-pair

bpl bound-pair 1list

bs base

c cond-pref-set,context
cat concatenate

cbif condition built-in function
cen copp-cond-nm

c-nmn non~io-cond-nm or io-cond
ceil ceiling

char character

cl class

clng closing

cmp composite

cn cond-nm

comp computational, ccmposent {the latter used more oftent)
CORpar compare

cond condition

conn connected

const constant

constr construct

cont content

r

Chapter C: Commentary to¢ Part II

IBY LAB VIENNA

conv
cprefs
cpv
ctl
ctlid
cur
dcl
dcls
dd

dec
def
der
descr{s]
dft
digitl
dim
distr[ib]}
div
dsgn
dtp
ehp
edd

el
elen
enab
env

eq

eu

evd
eval
eval-1l
ex-anit
expr
ext
tact
tfct

t

fix
tlt
tofl
tuid
ge

gen
qre

conversion, ccnvert
cond-pref-set
conpd-pv

control

controlled

current

declaration
declaration set
data-description
decimal

defined

derived
descriptor{s]
default

digit list
dimensicn
distributive

divide

designator
data~type

evaluated bcund~pair
evaluated data description
element, elementary
element '
enabled

environment

equal
executable-unit
evaluated

evaluate
eval-to-left-value
executable~anit
expression
external

factor

function

field

fixed

fleoat

fixed overflow
unique file identifier
greater or equal
generate

group

TR 25.139

Chapter C: Commentary to Part II

I8H LAB VIENNA

gt
hbound
idis]
im

impl
indep
indices
indl
ing
init

init-wh=-do

int
int
intg
10

io0cC
1ter

1

1-

lab

1b
lbound
le

len
loc[s}
locr
loefr]
it
l1-to-r
max
maxl
min
nod
rult
ne

nm{ s)
nmd
nod
num
obs
ofl
onsource
op
opng

Chapter C: Commentary to Part II

greater

high bound
identifier[=)

imnediate

irplementaticn

independent

set ¢f index lists

list of indices

infix, information

initial, initialize

50 statement with init and while

internal

interpret(in fn nanes)

integer

input-output

io~cond

iterative,

list
location
label

lower bound

low bound

less than or equal

length

location[s]

locator

local on-establishment [by reference]

less than

left to rtight

raximum

maximuas length

minigum
rodulo
multiply
not equal
narefl s]
named

numpber-of-digits
nusber, nuperic

objects
overflow

onsource location

operator
opening

iteration

TR 25,139

IBM LAB VIENNA C-5 TR 25,139

optis} option{s}

ou on-unit

parm[s] parameter[s)

pdd parameter data descriptor
pos position

pos~cond-nm positive~condition-name

prec precision
preffs]) prefixfes)

proc procedure

prog progranm

prom promote

prop proper

ps proper statement
ptr peinter

pv pseudo variable
qual qualifier

I right

rec recursive
recity recursivity

ret reference

rel relevant

rep representation
res result

ret return

ret-descr returns-descriptor

rev revert

sc scalar

sdd statically determined data description
scomp- static computational-

sdtp static data description

sect section

sels selector set

sentry static entry data description
sig signal

snap SHAR or pil

Snns statement nanes

snon~comp- static non-computational-

source onsource~char-str-val
spec specificaticn

stf{s] Statementf{s]

step-do DG statement with TO
stg storage

str string

strg string range

Chapter C: Commentary to Part II

IBN LAB VIENNA Cc-6

struct
stre
subis
subr
subrg
subscr
substr
subt

t

targ
term
tp
truth
ub

udt
ufl
uid
unal
V-

val
var
varity
vary
vr

Wh
Zzdiv

1-loc

structure
stringsize
subjects
subroutine
subscript range
subscript
substring
subtract

text

target

terminal

type

truth (truth value)
upper bound
undefined
underflow

unique identifier
un-aligned

value

value

variable
variability
variability

value reference
vwhile

zerodivide
level-one location

Chapter C: Commentary to Part II

TR 25.139

IBM LAB VIENNA c-7 TR 25.139

1 Abstract Programs

The explicit selectors are those used in chapters D2 through FS5S; selectors used
in D1.2 are explicit when given, otherwise implicit,

The reader should note the choice of defining symbol (:: or =, cf. N2) used in the
various rules. The ccnstructicn has been rather cautious in that elements of unions
{unless themselves unions) have usually been given constructors, even if one could
have shown this not to be necessary to ensure disjointness,

In a2 number of places (e.g. dcl-set) it is now thought that rather than use a set, a
mapping (in this case id -> decl=-tp) would provide a shorter definition.

ad 31 entry: Deviating from BASIS-11, ve distinguish between: no requirements on
parameters, and empty paramter list reguired. In concrete syntax: ENTRY vs. ENTRY(}.

CD1+2.1 Static Data DescriptionS

Static data descripticns are used to capture the declarative information available
in the program text. Thus it is not, in general, possible to know more +than the
dimensionality of an array: the bounds may be computed only in relation to a
particular storage. (Some benefit could be gained by combining the definitions of
dd, sdd, pdd and edd).

CDl.2.2 Rule-by-Rule Conditions and Functions

Within the <class of obhjects Satisfying 1is-prog there are some which can be
considered Mstatically wrong" programs (e.qg. asing variables which are not
declared) . It would be possible to build checks for such errors into the defining
tunction. It was felt by the current aunthors +that it was better to shov such
properties statically. The predicates of this section define a subclass of is-prog,
as follows: for each phrase class 8 defined in terms of BasrB24¢4.,8 there is a rule
which is either provided explicitly or by default is:

is-vf-9(o,env) =
is-¥f~08, (5~el(e),env) A ... A is-wf-0, (s~ep {e),env)

Chapter C: Commentary to Part IT

I8M LAB VIENNA c-8 TR 29.139

The env compeonent contains the declaration or procedure for each known identifier,
This, together with the function el-sdd (see below) provides the way of checking

those context conditions governing types.

Another important class of context conditions is those vhich simply express a
context~tree subset of the abstract syntax (e.g. is-no-refers): these are expressed
as predicates of c-comp-8, although they could have been handled by duplicating
ruies. Those context conditions prohibiting duplication of names are defined using
the predicate is-unique-ids. Certain consistency checks are made {e.g. locator
qualifiers wust be available by default if not explicit), There are also
"geometrical” (e.dg. is-refer-geom} and value (e.g., EXTERNAL dd's must evaluate to
same edd) constraints.

The numbers used fer the functions are those of the abstract syntax.

ad 1 is-wi-prog: to simplify notation, gquantifiers over contained objects {here:
p1, p<d) have been omitted thrcughout this section.

ad 39 is-wf-bl: notice that passing the o0ld environment minus local names

(nenv'),prevents for example automatic declarations relying on block local
quantities.

CDl1.2.3 Auxiliary Functions

The tunction el-sdd yields the sdd of an expression. That is, it determines the
descriptions of its atomic elements and applies rules for combining operand types
with particular operators. In the uses of this function outside D1, the gecond
argument (textual environment env, which can always be determined statically} has
been omitted. Fer a discussicn of the distribution mechanism see CPS5,

Chapter C: Commentary teo Part IX

IBN LAB VIENNA c~9 TR 25.139

CDZ. States, BAuxiliary Parameters.

Programs denote functions from states to states, and this Section defines the notion
of (PL/I-)}state. As explained in N4, a state is a rap from references {"variablesm
to other objects (the "contents" of the variable}. The five major state components
are treated in the first three sub-sections: AR and P& (dealing with activation
identifiers) in 2.1, storage in 2.2, external storage and file state {dealing with
input/output) in 2.3,

The intseval functions establishing the correspondence between texts and state-
transtormations need auxiliary Darameters. These are defined in the remaining sub-
sections, namely the environment in 2.4, the on-~establishment (dealing with on-
conditions) in 2.5, and the cbif-part (dealing with condition builtin functions) in

2.6,

Abbreviations for this Section:

r set of states
a state
S (ref to] storage
ES [ref to] external stcrage
Fs [ref to] file state
AR [ref to] active aidits
PA fref to] previcus ajdts

aid activation identifier

See N4, The present definition is more specific in that it enumerates the obiect
classes over which the contents of a state component <can vrange. The first four
alternatives are due to the major (global) state componentsl(AID arising twice); OF
{(cf 2.5) and the "othg;" objects arise as the contents of local state components,

2 (major state compomnents):

By systematic ambiguity, these five names are used both as references {e.g. when

appearing on the left of 1=, cr as argument of c) and as names for the 8ets over
which the references range {e.g9. in syntax rules).

Chapter C: Commentary to Part IT

IBH LAB VIENNA c~-10 TR 25.139

€CD2.1 Activation Identifiers

An activation identifier (aid) serves to uniquely identify the activation of a block
or procedure; it is rneeded to make the denotation of 2 labhel unique, and also for
discovering uses of "dead" label- and entry values. PA records all aid's used so far
{it is never decreased), AR the currently active ones,

CDZ.2 ¥Values, Locations, and Storage.

The storage model used here 1is a version of the general model described in [81,
specialised to the needs of PL/I. The basic idea behind the model is gquite simple:
storage is, essentially, @& function £ from locations to values:

£: L -> V¥

thus associating with each leocation 1 in L a value v = £(l), the "contents" of the
location, with the following two properties:

t. T 1is range-respecting: each location has associated with it a certain range,

i.e. subset of V, and can contain values from this subset only.

2. £ is gtructure-preserving: a location may have components, and then the

contents of the comgecnent location is the "corresponding® compenent of the Contents
ot the whole lccation,

The present model is more explicit than the general model. For eXanple, composite
locations (and values) are defined explicitly as lists or maps. Also, the only
instance of "flexible" 1locations {i.e. ones whose active components depend on the
current contents) is provided by VABRYING strings. (A price to pay for this
explicditness is that "width zero® locations, e.g. string locations of length 0, now
seem to be over-specified, at least in connection with pointers, see CnD2.2.3).
5till, many notions are characterised implicitly, by axioms. For example, there is
no need to say what an elementary location “is"; also, PL/I pointers are so
irplementation-defined that they are best described by (incomplete) axioms.

Chapter C: Conmmentary tc Part II

IBM LAB VIEXNA C-11 TR 25.139

u=-edd unit-edd {(of an array-edd)
ebpl evaluated bound pair list
tp string-type

vy variability

v value

vl value list

vals values

1 location

m, wm? map

-1 ~list

CD2.2.1 Evaluated Data Descriptions

Evaluated data descriptions (edd's}) arise from dd's by evaluating expressions for
array bounds and string lengths (and dropping initial and REYER elements); they
serve, among other things, to represent the range of a location, see values(edad)

below,

Indices are used to select components from locations or values, see CD2.2.2 and

CD2.2.3 belov. (The functions given here are purely auxiliary).

19 widths:
counts characters, bits, and non-string scalars.

20 is-all-str:
tests whether edd consists of NONVARYING characters or bits only (tp = CHAR or
BiIL).

An array yvalue is a map from a multi-dimensional rectangle of integers (the
subscripts) to values of a given type. A gtructure value is the list of its field
values., Note that, by use of ::, the empty character string value and the empty bit

string value are different. An entry value is a function {cf. CF1) together with an

identitier (needed for entry comparison) and an aid ({needed for checking against
“"dead" entries).

Chapter C: Commentary to Part II

IBM LAB VIENNA c-12 TR 25.139

28 mk~STR-VAL:
needed wvhere not statically known whether to use mk-CHAR-STR-VAL or mk~BIT-STR~
VAL,

39 udt-val,
40 is-defined-val:

Undeirned values are needed tc discover uses of uninitialised variables, One value ?
is used tor single elements of NONVARYING strings, and for the other scalars (note
that the undefined VARYING string is Qne ? ~ nothing about the current length of the
string is known!}): composite undefined values are composed of 2's: a value ig

defipned if it contains no 2.

41 values:

Connects edd's with "ranges", i.e. value sets, Note that the preceding rules for valL
etc. did not list 2 with STR-VAL or the alternatives of ELEM~VAL, so it has to be
added to the ranges here. ’

43 v-augm-indices,
44 v-indices:

The indices returned by v-indices(v) are integer-lists selecting the elements of an
array, integers selecting the (immediate) fields of a structure, and pairs <i,i>
selecting the one~element substrings of a string: v-augm-indices also includes * for
arrays (for forming cross-sections) aad <i,j> for strings, it is only used in the
pre of comp-val.

ChZ.2.3 Locations

LOC is the set of all (potential) lecations, not only the currently allocated ones.
The detinitions are analogous to those for VAL; atomic 1ncations(elementary, i.e.
non-string scalar locs, and single character and bhit locs) are left unanalyzed -
except that elementary leocs have an edd extracted by the faunction l1-edd . Note that

CHAR-LOC and BIT-LOC are not subsets of LOC - they cannot be denoted in PL/T,

Due to distribution over all its arguments, the SUBSTR pseudo-variable (see F2) can
generate "inhomogenous™ array locations violating the constraint given for ARRAY-

Chapter C: Commentary to Part II

IBH LAB VIENNA C-13 TR 25.139

LOC. The use of this constraint in the definition of l-edd could be avoided by
associating with array locatiocns a map from indices +to edd's, rather than the
present array-edd ({which would arise as the special case of a coastant nmap).

53 CHAR~STR~LOC,
54 BIT-STR-LOC:

The corresponding constructors mk~CHAR-STR-LOC and mk-BIT-STR-LOC nmust be assumed as
non-unigue in the case cf (at least the VARYING) empty string, see "Independence®

below.

The function comp~-lec is completely analoguous to comp-val.

b6 sub-loc:
m* is an array-loc, except that the elements may be arrays again: this is

rectitied by the functicn array-loc,

68 ordered-sc~locs,
69 sc~locs:
give listsset of scalar sub-locations.

70 ordered-atn-locs,
71 atm~locs:
similar for atomic locations, with ap irregularity for VARYING strings explained

presently.

73 1-L0C:
The set 1-LOC of Jlevel-ope locations is used as a pool from which to allocate

storage tor PL/I level-one variables. The dissection into ABTO and BASED locations
is used tor a test on freeing, see F2.

Chapter C: Commentary to Part II

IBY LAB VIENNA C-14 TR 25.139
74 is-indep:

Two locations are ;gggpggggﬁg if they have no partsg in common. {The reason for in-
cludirg length-zero VARYING string locations in atm-locs above is that they have no
atoms yet need to be distinguishable; they have two possible contents, namely the
empty string and 2. The latter does not hold in the NONVARYING case}l., Different
level-one locations, anrd different components of the same given location, arve

postulated to be independent.

77 is-conn,
79 is~1—to—r-loc:

location S coppected if it is a contiguous part of a level-one location. Left-

i
©-Light eguivalence is defined, contrary to BASIS/1-11, dowa to arbitrarily nested
t

ructure levels.

A
t
s

80 PROP-PTR-VAL,
81 addr,
82 constr-loc:

A connected location has an address which is a {non-null} pointer. Intuitively, the
address may be regarded as location "minus® edd, hence the 1loc should be
reconstructable from its addres and its edd {axiom 83). Independent locations have
different addr (axiom 84, postulated only for locations not of width 0, in view of
the difticulties with the latter; for locs with the same edd, this axiom follows
from the previocus one). Left-to right equivalent locations have the same addr (axiom
8%), and an all-CHAR or all-BIT location has the same addr as its first atomic
location (axiom 86; these last two axioms are compatible with the viev that addr ie

the "starting point" of a location).

CD2.2.4 Storage

Leg currently active level-one locations
fa storage, vieved as a map over 1,

all locations derivable fron Lo
£ Storage, vieswed as a function over 1

Chapter C: Commentary tc Part II

IBM LAB VIENNA Cc-15 TR 25.139

B7 S:

For finite representaticn, gtorage is viewed as a map fronm {active) level-one
locations only. The two properties of storage required in the intreduction to cnz2
dbove are ensured, then, first by the constraint to this formula, and second by the
vay in which the map is extended to L:

41 extend:

The “parts" of a Jlocation go down to characters and bits, but not inside VARYING
strings; the "current parts" also take into account components of the latter within
the current length. The extended set L consists of all locations whose parts are
among the current parts of locations in Lg. The given map over L, uniguely generates
a function over L which satisfies the required properties, i.e. is range-respecting
and structure-preserving. (The set of active locations actunally expressible in PL /T
1s a tinite subset of L. It seemed better, however, to give a simple extension rule
than to enumerate cases).

ChbZ.2.5 Allocate, Free, Contents, Assigament

Allocation uses env-cond (the "enviromment” for condition raising, see F&), because
the STG condition has to be raised on storage overflow. Only level-one locations can
be freed. Contents checks for non-initialised locations.

Y96 assign:
£ the updated {level-one) storage
£ the updated extended storage

The updated storage must ascribe contents v to locatiom 1, and leave unchanged the
contents of locations independent from l. This alone does not ensure that a VARYING
string location (dependent f£rom 1 but) not contained in 1 has its current length
unchanged, which therefore has to be postulated explicitly.

Chapter C: Commentary to Part IT

IBM LAB VIENHNA C-16 TR 25.139

Ds data set

REC record

K-[RB] keyed [record]
uid unigque identifier

107 c-uid,
108 ftile-id;:

The function c«uid 4is used in F? to associate different uid's with different
occurrences of file constant declarations, except that external declarations of the
same 21dentifier are commoned; the id is retrieved and represented as character
string by the function file-id.

The environment pairs identifiers with denotations: locatioms for proper variables

and parameters (cf ¥1 and ¥2), values for named constants {cE. F1, and certain
tunctions or pairs of functions for DEFINED and BASED variables (cf. F2).

For BL-ENYV (block environment, used for STATIC and EYTERFAL identifiers) and the
function bl-env(pb), see CF1.

i A T e

On-establishments are named: oe, oe-0, oe-1, hoe {block-), loe(local-) and loer (ref
to local). oe's are passed (by value) to the int-bl functior ‘'inside' which the
passed oe is rpamed bee. The loe is passed by reference to alil functions which can
update this loe, these functions then name the passed oe loer; otherwise the loe is
passed by value (by taking c of loer} and ‘keeps' the name loe (except for the case
of int-bl}.

ou~ENTRY-VAL 1is a set of functions ~- with many similarities between these and the
tunctions of ENTRY-VAL,

Chapter C: Commentary toc Part II

IBH LAB VIENKRA C=17 TR 25,139

GD2.6 Chif-Part

Instances of CBIF are named cbif, cbify, cbif-1. They are all maps. Specifically a
cbif is a map from (a finite set of) cond-bif-nn's to either LOCations, NU#ber-
VALues or CHARacter-STRing~VALueS depending on the cond-bif-nm. Cond~bif~nm ONSOURCE
maps 1nto a LOC whose type (i.e., edd) is CHAR-STR-VAL.

This Section deals with prcgram, block, and procedure interpretation. It covers hoth
procedure declaration, which asscciates with the procedure identifier the function
denoted by the procedure, and procedure activation, which applies that function to
the evaluated arguments.

Adbbreviations for this Section:

actyls) ref to activity flagf{s] (for non-RECORSIVE procedures)
en-t entry function (denoted by a proc id)

major “this is the major proc activation™ (truth value)
st-env static environment

neny new environment

abn value returned on abnormal termination

Chapter C: Commentary to Part IT

Ian LAB VIENNA C~18 TR 25,139

1 dnt-prog

main-id id of main proc
pb-sels selectors to cecntained procs and blocks

similarly: non-RECURSIVE procs, STATIC EXTERNAL dcls
st-ext-ids STATIC EXTERNAL identifiers
st-int-ids similarly, indexed by declaring proc or block
st-ext-locs lccations for st-ext-ids, indexed by id
St~int-locs also indexed by sel to declaring proc or block
env-1 pairs EXTERNAL proc ids with their denotations
prog? prog with dens for STATIC and EXTERNAL ids inserted
main-en-f entry function denoted by main proc

Syntactically, prog is a set of procedures. Semantically, it behaves very much like
@ block whose declaraticns are these (EXTERNAL) procs, and whose body is a call to
one ot them, identified by main-id (hemnce the "pre:"}, Other declarations which in a
sense belong to this artificial outermost block are those of STATIC variables anad
those of file and EXIERNAL entry constants.

After a few "pure" auxiliary definitions, the first action is initialisation of the
state. Like for genuine block activations, an id {aid-0} uniguely characterising the
activation 4is generated. Next, storage for STATIC variables is allocated: the
ditference between EXTERNAL and INTERNAL is that in the former case declarations of
the same id are commoned.

since prog' has inserted into it, amongst other things, the denotations of the
EXTERNAL procedures, the definitions of env-1 and pProg' are mutunally recarsive (cf.
85.3). The third argument of eval-proc-dcl distinguishes the outermost use of the
main proc from any other: it is true only for the former. . {This 1is used 4in the
interpretation of the RETURN statement, see below)., - The function bl-env? (sph)
collects into a bl-env, (block-environment) the denotations to be inserted into a
given (occurrence of a) block; the actual insertion is done by postulating a context
tunction bl-env{pb} which retrieves the inserted bl-eav {cf D2.4). For procedures
not declared RECURSIVE, the activity flag (initialised to INACTIVE) is used for
testing that they are indeed used non-recursively; this flag is also made part of
bi~env,

After all the preparatory actions, the function denoted by the main proc is called,
with dummy arguments except that condition names are paired (in oe-1) with their

system actions. Finally, STATIC storage is freed and the activation closed,

Chapter C: Commentary to¢ Part II

I8M LAB VIENNA c-19 TR 25.139

2 int-bl:

Immediately «calls int-bl-1, the common part of block and procedire interpretation,
By context conditions, it can be assumed that st-env and lenv (in int~bl~1) have
disjoint domains.

3 int-pbl-1:
lenv local environment
loer reference to local oe

Again, the new environment neanv is defined recursively, due to recursive procedures
(see again N5.3 for a ccnstructive reading). WNote that parameters are not dealt with
here, but in eval-proc-dcl. The 1loer is initialised to the passed oe but can be
reset by ON and REVERT statements. The block epilogue is performed both on normal
and abnormal termination.

CF1.3 Procedures

5 eval-proc-dcl:

This is a pure function - it returns a function with side effects, en-f, which is
(the main part of, see int-bl-1) the denotatiorn of the procedure identifier,
Besides a list of locations {the "arguments" in the PL/1 sense), en-f has additional
arguments, passed to it from the calling block: oe and cbif, wvhose passing as
arguments 7rTeflects the dynamic inheritance rules for PL/T on-units, and the
statically determinable emtry attribute of the entry vreference; the latter is
checked against the parameter and RETORNS attrihates of the actually called
procedure, which say be determinable only dynamically.

The function en~f tests and sets the activity flag for non+-RECURSIVE procedures,
checks the argument attributes against the parameter declarations and the RETURNS
descriptor against the vesmlt attribute prescribed by the caller, and then sets up
the nev environment env' to be passed to int~bl-1; again, by context conditions,
parameters and STATIC variables are disjoint. Since the RETUBN statement terminates
intersediate blocks, it is modelled by using the exit mechanism, with ret used +to

tlag the returned value; therefore, this call of int-bl-1 always terminates
abnormally {(with ret or go), and the epilogue need not be written after it,

Chapter C: Commentary to Part II

IBY LAB VIENHA c-20 TR 25.139

7 dint-call-st:

Both the en-ref (an expression of type ENTRY} and the argument list are evaluated
(see next functiom), and the value of the former, a function en-f, applied %o the
value of the latter (and to auxiliary arguments). Dummy locations allocated during
argument evaluation have to be freed on termination.

8 eval-proc-ref:

The activation identifier {(aid) is used to discover use of a "dead" entry value,
i.e. Oone whose declaring block activation has been terminated. The {(syntactic) case
distinction in computing the elements of loc-1 is made to see whether the argument
matches the parameter descriptor without conversion.

11 int-ret-st:

It an expression is specified in the RETURN statement (which, by context conditions,
is the case iff the tersminated procedure is a function procedure, i.e. has an rdd),
the expression value is converted to the completed rdd {RETURNS descriptor). The
passing down of "maijor" from eval-proc-~dcl has not heen shown explicitly; it is
necessary in order to ensure that the FINISH condition is raised (and the relevant
on-units are executed) before termination of intermediate blocks.

CF2 Declarations, Reference, Allocation

This section covers the treatment of both declarations and references for variables
(see F1.3.1 for procedure declaratioms). Sub-sections 2,1 to 2.3 discuss proper,
based and defined variables respectively: in each section declarations and
reterences are shown together to facilitate reading. Section 2.4 covers pseudo-
variables; 2.5 the handling of initial: 2.6 sone auxiliary functions. One
restriction made to all variable types is that the nmajor structure identifier is

assumed to distinguish the declaration.

Abbreviation for this Section

cenv 0ld environment
nenv ned environment

Chapter C: Compentary to Part IT

IBM LAB VIENNA c-21 TR 25.139

loe local oe component
env-ex triple, see F3
1qg locator gualifier

1 eval-dcl: not used for STATIC (see F1 int-prog), parm (see F1 eval-proc-dcly, BI,
LAB (see F1 int-bl-1), file-const and ext-entry (see F1 int-prog).

2 eval-l-ref:;
vr the reference to be evaluated to a location,

3 wval-l-var-ref:
id wain identifier of reference
idl sub-structure gqualifications
g1 subscript list
esl evaluated form of sl
dt data type of id (statically determined)

The location of the whole variable (main-loc) is determined by the appropriate
function and a merged index 1list is obtained from compose-indl (indl). From context
conditions, it is kncwn that the reference must match the declaration. Thus, if indl
is not valid with Tespect to main~loc (see augm-index-lists CD2}, only an out of
range subscript can be to blame. Notice that there is no normal return from raise-
cond for SUBRG.

The term "proper variables" coverS STATIC and AUTO (PARM declarations are considered
in eval-proc-dcl). Fer such variables the environment directly contains the denoted
location. Notice that it would be possible to combine the functions eval-static-dcel-

tp and eval-~auto-dcl-tp.

4 eval-static-dcl-tp:
1 the newly created loccation

Since STATIC declarations contain only restricted expressions, the empty environrent

passed from int-preog is adequate.

Chapter C: Commentary to Part II

IBH LAB VIENKNA C~22 TR 25.139

5 eval-auto-dcl-tp:
1 the newly created location

The environment under which the dd is evaluated is that of the surrounding block.
The check that no references are made to redeclared variables is in the Cantext

Conditions.

6 eval-l-prop~ref:
see assertions.

CF2.2 Based Variables

The declaration of a PL/I BASED variable is more conplex than, for example, AUTO. In
the latter case a single instance of the variable is allocated and its location
serves as a denotation, For BASED, any number of instances may be allocated, The
storage and retrieval of the LOCS ({more strictly PIR-VAL's) is 1Ieft to the
progranme, All, then, that is required is the ability to respond to ALLOCATE
Statements and references. On allocation the dd of the BASED declaration must be
evaluated as well as, possibly, the dft~qual. Both of these evaluations must be
performed in the prologue environment! The OF and CBIF compenents are, however, to
be those of +the reference. As with PROC-DEN (see F 1.3.1) the way of showing such
"closure™ is by generating a function which can be used to allocate variables,
Similar considerations apply to reference and the required function pair is the
denotation for a BASED variable. Notice that whilst both of +the created functions
are state changing, eval-based-dcl-tp is a pure fn.

alloc-based the function creating allocations
ret-based the function covering references

7 eval-based-dcl-tp:

dft-qual default gqualifier in the declaration
set-opt-r the set option of the reference

oe~r the oce copponent as at reference tine
chit-r the c¢bif component as at reference time
set-opt the required set option location

l (in alloc~based) the pewly created location

qual~r the locator gualifier of the reference
qual the required, evaluated, locator gualifier
dd-sub the part of dd relevant to this reference
1 (in ref-based) the required location

Chapter C: Commentary to Part II

IBM LAB VIENNA c-23 TR 25.139

{re alloc-based) +the flag BASED is passed to alloc to support the check on freeing
(see int-free-st).

Notice that the order in which the set-opt and refer-objects are set is not
constrained.

(re ref-based) the agreement of the dd used to generate the LOC with the dd of the
BASED declaration referenced is discussed under based-loc

8 dinit-refer-ohs:
s composite selector intc a dd.

Because of the use of the arbitraly order construct, the result of this operation is
indeterninate if more than one subject refers to the same REPER obhject., Thig
tunction could have been integrated into alloc-based of eval-based~dcl-tp,

9 refers:
5 composite selector into a 44d.

The selectors created are also applied to edd whichk, because of their differing
syntaxes, is strictly wrong.

10 based-loc:
qual the evaluated locator qualifier

For & given qual and 4d, the Televant location is generated., The axioms given for

constr-loc in D 1.2 define that dd must be left-to-right equivalent to that used +g

create the location. Irn particular this will check the vwalidity of refer obiect

vallues. Notice that if no such location exists we rely on (L1) {false) = error.

11 is-instance: Only because of the restriction to the language -that expressions can
occur only with REFER, can this be written as pure function.

12 left-struct-part: ¥otice that sub-structures within arrays of structures are not
considered. This is because the mapping would be affected by subseguent fields.

13 eval-l-based-ref:

r-loc required location

see discussion above.

Chapter C: Commentary to Part TI1

IBM LAB VIENNA c-24 TR 25.139

14 int-alloc-st:
set-opt set optice from allocate statement

set-loc evaluated set-opt

Notice that an abnormal exit (GOTO} out of a function call invoked during allocation
is defined as an error.

15 int-free-st;
ptr-val evaluated locator qualifier from free statement
1 location to be freed.

The references in a free statement are evaluated like normal variable references
{without sub-structure or sabscript list). That evaluation provides the <check on
REFER object values., Because 1t 1is possible, via the ADDE built-in-function, to
obtain a PTR~VAL to AUTO or STATIC variables, the free is preceded by a check that 1
vas, 1ndeed a BASED location. The check that 1 is a level one location is made in
free,

CF2.3 Detined Yariables

The situation with defined variables is similar to that wmith BASED, in that the
required denotation is again a function. One important language difference is that
there is some evaluaticn to be performed at the time of declaration: this results in
eval-def-dcl-tp being a state changing operation,

eval-def-loc the function covering references

16 eval-def-dcl-tp:

ad dd of declaration

base variable reference, on which current variable is based
pos positien

W width

base-loc evaluated lcc from base

i evaluated pos

loc-1 location list

1 the required location

Whilst d¢ 1is evaluated immediately, base and pos are evaluated at reference tinme.
Note that the functicn width is used only with aggregates containing strings. A
dynamic test is pade that the base location is connected. The length of loc-1 is
also checked dynamically at reference time. Under the test, the existence of 1 is
guaranted. See extend for validity of such locs.

Chapter C: Commentary to Part II

IB% LAB VIENNA C-25 : TR 25.13%

17 eval-1~def-ref:
m~loc the reguired location.

Notice that condition pseudo variables are handled by eval-l-cond-pv.

The possibility to use the substr-pseudo-variable with arrays as second and third
arguments can result in the generation of "inhomogenous® aggregate locations in the
sense that different element lccs have dififerent, though fixed, lengths. Such locs
do not satisfy the censtraints of D2.2! This problem was noted rather late and thas

not been corrected.

b-1o0c¢ base lecation for SUBSTR
st starting values for SUBSTR
len length values for SUBSTR

18 eval-l-stg-pv-Tef:

vr the stg-pv-ref to he evaluated
atms the atomic locations used by STR
res~loc the result location of SUBSTR

19 distrib~substr-pv:

k current length of b-loc
i {scalar) value of st
j (scalar) value of len

The requirement for this function results from the power of SUBSTR which is not
retlected in sub-loc ({SUBSTR can be applied directly to an aggregate meaning that an
aggregate of sub-strings is to be created.) Notice no return from raise-cond of SIRG

is allowed.

Chapter C: Commentary to Part It

IBN LAB VIENNA C-26 TR 25.139

The madin difficulty with the definition of INIT is that an initial attribute given
for a scalar within an array of structures is to be used to initialise the resulting
non-adjacent scalars. The approach taken in the current definition is to generate a
list ot all index lists to such scalars (sc-~indices) and to step through +this 1list
at the same time as the walues., TFirstly an abstract syntax is given for (partially)
evaluated initial element lists.

iel initial element list
5 composite selector into a 44

23 int-init:
i3 location to be initialised
indl list cf index lists

Fotice arbitrary choice of initial attribute order.

24 injt-sc-parts:

indil list c¢f ipdex lists

eiel (partially) evaluated initial element list
if iteraticn factcer

v value

Notice that the end of either indll or eiel terminates the function, Any iteration
tactor must, at the latest, be evaluated when reguired for expansion. By use of
eval-init-elem~list the freedom is given to evaluate earlier,

25 sc~indices: nc ccemment

26 eval-init-elem~list: no comment

27 init-comp: po comment

Chapter C: Commentary t¢ Part II

IBM LAB VIENNA c-27 TR 25.139

28 eval-dd:

u-dd unit-dd
ev-y=~dd evaluated u-dd
ev-bpl evaluated bpl
tp string type
maxl maximpun length
vy varyability
e-maxl evaluated maxl

The extents and lengths are evaluated in arbitrary order. All other parts are
"unchanged,

29 eval-extent:
v value of extent

cv converted value of extent

30 compose-indl:

dd relevant data declaration

idi sub-structure gualifying identifiers, to bhe merged with
esl evaluated subscript list

un-~dd unit 44

sdd-1 sub~structure dd list

The dd 1is wused to guide the merging of idl and esl. Notice the constraints in the
context conditions which guarantee this funrctions ig defined.

31 eval-subscr-list:

CF3 Statements

Abbreviations for Section

cprefs condition prefix set
snms statement name set
+ text

Chapter C: Commentary to Part IT

IB4 LAB VIENNA c-28 : TR 25.139

lab-t label part of an abnormal component-target

aid~t ARID part of an abnormal component-target

env-eu the 5-tuple of environment information for executable units
env-st the triple of environment information for proper statements
env-ex the triple of envirosment information for expression

lab label

test icgical expression in IF or WHILE

then-u executable unit from THEM part of IF statement

else-u executable unit from ELSE part of IF statement

eu-1 executable unit list

cv control variable

cv—-loc location evaluated from cv :

init initialising expression from DO specification

byto BY and TC part of DO specification

by BY expression of DO specification

to ‘IO expressicn of DO specification

while WHILE expressicn of DO specification

init-val value evaluated for init

b boolean value cf evaluating a logical expression

There are a number cf different objects used to define the dynaric "environment" in
which the denotation of a piece of text can be obtained {e«g. ENV, OE}. These
objects are passed as arguments in a way which shows their possible use. An object
is only passed at all if it can be read or changed; it is only passed by reference
it it can be changed. The relevant obijects are

ENV read to provide demotations for PL/I variables.

local EO changed by O©ON or REVERT statements, read wherever an exception can
' occur.

block OE read by REVERT statements.

CBIF read by references to condition built~in-functions or psuedo~

variables.
AID read to test lccality of labels Wwherever a trap exit can occur.
cprefs read where exceptions can occur {Note: this is obtained statically by

context functions).

Chapter C: Commentary tc Part II

IBM LAB VIENNA c-29 TR 25.139

Remembering that ncn-sisple statements (e.g. IF) can conrtain other statements, it
should now be possible to uanderstand the choice of venvironment tuples" for the

varicus functions.

It 1is suggested that a first reading of this section is made ignoring GoTO,
{described subsequently) so one should overlook all fcue-fng", int-goto-st, all trap
exit units and the assertions.

int-ex-unit: no coument,

4 int-prop-st: note generaticn of appropriate environment tuples.

5 int-ex-unit-list:

7 iditer-ex-~unit-list: no ccmment

8 int-iter-grp:
sp-1 specification 1list
For DO statements which contain only a HHILE the pover of the metalanguage
fallowing a "side-effect” predicate) is such %hat a direct definition is
possible. However, the metalanguage does not have the full richness of PL/I's
DO and the more general forms are explained step by step. The next two

tunctions were split cut because of length, not for logical reasons.

9 int-step-~do:

cv~dd data description of cv
by-val result of evaluating by
to~val result of evaluating to
cv-val result of accessing cv~-loc
c-cv-val result of convédrting cv-val

new-cv-val new value tc be assigned to cv-loc

Rotice the arbitrary order of evaluating the initial, by and {if present) to
expressions. The use of prom-ass is somewhat too general in that the targets
‘are restricted (see context conditions) to scalars. A ¥hile construct is again
used with a side~effect predicate. In this case the predicate implied by the
various ccmbinaticns of BY, TO and WHILE are defined in a block ending with
return. The function, ags written, assumes that a BY clause is present whenever
there is a TO: thus BY) of appropriate type has been inserted in the abstract
program if TO is present without BY.

10 int-init-while~dc: no coumnent.

11 int-if-st: notice that the nested Lif is on a static text property.

Chapter C: Commentary to Part IT

IBM LAS VIENNA c-30 TR 25.139

13 eval-truth:
bit-str result of evaluating expr and converting to a BIT string
Returns true if any bit, in the bit string obtained by converting the test
expression, is J1_BIT.

15 ipt-ass~st:

tr-1 target reference list

Lhs expressicn from right hand side of assignment statement
chs-v result of evaluating chs

targ=-loc result of evaluating a tr to a location

The evaluation of the first target reference is Separated so that the arbitrary
merging with the evaluaticn of the right hand side can be shown. The prom-ass
function must be called once per targ-loc because the language permits them to he
of different shapes or types,

16 eval-targ-ref:
tr target reference

17 prom-ass:
cval the result of converting val to the type of loc.

The use of 1-edd is somewhat over-dynamic in that the shape {i.e. everything
except the bounds) ccould be deduced statically.

The Model for GOTIO

The defining functions have been chosen throughout the definition to closely nirror
the phrase structure given by the abstract syntax. The difficulty with the GOTO
statement is that its execution cuts accross the phrase structure. Firstly, consider
the eftect of a GOTO which abnormally terminates execution of a phrase structure, as
in

Chapter C: Commentary tc Part II

IBM LAB VIENKA =31 TR 25.139

BEGIN;

BEGIN;
B0 T = 1 T0O 10;
GOTI0 Aj
LED;
END;

»
P
L: 0.

ERD;

The neta-language feature used to model such termination is exjt, its effect is to

e
close all of the defining functions until one is found with a trap exit and then +to
obey the trap exit body. Along with the exit a value can be passed which, in this
case, contains the relevant information about the target 1label. {Notice that +the
semantics of e¢xit are described in the peta-language by inserting a test after every

call of a defining function which could result in exit) .

The Zfrap exit rtoutines are given with ezack defining function which considers a
phrase structure capable of introducing labels: the rountine checks whether the label
is local to the current text and, by means of the aid, if it is the appropriate
instance thereof; if so, Ynormal" execution can he resumed. There are, of course,
other places wvhere some special action is reguired if a phrase structure is left
abnormally {e.,g. dint-bl-1 in SF1}): these must alsoc contain trap exit units.

PL/I also permits GOTO statements to tramsfer control into phrase structare, as in

GOTO B;

Do; .

IF p THEN B:sl;
ELSE s23

END;

Hotice that it is not only necessary to begin ewecution in the right place, but also
the necessary actions pust follov such execution. The prefix "cue® has been given to
the tunctions which model these two points becanse, as in acting, they show where to
begin. There is considerable overlap between the body of a cue function and the
corresponding normal function. An earlier version had been written which capitalised

Chapter C: Conmmentary to Part IT

IBM LAB VIENHA c-32 TR 25.139

on this overlap by cecmbining theun. Unfortunately, this clouds the static nature of

the cue mechanism,

It has been pointed ocut that omission of the teap exit on some levels of the phrase
structure (but retaining all cuee functions) would not change the overall semantics.
In order to define the effect of a GOTO as locally as possible, this is nhot done.
The assertions written show that a GOTO is always handled by the function covering

the smallest phrase structure common to it and the target label.

1 int-ex-unit{trayp): defines that a GOTO %o any label within the current executable
unit should be handled by cue-int-ex-unit. HNote the check against the passed
AID to distinquish between labels of different blocks or different block
instances.

2 cue-int-ex-unit: part of the seCfies of functions that model abnormal entry into
phrase structure. Notice that an attempt to GO0 into an 1iterative group is
caught here,

3 is-contained-lab: true even for labels within interative DO, szee cue-int-ex-unit.

5 int-ex-umit-list({trap): no comment.

6 cue-int-ex-unit-list: no comment.

11 int-if-st(trap): no comment

12 Cuye~int-if-gt: notice that, from the pre condition, if the label is not contained
in the then ¢lause, it nust be contained in the else clause.

14 int-goto~st:
val-ref value reference which is evaluated to find the target label

The <check of the target aid against the contents of the AA compoment ascertains
whether the block containing the label occurrence is still active, The
possibility that it is not arises from the ability to assign a label to a label
variable with a g¢greater lifetinme. The exit statement initiates abnornal

termination.

Chapter C: Compentary te Part II

IBN LAB VIENNA

CF4 Conditions

loe local on establishment by value

loer local on establishment by reference

hoe value of on establishment of embracing block
oe fcrmal parameter on establishment

cbit,cbify,chif~1

conditicn built-in function map

env environment

char-ypos onchar character position in onsource
cn ccndition name

cn=-1 list ¢f condition nanmes

comp-cn corputational condition name

evd-¢n evaluated ccndition name

enabled enablement status, in B

fot, fet1, fct2

let clause function definition names

fuid, fuid? unique file identifier

ioc input/output condition

pPs prcper statement

snap nil or SNAP

symbol~1 list c¢f symbols

vr variable reference, to yield file value

TR 25.7139

1 int-on-st

asgert: the extensicon-and-override, 4, to the loer is always an override in

that int-prog initializes oe-1 to contain a2 suitable system-cu-entry-
val (with no 'snap'} as range element for any condition name.

ou-entry-val

The function, fctl, defined by ({[SHNAP], and to be execcuted upon on-unit
activation, is defined first, only to be impediately installed in the
tunction, £ct2, otherwise defined by ps. If ps is other than SYSTEM the on-
unpit is to be treated as a potential recursive, albeit parameterless
procedure; the gval-proc-dcl call serves this reguirement by 'dummying® up the
corresponding entry-function.

Chapter C: Commentary to Part IT

IBYM LAB VIENNA C-34 TR 25.139
3 system-ou-entry-val

No comments,

4 Aint-rev-st

This is the only functicn which requires access to boe.

assert: successively executed rev-st's in the same (PL/T} block activation
and over some cond-nm has the same effect, with respect to the Iloer
{only) as execution of one rev-st for that cond-nm provided no

corresponding on-st Tslipst in-between!

5 int-sig-st

Other than for the case of disabled comp-cond-nm's this function 'prepares®
tor the call of an appropriate raise~...-cond function, by ‘concocting®
suitable arguments; those being of import being for comp-cond-nr CONY and io-
cond KEY only!

6 raise-cond

Serves as the main funnel to the functions raise-comp-cond and raise-conv. For
other than the KEY io~cond this function cam also serve as the fennel into
raise-evd~io~-cend.

7 raise-comp~cond

The raising of a disabled comp-cond other than through int-sig-st (see this
function), is illegal; hence yields error.

8 raise-conv

For CONY cbif has to be extended: and with ONSQURBCE a location has first to be
allocated: if a PL/I GQTO occurs of the eventually invoked on-~unit, see below
{atter 8), then this-location has to be freed. This then is the sole pPur po se
of the exit specification. . If calling alloc raises the SIG condition then no
location will have .been allocated for the case the SEG on~unit activation
terminates abnormally, i.e. with a PL/I GOTO; in other words: the exit due to
such a GOTO will not go via the exit trap of-the raise-conv.

Chapter C: Commentary tc Part LI

TB# LAB VIENKA c-35 TR 25.139
9 raise-evd-io-ccnd

Presently called by int-sig-st, raise-cond and numercus functions in F6 -- one
could let these latter call raise-cond, but since they have to evaluate the
tile-variable anyway this approach was adopted, thus 'viclating' the desire to
let raise-cond serve as main-funnel, etc.

For tfunctions 6, 7, 8 and 9 the actual invocation of the appropriate on-unit
(loef{...)} is expressed by a functional reference of the forn: {loe(...})) {arg-
1); one cculd perhaps have aided readability by writing instead: (let on =
loe(...}; on{arg-1)}!

CEL.2 BIF Value- and Pseudc Variable Locatien Functions:

chbit-nm cobd~-bif-nm

pos integer position of ONCHAR in ONSOURCE
1,loc leocations

val value

intg Integer

CFu4.3 Enablement Status (Context) Functions:

c,ct,c2 cond-pref-set
tyt1,t2,t3,t",t" text (of abstract programs)

cprefs cond-pref-set
c-default default ccnd-pref-set
CR conp-cond-nn

Functions 14 - 19 are statically applicable, i.e. context functionss:

15 cur-cond-prefs
Herges the inmediate cyrefs, ¢, of the immediately, statically embracing ex-

unit whose prop-st is a bl, or proc, sith the combined cprefs, c¢2, inherited
trom all further, embracing "bl's" or procs.

Chapter C: Commentary to Part IT

IBM LAB VIENNA C-36 TR 25.139
16 im-cprefs

If t 1is a froc cr an ex-unit then result is the cprefs of that Proc or ex-

unit. Otherwise an imnediately statically embracing proc or ex-unit, t2, is

found and its crrefs 1is taken as the result provided t2 is not an ex-unit

wvhose prop-st is an on-st of whose cond-nm-list t is part., For that latter
case the result is f{}.

17 extract-cprefs
This function does nmost of the work. The inner, recursive call of extract-
cprefs of the alternative, else case has the effect of the function first
‘worming' its way all out to the external procedure, t ¢ v, then 'rgtracing'
x1ts path, while at each proc and ex-unit bl level merging their cprefs with
the cprefs brought in from the outside.

18 merge-cprefs

The 'inner' (cn,enab) takes precedence over any outer {cn,enab!).

19 im-embr-eubl-rroc
Picks wup the inpermost statically embracing ex-unit if its prop-st is a bl,
else the corresponding groc.

20 is-enab

Taegether with cur-cond-prefs the only interface functions of this section
(F4.3).

Chapter C: Commentary to Part II

IBM LAB VIENNA c~-37 TR 25.139

env-op information necessary for conversion, consisting of on-establishment
prefix-set and CBIF's

env-ex information consisting of eunvironment, on-establishment and CBIFP's

The .expression evaluaticn part of the definition has three main entries, namely the
functions eval-ccmp-expr , eval-expr and prom-conv.

Almost all decision are made statically using sdd. Only in the part handling indices
and string length are dynamical decisions necessary.,

A1)l tunctions except eval-comp-expr and eval-expr have side-effects only via on-

conditions.

There exists nc normal return from raise-cond except in SIRZ and YFL.

1 eval-comp-expr

Derives in the given environment the value of the expression t that conforms to the
given target edd (r-edd). The value of t as a unit "in isolation” is evaluated using
the function eval-expr. The result of eval-gxpr is converted and promoted to coenform

to r~edd.

2 eval-expr

Determines in env-ex +the value of the expression t ag a unit "in isolationm. The
values ot subexpressions (operands/arguments) are evaluated in arbitrary order.

In the case of infix~, prefix-expressions or distributable BIF's the static data

description {sdd)} of the result depends on the operation/BIF-name and the sdd's of
the operand(s)/arguments. The sdd of the result is derived by the function el~sdd,

Chapter C: Commentary to Part IT

IBM LAB VIENNA c-38 TR 25.139

CF2.1 Distribution.

3 distrib-op

el-gsdd-1 list of sdd's, one sdd for each inmediate operand/arqument in the
expressice

val~-1l list of values, ome value for each immediate operand/argament in the
expressicn

Evaluates a value c¢f type r-sdd from the value(s) val-1{i] of type el-sdd-1{i} (i =
VeZlp00s 1 val-1l).

It the result 1is a scalar, coOnversions are performed as necessary {(using the
tunction conv) ard the operation op is then applied (using the function apply-and-
conv).

Operand/arquament-lists consisting of aggregates of of aggregates and scalars are
decompoSed into sets of argument lists consisting of scalars. To each member of this
set the necessary conversicns (deviating from ANS-11 {9.1.1.6) a scalar value is
usually converted more than once) and the operation are applied in any order to get
the set of scalar results, which are then composed to the result aggregate value
{corresponding to r-sddj.

4 gen-conp-edd

len-1 list of lengths or nil's, one item for each operand/argument. For each
string~ope;and/argument the length of the string value occurs in the
list; nil ip all cther cases.

Derives fronm the type of operation, sdd-l and len~l the evaluated data descriptions

(edd's) to which the operands/arguments must be converted before applying the
operation.

Chapter C: Commentary tc Part II

IBHY LAB VIENNA c-39 TR 25.139

CPb,2 Operations.

b apply-and-conv

opd-1 list of scalar values, one for each operand/arqument (as decomposed by
distrib-ap).

Evaluates the scalar result of type r-sdd by applying op to the list of scalar
values opd-l. Depending on the type of operator (arithmetic, comparison, string,
substring-class, mixed as defined by equations 8-12). The actfal evalunation is
performed by the functicns num-res, compar, substr-res, string-res, mix-res.

In the case of an arithmetic operator the exact mathematical result {as obtained by
nim-res) is transformed into a value belonging to the set VAL by the function arith-
rep; arith-rep at the same time simulates rounding, truncation and condition

raising.,

12 arith-rep

The function is used in twe ways:

in case of conversicn it adjusts num to rdd in a way that represents the special
properties of arithmetic in PL/Y {(rounding, truncation)}. This operation may raise
the condition SIZE , OFL or UFL.

in case of an arithmetic operation it adjusts num to the marximal precision nn .
This operation may raise the condition FQPFL , OFL oar UFfL. Since the value is
adjusted to the maximal precision numl can be greater than the value allowed by the

precision of rdd.

Deviating from a¥5-11, this adjustment to PIXED is not implementation defined.

14 compar

Note that PTR values are addresses and not locations. Therefore pointer comparison

i1s address comparison.

Chapter C: Commentary to Part IT

IB¥ LAB VIENHA C-40 TR 25,139

18 eval-non-distrib-bif

Determines the value returned by the BIF call. In the case of DIH , HBOUND and
LBOUND the dimensicn expression ({second argument) is evaluated and tested against

the statically kncun number of dimensions before the aggregate (first argument) is
evaluated.

In the case of 3IR all scalar components of the aggregate are converted to strings
in any order by the function conv-to-str-ag and then concatenated to one string in

lett-to~right crder by the function concat. Note the difference to evaluation of
the STR pseudo variable im which no conversions occur.

21 prom-conv
It t-edd 1is a scalar edd, the value v is converted to a scalar of type t-edd using
conv.

If t-edd 1is an aggregate edd an aggregate value of type t-edd iS constructed, the
components of which are built from the corresponding components of the converted
value of v . v nmust be promotable to t-edd.

22 conv

dd is an edd to make padding or truncation of strings possible.

Chapter C: Commentary to Part II

IBM LAB VIEBENA C-41 TR 25.139

2% conv-to~char

In the case of arithmetic to character conversion the numeric value val is converted
to an 1intermediate decimal value, This conversion guarantees that the resulting num
is representable as a character string. Therefore the usage of symhl-to-val is pure

functional, no ccnversion condition can occur.

CF5.4.1 Concrete Syntax of Constants.

The 1list of syntax rules (#26 - #45) facilitates the analysis and the evaluation of
the (BIT | CHAR | NUM) -value of a given symbol-list.

Chapter C: Commentary to Part II

IB LAB VIENNA C-42 TR 25.139

symbl list of CHAR-VALs

46 symbl-to-val

pred predicate of the form is-X, where X is a syntactical category name. pred

is:

is-c-const if function called by eval-expr
{evaluation of constants),

isS-c-pum-str if function called by conv
{convert character value to arith),

ig=-c-prop-num-str 1f function called by comv-to-char.

Parsing is performed on a symbol-list, which is checked against the predicate pread,
and the value from the value set VAL corresponding to the list symbol is evaluated.

49 parse

Determines that uniqﬁe tree of the syntactical category crconst whose terminal
string (derived usimg term-str} is the list symbl. Note, that the grammar is

\

unambigquous according to the rules of abhstract syntax.

47 test-and-correct

Returns the character value 1list symbl if it c¢an be parsed according to the
syntactic category defined by pred. Otherwise a corrected string is returned, Hore
precisely: In the latter case the condition CONVY iz raised. If it returns a
corrected string using the QNCONY pseudovariable then the test against pred is
repeated with the new string.

Chapter C: Commentary to pPart II

IBM LAB VIENKA c-43 TR 25.139

44 Wrong-pos

Returns an integer in the range 0 to 1 symbl,

It the string syebl can be parsed according to the syntactic category defined by

pred, 0 is returned.

Otaerwise the first errcneous character position is returned. flore precisely: either
the position in syebl <from which point npo syntactical correct continuvation
{contorming to pred) exists, 1s returned or if symbl has a syntactically correct
continuation, but it is incomplete, then the leagth of symbl is returned,

57 normalized

B number of digits of the FLOAT representation of nunm

Tests 1t +the 1list symbl corresponds to the edit rules for PFLOAT to character
conversion, which are not expressed by the syntax (#26 - #45).

58 cecrrect-prec

Same as normalized but for PIXED.

Chapter C: Commentary to Part IT

IBYM LAB VIENNA C-4y4 TR 25.139

IHIS PAGE HAS BEEN INTENRTIONALLY LEFT BLANK.

C'hapter C: Commentary to Part II

IBM LAB VIENRA

arg

arith
arith-op
array-dd
array-edd
array-pdd
arra¥y-sdd
ass-st

base

based
bif-Tet
bin-digit

bl

bp

by~Tef-var
c~arith-const
¢-bin~-const
c~bin-intg
c=-bin-num
c-bin-rat-num
c~bit-str
c-blanks

‘c-char-str

c-const
c~dec-const
c~dec-nan
c-dec~rat-num
c-intg
c~num~str
C-prop~num-str
c-scale
c~scale-type
c-s5ign
c~string-spec

call-st
c¢lng
close-st

comp-cond~nm
comp~tp
cCompar~op
cond-bif-nnr

D1
b1
b1
D1
Di
F5
D1
D1
1N |
5
FS
F5
F5
F5
F5
F5
F5
F5
F5
F5
F5
F5
F5
F5
F5
F5
E5
F5
D1
b1
b1
B1
D1
F5
P

53
58
24

13
10
33
113
52
25

70
30
39
15
69
35
36
39
37
38
29
32
27
26
41
42
43
44
31
33
40
45
an
28
46
93
92
.58

22

71

cond-nm
cond-pref
cend-pv

const
ctld-grp

decl

dd

det

delete-st
distr-bit-nm
distr-bit-ref
dtp

ebp

edd

entry
entry-ret
environment
evd-cond-nm
evd-init-clenm
evd-io-copd-nnm
evd-iterated-init
evd~simple~init
eX-unit

eXpr
ext-entry
eXtent
tile-const
filerctl-st
tile-descr
file~ref
free-st
get-st
goto-st

if~st
ignore-inf
index
inf-expr
inf-~op
init-elen
into-inf
rfo~cond

io-st
iter-grp
iterated-init

TR 25.

o1
p1
D1
1
B1
D1
D1
D1
D1
D1
D1
D1
D2
D2
D1
”
ol
D2
F2
D2
F2

F2.

D1
D1
B1
]
B
B1
B
B1
D1

B1.

D1
D1
D1
D2
D1
D1
D1
D1
D1
Di
D1
D1

139

55
57
83
84
41
3
12
8
98
74
72
21
11
9
31
78
107
117
20
118
22
21
37
59
10
16
111
86
94
110
54
100
48
45
104
15
60
61
18
102
109
85
40
20

Chapter X: Cross-Reference Index

IBM LAB VIENNA

key~int
keYto-int
lab-ret
laYout-inf
locate-st
nix-op
nnd=-const
nmd-const-ref
nrd-ic-cond

non-comp-tp

non-distr-bif-nm

non~distr~bif-ref

ncn-ic-cond-nm
non~iter-grp
on-st
open-st

opng
ou~ENTRY~VAL
parm

pdd

Prec
pref~expr
pref-op

proc
proc~tct-ref
proc-ref
Prog

Prop-st
prop-var
ptr-~set-inft
put-st
pv-ref
read-st
record-st
ret-st
rev-st

re¥rite-st

" sc~-dd

sc~edd
sc-pdd
sc~sdd
scale
scomp~tp
scope

Chapter X: Cross-Reference Index

Di
D1
ol
D1
D1
F5
D3
D1
D1
D1
DA
D1
D1
D1
D1
D1
D1
D2
D1
D1
D
D1
D1
D1
D1
m
D1
b1
D1
D1
D1
D1
D1
D1
D1
m
D1

D1

D2
D1
D1
B1
D1
D1

105
106
77
91
99

76
108
23
75
73
56
43
44
89
20
116

32
27
62
63

&7
W

38

103
101
82
95
87
49
30
37
17
13
36
115
26
117
11

sdd

sdtp

sentry
Sig-st
simple-init
snon~-conp~tp
static~-cl
stg-pv-na
stg-pv-ref
str

str-edd
str-sdd
str-tp
strean-st
string-op
struct-dd
struct-edd
struct~pdd
struct-sdd
subscr
substr-class
targ-ref
uid
unit-pdd
val-ret
var-ret
varity
vh-only-grp
write-st

AA

AID
ARRAY-LOC
ARRAY-VAL

‘ATH-LOC

BASED-DEN
BIT-LOC
BIT-STIR~LOC
BIT-STR-VAL
BIT-VAL
BL-ENV

CBIF
CHAR-LOC
CHAR-STR-1OC
CHAR~STR~VAL

TR 25.139
D1 112
D1 116
91 119
D1 51
D1 19
D1 118
Pt 5
D1 81
D1 80
p1 28
D2 4
D1 120
D1 29
D1 88
F5 8§
D1 14
P2 12
p1 35
51 114
D1 66
F5 10
D1 79
D2 106
D1 34
D1 64
D1 65
D1 30
D1 42
D1 96
D2
D2
D2 49
D2 22
D2 60
B2 112
D2 58
D2 54
D2 27
D2 30
D2 113
B2 119
p2 57
p2 53
2 26

IBM LAB VIENRA

CHAR~VAL
CHP~LOC
CHP-VAL
DEF~ DEN
DEN

DS~-10C
DS=-VAL
ELEM~LOC
ELEN-YVAL
ENTRY-VAL
ERV

ENV-t

" ES
FILE-VAL
FS

K- VAL

LAB- VAL
LoC

NOM

KOH- VAL

OE

PA
PROP~PTR= VAL
PTR~ VAL
REC-LOC
REC-VAL

3

5C-L0OC
SC-VAL
STR-LOC
STR- VAL
STREAN-VAL
STRUCT-LOC
STRUCT-VAL
VAL

1-LOC

b2
2
b2
b2
b2
D2
D2
D2
D2
D2
D2
D1
D2
bz
D2
D2
D2
D2
D2
D2
b2
b2
D2
D2
D2
D2
D2
b2
b2
D2
D2
B2
D2
D2
b2
D2

29
59
38
111
110
99
101
56
31
35
109
121
98
37
105
104
36
48

33

32
115

80
34
100
102
87
51
24
52
25
143
50
23
21
13

-3

TR 25,139

Chapter X: Cross-Reference Index

IBM LAB VIENRA

addr
alloc
apply~and—-conv
approx
arith-rep
'array~1oc
assign
asterisk-~1
atm-locs
augm-index~lists
augm-indices
based~loc
basic-bin~-val.
basic-bit~val
basic-~char-val
basic-dec~val
bagic-num-val
bin-tix~sdd
bit-str-sdd
bl-env
bl=epilogue
c~Adci~tp
c-entry
c-uid
ceil
char~-gtr-sdd
conp-loc
coap~-val
compar
complete-pdd
comppose-indl
concat
cond-comnment
cond~inpl-def-act
constr-log
cont
conts-no~inits
conts-no-refers
conts~restr-exprs
conts-scomp-tps
conv

‘Chapter #: Cross-Reference Index

F5
D2
D2
F5
5
F5
b2
D2
b1
D2
b2
b2
F2
F5
5
F5
F5
rd
b1
B1
Dz
Fi
D1
D1
D2
rs
D1
b2
p2
F5
1
F2
FS
rg
¥y
D2
bd
D1
o1
D1

D1,

F5

62
81
92

13
¥4
67
96
146
1
18
16
10
54
52
51

53
123
124
114

144
145
107
64
125
64
46
14

36
20
11
12
82
95
157
156
154
136
22

conv-prec
conv-to~bit
conv-to-char
conv~to~str~ag
correct-prec
cle-~int-ex-unit
cue-int-ex~-unit~list
cue-int-if-st
cur=-cond-prefs
cur-length
cur-parts
dd-to~-sdd
der-arith
der-bit-1len

der-bhs
der-~char-len
der~str-sdd

der-tp
digitl-to-intg
distr-el-sdd
distrib-op
distrib-substr-pv
el-gdd

entry-match

entryl
eval-auto~-dcl~tp
eval-based-dcl~tp
eval-comp-expr
eval~comp-restr-expr
eval-cond-bit
eval-dcl

eval-dd
eval-def-dcl-tp
eval-expr
eval~-extent
eval-init-elem-list
eval~l-hased~ref
eval-li-cond~pv
eval-1l-def~raf
eval=-l-prop-ref
eval-l~ref
gval-l-stg-pv-zef
eval-l-var~ref
eval-non-distr~hif

TR 25,139
D1 139
F5 23
F5 25
F5 19
FS 58
F3 2
3 6
F3 12
F4 15
D2 97
D2 89
D1 127
D1 142
F5 70
Di 138
F5 69
D1 140
F5 68
TS5 56
D1 130
FS 3
F2 19
D1 129
F1 6
D1 126
F2 5
r2 7
FS 1
D1 160
F4 13
F2 1
F2 28
F2 16
FS 2
F2 29
F2 26
2 13
T4 14
F2 17
2 6
F2 2
r2 18
F2 3
r5 18

IBH LAB VIENKA

eéval-prec-bifs
eval-proc-dcl
eval-proc-ref
eval-restr-expr
eval-static~dcl=-tp
eval~subscr-list
eval-targ-ref
eval-truth
eXtend
extend-AA
extract-cprefs
tile~id
tind-new-lcc
tirst
floorx
tree
tree~dummy
gen-comp-edd
im-cprefs
im-embr-eubl-proc
indices
init-comp
init-refer-obsg
init-sc-parts
initialise-state
int-alloc-st
int-ass-st
int-pl
int-bl-t
int~call-st
int-ex-unit
int-~ex-unit-list
int-tree-st
int-goto-st
int~-if~-st
int~init
int-ipit-wh-do
©int-io—-st
int-iter-grp
int-on~st
int-prog
inpt-prop-st
int-ret-st

int~rev-st

D3
F1
F1
D1
F2
F2
F3
F3
D2
D2
i
D2
D2
F5
F5
D2
F1
F5
F4
Fi
D2
F2
F2
F2
D2
F2
F3
F1
F1
F1
F3
F3
P2
F3
F3
F2
F3
F6
F3
Fi
F1
F3
Fi
Fi

132

159

31
16
13
91

17
108
93
61
63
94
10

16.

19
17
27

24

14
15

[I S B Y

15

11
23
10

P~ R - . T~ G Y

int-sig-st
int-step-do
integer

intg-sdd

intg=~typ
is-all-str
is-compatible
is-conn
is-contained-1ab
is-defined-val
is-enab

is~-indep
is-instance
is-1l-to-r-edd
is=-1~-to-r+loc
is~pros~-conv
is-reter-geon
is~-restr-expr
is~starless
is-unigue~cprefs
is-unigue-ids
is-valid-index
iter-ex-upit-list
l-cross-sect
l=-edd

I-indices
l~ordered-indices
labels
left-struct-part
locs

match
merge-cprefs
mnix~res
nk-3TR-LOC
nk-STR-VAL

nn
nop-distr-el-sdd
normalized
nup-res

num-val
oncode-val
ordered-atm-locs
ordered-sc-locs
ou~entry~val

TR 25,

Fy
F3
F5
D1
F5
b2
D1
D2
F3
D2
F4
D2
F2
b2
D2
B1
b1
D1
D1
D1
D1
D1
F3
D2
b2
D2
D2
D1
F2
D2
D1
F4
F5
b2
D2
D1
D1
F5S
F5
¥5
¥4
b2
D2
F4

139

60
122
65
20
135
11

40
20
4
11
78
79
134
155
153
158
150
151
152

65
61
62
63
148
12
90
137
18
17
55
28
141
131
57
11
59
10
70
68

Chapter X: Cross-Reference Index

IBM LAB VIERNA

pacse
parts

pdd-to-sdd

prom-ass

PLOR-CONV

put-page
raise-comp-cond
raise-cond
raise-conv
raiseQevd—io-cond
reters
rel-evd-io~-cond~nms
restrict-alh

ret-sts

sc-el-sdd
sc-indices

sc-locs
select-field

sign

str-vals

string~res

sub-loc

substr-res
symbl-to-val
system-ou-entry-val
term-str
test-and-correct

test-and~correct-bhit-str

udf-val
v-augn~indices
v=Cross-sect
v-indices
v-ordered-indices
values

width

¥Xrong-pos
COLL-3EQU

‘Chapter X: Cross~Reference Index

5
D2
Dl
F3
F5
¥6
Fy
Ty
F4
Ry
F2
B1
B2
B1
D1
F2
nz2
p1
¥5
D2
F5
b2
F5
F5
FYy
F5
F5
¥5
D2
b2
D2
D2
D2
D2
D2
F5
F5

49
83
128

%]

=Y - = R RV N e

149

147
133
25
69
143

67.

42
16
66
15
4o

50
87
24
39
43
47
4y
45
41
19
48
66

TR 25.139

