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1 INTRODUCTION

The existence of formal definitions of programming languages in-
vites attempts to find a more systematic approach to the design of imple-
mentations. In particular, the work described below adopts the ap-
proach of isolating common parts of programming languages, modelling
possible implementations on different levels of abstraction and exhi-

biting the correctness of such implementations.

The so-called Vienna Method is a collection of techniques based
on abstract machines which interpret programs. These techniques are
also used to define the implementation methods. The proof that an
appropriately defined equivalence relation holds between the defining
and implementation machines establishes the correctness of the

latter.

From the subjects so far investigated the block concept has been
chosen to provide the example for this paper. The implementation method

considered is the well-known display method.

All notaticon used is introduced in the next chapter, thus

making the paper self-contained.
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2. METHOD AND NOTATION

An attempt has been made to minimize the use of unconventional
notation. However, some of the notation used in the Vienna definition
work proved to be useful even for the simple example presented in this
paper. To make this paper self-contained this notation is introduced
in section 2.1 below, as far as necessary, a more detailed expositicn

can be found in /Lucas, Walk 1969/.

2.4 Objects

Objects are either composite or elementary. A set of elementary

objects is presupposed, natural numbers and certain sets of names are
examples of elementary objects used in this paper (see section B2,
Composite objects can be considered as finite tree structures with
elementary objects at the terminal nodes. Branches are named with the
restriction that two branches starting from the same node must not have
the same name. Names of branches are called selectors. Subtrees of a
given object are called components. Components directly attached to the

root of a given tree structure are called immediate components.

The composite object with zero components is called the null

object and is denoted by ().

Selectors are used to select components from given objects. Let

s be a selector and x an object then:
s(x) denotes the immediate component of x whose name is s.

1f there is no such component, including the case that x is an
elementary object, then s(x) = ().
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The selection of components may be iterated, e.g. s1(s2(x)) de-
notes the sl compcnent of the s? component of x.

Predicates over objects are defined in an obvious notation (see

/McCarthy 1862/). An object is said to be of a certain type if it sa-
tisfies a corresponding predicate.

In the sequel some objects will be used to represent mappings

from certain finite sets into finite sets. By analogy with the terms

used for mappings one may talk about the domain D(x) and the range
R(x) of a given object, where:

D(x) 7. {s | s(x) # Q%
RGO 50 {560 | sty # Q7.

For example:

let x = _///M\\\
i b \‘\
s1 59 saisd &9
\
/ | .
i X2 . X
Dix) = f51; B82; suep8n ) o RIXY B §51, X2,..4x0}

As a consequence: R() = D({}) ={}

To remain in the present framework of objects, lists cap be
considered as objects whose immediate components are named by a sub-
set of the natural numbers. However, in this paper elements of

listsare referred to by the conventional subscript notation.

2w
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The follecwing conventions are adopted for non-empty lists L:

let L = <L, L__ s eeus Ly>
1(L) Fg D length of the list
top(L) ¢ Lp
rest(L) Fe <bpoqs +ers b
for 41 £ 4 £ B3
rest(L,i) 3f <Li, Li—i""’L1>

The following consequence is used:

(N1) for L1 = rest(L2) & 2 < i < 1(L1):
rest(L1,i) = rest(lL2,i)

2.2 Abstract Machines

For the present purpose an abstract machine is defined by a

set of initial states and a state transition function,f(tx,E), which

maps program texts, tx,and states into states.

A computation for a given initial state %1 and a given program

text tx 1s a sequence of states:
gl, %2, 6% e b El, §l+1, c such that 31*1 = f(tx,gl)

The set of all possible states which the machine can assume is
the set of all states occuring in computations of arbitrary initial

states and program texts.

The state transitions of the underlying machine for chapter 3
will not be defined explicitly by a function but will only be con-
strained by certain postulates. This is because the paper is not about

a specific language but a common part of many languages.
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D Twin Machines

The definitions of both the language part and its implementation
are specified by abstract machines. For the purpose of proving certain
equivalences between such machines /Lucas 1968/ introduced the approach
of combining the two machines into one, a so-called ‘twin machine .
Combining two machines into a twin machine means assembling the state
components of the two machines into state components of the twin ma-
chine and defining the state transitions accordingly. The equi-
valence problem can then be formulated as a property of the states of

the twin machine.

2.4 Notation Summary
logic: sets:
= not E element of
& and £ not element of
v or U union
= implication n intersection
v universal quantifier < subset or equal
E] existential quantifier {} empty set
conditional expressions:
(prop — exprl,expr?) if prop then exprl else expr?2
objects:
s(x) s component of x

for: s is a selector

X 1s an object

L identity selector (I(x) = x)
£2 null object

2.4
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R(x) range of x (Definition {s(x) | s(x) £ 0
D(x) domain of x (Definition {s | s(x) # QP

tpl & tp2 tpl immediately contained in tp2

(Definition see section 3.1.1)

naming convention:

B= _wwi selector name

18~ e wn predicate name
lists: let L :.<Ln’ Ln—i’ T L1>
1(L) length(=n)

top(L) Ln

rest(L) <Ln_1, 5 L1>
rest(L,i) = <Li’Li-1’ ,L1>

TR 25.:110
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3 DEFINITION AND IMPLEMENTATION OF THE BLOCK CONCEPT

This chapter presents a definition of the block concept as first
introduced into programming languages by ALGOL 60 /Naur et al., 1962/
and a proof of correctness of a formulation of the stack mechanism

used in the first complete implementations /Dijkstra 1960/.1)

The programming language under consideration is assumed to in-
clude the concept of blocks and procedures, and the possibility to
pass procedures as arguments. Go to statements and general call by name

are not considered in order to avoid burdening the proofs.

The definition of the block concept is derived from the formal
definitions of PL/I and ALGOL 60 /Walk et al. 1969/, /Lauer 1968/.
However, for this paper the structure of programs being interpreted as
well as the state and state-transitions of the abstract machine are
specified only as far as is necessary to establish the subsequent proofs.
This definition therefore illustrates the essentials of the block con-
cept and the assumptions about the language necessary to guarantee the

applicability of the stack mechanism.

The stack mechanism itself is also formulated as an abstract ma-
chine which,in the opinion of the authors, expresses the essential pro-
perties of this mechanism. No attempt is made to make the ad-
ditional step from the general result to an actual machine implementa-

t1om:

The proof of correctness is based on the twin machine, specified
in section 3.1, which combines the defining machine and the stack

mechanism.

see also /Van der Mey 1362/.
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The emphasis of the chapter is on the technigue used to specify
the block concept, its implementation and on the proof of correctness.
The end result has been known for many years but, apart from being an
example of formally proving implementations correct, the proof indi-

cates an argumentation which could be used informally in lecturing on
the subject matter.

81 The Defining Model and its Implementation

3.1.1 The structure of programs

For the purpose of the present paper it is sufficient to state
that programs form a completely nested structure of blocks and proce-
dure bodies. A program is itself a block which is referred to as the
outermost block. More precisely, programs are objects of type is-block
containing possibly nested components of type is-block or is-body.

1)

Selectors to components of programs are called text pointers

(tp). Consider a program, tx, and the set of all textpointers to blocks

or procedure bodies of that program BPtx' The text pointer to the entire

program is I and I e BPtx since programs are blocks.

The relation of the block pointed to by tpl being immediately
contained in the block pointed to by tp2 is written:

tpl & tp2 for tpil, tp?e;BPtX

1 Note that these are composite selectors, i.e. any selectors

sl, 825..., Sn may be combined to form a comEosite selector
slesZ¢.,..25Nn where:

sleg2e,.,.08n(x) B s1(s2(...(sn(x))...))
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Since blocks and procedure bodies are completely nested, each
tols Trl eBPtX & tpl # I, has a unique tp2 such that tp2€.BPtX and
tpl & tp2. Thus, for any given tpil, tple,BPtX, there is a unique

chain of predecessors ending with I:

tpl == tp2 &= . &= I
For each block or procedure body there is a set of identifiers:

ID(tx,tp) for is-block(tp(tx)) v is-body(tp(tx))

called the set of locally declared identifiers.

It is not necessary for the present purpose to state the attri-

butes which can be declared with the identifiers nor how these attributes

would be associated with the identifiers.

A pair (id,tp) is called an occurence of the identifier id in tx

if tplts) = 1ds

An occurence is said tc be immediately contained in a block or
procedure body, tpl, if its pointer part is contained in tpl but is not

contained in any block or procedure contained in tpl.

3.1.2 States of the twin machine and their significance

The set of states of the twin machine (i.e. defining model) is the
set of objects generated from the set of initial states by the state
transitions(both initial states and state transitions are characterized
in section 3.1.3). It would not be necessary to characterize the states
in any other way. However, it seems advantageous to give a layout of the
Structure of the states and talk about the significance of the indivi-
dual components of the states. Only certain components of the state are
relevant for the present paper, therefore only the properties of these

components need be fixed.
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Like any other object, states are constructed from elementary

objects and selectors and these are now specified.

Elementary objects:

N ... natural numbers and zero
UN ... infinite set of names (referred to as unique names)™ )
TP ... set of textpointers
Selectors:
ID i3« Bet of identifiiers
UN ... set of unique names 1)

In addition the following individual selectors are used:
s-d, s-dn, s-U, s-tp, s-e, s-eo, s-epa. As mentioned in chap-
ter 2 natural numbers can be considered as selectors for

elements of lists.

The states of the twin machine satisfy the predicate is-state as
defined below (in the style of /McCarthy 1962/).

(81) is-state(g) = (is—dump(s—d(%)) &
is—dendir(s-dn(%)) &

s—U(g) c UN)

< 1(d)

A

(S2) is-dump(d) > is-de(d;) for 1 < 1

(S3) is-de(de) = (s-tp(de) e TP &
is-env(s-e(de)) &
is-env(s-eo(de)) &

s-epa(de) ¢ N)

1 note the double role of unique names.

= P
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(s4)

(S5)

DEN

(S6)

Let g

is-env(e) o (D(e) < ID) & (R(e) & UN)

¢ UN) & (R(dn) ¢ DEN)

is-dendir(dn) = (D(dn)

is the set of all possible denotations, only procedure denota-

tions are further specified.

is-proc-den(den) > (den ¢ DEN) &
s-tp(den) e TP &
is-env(s-e(den)) &

s-epa(den) e N)

Comments on the significance of the state components:

be a state (see S51):

s-d(E) list called dump which corresponds to the dynamic
sequence of block and procedure activations. The
top element top (s-d(E)) corresponds to the most

recent block or procedure activation.

s-dn(%) denotation directory which associates unique names
with their corresponding denotations, i.e. the deno-
tation of a given unique name u is u(s-dn(§)).

s-U(E) set of unique names used so far.

Let de be a dump element (see (S3)): such a dump element corresponds

to a specific activation of a block or procedure.

s-tp(de) text pointer to the block or procedure
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s-e(de) environment which contains all referenceable iden-
tifiers of the block or procedure'and their
corresponding unique names for the specific acti-
vation. Thus if id is a referenceable identifier

then id(s~e(de)) yields its associated unique name.

s-eo(de) environment which contaias all local identifiers
of the block or procedure and their corresponding

unique names for the activation.

s-epa(de) natural number which is the index of the dump
element corresponding to the environmentally pre-

1)

ceding block cor procedure.
Let den be a procedure denotation:
s-tp(den) pointer to the body of the procedure

s-e(den) environment which resulted from the activation of

the block which declared the procedure

s-epa(den) the index of the dump element corresponding to the
block activation in which the procedure was de-

clared (environmentally preceding activation).

All s-e components are used exclusively by the defining model
and all s-epa and s-eo components are used exclusively by the imple-

mentation model. The other components are common to both models.

o Sometimes called statically or lexicographically preceding. The

term environment chain is also used below in preference to the
alternatives.
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The defining model is constructed with the copy rules of ALGOL 60
in mind (i.e. name conflicts of identifiers are resolved by suitable
changes). The model deviates slightly from the copy rules in that new
names are introduced for all identifiers and not only in cases where

conflicts actually occur. Moreover the program text is not modified:
instead the correspondence between identifiers and the new names in-

troduced for them 1s recorded in the so-called environment. All infor-
mation which may become associated with an identifier during computa-
tion (e.g. values of variables, procedures, etc.) is recorded in the
denotation directory under the corresponding unique name. The set UN
serves as the source for the unique names to be generated and the
component U of the state contains all names already used. Procedure
denotations are composed of a text pointer to the body of the procedure
and the environment which was current in the activation which intro-
duced the procedure. Procedures are passed to parameters by passing

their entire denotation.

The implementation model only keeps the local identifiers and
thelr unique names for each activation. The so-called environment
chain, established by the s-epa components of each dump element, per-
mits reference to all referenceable identifiers. With this mechanism
procedure denotations can be composed of the procedure body and index
of the dump which corresponds to the activation which declared the

procedure.

3.1.3 Initial states and state transitions

For convenience some additional notational conventions are in-

troduced:
d fe s—d(g) thus d; 1s the i-th element of the dump of 3
dn 5. s=dn(g)

U fir S-U(%)
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Components of the top element of the dump of g:

P o s-tp(top(d))
e o s-e(top(d))
€0 Re s-eo(top(d))
epa = s-epa(top(d))

An arbitrary computation is a sequence of states:

e B a s B

where
% 1 ... arbitrary initial state
%Il ... state after n steps of the computation

If possible superscripts are avoided by using %,‘g' instead of
n+l

n
%
Finally the above rules for abbreviating components of % may

analogously be applied with superscripts, e.g.:
e' = s-e(top(d')) where d' = s-d(§')

For the initial state of the twin machine it is assumed that the
outermost block has been activated and that this block has no decla-
rations 1). This means that the current text pointer, tp, points to
the entire program, that there are no referenceable identifiers (empty

environment and denotation directories) and that there are no used

unique names.

1) : . . . .
This is not a serious restriction because one can always embed

programs in such a block,
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An intial state %} has therefore the following properties:

(1) 1@ =1
(T2) tpr = I
{(T3) ei = 0
(T4) eot = Q
(T5) epa1 =0
(T6) dnt =0
(r7) Ul ={}%

The initial state may also depend on the given input data for
~ the program to be interpreted. However, this fact is irrelevant for

the present discussion.

The following postulates on the state transitions are an attempt
to characterize only block, procedure activation and the passing of
procedures as parameters whilst avoiding restrictions of the considered
class of programming languages with respect to other concepts and fea-
tures they might contain. In particular, only a few assumptions are
made about how the machine proceedes to interpret a given program text,

e.g. no statement counter is mentioned in the postulates.

For a given program text, tx, the machine starts a computation

with a certain initial state. The possible transitions from one state

to its successor
For mathematical
is said to stop.

to terminate the

state are constrained by the following postulates.
reasons there is no condition under which the machine
Instead, when in a given state the attempt is made

outermost block this state is repeated infinitely

many times, so that in the proof only infinite computations have to

be considered.

3eted
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Four cases of state transitions are distinguished:

1. block activation (including the treatment of locally declared

identifiers);

24 procedure activation (including the passing of arguments,in

particular of procedures);

3. termination of blocks or procedures;

b, other state transitions.

Block and procedure activation have much in common so that it

seems worthwhile to factor out these common properties.
The postulates refer to the transition from § to §'-

Common part of block and procedure activation:

In either case there is a text pointer, tp-b, to the block or
procedure body to be activated. In the case of blocks there is no
specified way in which tp-b comes into existence because the way in
which interpretation proceeds is left in general unspecified. For
procedure activations tp-b is part of the denotation of the procedure
identifier which caused the call. ID(tx,tp-b) yields the set of local
identifiers declared in the block or the set of parameters of the pro-
cedure body. An auxiliary environment, eo-b, is constructed from the
set of local identifiers by associating new unique names (which are at
the same time recorded in the set of used names) with identifiers
in the set. This auxiliary environment is then used as the new local
environment and for the updating of the environment of the defining

machine.
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Given: tx, tp-b

Auxiliary environment eo-b:

(T 8)
(T 9)

I(eo=<h) = ID(txytp-b)
R(eo-b) N U = {}

State components:

(T10)
(T11)
(T12)
(T13)

(T14)

Comments:

ad (T9):

ad (T10):

ad (T13):

rest(d') = d

tp' = tp-b

ec'! = eo-b

for ueU & is-proc-den(u(dn')):
u(dn') = ud(dn)

U' = R(eo-b) vy U

This postulate only guarantees that the unique names used
in the auxiliary environment are really new (not in the set
of used names). This is sufficient for the proof although
to model ALGOL 60 or PL/I correctly one must also guaran-
tee that each identifier is associated with a different

new name.,
Notice that this also ensures that 1(d') = 1(d) + 1.

Guarantees that procedure denotations in the new state k!
having old names have not been modified in any way. The
postulate is sufficient in this form for the proof although
it permits deletion of existing procedure denotations upon
activation. For a complete model of ALGOL 80 or PL/I this
would not be the case. No assumptions are made about deno-

tations other than procedure denotations.
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For block and procedure activations it is necessary to create
a new environment from a givén one and the auxiliary environment con-
taining the newly declared local identifiers of the block or procedure.
The new environment is supposed to retain all the identifier - unique
name pairs unless the identifiers are redeclared. This is achieved by

the function "update" defined below.

Definition:

(D1) wupdate(el,e2) = e3
id ¢ D(e2) — id(e2)

such that: id(e3) =
id ¢ D(e2) —= id(el)

for: is-env(el) and is-env(e?2)

The following immediate consequences will be useful:

(C1) D(update(el,e2)) = D(el) v D(e2)
(C2) R(update(el,e2)) € R(el) v R(e2)

n

The rest of the postulates can now be given.

Block activation:

Given: tp-b, the text pointer to the block to be activated.

i is-block(tp-b(tx))
(T16) tp-b «— tp

State components:

(T17) e' = update(e,eo-b)
(T18) epa' = 1(d)
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(T19) for ue R(eo-b) & is-proc-den(u(dn')):

a) s-tp(u(dn')) &= tp-b

is-body(s-tp(uldn’)) (tx))

b) s=-e(u(dn')) = e

c) s-epa(ul(dn')) = 1(d")

Comments:

ad (T18):

For blocks the dynamically preceding activation is also

the environmentally preceding one.

ad (T19): This postulate takes care of the procedure denotations that

may have been introduced by local declarations within the

Dlock.

Procedure activation:

Given: id-p, the identifier of the procedure to be activated.

(T20) id-p e D(e)

CFPL) is-proc-den(u-p(dn))
Abbreviations:

CIFEZ) u-p = id-p(e)

tp-b = s-tp(u-p(dn))
e-p = s-e(u-p(dn))
epa-p = s-epa(u-p(dn))

State components:

(TZ3) e' = update(e-p,eo-b)
(T24) epa' = epa-p

3.1.3
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£T25) for ue R(eo-b) & is-proc-den(u(dn')):
Jul(ul e R(e) & uldn') = ui(dn))

Comments:

ad (T24):
The environmentally preceding activation is the one in which
the procedure was declared and its denotation introduced.

ad (T25): Parameters are treated as the only local identifiers in-

troduced by procedure activations. The postulate is con-
cerned with passing procedures as arguments to parameters.

No further assumptions are made on argument passing.

Termination of block and procedure activations:

1¢(d) > 1:

(T26) d' = rest(d)

(T27) for ueU & is-proc-den(u(dn')):
uldn') = u(dn)

(T28) u' = u

Id) = 1z

(T29)  £' = §

Comments:

ad (T29): This case can be interpreted as an attempt to close the
outermost block, i.e. the end of program execution. In this
case, the state is repeated indefinitely in order to make

all computations infinite.
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Otner state transitions:

(T30) d' £ 4

(T31) for ueU & is-proc-den(u(dn')):
u(dn') = u(dn)

(T32) U' = U

3:2 Fermulation of the Equivalence Problem

The equivalence problem in question is concerned with the reference
to identifiers, more precisely with the interpretation of the use of

identifiers in the given program text.

It is assumed that reference to an identifier only ever involves
reference to or change of the corresponding denotation in the denotation
directory. Thus the environment in the defining model and the local en-
vironment and epa component of the implementation model are solely au-
xiliary devices to make the reference to the denotation directory poss-

ible. The unique names are irrelevant except for this purpose.

Therefore, the two reference mechanisms are considered to be
equivalent if for any given state they yield the same unique name for
any identifier, thus relating any identifier to the same entry in the

denotation directory.

Reference mechanism of the defining model:

The unique name which corresponds to a given referenceable iden-

tifier id for some state § is simply:

id(e) for id e D(e)
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Reference mechanism 1 for the implementation model:

The simplest way to get the unique name for a given reference-
able identifier, using the implementation model, is to search along
the environment chain to find the activation which introduced the iden-
tifier and its unique name. Two auxiliary functions 1 are introduced
to accomplish this: the function s(id,d) which yields the number of
steps.along the environment chain to the activation which introduced
the identifier; the function index(n,d) which yields the index of the

dump element n steps back along the environment chain.

(D2) s(id,d) = (id e D(eo0) —™ 0, s(id,rest(d,epa)) + 1)
(D3) index(n,d) = (n = 0 S X ¢ - index(n-1,rest(d,epa)))

where: epa
eo

s-epa(top(d))
s-eo(top(d))

The actual reference mechanism is:

id(s-eo(d.

lndeX(S(id,d),d))) for ide D(e)

Thus the first equivalence problem is:

for ide D(e):

id(e) = id(s"eO(dindex(s(id,dJ:d)))

This result is proved as Theorem I in section 3.4.

Assumption:

It is assumed that occurences of identifiers are only interpreted
if the block or body which immediately contains them is the QU -

rent one (see section g:1:2),

1) : : . .
secu?S}ve  functions which rely on the environment chain are
Justified because Lemma 7 holds.
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Under this assumption it turmns out, as expected, that s(id,d) de-
pends only on the given program text, i.e. the number of steps which
will need to be made along the environment chain can be statically de-

termined for each use of an identifier {(see Theorem IIT).

Reference mechanism 2 of the implementation model:

This mechanism differs from the previous one in the method by

which the index of the required element is computed.
A list called disp (for display) is introduced which contains
indices of the dump elements of the environment chain. The display is

used to determine the actual index for a given identifier.

Definitions:

(D4) le(d) = (epa = 0 — 0, le(rest(d,epa)) + 1)
where: epa = s-epa(top(d))

(D5) depth(id,d) = le(rest(d,index(s(id,d).d)))
(D6) dispi = index(le(d)-i,d) for Q ¢ i ¢« le(d) - 1

The seceau refarence mechanism 1is:

id(s-eo(d )) for ide D(e)

d18Pyepth(id,d)

The second equivalence problem is thus:
for ide Die):
id(e) = id(s-eo(d.. ))
dlSpdepth(id,d)

This result is proved as Theorem II in section 3..4.
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The function depth is, under the above assumption, only a func-
tion of the program text (see Theorem III) as explained in /Dijkstra

1960/ who also introduced the display.

_ The display is usually kept as a state cemponent and must be
updated. It is sufficient but not always necessary to update the dis-
play every time the dump changes. The subject of optimization is dig~
cussed in /Henhapl, Jones 1970/.

The question may arise as to how relevant the presented implemen-
tation model is to actual implementations. Implementations as usually
described (e.g. /Randell, Russell 1964/) do not use unique names and
denotation directories but instead keep the information directly in
the dump (stack). They use relative positions within each dump element
instead of identifiers for access. Furthermore, procedure denotations,
except for parameters, have not to be kept in the dump at all since the
text pointer can be computed statically and the index of the environ-
mentally preceding. activation can be computed in the same way as is

already done for all other identifiers.

These deviations can be overcome by the following simple consi-
derations. It is assumed that each identifier when first introduced is
assoclated with a unique name different from the unique names chosen
for all other identifiers. It follows that a unique name occurs at most
once in the local environments of the dump. Therefore the indirect step
via the unique names is unnecessary. Since the only interesting entries
of the denotation directory are those referred to by names occuring in
some local environment of the dump, one can omit the denotation direc-
tory altogether and associate denotations directly with identifiers in
the local enviromment. The introduction of relative positions instead
of identifiers amounts to a trivial local change of names. The usual
implementation where references are made via the integer pair (depth
of nesting, relative position) is therefore_derlvable from the present

model,
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Apart from the final models being close to actual implementa-
tions, the lemmas and theorems give a clear insight into the structure

of the state components and their relations.

8.3 Proof Principles

The basic proof principle in the subsequent proofs is induction
on the number of steps of computations, i.e. a proof P(%n) for all n

could in general take the form:

basis: P(El)
induction step: a) P(En) = P(§n+1)
| or b)YV P(E™ = pE™

m<n

To prove the induction step it is in general necessary to make
four case distinctions according to the distinguished types of state

transitions.

If the property to be proved is a property of the dump component
alone, P(dn),it is valid to use induction on the length of the dump.

To show this, the following two auxiliary lemmas are useful:

(L1) for 1 ¢ i < 1(d™):
Im(d™ = rest(d™,i) & 1 ¢ m < n)

1l
[N

(L2) rest(dn,l)

Both lemmas can be proved by induction on the steps of computa-

1)

EIONS,

e It is felt that that inclusion of the detailed proofs at this point

would detract from the development of the section. The interested
reader may find them in Appendix I.
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One can think of the set of all possible dumps as being generated
from the dumps of the initial states and the state transitions correspond-
ing to block and procedure activation only. This is valid because Lemma 1
shows that termination, for 1(d) > 1, does not add new elements to the
generated set and from (T29) and (T30) it follows that the same is true
for all other cases. From (T10) it follows that the rest of a dump ge-
nerated by block and procedure activation is always identical to the
dump of the preceding state. Therefore the following induction principle
is valid for proving say P(d) for the specific machine and the dump

component of its states:

basis: P(al)
induction step: a) P(rest(d)) = P(4d)
or

b) VYV P(rest(d,i)) = P(d)
i¢1(d)

where for the induction step only the cases of block

and procedure activations have to be considered.

Clearly the proof method alsoc holds if P(d) can be justified
without appeal to the induction hypotheses. Furthermore, Lemma 1 states
that for each instance of i there exists a predecessor state which is
identical to rest(d,i). Therefore from a given assertion, P(d), it is

valid to conclude:

YV P(rest(d,i))
i<1(d)
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3.4 Proofs Y

Section 3.2 has introduced the two equivalence properties in which
we are interested. These results, Theorems I and II, Theorem III which
shows how certain indexes can be statically computed and a number of

lemmas used in the argument, are proved in this section.

Lemmas 3 and 4 show that:
the set of used unique names does not lose elements; procedure denota-
tions whose names are in U cannot be changed to different procedure

denotations.

These results are required in Lemmas 5 and 6 where the inductive
step based on procedure activation may rely on properties of any pre-

ceding element of the computation.

Lemma 3:

(L3) for 1 < m < n:

g™ 53 Un
Proof:
Follows immediately from (T14),(T28),(T29),(T32)
Lemma UY:

(L) for 1 < m < n & ue U™

is-proc-den(u(dn™)) > u(dn™ = utdn™)

Proof:
Follows immediately from (L3)Y, (T18):(T27)5(T29).(T31)

1 Case distinctions are identified by underlining and indentation.

Appendix II contains a list of all formulae to which reference is
made.
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Lemma 5 shows that the range of the current environment is con-

tained in U. The proof of the lemma 1’

is by induction on steps of
the computation using Lemmas 1, 3 and 4 as well as the relevant state
transition postulates. Part b) of the statement is included to make

the induction for the case of procedure activation possible. The result
theses of Lemma 4.

(L5) a) R(e) ¢ U

b) for ueU & is-proc-den(u(dn)) -
R(s-e(u(dn))) ¢ U

Lemma 6 states that any procdure denotation referencable from
some environment has an €ba component not greater than the index of
the dump containing that environment, and that the other components
are those corresponding to the dump element which generated the deno-
tation. The lemma is proved £ by induction on the steps of the com-
putation using Lemmas 1,4 and 5 as well as the relevant state transi-
tion postulates. The result is required to establish the argument for

the case of procedure activation in Lemmas 7, 8 and 10.

(L6) for ue R(e) & is-proc-den(u(dn)):
a) 1 < s-epa(u(dn)) < 1(d)

b) s-e(u(dn)) = s-e(d )

s—epa(u(dn))

©) STEP(udn)) € s—tp(dg_ o)

1)
The proofs of Lemmas 5 and & have been Put in Appendix T because

the reader who wishes to limit his reading of detailed proofs
might find the subsequent ones more useful.

3.4
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Lemma 7 establishes that epa components point to an earlier
element of the dump than that where they are contained. (The proof uses
the result of section 3.3 that it i1s only necessary to consider block
and procedure activations). The lemma is required in order to show,
in Theorem I, and Lemma 9 that the preceding element of the environ-

ment chain is in the range of the induction hypotheses.

Lemma 7:

(L7) for 4 such that 1(d) > 1:
1 < epa < 1(d)

Proocf for top (d')

A top(d') generated by block activation:

2 epa' = 1(4) (T18)
3 1 < epa' < 1(d") 2. 0T20}
L top(d') generated by procedure activation:

5 u-pe R(e) (T20)., (F22)
6 is=-proc-den(u-p(dn)) (T21)
7 1 2 s-epa(u-p(dn)) = 1(d) 5,6,(L6a)
8 1 < epa' < 1(d") (T24),(T22),7,(T10)
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Lemma 8 expresses the fundamental connection between the environ-
ment and search mechanisms: it shows that the environment component of
an element of the dump differs from the environment component of the
environmentally preceding dump element by exactly the local environment
of the current element. (The proof uses the result of section 3.3 that
it is only necessary to consider block and Pprocedure activations). The
lemma makes it possible to prove Theorem I without the case distinction

of the generating state transitions.

Lemma 8:

(L8) for d such that 1(d) s 1:

e = update(s~e(depa),eo)

Proaf Tor toptd')

1 top(d') generated by block activation:

2 e' = update(e,eo-b) (T17)

3 = update(e,eo') 2 {TE2)

L = updatECS_E(d'l(d))geor) 33(T10)9(N1)

5 = update(s—e(d'epa,),eo') 4,(T18)

6 top(d') genemated by procedure activation:

7 1 < epa-p £ 1(d) (T21),(T22),(T20),(L6a)

8 e-p = s—e(depa_p) (T21) s {T22 35 (T20 )5 (LBE)

- — T :

9 = s-e(d epa—p) 7.8.(T10),!(N1)
10 e' = update(e-p,eo-b) (T23)
11 = update(e-p,eo') 105 6TIZ)

= - T 1
12 = update(s-e(d epa—p)’eo ) 8.4
13 = update(s—e(d‘epa,),eo‘) 12 ,(T2L)
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Theorem I justifies the first result presented in section 3.2.
(Its proof uses the induction on dumps discussed in section 3.3). The
result is further elaborated in Theorem III, where it is shown that an
index can be computed from the text corresponding to the result of "s",

and is also used as a basis of Theorem II.
Theorem T1:

for ide D(e):

Proof by induction on the dump
basis:
1 s-e(rest(d,1)) = e (L2)
2 vacuously true 1,(T3)
induction step:
3 1(d) > 1
L ide D(e) Hyp
5 D(e) = D(s-e(d )) u D(eo) 3,(LEB) LC1)
epa
6 ide D(eo):
7 id(e) = id(eo) 3, (L8),6,(D1)
8 s{id,d) = O 6,(D2)
9 index(s(id,d),d) = 1(d) 8,(D3)
10 ld(s—eo(dindex(s(id,d),d))) id(eo) 9
11 id(e) = id(s-eo(d. )) 716

index(s(id,d),d)
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12
13
14

1.5

16
19

18

19

id¢ D(eo):

id(e) = id(s—e(depa)) 3,(L8),12,(D1)

s(id,d) = s(id,rest(d,epa)) + 1 12,(D2)

index(s(id,d),d) = :
index(s(id,rest(d,epa)),rest(d,epa)) 14, (D3)

1 < epa < 1(d) 3, (L7)

1de;D(s—e(depa)) 12,54

id(s—e(depa)) 2 16417 ,IH

id(s-eo(d.

1ndex(s(id,rest(d,epa)),rest(d,épa)))))
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Lemma 9 establishes a relation which holds between the index and
le functions, since both follow exactly the same chain. The result is

used in Theorem II to provide the link to the result of Theorem I.

Lemma 9:

(L3) for 0 2 1 < le(d):
le(rest(d,index(i,d))) = le(d) - i

Proof by induction on 1(d):

basis:
1 1{d] = 1
2 epa = O 1,(L2) ,{T5)
3 le(d) = 0 2,(D4)
4 1. = O 3
5 rest(d,index(0,d)) = d (D3)
6 le(rest(d,index(i,d))) = le(d) - 1i b,5
induction step:
7 1(d) > 1
8 0 £ 1 < ledld) Hyp
9 epa = 1 7 3 XL7)
10 i > 0:
11 le(d) = le(rest(d,epa)) + 1 g,(Dy)
12 0 21 -1 < le(rest(d,epa)) 8,10,11
13 le(rest(rest(d,epa),index(i-1,rest(d,epa)))) =
le(rest(d,epa)) - (i-1) 12, 1H
1y le(rest(d,index(i,d))) = le(d) - 1 13,(D3),(Du)
15 1B OB
16 le(rest(d,index(i,d))) = le(d) - i i L
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Theorem II justifies the second result presented in section 3.92.

The result is further elaborated in Theorem ITI where it is shown that

depth can be computed from the text. Section 3.2 has pointed out that

disp can be modelled by a state component.

Theorem IT:

for ide D(e):

id(e) = id(s-eol(d,. ))
dlSPdepth(id,d)

Proof:

418Pgeptn(id,d)
index(le(d) - le(rest(d,index(s(id,d),d))),d)

2 = index(s(id,d),d)
3 ide D(e):
I id(e) = id(s—eo(dd. ))

lSpdepth(id,d)

(D6),(D5)

1,(L9)

Hyp

3,Theorem I,?2
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Lemma 10 shows that the tp component of a dump element is the succes-
sor of the tp component of the environmentally preceding dump element.
(The proof uses the result of section 3.3 that it is only necessary to
consider block and procedure activations). This lemma, extended over

entire environment chains, is used in Theorem III.

Lemma 10:

(L10) for d such that 1(d) > 1:
tp &= s—tp(depa)

Proof for top(d')

top(d') generated by block activation:

1 tp-b &€ tp (T16)
2 € s-tp(d'y 4y) 1,(T10),(N1)
3 € s-tpld' o) 2,(T18)
4 D' & s-tp(d’ ) 3,(T11)

top(d') generated by procedure activation:

5 epa-p < 1(d) (207, [T UP21) 5 (1Ba)

6 tp-b & s—tp(depa_p) CT20%; (T22)50T21) ,(L6e)

7 € s-tpld' o ) 655,(T10), (N1)

8 <= s—‘tp(d'epa,) 7,(T24)
1 - = 1

9 tp! & s-tp(d epa') 8 0T113
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Lemma 11 establishes that the relationship between the identi-
fiers in ID(tx,tp) and in the component eo 1s preserved. (The proof
uses the result of section 3.3 that it is only necessary to consider
block and procedure activations). The result is used in Theorem IIT.

Lemma 11:

(LI1) Dles) = 1D tx% D)

Proof:

it basis: 1(d) = 0

2 D(e) = {1} 1,(L2),(T3)

3 ID(tx,I) = [} Outermost block 3.1.1

i D(e) = ID(tx,tp) 15 €L2),(T8), 245
induction: for top (d')

5 D(eo') = D(eo-b) (T12)

5 = ID(tx,tp-b) 5,(T8)

7 = ID(Ex;tp') 6,(T11)
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The functions"s" and "depth" are shown above as functions of
the dump. However, this was done only to facilitate the above proofs
and Theorem III shows that the, anticipated, transition to functions
of the text is possible. Values computed by a compiler could then be
associated with the references. Since the result relates to the pro-
gram texts, which have not been formally characterized, the argument

is less formal than preceding proofs.

Theorem IITI:

Equivalent functions to "s" and "depth" can be found which depend

only on the static text.

1)

Justification:

Using the generalization principle given in section 3.3:
1 1(d) > index(1.,d) > index(2,d) » ... > index(n.,d) = 1 (L7),(D3)

2 tp € s-tp(d.

index (1 ,d)) & SRRy

lndex(Q,d)) T wes s L

1:4L10),(T2)

let tpl, TPyseres I be the pointers to the blocks in which
tp(tx) is nested, section 3.1.1 shows that:
3 tp € tpy € o0 €1

and also, since such chains are unique:

* Lpy = S_tp<dindex(i,d)) e
5 1deaD(s-e0(dindex(i’d))) = dd eID(tX’S_tp(dindex(i,d))) (L11)
6 = ide.ID(tx,tpi) 5,4
1)

The function index is used as a notational convenience in the
following argument.

3.4
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7

s(id,d) = (ideD(eo) —=0,5(id,rest(d,epa))) (D2)

Given an occurence (id,tp-id) 1let tp-o be the pointer to the block

or procedure body immediately containing it (see section 3.1.1). Sec-

tion 842 (assumption) shows that occurences are only referenced when the

- block or body which immediately contains them is the current one, then:

8

let:

10

11

tp=o = %p

s'(id,tp) = (id e ID(tx,tp) = Oy 8104 ™))
were tp &—— tp'

It can be shown by induction:
s{id,d) = s"{idstp-6) 7,8,6,9

"s'" is the equivalent function to "s" which depends only on the

text,

A similar argument results in discovery of the required static

function for depth.




IBM LAB VIENNA - 35, - TR 25.110

3.5 Discussion

A number of aspects of the above example can now be discussed.
The postulates on the state transitions, which form the basis of the
above proof, are in some sense too restrictive. The condition that
any "other statement" does not alter the stack or procedure denotations
has been sufficient for constructing the proof but is clearly not neces-
sary to achieve the same result. This is not a serious constraint and
where it need be violated (e.g. a sufficiently restricted type of proce-

dure variable) the proof can be extended in a straightforward manner.

It is perhaps worth pointing out how the above example differs
from the previous papers on blocks (see section 4). The definition of
the state transitions by postulates avoids the argument from the con-
trol in /Lucas 1968/ and the necessity to give too much detail in the
explicit state transition functions of /Henhapl, Jones 1970/. The re-
sult proved above goes further than that in /Lucas 1968/ and is made
simpler than in /Henhapl, Jones 1970/ by the idea of using the func-
tion "s", to compute the number of steps for "index", and showing,

in a subsequent step, that it can be computed statically.

The proofs have always used a more or less explicit twin machine.
However, the use of the derived proof principles (see section 3.3)
appears to be a worthwhile extension and to be the kind of result

which should be sought in future work.

The experience gained with this example suggests that, if the
correctness proof is to be based on the equivalence of two abstract
machines, there are certain essential steps in the argumentation.
Although shorter proofs may be found, the authors foresee no conceptual-
ly simpler proo:i unless an appropriate, completely thought out,

basis for the language definitions can be found.



IBM LAB VIENNA - 40 - . TR 25,110

4. OTHER RESULTS ON IMPLEMENTATIONS AND THEIR JUSTIFICATION

The interest in proofs of correctness of implementation methods
was started at the Vienna Laboratory with /Lucas 1968/ and work has
continued on the subject of blocks. However, implementation methods have
been documented and justified for other aspects of languages and

this section reviews the main results.

It will set the context for the following discussion if it is men-
tioned that the emphasis, so far, has been to consider implementation
problems as seen from their object time organisation and to postpone

consideration of the compile time processing.

bL,1 Blocks

In the initial attempt to show the equivalence of two reference
mechanisms, /Lucas 1968/, the base reference method is the environment
mechanism used in the current paper. The alternative method is a search
for the first element of the static chain where the identifier occurs
in the local environment component (i.e. a function similar +o gt
above, but which returns the index of the dump). The problem considered
is to prove equivalent the two mechanisms from definitions in the
"Vienna Method" notation. Thus the relations on which the proof is based
are derived from the model. The proof itself, which introduced the twin
machine concept used above, is divided in muech the same way as Lemma 8

and Theorem 1 of the current paper.

Most of the remaining work on reference mechanisms 1s presented
in /Henhapl and Jones 1970/. Inthat report the possibility of block
termination caused by goto statements is also considered. The base

mechanism is the copy rule (see /Naur et al. 1962/) and display models,
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both of the type described above and of the type using unique static
block names, are proved correct. A number of optimizations to the basic

methods are also discussed.

Intermediate models are included so that from a number of lemmas
about one model a theorem is proved which establishes the equivalence
to the next model in a chain of equivalences. Some problems resulting
from the choice of intermediate models are discussed in the summary
of /Henhapl and Jones 1970/. A further comment on the steps made is
that the direct proof of the equivalence of the display to the search
models (using axioms of the text) appears less elegant than the approach
adopted above. The definition of the state transitions by functions fa-
cilitates the derivation of relations required for the proofs, but still

gives much unnecessary detail.

4,2 Loops

The problem of correctness proofs for optimized implementations
of loop handling is discussed in /Zimmermann 1970/. This report begins
by illustrating how most interpretations for loops can be represented

by state transitions which:

initialize (control variable etc.)
execute body of the loop

test (for repeat condition)

update (control variable etc.)

exit

Given two sets of such transition functions a specific way of
proving their equivalence is shown. This technique requires that rela-
tions are found which fulfil the role of Induction Hypotheses, but the

proof itself consists only of proving certain lemmas which do not
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require induction. The technique has been used to show that assignment
statements can be moved out of loops (providing certain constraints are
satisfied) and that the evaluation of expressions, linear with respect

to the control variable, can be handled in an efficient way.

The technique of factoring out the inductive reasoning for whole

sets of proofs should be capable of generalization.

4.3 storage

The properties of storage are defined in /Walk et al. 1969/ by
axioms. Thus the correctness of an implementation is established by
showing that it satisfies the axioms, furthermore finding any such
model proves that the axioms are consistent. These questions are con-
sidered in /Henhapl 1969/ but more work is required both on the axioms
and relevant models.(The paper in the current volume /Bekié and Walk

1970/ is a contribution to the former area).

4.4 Expressions

Expression evaluation techniques are described extensively in
the literature, a study of which has led to an extensive bibliograthy
/Chroust 1970/. Work is now in progress on describing their object
time operations in a uniform formal style. The value of progressing
to correctness proofs ' is questionable since the compile time aspects
of many of the techniques would be a more likely source of error in

actual implementations.
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b.5 Bases for Procof Construction

A number of experiments have been made as to the possibility of
basing the proofs on some other style of definition. However, apart
from the minor changes made during the sequence of block papers, no

completely thought out proposal has proved acceptable.
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This appendix contains the detailed proofs of Lemmas 1,2,5 and 8.

Lemma 1:

(LAY fon 41 = 41" = l(dn):

Im¢a™ = rest(d’,i) & 1 < m < n)
Proof by induction on steps of the computation.
basis: &'
i) lemma is vacuously true

induction step: %rl—-——-§n+1

block or procedure activation:

2 1 = 1 < 1¢4™*1y,
3 1 < i < l(dn):
Y Im@™ = rest(d™,i) & 1 < m < n)

5 Im(d™ = rest(dn+1,i) & 1 <m <n + 1)
6 i e 90d"ys

7 aP = rest(dn+1,i)

8 A ma™ - rest(dn+1,i) & 1 <=m<n + 1)

(T1)

Hyp

3,IH

4,(T10),(N1)

6,(T10)

2,5,7
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10

11

12

13

14

termination:

case distinction according to state transition

1¢(d™ > 1:

1 i< 1™y Hop

3 m(a™ = rest(dn+1,i) & 1 <m<n + 1) 10,IH,(T26),(N1)
1(d™ = 1

immediate from (T29) 12

other state transitions:

immediate from (T30)
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Lemma

(L2)

Proof

basis:

induction step: E" — £

L
rest(dn,l) = di
by induction on steps of the computation.

1
15
lemma is identically true (T4 )

n+1l

termination:

case distinction according to state transition
1(d™) > 1:

1

Wtk 43 = @ 2,TH,(T26),(N1) -

rest(d
1ea™y = 4

immediate from (T29)

all other state transitions (including activation):

rest(dn+1,1) = rest(dn,l) (E10) 5 {T30)

n+1

rest(d™,1) = g2 TH. B

1
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15
16
1.7
18
19

20

21

v

23
24
25
26
27
28
29

30

procedure activation:

IR 254110

a) u-peU (T20%, (T22),1Hs
R(e-p) € U 15,(T21) ,IHb, (T22)
R(e') ¢ R(e-p) u R(eo-b) 28y, L02)

c U u R(eo-b) 17,16
e LT 18,(T14)

b) ueU' & is-proc-den(u(dn')) Hyp

case distinction according to partitioning of U! (T4

u & R(eo-b):

dul(ul e R(e) & ul(dn') = ul(dn))
let ul be such a name
ule U

R(s=-e(ul(dn)))

n
(&

R(s=-e(u(dn'))) c U

n

n
=

we s

is-proc-den(u(dn))
R{s=e(u(dn))) c U

R(s=-e(u(dn'))) < U

20,21,(T25)

234520422 sTHb
24,292

25,(L3)

2T 5 20, (L4
27,28,IHb

29,27,20,(LY),(L3)




IBM LAB VIENNA =g -

a1

32

33

34

35

36

37

38

39

termination:

ad

b)

Jmad™ = rest(d) & 1 < m < n)
let m be such an index

ar = q*

u™

R(e') < U

R(e™)

N

uelU' & is-proc-den(u(dn'))
uel

u(dn') = u(dn)
R(s-e(ul(dn))) < U

R(s-e(u(dn'))) c U

other state transitions:

a)d

and b) immediate from

TR 25.110

(L1)

31 (TE0)
32,THa
31,33,(L3)
Hyp

35,(T28)
38,38, (027
36,35,37,IHb

38,87 5(L3)

CER0) , (T3 ,LT32)
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Lemma 6:

(L) for ue R(e) & is-proc-den(u(dn)):

a) 1 £ s=-epa(u(dn)) < 1(d)

b)

c)

s—a(uldn)) = S-e(ds-epa(u(dn)))

SEpludnY) © B-TE0A, o B Pany 30

Proof by induction on the steps of the computation

basisg: Ei

1 lemma 1is vacuously true (T3)

induction step: gi, gz,..., §-——§f

) ue R(e') & is-proc-den(u(dn')) Hyp

block activation:

10

11

12

R(e') ¢ R(e) u R(eo-b) (T17),(C2)
case distinction according to partitioning of R(e!') 3
u e R(eo-b):
s—epa(u(dn')) = 1(a") By 25 CT1EY
1 = g=epatultdn’)) = 14d47) 5

s-=e(uldn')) = s-e(d’ Be24(T19)45

S—epa(u(dn')))
s=tp{u(dn')) & S_tp(d's—epa(u(dn'))) Yp2 5 (TE9] , (T2} ,5

u€R(e):
ueU 9,(L5a)
ufdn') = uldn) 10,2, (LY)

s-epa(u(dn))< 1(d) - 92411, LHa
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1.3
14

15

16

17

18

19
20
2
29
23
24
25

26

27
28
29
30
31
32

33

1 < s-epa(u(dn')) < 1(4a")

s-e(u(dn')) = S_ecd's-epa(u(dn')))

s-=tp(uldn')) ¢ s-tp(d’

procedure activation:

R(e') ¢ Rle-p) y R(ao-b)

case distinction according to partitioning of R(e') 16

u € R(eo=-b):

Jul(ul e R(e) & uldn') = ulldn))

let ul be such a name
s-epa(ul(dn)) =< 1(d)

1 £ s-epa(uldn'’)) < 1(4")
S_e(u(dn')) = S_e(d's—epa(u(dn')))

s=tp(u(dn')) < S_tp(d's—epa(u(dn')))

u € R(e-p):

u-p € R(e) & is-proc-den(u-p(dn))
epa-p < 1(d)

d mea™ = rest(d,epa-p) & 1 £ m < n)
let m be such an index

m
e-p = e

u(an™) = uldn')
s-epalu(dn™) < 1¢(a™

1 2 s-epau(dn')) =< 1(¢(d4d'")
s-e(uldn’)) = S_e(d's—epa(u(dn')))

s-tp(uldn')) < S_"tp(d's--epa(l_wL(dn')))

s—epa(u(dn‘)))

TR 25.110

11,12
IHb,12,(N1)

IHc,12,(N1)

(T28)5(C2)

17,2 ,(T25)

18,2,IHa
18,19
IHb,19,(N1)

IHb,19,(N1)

(T20),(T22),(T21)
24 ,THa,(T22)

25,(L1)

26,24 ,IHb,(T22)
27 ,(L5a)
28,2,(L4)

28427 32529, 1THA
28,30,26,25
LHP. 30U ;TN 1)

THc,30,(N1)
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3y

35

36

8

38

38

40

41

42

43

Iy

45
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termination:

case distinction according to state transitions
16d) > 1

3 m(d™ = prest(d) & 1 £ m < n) (L1)
let m be such an index

ueR(e™ 2,35
ueu™ 36, (L5a)
uldn') = u(dn™ 37,2, (L&)
s-epaluldn™) ¢ 1¢(a™ 36,2,3%,THa
1 £ s-epalu(dn')) < 1(4a') 39538,35

s-—e(u(dn')) = s-e(d’ IHbwa8 s {N1)

s—epa(u(dn')))

s-=tp(u(dn')) € s-tp(d" IHé& 89 . CN1)

s—epa(u(dn')))

1id) = 1=

immediate from (T29)

other state transitions:

immediate from (I30),(I31),(Ta2)
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APPENDIX II:

This appendix contains all of the formulae referenced in the

paper.

(T 1) 1¢at) = 1

(T 2) tpT = I

(T 3) el = Q

(T W) amt Q

(T 5)  epas = O

(T 6) ant = Q

(r7)  ul:=n

(T 8) D(eo-b) = ID(tx,tp-b)

(T 9) R(eo-b) n U = {}

(T10) rest(d') = d

¢(TEA) tp' = tp-b
(T12) eo' = eo-b
(T13) for ueU & is-proc-den(u(dn')):

u(dn') = u(dn)

(T1y) U' = R(eo-b) v U

(T15) is-block(tp-b{tx))

(T16) tp-b &= +tp

(T17) e' = update(e,eo-b)

(T18) epa' = 1(4)

(T19) for ue R(eo-b) & is-proc-den(u(dn')):

a) s-tp(u(dn')) & tp-b
is-body(s-tp(uldn')) (tx))

b} s-e(u(dn')) = e!

¢) s-epalu(dn')) = 1(d'")
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(T20) id ~pe D(e)

(121) is-proc-den(u-p(dn))

(T22) u-p = id-p(e)
tp-b = s-tp(u-p(dn))
e~-p = s-e(u-p(dn))
epa-p = s-epal(u-p(dn))

(T23) e' = update(e-p,eo-b)
(T24) epa' = epa-p
(T25) for u € R(eo-b) & is-proc-denf{ufdn')):

Jul(ule R(e) & u(dn') = uil(dn))
(T26) d' = rest(d)

(T27) for ueU & is-proc-den(u(dn')):
u(dn') = u(dn)

(T28) U' = U
(T29) g = %
(T30) dr = ¢

(T31) for ueU & is-proc-den(u(dn')):
u(dn') = u(dn)

("P32) u' = U
(D 1) update(el,e?) = e3
ide D(e2) —=id(e2)
such that: id(e3 ) =
id ¢ D(e2) ——id(el)

for: is-env(el) and is-env(e?)

(D 2) s(id,d) = (idé€ D(eo) —= 0, s(id,rest(d,epa)) + 1)

k) D) index(n,d) (h = 0 —+1(d), index(n-1,rest(d,epa)))
s-epa(top(d))

s-eo(top(d))

where: epa

eo
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(D 4) le(d) = (epa = 0 —= 0, le(rest(d,epa)) + 1)
where: epa = é—epa(top(d))

(I} 5) depth(id,d) = le(rest(d,index(s(id,d),d)))

(D 6) disp. = index(le(d)-i,d) forr 0 &8 1 £ le(d) - 4
(e 4y D(update(el,e2)) = D(el) v D(e?2)

(8 2) R(update(el,e2)) = R(el) y R(e2)

(N 1) for L1 = rest(L2) & 1 = i < 1(L1):

rest(L2,1)

.rest(Li,i)

(L 1) fow & 24 % 1(d%):
Imad™ = rest(d™,i) & 1 £ m < n)
n 1
(L 2) rest(d ,1) = d
(L 3) for 1 = m < n:
u™ <y
(L 4) for 1 <m < n & ue U™
is-proc-den(u(dn™) = u(dn™ = u(dn™
(L 5) a) R(e) €U

b)Y for ueU & is-proc-den(u(dn)):
R(s-e(u(dn))) e U
(L 6) for ue R(e) & is-proc-den(u(dn)):
a) 1 s s-epa(u(dn)) = 1(d)
b) s=-e(u(dn)) = S_E(ds—epa(u(dn)))

¢} s-tpluldn)) € S_tp(ds—ePaCU(dn)))

(L 7) for d such that 1(d) > 1:
1 < epa < 1(d)
(L 8) for d such that 1(d) > 1:

e = update(s—e(depa),eo)
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(L 9) for 0 = i £ le(d):
le(rest(d,index(i,d))) = le(d) - i
LAG) for d such that 1(d) > 1:
th & s—tp(depa)
(L11) D(eo) = ID(tx,tp)
Theorem I: for ideD(e):

id(e) = id(s_eO(dindex(s(idsd):d)))

Theorem II: for id e D(e):

id(e) = id(s-eo(d.. ))
ISP depthi(id, d)

TR 25,110
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