TECHNICAL REPORT

TR 25.104
3 April 1970

THE BLOCK CONCEPT AND SOME
POSSIBLE IMPLEMENTATIONS,
WITH PROOFS OF EQUIVALENCE

W. HENHAPL
C.B. JONES

\j i :] ng M l'J! LABORATORY VIENNA

IBM LABORATORY VIENNA, Austria

THE BLOCK CONCEPT AND SOME POSSIBLE
IMPLEMENTATIONS, WITH PROOYS OF EQUIVALENCE

Y. HENHAPL
C.B. JONES

ABSTRACT : :

The block concepl is discussed baged on a formal definition of those parts of a pro-
gramming language which are affected by block structure. This includes introduction of
local variables, procedure call and goto statements. The formal definition uses the
Vienna Melthod to give a model based on the copy rules given in the ALGOL 60 report. Two
basically different implementations for referencing variables are developed via a num-
ber of explanatory techniques. AlL of these models, which are also defined using the

Vienna Method, are shown to be equivalent to the defining model.

Locator Terms for TBM Subject Index

Programming Language
Block Structure
Semantics
Equivalence

Proofs

21 PROGRAMMING

TR 25.104
3 April 1970

IBM LAB VIENNA -3 -

s
.

o

y,

CONTENTS

INTRCDUCTION
THE LANGUAGE

Abstract Syntax
1.2 Interpreter
1.2.1 State
1.2.2 State transition function
1.2.3 Design criteria
1.3 Properties of the Language

TMPLEMENTATION USING A SEARCH OF THE STATIC CHAIN

2.1 The Model
2.1.1 State
2.1.2 State transition function
2.2 Properties
2.3 Justification
2.3.1 Twin model
z2.3.1.1 State
2.3.1.2 State transition function
2.3.2 Proof ’

2.4 Further Propertiss
IMPLEMENTATION USING A DISPLAY OF THE STATIC CHAIN

3.1 The Model

3.1.1 State

3.1.2 State transition function
3.2 Properties

Justification
OPTIMEZATION OF THE STATIC CHAIN DISPLAY

b1 Omission of Simple Blocks from the Static Chain
b.i.1 Model
H.1.1.1 State
h.ol1.1.2 State transition function

TR 25.104

Page

w3 o ¢ G

10
15

18
17
i8
19
21
22
23
24
26
33

35
36
37
38
39

42

42
42
b2
i34

TBM LAB VIZHNA ~ il -

u.1.,2 Axiom of the prepass

4.1.3 Justificaticn
4,2 Simplification of Maintenance of the Display
4.3 Updating the Display without the Static Chain

IMPLEMENATION USING TF-SEARCH

5.1 The Model
5.1.1 State
5.1.2 State transition function
5.1.3 Axiom of the text
5.2 Justification
5.2.1 Twin model
5.2.1.1 State
5.2.1.2 State transition function
5.2.2 Properties of the twin machine
5.2.3 Proof

ITMPLEMENTATION USING A DISPLAY OF THE F-CHAIH

6.1 The Model
6.1.1 State
6.1.2 State transition function
§.1.3 Properties
5.7 Justification
6.2.1 Twin model

6.2.2 Main theorem
OPTIMIZATION OF THE F~CHATN DISPLAY
7.1 Properties of the FD-Model
SUMMARY

REFERENCES -~ ACKNOWLEDGEMENT

APPENDIX T - IV

TR 25.10u4

Page

46
b7
b7
48

49

49
50
51
52
52
53
53
54
56
58

61

69

69

72

77

IBM LAB VIENNA -1 - TR 25.104

0. INTRODUCTION

Block structurei) was introduced to programming languages by ALGOL 60 (see /3/)
and was intended mainly to facilitate the definition of local variables. However, it
has also had a considerable effect on some of the existing features of languages: the
ability to write nested procedure definitions and the range of possibilities for pavam-
eter passing have proved to be useful generalisations, whereas the generalisation of
the goto statement so that it can induce abnormal block termination has presented sig-
nificant problems and is not such an obvious advance. We shall employ the Tterm block
concept to cover all of these aspects of block structure.

Section 1 gives a formal definition, on which all subsequent discussion is based,
of the relevant parts of a language. This has not been extracted from a particular
language but is an attempt to abstract the important parts commoﬁ to block structure
languages, as a result the report should be relevant to this whole class of languages.
The division of the language puts any implementation in its covrect role as an organi-
zing routine which sets up the environment in which all other code will operate, Thus
the further (diverse) details of block structure languages are successfully excluded
from our discussion. Section 1 justifies the omission of some further parts of langu-
ages whose relevance lto the block concept may give rise to surprise at their exclusion.
Furthermore, the section includes an outline of some of the problems to be resolved

by an implementatiocn.

The efficient implementation of reference to local variables in block structure
languages is a nontrivial problem. The elegant system described by Dijkstra and used
extensively (/4/,/5/) is developed in sections ? to U of this report. The development
of an alternative system, of which the authors became aware via the IBM F-level compiler
for PL/I (/$/), occupies sections 5 to 7. Both of these aetual implementation techni-
ques are formally described as are a number of conceptually simpier models used in +the
development of the methods. (Under certain circumstances some of these intermediate

models could also be used for implementation.) Section 2 begins with an introductory

“discussion of implementation techniques in general before progressing to the Ffirst

implementation in detail.

Throughout the report the formal definitions are written as abstract interpreters
using the Vienna Method 2) (/2/). The use of formal definitions permits the construc-
tion of formal equivalence proofs for the models. The claim +that all of the proposed
implementation models are equivalent to the defining model is supported, in the more

difficult cases, by just such formal proofs.

Terms defined in the veport are underiined on their defining occurence.

The observation that the models for the presented parts of our language can be writ-
ten without using any direct reference to the control part of the machine (see /6/)
has been utilized to write instructions of a form which are trivially convertable
to functions.

TRM LAB VIENNA -2 - TR 25.10%4

It is hoped that this report will provide a useful source document for implemen-
tation designers who are interested in block structure languages, and the report as-
sumes the reader is familiar with an outline of the problems. The texts introducing
both the language and each implementation technigue aim to review the problem and its
solution. This text does not require a knowledge, and therefore lacks the precision, of
formal definition methods. The formal definitions of the techniques are connected to the
introductory text by a descriplion which links facets of the model to requirements men-
tioned in the text, (section 1.2.3 is included to explain how the base model was deriv-
ed). Appendices 1 and II present models which may be more directly useable by implementors

because the use of recursion has been replaced by equivalent iteration.

The justifications have been simplified by the separation of a number of prelimi-
nary properties of the models. These properties should be intuitively acceptable and in
mest cases the report only indicates how a proof would be constructed, in the more 4if-
ifizult cases formal lemmas are provided. Given the properties, the proofs of the theo-
rems are usually straightforward (even theorem 2-4 has a simple structure, its length
results from the induction required). In spite of these efforts, formal proofs of cop-
rectness are certainly the most difficult part of the report and certain readers may
chowse to accept their preéénce as reassuring without following through their details.
However, the authors' experience suggests that anyone proposing his own implementaticn
technique for a concept of this complexity would do well to provide a justification

along these lines.

A summary section makes some informal remarks about efficiency and includes a
table summarizing the main differences belween the models given in the report. Ap-
pendix ITE contains definitions, or references to where definitions may be found,
for the notation used in the report. Basically a reader familiar with the inltroductory
parts of /2/ should experience little difficulty in reading the formal parts of the
report. Appendix IV is included to suggest a way of reading abbreviations compatible

with their formal use.

IBM LAB VIENNA -3 - 7 TR 25,104

1. THE LANGUAGE

This section introduces the language on which the report is based. Before coming
to its formal definition, an indication is given of what is incliuded in, and what ig
omitted from, the language. In addition the readers attention is drawn to the sources
of some of the problems involved in its implementation,

The definiticn includes the interpretation of blocks, procedure call and goto
statements and in addition any other statements satisfying certain properties (1~13
could be included. All statements use names to refer to values. Names come into existence
by Being declared in a block and have a scope which includes all of the statements of
the declaring block and its nested blocks unless the name is redeclarved. If a procedure
is invoked, all occurences of its formal parameters within its body are replaced by
the corresponding element of the argument list (making necessary changes to avoid
clashes as described in /3/)., Thus values can be preferred to outside Lhe scope of
the name with which they were first asscciated. The association of names with values
(known as denoting) is either gonstant, in which case the value is linked with the name
when the block is entered, or variable, in which case the association may be changed
by assignment. The only values discussed in detail below are labels and procedures where
both are used only as constants. ?rocedgre values consist of a formal parameter list

and a body which is a block. Label values consist of an index to the statement list,

It is assumed that the original concrete program has been translated to an object
which satisfies the abstract syntax given below. Tn particular, the translator is as-
sumed to have converted the label brefix notaticn into a declaration, in the smallest
embracing block, of the name with the indax of the statement it preceded as its at-
tribute. Turthermore, the translator will have surrounded any procedure body, which
was not in the form of an unlabelled bleck, with a dummy block. The translator will als

reject any program which would not yield a "proper program" (see section 1.1},

A number of language features related to the block concept are not included in the
language discussed, the following paragraphs list the more important of these and in-
Gicate why they are exlcuded.

ALY names introduced in a block are considered to be local (i.e. theip existence ig
linked to that of the biock in which they were declared). The own variables of ALGOL 60
Or staltic variables of PL/I may, if their size is known, be considered to be local
variables of a global block.

The method of parameter passing used in the definition is known as "by name'.
"By value” passing can be expressed in terms of by name and is therefore not discussed,
Moreover, "by reference" ig essentially adequate to model "by name' and the implementa-

tions can make use of this by assuming that only names are passed as arguments,

IBM LAB VIENNA ' TR TR 25,100

Values which are aggregates of other values can be handled, providing their size
is fixed on introduction, by treating a dope vector for the aggregste as a simple value
A dope vector contains control information including a pointer to a separate area
where the aggregate value 1is stored.

A Further relevant limitation (the omission of label and procedure variables) is
discussed aflter the following paragraphs which describe some implementation consequences
of the block concept. '

The syntax of a block s*ructure language is such that blocks B are properly nested
pieces of text. The semantics of such a language ensures that blocks are active on a
strictly iast-in first-out basis (1-5), Thus, given dynamic areas for each block in-

vocation, containing space to store the values of the names introduced, these can be
organized into a stack. All of the implementations shown below will rely cn such a
stack and the pointers linking the elements of the stack will comprise the dynamic chain.

Were the language such that a block could only be active at most once it would bhe
possible to associate fixed adresses with all names, and replace all names by these
addresses at compile time. waever, recursive inveocation of procedures results in the
possibility of the existence of an arbitrary number of activations of a block and thus
its names. Thus, apart from the difficulty that names are not unique in the original
program, it is not even possible to assign a single address to a name qualified by its
declaring block which will locate the required value. There are three possible solu=~
tions: the original names can be associated with addresses using a directory which is
dynamically updated on block entry; the original name can be used to search through the
dynamic areas in an order such that the appropriate value is‘found5 the names may be
supplemented by an index to a dynamically updated directory which points to the dynamic
area containing the required value. The first of these techniques yields clear exposi~
tions (see /7/, and in an even more basic form, section 1.2). The second and third,
which lead to practical implementations, are discussed further at the beginning of

section 2.

Thus far, given the name of the block in which a reference was declared, a direc-
tory of the last formed dynamic area for each block would suffice to locate the rele-
vanl dynamic area. The pessibility of invoking procedures which have been passed as
parameters would invalidate such an implementation for the following reascn: it is now
possible that an invoked procedure may have been declared in, and passed from, a block

which has been reactivated before the call. Such a reactivation weuld have introduced

1)

Throughout the sequel, with the exception of syntaxes, the term simple block is
used to refer to the syntactic unit identified by is-block and block 1s used ge-
nerically to inelude blocks and procedures.

\B: VIENNA -5 - TR 25,1014

s dynamic area for the declaring block, but this is not the one containing the
.nqmes'feferencable from the body of the invoked precedure. It must now be possible to
peate the dynamic area of the block which introduced the inveked procedure,

Apart from recovery of the values of names, goto statements require that we are

able to recreate the state at the time of the declaration of the label value.

We can now mention the last constraint imposed on our language. Label and proce-
o dure parameters have presented us with the problem of locating the declaring dlock, but
‘we have always been secure in the knowledge that it still exists. The addition of label
and procedure variables opens the possibility that a reference is made tc such a vari-
able at a time after its current value has ceased to exist. If, as in most languages,
this situation is defined as an error, checks must be devised to dynamically detect

such errcrs.

w
g

Abgtradt Syntax

Al ig~-program = is-block

A2 is~block = (<g-dpiis-dec-list>,<s~sp:is-st~list>)
A3 is-dec = {<s-idiis-id>,<s-atr:is-atr>)

Al ig~atr = is-lab-atr v is-proc-atyr v is-other-atr
A5 is~lab=~atr = is-int

ASB is~proc=-atyr = (<g=-pp:is-id-list>,<s~body:is-block:)
AT ig~other~atr = ...

A8 igs~st = ds-bhlock v dis-call v is-goto v is-other-st
A9 ig~call = {(<g-nm:is-id>,<s~ap:is~-id-list>}

Al0 is-gotoc = is~id

All is-other-st = ..

The definition model {and all implementations) will assume that any program con-

is used for an object which satisfies is-program and uses all names in accordance with

the declared properties and values.

This section contains an interpreter written in the ULD styie which will be taken
as the definition of the language. Since the definition is by a model its essential
points must be stated, so that in the subsequent proofs the criteria for a correct im-
plementation are c¢lear. In the absence of any output statements we are forced to re-

late correctness to the values referred to by the names. Since the label and procedure

IBM LAB VIENNA - & - TR 25.104

values are used for housekeeping, it is only strictly necessary to consider the other
denotations, However, all of the implementations given in the sequel follow this in-
terpreter closely enough that the information in all wvalues is available. Thus our

notion of equivalence will be the relaticon of the values of names.

The derivation of the model given below from the ALGOL copy rule is discussed in
1.2.3, sc this introduction confines itself to an outline of the state components of
the model. The DN component contains the association of names with the values they de-
note (the names being objects satisfying is-un which have been inserted by the inter-

preter in place of the original names 1)}. The ABN component is used to signal that

take the required action (for a fuller discussion of ABN see /6/). The BL component
is a list, with one element for each active block, whose elements contain TX, PTR
and CTR sub-components. The TX component contains the complete text of the program
as expanded by the copy rule. The PTR compenent is a peinter to the currently active
block within TX and within that block CTR is the index of the current statement.

The intial state of the interpreter contains a single element BL list. The TX sub-

component contains the giveﬁ?program as the only statement of a dummy block which has

1.2,1 State

Bl igs~state = (<s-bl:is~bl-list>,<s-dn:({<untis~den> }1i is-unfum)} >,

<s-abn:is-lab~den v is-{)}>,<s-ciis~c>)

B2 is-bl = {<s-tx:is-m-block>,<s-pir:is-sel>,<s-ctr:is-int>)
B3 is~-den = is-proc~den v is-lab-den v is-other-den

BY is-proc-den = is-sel

BS ig-lab-den = (<s-biis-sel»,<s~-dcl:is-int>)

Be is~cther-den =

BY is~c = see /2/
ig-m-block etc. are as in secticn 1.1 except that all occurences of is-id have been

changed to is-id' where:is-id' = is~id v is-un

13

The funection un is not like that proposed in /7/ which vields unique names through-
out a computation. It is sufficient for the purposes of this definition that two
equal "unique™ names are not active at the same time, which is assured by the defi-
nition given below. The reader may find it useful te think of unique names as ad-
dresses.

BM LAB VIENNA - g

- TR 25.104

Abbreviations used:

BL = s-bl(E)

DN = s~dn(%)

ABN = s-abn(g)

B = last(BL)

TX = s—tx(B)

PTR = s-ptr(B)

CTR = s-ctr{B)

P =z elem(CTR)®°s~sp°PIR
ST = P(TX)

cur(bl) = elem{length{bl))es~-bl

The initial state 50 for any to such that is—program(to) is
BO go = }%(<s—bl:[f%(<s—tx:pb(<s—sp:[toj>,<s~dp:[]>)>,
<g-ptr:I>,
<g-cltr:0>2]>,

<g-civint~next-st>)

B8 " inmt-mext-st =

CTR < length(s-spePTR(TX)) A ABN = () e I - T g

Cant-sty
- greD<cty
s-b(ABN) = PTR ——='int-next-st;
int-st
" set-ctr

Tl L

B - int-st =

igs-m-block{8T) ~——= epilogue;
int-next~st;

inst~bl

inst~bl;
inst-proc(s-ap{ST),s~nm{ST) (DN})
is=m-goto(8T) «—s= s-abn:ST(DN)

.

IBM LAB VIENNA - 8 - TR 25.104

310 inst-bl =

s~1>1:}31f\[/u,o(<s-tx:[u,(Tx;<P:mod—b(ST,BL)>)>,
<g-ptr:P>, ’
<s~ctr:0:)]

s-dn: w (DN3{<s-ideelem(i)es-dp(mod-b(ST,BL))s~atreelem(i)os~dpePs |
is-m-proc-atr(s-atreelem{i)es~dp(mod-L{ST,BLY))}

U{<s-idnelem(i)os»dp(mod—b(ST,BL)):ﬁ%(<5*b:P>,<s~dcl:i>)> |
is—m—lab—atr(SWatreelem(i}os—dp(mod~b(ST,BL)))} U..0

Bi1 inst-proclarg-1,s8) =

s~bl:BL/\[Pb(<5~~'L‘x:/LL(TX;<P:s-—body(modmp(s(TX),ar‘g-—l)}>)>s
<g-ptr:PTR>,
<s-ctr:CTR>)7}

B12 step-ctr = s-ctrecur{BL):CTR + 1

B13 set-ctr = s-ctrecur(BL):s-atreelem{s-del{ABN))es~dpo PTR(TX)
s—abn: () '

Bld epilogue = cur(BL):{)

Bi5 mnod-b(blk,bl) =

M{blk;{<m¢un(@(b1k),length(bl))> [is=-1d(@(blk)) A is-decl (d{blk),blk) A
=is-red @ (blk) ,A,blk))

B18 mod-p(prc,arg-l) =

alpres f<d:elem(i,arg-1)> |
is-id@(pre)) » elem{i)es-pplpre) = K(prae) a — ds-red(dipre) &, pre))

B17 un(id,n): one to one mapping of identifier integer pairs to objects satisfying

is-un.
Bi8 ds-red{id,sel,t) = (Ja,A)(sel = &b A A4 £ I A is-inir(id,s(£)))
B1g is-intr{id,t) = is-m-bloek(t) —= ig~decl{id,t)

is-m-proc-atr (i) ———e ig-parmd(id,t)
o

—prme }‘

320 is-decl(id,blk) = (d iY(s-ideelem(ides~dp(hbik) = id)

821 ds-parmd(id,pre) = (d i)(elem(ideos-pp(pre) = id)

TR 25,104

Design e¢riteria

As was menticned in the introduction,‘this section explains how the given

$dei is related to the copy rule. The essence of this rule is +o handle procedure calls
 by feplacing them with an appropriately modified copy of the body of the relevant pro-
'éédure value. In order to avoid clashes of +those argument names, substituted for the for-
 5ainarameters, and the declared names within the body, necessary changes are made to

‘tHe-latter. Since the necessity of a change can only be determined dynamically, a con=-

iéerable simplification results from making a larger set of changes. With the aid of

mpﬁfb, unigue names are substituted for all local names on block entry, thus cbviating

“thé requirement to check for clashes.

The copy rule can now be followed without difficulty. The simplest way to recover
“the old text after procedure execution (not discussed in /3/) is to retain copies of alli
- 6ld texts. This accounts for the local text components in the model.

In the description of procedure calling no guidance is given as to where to obtain
fhe original text. No justification is given for creating copies of all procedure values
in the denotation directory, nor would it be in the spirit of the copy rule to search Ffor
:.:the denotation. In the model, the necessary connection of the name of a procedure with
its value is achieved by storing a pointer into TX as the value.

We now list some other facets of the model and describe why they are handled in
the way given.

The treatment of labels on a par with declarations is compatible with their pole.
It is assumed that the franslator has extracted, from the common label prefix notation,
the name and its location and formed this pair into an element of the declaration set

of the smallest enclosing block.

The procedure denotation is a way of accessing the procedure declaration. Whilst
this is also true of the label denotation, this latter must provide us with more infor-
mation. In the case of a goto statement leading to a previous activation of some block
it is necessary tc be able to locate the relevant state. This difference is reflected
in the information stored in the relevant denotations: a procedure denotation is simply
a4 text pointer, whereas a label separates the information permitting location of the

block from that which pinpoints the declaration within that block.

The definition (A2) of s-dp as a list might appear to contradict the knowledge
that the order of declarations, in a language of this type, is unimportant. The deci-
sion to use a list is really based on the rejection of the alternatives. It ig possible
to define a transiator which will put the names of the declarations on the selectors,

but this creates an anomclous object which contains information of the program in its

IBM LAB VIENNA - 10 - TR 25,104

structure thus confounding the distinction between the text and the structure thereof.
The collection of the declarations into a set introduces the notaticnal preblem of there
not being a selector to locate information and thus foreing the use of existential
quantifiers. The use of a list, providing no essential use is made of the order, gives

a sel plus selectors, which is what is reguired.

The corganisation of the data about temporarily suspended activations into a list
rather than the more orthodox, but obviously equivalent, dump has two advantages. First,
a pointer to an element of the list is constant whereas a component of the dump changes
its position each time the dump is pushed down or popped up. Second, the implementation

in a linear store is far easier to relate fo actual implementaticns.

1.3 Properties of the Language

This section contains some properties (i~2 to 1-9) which can be deduced from the
machine given in section 1.2. Since that machine is the definition of the langusge, these
properties are considered to be of the language. This section begins with a predicate
and some functions requireé?below and an axiom which constrains any extension to the

language. (The sub/superscript notation used is explained in Appendix I[II).

The term directly contained is used of a selector wilh respect to a piece of lext

if nc part of the selector selects a part of the text satisfying is-block.

B22 ig~dir-cont{,t) = (A, 0l = Yo a A4 I A is-m-bloek{f(+£)))

e

The inverse functions of un(B17) will be

B23 id-part{un)
B7u len~part{un)

Axiom 1-1: This axliom imposes the restriction that the interpretation of any statement
of type is-other-st can change no part of the state other than those elements of DN which

satisfy is-other-den.

For any state g ahout To execute int-st, let 5' be the state after completion of

Tthat instruction.

is-m-other-st(8T) A m(§) # %<§') >
{445 ,un) (o :/?cunos—dn A ds-unfunl} A is~other~den(unesﬁden(§)))

TR 25,104

& This property shows that the only state components which can be changed,
xceﬁf by deletion and reinsertion, are CTR, ABN and those elements of DN which satis-

f,;:'fy ig~other~den.

c%ﬂgi) # m(gj> Al <3 oA 3 RIG g ko5 A<n(gk) =y =
(b = s-abn v ({0 (K = g-ctreelem{k)og~bhl) v
(34 ,un) (el = Founos-dn a is-other~den(un(DN=1)))

& proof can be constructed by observing that (assuming 1-1) the cnly instructions
.'wﬁich can change the rémainder of the state components are inst-bl and inst-proc. These
“instructions can only be invoked to create a new element i of BL if the preceding BL
'..ié of length i-1. Therefore the changing of the other values of the state components
1VWQu1d follow a state in which they were 2.

ufPrOEertX 1-3: This property shows thalt a label or precedure denotation, whose unique

“iridme is contained in the portion of text currently pointed to, has the same value ag

:3when it was installed.

is—un(a»?TRi(TXi)) A (is-lab-den v is—proc~den){(wePTRi(TXi))(DNl)} =

SPTRE i i - . 3 pmed 5
(e PTR, (TX,))(DN™) (o PTRk(PXk))(DNJ)

where j = MAX j = i A length(BLl) = 1en~part(dmpTR;(Tx;)) A CIRY = g

A proof can be constructed by induction on states of the preposition that for
all unique names in the current text parts there exists no eavlier state with a BL shor-
ter than that which existed whenrthey were introcduced. This is ensured by Tthe exact
bracketing of epilogue instructions with instructions which extend BL. Application of
1~2, both to show old text components are unchanged and to show such denotation entries

are unchanged, concludes the argument.

PPDgertX i-4: This property shows that the pertion of the text component which comprises
& procedure denotation has not changed since that denotation was installed.

is—un(WOPTRi(TXi)) A is-procmden(deTRi(TXi}(DNi)) =
(orrrtmxhy oty (rxty = oprrt crxty (owdy) ey

where j = MAX 3 = i A length(BLI) = len-part(dePTRY(Tx%)) A cTrl = 0
3

A proof would rely on the fact that the denctations have already been shown to
be equal (1-3). The fact that procedure attribute parts of the text are unchanged unless
denotation is re-installed follows from the observation that B10 and B11 can only extend
Or change text within the bhlock given by their PTR component .

IBM LAB VILNNA - 12 - TR 25.104

e This property shows that for any state, the embracing or calling block,

Property 1-5:
of a block pointed to by {(the PIR component of) an element of BL, is pointed to by (the

PTR component of) an earlier slement of BL.

1 < i £ length(BL) o
(I < in (CA kb1 (PTR (TX,) = mod-b(elem(k) °5=5pe PTR, (TX,) ,b1))

v (4 Koun=1) (PTR; (TX,) = mod—p(SHatreelem(k)oS-dpnPTRj(TXj)sun~l})))

A proof of the property by induction on BL can be constructed {only inst-bi
and inst-prc can extend BL, the Former case is trivial and the latter relies on 1-4).

Property 1-6: This property shows that, under the assumption of a proper program, for
any block pointed to by {the PTR component of) an element of Bl,, all of the names not
contained in a nested block have been changed to ones satisfying is-un,

1 £ ig length(BL) A is~dir~cont&%,PTRi{TXi)) A is—id‘(doPTRj(TXi)) -

is~un(%oPTRi(?%i))

A proef by induction, of the property that the only variables within PTR(OTX)
which are not unique names are redeclared in an intervening block, can be constructed.
{Use is made of 1-5 and the definition of a proper program.) Coupled with the defini-
tion of is~dir-cont (B22) this property is encugh to show that the required property
holds.

Property 1-7: 22 This property shows that, with proper programs, any goio statement
contained in a block pointed to by (the PTR component of) an element of BL refarances
a label which was introduced in a block which is pointed to by (the PTR component of)

an earlier element of BL.

1 < i = length(BL) » is-m-goto (elem{j)as—spoPTRi(TXi)) =

(4 k¥(k < i A PR, = s-boelem(j)es-spePTR, (TX,)(DN))

A prool follows from the following observations: the assumption of proper program
assures that the identifier has been changed to a unique name (1-6); the label dencta-
tion has not changed since it was intalled (1-3); the installing block is still active
(1-53.

This property would be lost by The introduction of procedure variables which could
be used without restriction (1-3 and 1-% would not substantiate the pre-conditicns).

2)

This property is lost with the unrestricted use of label variables {1-3 applies
only to constants).

TR 25,104

=g: This lemma shows that if, in some bloek which is no+ yet active, an identi-
as already been changed to a unique name, then the original identifier could not

ve been a local name of that block.

is-m=block{st) A is-un(des-spest) =

—is-decl{id~part(fegs~spost),st)

Cis-mecalllst) A
is-un(ges-body{s-nm{st) (DN (TX))) =
—tis-parmdides-body (s-mm(STY (DN Y (TX)), (s-nm(st (DHY Y (TX)

where st = elem(i)es-spePTR(TX)
We prove a} by contradiction:

Assume PTRO, io’ TXO and “b represent .a counter example

let un = dbﬂs—spoelem(1gos—sp0PTRO(TXO)

iSMmﬁblock(elem(io)oS—spopTRO(TXO)) i
is—un(uno) 1
Sy is-decl(id-part(un),elem(iJoPTR (TX_)) 1
5 Since the original text has no unique names, un, must have been generated. 3,B0
B Inspection of the machine shows only mod-bh and mod-p can c¢hange text B10,B11
7 Assume un . was inserted by mod-h
8 ¢ @) (is-m-plock (L(TX)} A fBedk = elem(i Yes-spoPTR_ A /b £ I A 7,B15

idwdecl(id~part(uno),d(TXO}) A “7i8”red(id—part(uﬂo),&bOS*Spﬂﬂ,ﬁ{TXO))}
g (J ey) (foct = elem(i)es=spePTR A 4 # I A L 8,B18
AR AN AR AR/ toes-spad A B0 4 1 A
is~intr(id*part(uno)sﬁ'ﬂﬁ(TXO)))

In particular &' = dbos-sp and /' = /5 cannot be such a decomposition:
_ 10 (joé,ﬂ)(ﬂeoi,z elem(i)es-spePTR_ A A # 1 A a,B18
g‘ ~1is-decl(id-part(un) ,fed (TX_3))
11 "ﬁis~decl(id~part(uno),elem(io)OSrspoPTRo)
1z But 11 and 4 contradict.
i3 A similar contradiction arises if mod-p is assumed to have inserted un .
Thus no un, satisfying 1 can occur. 12,13,5

This concludes the proof of a}, a similar proof would justify b),

IEM LAB VIENNA - ih - TR 26,104

Lemma 1-9: This lemma shows that 1f a blcock becomes active, any of the identifiers

which had already been changed to a unique name is unchanged by the activation step.

a) 1 < i < length(BL) A iS“m“blOCk(STi) 5
1 G- 0\.-1: = "
(is un(m(STi)) = PTRi+1(TXi+1) %(Sii}}
b} 1 < i < length(BL) & is—m—call(STi) 5
(iSwun(dms—body(s—nm(STi)(DN})} >
oéoPTRi”(’rxi“) = fles=body(s~nm(ST,) (DN)))

Proof of aj:

1 PTRi+1 = elem(CTRi)os*spopTRi BiO
Z TXi+1 = ﬂ&TXi;<elem(CTRi)os—spopTRi:mOd~b(STi,BLi}>) E10
3 “7is“id(K4STi))

by %Omod“b(STi,BLi) = d%STi) 3,B1S
5 AoPTR, o (TX,) = ol (ST,) 2,4

This concludes the proof of a), a similar proof would justify b).

BM.-LAB VIENNA =15 - TR 25.104

IMPLEMENTATION USING A SEARCH OF THE STATIC CHAIN

The model described in section 1.2 does not provide us with a practical implemen-

' tatlon, if for no other reason than that the physical modification of the text is very)
.dlfflcult. However, derivable from that model is an implementation which creates a direc-
tory in each dynamic area relating all known names to their unigue names {(this is the
environment mechanism used in /7/). Such models would be very efficient in referencing

variables but the amount of work involved in updating these directories during block

. getivation and exit would be prohibitive, as would the amount of space reguired for

“their storage.

As mentioned in the discussion of the language, the recursive nature of procedure
c¢alls prevents, in general, a fixed association of names with addresses (i.e. selectors
to DN in the base model) being made at compile time. We are therafore forced to look
dt alternative ways of storing variables such that their access is simple yet the

" bookkeeping required to facilitate this access is not excessive.

All of the subsequent models adopt the idea of storing values in storage obtained
dynamically with the dynamic area, leaving us with the problem of how to locate the
appropriate dynamic area for a name, Two basically diffevent ways of performing this
location are considered below: searching, which entails the chaining together of the
dynamic areas in some way, then localing the required area by inspecting elements of
the chain until one with some specified property is found; via a display (i.e. a vector
of peinters to the dynamic areas) which requires that the identifiers of Tthe text have
been supplemented with an index to this vector specifying which element will bhe assumed
to point at the relevant dynamic area. Again, because of the dynamic nature of recursive
procedures and the limitation that a prepass must assign a constant index, such a dis-
play must be updated dynamically. A chaining of the dyﬁamic areas may well be used to
simplify such updating. Although the search methods tend to require a minimum of house-~
keeping, the indirectness of references is rarsly acceptable in a practical implementa-
tion. Their description belew is provided more to supply stepping stones for the reader

en route to the rather indirect display methods.

The search implementation described in section 2.1 chains the dynamically obtained
storage areas for blocks together on the principle that each such area is chained to
that area belonging to the block which lexicograpbically contained it in the
original text. Because of the role it fulfils, +the dynamic area corresponding to the

Statically containing block is called the environmentally preceding activation (E.PF.A.).

The chain made up by following the E.P.A. pointers is referved to as the static chain
{(for a fuller description see /5/). It is a property of the language under consideration
that the containing block of any active block must itself be active (see 1-5). Therefore,
the chains all lead bhack to the first dynamic area (i.s, that of the program). This is

the only one lacking a pointer.

IBM LAB VIENNA - 16 - TR 25.104

The values of arguments must now be accessible from their formal parameter names.
This is achieved by a new type of denotation entry (is~parm-den) which contains the
necessary information abcut the argument (note that this will include the index of the

introducing dynamic area)l.

The updating of the static chain for blocks is trivial since they can only be
invoked from their E.P.A. The maintenance of the chain for procedures, whether activated
directly or via a parameter to which they were passed as an argument, reguires that

the knowledge of the block in which they were declared is accessible.
The idea of using a static chain is introduced by Piijkstra in /4/, and a very

clear deseription is contained in /5/. The correctness of the method is the subject of
section 2.3.

2.1 The Model

This section contains a model which realizes the search process just ocutlined.
This introduction is confined to identifying the main differences from the model of

section 1.2.

The procurement of storage dynamically is modelled by the use of denotation com-
ponents (DN) for each of the block local elements (BL). In addition a pointer (EPA) is
added to each such element which points to the preceding element in the required chain.
The retrieval of all information using the original texlt names peguires that denotation

entries be made for all parameters.

The non-modification of the text permits, and is clearly shown by, its storage
as a global component. The fact that entering a procedure will, therefore, require
an entirely different modification of the PTR component leads to the possilkility of
CTR becoming {2 .

The information that would have previously been obtained by applying a dynamically
formed unique name to the global denotation is now found as follows: The block in which
a variable was declared is found by searching the static chain for the first element
where this name occurs in the denotation component; the denotation of the variable is
found by applying its name to the denotation element of the block found as above. The
denotaticns cof parameters are made Lo contain this information about +he variahle
which was passed as an argument, and the search mechanisms ave extended to anticipate

such entries.

The fact that the original names are used as selectors to the local denotations

relies on their lceal uniqueness {(i.e. only one block is handled by each denotation).

This may be contrasted with the situation in section 4.1.

S0

is-state = {(<g-bl:iis-bl-lisgt>,
<g~tx:ig~blocks>,
<g-abn:(<s=-b:is-int»,<s~dcl:is~int>) v is~£2>,

<g-cils-c»)

is=bl = {<s-epa:is-int v isﬁQ>,<5—ptr:is—se1>,<5—ctr:is—int EET) P
<s=dn: ({<id:is-den> [| is-id{(id)})»)
is-den = is-proc-den v is-lab-den v is~parm-den v is-other-den

is-proe-den = is=-int
is~lab~den = is-int
is-parm~den = (<s~b:is~int>,<s-decl:is-int>)

is-other-den =

N.B, is-other-den must never satisfy is~j2
is-¢c = see /[2/

Abbreviatons used:
BL = s-bl(g}

TX = thx(%)

ABN = s-abn(¥)

B = last(BL}

EPA = sg-epa(B}

PIR = s-ptr{B)

CTR = g~ctr(B)

DN = s-dn{B)

P = CTR # ()] ——— elem(CTR)os-s5poPTR
T —— s-bodyPTR
ST = P(TX)

cur(bl) = elem{length{(bl))es~-bl

The initial state gb for any t_ such that iSHprogram(tO) ig
§G = P6(<s-bl:[}%(<s—ptrzl>j
<g=-ctr:0>)1=,
<5mtx:pb(<s—sp:it03>,<s~dp:[]>)>,

<g=-crint=-next-sts)

TR 25,104

IBM LAB VIENNA - 18 - TR 25.104

2.1.2 State transition function

s54a int-next-st =

CTR < length(s-spePTR(TX)) A ABN = (}

int-next-st;

int-st;
step-ctr
s~b(ABN} = length(BL) ~—— int-next-st;
Cint-st
set-ctr
T —e nul
510 int-st =
iS“blOCk(ST)‘A*ﬁb-eEilOgue;
int-next-st}
inst-bl
is—call(ST)~—wﬂreEilogue;
epilogue;
i ipt-next-st;
nstebls sy
inst-proc(LiiT’ dlelem(i,s-ap(ST)),length(BL),BL),

SWatroelem(d}us—dp0(s~ptr(elem(b,BL})),b)
is-goto{ST) - s-abn i d (8T, length(BL) , BL)

.
o

where b = d=b(s~nm(8T) ,Llength(BL),BL)
d—dCSMnm(ST),length(BL),BL)

jan
1

s~bl:BL’\[ﬁb(<s~epa:length(BL)>,
<s-plriP>,
<g~otr:0s,
<s~dn:fb({<s~idoelem(i)es~dp(ST):i>]
‘“1i5mother—atr(s~atroelem(i)ns—dp(ST)}} Uo.oy=y)

Siz2 inst-proc{arg~1l,s,epa) =
s—bl:BL(\[ﬁb(<5—epa:epa>,
<s=-ptris>,
<s~dn:pb({<elem(j}08~pp°s(TX):elem(j,arg—l)>i
1 =3 = lengthlarg-1)])»)]

Z2.1.2

LAB VIENNA - 19 - ‘ TR 25.10%

gtep~cty = s—ctrecur(BL) :CTR + 1

set~ctr = s-—ctrecur{BL):s-atreelem(s-dcl (ABN))es~dps PTR(TX)
s-abn: {}

epilogue = cur(BL):(Z

816 d-blid,n,bl) = d{id,n,bl) =) ~——= g
- T e e 5=b(d{id,n,bl))

§17 d-d(id,n,bl) = s-del(d{id,n,bl))

LY nos 1 e

is-parm-den(ides-dneelem{n,bl)) ——— dides~dneelem{n,bl)
ides-dneelem(n,bl) # () ~~7ww-%%(<s—b:n>,cs—dcl:idos—dnoelem(n,bl)>)
T ~—+ d(id,s~epacelem{n,bl),bl)

dlid,n,bll

g

2.2 Properties

This section contains some properties (2-1 to 2-3) of the above model, which will

_be used in the subsequent proofs. First some functions and predicates are defined:
§18 ds-intr-s(id,bl) = ises-dn{last(bl)) # ()
$20 ig-refbl(d,ptr,t) = (3,6){ﬂ°ptr = @& A count-blk(ptr,t) = count-blk{g,t)

521 count-hlk{sel,t} =

(Fel,i)(sel = doelem{ides-sp » is~block(elem(i55s-sp(t)) e
count-blk{d,elem{ides-sp(L)) + 1
(3d,i)(sel = Aes~atroeclen(i)os~dp A is-proc-atri{s~atreelem{i)es~dp(t)} —w
count-blk(o,s-atreelem(iYes~dp(t)) + i
(dAY(sel = des~body is~block{s~body(t)) —s count-bilk(X,s-body(£)) + 1
T g
where the unbound g's and i's on the right of the conditional expression

are unique values which satisfy the left hand side.

822 nth-blk{i,sel,t) = () ({is-block v is-proc-atr)}{{t)) »
count-bik(®,t) = i A (3,§)9@0a,: sel))

Notice that this function, and all subsequent functions which operate on 1lists, do
not rely on any element of the list whose index is higher than that passed as
argument. This property will be used below, in the proofs, without reference.

IBM LAB VIENNA - 20 - TR 25.104

A
S23 nth-proc(i,sel,t) =

-

count-proc{sel,t) = 1 ———= 1T
T e (Ld)(is-proc-atr@(t)) A count-proc@,t} = i & (J4)(Secd = sel))

S74 count-proc(sel,t) =

card({is~proc-atr{nth-blk(i,sel,t)(t)) | 1 £ i < count-blk(sel,t)}) + 1

525 cont-proc(sel,t) =

nth-proc(count-proc(sel ,t) ,sel,t)

326 find-epai{n,bl) = n = 0 —— length{(bl)
T v find-epa{n-i,front{s~epa(last(bl)),bl))

Property 2-1: This property is identical with 1-2 but applies to the machine of section
2.1, Its proof again relies on 1-1.

Property 2-2: The first part of this property specifies the relation between the pointer
components cf successive ellements of the statiec chain. The second part extends this to

a relation between arbitrary elements .of the static chain.

a) EPA, = 1 » (Je)(PTR, = e PTRL

k LPA] A ({d) = elem(i)os-sp) v

(& = s~body) v
{4 i) = s-atreelem(ides—dp)l)

<

b) i » k2 (PTR, = nth=blk(j,&,TX) = PIR = nth=-blk(j-k,&,TX))

find—epa(k,BLi)
A proof of a) follows from 511, 511, S12 respectively (2-1 supports the claim that
the EPA and PTR components are unchanged). A proof of b) follows from S526.

Property 2-3: This property states that if two blecks, which are contained in the same
procedure and are such that one is not contained in the other, are pointed to by
elements of BL, then there must be an intervening element of BL which points te their

containing procedure.

i < § £ length(BL) A contmproc(PTRi,TX) = cont*proc(PTRj,TX) A

() e PTR, = ﬂoPTRj) > (3L < k < 3 A PIR = cont-proe(PIR,,1X))

k

A proof by contradiction can be constructed based on 2-2b, Si1i and S12.

TR 25.104

his section contains a proof that the interpreter of section 2.1 is "eguivalent"

As discussed in the introduction
etion 1.2, we shall attain this objective by showing that all

that given as the definition of the language in 1.7.

information retriev~
é.from the denotation directory of the defining interpreter is also ocbtainable from

alternative interpreter.

The framework to be used for this proof will be the so-called "twin machine!

hod of /1/. This method ecan be explained by an analogy: Suppose some organisation

changing an internal recording system such as its accounts, it will prohably elect

' ‘through a period of running the new system in parallel with that already estab-
+-The mechanism required for the new system being installed
(logically) with the results of the establi

¢-has been created,

S0 as not to inter-
shed. When a certain lavel of confi-

that the new system yields the same results as the established
d "therefore" correct) one,

the mechanism for the old system is discarded and the
ew. system becomes established.

Mueh the same approach is followed by our "{twin machine" proof of the correctness
he system for access to variables. The first step is the installation of the state
. This change is made in such a

~ag to not change the results of the established systen,

qmponents which the dlternative system will require,

in particular the defining
system remains the one used for all internal references e

« A proof is then given that,
1ﬁ'any state of this

"parallel operation" machine, a reference mechanism utilizing ¢
components added above will yield the same res
pated transitien,

he
ult as the defining mechanism. The antici-
which will include changing the reference method employed by the in-
*féfnal housekeeping operations (e.g. access to procedures), is then made. Finally, any

state elements not required by the new method are discarded. Section 2.3.1 defines the

twin machine.

The other idea behind this proof is the use of the freedom permitted by the langu-

cage definition in the definition of the unique name generator. T

he only constraint of
‘the definition was that the function should be one-one from identifiers and integers to
unique names. In constructing the twin machine we define a particular function which

Has the property that the generated unique names are selectors leading to exactly the

“loeal denotations whose insertion is part of the mechanism for the new retrieval method,

In this comment lies the key to the advantage of this style
were the proof written based on the two systems unconnected
be compelled to show that they follow the same course (e.g. executed the same proce-
dures) before we could address the argument that at comparable points they yield the
Same result. Whersas a proof using the twin method is simplified by having both mo-
dels "chained" together by virtue of the use of only one housekeeping system. There-
after, when the equivalence of the preference techniques is established, the new me-
thod may be utilized for all references including those for hougekeeping.

of preool construction:
te each other, we should

IBM LAB VIENNA - 22 - TR 25.104

The correctness of the search model follows from the observation that the portions
of text of the base model pointed to by the elements of BL are formed by successively
modifying the base texlt in two ways: the names introduced in embracing blocks are
changed to unigque names as the blocks become active; all formal parameters are replaced
by the unique names in the argument list (see 1«5, 1~8}. The static chain traces through
exactly those elements of BL pointing to the embracing blocks (2-2} and parameters are
handled in a way equivalent to their insertion. The successive modification and the
search from the inanermost block both have the property of yielding the deepest cccuren-—
ce. Section 2.3.2 contains a proof by induction of the property that the search locates
the same denotation as that pointed to by the unique name. Further, since the text com-
ponents differ, the game induction is used to show that all ummodified names are equal.
The induction for blecks is trivial, that for procedures is complicated by having to
show that no changes have been made to the relevant components since the block was
active in which the induction hypothesis was used (i.e. that containing the procedure

declaration).

2.3.1 Twin model

There are two areas where this model differs from that of section 1.2, neither
of which affects the result. First, the addition of new, unused, state components
(all suffixed by -s), whose yelaltion to the machine of section 2.1 should be obvious,
The second change is the definition of a particular function (T22) for un which satis-
fies the property reguired in B17. The function chosen yields selectors which can be
applied directly to the state to give the denotation (s-den-b is applied to this

composite denotation to yield the base rather than the new "-s" component).

The selectors are generated so as to point to the local denctation compenentis
for the block local element corresponding to the block or procedure which introduced
them. The global denctation component has therefore disappeared in favour of these
local denotations. Furthermore the function un creates unique names whose first element
is the original identifier (this observation justifies the use of the original identi~

fiers in the updating of the local denotations in T1i5, T16).

Notice that these local denotations are deleted, with the rest of the bleock loecal
List element, by epilogue on exit from their active scope. Since any variables in such
a denotation are no longer referencable {(and Their counterparts in the global deno-~

tation would have been eligibkle for overwriting), no change has been made to the outconme.

2.3.1

T2

‘Ta

.-'Tiﬁ

T11

T12

R VIENNA

State
is-state = (<8—bl:is—bl—list>,<sjabn:is—lab—den v is-{1>,<s-ciis-c>,
<g-tx-s:is-blocks>)
is-bl = {<s-tx:is-m-block>,<s~pir:is-sel>,<s~ctr:is-int>,

<g~dn: ({<id:(<s-den-h:is-den>,<s-den-s:is-den-s>)» || las-id(id)Y}d»>,

<s-epa-siis-int>,<s-ptr-siis-sels,<s-ctr-s:is-int v is-(>)
is~den = is-proc~den v is~lab-den v is-other-den
is-proc~den = is-sel
is-lab-den = {(<s-biis-sel>,<s~dcl:igs—~ints)
ds-other-den =
is-den-s = is-proc-den-s v is-lab-den-s v is-parm-den-s v is-other-den-s
is-proc-den~s = is-int
is-lab-den~s = is-int
is-parm-den~s = (<s-b:is-int>,<s~del:iis-int>)

is-other-den-s = ...

N.B. must not satisfy is-{}

is~o = gee /2/
is-m-block ete. as in 1.1 except that all occurences of is-id have been changed
to is~id!'.

Abbreviations used:
BL = s-bi(E)

DN = s»dn(é)

ABN = s-abn(k)

B = last(BL)

TX = g-Lx(B)

PTR = g-ptr(B)

CTR = s~ctr(B}

P = elem(CTR)es~s5pePTR
ST = P(TX)

CTRs = g-ctr-s(B)
PIRs = s-ptr-s(B)

cont 'd

2.3.1.1

IBM LAB VIENNA - 24 - TR 25.104

T¥s = s—tst(g)

EPAs = s-epa-s(B)

Ps = CTRs # [} -——= elem(CTRs) os-spoPTRs
T —— s-body°PIRs

5Ts = Ps(TXs)

cur{bl) = elem{length(bl))es-b1

The initial state go for any t, such that is—program(to)
TO EO = p Ces=bLr [(es=txipy {<s=spilt_1>,<s-dp{1>) >,
<g-ptril>,
<g-ctri:0>,
<s-ptr-s:l>,
<g=-otr-s:0>}]>,
<g=~¢iint-next-st>,

<s~tx~s:p6(<s—sp:EtO]>,<S~dp:[3>)>)

2.3.1.2 State transition function

Ti3 int-next-st =

CTR < length(s~-spePTR{TX}) » ABN S) p—— int-next~st;

int-st;
step-ctr
s~b{ABN) = PTR - = int-next-st;
int-sts
set-etr
T et il 1
Tiu int-st =

is~m-block{ST) ——= epilogue;
©int-next-st;
inst=hbl
is~m-call(8T) —w= epllogue;
epilogue;
intnext-st;

inst~bl;

iS-m-thO(ST)-—~®*S“&bﬂiS“den—b(ST(%))

2.3.1.2

IBM LAB VIENNA - 25 - TR 25.10%

‘716 inst-bl =

s=b1:BL" [(<s~tx (X <Pinod-b(ST,BL)>) >,
<s-ptr:P>, - .
<g=-ptr-s:Pg>,
<g=-cir:0>,
<s-epa:length{(BL)>,
<s—dn:f%({<s~idoelem(i,s—dp(ST)):
yb(<S—den—b:s—atroelem(i)cs—dpoP>,
<g-~den-s:ii»)> | is»m—proo-atr(SMatr(elem(i,s"dp(ST)))ﬂ
U {<s-idoelem(i,s-dp(ST)):
#b(<S*den—b:f%(<s—b:P>,cs—dcl:i>)>,
<g~den-s:ii>)> |

is—m—labmatr(SMatr(elem(igs~dp(ST)))}} Ui

inst~proc(arg-i,s} =
s—bl:BLf\[ﬂ6(<s—tx:piTX5<P:s—body(mod*p(s(TX),argml})>)>,
<5-ptr:PTR>,
<g-ctr:CTR>,
<s—ptr~s:s—atreelem(dedOSMdpuS“ptrws(elem(ind,BL)}>,
<s-epa-s:iind>,
<s—dn:yb({<elem(j,SWPPOS(TX)):
ﬂb(<5mden~s:d(id~part(elem(j,argml)),length(BL)ﬁBL}>)>I

4

153 < length(arg-1)1)5)]
where: ind = (1i)((] P (s=atreelen(ides-dpes-ptrlelen(i,BL)) = s))
dec = (L)((Id) (s-atreelem(idel = s3)

step-clr = s-ctrocur(BL):CTR + 1
s-otr-socur{BL) :CTRs + 4

gset-cty = s~ctrncur(EL):s«atroelem(SMdcl(ABN})os—dpePTR(TX)
s~ctrmsocur(BL}:s—atfoelem(s—dcl(ABN))vs~dpoPTR(TX)
s~abn:£2

.eEilogEE = cur{(BL): (]

S mod-b(blk,bl) =

/b(blk;{<d¢undﬂk(blk},length(bl))> | is-id@ (blk)) 4 is-decl(A(bik),blk) a
—1isered(@(bik},d,blk)})

2.3.1.2

IBM LAB VIENNA - 28 - TR 25.104

T71 mod-p(pre,arg-1) =
plpresf<dielen(i,arg=1)> |
is~id@l(pred) A elem(i)es-pplpre) = K(pre) A m1is-ved@{pre),d,pre)})
T22 un (id,n) = ides~dneelem{n+i)s s=bl
T23 is-red(id,sel,t) = (E}&,ﬂ)(sel :(iyﬂ A fBE L A is-intr(id,f(t)))
Tz is-intr(id,t) = is-m-block(t) ——=is-decl(id,t)
ig~m~proc-atr(t) — ig-parmd{id,t)
T o T
T25 dis—decl{id,blk) = (3 i)(s-ideelem{i)es-dp(blk) = id)
T26 is-parmd(id,prc) = (Ji)(elem(i)es~pplpre) = id)
T27 d-blid,n,bl) = d(id,n,bl) =} ~—wwm ¢
T —e= 5~b{(d{id,n,bl))
T28 d~d(id,n,bl) = s-dcl{id,n.bl)
T29 d(id,n,bl) = n £ 4 ——e {) ,
is—parm~den-s(s~den-seides—~dnoelem{n,bl)) ——
s-~den~geidoes~dnoelem(n,bl))
s~den~seides~dneelem{n,bl) # 1 -
/g(<s«b:n>,<Smdci:5~den~5oidos~dnuelem(n,bl)>)
T ——w d(id,s—epa~s(elem(n,bl)) b1}
We can now, given T22, specify actual functions for id -part and len-part (see
B23,B24)
T3¢ id-part{un) = ({id)(is-id(id) A& (FX){un = idea))
T3l len-part{un) = (ti}{un = id=-part(un)es~dneelem(i)es-bl)
2.3.2 Proof
Theorem 2-6 shows a relation betwsen the unique names and the new state components
which is stated with the aid of the following abbreviation.
T32 £0.,BL) = (dNPTRS(TXS))DS“dn°elem(d"b{aﬂpTRS(TXS),BL))OS*bl

“IAR VIENNA - 27 = . TR 25,104

Corollaries 2-5 to 2-8 and Theorem 2-9 show how this relation justifies the cor-
eotness of the model of section 2.1, '

hHeorem 2-4: Tor any state E:
Theorem 77
is—un(@ePTR{TX)) » AoPTR(TX) = £{¢,BL) !

roof 1 An inductive proof is given that:

1 2 1 = length(BL) =
iS~un(¢°PTRi(TXi)) 2 dﬁPTRi(TXi) = f(d,BLi) A

is—id(otoPTRi(Txi)) DO(;BPTRi(TXi) =0(/oPTRsi(TXs)

asis for i = 1

iSHblock(Txi) TO,1-2
¢ z a ~

PTRi\Txl) = I(TXl) 10,1-7

"T(30(,)(is—un{dOPTRl(TXl))) 3,4

PTRs1(TXS) = 1{TXs} TO

TX, = TXs TO

(Yol) (@ePTR, (TX,) = & *PTRs, (TXs)) 3,4,6,7
“Thus the required properties hold for anvy initial element 5,8

Induction from BLj to BLj+j by inst-bl
let nm = ﬁ{STi) L
] - o g
nm' = d'PlRi+i(TXi+i)
ids = %(STsi)

ids' = doPTRs. , (TXs)
Property 1:

is-un{nm')

The properties given in 1-2 and 2-1 apply teo the twin machine and will be used
- Wwithout separate proof. Further we shall use the obvious result that, after
iﬂgﬁ:ﬁi, the CTR and CTRs components are equal, without proof.

IBM LAB VIENNA - 28 -~

10

11

13
14

15

17

18

20
21
22

Which

23

30
31

32

Two case distinctions are made:

case: —is-un(nm)
is-id(nm)

(4 i)(s~ideelem(idos—dp(ST) nm?}

H

dmelem(CTRi)ogmspoPTRi(TXi) = amelem(CTRi)os—gpoPTRSi(TXS)

nm = ids
nm = ids'
nm' = un(nm,length(BLi))

nm' = nmnSMdnoelem(length(BLi} + 1)es-bl

nm' = nmo8wdnoelem(length(BLi+1))os—bl

d-b(ids’,BLi+1) = d*b(nm,BLi+1)
d—b(ids',BLi+1) = length(BLi+1)

f(ﬂqBLi+1) = nmes~dnoelem(length(BLi+1})a3wbl
nm' = f(%,BLi+i) K

concludes the case given in 10.

case: ig-un(nm)

let idp = id-part{nm}

—1{d 1) (s-ideelem(i)os-dp(ST,) = idp)
%DSTi = thOelem(CTRi)os—sp,BLi)

idp = ids

= (4 i)(5widoelem(i}05mdp(STi) = ids)
d*b(idS,BLi+1) = d*b(idS,BLi)

nm' = nm

H]

nm f(Q°elem(C?Ri)°s—sp,BLi)

f(d,BLi+j) = f{foelem(CTR,)e s~5p,BL.)

nmt o= £, BL.)

i

This concludes the case given in 23 and thus peoperty 1 holds

Property 2:

33

34

35

js-id(nm')
nm' = nm

is~id{(nm)

TR 25,104

2,106,T15,T20
9,10,T15,T20,T24
11, TH?
13
13,T15
11,112,720
16,7722
17,715
15
19,12 ,%15,T27,T29
$32,15,20

21,18

23,1-8a,T72h
23,181
25,732,730
26,724
T27,T29,27,7T18
23,1-9%a
29,25
T3%2,28

30,31

33,T15,720

33,30

43

i

LAB VIENNA - 99 -

ids' = dids
nm = ids
nm!' = ids

~This concludes the proof that property 2 holds and thus
inst-hl.

Induction from BLi to BLj+1 by inst~proc

let ind = (L9433 k)(s—dén~bos~nm(STi)(§) = s—atroelem(k)os~dpos—ptr(elem(j,BLj))))
(Lj)((Ehi}(SWden—vaMnm(STi)(E) = s~atroelem()ed.}))

dec
nm = des—bodyos~den“b(s—nm(STi)(%))(Txi)
nm' = %oPTRi+1(TX)

i+l
ids = Qes«bodyOSWatroelem(dec}os—dpoPTRsind(
ids' = dePTRsi+1(TxS)
lenp = len—part(SMHm(STi))
nim =cios—body°s—den—b(s—nm(STi}(g))(Txlenp)
lenp = ind
nm = des-bodyos-atreelem(dec)es~dpePTR, . (TX)

ind ind

'?fdperty i

is-un{nm')

?wo case distinctions are made:

case: - is-unl{nm)

is-id(nm)

- j)(elem(j)os-ppOSmden—b(s“nm{STi)(%))(Txi)) = nm)

let j be that i satisfying 45
arg = e_}_@m(j)osha}?(s.ri)
nm' = arg
is~un{arg)
(TH. .2

d ind
Txind) = ads

is-idQ&os~bodyos~atr°elem(dec)vs—dpéPTRin

iﬂs~bodyos—atroelem(dee)°s~dp°PTRind(

TXS)

TR 25.104%

T15

35 ,IH2

concludes the induction by

1-4
1-2,2-1

1-2,T15,40

W2 ,53,7T16,T21

N2 45, TN, T16, 721

45,721
42,485
41,4y

48 ,TH2

bi,ua

IBM LAB VIENNA - 30 - TR 25,104

let args = elem(j)° s-ap(STs)

51 arg = f(elem(j}os*apoelem{CTRsi)os—spoPTRsi,BLi)) 46,111t
52 ids!' = ids ’ T16
53 elem(j,s—ppos~den—b(8~nm(STi)(%))(TXi)) = ids' 45,580,572
54 . d~b(ids',BLi+1) = d—b(args,BLi) 52,1727,T29
55 f(elem(j)os—apoelem(CTRsi)cs"sp,BLi) = f(ﬁgBLi+1} T32,54
56 nm' = £(A,BL,) : 51,55

Which concludes the case given in 43.

57 case: is-un{nm)

58 - (3 i){e].em(i)os~pposﬂden—b(8wnm(8‘1‘i)(%))(’I‘Xi)) = idp) 57,1-8%
59 is—un@%as~bodyos~atroelem(dec)cs“dpoPTRind(TXind) 51,41
EO dms—bodyos~atraelem(dec)os~dpoP”Rind(Txind) 59,TH1
61 nmo= f&%,BLind) . 1,580
52 idp = ids : 61,737
63 ids = ids! Ti6
64 ”ﬂ(jﬂi)(elem(i)os—pp03~den—h(s—nm(STi)(g)}(TXi)) = ids') 62,683,588
66 d=h(ids’,BL,) = d-b(ids,BL.) 63,64 ,T27,T20,72-1
66 nm’ = nm 51,1-9n
67 nm' = f(quLi+1) 66,61.,65,7T32

This concludes the procf of hoth the case given in 57 and Property 1.

Property 2:

68 id-is(nm'}

69 ' = nm Ti6,721
. - e et on]a 20 os-dpoePTR. ' . 58 1
70 1s=id{fles~bodyes-atrcelemn(dec) es—dp IlRlnd(TXlnd)) 68,011
71 lLns—bodyoSWatreelem(dec}ns«dpoPTR. (TX.) = idds 70, 1H?

ind ind

772 nm = ids 4i,71
73 ids' = ids Ti6,T7%
Th ids' = nm! 73,72,69

This concludes the procf of property 2 and thus the induction according to inst-proc.

LAB VIENNA - 31 - TR 25,7104

Since inst-bl and inst-proc are the only instructions which create new elements of

Bﬁ, and they preserve the property wvhich we know holds for all initial elements, the
p?bperty holds for all elements of BlL. This concludes the proof of the thecoremn.

Theorem 2-4 shows that the denotation entry for a name can be located, in the
extended machine, by a particular searching method. The retrieval of the denotation is
“éxpresssed in the corollary 2-§. However, further information is found during the search

fOCess (i.e. the block in which the denotation is located) which can be used to suppie-

1t the more meagre information contained in the s~den-g components to fulfil the

poses of s-den~b, this is expressed in corollaries ?2-8 to 2-8.

ollary 2-5: Shows that the same denotation can be found by either applying the unique

ame to the state or by searching with the identifier.

is~un{fe PTR{TX)) o 2-4,732
dePTR(TX)(%) = @oPIRs(TXs)Yes-dne elem{d-b @& PTRs (T%s),length(BL),BL) ,BL)

s0rollary 2-6: Shows that the block referred to by a unique name can ke found by the
gdrch, '

is-un(@s PTR(TX)) o 2-1,7372
dwb (@o PTRs (TXs), length(BL) ,BL) = (Li)((d id) e PTR(TX) =

ides-dneelem(i)es-bl » i1s-id(id)))

Corellavy 2-7: Shows Thal the original procedure denotation can be constructed from the

is~m~proc—den(s—den-b(QNPTR(TX)(%))) > . T16,2-5,2-6
s-den-h(PTRIIK) (5)) =
s-atreelen(d-d @ PTRs (TXs) ,length(BL) ,BL) Yes-dpe (s-plrlelen{d-hls PTRs (TXs),
length(BL),BL)},BL)))

orollary 2-8: &) Shows that the block located by a search will he the one whose poin-

ter is stored in Tthe original label denotation,

is~m-lab-den(s-den-b{&ePTR(TX) (E))) » T15,72-6
s—bns~den—b&50PTR(TX)(%)) = s-ptrl{elem(d-b{xPTRs (TXs) ,length(BL) ,BL},BL)}

b} Shows that the index part of a label denotaticon can be found using

either reference mechanism.

is-m-lab-den{s-den-b-PTRITXY(E))) > T15,2-5
s—delos~den-h @ PTRITXY) = d-d@«PTRs (TXs),length(BL) ,BL)

IBM LAB VIENNA - 32 ~ TR 25.10u

Theorem 2-2: The search model of section 2.1 is equivalent to the twin machine and thus
to the base model of section 1.2.

Proof: Tt is noticed that the fellowing changes to the twin machine do not change its

al

b)

c)

d)

e)

)

g

h)

i)

i)

function from text to results:
The second argument of inst-proc(T14) is~changed to ' 2-7

s~atroelem(d-d (s~nm(STs),length(BL) ,BL})os~dpe(s~pir(elem(d~b{s~-nm(STs),
length{BL),BL},BL)})

The implicit evaluation of the s-~epa component (T16) is removed by passing an
extra argument from int-st (Ti%} whose value is d-bh(s-nm(STs),length{(BL),BL) 2-6

The location of the parameter list (T16) is changed from s-pp(s(TX)) to
s~ppes=atreeclem(dec}es~dpes~ptr-s{elem(ind,BL)) 27

The value stored in s~b(ABN) is changed to be of type is-int and is calculated
(Ti4) by d-L(STs,length{BL),BL)
and int-next-st (T13) compares s-h(ABN) with length(BL) ?2-8a

The value stored in s-dcL(ABN} is caliculated (Tiu) by d-d(S8Ts,length{(BL),BL) 2-8b

d) & e) are simplified (T14) by setting ABN to d(8Ts,length{BL),BL}

=
~
D

All references to denotations are changed to use search and the s-den-s components
(including unspecified parts of the interpreter). In particular, the first argu-
ment to inst-proe (Tilh) becomes

[ength G-ap(5T3))
LIST d(elem(i,s-ap{S8Ts)),length(BL},BL) 2-5

454

The s—tx and s-ptr bklock local components and the s-den~h sub-component are no
longer used and are deleted.

The decomposition of argument s (T16) can be avoided by passing (T14)
g~atreelem(d~d(s-nm(87},length(BL) ,BL) es~dpel(s-ptr(elem(d~b{s~nm{ST},
length(BL),BL) ,BL)))

The now guperfluous s-den~s selector can be systematically removed.

Steps a) ~ J) have created the search model and the justifications on the right

have shown it to bhe equivalent to the twin model.

/AB"VIENNA - 33 - .- TR 25.10%

-Further Properties

This section presents some pr0p§rties, of the model given in section 2.1, which
faepe not given in section 2.2 since their proofs are most easily seen by appealing to
”.é-equivalence result proved in section 2.3. In fact we could present analogues of

st of the properties 1-3 to 1-8 as corollaries of the equivalence, but only 2-10 and

11 will be presented as such. Property 2-12 is also required below.

perty 2-10: This property shows that, under the assumption of a proper program,

: any block pointed to by (the PTR component of) an element of BL, a search using
& function d applied to one of its identifiers not contained in a nested block will
ot yield Q.

1 5 1 < length(BL) =
(is-dir-cont(f,PTR;(TX;)) 4 is~1d{0ePTR,(TX;)) =
a(@ePTR, (TX) ,1,BL) # 2

A proof follows immediately from 1-6 and 2-4,

Préperty 2-11i: a) This property states that if the activation of a block causes the

_ue of 4 applied to an identifier to change, then that identifier must have been in-

d(KePTR.,

¢+1(Txi+1)’i+1’BL) # d{%(STi),i,BL) 2 is~decl(ﬂ(STi),STi) v

d(ﬁ»PTRi+1(TXi+i},i+1,BL) £ d(mos“body(s—nm(STi)(DNi)),i,BL) o

is—parmd(aﬂs“body(s~nm(STi)(DNi},s~nm(STi)(DNi))

.A proof follows from 1-8 and 2-L.
) The following is a generalisation of a):
1 <= i < length(BL) » d{id,i,BL) # O - (ga(x,ﬂ)(PTR_i = o/ A is-intr{id,(TX) N

A proof follows from the observation that for all elements of BL either
_is—block{STi} or iS“C&ll(STi) and the above result.

. Property 2-12: This property shows that the integers stored in components of BL which
care indexes of BL will always be less than the index of the point at which they are
i ../stored.

I8M LAB VIENNA -

a)l

b)

c)

1 < 1 s length(BL) =
s—epa(BLj) < i
is—parm—den(id(DNi)) » s-beideDN, < 1

d-b(id,1i,BL) = i

3y

TR 25.104

A proof by induction on BL can be constructed to show that the property is trus

when the elements are installed and 2-1 assures us that they remain true until deleted.

TR 25.10U4

$MPLEMENTATION USING A DISPLAY OF THE STATIC CHAIN

" We recall that the introduction to section 2 explained that the purpose of a dis-
ay is to provide a vector of pointers which supply the link from some index, appended
' veferences in a prepass, Lo the dynamic area in which the denotation of the referenced
éme is to be found. The knowledge gained from our search implementation of section

:1, that the only referencable variables are on the static chain, prompts the idea of

aving a display pointing to the elements of this chain.

- The definition of an E.P.A. pointer (i.e. for some block, it points to the dyna-
apea whose pointer points to the block ov procedure containing it) gives the key
to how the indexes to the display are computed by the prepass: each reference to a

riable must be supplemented with the lexicographic depth of the declaration of the

ridble (i.e. number of embracing blecks). With the elements of the display set to
int to the dynamic areas found on the current static chain (the first element of the
Sﬁlay being that of the outermost bleck), its "n"th element will point to the dyna-~
¢ ‘area containing the denotation of any variable whose active reference has a depth
Ienent n. This is the subject of the proof in section 3.3. Thus any variable can be
¢ferenced with one indirect step.

As was pointed out in section 2, such a display must be updated dynamically, and
e model given in section 3.1 employs an extremely wasteful rule: each time the length
f the block local list is changed, the entire static chain is traced and stored in

the display. The subject of optimizations to this basic method is pursued in section k.

This display method is described in /#/ and, with some improvements Lo the up-

idating mechanism, in /5/.

3.1 The Model

The transition from the model of section 2.1 to the model of this section is ac-
omplished by the addition of, and provision for maintenance and use of, a global dis-
play vector (HISP).

The maintenance is performed by replacing the display by a completely new trace
of the static chain (formed by an invocation of upd-disp) each time the length of the
:list of dynamic areas (BL) changes.

The function dd accepts a reference and uses its depth part Lo select the element
Jof DISP which points to the dynamic area for this reference.

IBM LAB V

IENNA - 36 -

te

3.1.1 Sta

5D is-

SDh?2 ig~

SD3 is-

Shu is-

SDS is-

SD6 ig=

ah? is-

SD§ ig-

q5-

al

b

Abb
BL
TX
ABN
DIS
B =
EPA
PTR
CTR
DN
bEP

P =

ST

cur

state = (<s-bliis-bl-list>,<s~tx:is-p~block>,
<g=abn:(<s-b:is-int>,<s-del:is-int>} v is=-(>,

<s~ciis-c»,<s~dispris-int-list>)

bl = (<s-epa:is-int v is- (>,

<s-ptriis-sels,

<g-ctriis-int v is- 0>,

<g-dn: ({<id:is~den> || is~id(id)})»)
den = is-proc-den v is-lab-den v ig-parm-den v is-other-den
proc-den = is-int
lab-den = is-int
parm-~den = (<s-biig-int»,<g~decl:is-int>)
other-den =
c = see /2/
p-block ete. as is-block except:

is~id (except within is-dec or s-pp)} changed to is-ref

is-vef = (<g-id:is~idr,<s-dep:is-int>)

TR 25,104

ig-p-block and is-p-proc-atr have the additional component <s-dep:is-ints

reviations used:
= 5-b1(%)
= s=tx(E)
= s-abn(g)
P o= s~disp(§)
last(BL)
= s~epa(B)
= g-ptr(RB)
= g-ctr(B)
= g-dn(B)
= s-dep(PTR{TX))
CTR £ () ——e elem(CTR)os-spePTR
T ot 5-bodyePTR
= P(TX)

(bl) = elem(length(bl))es-bl

I TENNA

= p6(<s—b1:[y6(<s—ptr:1>,
<g-ctr:0») 1>,
<s—tx:ﬂb(<s—sp:[prep(to)]>,<3wdep:0>,
<s=dp:[1>}>,
<s-disp:[]>,

<g~ciint=next-st>)

. Where prep must satisfy 3-1.

7.:5tate transition function

dnt-next-st =

CTR < length(s~spePTR(TX)) » ABN = fz we—sw Aint~next-st;
int-st:
step-ctr
s-b(ABN) = length(BL) ——eint-next-st;
int-st,

set-ctr

T o—e pull
ink-gt =
18-p~block(8T) s rev-disp;
epilogue;

int-next~st; -
rev-disp;
inst~bl
18~p+call(ST) e rev-disp;
epillogue;
epillogue;
int-next-st;
rev-disp;
inst-bl; Longth (sap(sT)

is-prgoto(ST) — s~-abn:dd(5T,BL,DISP)

il

where: d = dd~-d{s-nm(ST),BL,DISP)
b dd-b(s-nm(S5T) ,BL,DISP)

1t

TR 25.10%

inst-proc(LET ddlelem{i,s-ap(sT)) ,BL,BISP),
s-atreelem(d) es~dpefs~ptr{elem(b,BL}}),b)

IBM LAB VIENNA - 38 - TR 25.104

SD11

abiz

SD13

SDiy

o
!}
=
o

SD16

SDLY

5D18

shie

sD20

inst-bl =
s—bl:BLf\[ﬂb(<s—epa:length(BL)>,
<g-ptr:P>,
<g—cir:0>,
<s-dnip (f<s~ideelem(i,s-dp(ST)):i> |
—tis~p-other-atr(s-atr(elem(i,s~dp(STI}})IU, .. 1)1

inst-proclarg-1l,s,epa) =
s~bl:BLf\fﬂb(<s~epa:epa>,
<g-ptris>,
<s-dn:ﬂa({<elem(i,8wpp(s(TX))}:elem(i,arg—l)> |
1 s 1 2 length(arg-1)31s)3

step-cty = s-ctrecur(BL):CTR + 1

gset-elr = s-ctrecur(BL):s-ctrl{elem(s-del(ABN) ,s~dp(PTR{TX))}))
s~abn: {2

epilogue = cur(BL) : (2

rev-disp = s~disp:iupd-disp(BL,DEP)
dep

upd-disp(bl,dep) = iJ%T find-epal(dep - i,bl)
i

dd-b{ref,bl,disp) = s-b(dd(ref,bl,disp))

dd-d(ref,bl,disp) = s-del(dd{ref,bl,disp))

dd(ref,bl,disp) =
is-parm-den(s-id(ref)es~dneelem(ind,bl) — - g-id(ref)os-~dneelem{ind,bl)
T —-%—}%(<s~b:ind>,

<g~delis-id(ref)es-dneelem{ind,bl)>)

where ind = elem(s-dep(ref),disp)

Properties

This section states the axiom required for any prep function and gives a

property of the machine of section 3.1.

VIENNA = 39 - TR 25.104

deX,Wthh is the depth of the bloek, and aad to each. referenee an index which is
e depth of the deepest surrounding block which introduces the identifier {gsee B1g,
g24 for is-intr, nth-blk, cnt-blk respectively).

is=block(t) A pt = prep(to) >
is-p-block((pt)) v is-p-proc-atr{d(pt)) > s-deped(pt) = count-bilk(d ,pt) A

.is~ref(&(pt)) @ g-daped{pt) = MAX (is~intr(s—id°dipt),nthwblk(i,%,pt}{pt)))
i
Gperty 3-2:

This property is identical with 1-2 and 7-1 except that it applies to the machine
ection 3.14. Its proof again relies on 1-1.

“Justification

We now prove that the machine of section 3.1 is equivalent to that of section 2.1.
e -proof is relatively simple. We know that the search mechanicm locates the first
lamic area of the static chain which contains a declaration of a referenced variable.
;ncé the display is updated in such a simple way (see SD10) it is obvicus, or provable
¥ induction, that it will always contain a trace of the static chain. Therefore, it

g only necessary to show that the element of the display indexed by the depth compenent
of a reference corresponds to this first element. We know that the depth component of
reference is the deepest surrounding block of the text which declares this entity. Tt
followg from the relation between blocks of the text and the elements of the static chain
hat this corresponds to the highest index in the display' which points to a dynamic area
contalnlng an entity of this name. The equivalence of "furthest [rom the ond' and
hearest to the beginning" completes the proof,

For our formal proof we shall again use the twin machine idea (as explained in
section 2.3) but, in view of the detailed presentation in that section and the extreme
S;mplicity of the current changes, the definition of the twin machine is not written
QUY. Apart from the extensions, the only change required to the machine of section 7.1
_Permlts it to operate on Texlt which has been preprocessed by the function prep. Such a
”text has all the oviginal infopmation, only an extra "s-id" selector must be placed be-
Te any use of "s-id"., The machine is extended by the addition and maintenance of a
display (DISP). The functions d and d-b are limited to the domain over which they are
tually used (2-10) by deleting the first case distinction of each.
Since in our twin machine, the d-b function of S16 is used to supply the entry in
the denotation for a parameter, we have only to show that the selected element of the

leplay points to the element of the bloek leocal list in which d-b iocates an entry,

IBM LAB VIENNA - 40 - TR 25.104

whether this entry is a parameter or variable denotation. In order to specify this

block we introduce an auxiliary definition which locates this block local element:

Sp21 df-intr{id,n,bl} = ides~dnoselem(n,bl) # {1 ———
T et df-intr{id,s-epa(elem{n,bl)),bl}

Theorem 3~3: This states that for any variable which is referencable, the component of
DISP indexed by the depth of the reference is the index of the element of BL which would
be located by applying df-intr to the identifier of the reference.

E is any state immediately after rev-disp
is-ref (@ (TX)) A is-refbl(d ,PTR,TX) >
elem(s—deped{TX},DISP} = df-intr(s-id£{TX),length{BL) ,BL)

Proof:
i is=-ref @ (TX))
2 is-refbl (4 ,PTR, T
3 count-bllk(&L,TX) = coun%—blk(PTR,TX) 7,520
t count-hik(PTR,TX} = s-depePTR(TX} 3-da,3-2
5 count-blk(PTR,TX) = DEP i
6 count-bhlk(d,TX} = DEP 3,5
7 PTR = nth-blk(DEP,®,TX) 2.,6,520,521
8 PTRfind-epa(kaL} = nth~bhlk(DEP-k,%,TX) for k < DEP 7,2-20
e pTRfind—epa(DEPﬁi,BL} = nth-blk(i, &, TX) for i = 0 8
10 is-intr(s-ided(TX) ,nth-blk(i,&,TX) (TX}) = 9,519,5D11,SD17
is-intr~s{(s-id=d{TX),front(find~epa(DEP~1i,BL) ,BL)}
11 MAX ig=intr(s-ided(TX) ,nth-blk(i 0, TX)(TX)) = 10
1 MAX ifg-intr~s(s-ided{TX),front(find~epa(DEP~1i,BL),BL))
i
12 elem(g-depe(TX) ,DISP} = find-epa(DEP~s~dp@{TX) ,BL) sSDig,shiv
13 elem(s~depel{TX),DISP) = find-epa(DEP-i,BL> 12,3-1Dh
where i = MAX ig-intr{s-ideA(TX) ,nth~blk{i, &, TX) (T¥X))
i
iy elem{s~deped {TX),DISP) = find-epa(DEP-~1i,BL) 13,11
where i = MAX is-intr-s(e-id-d(TX),front{find-epa(DEP-i,RBL),BL})
15 elen(s-depefl(TX) ,DISP) = find-epa(i,BL) 14
where j = MIN is-intr-s{s-ided(TX),front{find-epa(j,BL),BL))
3
i85 df-intr{s-ided(TX),length(BL),BL) = find-epa(i,BL) Sp21,519,3526

where 1 = MIN iS*intr—s(sﬂidod(TX),front(findmepa(i,BL),BL))
i

df-intr(S—id%i(TX),length(BL),BL) 15,16

- This concludes the procf that the twoe functions are equivalent over the stated

orem 3-4: The machine of section 3.1 is equivalent to that of section 2.1,
W

vof: First it 1s observed that the only places in oup (unwritten) twin machine where
.,feferences are made, have the same values of the critical state vectors as after
a yev-disp instruction (3-2).

.d—b(8~idN%(TX),1ength(BL),BL) = 516,518,3D71
: is-parm-den({s-1d°el{TXIY (DN, .) —sm s=b((5-3de@(TX)) (DN, .))

inty
T — intr

fowhere intr = df-intr(s-id«(TX),length(BL),BL)

dd-b{a{TX},BL,DISP) = SD18,8D20

i5wparm-den((s—id%i(TX))(DNintr)) E—-— wa((s~id%i(TX))(DNin)

T
L —p- intr

where intr = elem(s-deped.(TX),DISP)

Ad=b{E{TX) L BL,DISP) = d-b(s-id=ol(TX) ,length{BL},BL) 1,2,3-3

Since the change of reference mechanisms, justifiediby 3, is the only change we
Tequire to create the machine of 3.1, that machine must be\equivalent to the twin ma-—

‘chine and thus equivalent to the machine of section 2.1.

IBM LAB VIENNA i PRO25.10%

L. OPTIMIZATION OF THE STATIC CHAIN DISPLAY

Continuing our discussion of the display from the introduction to sections ? and
3, we already have a display whose one indirect step for references is as good as can
be hoped for in view of the dynamic nature of procedure calls. The direction of our
optimization effort must therefore be to simplify the updating of the display whilst

preserving this desirable property.

Section 4.1 shows that all entries on the static chain for simple blocks can be
considered to be superfluous and section 4.2 shows how the updating of the already
shortened static chain can be simpliified for some cases. Section 4.3 proposes an
alternative which, even mere so than other ideas, is not a clear cut optimization since
its relative efficiency depends on the instructions available for tracing lists or stor-

ing the display.

.1 Omission of Simple Bloeks from the Static Chain

The model given in section 4.1.1 has dynamic storage areas {(procedure local
elements - PL) only for procedure activations. Each such element contains the storage
for all simple blocks nested within the procedure body (section 1 explained that ag-
gregates would be handled by treating a dope veclor as a simple entity, so such a scheme
is not wasting much store). This change utilizes the knowledge thal within a procedure
activation simple blocks cannot be reactivated (see 2-3). The further knoviledge, that
parallel simple blocks (i.e. those of equal, relative, depth) cannot be simuitencously
active, 1s employed by the prepass when it allocates the same series of addresses
{relative to the procedure) to variables in parallel gimple blocks (see u-1).

The static chain joins these procedure activations and the correspondingly shor-

tened display is recomputed only when the length of PL changes.

The optimization described here hecame known to the authors firom /10/.

h.1.1 Hodel
.1.41.1 State

SPi.4 ds-state = (<g-pliis-pl-lists,<s-txiis-p-proc-atrs,

<g=abn:(<«s~p:rints,<s-dcl:is~lab~dens? v is- (05,

<g-c¢:ig-cs,<s~digp:is-int~list:)

R

is~-

ig=
ig=
ig-
is-
ig-
ig-

is-

a)

)

Abb

X

ABN
DIS
PR

EPA
PTR
CTR
BTR
DN

DEP

ST

cur

IENNA = 43 - TR 25.10u4

pl = (<s-epa:is-—-int V¥ is—fl>,
<g-ptr:is-sels>,
<g-ctr:is-int v is—£2>,
<s-btr:is-sels,
<g=-dn:is-den-lists)

den = is-proc-den v is-lab-den v is-parm-den v is-other-den
proc—den = is-sel
lab~den = (<s~btr:is-sel>,<s~dec:is-ints)

parm-den = (<s-piis-ints,<s-dcl:is-proc~den v is-lab-den v is-other-dens)
other-den = ...
c = gee /2/

p—block etc. as is-block except:

is-1d changed to ig-ref

is=refl = (<s-off:is-int> ,<s-dep:is~int>>
is-p-proc-atr has the additicnal component

<s-dep:is~int>

reviations used:

= s"pl(g)

= s"tx(g) : .
s—abn(g})
P o= s-disp(¥)

last{PLJ

= g-epa{PR)

= gs=-ptr(PR)

= g-ctr{PR)

= g-btr(PR)

= g-dn{PR)

= g-dep(PTRITX))

CTR #) =-——e elem(CTR)os5~5peBTR

T w——e—~ g~bodye BTR

Qe PTR

= P(TX)

{(p1l) = elem{length{pl)les~-pl

1

b

Y,.1.14.1

IBM LAB VIENNA - uy - TR 25.104

Tnitial State éo for any text t_ satisfying is-block(t):
s§bl.0 §o=:ﬁg(<s"pl:[/B(<S—ptr;s~body>,
<g=btr:1>,
<g=ctr:0s,
<s~dn:i[1>) 1>,
<S~tx:;%(<S—body:[prep(to)]>,<s—dep:0>,
<s=pp:il1=)>,
<s=dispi[]>,

<g~ciint~next=-sts)

where prep must satisfy u-1.

4.1.1.2 State transition function

S5P1.9 int-next-st =

s-p(ABN) length(PL) —= int-next-st;
int-st;
set-btr
CTR < length{s-speBTRoPTR(TX)) A ABN =) — o int-next-st;
int-sts
step-ctr
CTR # f? n ABN = [} — —— int-next-s1t;

reget-bitr

=3

e I L L

8D1.10 int-st =
ts-p~block(ST} —w=inst-bl

is-p-call(8T) ——wrev-disp;
epilogue;
int-next-st;
inst-bl;
rev-disp; Langth (sap(5T)
inst-proc(LIST dd(elem(i,s-ap{ST)),PL,DISP),
- g-atrodes-ptr{elem{p,PL)),p))

ig-p-goto{ST} - =~ 5-abn:dd{(ST,PL,DISP)

.

where: d = dd~d{(s-nm{ST),PL,DISP)
p = dd-p(s-nm{ST),PL,DISP)

h,3.1.2

LABE VIENNA - 45 - TR 25.104

1.11

inst-bl =

s—ctrecur(PL): G
s-btrecur(PL):Q
g-dnecur(PL):p(DN; {celem{s-offes-ideelem(i,s~dp(ST))) relem(i)os-dpeQs [
is—pmpPOC*atr{s~atr(elem(i,SMdp(ST))))} U
{<elem(s—off°s—idwelem(i,s—dp(ST))):ﬁ%(<s-btr:Q>,<s—dec:i>)>
is-p~lab-atr(s~atr(elem(i,s~dp(ST)))) I U...)

inst-proc(arg-l,s,epa) =
5“pl:PL/\£pb(<s~epa:epa>,
<s=ptris>,
<gs-btr:ls,
<s~dn:ﬂb({<elem(i):elem(i,arg—l)> 1 5 1 s lengthlarg~1)31)>)]

reset-btr = s-bitrecur(PL): (ta)({J i)(BTR = elem(i)es-sped))
s-ctrecur(PL): (L 1) ({3 &) (RTR

it

elem(i)os-sped))
step~clr = s-ctroecur{PL):CTR + 1

set-bir = s-birecur(PL):s-btres-del (ABN)
s~ctrecur(PLY:s-atr(elem(s-deceos~del(ABN) ,s~dpe (s-hires~dcl (ABN)) o PTR(TX)))
s-abn: {)

epilogue = cur{PL):{])

rev-disp = s-disp:upd-disp(PL,DEP)

depy
upd-disp(pl,dep) = LISTfind-epaldep~i,pl)

2%
dd-plref,pl,disp} = s-p(dd{ref,pl,disp))
ad-d(ref ,pl,disp) = s-del(dd{ref,pl,disp))
dd(ref,pl,disp) = is-parm~den(elem{s-off(ref),s-dnl{elem{ind,pl)))) ——=

elem(s-off (ref),s~-dn{elen(ind,pl)))
T HAAﬂ—ﬁ%(<s-p:ind>,<S—dcl:elem(s—off(ref},s~dn(elem(ind,pl)))>)

vhere ind = elem(s-dep(ref),disp)

b.1.1.2

IBM LAB VIENNA = Ue - TR 25.10%

Axiom 4-1:- This axiom states the required properties of the function prep:

al

by,

c)
d)
al

£

al

b}

c)

d)

a)

i

An index is added to each procedure attribute indicating the number of embracing
procedures.

fach name introduced is also supplemented by a depth index which is that of its
deepest containing procedure,

An offszet is added to each name introduced which is

Witheout gaps within a block
Unique within the block
Larger than any of a surrounding block within the same procedure

Each use of a name is replaced by the reference to which that name refers,
is—block(to) A pt =’prep(t.) »

iSWPPOCMatr(ditO)) 5> s-depod(pt) = Count—proc(dqto)

i3mdec(elem{i)os-dpod{to)) » s-depeelem(iYes~dpedlpt) = countmproc(%,to)
is“id(elem(i)os—ppod(to)) » s~depoelem{i)os~ppodlpt) = count—proc(%qto)

iSHblockzb(to)) s MAX (i = g-offeelem(d)os=dpoed{t J) -
i

MIN (i = s-offoelem(k)os~dpedlt)) + 1 = Length(s-dped(t_J)
i

where j,k z length(s-dp.d{pt))
is-proc-atr(@(t_) > MAX (i = s-offcelem(j)os-ppodipt)) = length(s~ppealt,))
i
where j < length(8wpp°ﬁ{to))
is—block(d&to)) s (s-offselem(i)es~dpedlpt) = s-offcelem{3)es—dp-&Upt) » 1 =)
is~proc~atr(6t(-to)) 5 (s-offoelem(i)es-ppedlpt) = s-offcelen{jles-ppedlipt) » i = 3)

is-block(d(t)) A (is-block v is-proc-ate)(B{t) » (F¥ @ = ¥ off 4 & £ 1) &
count-proc(f,pt) = count-proc(f,pt)s
(¥ ij¥(s-offcelem(i}os-dpedlpt) » s-0ffselem(idos~dpo/A(pt))

is-ref(d{pt)) 4 1 = MAX (is—intr(dito),nth—blk(i,dqto)(to))) 5
i

((is—block(nfh"blk(i,d,to)(to)) o
o (pt) = elem((bj)(ditg) = elem(j)os~dpanth~blk(i,ﬂwto}(to)),
s—dponth—blk(i,ﬁgto)(pt)))

A (is—proc"atr(nthmblk(i,&,to)(to)) >
a(pt) = elem((ﬂj)(m(tc) = elem(j)os—pponth—blk(i,d,to)(to)),s-ppunthwblk
(i,d,to)(pt)))

TR 25.104

Proof: A series of changes to the model of section 3.1 which yield the machine of sec-
tion t.1.1, Justifications are given that they preserve equivalence.

The use of an object for the s~dn sub-components can be replaced b-dc,4-1d
by & list, and all identifiers changed to indexes of this list within

the introducing bleeck, The function dd is modified to use indices.

The denotations can be stored relative to a procedure. The informa- 2-3,4-1c

tion stored in such denotations is extended accordingly.

‘Immediate access to a reference which is separated from its declaration by cnly
simple blocks vequires only the address of the procedure containing both. Further-
more, knowledge of the position of the procedure declavation, containing the

block in which an arbitrary reference was declared, is enough to locate the deno-
tation. Thus, the E.P,A. entries need only be made for each procedure call, and
the display only contain a chain of these entries.

The need for the FITR component to ke block local is obviated by the fact that it
contains a history cf the index of the statement at which a temporarily suspended
block is to be resumed. (In fact in the model of 4.1.1 a split, intc the pointer

locating the procedure and that locating the block therein, is made.)

Steps a)-d) have eliminated the BL entries for simple blocks and the updating on

simple block entry/exit consists solely of denotation and address adjustments.

int-next-st is modified to reduce the work required to interpret a goto within

a procedure call.

Simplification of Maintenance of the Display

The model of section 4.1 has reduced the length of the static chain by relating
all entities to their procedures, however, the updating of the chain is still performed
‘wastefully in many cases. This section comments on how to simplify the updating in all
.cases except that of a procedure invoked via a parameter. No model nor any formal proof
1is offered since the transition is small and the argument simple. However Appendix I

contains a non-recursive model which embodies the idea given here.

Certain errors can now go undetected which the application of a name to DN would
have shown. In particular, the prepass must ensure that no references to variables
cutside their scope are permitted.

IRM LAB VIENNA w“ BB - TR 25.104

Property 1-5 shows that if any block is active, its statically embracing block is
on the dynamic cha.n. We now observe that for any procedure to be invoked in its own
right (as opposed to via a parameter) its statically containing procedure must still
be on the static chain. This is the cdse since for it to have been invoked, the search
through the static chain must have found the block in which it was declared. Now, this
statically preceding block must be made the element in the static chain tc proceed the
newly invoked procedure. This is achieved by simply setting the E.P.A, pointer of the
new dynamic area to equal the entry in the display at depth one less than the depth of
this procedure. In paralilel, the display is updated by putting the address of the new
dynamic area in the display at the point indicated by the depth of the invoked proce-

dure.

Notice that the above argument does not apply to procedures invoked via parameters
because, although the dynamic area of their statically embracing block is still in the
dynamic chain, we are not assured that it is in the current static chain since only
the parameter denotation was located in our search - not the declaring block. In the
introduction te the language we attempted to explain the complex characier of passing
procedures as paramelters by what amounted to a block name style of display as de-
seribed in section 6. Althbugh it would have been more difficult at that time to ex-~
plain, it can now be seen that invocation of procedures via parameters aiso poses sig-~

nificant problems for implementations hased on displays of the static chain.
We are now left in the position that we are only forced to update the display

by retracing the static chain in the case of procedure exit and the special case of

entry via a parameter.

4,3 Updating the Display without the Static Chain

This section shows that the housekeeping for the display can be performed using
only the display itself. The desirability of doing this depends on a trade~off between
the searches of the static chain and the storage required in all dynamic areas for The
suggested storing of display elements, as well as the instructions available for per-

forming both methods. Again neither a model nor a formal proof is presented.

The above section has showﬁ how the display can be installed directly exceplt in
the case of invocation via a parameter. The storage, with a procedure parameter, of
the display at the time of declaration would facilitate a similar direct installation
in the final case. The justification is similar to that given above. To avoid retracing
the static chain on exit it is necessary that the contents of the display, from the
overwritten element to the end of the active display, are stored in the dynamic area
for the procedure call. These stored elements can then be used to reconstitute the
display on exit from the procedure. Notice that the necessilty to step back through each
procedure closed by a goto statement would lose the directness possible in our preceding

implementations of goto.

BM LAB VIENNA - o -

TR 25.104

5. IMPLEMENTATION USING F-SEARCH

As explained in the introduction to section 2, we are interested in ways of lo-

cating the dynamic area where a& referenced variable is to be found.

This section gives a search algorithm which, where section 2.1 uses the static
chain, uses a linking we shall refer to as the F-chain. The technique prerequires (5~1)
“that no two variables declared in statically embracing blocks have the same name 1).
{We shall fulfill this in a convenient way for the subsequent discussion by adding to
‘each identifier declared, and all its corresponding references, the depth of the declar-

“ing block.)

The constructed chain is coincident with the dynamic chain (i.e. that which points
“to the invoking block) in all cases except where a procedure has heen invoked via a
._parameter’a in which case the F-chain pointer of the dynamic area of the invoked pro-
“cedure points to the dynamic area of the first block which passed this procedure as an
argument.

The ability to create the F-chain entries necessitates the storage cf a pointer,
to the block which first passed a procedure parameter, with that parameter.

This technique is essentially that used by the PL/I F-level compiler (see /9/)
in updating the display described in the next section. The derivation of this algorithm

is contained in /8/,

5.1 The Model

This section indicates how some Ffacets of the above chaining idea appear in the
model given below. We do this by relating our new model to that of section 2.1, from
which the only differences are the prepass and the setting up of the pointers. The role

©0f the prepass is expressed in axiom 5-1,

The F-chain is indicated by the s~f component where this is undefined({)) the pre-
'ceding element in the dynamic chain is also the next in the F-chain. Procedure parameter
denctations are supplemented with a component which points to the dyvnamic area of the
first block which passed this procedure as an argument. This indicator is inserted by
the m-p (make parameter) function. The s-f component is updated as follows: for blocks
it is left as.Q; for procedures it is sel to the s-f component of the denotation, thus
:automatically inserting Q for normal invocations and the pointer to the first passing
 block for parameters. The function "f" operates on the F-chain exactly as did 4 on the

“Static chain.

D This restriction applies only to the search mcdel and will be lifted in the

display model of section 6.

IBM LAB VIENNA - 50 = TR 25.104

5.1.1 State

Fi ig-atate = (<s=bl:is=bl~listr ,<s=tx:is~blocks,
<g~abn:(<s~biis-int>,

g-del:is-int>) v i5w12>,<3~c:is—c>}

2 ig~-bl = (<g-f:is-int v is-{»,

<g~-ptr:is-gel>,

<g-ctriis-int v is-1{7 >,

cs—-dn: ({<id:is-den> || is-id(id)1)>)
F3 is-den = is-proc-den v is-lab-den v is-parm-~den v is-other-den
Fy is~proc-den = is-int
5 is-lab-den = is-int
s is-other~den - ces
P is-parm-den = (<5~b:ig~int>,<s—dcl:is—int>,<5wf:io—int v is~f2>)
¥ is~-c = see /2/

Abbreviations used:
BL = s-bL(E)

% = s-tx(E)

ABN = s-abn(g)

3 = last(BL}

PTR = s-pltr(B)

CTR = s-ctr(B)

1)

F = 5-£(B)

DN = s-dn(B)

5 = prR £ () ——~elem(CTR) oas-5poPTR
T ot 5=hody o PTR

5T = P(TX)

cur(bl) = elem(length{(hll)es-bl

Initial state:
FO §O=:ﬁ§<s—b1:[ﬁ%(<s—ptr:I>,<5mctr:O>)]>,
<s—tx:p6(<8~sp:{t0]>,<5Mdp:[3>)>,
<=0 rint-next-st>)

where to satisfies is-block and axiom 5-1

tate transgition function

ntenext-st =

CTR < length(s=-spePTR(TX)} A ABN =z (J — int-next—-st;

int-sts
step-ctr
s=D(ABN) = length(BL) — int-next-st;
int-st;
set-ctr
T —snull
int-gt =
is-bloek(ST) —= spilogue;
int-next~-st;
inst-bl
is-call(ST) — = epilogue;
epilogue;
int-next-st;
inst~bl; {mﬂth{scp(ST))
inst-proc(LiIST m-p(flelem(i,s-ap(5T)),length(RL),BL),
ind

BL,EX),
gs~atreelem(d)eg~dpe(g-phreelem(b,BL)),)

18~goto(ST) ——s= g-abn: (ST, length(BL) ,BL)}

.
.
.

where: b = f~b(s-nmm(ST),length(BL),BL)
d f~d(s-mm(ST) ,length(BL),BL)
i f-f{s-nm(8T) ,Length(RL),BL)

inst-hl =

s»bl:BL/\Efb(<s~ptr:P>b
o
<g-ctr:0s>,
<3—dn:yb({<sMidcelem(i,5Mdp(ST)):i >
— igs-other-atr{s-atreelem{i,s-dp{ST)1JU ... 0]

inst-proc(arg-l,s,f) =

~ .
s-h1:BL Lf%(<5mf:f>,
<g-ptris>,
<s—dn:&%({<elem(i,s—ppos(TXD:elem(i,argwl)> [
1 % i < length(arg-1)1)>)]

IBM LAB VIENNA - 52 - TR 25.104

r13 stegp=ctr = s~ctrecur(BL):CTR + 1

Fil set—ctr = s-clre.cur(BL):s-atr.elem(s~dcl{ABN))os~dpePTR(TY)
s-abn:jz

Tis epilogue = cnr(BL):K2

Fis £(id,n,b1) = n £ 1 c—e—n {)
is-parm~deneides-dneelem(n,bl) — ides-dneelem{n,bl)
ides-dneelem(n,bl) # (——= p6(<s~b:n>,<s—dol:idoS*dnoelem(ngbl)>)
s-feelem{n,bl) £§) ——f(id,s~foelem(n,bl),bhl)
T e £(1d ,n~1,Db1)

£ (id,n,b1) = {J e 0

T v g=-bof(id,n,bl)

F17 f~p{id,n,bl)

51

ris fed(id,n,bl)

31

s-dclef(id,n,bl)

rie £-f(id,n, k1)

i

s-fof(id,n,bl)
F20 m-plden,bl,tx) = s-flden) # £} v - ig-~proc-atres-atreelem(s~del(den))oa~dpo

s-ptroelem{s-b{den),bl} (tx) ——e den
T ——-p(deny<g-f:length(bl)>)

5.1.3 Axiom of the text

Axiom 5~1: This axiom imposes the restricticn that there do not exist two declarations

of the same identifier in two bhlocks where one embraces the other.

@ T oA ds-intrlid,f{t)) = —is-intr(id,&eA(t))

5.7 Justification

This section establishes the equivalence of the model of section 5.1 to that
of 2.1,

The correctness of the adherence to the dynamic chain, which is only difficult to
understand in the case of a procedure invocation, is established by noting that a pro-
cedure invoked in its own right (as opposed to a parameter invocation) is invoked,

either from its surrounding block, or from a block whose dynamic area has as the first

dynamic area preceding it in the dynamic chain with lower level that surrounding block.

i “LAB VIENNA ~ 53 - TR 25,104

r either case a name not declared in the invoked procedure, by virtue of its lower
1evel, can not possibly be found in the chain earlier than that surrounding bklock since
rno names of that level are introduced. The argument to justify the pointing of the
.—chain to the block first passing the procedure rather than that declaring the Pro-
gedure also relies on the level numbers preventing & premature halt to the search.

We now proceed to the formal proof (where 5-1 is used as the basis of the argument

instead of cur informal depths) which is again based on the twin machine method.

5. 2.1 Twin model

/
The machine given pelow 15 based on that of section 2.1, HNew components are added

0 the state which, since they are not used by the referencing functions, do not in-
luence the result. In this category are s-f of the elements of BL and s~f and s-id of

gach parameter denotation. The function m-p is used to insert the new entries.

5.2.1.1 State

is~state = (<s-bliis-bl-list>,<s-tx:is~block>,
<g-abn: (<g~biis~int>,

<g~dal:is~int>) Vv is~12>,<s"c:is~c>)

is-bl = {<s-epa:iis-int v is~{)>,
<g~f:ils-int v is~j?>,
<g-ctriis-int v is~ {)>,

<s-plr:is-sel>,

<g-dn:{{<id:is-den> || is-id(id)})»)
is~den = is-proc-den v is-lab-den v is-parm-den v is-other-den
ig-proc-den = is-int

is-lab-den = is-int

ig-other-den = ...
M.B. must not be is—fz

is-parm-den = (<s~biis-int>,<g~dcl:iis-int>,<s~-f:is=-int>,<s-id:rig~id>)

is-c = see /[7/

<
.
[

1.1

T

IBM LAB VIENNA - 54 - TR 25.104

Abbreviations used:

BL = s=bl(¥)

X = s-tx(§)

ABN = s-abn(¥)

B = last(BL)

EPA = s-epa(B)

PTR = s-ptr(B)

CTR = s-ctr(B)

F = g-f{(B)

DN = s-dn(B)

Pz CTR # §] ——+elem(CTR) og=5p oPTR
T ~——— g~body «PTR

ST = P{TX)

Initial state:
TO 50 = kswblzpr(<s"ptr:I>,<s—ctr:0>)>,
<s—tx:ﬂb(<s~sp:£toj>,<5*dp:E]>)>,

<g-¢:int~-next-st>)

where to satisfies is~bhlock and axiom 5-1.

5.2.1.2 State transition funetion

Ta int-next~st =

CTR < length(s~spePTR{TX}) 4 ABN = (] — e int~next-st;

int-sts
- step~otr
s-b{ABN) = length(BL) ———s=int-next-st;
int-st;
set-ctr
T —— null
P10 int~st =
is-hlock(ST) — epilogue;
Cnit-rext-st
inst-bl
cont'd

5,2.1.72

Mo LAB VIENNA - 5§ -~ TR 25,104

i1

.T12

T13

Ty

Ty

ig-call{S8T) = apilogues
epilogues
int-next-st;
inst~bl; {ength (sap (5T
inst-proc(LIST parm, ;8 ,b,f)
i

is=golto(8T) ~ -+ g=-abn:d(ST,length(BL),BL)

where: parm, = m—p(d(elem(i,s—ap(ST)),1ength(BL),BL),BL,TX,elem(i,s«ap(ST)))
8 = g-atreelem(d)es-dpe(s=~ptroelen(b,BL})

b = d=b(s-nm(S8T),length(BL),.BL)

d = d-d(s-nm(8T),length(BL),BL)

T = d-f{s-nm(3T),length{BL),BL)
inst-bl =

-~

s-b1:RIL \gyb(<s"epa:1ength(BL)>,
<g-ptr:P>,
<g=-ctr:0>,
<s~dn:ﬁg([<s~id°elem(i)°s~dp(ST):i> |
T1is-other-atr(s-atreelem(i,s~dp(STII)IU...05) 7

inst-proclarg-l,s,epa,f) =

s—bl:BL/‘Epa(<s—epa:epa>,
<gmfil>,
<g-pitris>,
<s—dn:ﬁ%({<e1em(i)°5—ppos(TX}:elem(i;qrg—l)> [
1 2 4 < lengthlarg-1)})»)7

step-ctr = s-ctrecur{BL}Y:CTR + 1

set-cty = s-ctrecur(BL):s-atreelem(s~dcl(ABN)Yos-dpe PTR(TX)
s-abn: &

epilogue = cur(BL): {}

d{id,n,bl) = n = 1 —— ()
ig-parm~deneides~dnrelem(n,bl) -—w-ideg~dneelem{n,kl)
ides~dneelemn(n,bl) # 0 e L <8=b 1Nz, <g-deliides~dneelem(n,bl))
T e d{id,s-epacelen{n,bi) ,bl)

d-b(id,n,bl) = d{id,n,bl) = {J —s 0
T ——e—gs~b{d(id,n,bl})

5.2.1.2

IBM LAB VIENNA - 5§ - TR 25.104

Ti8 d-d(¢id,n,bh1) = s~dcled(id,n,bl)

T19 d-f(id,n,b1l) = s-fed(id,n,bl)

790 d-id(id,n,bl) = s-ided(id,n,bl)

T21 m-p(den,bl,tx,id) = s~-fi{den) # [} —sden

T —= ul{denj<s~f:length(bl)>,<s~1id:id»)

5.2.2 Properties of the twin machine

In the following it is assumed that ¥ is any state during a computation by TWIN.

Property 5-2: This property is identical with 1-2 but applies to the machines of sec~
tion 5.1 and 5.2.1.

Property 5-3: This property is supplementary to property 5~2. It states that between the
installation and use of state components {except s-abn, s—ctr, or components of type

is-other-den) the components cannot be changed.

A& £ s-~otr A.‘ﬂiS”OtheP“den(dDGlém(k,BLL)) S
®eolem(k,BLY) = goelem(k,BL™)

where j = MQX(length(BLj) L3 1ength(BLi) A length(Bijl) + 1 = length(BLjn
3
A proof by induction (using 5-2) can be constructed on those lists of states which
comprise the computation beginning with the element where the conditions for j are
fuifilled.

Property 6-4: This property supplements 2-12 in respect to the I~model and TWIN-model.
It states the relation between the s~f sub~components and the index of the element of

BL containing them.

a) 1 < k 5 length(BL) » is~parm—den{idCDNk)) > Sﬁfoid(DNk) < k
b 1 < k = length(BL) > d-£(id,k,BL) # (0 = d-£(id,k,BL) < k

The proof of a) follows from the fact that the evaluation of the argument passed
to the parameter id was performed in the preceding blcock. Note that either the argument
was not a parameter in which case the s-f component was set to k-1 or, using induction

and 5~3, a) was true for the argument and consequently it is true for id.

The property b) is only a generalization of a) and follows immediately from the
definition of d-f (T19) together with a).

1,AB VIENNA TR 25,104

perty 5-5: This property states that the s-b and s-dcl components of a parameter
R e mrrsmrm et .
4re equal to the corresponding components of d{ido,ko,bl) where ido was the argument
sassed in its own right (i, e, ido was not a parameter) from the elemént of the block-

;iist bl, whose index is k.

1 < k g length(BL) o>
ig-parm-den(d{id,k,BL)) & ido = d-id(id,k,BL) & LI d-f(id,k,BL)Y =
“ﬂis—parm—den(d(ido,kO,BL)) A
d~b(id,k,BL) = d—b(ido,kO,BL) A
d-d{id,k,BL) = d"d(ido,ko,BL)

This property follows
from the definition of the function m-p which, in the case that idO is not a

parameter, adds ido and ko to d(ido,ko,bl) otherwise makes no change

from property 5-3 which states that parameter denctations are nolt changed.

Lemma 5-6: This lemma shows that assuming axiom 5-1 there do not exist two entries of

the same name in the denotation elements of a static chain.
1 <k < length(BL) > (d(id,EPA ,BL) #Q > ia(p§) =)

Proof: d(id,EPAk,BL) £ {2 implies according to 2-1lc that there exist d;and,@ such that
is~intr(id,A(TX)} and deff = PTR.,

By
Since, acccrding to 2-~2a, there exists an ! with & £ I and ajoP?PEPA = PTRk5 At
follows from 5-1 that K

is-intr(id, ', o3(TX)) cannot be true.
e
PTRk
”ﬂiS”intr(id,PTRk(TX)) is equivalent to id(DINk) = {) (T11,712) and this con-

cludes the proof.

Lemma 5-7: This lemma shows that the result of a search of the static chain, from some
element of BL, can alsc be cobtained by beginning the search at a previous element of any

static chain passing through that element of BL.

1 <k 5 length{(BL) o5
“jis-parm-den «d(id" ,k,BLY A d(id,d-b{id',k,BL),BL) £ 0 -
d(id,d-b(id" ,k,BL),BL) = d(id,k,BL)

IBM LAB VIENNA - 58 - TR 25.104

Proof:
1 If k = 1 then the lemma is vacously true.
2 We assume that the lemma is true for all k1 with 1 ¢ k1 < kK ¢« length{BL). We
will show that it holds also for k,
3 —mis~parm-densd{id' ,k,BL)
4 d(id,d-b(id' ,k,BL),BL) # (1
5 d-pb{id' ,k,BL) > 1 B, T17,Ti6
6 dlid, a-h(id',k,BL),BLY = id" (DN) # (] ——w d(id,k,BL) T17,5,3

T~ d(id,d-b(id" ,EPA, ,BL) ,BL)

Now we make a case distinction on whether id‘(DNk) is.Q or not.

case:
7 iaton) = ()
8 d(id,d-b(id,EPA, ,BL),BLY # () 7,64
q *Wis—parm—den(d(id',ﬁPAk,BL}) 7,6,3
10 d(id,d-b(id',EPA,BL),BL) = d(id,EPA_,BL) 1H2,8,9,7~1%a
11 d(id,EPA, ,BL) # () 8,10
17 16N,) = (] 11,56
13 d(id,EPA,BL) = d(id,k,BL) 14,142,716
14 d(id,d-b(id' ,k,BL),BL) = d(id,k,BL) 6,7,10,13
casge.
15 iaton) £ L
16 d(id,d~b(id",k,BL),BL) = d(id,k,BL} 15,6

1% and 156 are the last lines of the two cases and both prove the property.
therefore the lemma is proved.

This section contains a formal proof of +he relation of the functions d and f

in the twin machine (6-8), followed by the argument of the transition from the twin

machine to that in section 5.1 (5-9),

EM LAB VIENNA ~ 50 - TR 25.10%

;iﬁggggm_g:ﬁ: 1 < k £ length(BL) > d(id,k,BL) # (! > d4(id,x,BL) = f£(id,x,BL)
1 < k = length{BL)

Assumption 1, property 5~3 and the definition of inst-bl and inst-proc imply that
each EPA-~pointer has following value:

Let nm = s“nm(STk_i)
EPAk = (is"call(STk_l) o d=D{nm,k~1,BL>
T et Je= 1) ‘

Consider the case that is~call(8Tk_1):

Assumption 1, property 5-3 and the definition of int-st and inst-proc imply that

Fk is defined by a-f:

is~call(STk"1) > Fk = d~-f{mm,k-1,BL) Ti9

a~f(um,k-1,BL) # () z is-parm-den{d(nm,k~1,BL)) T7,T19

Let ido = d=-id(nm,k-1,BL)

ig-parm~den(d{nm,k~%1,BL)) = “?is~parm—den(d(ido,Pk,BL)) A 3,4,5-5
d—b(ido,Fk,BL) = d-bi{nm,k-1,BL)
Now we can rewrite the fomula for EPAk:
ey = i o~ 3 [[[R——— - 3 g , Iy g
EPA, = (is-call(ST,) (r, # {2 = d-b(id ,F, ,BL), 2,1,5
T T s d"b{nm,k"“l _-,BL)))
T e e k"‘ j)

) T12

F #1025 is-call(sn, ,

]

Using these results we can transform the function 4 .

ACid,K,BL) = (K 2 1 wee (),

is~parmmden(id(DNk)) — w~id(DNk), T16
ia(on) # (] e pls=biks>, s del:id (DN,)>),
T e (T) S—. d(id,d-b(id_,T, ,BL),BL), 6,7

is~call(STk_1) w4 (4d, d-b(nm,k-1,BL),BL),
T~ d{id,k~1,BL)))

With the hypothesis d(id,k,BL) £4 {2 and 5-% we get a simplification of 8.
Note that if Py # £l then wﬂis—parmmden{d(ido,P BL)) (see 5) and if ¥, = ()
then —is-parm-den(d(nm,k~1,BL}) (sea 4),

k? k

IBM LAB VIENNA - 80 - : TR 25.104

a d(id,k,BL) = (k < 1 ——=={) 8,7,5,4,5-7
i5wparm—den(id(DNk)) “““v‘id(DNk)
ia(on) # 0 —— (<s-bik>,<s-del:id(DN) »)
Fy # L) — d(id,F, ,BL)
is»call(ST, _,) = d(id,k~1,BL)
T o d(id,k-1,BL))

Noting, that the last two alternatives are identical, we see that the algorithm
of the transformed function d is the same as f£. Therefore, the two functions are equal

on the domain given by the hypothesis.

Theorem §-2: The TWIN and F-search models are equivalent.

Proof: Using theorem 5-8 we change in TWIN all occurences of function d or its derivates

to £ or its derivates. This is pessible since as it is stated in chapter one all pro-

grams are proper {(see 2-10). That means all occurences of d are defined therefore d

never yields £ . This change removes the need for the s-epa components which are deleted.
After this change in TWIN we have almost the F-search model. The last difference

is is-parm-den and the instructions and function handling it. It can easily be seen that

the s-id component is never used. This justifies the last transition to the P-search

model thus:

1} we omit the last argument in m-p

7 we -add the s-f component to the passed object only in the case of procedures.

IBM LAB VIENNA - .61 - TR 25,104

5. IMPLEMENTATION USING A DISPLAY OF THE F-CHAIN

The reader will recall that a display, which is a vector of pointers to the dy-
namic areas, provides the link between some index appended to Tthe references and the
‘dynamic area in which the storage for the referenced value is located. In section 3
the static chain suggested a display which used the static depth of the declaring block
as an index. We now use a display which will store the elements of the F-chain which
was described in the preceding section. The index to be used on this occcasion will be
unique block names assigned in a prepass.

As has been explained, any display must be updated dynamically and the technique
given in this section will adopt the wastefull principle of retracing the complete
F-chain and storing it into the display each time the list of dynamic areas changes

its length. A considerably economy over this is illustrated in section 7.

6.1 The Model

The transition from the model of section 5.1 to that given below is accomplished
by the addition of, and provision for maintenance and use of, a global display vector
(DISP). The maintenance is performed by replacing the display be a completely new trace

of the F~chain {(formed by invoking rev-disp) each time the length of BL changes.

The function df accepts a reference and uses its block name part to select the

element of DISP which points to the dynamic area for this reference.

[N is-~state = {(<s~bl:is-bl-list:,
<g~tx:is~p=~hlocks,
<s~disp:{{<bn:is~int> || is-bn(bnd})s,

<s~abn:{<s~biis~ints ,<s~deliiag~ints) v is-{)s ,<s5~c:is"c>)

FD2 ig=bhl = (<¢g~f:is-int v is~f}>,
<g-ptr:is-sel>,
<g-bn:is-bn>,
<s-ctr:is-~int v is~£2>,

<5wdn:{f <id:is-den> || is-id(id)}})>)

D3 is~den = is-proc-den v is~lab-den v is-parm-den v is~other-den

IBM LAB VIENNA - 62 - TR 25.104

DU is-proc~den = is-int

D5 is~lab-den = is-int

FD6 is—other-den

D7 is~parm-den = { <s~bris~ints>,<s-del:is~int», <s~Lfiis~int v is~j]>)
s is-c = gsee /2/

hea igs-p-block etc. as is-bklock except:
a) is-id {(except in s-dp or s-pp) changed to is-ref

igs~ref = {<¢s-id:is-ids,<s~bn:is-bns)

1Y is-block and is-proc-atr have the additional component <s-bn:is-bn»

Abbreviaticns used:

BL = s-bi(§) '

TX = s-tx(§)

DISP = s~disp(§)

ABN = s~bn(¥)

B = last(BL)

PTR = s-pltr(B)

CTR = s-ctr(B)

oz s=-0(n)

P = s=-dn(B)

BN = s-Dn{(B}

P = CTR #) ——+ elem(CTR}es-5poPTR
T e~ s=hody oPTR

ST = P(TX)

cur(bl) = elem(length{bl))es-bhi

Initial state:
FDO go :f%g<s—b1:[p6(<8“ptr:I>,
<g=ctr:0=)]>,
<s—tx:Pb(<s~sp:EtO]>,
cg-dp:L]=)>,

whare to gsatisfies the two axioms 6-1 and £~2.

IBM LAB VIENNA TR 75.10u4
6.1.2 State transition function .
FD10 int-next-st = g
CTR < length(s-spePTR{TX}) A ABN = EZ —-—s int-next-st; %
Cint-st; f
step~ctr :
s-h(ABN) = length(BL) ——int-next-st; }
int-st; %
set-ctr
T — null
D11 int-st =
is-p-bloek(8T} — = rev-disp; E
epilogues
int-next-st;
rev-disp;
inst-bl
ig=p~call(ST) ———— rav-disp;
epilogue;
epilogue;
intonext-sit;
rev-disp;
i_n_%.{.‘."bl 3 tength Cooap (5T
ingt-proc{ Lj8T m-pl{df{elem(i,s-ap(ST)),BL,DISP),
T Ex]

BL,TX),
s-atroeiem(@) cg~dpes-ptrielemn(b,BL)), f)

is=p-goto(5T) —w~ s-abn:df(5T,BL,DISP)

©
.

where: d = df-d(s-nm(8T),BL,DISP)
b = df-b(s-nm{ST),BL,DISF)
F o= Af-f({s-nm{ST),BL,DISP)

FDI2 inst-bl
s—bl:BLF\[pb(<5Mptr:P>,
<g~bn:s-brnolP{TX)>,
<g=~ctr:i0s,
<S—dn:}%({<s~ideelem(i,s~dp(ST}):i> i
~1ig-p~other-atr(s-atr.elem(i,s-dp(STI»IU...):)]

6.1.2

IBM LAB VIENNA - B4 ~ TR 25.10u

FD13 inst-proclarg-l,s,f) =

s-b1:BL e, Ces—Erde,
<gs-ptr:s»>,)
<s~bn:s-bnes(TX}>,
<stn:ﬂb({<elem(i,S—pp(s(TX))):elem(i,argml)> i
1 < i g lengthlarg-133)>)1]

FD14 step-ctr = s~ctrecur(BL):CTR + 1

FP15 set-ctr = s-ctrecur{BL):s-atreelem{s-dci(ABN) ,s-dp(PTR(TX)}})
s-abn: 2

FD16 epilegue = cur(BL): (
FP17 yev-disp = s~disprupd-disp(BL,length(BL))

FD18 upd-disp(bl,k} = k g 1~ (]
s-foelem{k,bl) #Kl ——e u(upd-disp(kl,s-feelem(k,bl));
’ <s~bnoelem(k,bl) ks)
T mmm@h}b{upd—di$p{b1,k—i);<5wbnuelem(k,bl):k>)

Fpi9 df-b{ref,bl,disp) = s-h(df(ref,bl,disp))

D20 df-d(ref,bl,disp) = s-del{df(vef,bl,disp))

H

D21 df-fref,bl,disp) s-f{df{ref,bl,disp))

Fp22 df(ref,bl,disp) = adr(s~id{ref),s-bn{refli(disp),bl)

™73 adr{id,b,bl) = is-parm-denoides~dnselem{b,bl) ———p- ides~dneelem(b,bl),
T wo fl { <5-b1D> , cg~deliides~dneelem{b,bi) =)

nziy m-p(den,bl,t) = s-~f(den) # O v —1is-proc-atreelem(s~del{den)ss-dpss-pirs

elem(s~b(den) ,bl)(t) —= den,

T-———wmﬂiden;<8wf:1ength(bl)>)

£.1.3 Properties

This model assumes that blocknames occur in the text. These names are not in

the language, but must be inserted by a prepass. Twe conditions must be fulfilled by

the prepass. The first states the uniqueness of the names!:

LAB VIENNA - 65 - TR 25.10U

-p-block v is-p-proc-atr){@(t)) a (is-p-bloek v is=p-proc-atr)(4(t)) -
s~bn.(t) = S‘b]’]oﬂ(t) o a’/:ﬂ

The
the block

gsecond shows the relation between the name in the reference and the name of

where the identifier of the reference is declared.

(is-ref(d(t)) > (Qﬂ)((iS“p“block v is=p-proc-atr){(F{t)) A
5=bnedidt) = s-bnof(t) A ()= yof &
Tis-red(s-ido&Lt), fHA(L)) A dis-intr(s-id.alt),A(t))

B2 Justification

We shall now show that the model of section 6.1 1s eguivalent to that of section
‘5.1, Since the display always represents the current chain, it is only necessary to
show that the unigue block name assigned to each reference corresponds t the first
blace that the P-search would have found a denotation of the variable. This follows

from the observation already made in 5.2 about the ¥F-chain.

6.2.% Twin model

In this chaplter it is not necessary to explain the TWIN model in detail. Only

the difference between the TWIN model and display model is ‘stated:

ALl occurences of 4df, df-b, df-4, df-f are replaced by fi, fi-b, fi-4, fi-f.
£1 is a version of a modified function of £, which accepls objects of type

is-ref instead of type is-id.

71 F1lref k,bl) = k g 1~ {2
s-bn{ref) = g-bneelem(k,bl) — adr(s-id(ref), k,bl}
s-Foelem(k,bl) # () ——w— fl(pref,s~foelem{k,bl),bl)

T —see £1 (pef k-1 ,b1)

T2 fi-blrel,k,bl) s-befti(ref,k,bl)

EH

T3 fi~d(ref,k,bl) = s-delefi(ref,k,bl)

Th Fl-f(ref,k,bl) = s-fofl(ref,lk,bl)

IBM LAB VIENNA - 66 - TR 25.10%
In this new model the T-search model is embedded. Since,

1) the display is always updated but never referenced,

23 the difference that we use & composed name of type is~ref instead of a simple

name of type is-id, does not affect the result. We have oniy to

show that a

similar axiom to 5-% holds for the programs accepted by TWIN and that f is

similar to f1.

Axiom _6-3:

o # 1 A is-p-intr{s-id(ref),f(£)) A s~bn(ref) = s-bnef(t) >

—7(i5~p—intr(s~id(ref),m°ﬂ(t)) A s=~bn(ref) = S-bn°%ﬂ4(t))

Lemma 6-4: This lemma shows that any text with unique block names will necessarily

gsatisfy 6-3.
6-1 dmplies 6-3.

Proof: Consider the counter example to B-4 ag, Ao’ refo and to

Tt must follow s~bn(refo)\ SanOﬂo(tO) and

s—bn(refg)

s=bnedr o (t) when ot of (t) and £ (t) are blocks but

s—bniﬁ%(to) = waﬂOﬁbﬁéo(to) with & # I contradicts 6-1. Thus the implication is true.

The next lemma shows that it 1s possible o ask only for the s-bn of a reference

and not alsce the s-id component.

Proof
1 s-bn(ref}) = BNk
2 BNk = S—bnﬂPTRk(TX) _
3 (3/5)y ((is-p-block v is-p-proc-aty) (J(TX)) &
s-bn(ref) = s-bnef (TX) a is-p-intr(s-id{ref) ,A(TX))
i is~intr(s~id(ref),PTRk(TX))
5 SMid(ref}(DNk) %)

This completes the proof.

Lemma 6~5 shows that adr(s-id(ref),k,BL) is defined if s-bn(ref)

FD11,FD12

62

7,53, 6-1

N,FDLL,FD12

= BNk. There-

fore the transformation of the first and second alternative of funetion £ into the

second alternative of 1 is valid.

The two lemmas 6-%, £-5 show that the F-search model is embedded in Tthe TWIN
model. The next lemmas reflect the relation between f1 and upd-disp. For this purpose,
an auxiliary function is used.

.M LAB VIENNA; - 67 - TR 25.10u

(k <1 wwvem (),
s~bn(ref) = BN, — Xk,
I
F, #) —= £2(ref,F, ,bl),

k .
T == 2 (vef,k-1,b1))

TS - f2(ref,k,bl)

H

| Lemma 6-6: fi(ref,k,BL) # () » £1(ref,k,BL) = adr(s-id(ref),#2(ref,k,BL),BL)

Proof:
1 Fllref,k,BL) £ ()
oo adr{s~id(ref),f2(ref,k,BL),BL) = s-bn{ref) = BNy -~ adr{s-id(ref),k,BL),

Fio #§0 ——s adr(s-id(ref) 2£2(ref,F, ,BL) ,BL),
T ——e adr(s-id(ref),f2{(ref,k~1,BL},BL)
1,FD23,T5

On the subset of the domain of f1, where f1 is not !2, both functions
fl(ref,l,BL) and adr{s~-id(ref),f2(ref,k,BL),BL) are the same algorithms, therefore

they are equal on this subset.

Lemma 6-7: s-bn(ref)oupd-disp{BL,k? = fZ{ref,k,BL)

Proof:

1 s-bn(ref)oupd-disp(BL,k) = k < 1 ——= () TD1§
P, # (]~ s=bn(rel)eplupd-disp(BL,F)) ;BN 1)k>)
T ——fw»s~bn(ref)op(upd—disp(BL,k~1),<BNk:k>)

-2 s=bn(ref)eupd-disp(BL,k) = Xk £ 1 e {} 1
Ty 0 —es (BN, = s=bn(ref) —wk,
T 4*~W~s—bn(ﬁgf)oupd~disp(BL3Fk))
T s (BN, = s-bn(ref) -k,
T —= s-bn{ref)supd-disp(BRL,k-1))
3 s~bn{ref)oupd-disp{BL,k) = k < 1 ——w—w (] ;

BN, = s~bnl(ref) —mk
By A ~== g=bn(ref)supd-disp(BL,F,)

T e~ g-bn{refoupd-disp(BL,k-1)

The domain of £2(ref,k,bl) is equal to the domain of s-bn(ref)eoupd-disp(BRL,k)

the algorithms of both functions are equal,therefore they are equivalent functions.

IBM LAB VIENHA - 68 -~ TR 25.10u4

§.2.2 Main thecrem

Theorem 6~8: In the TWIN model {1 and i{s derivatives can be replaced by df and its

derivatives.

Fi(ref,length{BL),BL) # { > fi(ref,length(BL),BL) = df(ref,BL,DISP)

Proof: Immediately after the executicn of pev-disp it is true that

fi(ref,length{BL),BL) = adr(s~id(ref},f2(ref,length(BL),BL),BL) 6~6,T1

= adr(s-id(ref),s-bn(refleupd-disp(BL,length(BL)),BL) 6~7

= adr{s-id(ref),s~bn(ref}(DISP),BL) D17

\ = df (ref ,BL,DISP) FD22

New we must show that for any case of dfy none of the critical elements (i.e.,
DISP, F peinters and the constant parts of the denotations) can have been changed since

the last call to rev-disp. This follows immediately from an inspection of TWIN.

The proof of this.theorem concludes the justification that the F-search and the
¥ F~display model are equi&alent.

b

?;
.

BM LAB VIENNA - 6% - TR 25.104

OPTIMIZATION OF THE F-~CHAIN DISPLAY

This section explains how the display can be updated, without retracing the F-
chain, in all cases except a precedure invocation via a parameter. Thus, the display
can be updated as follows:

a) direct invocation of & non-pecursive block - replace the relevant element of the
display with the address cof the new dynamic area (7-3)

Cb) exit from same - do nothing (7-2,7-5)

c) direct invocation of a recursive block (7-3) ~ copy the old value of, and replace
by the address of the new dynamic area, the relevant display element

d) exit from same - replace the relevant element by the saved copy (7-4)

e) entry or exit to a procedure invoked via a parameter or after goto statement -
retrace the F-chain.

Notice that the display now contains more information than one trace through the
F-chain. It in fact hasg the latest invocation, if any, of all blocks even if they are
not in the F-chain. Here "latest" takes into account that a call of a procedure via a
parameler may cause other than the last invoked to be required as "latest". This links

back to our elementary discussion of the problem in section 1.

Ho medel is given in this section but Appendix TI1 contains a non-recursive

version of the fully optimized F-chain.

7.1 Properties ¢f the TFD-Model

For optimization purposes a new block-lecal component is added to the state. This
component, called display-field (s-df), gets the old value of that display component
bn on entering the block or procedure identified by bn. When leaving an activation the

display field is restored. Now let g be any state and §' its successor.

Property 7-1: This property shows that s-f and s~df components are not changed, except

by deletion or insertion.

1 2 k 2 min(length(BL),length(BL')) »
s~foelem(k,BL) = s-foelem(k,BL')
s-dfeelem(k,BL) = s-dfeelem(k,BL'))

The preof is a ccrollary of 5-2.

7.1

TEM LAB VIENNA - 70 - ' TR 25.104

Property 7-~2: DISP = upd-disp(BL,length(BL}}) if g is not a state ready for rev-disp

Proof follows immediately from property 7-1 and the inspection of the model.

Lemma 7-3: This lemma shows that the DISP component of a dynamic area, which was not

installed via a parameter, differs from the preceding DISP component by only cne element,

F' = A length{BL"') = length(BL) + 1 - upd~disp(BL',length(BL")) =
MADISP < BNt length(BL")>)

Proof: upd-disp(BL',length(BL")}

length(BL') £ 1 — ... FDis

=

T ——s~ wl{upd~disp(BL' ,length(BL') - 1);
<BN':length(BL")s)

1

mlupd~disp{BL,length(BL)) ;<BN":Llength(BL")>) 7-1

s fu(DISP3<BN' :length(BN')>) 7-2

via a parameter, the DISP differs by only one element.

Fo= {7 A length(BL') = length(BL) - 1 =
upd-disp(BL" ,length(BL")) = w{DISP;<BN:s-df(B}>)

Proof: s-df(b) = BN{disp) where disp was Lhe display on entering this activation. The
g-tf and s-df components are unchanged from entering this activation until leaving it

(7-1). Therefore

let upd-disp(BL' ,length{BL ")) = disp
FADISY ;< BN s-df(B)>) = plupd-disp(BL,ilength(BL)) ;<BN:BN(disp)>)

(kg 1 — . FD18

ro)

T e {upd-disp(BLY , length(BL')) ;< BN: length(BL)>)
<BN:BN(disp)>))

St

3]

Mlpuldisp ;< BN: length(BL)>) ;< BN: BN {(disp)>)
= disp

The remainder of the optimization makes use of the knowledge of whether a block or

procedure igs used recursively or not.

If a bleck or a procedure cannol occur twice in the dynamic chain, its display
field in its enly activation is always Q. Storing and restoring is not necessary. But

if restoring is not done we get a display which has not only name occurring in the cur-

.IBM LAB VIENNA TR 25.104

rent F-chain but also dead portions of an old F-chain. This does not matter, 1f we

use a modified update-display function.

FD25 upd~dispi(bl,k,disp) =
(k g 1 —e disp
s-Foelem(i,bl) # () —— p(upd-displ(bl,s-fselem{k,bl),disp);
_ <s-bneelem(k,bl)tk>),
T ~mﬂw~p(upd-dispi(bl,k~1,disp);<s~bn°elem(k,bl):k>))

We have to show that the above two lemmas remain true for this function.

Lemma 7-5: bnoupd-disp(bl,k) #{) = bnoupd-disp(bl,k) = bnoupd~di$p1(bl,k,do},

wherea do is any object.

Proof: bneupd-disp(bl,k) = (k =<1 mm%»bntﬂ),
s-foelem(k,bi) # {1 — bnoul...}
T et briogh(...)

S8ince bneupd-disp(k,bl) # 2 the first alternative is never true and we can urite

instead of anQ) any object, e.g., do

133

(k s 1 ——b= do’
s-foelem(k,bl) —= IJI]ojL(R
T me Dol . .)

H

bnoupd—displ(bl,k,do)

7.1

IBM LAB VIENNA - 72 - TR 25,104

8. SUMMARY

This section attempts to give an overview, and some comments on the efficiency
of the models contained in this report. First a figure is given showing how the models

were derived above.

§1 Base

§2 Search of static chain

.

T

T

83 Display of static chain §5 Search of F-chain
§h4.1 Proceduresl) 80,3 No chain §6 Display of F-chain
only
4.2 Simpler updating &7 Simpler updating

Hot only was each model derived from its predecessor, but its equivalence to that
predecessor was alsce justified. Thus we are assured that all of the models are equi-
valent. With this knowledge an implementor will naturally wish to know which model is
the most efficient. There is no clearcut answer to this question, because of its de-~
pendence on the operating environment of the object program, but the following informal

comments attempt to show some of the parameters on which a decision could be based,

The first consideration must be the difference in the chaining ftechnique which
splits the methods into two sets. The static chain is, in general, the shortest chain
which will locate all of the dynamic variables referencable in a given block, whereas
the F-chain would appear to be the longest such chain. Thus if implementing a gearch

based model one is unlikely to seak further than the static chain.

However, as was observed in section 2, display tvpe implementations tend to
provide more efficient oblect time reference methods, since using such methods permits
reference to any variable with just one indirect step. In particular, 1f sufficient
hardware index registers are available for the display, the reference would be very fast.
Given the limited number of registers on many machines, this is most likely to be prac-
ticable, if at all, with a technigue based on that of section 4.1 (first the static
chain display is the shortest possible, second the maximum number of elements is only

the static procedure depth).

1

The three cptimizations of section & can be, and for the purposes of this chapler are
considered as separate optimizations on the model of section 3.

BM LAB VIENNA - 73 - TR 25.104

Assuming that the greater length of the F-chain display does not make a critical
difference such as preventing an index register implementation, the implementor would
‘be interested in the comparitive amount of work required to update both displays. The
~pesults, given in detail in section 3.1 columns F and I of the following table, can

be summarized by saying that the updating of the F-display requires less steps on exit
from nen-recursive or recursive procedures; more steps for entry or exit from proce ~

dures invoked via a parameter and for the goto case; a roughly equal number of steps
in other cases.

IBM LAB VIENNA - 7k - TR 25,104

A B C
Pure Copy Complete Local
Envirenment Environment
Source Section 1 /7/ 1/ v
1. Prepass nene none none
2. Directories:
ENV: names —e unique names none local/ local/
complete partial
DEN: (unique)} names - values global/ as A as A
: complete
3. Operations: :
3.1 Block Transition 3
non-recursive store
open . form partial
block/ recursive change complete environ-
proc text environ- ments/
parameater ment update
chain
non~-recursive
revert to delete
close recursive revert to oid last
block/ old text environ- local
proc parameter ment environ-
ment
goeto
3.2 Reference un(DEN) n(ENV) (DEN? ss(n)

Key: global - immediate component of &
local - component of each element of S“bl(%)
partial - only contains local entries
complete -~ contains any entries required at this time
n - name
un - unigque name
ss - function for searching static chainj if no argument given relturns a

sf - Function for searching T-chain vector of values

i - index of the new dynamic area

IBM LAB VIENNA

- 75 - TR 25,104
D E F G H I
Search static bDisplay Optimize Search Display Optimize
chain static chain update E F~chain F-chain update H
Section 2 Section 3 Section 4.22) Section 5 Section 6 Section 7
none add depths as I, make names on add block as H
o names static chain names to
unique names
none
as D as o as D as b as D
local/partial
store as D + store ‘] as G +
partial DISP[depl«i partial DISP{ bnl«i
denota- as D + asg D + denota= } as G + as G +
. . . . s . ST«DISPE bnl
tions/ DISP+ss DISPl[depli«i tions/ DISP+sf DISPL brl<i
update as D o+ update as G 4+
chain - DISPess chain J DISPess
as b+]
DISP+sgs as G
delete as D + delete ags G +
last DISP+ss last DISPLbn]+ST
local as D + as D + local as G + as 6 +
denota- DESP<gs DISP+ss denota- DISPesf DISP+sf
tion as D+ fion as G +
DISP*ss DISPesE
ss(n) as B sf(n) 3
¢ n(DENDISP[deP]) n(DENL roprpnl’ as H

IBM LAB VIENNA = 76 = TR 25.10u4

Tootnotes from preceding table:

D The inclusion of entries B and C in the table permits a comparison of the proof given

in section 2 with that given in /1/. Apart from the lack of goto statements, in the
language, the proof of /1/ goes from the complete environment to the local environ-
ment models, thus ‘tackling the problem of showing the equivalence of a reference to
a complete environment to a search through a chain of local partial enviromments,
Such a proof could utilize the equality of the unique names found as its criterien
of correctness. Making the step given in section 2 posed the problem of specifying
the correctness criteria in a convenient form. This has occasioned the use of the
gpecial unique name generator which supplies the criterion of location of the same
denotation element.

2) The optimization described in section #.1 is omitted for the purposes of this table.

3

The requirement o install or update the DEN component is not mentioned in the table.

‘BM LAB VIENNA - 77 - TR 25.104

RETERENCES

/17

LUCAS,P.: Two Constructive Realizations of the Block Concept and their Equivalence.-
IBM Laboratory Vienna, Techn.Report TR 25.085, 28 June 1968,

l2f LUCAS,P., WALKX,K.: On *the Tornal Description of PL/I.-
Annual Review in Automatic Programming 6 (19%69), Part 3, pp.105~182.
/3/ NAUR,P. (Ed.): Revised Report on the Algorithmic Language ALGOL 80.-
Comm. ACM 6 (1963), No.1, pp.i~23,
/u/ DIJKSTRA,E.W.: Recursive Programming,-
Num.Math. 2 (1960), pp.312-318,
/5/ RANDELL,B., RUSSELL,L.J.: ALGOL &0 Implementation.-
London: Academic Press 1984,
/57 HENHAPL,W., JONES,C.B.: On the Interpretation of Goto Statements in the ULD. -
IBM Laboratory Vienna, Lab. Note LN 25.3.085, 3 March 1970,
/77 WALK,K., ALBER,K., BANDAT,X., BEKIC,H., CHROUST,G., KUDIELKA,V., OLIVA,P.,
ZETSEL,G.: Abstract Syntax and Interpretation of PL/I ~ ULD-Version 2.-
IBM Laboratory Vienna, Techn.Report TR 25.082, 28 June 1868,
/8/ HENHAPL,W.: A Proof of Correctness for the Reference Mechanism to Automatic
Variables in the F-Compiler.-
IBM Laboratory Vienna, Lab. Note 25.3.048, 19 November 1968.
79/ IBM System 360/Cperating System, PL/I (F): Programmers' Guide.-
Form C28-6594.
/107 LUCAS,P., BEKIC,H.: Compilation of Algol: Part T - Organization of the
Object Program,
IBM Laboratory Vienna, Lab. Rep. LR 25.3.001, May 1962.
ACKNOWLEDGEMENT

The idea for this report was suggested by P.Lucas, to whom The authors are alsc indepted,

along with H.Beki? and other members of the Vienna Laboratory, for encouraging discussions.

Thanks are also offered to N.Gard and K.Zimmermann for their careful readings of the

manuseript.

IBM LAB VIENNA AT-1 TR 25.104

APPENDIX I:

This appendix contains a model which, instead of the recursive approach used
above, uses an interative control routine which should be more immediately useable for
implementation purposes. The transition made here is discussed more fully in /6/. The

model presented is that which was described in section 4.2,

is~state = (<s-pliig~pl-lists,<s~tx:is-p-proc-atrs,

<g~crig=-e>,<s-dispiigs~int-list>)

is-pl = (<s-epa:is~-int v is-(J>,
<s-ptriis-sel>,
<g—ctr:is~int v is-(>,
<g-btriis-sel>,

<s~-dn:is~den-list>?
ig-den = is-proc~den v is-lab-den v ig-parm-den v is-other-den

is-proc-den = is-sel

ig~lab~den = (<g=bir:is-sel>,<s-deciis-int>)
is~other-den = ...
is-parm-den = (<g-p:is-int»,<s-dcl:is-proc~den v is~lab-den v is-other-dens>)

ig-¢ = see /2/

is-p-block ete. as is-block except:

a) is-id changed to is-rvef
is-ref = (<g-off:is-int>,<s~-dep:is~-ints)
) dis~proc-atr has the additional component

<g-depris-int>

Abbreviations used:
Pl, = s-pi(§)

TX = s-tx(§)

DISP = s-disp(¥)

PR = last(PL)

EPA s=epa(PR)
PTER s-ptr(PR)

CTR = s-ctr(PR)

BTR s=btr(FR)

H

M

"

IBM LAB VIENNA AT-~2 TR 25.104

DN = s~dn(PR)
DEP = s~dep(PTR(TX})

Q = CTR # {! ——elem{CTR)o s~spe BTR
T ~-s g-bodye BTR '

P = QoPTR

ST = P(TX)

cur{pl) = elem(length(pl))es-pl

Initial state:
go = p%(<s~p1:[ﬂb(<s~ptr:5wbody>,
<g-btr:I>,
<g-ctril>,
<s-cgn:Ei»)}>,
<s-tx:ﬁ6(<s—body:[prep(to)]>,<s~dep:0>,
<g-pp:Li»)s,
<g~disp:L 1>,

<g-ciint-pgext-st>)

where prep must satisfy 4-1.
State transition function:

int-st =

inst-bl

ig~p~call(S8T) —= int~st;
inst-bl; fangth (s-op (5T)
inst~proc(LIST dd(elem(i,s-ap(ST)),PL,DISP),
o 4

.s-atredes~pitr(elem{p,PL)),p,parm~inf}

is-p-gote(8T) ———s- int-st;
goto(dd-p(ST,PL,DISP))
1)

.

CTR # () = int-st;
step-ctr;

reset-bip

cont'd

1 .
) any other statement must call step-ctr after execution.

BM LAB VIENNA AT=3 TR 25.10%4

length(PL} » 1 — int-st;
step-cir:
epilogue
T ——nuyll
where: d = dd-d(s-nm(S7T),PL,DISP)

p dd-p(g~nm{8T),PL,DISP)
parm-inf = is—parm—den(elem(s—off(ref),5wdn(elem(elem(s~dep(ref),DISP),PL))))

"

ingt-pl =

g-ctre cur{PL): 1
s-btrecur{PL):Q
s—dnocur(PL):p(DN;{<e1em(s—offos—idoelem(i,s—dp(ST))):elem(i)cs—dpoQ> |
is-p-proc-atr(s-atr(elem{i,s-dp(ST))))} U
{<elem(S“OffoS“idoelem(igs“dp(ST))):ﬁ%(<8*bt?:0>,<S"dec:i>)>]
is-p-lab-atr(s-atr{elem(i,s-dp(ST)))}} U...)

inst-proclarg~1l,s,epa,parm} =

Swpl:PLr\[Fb(<s—epa:epa>,
<g=-ptr:iss,
<s~-btr:Is,
<s~dn:p6({<elem(i):elem(i,argw1)> Pl s i g lefgﬁh(arg—l)})>)]
s=disp: (parm~inf ——=upd-disp(PL,s~depos(TX) -~ 1,epa,DISP) {length(PL} + 1]
T e o (DISP s <elem(s~depes{TX)) : length(PL) + 13))

s
@
o
@
+
i
o
T

i
HJ
I
o
o+
=
o
0
£
=
A
o)
£
-
—~
-
&
D
ud
-~
Lt
S
=
juy)
=3
3
I

= alem{i)eg-gpott))
s~cltrecur(PL): (i1){{ FLY(RTR

3]

elem(i)eg-gsper))

step-ctr = g-ctrecur(PL):CTR + 1

i

et=btr = s-btrecur(PL):is-btros-del(ABN)

g-ctrecur(PL)s~atr(elem(s-deces~dcl (ABN),
s-dpe{s~bitres~dcL(ABN) } «PTR(IX))}

epilogue = cur(PL): ()
s-disp:upd-disp{PL,s~depes~ptreeclem(length(PL) ~ 1,PL)(TX),
length(PL) ~ 1,DISP)

goto(p) = s=-bl:front(p,PL)
s-disp:upd-disp(PL,s-depes~ptroelem(p,PL)(TX),p,DISP)

TBM LAB VIENNA AT-U PR 25104

upd-disp(pl,dep,p,disp) =

dep = 1-—mw*wupd—disp(pl,dep—l,S—epaoelem(p,pl),#{DISP;<elem{dep}:p>))
T —— disp

dd-p(ref,pl,disp) = s-pldd(ref,pl,disp))
dd-d(yef,pl,disp) = s-del(dd(ref,pl,disp))
dd(ref,pl,disp) = is-parm~den(elem{s-off{ref),s-dnlelem(ind,pl)))) — =

elem{s~off(ref),s~dn(elem(ind,pll}?
T mwmw~P6{<s—p:ind>,<s—dcl:elem(s~off(ref),s—dn(elem(ind,pl)))>)

where ind = elem(s-dep(ref),disp)

P

IBM LAB VIENNA AII-1 .- TR 25.104

" APPENDIX TI:

This appendix contains an iterative model of the implementation descryibed in

gsection 7.
Properties of the model

Axiom: This axiom states that if in the text a procedure can be recursively used then

all blocks embraced by it can be recursively used

is-rec@(t)) > (is-block v is-proc-atr)(fed (t)) » is-rec(fea(t))

Axiom: This axiom states that onily blocks allowed to be recursive can be used recur-

sively.

BN, o is-rec(PTR{TX})

1 £ 1 < k 2 length(BL) o BNi %

I

State of the DI1~model

dls-state = (<s-ix:is-p-block:>,
<g=bl:is-bl-1list>,
<g~disp:{{<bn:is-int> || is=bn(bm))=,

<g-olig~ar)

is-bl = (<g~pir:is-sels,
<g-ctr:ig~int v i5~§2>,
<g=fiig-int Vv ia”§2>>

<g-df:ris~int v i5"£2>,

<g-dn: ({<id:is-den> 1} is—id(id)])>)
is-den = is-proc~den v is-lab-den v is-parm-den v is-other-den
is-proc-den = ig-int

is~lab~den = is~int

is-other-den = ...

is-parm-den = (<s-b:is-int>,<s-dcl:is~-int>,<s~f:is-int v is-{)>)

ig=p=block as the definition FDB except that blocks and procedures have & mark

indicating whether the block can be used recursively or not

(is-rec(t) is true or not).

IBM LAB VIENNA AIT~2 TR 25.104

Abbreviations used:

BL = s-b1(¥)

TX = s-tx(g)

DISP = s-disp(E)

B = last(BL)

PTR = s-ptr(B)

CTR = gs-ctr(B)

I = 5=f(B)

DN s~dn{B)

BN = s~bn(B)

P = CTR # { ——= elem{CTR)os-spePTR
T e g=~hodye PTR

8T = P(TX)

DF¥ s-df{B)

cur(bl) = elem(length(bl))es-bli

it

Initial state:
5, = f%(<s—tx:pb(<s—§p:{tol>,
<g=dp:lL1>)>,
<s—bl:£/ub(<s~ptr:1>,
<g-atr:iz)l>,

<g-c:iinbzst>)

where to again satisfies 6-1, 6-2 and the above two axioms.

State transition function

is-p-proc(8T) —e int-st:
inst-bl; Lenath (e-op (5T
inst-proc(LIST m-p(df{elem(i,s~ap(ST)),BL,DISP),BL,TX),

44

s-atreelem(d)es~-dpes-plreecien(b,BL) ,)

set-otp(df-d(S7T,BL,DISP)};
goto(df-b{ST,BL,DISP))

cont'd

IBM LAB VIENNA ATT-3 TR 25.104

length(BL) > 1 ——w= int-st;
step-ctr;
epilogue
T e null '
where: b = df-b(g~nm(37T) ,BL,DISP)

d df~d(g-nm{S8T) ,BL,DISP)
£ df-f{s-nm(ST),BL,DISP)

i

[

ingt-bl =

s-bl:BL/‘pr(<s—ptr:P>,
<s-bn:s-bneP(TX)>,
<s-df: (ig-receos(TX)
T)3,
<g~ctriil>,
<s-dn:pb({<5—id°elem(i,s—dp(ST):i> I
—is-p-other~atr{s-atreelem(i,s~dp(ST)))})>)]

s=bneP(TX) (DISP)

s-disp: (DISPi<s-bneP(TX}:length(BL) + 1>)

inst-proclarg-1,s,f) =

s~bl:BLﬂ\pr(<s~f:f>,
<g=ptris>,
<g-bnis-bnes(TX)>, v
<g=df: (is-reces(TX) —m g-brep(TXI(DISP),
T ()5
<s—dn:pb({<elem(i,parm—l):elem(i,argjl)> !
1 5 i £ lengthlarg~l 4 parm-1 = s-ppos(TX)})>3]
s-disp:pl (F P p— = upd-dispi(f,BL,DISP),
T~ DIGP) 5<s-bnes(TX):length(BL) + 1)

step-ctr = s-ctrecur(BL):CTR + 1

set~etr(d) = s-ctrecur(BL):s~atreelem(d)es-dp(PTR{TX))

ggilgggg = cur{BLY: (?
s-disp:(F # [} ~— upd~dispi{length(BL) - 1,BL,DISP),
Le-recePTR(TX) — *Myb(DISP:<BN:DF>)3
T ——p~ DISP)

s~disp:upd~displ(b,BL,DISP)

LIk TR 25.1
IBM LAB VIENNA ATI-Y TR 25.104

adr(id,b,bl) = is-parm-dencides-dneelem(b,bl) — idos~dneelen(b,bl),
T ——em u{<8=-D:b> ,<s~dcl:ides-dneelem(b,bl)>)

m~plden,bl,t) = s-f{den) £ (2 v "7 is-proc-atreelem(s-dellden)es=~dpos-plre
elem{s-b{den) b1} (t) —s den,

T —e p(denj<s-filength(bl)s)

upd-dispi(k,bl,disp) = ¥ ¢ 1 —= disp
s-feelem(k,bl) # Q @ u(upd-displ{s-foelemn(k,bl),bl,disp),
«s-bneelem(k,bl) 1 k>}
T mM}L(upd—displ(kwl,bl,disp);<s~bnnelem(k,bl):k>)

s=b{df{ref,bl,disp))

"

df-b(ref,bl,disp)

s~del{df{ref,bl,disp))

df-d(ref,bl,disp)

Ef

Af-f{ref,bl,disp) s-f(df(ref,bl,disp))

df(ref,bl,disp) = adrfSﬁid(ref),wan(ref}(disp),bl)

IBM LAB VIENNA ATTI~1 TR 25.104

APPENDIX IIT:

This appendix indicates the meaning of notations and terms used in the current
report. For the most part this consists of referencing /2/ (the section numbers of which
are distinguished by the symbol §). Notation peculiar to this report is defined in
iines marked with an asterisk.

§ 1 - computation
abstract syntax
¢ = functicnal composition
* ¥3 quantifiers - whose bound variables indicate their domain as Follows:
i, 3 N o= is-int
ey A,¥ , X = ig~gel
other = is-~other

[descriptors

* MAX pli) = Wid(p{dd A == (I G > 1 4 p(iiN
_ i Df ‘
* M?N similap
L

§ 2.1, § 2.2 - objects

selectors

§ 2.3, 8 2.4 ~ M~operator 1
T
§ 2.5 Lists -~ elem(i)
elem(d,x) _
* [xl,...,xn} = pb(<elem(i):x1>, oeay <elem(n):xn>)
Df
length
—~
e
LISsT
i
* last{list) = elem{length(list),list)
L .)
* front{n,list) = LIST elem(i,list)
vt
§ 2,6 Predicates ~ (pe1 Vope, v ...V pen)(x)
(<se1:pe1>,<se2:pe2>, ces <sen:pan>}
(<se:pe> |] prop)
pr-list

£ The properties of the poperator are used throughout this report without reference.

IBM LAB VIENNA ATITI~-2 TR 725.104

§ 2.7 Assumptions on EO and § -

is-id{(s) = (ge¢8..))
nf . 1.d
* is-un(sg) = (s<35n)
Df
* Sid(ﬂ Sn =4}
* is~int defines the set of integers
* is~sel defines the set of selectors

§ 6.3, 5 6.4 Instructions

* card{set} number of elements in set
* set = s—scos(gl) where 3C is the abbreviatiocn of s-sces(E)
Df ’
* 8¢y = s-scoelem{i)es(§) where SC is the abbreviation of s-sc(last(SL))
©opf

and SL is the abbreviation of s(§)

IBM LAB VIENNA ATV-1 TR 25.104

APPENDIX IV:

This appendix lists the main abbreviations used in the report. Whilst no meaning
is drawn from the names used, the offered text may be suggestive for the reader. Each
term is listed in lower case letters but may be used in either case.

abn abnormal termination
adp address

ap argument part

arg argument

atr attributes

b block

bl block local element
blk block

bn block name

btr counter (of statements)
o] control part

cnt count

cont containing

ctr countar fof statements)
cur current

del declaration index

dec declaration

den denotation

dep depth

dir divectly

disp display

dn denotaticn component

dp declaration part

apa enviromentally preceding activation
¥ PL/T T-level compiler

id identifier

inst install

int integer - syntax

int interpret - instruction name

intr introduced

IBM LAB VIENNA

lab

len

mod

mep

nm

off

parmd
plL

pp
proc

ptr

red
ref
reflb

rev

[¢n)

sp
st

un

upd

label

length

modified
modify

modify parameter
name
offset

procedure index

pointer to a stalement
parameter introduced
procedure local element
parameter part
procedure

pointer (Lo a block)
pointer to a statement

redeclared
reference
referencable

revise

selector
statement part

staltement

Text

taxt

unigque name

update

ATIV-Z

TR 25.104

	4
	4a

