ISV

IBM United Kingdom
Laboratories Limited

Formal Development
of Programs

C.B.Jones

June 1973 - isssto
Technical Report TR12.117

Unrestricted |

Formal Development of Projrans

~

C. B. Jones

Programming T2zhnolojy 3roup

Product Test Laboratory

IPM United Kingdom Laboratories Linited
Hdursley

Winchestar

12 April 1973

An approach to the construction of corrsct projrams is proprosed.
rhe i1dea of developing an algorithm tarough stages of
abstractness 1s backed by showing how proofs can be used to
justity each stage of development. The 3Jains ©Of wusing formal
notation are emphasised and illustrat2d o5y a numb2r Oof exanples.

CONTENTS

Introduction

1.1 Notation

1.2 Plan of the Paper

States

Operations

3.1 DOperations as relations on statas

3.2 Combining Operations

3e2ul Sequencing
3.2.2 Conditional
3.2.3 Repetition

3.3 Example

3.4 (Extended) Operations

3.5 Problems ot non-deterministiz Op2ratioas
Properties of Operations

4.1 Notation

4.2 Combining Opsrations via Th2ir Conditions

1 compound Statament
w2 Repetition Stitzmz2nt

4.3 Example

4.4 Properties of Extend2d Opsrations
4.5 Non-Deterministic Opsrations Ajiin
Formal Development |

5.1 Example

Example of Formal Developmant

6.1 Specification

6.2 First Stage of Developmz2nt

6.3 Second Stage of Developmant

6.4 Third Stage of Devalopmant

6.5 Fourth Stage of Development

6.6

Collection of the Aljorithn

Evolution of Data

Example of Data Evolution

8.1

8.2

8.3

Specification

First Stage of Davalopma2nt

Mapping State

Possible Lxtensions

9.1

9.2

9.3

9.4

On the Formal System

Combination Constructs

9.2.1 Input/Output

9,.2.2 Side-Effzcts in Przdicates
9s2e3 Procedures

9.2.14 aoto

9.2.3 Parallelism

Operations changing Values

Operations which changs Stata2 Structur2

References

e o —— A e R W W e S v 7 T — T — . —

e — ——— - — —— A A — —— — — VD A — > i o i D i s o " T

1.___INTRODUCTION

The possibility of there being an 2rror in a projranm, which is
written and tested in the normal way, must be Known to compuater
professional and newspaper reader alike. It nas got to the staje
where the problem ot measuring the "reliability" - defined as the
chance of (not) encountering an 2rror - is receiviag much
attention. The use of the term reliability tands to hide the
fundamental failure. Programs are not systams which decay or
fail "if the wind is in the wrong diraction®. The2ir oSutcomne is
deducible. If a program fails on some input 3ata today it will
also fail on the same data tomorrow (ignoriny the problems of
asynchronous interaction, which makas tha situation wdrse not

better).

It can be argqued that part of the reason for this state of
affairs is the success of computingd Barly succe2ss 1is one Of
the reasons that the tasks which progrimm2rs have be2n invited to
tackle have expanded in size and, p2rhaps ndore important, in
degree ot dependence on other systems tar faster than the methods
governing program construction. It is th2 ain of this paper ¢to2
make a contribution to these methods.

The author rules out any chance of achieving drastic improvements
in "reliability" by working on testing t2chniguass. TIh2 arguments
tor the 1limitations of testing 1irs 2loqu2atly givan ia refs 9
and 11. A tew moments consideration ot th2 number >f tast cases
regquired to "fully test"™ 2all paths of a r2ally larje progran
should soon bring the reader to th2 point of seekiag an
alternative to testing. The most promising alternatives would
appear to be those based on the comment about tae 3z23ucibility of
the outcome of a program. The idea is to reason about all
passible cases in the way mathematicians 312 when presenting
proofis ot theorems.

In order to prove that a program contains no errors, it is
clearly necessary to have a precise statement of what its
(correct) results should be. It will b2 aryu=d bzlow that only
by using some (formal) notation 1is it possibla2 to nake this
"specification" precise enough. Given a formnal specification,
much work (based largely on r=2f 8) has bz22n don2 on proviag that
a program fulfils its specification. Such a prod>f =2stablishes
that tor all permissible inputs, the output of the program will
be in some specified relation to th2 input.

An attempt to write a program and then construct a proof of its
correctness has the obvious shortcoming tnat such a prod>f will
only be possible if the program 1s correct. The problem of
obtaining a correct program is still unsolvei. One could ask

W WD R G s W M R SR M S WS W M A S A S S W s e . A A T " —— 0 S T W A " . . -

vhether attempting to construct 2 proof is an efficient way »of
removing "bugs*" from a program This 1is not so for three
reasons. Firstly, the level of detail ra2quirsd to construct the
proof of a tinished program is too low. S2conily, therz is the
difficulty of choosing between two possible rz2asoas for failiag
to prove a result: either the falsity of the result or a lack of
ingenuity. Lastly there 1is a Jdang2r that any analysis made to
help write the original program will not os =2ffa2ctivaly usad in
the proot construction.

Consideration of the problems caused by the combination of size
and level of detail suggests that the way to aandle tha oproblen
is to break it up in a suitable way. 1In order to avoid the
details it is necessary to use abstract notions of thz parts into
which the problem 1is broken. The simpl2st 2xample 2f such
abstraction is to state only th2 reguired sp2cification of ‘the
component and to delay development of its program tpo a later
stage. This is discussed in s2ction 5. The npre subtie
abstraction ot the data on which a compona2nt works is discussed
in section 7,

A proof of correctness of a program can now b2 coastructed by
proving each stage of development correct. Such a prooaf will, of
course, reguire specifications of what can o2 assumned of sub-
components. One is again forced to have a notation for recording
such specifications. If used throughout the 12sign >f a progranm
a significant bonus will be th2 rzcoried design history.
Considering the proof the requirement for notatipn will be ndt
only a question of preciseness but also of Gconciseness. Notice
that whilst recording the proof i1s a new task, an argument for
correctness should already be in the programmers mnind. Having
broken the development into 1levels it saould be possible to
convey this argument clearly by using ideas of the progran.

This whole process - breaking up the developmant into stages or
levels of abstraction, formally specifyiny and proviay - 15
referred to as "Formal Devzlopment®™. It has nuch in commdn with
“Structured Programming® (ref 9), "Stepwisa R2finemant® (ref 10)
and ref 7.

Any comparison of the effort of Formally Developing programs wWith
the more conventional methods of construction is Jdifficult. It
is clear that the time taken to rFormally Develop a program is
likeiy to be longer than the ¢time to writz code without
documenting or Jjustifying the stages of devz=lopment. But the
production of such code is unlikely to bz th2 total investment:
"testing® and "maintenance” now repr2ssnt vary largye portions Of
the cost of a project. Only a large exp2riment in which carezful
records are kept would enibls a suitablz 2valuation t> bz mads.

T s - ——— - S S e e — i o i S . " T — —— i — ——— i ——— T -

UNRESTRICTED TR.12.117 Paga 3

T R R e A e S ED R S A S A A S W S MNE SN A A D A S S S SRS T W M S M D N W S N N S S N W . S

Certainly, extrapolation from small examples is wvary nisleading
if tor no other reason than that it is possibla t> handle the
complexity of a small example without the aid >f formal methods.

The discussion has already mention2d notation several times. As
vell as the symbols introduced in section 1.1, it is nescessary td
present a general notation for talking about parts of prograns
and their properties. The choice of notation is partly a mnatter
of taste, but the use of concepts which expr2ss naturally ideas
of programming will obviously simplify thz deva2lopm2nt pr> cess.
The author's early attempts at "Formal Davzlopment® (ref 2) used
mathematical functions and their compositions b2caus2 this was a
system in which formal arguments were familiar. This not only
presented a barrier to some programmers but also created the task
of accurately translating such a colla2ction of functiosas intd
more efficient programming constructs. The systam proposed ia
sections 2-4 below is the author's attampt to provide the basis
of a system closer to programming conczpts.

The system to vhich that proposed below is closaest is that of
Hoare (ref 6). The differences are the resualt of two

ditficulties with that system.

The first difficulty encountered with usiny Hoar2's axions was
that termination is not treated: 1r2f 7 in fact doa2s not discuss
termination until the complete algorithm has been developed. It
is the wview ot the current author that ta2rmination should be
proven at each stage of development of th2 aljyorithm.

A second ditficulty resulted from the fact that the domains of
both the pre and post conditions is 31 singylz2 state. Thus ¢to
require that an operation does not change the value of a variable

requires the use of a free variable, 2.93.:
X=Xg{ 0P }x=xg4

The system given below has post coniitions oF stat2 pairs thus
reducing the use of free variables,

P W o G e S W D S A S A

e —— - e D S G A S o A — T ——— T — " —— 1 ———

"By relieving the brain of all unneca2ssary work, a
good notation sets it free to concentrats on nora
advanced problems, and in effect increases the mental
power of the race.” (Quote from "An Introiuctinn to
Mathematics®™ by Alfred North Whitzheai)

The use of certain widely used mathamatical and 1ogical symbols
is a very convenient shorthand: no use of involved th2dorems »Of
logic is made below. The author has bez2n made aware of the
negative effect that the use of "strang2 sympols® can have on
experienced programmers who might wita tazir 3id be able t>
document concisely very useful statements about projrams. It is
difficult to understand why a programma2r, wa2 migh nften have
invested several weeks in learning i new machin2, is not prepared
to spare a few days with a text book such as ref 14. However,
intuition based on the following “readings" of the symbols should
suffice for all but the most detailed s=ctions »>f tn2 current

paper.
Some use is made of sets (i.e. unordersd zollaztions):
¢ the empty s2t

{a,Dyrense} the set containing th2 list=d =lemnants

In particular:-

{T.F} | the set containingy th2 twd possible
logical walues I'ru2 ani False

{xlp(x)} the set containiny all 2l2ma2ntg wnich have
the property p '

X € A is x a member of thaz sz2t A?

card(A) the number of elem2nts in s2t A

AcB (Subset) are all =2lema2nts waich are ia A also:
in B? ;

Ay B the union of sets A and B contains exactly

those 2lements wnich ococur in A >r B.

B {A) . the set of all subsats of A
(i.e. B(A) = [XIXc A}

A S S A - - —— -

o ——— g N M S S M S e e I D SN MR N S (S S A S S M S — O —— -

I'he concept of a function should be familiar. The set dut 5f
which its arguments are chosen and th2 s2t whica contains all of
its. possible results is defined by writinjy:-

F: A =R

or it, say, two arguments one from 2azh of sa2ts Al ani A2 are
reguired:- ’

F : al X A2 - R

The majority of the special symbols usa2l beldow ar2 those Of
logic. Consider a property, say, p which 3dividss a set »>f
objects 1into those having the property ani tnase adot having it.
p is called a predicate giving ths wvalu2s True and False
respectively:

p:0 = {T,F}

F'he readings of the symbols used to d=2fina2/combine pradicates
are:-

P Ay p and g
Pvd p or g
~p not p
p =4 p implies g
(p > g is the samz2 as -pvy)
p =g p is equivalent to g
(3x) {p(x)) there exists at least one 2lement with the

property pe.

1.2 __Plan_of_the_ Paper

Sections 2 and 3 develop abstractions of whit might b2 thought »of
as store and instructions. The "op2rations® of s2ction 3 are
expressed as relations on the "statas" 3f sa2ction 2. Sectidn 4
presents a system 1in which 1t is possibdl2 to r2asdoa about
properties of operations. Szction 5 dJdescribes the ideas of
tormal development which ares related to a fix21 statz aad Section
6 uses the results so far to give a non-trivial exanple. Section
7 considers how abstract forms of algoritams ~in be preseated by
nsing abstract states and Ssction 8 raturns t> the earlier
example to illustrate this idea. Only enough rasults t> tackle

—— - —— -

- - ——— ---__..._._‘._._..._._..___-.....__.-__.___.._.__._-_—-......_

the examples are given in the body of tnis pap2r but szction 9
~indicates how the system sketched here might be extanded to cover
more of real programming languages.

Lines of a section numbered with Arabic Numerals are not referred
to from outside, whereas lines numbsresl with Roman Nunerals might
be referred to from other sections. ' Refarzncas are of the form
7.2 (xii) but the section number is omitted for refzrances withia
the referencing section.

2. STATES

T e s g T o S S

The concept of storage, which contains wvaluss which can be
changed, is central to programming. This s2Ction offars "states™®
as an abstraction of storage concepts of particular laajuagjes.
The concept of states will be used i1n the n2xt section to present
an abstraction of the statements of programming lanjuajes.

A state can be thought of as a way of obtaininy (current) values
of particular names. With a high level projramminy laajuage this
mapping 1is from identifiers to values which may thenszlves be
structured (e.g. arrays); with a machine th2 mapping 1s from
integers to elementary values.

It is necessary below to group togethar statas whica yizld values
for the same names and, furthermore, yield wvalues of the same
types. Notice such a class is not constrain23 to yi2ld the sane
values. Using n for names and p tor prz2dizites which dJefine
classes of values, such a class of states 1s 3i2finai:

I = (ng:ipg >,
<Naifa2y

Lnn:pn?)

For any state of this class, say:-
gl e ¥

The value ot the ith name will belong to thn2 czlass specified
by the ith predicate.

The obvious notation for the value associatad with a name, say n,
15 a state ¢! might be nl. This, indeed, is the notation used in
most of the seguel. However, since the conca2pts introduced here
are to underlay what follows a more formal notation is used as
the basis and the above notation amployzd as an abbreviation.
The state functions to be used are those of r2f 1. Th2 coatants
tunction:

C:NAME x STATE - VAL

Can be used as follows:-
c(n,ol) abbreviated to nt

In order to give a formal treatment of th2 proparty >f a state
containing ditferent values at diffzarant tim2s, a function:
a:NAME x VAL x ¥ - [

——-—_—--———-—--—__-..._—.-_—-.p———.---.--...——_—...—.—.——-—_-—‘.———-_—-.-_—-_-——__-

is used which yields a new state, of tha idantical structurs to>
jts third argument: the values differiny only Eor th2 givaa name
and there yielding the valus given is 31 s2¢C nl argumnaat.

Aith the intuitive readings of ‘"contants" and "assign" the
following properties should be acceptablz (notice tn2 concept of
state has not allowed two names to refar to the same state
element) : '

c(nsa(nyvVeo)) = Vv
nl#na 2 C{n:_,a.(n;;;‘f;d,) = C(nigd}

These two properties are used without raferance in the segjuel.

The contents abbreviation will be further axt2njed to expresgsions

like:—
nt+m! for c{n.el) + cl{m,e?)

{ For a given torm of expressions, it would oe possiol2 to define
a function, say ¥, which would g3ive:-
§("nl4mif,gt) = n(gl)+m(at)]

Consideration of large examples (2.3. ref 2) would raguira use Of
states with more complex structure. Th2 notion of ULD objects
(ret 3) would be one way of tackling this 2xt2nsion. The curreat
simple store is adequate for tha exampl2s considz2red 1a the
current paper even in section 7 whizh saows 10w the use of
abstract states can aid Formal Development.

W A ———— i ————————— L —— ————— ———— " — o 1 i

S D R S e S R S S e M D S G A S . — " —— v

3. ___OPERATIDNS

This section introduces the notion of Oparatiosas, which was
partly prompted by ref 4. One way of viewing ta2 statemeats Of
programming languages 1is to divide th2m into tare2 groups as
follows: :

a) Statements which change the values stored in the
state but lecave its structure unchang2d (2.3.
assignment statements)

b) Statements, or constructs, whicn change th2 structure
of the state (e.g. allocation or block structur2).

c) Methods of combining units, possibly statements, to
form other units (e.g. the conditional construct).

Perhaps the most commonly used statements come from a) and it 1is
their property of changing the contants of ta2 state which 1is
treated in section 3.1 (and agiin ia sa2ction 4.1) and which
characterises an "operation". However, the main discussion will
be ot ways of combining operations. The r=zason for this smphasis
is twofold. On the one hand, although th2 systam 3ivan here does
not attempt to be definitive, the degrez of similarity ia this
area across languages makes it more widely applicabl=a. Oa the
other hand, section 5 will show thait thas2 combination rules can
be used as ways of decomposing a Formal Daz2vzlopnant.

The categories a) and b) are discussed again in s2ction 9.

Given a <class of states, say ¥, ind members ther20f ol,e¢2 otc,
operations are considered as relations on statas:

OP © y x ¥
(The majority of this paper ignores the possibility of non-

determinism but see section 3.5 and s2ction U4.5). rather thaa
discuss (deterministic)operations as functions:

oP ¢ £ = L

emphasis will be put on their preservation of the state structure
by writing:-

oP : L

The assertion that ¢! and e¢2 are related by ta2 oparation 2f OP

A A WG R W R R . S N S W A W A N e S S P W W SN M R W . M S T O - —— ———

- S S RS R W W N EE e M W A e S M S W AN M M M A W A e R — T P — " o

is written:-
¢i[OP]o?

The intuitive idea of what the relation m2ans is that OP will
transform a state o! into a state 42,

The reader may find it useful to think of an interpretation of
the relation via a "machine”:-

I ;0P x§f =~ §
éu¢h that:-

gl[OP Jg2 = ¢2=I(0OP,0!)
In order to be a useful model of prograim statema2nts, it is
necessary to admit the possibility that an op2ratiosa nay be

partial (i.e. will produce no output for somz input
values):~

(A1) (% {du*) (ut [OP Ju<})

——— —— — —— —

This section defines the interpretation given to the three
simplest ways of combining projgram statzm2nts.

3edel Seguencing

Suppose two given operations work on thc same state:-
1) OP1,0P2:%1

Then their combination so as to run one aftar another ia sejuence
will work on the same class of statas:-
ii) (DP1;0P2) 1

and some particular state will be transtorm23 by th2 s23ju2nce
to exactly that state which would bes obtain2d oy first apolying
one operation, then the other:-

iii) ol[OP1;0P2 Je3 = (362) (6'[OPl Je2 A ¢2[DP2]03)

2.2 Conditional

Suppose, as well as:-
i) JP1,0P2::¢

‘A predicate expression p working on, put not =aangingy ¢ is given,
then the conditional combination will als> wOork on gfi:-

e

T ML MR ML S NS S e e e i —— . — ——— — 5 M —— T ——— o — —— — 1 7 27

T S S ke e e e S S RS S i T —— " ——————— 1 - —]\ o o 7

ii) (1f£ p then OPl else OP2)::g

and the state transtormation will b2 2ith2r taat of OP1 or 3f 0OP2

depending on whether p(e!) (strictly ¥(p,e!), =f saction 2) is

true:-

iii) p(et) = (e!'[if p then OP1 21s2 OP2]e2
[

;5 n ol[OP1 Jo2)
iv) ~p{el) = (o![if p then OP1 21s2 OP2]e2

s1[OP2 Ja2)

1 m

3223 __Repetition

Suppose again:-
i) OP::¥

and p is as in 3.2.2, then the repetition compination will also

work on states of y:-
11) (¢hile p do OP)::gf

It p(e!) is talse then the construct makas no change to the

state:-
Lil} ~ple!) > (e[while p 3o OP]Jal)

Otherwise the combination transforms tha statz usiny OP1 and

reapplies the vhole combination:-

iv) p(et) > (el[while p do OPJe3
(3e2) (o1[OPJo2 A o2[waile p 12 OPJa3))

H

Notice that the while property is rezursiv2 ani dozs aot give an
immediate way c©f proving properties about wailsz loops: this
requires knowledge about (inductive) propartizs of th2 statss.

(By wusing, tfor example, restricted idantity relations for the
tests, it would be possible to presant 3 morz zomplatz th2dry in
terms of relations: this is not done sinc2 it is ta2 system of
relations between conditions (see saction 4) which is of
interest.) '

In order to illustrate the use of the above combinations, a
program:-

OP :: 5 where 5 = (<x:is-int>,
<res:is-int>)
OP = (res:=0; while x2y d0 (X:=X-y;r2s:=ras+1))

@#hich pertorms the integer division of X by y usinj successive
subtraction is proven to perform:-

————n*———--—-—-—'-——'1-—--——-‘—-—---——-‘---———&-——-—-—--—‘u\———q—“—--m---

- - ‘—“-—---P-——-.————--——---*-—-l——--—-——.———-——t-_—-——--—-—-—-—_—---

1. x=5 A y=3[0P]x=2 A y=3 A res=1

proof:

Although no information is given about assijnm2nt nost machines
should give:- ‘

2. x=5 A y=3[res:=0]x=5 A y=3 A res=0
So, in order to prove 1, we must show (cf 3.2.1(iii)):-

3. x=5 A~ y=3 A res=0[while x2y 30 (Xx:=x-y;ras:=ras+l)]
x=2 A y=3 A ra2s=il

now since 322, 3.2.3(iv) will be used and sinz2 it should again
be true that:-

4. x=5H A y=3 » resze[x:=x—y;res;=res+1]x:2 A y=3 A res=l
in order to prove 3, we must show {of 3.2.3[AV))5~

5. x=2 A y=3 A res=1[while x2y Jo {(x:=x-yira2s:ic=rastl)]
x=2 A y=3 A r2s=l

which, since ~(122), is immediate from 3.2.3 (1iL) -
Thus the assertion 1 was true.

The effect of the above "proof” his b22n ndO mors than that of
running a test case on I of section 3.1: 31ll that nas been done
is to establish, using the formal systam >f saction 3.2, what
result arises from one particular value of thz state. owever,
it is this ®wformal system" on which the systen of szaction U,
which permits proofs about classes of wvalu2s, is built.

3.4__ (Extended) Qperations

— e —— ——

There are features in high-level proyramming lanjuajes which
require an extension of the notion of (rastricted) opz2rations

given in section 3.1. This section presants the rejuired
generalisation to which subsequent unqualifizd occurences of
myperations® refer. As well as the ability to refer to and

change a state, some programming language statanents also perait
the use ot an explicit argument list (2.3. procedure call).
Furthermore there are constructs which also deliver extra results
(e.g. function reference). sjven a stats y a 3omain A and 2
range 2, the type of an operation might be2:

e e e o o = o e o oo o e e = e T e S A —— - ———— A —— ———

TS e e e e e S e M S e e e e e S R S S e A M A S " < i~ T — — — o — A 1o

oOP ¢ £ x A = 5 x 0

again to emphasise the immutability of th2 structure of the stats,
this is written:-

OP :: §£ = A = 0
Unlike the position with states, whara unitormity of aotation is
guaranteed by omission, it is not clear how ta2 arjuments/results
should be shown in the attempted abstraction of projramming

languages. Various notations are used below 1ll of which should
be clear. Writing:-

ol,a[OP Je2,w

the, intormally, described constraints on p in saction 3.2.2 can
now be written:-

p L ¢ - [T,F}

1]

el[ple?,I > (e!'[if p then OPl 21s2 OP2]e¢2 o[OP1 Jo?) 2tz.
The subject of extensions is returnzd to in saztion 9.

3.5__Problems_of_ non-deterministic Oparations

The obvious justitication for viewing operations as relations
rather than functions is to cover non-datazrministic operatioas.
In spite of this the body of the currant paper ignores non-
determinism for two reasons. Firstly, it would tend to cloud the
"normal" case as indicated below. Sacondly, it is of real
practical value only when parallelism 1s treatad (see ref 5 for a
discussion of these problams). Only this sa2ction and saction 4.5
discuss non-determinism,

Consider tirst the deterministic interpratation I givan in
section 3.1:-

I:0P X §f = ¢
o1[0PJe2 = 62 = I (OP,ql)

then:-
~ (d02) (a'[OP Jo?)
says that the (partial) operation OP is not Jda2fined for ol.

It I is non-deterministic it is tempting to 3d=2fine I* as the
machine which yields the set of all possibls rasults from T:-

P et —_—————-—*——--—_--......--....—__—-.-—-————_—-...,4..._.-....._.—_-.--_-—_-—-—--—_—__

-—_.;———-—-‘..--——-—--.n-—_—_-——q..-.—..._——--—.-.-.-._—--—---..-.-——-_.-—n.-—.-—.——...--—————_.

I#* : OP x ¢ - B(L)

and:-
s1[O0P]62 = 62el*{OP,q!)

Now the problem is that for partial non-32tarninistic operations:-
(302) (e[OP Jo?)

no longer indicates that the machine will always tarminate for
input state e¢!'. A machine which yields Jiff=arsnt rasults DJa
different runs with the same starting states is likaly to be mndre
usable than a machine which delivers a r2sult on ©0oa2 rua but
loops indefinitely on a differsnt run with thes sane input state.
Characterising the former class, informally for th2 moment, as
wyseful" non-determinism it is intarssting taat this is tne most
natural view of an operation as a relation on input states.

In order to approach the problem more tormally defing:-

r* =t w (o}

where u is an undefined symbol denoting non-ta2rmination. Then
let:-

I' : OP X £ =~ B(EY)

be a machine like I* but which also crezat2s u in th2 rasult set it
I may fail to terminate for o¢t. Thus:-

a1 { OP Ju

rather than omission from the relation, dz2notes non-termination.
®Jsetul® non-determinism might then be definel dy:-

et[0OPJo2 > ~gl1[OP]u

This would be very convenient but our “us2ful"® class is ast now
closed under the combinations given in s2c-tion 3.20 Consider:-

61[OP1;0P21¢% = (302) (¢2[OP1 J62 A~ 92[0OP2]o3)

and suppose that OPL and CP2 are both vusaful™ non-deterministic
operations, say:-

61[OPl]e2 A oi[OPL}a®
¢2[0P2]s® A @*[OP2]u

S D o D W D SR M e 5 e e WD S A S TR M M M T M D i S . — S — T —— — T —— i — — " " -

R MR D e s o . ———————— T —— " " . S T 2 . S s e i

(OP1;0P2) 1is not "useful® because it OP1 choos2s to cr2ats o¢,
OP2 will tail to terminateld It is possiol2 to closa this
combination by e.g.:-

ol[OP1;0P2]e3 =
((¥oZ) (¢1[OPL]o2 > ~s2[0OP2]u) ~
(362) (o [OP1 Ja2 A @2{OP2]Jo3))

but the approach discussed in section % jivas an altaraative way
Ot avoiding the problem which is revizwed in s2-tioa 4.5.

—-——————--—_—_——--———.p.——-..--—-_-q-._——_--__..-————..-——--———4-.——-»-——--.—_—-..-._

——— -‘.——-n.-—-------———--——-t——_-———.-.-———_m——_—n—-_——-#—-—_——--‘—

4, ___ PROPERTIES_OF DPERATIONS

section 3 has considered operations as r2lations. How are the
relations to be defined? Actual operations mniy work on huje
numbers of different input states so it is not practical t>
enumerate the state pairs. The ansver is to define a predicate
over state pairs which yields true if, ani snly if, the pair is
meant to belong to the relation. The preziicats2 is, in fact, the
formal expression of the required input/output specification of
the operation. its definition can be built up. usingy the
connectives of section 1.1i. from unlzrstood synbols (BaJ-
factorial in section 4.3). Again most of the jiscussion, except
section H#.5, assumes deterministic oparations but ther2 nay be
more than one operation which satisfiss th2 pr2dicatz. 1In other
words, the predicate may not determine which jaterministic

operation is required.

Suppose some operation is raquired:-
oP 2! L

The simplest specification of its raquirzl propartizs
would use a predicate:-

post : £ x L = [T,F}
eif{OPJo2 = post (¢! ,02)

However, this is only a constraint on OP for taosz input

states for which it produces 3 result. Tnis is not
sufficient and another predicate:-

pre : £ = {T.F}

is used to specify the (minimum) domiin of input states
for which DOP should produce a result as follows:-

pre(sl) 2 (3¢2) (o2 [OP]Jo2)
The correctness criteria can now be givan as:-
pre (e1) A o![DP]s% > post(sl ,02)

The above conditions are used so often that an abbraviation
is adopted:-

——...-_-—-.--_——-..-.-_---.-...—_—-.«.-p.-——-——-_-.-.......--__—..-.._..__...._-_.—---....——-—————

-———-.-——_—--—-..—-—-.,....-———..—_—-——-....-—_—-._..-_.___--....—.._-—_--—_—-———_--———--

pre <OP> post

is written only if:-

|
|
|
|
| pre(el) A gl[OP Ja2 o post (el ,02)
|
] and:-

i

|

pre(el) o (J62) (gl [OP Ja2)

Readers who are familiar with raf 6 will rzadily se=2 that:-
P{OP}2

is written only ffe-
P(el) A ol[DOP]o2 > {(a2)

nus the ditterence in the notations is that termination is
separated in Hoare's work (cf. raf 7) anl taat his (post)
conditions are of single states. It will paczome clzar below that
the conditions on state pairs are less 23asy t2 manipulata. The
argument tor their use is that it is the input/output relation o€
an operation which is of interest, not just son2 property of the
output state. The attempt to gat by with such proparties has
caused many of the proven aialyorithms sin-a r2f 8 t> have
variables which record the initial values.

4.2__Combining DJperations via Their Conlitisng

This section gives requirements for 123uzing ra2sults about
combinations of operations whers th2 o5asa Op2ritioas ar2 known
only wvia conditions (section 5 will taika tha2 alternative vicw
that given required conditions for an Oparation, sub oparations
can be specitied to fulfil the task). It will become clear that
this way of proving results is tho key ¢0 avoiding the ftest-
case" proofs of section 3.3. Many diffarant sats of reguiremants
could be designed and those given below ar2 n2ithar the shortest
nor «c¢laimed to be the strongest. The rejuirements given below
are chosen only to facilitate the example d=2v21lop23 ia saction 6.

4,.2.1 _Compound_Statement

-

The simplest combination of two Operations 1s to perfarm onz
then the other (cf section 3.2.1). Given:-

- e ————-———-—---———--—u———_q————-—.--—————_.——_—‘————————_‘--

- D Wy Ee e e W D G G G S om e S S A — A W W U pepe——— T 2t etk

i) OoPl:: and prel <OP1>postl
ii) oP2:: and pre2<0P2>post?
then:-

(QPL3;0P2) :: L

and, providing it can be shown that, firstly, both oparations are
used only over their domains:-

iii) pre (¢?) = prel {(s!)

iv) prel (e1) A postl(el,s?) 2 prel (e2)

Secondly, the input/output relations combine in tha correct way:-
v) prel (el) A postl {e!,e2) A post2 (¢2,03) 2 post(et,od)
then:~-

vi) pre<0OPl ;0OP2>post

The proof of this result is now given. For many r2adjers
the knowledge that a proof exists may be suffizient
information.

Assumes:
1. pre (’1)

then from iii:~-

2. prel (ey) 1
from i:=

3. prel (et) = (3e¢2) (¢'[OP1]Jo?) letting ¢, b2 such:i-
4, d’_[opl]ﬂ; 2,3

and trom i:-
5. prel (st) A o![OPl]Je2 = postl (ol ,02)

bo postl{ﬂlgﬁa, 2,“;5
then trom iv:-

7. prez{(ea) . 2.8
from ii:-

8, pre2 (¢t) = (302) {02 [OP2 Jo2) letting o3 bz suzh:=
9. 63[092]03 7

g0 trom 3.2.1 (iii):-
10- ﬂl_[:)pl;DPZ]‘a ufg

and from ii:-
11. pre2{el) A e1[OP2Jo2 = post2(el,o?)
12. postz ('3"3) 7,9

S S N e S G e D D D D g - - - — - — S S — . — .

N L AR R DR D R R R W S D e i W e W S —— - = - — A 0 D W S L - S - i -

then from v:-

13, pOSt (51,63) 2,6'12
S0:-

14, pre (‘1) > (30’3) (dlfOPl;OPfZ]a'g) 1'10
15. pre(oy) A~ o5[OPL;0P2 Jos > post(oy,03) 1,10,13
thus:-

16. pre<dPl;0P2>post

T'he extension of the requirements i - vi to lonjy2r zonpsuad
statements should be clear.

bo2.2 Repetition_Statement

Interesting programs can only be constructed usiny some form of
repetition construct. The simplest form is taz while loop. This
is so frequently used after an initialisation operation that the
requirements given below are for ths combination. Oiven:

1) INIT:: & and T<INIT>post-INIT
i.2. INIT is total ia that it
will work on any stata o>f type [

ii) BODY 3 s ¥ pre-nRODY<BODY>post-BODY
iii) p::f:® = [T,F}
then:-

(INIT;while p do BODY)::f

and, providing that with:-

iv) pre-LOOP:f = {T,F}
which limits th2 valil 3omain of lodg,
and

V) post-LOOP:Y x £ = {T,F}

which gives tha input/output predicate
tor the loop

it can be shown that:-

vi) pre(et) A post-INIT(ol,qa?2)

> pra-LOOP(e2) A post-LOOP(s2,q2)
vii) pre-LOOP (s!) A plel) > pra-30DY({o})
viii) pre-BODY (s!) A post-BODY(el,02) > pr2-LOOP(s2)
ix) post-LOOP (ol ,02) A post-BODY(s2,e3)

3 post-LOOP (ol ,03)
X) post-INIT(o! ,62) A post-LOOP(g2,a3) A

pre-LOOP(63) A ~p(¢3) > pdst{at,¢3)

and turther, that with:-

- - ——— - __-—--_.-—--——..-—__-—-—_....--.——--..-—--——-——--——-———-—— v

UNRESTRICTED TR.12.117 Page 20
xi) term:L - [0,1,00-}

it can be shown that:i-

xii) pre-LOOP (at) = term{et) 2 0

xiii) t@fm(or)=0 = ~p(st)

xiv) po‘trBODY(u‘,aZ) > term(e2) < tarn{el)

then:-

pre<INIT;while p jo BODY>post
Again a proof of this result is given.
? The tirst part of the proof establishas:-

1. pre-LOOP {st) A post-LOOP{ao,ﬂH
2 (3¢3) {ot{whil2 p ip BODY Je?)
2. pre-LOJP (o) ~ post—LOOP{uﬁ,oi) A osi[wnilz p 12 BODY Jo3

> pre-LOOP(s3) » post-LOOP (a0 ,83) A ~p (03)

the proof is by jnduction on term(et!) 2 0, se2 xii. Basis
assume:-
3. term(et) = 0

from xiii:-

5. ~p {ol) 3
from 3.2.3 (iii):-

5. o![while p do BODY]e? 4
thus:-

6. (3¢3) (¢'[while p do BODY]e?) 5
and since 83 = ¢! the hypotheses give:-

e pre-LOOP{e3) ~» post-LOOP(uB,u3) A ~p{o3) 4
now assume the result proven for term(s!) < n, prove for
term(st) = n > 0y from xiii:-

8. ple?)

from vii:-

9. pre-BODY (ot) 8
from ii:-

10. pre-BODY (o1) > (302){01[BODY]02)

11. ¢![BODY Je? 9,10

and trom ii:- ,
12. pre-BODY (e!) A o![BODY]e? 2 pOst-BODY (a1, 62)
13. post-BODY (¢} ,0?) 9,11,12

TS D MR R M M L S L o - — A —— ——————— i i " — T — ———

I A m s mm A R m L e e e D A W A A R R e e ———— T ——— —————— ———— i — " . w2

then from wiii:-

4. pre-LOOP({0?) 9,13
and trom ix:-

15. post-LOOP (e9,02) i3
and trom xiv:-

16. term(e2) < term(el) 13

S0 by induction hypotheses:-

17. (3¢3) (¢2[while p do BODY]a3) 14,15
further:-

18- pl’e"LDDP (0") A pOSt-LOOP(GO‘OE) A np(dﬁj

so0 trom 3.2.3 (iv):~-
19. ot![uwhile p do BODY Je3 8,11,17

and 18 gives the required properties.

Now the above result can be used a2s follows, assun2:-
20. pre(ﬂl,

from 1:-
2. T > (do2) (¢![INIT]o2) letting e, be such:-
22, ﬂl[INITlﬂz 21

and from i:-
23. T A o![INIT]Je2 > post-INIT(a!,02)
24, pOSt—INIT(Ui,az) 22'23

and trom vi:-
25. pre-LOJOP(s,) A post-LOOP(e,,023) ‘ 20,24

the above results are now used:-
26. (d63) (o2 [¥hile p do RODY]e3) latting suca o2 o,

1,25
27. pre-LOOP (g3) A pOSt-LOOP(o,,03) A ~p(oa) 225 ; 26
from 3.2.1 (iii):-
28. o[INIT;while p do BODY Jo, 22,26
29. post(ol,o3) 24,27,28,

which concludes the proof.

. s Tt —

A W e A D D e R S e - USRI ——————————————— e

....-—————_.-.-.----_—--..u--...._-—_—-—_...-———-—..__--..—__._-_-.-.....--——_—-—a-—._—-—

It is customary to supply at aibout this point in papers on
program correctness a proof of the correctness 2f an algorithm
for factorial. The custom is follow=2d £or taz purposes of
illustrating the use of the properties of section 4,2. A more
interesting example is included after th2 ideas 2f formal
development are covered in section 5.

Given states:

1. S = (<n:is-int>, :
<fn:iS"int>) S]Sg_gszgq.n Es

it is required to prove:-
2 pre<fn:=1; while n#0 do (fn:=fn.njn:=n-1) >post

where:-
3. pre(sy) = ng20
i.2. Cc(n,s4) 20
4. post{sS;¢S2) = fny = n;!
accepting:-

Se T<tn:=1>post-INIT

w#here:-
6. pOSt‘INIT(51;SZ’ = nNa=nhg A fny=1

and:~
1« pre-BODY<fn:=fn.n;n:=n-1>post-30DY

where:-
8. pre-BODY (s1) = ng?0
9. post-BODY (S5 ¢82) =
fna = fni.n1 N
ng = n;-1
using:-
10. pre-LOOP(s;) = ny20
11. post-LOOP (S1,S2) = fna.nzt = fnj.n,d
12. term(sy) = n4

results vi, vii, viii of section 4.2.2 follow imm2diately.
Consider 1x, expanding the hypothes2s Jiva2s:i-

13. fng.n2! = fn1-n1: 11
14, fn3 = tn;-nz 9
15. n3 = na-1 9
Now:-

T MR e e D SN A G e e W D S S e S G N R W D W —— T - .

D W A A e e W M R R R M e G S5 NS e M e W M S W - SER W S A S S . A~ —— > -

and the obvious property of factorial Jivess=

17. fnz.niz! = fnz.ns? i6
18. = fnj.ngd 17,13
Thus:-

19. post-LOJP (S:1,S3) 18,11
Consider x, expanding the hypotheses jyives:-

20 n; =ny A fn, =1 6

21. fnz.niy! = fn,.n,! i1

22. n3 =0

Using another property of factorial and simplifyingy gives:-

23. fna = nil 20;21;22
Thus:-
24, post (S1.53) 23.

Results xii, xiii and xiv follow immediataly.

Notice that no temporary variable is usel in the statz, a formal
proot using the system of rzf 6 is mora 3difficult. Tha2 reader
might choose at this point to attempt an exercise. Using the
example of section 3.3, given:

S = (<x:is-int>,
yris-int>,
<res:is-int>)

Prove:-
pre<res:=0;while x2y do(xi=x-y;ra2s:=rzs+l) >post

where:-
pre(s,) = x,20 A y420
post (S;,S2) = Yi.resa+xa = x; A 0£x,<y,

—— i ——

In order to present arquments about the gperations presented
in section J.l, 1.8, 5=

OP::f : A » @
two predicates:-

pres) a A = §1T,FP]1
post:y x A xf x Q2 =+ {T,F}

-.._.-—_--—-——_.-—-.-—__—-..—.-_..-—....-.-———-—-——.p--—..——-—-—..——-——-——-———-_——-*——

--_-_.._._.-...__..._..__._..__......._.___._..__.._..._.__.-_...,_____...._-....____....__.._—....__.—

are used, so that:-

i ——————— e e s

pre<OP>post

is written only if:-
pre(et,a) 3 (302 ,w) (0! [0P Jo? ,u)
pre(el,a) ~ ol ,a[OP]o2 ,u 2 pOSt(al,a,al,u)

The extension of the combination rules to cover extended
operations 1is straighttorward.

— e e e o e e s i

As toreseen in section 3.5, it is now possibl2 to cover
the problem of non-deterministic operations via their
properties. Supposeé. using the undefined symool of saction
3.0

pre<dprpost
is written only 1f:-

pre{st) > ~gl [OP Ju

pre(sl) ~ gl[OP Jo2 2 post (ot ,0?)

Then it will be seen that the above class i g closed under
combination rules of section 4%.2.

-...._,--—..-»—.—_—...,_-—-._-—-n-.—_-.—-—-—-_-*-u.————q-.-.———_.__———....-_————.--.-—-——-.a.w-—-

..-—.—-——--n---.-—._--—....___—_-___——q-————-—--—_—.-..-—————.-.,——_——-—...-....—..—...-.—-—

e e —

This section describes the method of formal development leaving
aside until section 7 the very important issus of now the data
can be evolved along with the aljyorithm. Section 6 gives an
example ot formal development on constant data.

The background is to accept the notion that the art of
programming is to go from an implicit specifization of what the
task is, to a method for how to achievs that task. An exanple >f
“what" trom mathematics might be:

algorithm s such that given a positiv2 arjyument x
it delivers a result y such that ¥ = %

The “how" is some appropriate squiare root algorithm, In most
current programming languages the dafinition of "how" will be a
program which invokes ordered repatitions of operations. It is
usually more difficult to write a projran which 2vokes the
Seguence of operations than to stata the required resualt.

The tirst step is to obtain tha implicit specification. Clearly
it must be unambiguous andi non-contraidictory. It saould als> be
"complete" in the sense that any profarr23d algorithm which
fulfils the stated criteria should not ba ra2jected because it
fails to fulfil a property which was not stated. as far as is
practical it should also avoid beiny over-specific: it shouii
not rule out acceptable algorithms. For 1ll practical purposes
this implies that it must use a notation wnica avoids the dangers
Of looseness that can be hidden by using natural language.
"Specifications"” are a subject in themsalves whizh <cannot be
dvelt on in the current paper but it is worta pointing osut the
work in specitying programming languages (rzf 3). The work on
constructing such formal specifications is 0¥ no m2ans a waste:
the greater understanding and tha 2arly r2solution ot
inconsistencies or incompleteness is a consiizrablz razwari.

Providing the given "problem® is non-trivial (i.e. not in the
repertoire of instructions of the machine) , the next step is to
decide on some operations into which th: Jjoo zan be decyuposed.
That 1s, think of building blocks which if on2 had them, could be
put together with one of the known wiys of oDmbining operations
to achieve the required result. Notics tnat tnasa oparations are
not necessarily primitive operations of the targyet machine, they
will in general be characterisei by assumptions about their
behaviour. (The fact that these assumptions ar2 also recorded
formally is the point missing in the normal process of breaking a
task up into sub-routines.) The claim that the proposed way of
combining the blocks fulfils tha specification now becones the

S S S —————————ep g Rttt et

- S N M D e S W e A A A e W S T A . S S —— - T —— —" =

statement o0of a theorem. Under th2 docum2nt2d assumptidns the
jostification of this theorem should then be jiven. It is worth
repeating that the idea for why the construction is correct
should already be in the programmers mind: he 1is only being
asked to document rather than discard the arjum2nt.

The aim should be to stay as abstract as possible. This of
course means that the algorithm using assumed (abstract)
operations is not yet capable of runniny on 2 nachine. Haviagy
proven the (abstract) algorithm corract s> far, it is now
possible to completely ignore th2 work of this stage. NOw One
takes the list of operations about which only assumptions 2n what
they do are known and uses these assumptions as specifications
tor turther development. Since any stags can introiuc2 mdre than
one assumed operation the dJdesvelopment app2ars Lliks a tree.
Ultimately each branch will terminate when th2 assumptions about
an operation can be met by primitives of th2 targz2t langjuaga2.
There is a strong reason to suspect that, giv2zn a way Of
rigorously documenting sub-tasks, projramn2rs will b2 less
inclined to "rush into code®.

This brief summary begs many gquastions, some >f which will becone
clear on considering the exampls 1in sS2ction 6. Some are
considered here.

One naturally wonders how large 2a stap 2f Jsv2lopment 1is
appropriate. The danger of too large a step is that it will both
confuse the details and increase th2 chance of backtracking. The
actual step size will obviously be a matter of individual style.
The .only rule would appear to be that indepsndeat decisions

should be separated.

In spite of taking care it is inevitable that 2rroneous steps
#ill sometimes be made and thers is no altarnative but t> trace
an error back to the stage which introduc2d it and repeat the
development from that point. Faced with s2varal sub-problemns, 1t
should be clear that the one to be pursuel first is that which is
most likely to force a backtrack.

The careful <choice of building blocks will not oaly yi=1ld more
insight into the chosen algorithm but will also 3iv2 a clear
framework for considering alternatives. :

Phis process of decomposition can also 22 applied td other
rejuirements than input/output relations. It woull for 1instance
be possible to split resources of corz, m2n, tin=2 =2¢c to cover
the tree of development.

G A o D WS W R e WG WD e WD W A N R M A dmn R L ke v A i T G - G S A - 255

Another interesting effect of the jevalopmnant is its possible
attect on language features. Suppose a development has reached
the point where an operation is requirel which sinply tests
vhether any element of given array has a yiven propsrty. This is
not & primitive of the commonly used langyuay2ss ani another stap
might create a do loop type construct. If there is nd reason to
search in any particular order, it is not only tziiosus to 3>
this, it also makes the job of an optimisiny compilar or parallel
machine unnecessarily difficult. If one Founl constructs of this
sort (ct the discussion of assignment. in ref 2) dccuriag
fregquently one might be able to influenca language design from
the problem end rather than the machinez ani.

The author has frequently bean met with tha sbjection, by this
point in a presentation, "If we knew our specs and they didn't
change, the Jjob 1is anyway easyd" Apart from sonz ressrvation
the reaction to this is that a documentad davalopnant 2f tnhe
proposed type would give a good framework in which t> consider
the effect of changes. If generality and abstraction havs bezn
used tully then incorporation ot <cpinyzs saould not be
disproportionately difficult (cf saction 8 of ref 2) o

In order to see these points on a trivial exanple, consider the
"exercise" of section 4.3 as a developmant proolan.

Find an:-
DIV::S

Such that:-
pre<DIV>post

Wwhere:-
5 = (x:is-int>,
<y:1s-int>,
<res:is-int>)
pre(sy) = x420 A vy >0
pPOSt (Sy+S2) = yy.resa + ¥, = x; A 0<xx<y,

A "stage of development” might recojynise the rajuirement to
decompose this problem into two tasks, INIT ani LOOP, as
follows: -

INIT::S
I<INIT>post-INIT
pPOost-INIT (s1,S2) = X2 = X4 A y3 = yg A r2s; = 0

LOOP:: S

-——-.._-—-—----.--—-—- --,—-—_——..-——-.....-.—-.--4---_.—-———--—.p————.p—q.—-—————-—

-—-_....———-—--.--—-..-—..-.—-.-—...--4-—-__..-.—.——-——..--...--.—_..-—-—.——*_..-——.-—-—-p——.—_.u

pre-LOOP(LOOP)post*LOOP
post-LOOP(sl.sz) = yj.Yesz * X2 T Xq ¥ Y1251 ° 0€x,<Y1

Using the rules of section %.2.1 it is possiblz to prove:-
' pre(INIT;LOOP)post

Notice that the view taken of the ways of ~ombining programns
{e.g. see section 4#.2) is of tools to jecompdS: 2 problam. Also
that even in this trivial example it was possible 2 nake the tWd
sub-tasks more independent by not giving tn2 sacond 2lzmeat all
of the information about the context in which it is to be used
(i.e. res = 0).

—— ——— - o o o o o o o e e o o T ——— o 2 2 2 T T 2 2 2 T

o — e — — TR AR MO L S e e e o —— A — i ———— — . o — T —— . Y. <

This section provides an example of the fornal Jevalopneant
process described in section 5. Th2 probla2m zn2s2n is that of
reference 7. As well as permitting a comparison with that paper,
the example is about as long as is practical to present in a
paper. Any comparison of length should ba mai2 with care because
the current proofs include arguments for tarmination and
preservation of elements which are treated seperately in ref 7.
The specitications, and the whole dsvalopmznt, ars given in teras
of arrays. The ideas of esvolving 3ata typ2s ar2 illustrated,
using the same example, in section 8.

Consider a given set of values:-

i) U

and a total ordering relation on pairs of thas2 valu2s:-
ii) £.:0U x U = [T,F}

The normal properties of such ralations holi:-
1ii) VyS.Vy ¥ VaS.vy
iv) VifeVa A vaSavy 3 v <.Vy

The relation is marked with a dot to distinguish it from the

Simple relation on integers (<. might for 2xanple b2 a comnparison
between data structures governed only by th2 vilues >f sae fkey"®

field). In particular, it is not assumed that:
V15-V2 A VQS-V,_ 2 V3 = Vg
The regquired program will operate on arrays, waich can be

considered to be (partial) mappings from intejy2rs to 2lemnants
o Ug= '

v) A:I-0U

The set of elements in some segment of an array will be given
by:- ‘ .

vi) A(m:n) = {A[x] | m<x<n}

Proots of the relations implied by this ar2 not all Jivan below
(e.go mSﬂ"l).

The overall state of the program will pe:-
vii) S = (<A:is-A>,

<E:is=int>,

{N:is-int>)

--——--—_—_.._..-.n_-.m,._....._.---..-_._..._..-.---.—-..--»-_,.._,.—.—-—..m....-_.;u_--u_-—-.—-w-.——mw—--w

—qx.--—-_-_-.‘_.-.-.-—-.------o——_----—-p—_-.—,——_—..-_..x...-..._._..-_.......-.—--_-_m:_--._-m.u

Ahere is-int characterises the set of positiv2 intajgsrsti-
{(Le2pans}

Thus:-
viii) FIND::S

rhe rejuired properties of FINDI-
ix) pre(FIND)post

are that given a state where N ~ontiins 31 (non-2z212) integer
giving the numper of elements in Ay ind £ zontains 30 ianteger
value betwveen 1. and N, 1.Cs:7

X} pre(s) = N Z 1 A
1 € x £ N> A[x] ¢ U~
1 £ £ 51

(Given such states) the progrim should cr2ate sutput states in
shich the array c¢an be considered to 02 split about tne fth

element:-
i) post(S‘,SZ) =
ordered-split(hltl:N),Az{l:t—l),AZ{E:E),AZ(E:Ni)

such that the set of values in ths array »1am2nt of tae state 1is
unchanged by the execution and that ths tores s2ctions crzated
by the split are ordered 1.B.:°"
xii) ordered-sPLit(v,vl,VZ,vs)
gd-split(V, V!, V2, V?)
ordered(vl,vz,v3)

]

>

The tormal pxpression of the intuitiva 4322 of 2 "goaﬁ-split"
ijs that it must contain the same alamznts and ta2 sats nust be
pairwise disjointe.
xiiil) qﬂ*split(v,vl,vz,v3) =

V‘quuV:’:VA

pdis(vl,vf,v3)
¥iv) pdis(V(l).V{Z),‘..,V(n)) =

i # jow~ (V¥ € V(i) A~V € T{3))

Whilst ordered on sets 1is defined in tarms of taz Jivan
element-wise relation by:-
XV) ordered {V(l),V(Z),...,V(n}) =

i<j A v(i)eV(y) ~ v ev(i)l V(1) .V (3)

The above predicates wersa intantionally jivan sugyjyastive namnes
and the reader will be invited to 3zcapt 2 nUNDET 5f lemmas in
the course of the development which fit with his intuitive ideasSe.
Jotice, howeverys that these preﬂicates qra iafin2d snd 1in Cases
5t doubt lemmas about them can be pProvane

A g SO N WD S S0 e e e S S g e e W S M G M R M S R e me O W e e e A W A W T S e A S M M e eSh D A M S W M S A

The specification of a programming task will normally contain
other constraints than the regquired input/output r2lation. e}3
those listed in section 5 only store usaj2 will be considered
here. It is assumed that the raquirement is for a progran which
uses roughly N storage cells. Thus a program with a few local
scalars 1is acceptable whilst one IEIUlran a ta2mporary array the
same size as % is not. :

(The utility of a program which taka2s an array of values aad
organises them so that the fth a2lem2nt is in taz ftnh position aad
all those below (above) are less than (greater than} with respect
to the given ordering relation is shown 1in r2fz2rance 13 where
recursive use of the routine on non-unit 2lema2nt parts provides a

sort algorithm.)

fhe storage requirement to work within ta2 giva2n array night
suggest an algorithm which collz2cts low slz2ments at one end Of
the array and high at’ the other, marking the limits »f these two
colleéckisns with scalarsS. Thius €hE Stabs Will bE SFEasged £5:

i) 51 = (KA:is-34>,
<rsas=1nt>,
<{N:is-1int>,
<m:is-int>,
<n:is-int>)

The set of elements which remain to b2 arrany23d will be stored ina
A(m:n). The job of FIND can be performed py an aljyorithn which
initally puts all elements in this class and ta2n r2duczs it step
by step until it c¢ontains exactly one (th2 rejuired) element:

ii) FIND = m:=1;n:=N; while mén o BODY1

T'he requirements on the initialisation ara:-

i11i) (m:=1;n:=N)::51

iv) T<m:=1;n:=N>post-INITL

V) post-INITL (s1,s2) = 52 = 1(n,N!,2(m,1l,s!))

The hody ot the loop must ansure that the raguirzd elanoat never
gets absorbed into either outer s2t (ani shoull assum= this for
its input states and that the task is inconplete) as well as
making an ordered split of the praviously unarrangesd slemnents aad
leaving alone items of no 1interast. In orisr > prove
termination it is also required that som2 projress 1is nade at
each iteration. ‘Formally:

vi) BODY1l::51

vii) pre-BODY1<BODY1 >post-BODY1L

-—_...-_--.——_-.--——.-——_--.--—_-—__—......——-.»-——-..—.-.——.—-——_--.-._--——-..-———-..-_--

———-.-.——-.-——--4.---.—-——_-p-——_——___....——-.-_—_..n.—__—...-.-_—_..-—.-—-.—.———-_—--—

viii) - pre-BODY1 {s!) = mi<fi1<n! A mlé#énl
ix) post-BODYL (st,s2) =
y mZSf;‘!Snz A
{f2,n2) = {fL.Nl} =&
undisturbed(hl,AZ,ml,nI) A
ordered-split(hi(mlznli,Az(mi:nz-l),
AZ(mZ:nZ),AZ(n3+1:11)) A

progress(ml,mz,nﬂ,nl)

The predicate undisturbed in true only if ths valua2s in the
arrays correspond in all positions below m anl abovz a:-
x) undisturbed (3! ,AZ,m,n} =

1<x<m v n<x<N > A2{x] = A[x]

The predicate progress js trus only if nzithsr m 23r 2 have

nmoved backwards® and at least one of tham nas novail:

xi) progress(ml,mz,nz,nl) =
miSmZ A nesnlt a

(nz-m2) < (ni-mi)

Having assumed the above propartiss, two tasks r2nain. Firstly
it is necessary to justify the argument that if we had such
operations (in particular BODYl) usinj taem as ia ii would

satisfy the requirements on FIND. S2zonily, assumning no
operation with the properties of BODY1 axists in our progjramniag
language, it must be further devzlopedl. Tae first task 13

tackled here, the second in section 6. 3.

Defining:-
Xx11i) pre-LOOPltsl) = ml<gisnt
xiii) post-LOOPL (s!,s?) =

fz:flf\
ordered—split(ﬁl(lzm},Az(l:ﬂzﬂl),Az(nZ:nZ).Az(n2+l:N))
xiv) terml {st) = ni-mi .

The proof of (cf. 6.1 (ix)):-
la pre<m:=1;n:=N; while m#n Jo BODYl>post

can be constructed according to saction 4,2 as tollows:i-

For 4.2.2(vi)a:-
2.4 pre(st) A post-INITL (s!,S%) 2 pr2-LOOPL (52)

is immediate from 6.1(X)., V. xii

For 4.2.2{vi)b:-
3. pre(st) A post-INITL (s!,s%) > post-LOOP1 (s2,5%)

is seen to be vacuously true from v, xiii, 6.1 (xii)

. . e W W W W W S e M S MR S A e A S S A N e W i - —

- . ——— T ———————— . —— A —— T —— — —————— —

For 4.2.2 (vii):-
4, pre-LOOP1 {s1) A ml#n! > pr2-BODY1 (s!)

is immedijiate trom xii, viii

For 4.2.2{viii):- .
5. pre-EDDY1 (s!') A post-BODY1 (st ,s2) > pr2-LOOP1(s2)

is immediate from 1x, Xxii

Now ftor 4.2.2(ix) consider:-
6. post-LJODOP1 (s! ,s5?2) A post-BODY1(s2,s3)

From 6 and xiii:-
7. f2 = f1
8. ordered-split (At (1:N) ,A2(1l:m2-1) ,A2(m2:n2) ,A2(n2+1:N))

and trom 6 and ix:-

9. (£3,N3) = (f2,N2)

10. undisturbed {A2,A3,m2,n2)

11. ordered-split(A2 (m2:n2) ,A?(m2:m3-1) ,A3(m3:03) ,A3(n3+1:n2))

Thus from 7 and 9:-
124 £3 = £f1

Now by a lemma an ordered-split (which can be proved without
dittaeculty trom 6.1 (xii), b6.1{xdii), Bl (XLV) X

8, 10 and 11 give:-

13. ordered-split (Al (1:N) ,A3(1:m3-1) ,A3(m3:n3) ,A3(a3+1:N))

rhus from 12 and 13 and xiii:-
14, post-LOOP1 (st ,53)

which from 6 is the required result for 4.2.2 (ix).

Now tor 4.2.2(x) consider:-
15. post-INIT1 (s!,s52) A post-LOOP1(s2,s3) A pr2-LOOP1(s3) A
nd = n3

trom 15, v:-
16. A2 = Al A fz2 = f1

and trom 15, xiii:-
17. £3 = f2
18. ordered-split (a2 (1:N) ,A3(1:m3-1) ,A3(m3:n3) ,A3(n3+1:N))

and trom 15, xii:-
19. m3 = n3 = f3

.-a—s-....—-—-.-.-—-,——.--;...-_.-—-.-——---._—sa-.-.---_.--—,...—m_—-———.—.—“-—-—_-ﬂ-——s—_.-.n.-——-_

————_—-..—z.n—.a-_—..«.———_—_....—.n...-.,-.__-_u-——_-—---—.——a_——_:-b...—__-m.,_-_n_—‘“_.

Thus from 18, 17, 19, 16:~
20. ordered-split{al(1:N),AJ(lzfl—l),AJ(EI:EI),A3(f1+1:N))

N i . .

o) -
Z1. post(st,s3)

<hich from 15 is the result required oy sa2ction 4.2.2(%).

Finally for termination:-
For 4.2.2 (xii):-
22. pre-LOOPl (s!) = terml (s?) 2 0

is immediate trom xii, Xiv

BOE WeZe2(Xi13) 2=
23. terml (3!) = 0 = ~(ml#nt)

is immediate from xiv

For 8.2.2(xiv):~
24. post-BODY1 (s1,s2) > terml(s?) < tarml {s?)

js immediate trom ix, xi, xiv.

So all of the reguired conditions of s=zction U4.2.2 1ave bezan
proved and this gives the required result 1.

e o S e . S — — ——

It is now necessary to show how BODYlL of the last sectiosa can be
achieved by more basic operations. In orizsr to collaczt the extra
low and high elements which BODYlL provides Eor tae osutar sets,
another two indices are used. Thesz ar 2 us21 &2 racyed ‘the
extent of the new small and 1largs =2l2m2nts wasre wgize"™ is
determined by comparison to one element of th2 array. Thus the

state will be extended to:

i) S2 = (<A:is-A>,
<f:is-int>,
<N:is-int>,
<m:is-int>,
<n:is-int>,
<i:is-int>,
<j:i&-int>,
<r:is-U>)

The task defined for BODYl in seztion 6.2 will now be achieved
by:-

S o e e o e o e o o o e e e e o ——— v — — ———— - — —

o e e T T IR M i 5 o w0 o o L R " . — A . S o o s vl it o s S O S o

ii) BODY1l = r:=A[f];SPLIT2;JOIN2

Where (r:=A[f]) is a total function which simply stor2s a value
into the r component of the state:-

iii) (r:=a[£])::52
iv) T<r:=A[t]>post-THOOSE?Z
v) post-CHOOSE?Z (st ,82) =

s2 = a(r,Al[f1],s!?)

The operation SPLITZ will, providing th=z wvaluz in r is one »of
those i1n the to be arranged area, so permutz2 ta= valuss ia that

portion ot A to yield an ordered split:-

vi) SPLIT2::82
vii) pre-SPLIT2<SPLIT2>post-SPLITZ2
viii) pre-SPLITZ (si) =
(3x) (m! <x<n! A ri=Al{x]) A mign!
ix) post-SPLITZ (st ,s2) =
j2<iz A

undisturbed (A! ,A2,m!,nl) A

ordered-split (Al {ml:nl) ,A2(ml:j2),
A2 (j2+1:1i2-1) ,A2(i2:n1)) A

mt<iz A j2<nt A

(£2,N2 ,m2,n2) = (f!,N1,mi,n!t)

Notice that SPLITZ 1is not requir2i to so irranjye the niddle
portion to include the fth position. This is tas way 1n which
development has proceeded: the raquirad oparatisan is now
simpler.

The operation JOIN2 has the task of joininy up tae segmnaats ia
Such a way that this extra requirem2nt on f is satisfied:

X) JOINZ2::82
Xi) T<IDINZ>post-JOINZ
xii) post-JOIN2 (st ,52)
f1<jt o s2 = a(n,ji,st)
11<ft 5 52 = a(m,il,s1)
J1<€1dil > 32 = a(n,fl,a(m,f1,s1))

Once again, of the two tasks remaining, tnis saztion shows that
the assumed operations perform the raquir23d function (i.e.ii).
Further development of SPLIT2 is don2 in saction 6.4 whilst, for
the purposes of this paper, JOIN2 is assumed t> have an obvious
ejuivalent in a programming language.

The proof of (cf. 6.2 (vii)):-
1. pre-pODY1l<r:=A[f]; SPLIT2;JOIN2>post-BODY1

Folliows:-

-————--.-—_-..—-...—.—_-.—-.._-—--—.-.-———-..—-..——-——._——_——-a..-..--_——--...—=-.——.—.—---.-s-—

—-—_———-.—p-__—--.-.-_—.....q..—---—-...--——_—_—4,-—__..__-.—__-_..-....__———_.‘.-—._—————-—

For 4.2.1 (iii):-
2 pre~BODY1 {(s1) = T

is vacuously true

For 4.2.1(iv):-
3. pre-=BODY1 {s1) & post-CHOOSE?Z (s ,s2) o pr2-SPLIT2(s2)

is immediate trom b.2(viii), v, viii

For 4.2.1(iv):-
4. pre~-B0oDY1 (si) ~ post-CHOOSEZ {s1,82) A post-SPLITZ(s2,53) o T

TS T N T T (. w i g
Ll n) 5% 25 Ehi o TR

is vacuously true

Now tor 4.2.1(v) consider:-
B pre-BODYL (s!) A post-CHOOSE2 (s!,s2) » post-SPLITZ2(s2,53) A
post-JOINZ (83 ,35%)

From 5, 6.2 (vii):-
6. mi<fi<nt A mi#nt

From 5, wv:-
7. (t2,32,N2 ,m2,n2) = (£1,A1,N1,m1,nt)

From 5, ix:-

8. j3<is

9. undisturbed (A2 ,A3 ,m2 ,n2)

10« ordered-split(&z(mzznz),A3(m2:j3},A3(j3+1:i3*1),A3(i3:a2))
11. m2<i3 A j3<n2

12, (£3,83,m3,n3) = {f?,N2,m2,n2)

From 5, xii:-
13. (f+,A¢,N%) = (t3,A3,N3)

Thus from 13, 12, 7:-
14, (£e,8%) = (f1,N1)

and trom 13, 9, 7:-
15. undisturbed{al,h*,ml,nl)

To obtain the rest of the result sought it is nacassary to
consider three distinct cases.

Firstly, consider the case:-
16. 3 < 53

Then 5, xii gives:-
i7. (mﬁ‘nﬁ) = (m3'j3)

- — A A W S S M W e D e A e S — — — _———— —— —— o — T — = 1 5

—— - ————— G W A S e e W W e A S e — - o — o S o s e o 2

Thus from 17, 12, 7, 6 and 1u4:-
18. meste

and trom 17, 16 and 1t4:-
19. f4<n*

Now trom 10 and an easily proved lemma from 6.1 (xii) :-
20. ordered-split (A2 (m2:n2) ,A3(m2:m2-1) ,A3(mZ:j3) ,A3(jJ3+1:n2))

Phus substituting with 7,13,12,7:-
21, ordered-split (Al (ml:nt) A% (ml:n*-1) ,A%(m%:n*) , A% (n%+1:n1))

and trom 7, 12, 17 with 11, 6.2 (xi) givas:-
22. progress{m!,m*,n*,nl)

I'he second case:-
23. 13<f3 :

is proved in a completely analajous way.

rhe remaining case 1s:-
20, J3KE3(i3

T'hen 5, xii gives:-
25 (n*,n*) = (f3,£3)

Thus from L13:-
26, masfesne

Now trom 8, 10, 2% and an easily provad lamma from 6.1 (xii) :i-
27. ordered-split (A2 (m®2:n?) ,A3(m2:t3-1) ,A3(£3:£3),A3(f3+1:n2))

Thus substituting with 7, 13, 25:-
28. ordered-split (Al (m':nl) A% (ml:n%*-1) ,A%(m*:a%),A%(a%+1:a1))

and 6, 25 with 6.2 (xi) gives:-
29. progress(m!,m*,n*,nt)

Theretore the results necessary for:-
30. post-BODY1 (st,s¢)

have been proven in all cases - 18, 1%, 14, 15, 21, 22 or
26, 14, 15, 2B, 9.

This 1is the result required by 4%.2.1 to bz provan uadar
assumption 5.

Thus the proot of correctness of this sta3j2 is completz.

-——--_-—-—-p-—---.----_.--._—_.p—--,_._——-.n—-—-—..———-—_—-——.-—.——-—w.-—-——._.—-—--—-

--_--—-—--.-——-_—...—---—-—-..—.-—-—_-_—-—-—-—-__.—-‘-_.-_.-..-_.-—--_.—.—..__-_-nuu.n

o e e o e T S e S S

rhis stage of development is very similar to the first in that
the two pointers (1.3 introduced in section 6.2) 3re used tD2
delimit part of the array which has still to be soasidered.
Elements over which the i (3) pointar mMOVEeS are less than OrC
egual (greater than or equal) the selactad value r. In order to
ensure termination the two sScans are maie alsdo to stop 2t
elements egual to I« In order to defins this an irreflexive form

>+ the ordering relation is used.

i} <. + Ux U= {T,F}
viguz = vi<.vE A ~ (V2 <. V1)

The job of SPLITZ is to be performed 0oy 20 itarative operation:-

ii) SPLIT2 = i:=m; J:=n; whils i<j 10 BODY 3
The reguirements oOn the initialisation arz:-
11ii) (1:=m;j:=n}::82
iv) T(i:=m;j:=n>post-INIT3
v) post—INITS(sl,SZ) =
g2 = a[j,nl,a(i,m‘,sl))

The body of the 100p will operate providiny ta=re are elements tD
stop 1it wrunning-avay" and there is still 3 33p in which t2

work. In order to ensure it can guarante2 to nz2t its
requirement it is also necessary to know that i and J have

moved "oft base" Or this is the first jteration. Ta2 output
rejuirements, other than specifying things whica must anot cnange,
rejuire that the resultant (overlappin3dd) sz2jyn2nts aArs ordered
with respect to the stored element; that projr2ss has beezn

made; and that if this were the first itaration poth i aad 3

have moved nptf-bhase".

vi) BODY3::52
vii) pre—BDDYi<BODY3>post-BODY3
v1il) pre-BODYB(s!) =

(first-—it(}\l,ml,nl,il,ji,r‘) ¥ PRACLE W j1<n"}) N
stoppers(kl,ml.i‘,j‘.ni,rli A
i1<5t

ix) post-BODYB{sl,sz) =
(fz’NZ’mZ ’nz'rZ) = (fl'[\]l‘ml ’nl’rl) ~
andisturbed (Al,AZ,it,3%) ~
orderea(AZ(it:iZ-l).{r}.A2(52+1:j1)) £
progress(il.iz.jzrj1) ’
((4%) (P1$x<Fr A P T at[x]) 2 i1<iz ~ 32<30)

Wwhere:-

—— o —— e o —— ——— Y 5 S £ S5 S

—-........———-—-—._-.---—--_.——.-...——..__—....---—————-4,....-.—_——_—--——_—_-n.-.——-_-—.-nnp—

x) first-it(A,m,n,i,j.I)
m=i A Jj=n A
(3x) (i<x<£j ~ r = Af{x])

xi) stoppers(A,m,i,J,0,X) =
(3x) {i<x<n A ~A[x] < 1) A
(3x) (m€x<j A ~r<.A[X]}

xii) perm(At ,A2,i,3) = :
{al[x]1i<x<j) = {AZ[x]1i5x$7}

In order to prove that, given an op2ration BODY3, usiany it as ia
ii fulfills the requirements on SPLIT2, tn2 auxilliary praiicates
are defined:-
x11i) pre-LOOP3 (s1) =
(first-it (Al,m!,n?,i1,jt,rt) v (ni<it A jidnt)) A
(stoppers (Al ,mt ,il1,jt,nt,xt) Vv jicity
Xiv) post-LOOP3 (st ,s2) =
(fZ'NZ'mZ'nz'rZ) — (fl'Nllml’nl‘,rl) A
undisturbed (Al ,A2,mt,nt) A
perm (Al ;AZ ,ml ,nl) A
ordered (A2 (mt:i2-1) ,[r},A2(j2+1l:n)) ~
mi<iz a jZSnl

Xv) term3d (st) =
jr<it - 0,
T - jl-it+l

The proot of:-
1. pre-SPLIT2<i:=m; j:=n; while i<j do BODY3>post-SPLIT?2

(cf 6.3(vii)) follows:-

For 4.2.2(vi) consider:-
Ze pre-SPLITZ2 (sl) & post-INIT3 (st,s?)

From 2 and 6.3 (viii):-
3. (3x) (m15x$n1 ATl = l\l[x])

Also from 2 and v:i-
4. (d2,m2,n2,i2,j2,r2z) = (Al,ml,n! 11,31,

T'hus from x:-
5 first-it (Az,m2,n2,i2,32,r?)

and trom xi:-
6. stoppers (A2 ,m?,i2,32,n2 ,r?)

Thus (see xiii):-
7. pre-LOOP3 (s2)

and trom xiv:-

-—_-.....,____......____...._..__-___.___.-.-..____...._,_..___........._._.____........_._._..__.__.._._‘..

..-.-__-—-..-....--_—--.-...-__—-.-.....-———_—.-.-,——_—_—-..-_——_——--4—..-_-—————-._--—-——

8. post-LODP3 (s2,52)
is vacuously true.

Por 4.2.2(vii):-
9. pre-LOOP3{st) A 1i1<j1l o pra-BODY3 (s1)
is immediate from xiii, viii.

Consider for 4.2.2(viii):-
10. pre-BODY3 (s!) A post-BODY3 (st,s?)

The 10 and viii gives:-
11. first-it{At,m!,n!,il,jl,r1) v (mi<i! A ji<cn1)
12. stoppers(aAt,ml,it,j!,ni, 1)

and from 10 and ix:-

13. perm(At A2, i)

14. ordered(A2(il:i2-1),{r},AZ (j2+1:j1))

15. progress(it!,iz,j2,j1)

16. (3x) (i1 <x<jt A r1 = Allx]) > iidiz A jagj1

Consider the case:-
17. first-it (At,m!,nt,il,j1,r1)

From 16, 17, x gives:-
18. i1<iz A j2¢qt
19. (mi,nt) = (i1,q1)

and trom ix, 10:-
20. m2<iz A j2¢n?

In the other case:-
21. ~first-it(Al,m!,nl,it,j1,0r1)

From 11 and 21:-
22. m1cil A jignt

and trom 15, 6.2 (xi),ix, 10:-
23. m2<iz A j2(n2

vhich concludes the first clause of pra-LOOP3.
Consider the case:-

24, j2g52

25. undisturbed (A!,A2,it,j1)

From 14, 24, 25 and a lemma from 6.1({xv) jyivas:-
26. stoppers (A2 ,m?,i2,j2 ,n2 ,r2)

The alternative case:-

T - o — o h - ————— T — - — T~ — ——— =

e D M G D S S D D S 5 S M e e e A S e T M SN e M R SR D R e e D M S AN M NS S W e A S S S A i - —— T

27. j2Lie
" 1s immediately the second clause of pre2-LOOP3.

Thus:-
28. pre-LDOOP3 (52)

Now for 4.2.2 (ix) consider:-
29. post-LOOP3 {(s!,s2) A post-BODY3(s2,s3)

From 29 and xiv:-

30. (f2,N2,m2,n2,rz) = (f1,N1,m!,nt,r!)
31. undisturbed (At ,A2 ,m! nt)

32. perm(Al,a2,m!, nl)

33. ordered(A2 (mt:i2-1),{r},A2(j2+1:n1))
34. mi<iz A j2<ni

From 29 and ix:-

35. (£3,N3,m3,n3,r3) = (f2,N2,m2,n2,r2)

36. undisturbed (A2,A3,i2,52)

37. perm(h2,n3, 32, 42)

38. ordered (83 (i2:13-1) ,{r},A3(j3+1:32)

39. progress(iz,i3,j3,j2)

40. (3x) (12<x<j2 A r2 = A2[x]) > i2<i3 A j3(52

Using 3% and 30:-
41. (3,33, m3,n3¥,r3) = (£!,Nt,ml,nt,rl)

From 31, 34 and 36:-
42. undisturbed (At ,A3,m! ,nt)

and trom 32, 36, 37:-
43. perm(A!, A3, mt, nt)

Then from 38:- _
44, ordered{(A3 (mt:1i3-1),{r},A3(J3+1:n1))

and trom 34, 39:-
5. mi<id3 A 33<ni

Thus:-
46. post-LOOP3 (st ,s3)
which is the required result from 29 by 4.2.2(ix).

Consider for 4.2.2{x):-
47. post-INIT3(s1,52) A post-LOOP3 (s?,53) A pr2-LOOP3(s3) ~a
§3<i3

From 47 and v:-

o--u-—————_——-m-—--—_-—-—-——--—————uva-————-.._——4..-—..-—_——..-——-————-—

- —— - - - e e T A D D R S S A e A M D e S S D A S T (S S e S S S =

48. (AZ'fZ'NZ‘mZ,nZ’IZI = (AY,ft, N, ,m!,nt,r?)

and trom 47 and xiv:-

49, m2<i3 A j3<n?

50. (£3,83,m3,n3,r3) = {f2,N2,m2,n2,r2)
$1. undisturbed(Az, A3, ,mZ,n?)

52. perm{Az,A3,m2,n2)

53. ordered (A3 (m2:i3-1),{r},A%(j3+1l:n2))

From 48 and 51:- .
54, undisturbed (A!,A3,m!,nl)

and trom 48, 51, 52,47 and 49:-
55. gd—split(Aliml:nl),k3(ml:j3},AJ(j3+1:13-1},A3(i3:nl))

From 53, 48, 47:~
56. ordered (A% (mi:j3), A3 (j3+1:1i3-1) ,A3(i3:nl))

Using 6.1 {xii), 55, 56 give:~-
57. ordered-split{ﬁl(ml:nl),Aﬁ(mi,j3),Ai(j3+1:13~1},A3(13:nl))

From 48, 49:~
58. mid<i3 A j3<n!

From 48, 50:-
59. (£3,N3,m3,n3) = (f!,N?,mi,nt)

Thus from 47, 5S4, 57, 58, 59:-
60. post-SPLITZ (s!,s3)
which is the result required by 4.2.2(x).

The termination proofs, 4.2.2(xii) etc:-

61. pre-LODOP3(sl) > term3(s!) 2 0

62. term3d(st) = 0 = it>jt

63. post-BODY3(st,sz) > termd(s2) < te2rmi(s?)
all tollow easily from their Jdefinitions.

6.5__Fourth Stage of Development
This is the last stage to be considersd in detail. It shous

how the BODY3 task of the last section can be brokean into
operations which locate high (low) =lements, with raspect to

r, trom the bottom (top) and finally an operation which exchanges
the located elements providing the task is as y2t incomplete.

i) BODY3 = FINDHI;FINDLO;SWOP
ii) FINDHI::SZ
iii) pre-HIKFINDHI>post-HI

iv) pre-HI (st) = (3x) (itsxsSn! A ~Al[x] < ri)

T i s s i

S e GRS S S S D S S W D D W M W S WS WIS D A W N A S e e S e e S A w S i e G A SRS S A e W WD SO N W

v) post-HI {st ,s52) =
(Az'fz'NZ'mz’nz'rz,jZ)
ilgj2z a
it<x<iz o A2[x] <. r A
~(AZ[iz] < 1)

(Al'f!’Nl'ni'nllrlfjl’ n

vi) FINDLO::S52

vii) pre-LOKFINDLO>post-LO . .

viii) pre-LO (s!) = (3x) (mt<x<jt A ~rl (, Al[x])
ix) post-LO (sl,s2) =

s2 = a(j,j',.st)

where:=- j'<jt A
j<x<it 2 r & Al[x]) A
~(r <. Al[j'))

X) SWOP:: 82
xi) T<SWOP>post-SWOP
xii) post-SWOP (st ,s2) =
jl(il 2 g2 = gt
ilgjl 2 ((t2,N2¢,m2,n2,re) = (f1,N!,mi,nt,rl) A

x#il A x#j1 > AZ{x]=Al[x] A
A2[it] = A1[3J1] A

A2[§1] = AL[it] A

{(i2,j2) = (it+l,j1-1)

In order to show (under the above assumptions) that the
combination given in i fulfills the raquirements on BODY3
(cf 6.4 (vii)) it is necessary to prova:-

1. pre-BODY3<FINDHI;FINDLO; SWOP>post~BODY3

Now tor U.2.1(iii), 4.2.1(iv):~-

24 pre-=BODY3 (s!) > pre=-HI(sl)

3. pre-BODY3 (st) A post-HI(s!,s2) » pre-LO(s?2)

are both immediate from 6.4 (viii), 6.4 (xi) and iv, viii.

4. pre-BODY3 (s!) A post-HI(s!,s?) A post-LO(s2,s53) > T
is vacuously true.

Consider for 4.2.1(v):-
5 pre~-BODYJ (s?') A post-HI(s!,s2) A post-LO(s2,s83) A
post-SWOP(s3,54)

From 5 and 6.4 (viii):~-
6. it gyt
Te stoppers (At ,mt,nt, 2 ,nt,xt)

From 5 and v:-

8. (A2, f2,N2,m2,n2,32) = (Al,f',Nl,mi,nt,j!)
9 irgje

10. itgx<iz > 82[x] <. r A ~(A2[(i2] <. 1)

g S A e M S S R R M W e e e D A E e e e e e G W WD W S e G SIS AND D M M A S A WD G M I TS R e SOS m mm w

e R e e S e S e S S S S A . ME S M A M e e e D M —

T e

From 5 and ix and 8:-

11. (A3,t3,N3,m3,n3,i3) = (At,f1,N!,m?,n?,i?)
12. j3<33

13, J3<x<jl o> r < A3[x] A ~(r < A3I[3I))

Thus trom:-
14. ordered (N3 (it:i3-1) ,{r},A3(J3+L:31))

Now consider the case: -
1i5. j3<4i3

Then 5 and xii give:-
16, s* = g3

Thus 16, 11, 8 give:~
17_ (At’tQ'NQ'mQ'HQ’iQ'jQ) = (Al'fl'Nl'ml'nl'iZ'jJ,

From 10, 13 and 6.1 {(xv):-
18. ordered (A* (it:1¢-1),{r},B%(Jj*+1:31}))

Then 6, 15, 9, 12 give:-
19. progress(it,i*, j*,jt)

Thus, since the last clause is vacuously trus:-
20. pOst-BODY3 (sl,s%) '

In the other case:-
2i. 13<33

5, ¥1i and 11 give:-

22. (E®,N*,m*,n*) = (£1,41 ,m! nt)
23. X#i3 A x#3j3-> A%(x] = Al (x]
24. AM[i3] = A1 3]

25. A*[33] = AL[i3)

26. {i%,3%) = (1i##1,j3%-1)

non

Then 9, 12, 8, 17 with 24-26:-
27. undisturbed (Al ,A%,i1,]j1)

From 17,24,25,26,10,13¢-
28. ordered (A% (it:i¢-1) ,{r},A%(j*+1l:351))

From 9,12,26:-
29. progress(il,i*,j*.j1)

and: -
30 ITCIv A gt

i VS S S S —————————— N e e e e e of

UONRESTRICTED TR.12.117 Paga 45

e ——— S S A S D R S A e M T M T W W T e S W S S —— o S - 5 o oy

Thusi=-
31. post-BODY3 (si,s%)

6.6__Collection of the Algorithm

g

This section collects together the parts of th2 aljorithm sp far
developed. The process is simply on2 of collectiang the
expansions of the non-basic operations into the plac2 they yere
used. (Stractly JOIN, FINDAI and FINDLO sapulld be further
expanded) - Inspection of 6.2(ii) ,6.3(ii) ,6.4{il), 6.5(i),
6.5(V),6.5(ix) ,6.5(x1ii),6.3 (xii) gives:

FIND=
m:=1;
n:=N;
while m#n do

"""" (r:=A[£];
i:=m;
j:=n;

- (gg;;g TA[i] < r 30 iz=i+l;
while r <. A[j] do j:=3-1;
1f i<j then

(w:= A[i];
A[i] := A[]);
A[j] := w3
it=1i+1;
J:=3-1))3
if f<j then n:=j
else if i<t then m:=i
else m:=n:=f)

—___---—--———-o—-—-.———--—..-—-———-.,-_——.-—.—-..-.u--_—.__——_-;_—_————-.n-—.—a.——

_,__-._._.._,..___.,_.._____._,__..,...________-_..________.,__..___.,_,_____.__.___...___.__..__._

7. __EVOLUTION OF DATA

This section resumes the general outlina of Formal Desvelodpament.
begqun in section 5, by considering how taz data 03 which
operations work can also evolve during 2 3evelopment. An exanple
illustrating the idea is given in saction 8.

Consider how abstract data objects might arise. It might well be
possible to give the specification of th2 task to bz performed
{the "what®) using far more abstract objects {(e.g. sets) than
exist in most programming languiges. It would cartainly be 2
mistake to reguire more detail than is nacassary to 3describe the
task since the freedom thus lost might hava 1231 to 1 nore natural
or efficient solution. For any reasonably sized task the
development of the solution (the *“how®) will als> introduce
auxiliary objects which are not part of th2 spacification. It is
frequently the case that the role these objacts ar2 to perform
(B.Te. mappings) 1is far easiar to lescribe than their eventual

machine representation (e.9g. pointers 2tc).

rhe main problem in the construction and subsejuent proofs of
whole algorithms was claimed to be thz lav=2l of dstail raguired.
The idea of bringing in at pach stage of devslopment only those
properties required is of paramount importancs2 in avoidiag this
problem. It is in fact the abstraction 3f data types which
distinguishes "FD" from top-down developma2nt wazrz interfaces are
specified in detail, often too 2arly.

The process then 1is to use 3aS abstrazt a form of the data 3s
possible in order to develop ani justify th2 surrant part 2f the
algorithm. When this has been done the data can be mapped onto a
more detailed structure and the ~orractnass of tais mnapping
proven. This process will be moving towards, and eventually
terminate at, data objects of the machines/lanjyuage to> be used.
In general, the more detailed data represantation will briajg with
it new implementation problems requiring furtazr Jevelopmnent.

A good example of the way in which tnis nethod breaks up the
development is seen in reference 2. Tha task zonsidered 1is 2
table driven parser and the specification is jiven in terms of f{(a
relation defined in terms of) whether rulas of particular f2rus
are members of the set of rules comprising the given gramnare.
The overall algorithm is stated in terms of ‘"stata-sets" which
record the status of all possiblz top-iown p3irsaes. only after
the main operations on state sets have been shdwn to crz2ats sets
4ith the regquired properties, is the problen of mapping these
sets onto lists considered and appropriats jayalopm2at of the
operation made. Having now determined in what way the algorithm
uses the grammar it is possible to ~onsiizr tae =2fficiency of

T .

s e

e e R e A AR D e S M e e S S R M W R A A S A S ————— T, A0 - -

commonly used oOperations in designinjy a mapping for the *set Of
rules" onto data types of PL/I.

The evolution of data types should always 22 from ta2 abstract t>
the more concrete. Thus it is possipbls to think »2f thz mappiay
onto a new data type as the addition of properties. For exanple,
suppose we have a set of elements:

M e B(U)

then mapping this set onto a portion of an array can be thought
ot as adding an addressing mechanism such taat:

{m€1€n A v = Afi]) = v e M

(Votice that without any explicit mantion s2ction 6 has already
used the process of adding components to its state which 1is a
simple form of mapping. The reader will ses below that such a
simple mapping did not require =sxplicit justification.)

The remainder of this section gives th2 Eormal properties
rejquired to prove the correctness of 1 "mippin3i" stage >f Formal
Development. As in section 4 the rules pra2s2nta2d 30 not attampt
to be the most general but are those required £for the planned

example,

Suppose some stage of development uses:

i) opd :: D

ii) pred<dPd>postd

That is:-

1i1) pred(dt) = (3d32) (d1[0oP4 jd2)

iv) pred(d!) ~ di[0OPd]Jd2 > posti(dit,i2)
Then a new operation on a new domain:-

v) OPe :: E

vi) pree<dPe>poste

o3 gl

vii) pree (el) > (3Je2?) (2t{OPe Je2)

viil) pree(et) A el[DOPe]e?2 > poste (el,22)

is an acceptable model of OPd proviiding firstly a mnappiag

relation:-
ix) map : D x E = {T,F}

can be found. It is often the case, and is s> in sa2ction 8
that the relation is total in tha2 dirsction of yieldingy the less

———— - —— - —— i — —— ——— — — ———— — T — - — A —— . ————

e R e S A —— —— — ——— T ————— . ———————— ————————— -~

abstract object:-
x) (de) (map{d.e))

and partial in the other direction:-
Xx1i) mappable(e) = (3d) (map{d,=2))

Secondly, all elements created in the new Jomaia ir2 nappable

back into the old:-
Xil) pred(dt) ~ map(d!,e!) A posta(el,22) > mappable(e?)

Thirdly, any element of the domain of the old fun:ction is mapped
into an element of the domain of the new function:-
Xxiii) pred{d!) ~ map(d!,el) > pree(etl)

Lastly, that under the mapping the same function is conputed:-
xiv) map (di,el) A poste(2t,e?) A map(32,22) > postd(d:,d?)

In order to show that the above propartias arz ajsguata2 t> 2nsur2
that the same function is computed, it must bz provan that:-

1. pred(dt) = (342) (map(dt,=2!') A postza(z2l,22) A nap(dz,=22))
2e pred(dl) A map(d!,e!) A posta2(=2!,22) A map(d2,e2) o
postd (41 ,42)

Assume:-
Ja pred (di)

Then trom x:-
4. {(3e) {(map(dyse)) lettinyg e, be such:-
5. map (dg ,€4)

Then from xiii:-
6. pree (ey) 345

Using vii gives:-
Ta (de2) (ey[OPe Je2) 6

Letting e, be such:-
8. e;[OPe]es

Then from viii:-
9. poste (eg,€3) 6,8

and trom xii:-
10. mappable(e;) T

50 from xi:-
11. (342) (map (d2,e2)) 10

R o o o W I 0 00 TR ML UR e T R A S A S — ———— —— o — W - —— T T

Theretftore: -
12. (3d2) (map(di,ey) A poste(e;,2;) A map(d2,a,))

4,7,11
and letting d, be an instance in 11:-
13. map(das,es)
Finally from xiv:-
l4. postd(ds,ds) 5,9,13

Ihe above discussion is confined to singla oparatisas and iuplies
a need tor input/output functions to perform ta2 mappinys. It is
often the case that at some point in a davalopmant there are a
number of operations working on the same stata and they ‘are alil
t> be mapped onto the same new state. In this casz it should be
clear that, providing they ar2 combina2d in 2 prop2r way, the
combination of the mapped op2rations avaids all of ths
intermediate mappings to and from the old domain.

e e T p——

--..-.——_—-._——.-..--..._——---.-——.__.._———..——-..———-——-—_—--—*———-————q——-,———q._-—

8. . _EXBMPLE_OF_DATA EVALUATION

A e e s e . i e o o,

The development shown in section 6 us23, basizally, tha same data
Structure throughout. This section illustrates tha2 process
described in section 7 by reconsidering the sane example.
Unfortunately the FIND algorithm is so closz2ly linked to arrays
that it is far from ideal for tha purpos2s and the reader is
asked to consider the method rather than the 2xamplea,

The first Step is to restate the specificatisn in terms of sets
ln section 8.1. The development stage givan in saztion 8.2 1is
included for completeness anij comparison with section 6.2, the
main interest is in the mapping stage givan in section 8.3,

821__Specification

—

The state of the_required program will be:-

i) T = (<L : is-U-set>,
<M : is-U-set>,
<H : is-U-set,
<F : is-intD)

That is the "lown, "medium"® ang "high" stata =ompona2nts are each
capable of holding finite sets of U (th2 jiven) 2lamants,

Then the propertieg required of:-

1i) FIND :: T
are:-
iii) pre<FIND>post

#here the assumptions about the input stats ara:-
iv) pre(t) = card(M) 2 1 a

1 < p < card (M)
The ftunction card yields the number of elamants of a1 sat,

Given such states, the three sets shoull zontain ia tha sutput
state a split of the elements in tha M componznt J2f tha input
state such that p-1 elements are in L, one 2lement in M and tha

rest in H:

v) post(tt,t2) = ordered-Split(Ml,LZ,MZ,HZj n
card(L2) = F1-1 a
card (M2) = 1

ordered-split etc are as in 6.1 (xii) to 6.1(xv).

irst_Stage of Development

As 1n section 6.2, the first step is t0 s10w how the reguired
task can be accomplished by using an operation, which breaks oaff
high and low elements, in an initialised whils loop.

i) FIND = L:=¢; H:=¢; while card (M) #1 312 BODYS
The requirements on the initialisation ara:-

11i) (L:=¢; H:=¢%) :: T

i1i) T<L:=¢; H:=¢>post-INITS

iv) post-INITS (t!,t2) = t2 = a(H,%,a(L,%,t1))
The requirements on the body arz2:-

V) BODYS:: T

vi) pre-BODYS<BODYS>post-BODYS

vil) pre-BODYS (t1) =

intermed (F1 ,card (L) ,card (Ml)) A
card (M1)>1 A
pdis (L1 ,M! ,H1)

viii) post-BODYS (et ,t2) =
intermed (F2,card (L2) ,card(M2)) A
Fg = [l A
(L2 ,M2,H2) = (Llyl,m,Hluyn) A

ordered-split (Mt ,1,m,h) A
l<card (m) <card(M!)

Wwhere:-
1x) intermed (F,lel,mel) =
lel<F<lel+mel

To prove the correctness of i, define:-

X) pre-LOOPS (t1) = intermed (F1l,cari(L?) ,card (M1)) A
card (M1) 21 A
pdis (Lt ,M} ,Hi)

xi) post-LOOPS (t!,t2) = F2 = F1 A ,
orderad-split (M!,L2,6M2,H?2)
Xx1i) termS (t') = card(M!) -1

Fhe proot of (cf 8.1 (iii)):-
Ly pre<L:=%; H:=¢; while card M#¢1 3o RODYS>post
can be given according to section 4,.,2.2 as follows:-

For 4.2.2(vi) tirst part:-
24 pre(t!) A post-INITS(tl,t2) > pra2-LOOPS (t2)
is, given that card(¢®) = 0, immadiate from 8.1(iv),iv,x.

For 4.2.2(vi) second part:-
3. pre(t!) A post-INITS(t!,tZ) > post-LOOPS(t2,t2)
is seen to be vacuously true from iv, xi.

——— s e RS e e D A D A G M S e S M M ——— A — o — - 7— G - -

For #4.2.2(vii):z:-

g, .

pre-LOOPS (tl) A card{M!)#1 > pra2-BODYS (t1)

is immediate from x, vii.

For #4.2.2{viii):-
pre-BODYS (t1) A post-BODYS(tl1,t2) o pra2-LOOPS(t2)
follows from vii, viii, x and a lemma on order2i-split.

5-

For 4.2.2(ix) consider:-

zard (M3)

6. post-LOOPS (tt ,t?2) A post-BODYS(t2,t3)
UOsing xi:-

7. F2 = 1

8. OrdEIEG"Split (M" ;Lz 'Mz ;Hz)

and using viii:-

9. F3 = Fe

10. (L3,M3,H3) = (L2yl,m,AZyh)

11. ordered-split(M2,1,m,h)

Thus from 7,9:-

i2. F3 = F1

By a lemma an ordered-split, 8, 10, 11, giva:-
13. ordered-split(M! ,L3,M3,H3)

Observing xi, 12 and 13 give:-

14. post-LOJPS(tt?,t3)

For 4.2.2{(x) consider:-

15. post-INITS({t!,t2) A post-LOOPS(t2,t3) A pr2-LOOP5 (t3)
Using iv:-

16. MZ2=M1 A [F2=Pp1

Using xi:-

17. F3=F2

18. ordered-split(M2,L3,M3,H3)

Using x and ix:-

19. card(L3)<F3<card(L3) + carid(M3)

Since card(M3)=1 (see 13):-

20. card(L3) = F3-1

From 17, 16:-

21. card(L3) = F1-}

A

D S D S 0 R W W e o e e e e o D M A W — i — - — e i ol

1

—.-—-.--—-——_—-....——-----——-—.q——.-——-—---p.--.-.--————.-—.-._.———————-—.m-—-——_—-—.—-.-_-_

From 18, 16:-
22. ordered-split (Mt ,L3,M3,H3)

Observing 8.1 (v),22,21 and 15 give:-
23. post(ti,t3)

For 4.2.2(x3):~ Pl
Z4. pre-LOJPS(t!') o term3(tt) 20
is immediate trom x, xii.

For 4.2.2(xii):-
25. termS(tl) = 0 = ~(card (M) #1)
15 1mmediate trom xii.

For 4.2.2 (xiii):z:-
26, post-BODYS(t).,t2) = termS(t2) <t=2rms5(tt)
is immediate from xii,viii.

The purpose of this stage is to map tae oparatiosns of section
8.2, which work on state T, to operations wniza work on state s1
(see section 6.2). 0Of the three opazrations us231 ia 8.2(i) the
initialisation is omitted - becausz of tna2 spa2zial problens,
considered i1n section 9, of input routines.

The relation:-

i) map: TxS1 = {T,F}

is used to detine the mapping:-

ii) map(t,s) = 6§(A,l,m-1) A §(A,m,n) A §(A,n+1,N) A
(L,M,H) = (A(l:m-1) ,A(m:n) ,A(a+1:N)) A
F=f

Ahere the requirement that an array segment has no duplicates
s B
1i1) S (A,x,y) = xSi,3Sy A i#j = A[i] # Alj)

Considering section 7, notice that for ZIx)e—

1. (3s) (map(t,s))

is true since m can be set to card(L)+1

1s true since n can be set to card (L) +card (M)

is true since N can be set to card (L) +card (M) +card (H)
and A can be set up without duplicates in tnz s2ctions.

For 7(xi):-
Z. 6 (A,1,m~1) A 5(A,myn) A §(A,n+l,N) o {dt) (map(t.s))
15 true since it simply defines L,M ani H.

N S D A SR e S S S T e e S S R o o e o o Ty o o oy oy o ey

UNRESTRICTED TR: L2117 Pags S4

- - - - (. o o T (o S S S Y " T o

Now the operation:-
<card (M) #1>

Can be modelled by:-
iv) <m#n>

Since the original was a total predicat2 Tausiny np state
changes, 7 (xii) and 7 (xiii) are irr=2lavant.

For 7 (xiv):-
3. map (tt,st) > (card(Ml)#£1 = ml#n})
which is immediate from ii.

Now the operation:-
pre-BODYS<BODYS>post-BODYS

can be modelled by:-

V) pre-BODY<CBODY>post-BODY

vi) pre-BODY (s1) = mi<ifi<pnl &
mi#nl A

TR £ R 6 (A1,1,N1)

vii) 'post-BODY(st,s?) = m2<f2<nz A

(£2,N2) = (E1,N1) A
undisturbed (At ,A2,mt,nl) A
orderej-split (At(ml:nd) ,A2{ni;:n?-1),
A% (m2:n?) ,A2 (n2+¢1:n1)) A
progress(mt,m2,n2,nl) A
8§(h2,1,N2)
which is proven as follows.

For J(x1i):-
4, post-BODY (st,s2) = §(AZ2,1,N2)
is immediate from vii and sufficient from 2.

For 7 (xiii) consider:-
5. pre-BODYS (t1) A map(tl,s?)

Using 8.2(vii), 8.2 (ix):-

b. card(L}) <Fl<card(L1) +card (M!)
7. card(M!) >1

8. pdis (Lt , M1, Ht)

Using ii:-

9. 5(At,l,mt-1) A §(Al,mi,nt) A 5(Al,nl+l,N?)

10. (Al (L:ml-1) ,Al (m!:nl) Al (nt+1:Nt)) = (L1,M1, H1)
11. fr=F1

From 8, 10, 3=
12. 6 (Ar,1,N1)

s ——— A — T ——— T — T ——— T —— — i —— — T — — -

- ———— - A — ——— —— — T —— — - ——

From 9,6,10,11:-
13. mi<tint

From 7,9,10:~
14, mié#nt

dbserving vi, 13, 14 and 12 giva:-
15. pre-BODY (s1)

For 7{(xiv) consider:-
16. map(tl,s!) A post-BODY(st,s2) A map(t2,s?)

Using ii:-
17. (A (1:m1-1),A! (mt:nl) Al (nt+1:N1)) = (L!,M1,H1)
18. FrFi=f1

Using vii:-

19. m2<t2<n?

20, (f2,N2) = (f1,Nt)

21, undisturbed (A! ,A2 ,m! ,nl)

22. ordered-split(At(mi:n!) , A2 (ml:m2-1) ,A2 (m2:n2) ,A2(n2+¢]1:01))
23. progreass(m!,m2,n2,nt)

Again using ii:-
24, (L2,M2,H2) = (A2 (l:m2-1),A2(m2:n2) ,A2(n2;:N2))
2b. F2=te2

From 24, 19, 25 and B.2(ix):-
26. intermed (F2,card (L2) ,card (M2))

From 25, 20, 18:-
27. Fe=[t

Let:-
28. (Lymeh) = (A2 (mi:m2-1),A%2 (m2:n2) ,A2(n2+1:0n1))

29. (Lz,M2,H2) = (Llyl,m,H!yh)

and 17, 22, 28 give:-
30. ordered-split{M!,l,m,h)

and 19, 28 give:-~
31. 1Z£card{(m)

and 23, 28, 17 give:-
32. card(m)<card (M1)

e

._-.--.—--.-:.—-.-.-..—--—-—-_-..—.---—

UNRESTRICTED TR.12.117 Pags 54 |

-—h‘--‘—-—-hﬁﬁ-._-—-—ﬁq.qo—-_ﬁ" -——-—-qq.-u.--”--g--,-p

abserving B.Z(Viii) 26, 27, 29, 30, 31, 33 Jiva:-
33n pOSt'BDDYS (t‘!’ tzj

This Concludes the Proof of the o-
Notice the similarity between the Conlitiong N

=2 {ix) : in fact the additional Proparty ,¢ not jene,]
duplicateg 1s, of course, trya of tne 3lgorithny developeq in
Section ¢, Thus the develoment Via satg Nas peap .
Stage Where j¢ could bpe Completeqg Using arrays,

It js Worth stressing that thig is not a3 Jood 2xample 2f the
pPotentjal advantages of Using Abstrapt data typss - a better
example could pe Createg by rewriting referanza > in tha A2tation
of the Current Paper,

e i

q-—__._—-----—__‘.-”—-———--—.--p—-—_—-...—__———qln.-...u—_————q--—-—-.-——-——--.q..--.----

T o N o = e o o T N ot e e o o o . sy Vo Al e W e S, S — i ~dor "

The paper has so far discussed only soms isolated Jetails of
programming languages. It is beyoni the scop2 of tha current
paper to give a formal model fpr ths whol2 of avea a very simple
language. The aim of this section is tp indicate that tha
material ot section 4 can be extended to zovar more complicated
programming constructs and to spggest what form the extension
might take. The material that follows is taus rather skatchy.

Section 3 contained a way of Jividing progyrammniny constructs:

a) Those which change values in stors ar2 discuss2d ia section
9.3.

b) Those which change the structure of stor2 are discussed in
section 9.4.

c) Those which serve to combine construzts arz discussed in

section 9.2.

2n_the_ Formal System

Before considering how to extenld ths systamn in the indicated
areas it is worth explaining the reason b=2nini choosiagj the style
ased to present those rules given so far in s2ction 4.

As an alternative to the rules of section 4,2.1 it wpuld have
been possible to, for example, identify "pre" with Yore-17 and to
use general rules like:

Given:
pre<{dP>post
strong-pre(st) > pre(sl)
post(el,02) > weak-post(ol,s?)

Then it is valid to conclude:-
strong-pre<OP>post

and: - _
pre<dP>weak-post

This 1idea 1is in fact used in some of th2 proots bas2d 21 ref 6.
'he choice against it here has been 1elida2rate because the
combination rules of section 4 appsar to Fit better with their
use in formal develppment: this direction would be followed in
any future extensions.

Combination_Constructs

32

——-_-..—.—q.—-o-——q..——-....a—»—.-.-..—.—q.--q.-—q_——-——.-_m--—-_

---4--—-——4--_-..- - —\——----—ﬂ—u—--,d-'-

This section considers matters relating ¢o Projramminy Constructs

2=2=1‘____£gegszgugag;-

The overai} Specification of a3 tagk Will oftep b2 that ¢ a
function: j¢ Must accept arguments anj projuca 3p apprapriate
result rather than cause SOme change ¢go A state. of Caurse, the
task may reag the arguments into its own Storaya, manipualate that
State, thep output a result. The necessity oy input/output can
also-arise, 4s has beep mentioned, . wvhera , mapping Stage of
development is used.

The approach to input/output is illustrateq by Jiving the types
only of the firse stage of dEVEIOpment from a definition tor FIND

of say:
FIND: B{U) xI - g (U) xB(U) xB (uy

Then given 7 as in sectjon 8.2 the Stage nighe uses -
IN::T:ﬁ(U)xI»Q
FINDB::T
OUT::T:¢-g () xB (U) xB (v)

2;2;2_____§1Q§:*§§§£E§_iﬂ_££§§igi_ﬂ§

The introduction of functijion referansag dorings with it the
possibility of side—effects. It js 2asy to 2xtead the
Conditiona} rules (cf sectjon 3.2.2) to Sovar this:

o [Ple?,Ta01] jf then OPL else op23,s = 92[OP1]a3 ete.

—

2:2;1___-_£*QQ§_Q£§§'

The extendeq Operation of Section 3.3 an indicate the types
of procedure calls:-

PROC-CALL::[:A*Q

Or function references: -
FN-REF::[:A*D -

The concept of Statements Appointing th2ir oSwn Successorsg fits
least haturally into the propose3 System. Opa ipproach woulg be

. ot T e =

td add an abnormal return compona2nt to th2 statz (cf. rof 12)
which would be tested by the composition rule.

2.5 Parallelism

Bekic has pointed out in ref 5 that tn2 effect of sarallel
combination of two operations cannot b2 da2ta2rminei solely fron
their input/output relations. The approaca tak2n there is to
have enough information to determine the effact of arbitrary
combination. Any attempt to extend the currant system would be
made by disciplining co-operation by giviny axtra predicates
which all intermediate states must satisfy,

9.3__Operations_Changing Values

The need ftor rules to deducs propertiss about thosa coastructs
which change the values in states has bean largely side-stepped
above although it is this property which characterisas
Dperations. The main reason has baan the enphasis on
decomposition of problems in formal dz2vzlopmant,

T'he obvious example of a statement of this sort is assignment,
In a language with no sharing (e.g. by nam2 arjument passing) or
tunction references, the property might ba:

predve=e>post
pre(el) = (4val) (val = b(a,0l))
post{el ,02) = g2 = a(v,¥(2,0!),01)

Function reterences and their Ability to caus2 side-effects could
be handled with an expansion of ¥ providing th2 order of
expression evaluation is defined. If tn2 order of sxprassioan
evaluation is not defined by the 1lanyuag2, thz axtension is
complicated by non-determinism. '

Input statements would also be in this class.

2:4__Operations_which change Stata Structura

S v e e i e e . e, S i S22

Programming languages have blocks ani procedurzs whizh cause new
sStates to be defined. 1In fact it is prazcisa2ly the Jeclarations
which define the states.

To indicate how this problem could be approached, consider a
language in which blocks introduce a single local wvariable.
Suppose the context in which ths block is to be used is given

by:

(begin var v; OP end)::r .

q._-.-———..-.——-—-...-————..*-.,--—-._._--.——4.--————-_——..---...._—————.—.—.-———————.—_—

Then:
OP::1 extended by v

and using "?" as the uninitialisei valuos:-
a(vy2,0t)[OP Je?
@ ot[begin var v; OP 2nija(v,c(v,e!),q?)

Procedures could be approached in a similar way but allacate
would be more difficult because of tha ne23 t> nandle pointers,

—-...—-._—._1—_-——____——-———-....-—---——-.-.——-._-—-.—-—-—

_.__-.__--.-.__-——--—-—_q..-—-—-.—_—.-....-———.————-_—_——_————.-—

s s . o . s .

R

——— e — . o

1.

10.

11.

12.

13.

1y,

J McCarthy “A Formal Description of a subsat >f ALGOL"™ in
"Formal Language Description Lanyuagas® (2d. T B Steel)
1964 Baden Conference Proceedings.

C B Jones "Formal Developmant. of Corrast Algsritans s An
Example Based on Earley's Recogniser"” in SIGPLAN NOTICES V>l

7T No 1, January 1972

P Lucas and K Walk "On the Formil Da2scription >f PL/IW
Annual Review 1in Automatic Programmingy Vol 6 Part 3 1969,

J W de Bakker and D Scott "aA Thzory of Prograns". Notes on
a seminar at IBM Laboratory Vianna Aujust 1969.

H Bekic "Towards a Mathemati-al In2ory of Procasses® IBM
Laboratory Vienna report TR 12.125, Dacza2mbar 1371

C A R Hoare "The Axiomatic Basis for Computar Programming®
in CACM Dctober 1969,

C A R Hoare "Proof of a Program: FIND" in CACM Jaauary 1971

R W Floyd ®“Assigning Meaninys to Prograns" ian Proc.
Symposium in Applied Mathematics. "Matnamatical Aspacts of
Computer Science" AMS, 1967.

E W Cijkstra "Notes on Structur2d Projyramniay"™ EWD 249,
August 1969.

N Wirth "Program Developmant by Stapwis2 Rafinsme2at™ in CACM

April 1971.

E W Dijkstra "A Short Introiuction 5 tha Art ok
Programming®™ EWD 316 August 1971

C D AaAllen, D N Zhapman, C B Jon=2s "“A Formal D2finition of
Algol 60" IBM Laboratory Hurslay raport TR 12.105, August

1972,

M Foley and C A R Hfoare "pProof of a Recursive Program:

wuicksort" in J November 1971,

S C Kleene "Mathematical Logic™ John Wilay & Soas 1967.

	TR12.117a
	TR12.117b

