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ABSTRACT

Formal Development is a method of going from
a formal specification of a task to an
algorithm which {correctly) performs that
task. The method is illustrated in this
paper on Hoare's sorting algorithm (FIND).
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INTRODUCTION

Programs have been, and still are, first written completely and
then tested by running testcases, i.e. examining executions each
using some specific data of a typbe for which the program
specification requires certain results, This process suffers
from the fundamental limitation that, as programs become more
complex, the classes of data on which they are required to act in
specific ways become very large, and often potentially infinite.
Since only a limited number of testcases can be run, this form of
testing is wultimately inadequate +to guarantee an error-free
product. This has been the situation for some time now.

Recent developments in formal studies of programs and programming
languages have offered the possibility of proving programs
correct in the same kind of way that theorems of mathematics are
proved true. The advantage of such techniques is that the formal
theory used can be sufficiently general, as in mathematics, to
cover an infinite number of cases in a single proof, thus
overcoming the limitation above. However, this method has its
own limitations, both in theory and in practice. The main one 1is
that while a correct program can be proved correct, an incorrect
program is difficult to prove incorrect except by construction of
a counter-example - 1i.e. a suitable testcase. {(This remark
applies with particular force to attempts to make the proving
process automatic.) Even if the proofs are constructed manually,
difficulty in producing one does not generally indicate the
nature of an error in the program. Additionally, the attempt to
construct a proof for a completed program can make little use of
the analysis of the problem and possible solutions that went into
the design of the particular program - even where this is still
available - since the ©problem statement and analysis was not
originally in- form with the data types and operations actually
used.

Consideration of these points - and the continuing demand for
more complete and informative documentation of program design -
leads to the idea that the design process itself should make use
of the formal techniques now available. Also that using these
techniques the process should be made more systematic. The
adequacy of a method of solution for the given problem should be
verified as a first step of the design, and the correctness of
each subsequent step should also be checked. From such a process
should emerge not only a guaranteed correct program, but also a
formal proof of its correctness, and a complete description and
justification of each design decision.

Several proposals for particular techniques of program design
have been described in the recent literature (refs 1,3,6). This
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paper, together with ref 4. adds another, based on the ideas
above which are similar tc those underlying other proposals.
There are undoubtedly many possibilities, and much more
development needs to be done on all of them (including the
present one) before specific design rules can be laid down. The
present paper is therefore intended as a contribution to the
discussion and evaluation of these possibilities.

so far, the extremes of the range of possibilities seem tO be
represented in the papers of Dijkstra (ref 1) and Waldinger (ref
6) . Dijkstra proposes step by step development of the programs,
each step being small enough to be comprehended as a whole and
reliably judged correct. (A later paper of Dijkstra, ref 2, does
however include proofs at each step of development.,) Waldinger,
on the other hand, shows that a constructive proof of a suitable
existence theorem can be systematically translated into a correct
programe. The example of Hoare (ref 3) lies between these two
extremes - perhaps closer to Dijkstra in that algorithms are used
early in the process. The present example also lies between the
extremes - perhaps closer to Waldinger, in that actual algorithms
and data representations appear later than in ref 3, while proofs
appear immediately.

The problem dealt with here is that of ref 3. This choice was
deliberate, to facilitate comparative evaluation (but note that
in the present paper the proofs are given in full, and cover all
aspects of the problem - including the fact that the final set 1is
a rearrangement of the original) . For the same reason, the final
program aimed at is the program of ref 3, (although that actually
reached is slightly different).
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1 Notation

In this section we introduce the notation to be used throughout.
It includes notation used in the problem specification, given in
the next section.

A set of objects U is given, whose members are a,b,C,... .
Subsets of U are denoted by V,W,X,... and we use:

VuW the union of V and W

a eV a is a member of V

Jal the empty set

1V the number of members of V
{ajp(a)} the set of elements satisfying p
I the set of integers

B (U) the set of subsets of U

with their usual meaning.
A total ordering relation £. between members of U is given :-
<.: UX U= {T,F}

- where T and F are truth values. (This notation means that £.
is an operation taking two arguments, each from the set U, and
giving a result from the set {T,F}, i.e. a truth value.) The
relation 1is a total ordering, i.e. 1t has the following

properties;

s [ a<.b v b<.a

Za a<.b & bf.c =2 asg.c
Y as.a

We also use a strict order relation <. between members of U,
defined as follows:

<.: UXU0O~-{T,F}
4, a<.b = ag.b & ~(bks.3a)

We also use the notation of formal logic; sprecifically:-

and

or

implies

not

equivalence

existential quantifier

( (3x) (p{x)) meaning "there exists an x
such that p(x) is true".)
(o deducibility -
( exp, + exp, meaning that exp, is deducible

from exp; under the normal rules of
logical deduction.)

w3 U < po
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In writing assumptions on functions, we use the form:-
p(X) & X'=F(X) > exor

This 1is taken to include the existence of a value of F(X) under
the conditions p(X), i.e.:
p(X) =2 (3X') (X' = F(X))
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s Specification

For the approach used here, which uses formal proofs from the
very beginning, a completely formal statement of the problem is
essential. Preparation of such a specification is itself a
useful informative exer<is~; in particulir I+ enuureg Yroth a
- tgpon 3h  onderstacdins 9 kv L8 Feauir-l, &nd 4 ¥eglisation of
#hat is not essential. The tormal specification, while being
complete, should not include suggestions of a method of solution
- these belong to a later stage, since they require
justification, w'.?le the problem specification ic accepted just
as it is. What .: retuired i: sufficient information for a
solution of the problem to be recognised as adequate when it is
found. (Equivalence to a certain algorithm gives this, but
generally in much too strong a form, making the proofs
unnecessarily difficult.)

Informally, the problem 1is to arrange the set V in some order
such that the element in position f is the element which Dbelongs
in this position under the order <., and the elements below it
are less than or equal to it and the elements above it are
greater than or equal to it. If we denote this element by V[£f],
we must put the f-1 elements that are less than or equal to it
below V(f], and the remaining elements above it. Wwe are given
that the initial set V is nct empty, nor infinite, and that the
number f we are given is a positive integer not greater than the
number of elements in V.

Formally, the problem is to develop a projram FIND, such that:-
FIND: B(U) X I - B(U)3

and has the prooverties:-
L a(V,f) + w(V,£,FIND (V,E))

where:-

2. a(V,f) =
1V
V]
1 <

i.e. V is finite

Hh IV m

I &
1 &
£ 1V
3. w(V,£,V1,Va,Va) =
pdis(V,,Va,V3) &
‘J1UV2UV3 =V &
Vo =f-1 & [Va[=1 &

4. pdis (X4,X2s--¢%n) = dis(¥Xy,Xz) & dis(¥X,,Xs) & dis (X2,¥%3) & ...

5. dis (V,W) = =(3a) (aeV & aeW)
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The relation <* is defined as:-
*: g(U) X B(U) - {T,F}

such that:-
6. V*¥W = (aeV & beW o a<.b)

We have the following two lemmas on pdis:-
7. pdls (Vi,Vz,V_—_.,) & Vz = X;UX5UX6 & pdiS(X4,X5,X6} 2
pdis (V_‘.L:X4 J‘XS lXG IV3)

8. pdiS(Vl,X.,Xs,Xé,Va) > pdis(ViuXe,Xs,XeuV3) &
PAis (Vi ,Xs ,X50XeuV3) & pdis(V,uX4uXs,Xe,Va)

These follow simply from the definition of rdis.
Note that the specification does not exclude pairs of elements
that are "equal" under the ordering, i.e. elements v, and v, such
that:
VaSeVy & VL.V,
However suéh elements are not regarded as identical, i.e.
vy # Vy,
and they are distinct elements in the set V.
We shall use V and f throughout to denote the given data, hence

we always have «(V,f). Where use is made of this fact, we quote
2.2 as the appropriate reference.
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3. Formal Development

The above problem specification meets the requirements noted in
Section 2, and the first requirement of formal development -
namely that we should start at the most abstract level. oOur
initial stage of development will remain at this abstract level,
and so will its formal justification. This enables the proof to
use powerful, general, theorems of set theory and ordering
relations directly, without translating them into theorems
concerning other data types and relations. (In the example we do
not introduce arrays at this point; the correspondence between
integer subscripts and elements which they provide 1is not an
essential part of the problem, but a part of the method of
solution to be developed).

Starting from this most abstract form of the problem, we add
details of the proposed method of solution stage by stage. Some
stages will consist of mapping the data into more practical data-
types, e.g. sets into one-dimensional arrays. Some may replace
properties defining data by algorithms producing data having such
properties. Some may replace operations having certain
properties by other operations or algorithms having these
properties. Each change requires a formal proof that the
entities introduced do have the properties required of those at
the previous stage that they replace. Thus the only proof of the
overall correctness required is the first; successive stages
then only involve proofs of theorems concerning the entities
introduced at that stage, whose specification is drawn from the
previous stage. In this way all proofs are kept as simple as
possible, using concepts and results appropriate to the current
step in development. Ultimately we aim to produce an algorithm
which, given data with the properties stated in the problem
specification, produces data having all the properties required
of the result, The formal verification of each stage of the
development then guarantees the correctness of the algorithm.

Experience indicates that at each stage, the minimum of
additional constraints, in the form of specialized data types,
operations or algorithms should be imposed (compare Dijkstra, ref
1) . This has the merits of keeping the proofs simple, enabling
the consequences of each particular decision to be assessed in
isolation, and allowing as much freedom of choice as possible for
later decisions.

stage 1
The direction of development is towards an iterative process, in

which three sets are initialized to (#,V,d) and then iteratively
recomputed so as to reduce the middle set, preserving the order
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relations on the contents of the three sets and keeping V[f] in
the middle set. We shall therefore require a predicate on three
sets, such that when the middle set becomes a unit set it will
ensure that we have a solution. 1In this section, we show that B4
is such a predicate. (In subsegquent sections we shall show that
it is satisfied by (g,V,#8), and put a requirement on the function
which recomputes the sets that it preserwves the +truth of this
predicate.)

Assumptions

Suppose a function F1 can be found such that:-
Fl1 : B(U) XTI - B(U)3
1. a(V,£f) & (Ve,V2,Va)=F1(V,f) +
Ba(V,£,V4,V2,V3) & [Va]=1

where:-

2, 51(V:f:V1rV21V3) =
pdis (V4,V2,Va) &
V1UV2UV3 =V &
IVa] < £ 2 [Va]+]Va] &
V, <* V, <% Vs,

Assertion

3. FIND(V,f) = F1(V,f)
satisfies 2.1.

Justification

The assertion follows from:-
4, a(V,f) F w(V,£,F1(V,£))

Proof
5. oV, £) Hyp

Writing:-
6. (Va,V2,V3) = F1(V,£)

then:-

7. Ba (V,£,V1,V2,V3) & |V2]=1 5,6,1

8. pdiS(vl,Vz,Va) 7,2

9. Vluv;!UVa =V 7,2

10, |Vs] < £ € |Vy|+IVa] 7,2

11. V4] = £-1 10,7

12. Vi =% Wy oF Vs 7,2

13. o (V,£,Vs,Va,Va) 2.3,8,9,11,7,12
14, w(V,£,F1(V,.5)) 13,6
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This stage has merely changed the specifications of the overall
function to a form more in keeping with the developments
envisaged. The Jjustification consists of showing that the new
specification is at least as strong as the original.
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4, Stage 2

In this stage we specify the initialisation of the three sets
mentioned in section 3, and the overall requirements on the
iteration. The initialisation function is F2,, and the function
computed by the complete sequence of iterations is F25.

Assumptions

suppose functions can be found, such that:-
F2gy 2 pqu) =~ Bp(W)=°
; I F2, (V) = (Z,V.9)

F2;, : p(U)3 X I - B(U)?3
2. a(V,£) & Bs (V,£,V4,V2,V3) & |V2]21 &
(Vlcvitvé) = F22(V1:V2:V3:f) b=
By (V,£,V4,VE,VY) & [V3I=1

Assertion

3., F1(V,f) = F25(F2, (V),f)
satisfies 3.1.

Justification

The assertion follows from:-
4. a(V,£) & (V1,V4,V3) = F2,(F2,(V).,f) F
By (V,£,V1,VL,V8) & |Vi] =1

Proof

S a(V, f) Hyp

6. (V1,VE,V8) = F23(F2, (V) ,£) Eyp
The empty set is disjoint from any set thus:-

7. pdis(g,V.9) Fe5: 2.0
8. puVug =

9. 121 =0

10. 0 < £ £ |V] 5,2.2
11. 18] < £ < 181+1VI 9,10
12. @ <* V <*x g 2.6

13. ﬁi(V:f-ﬁquﬂ} 3-2,7,8,11,12
1. 1vp 21 S5 282

Using 2 with (&,V,#®) substituted for (V4,Va,V3):-
15. PB4 (V,£,V1,V8,V4) & V4] =1 5,13,14,6,1

The djustification consists of showing that B, is true of the
initialised sets, and therefore since its truth is preserved by
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the iteration which also guarantees the extra condition |Va] = 1,
then the overall scheme satisfies the specification of F1 of the
previous stage.
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S5e Stage 3

In this stage we develop the body of the iterated part of the
algorithm, and the way in which the iteration is to be controlled
so as to achieve a computation of F2, of the previous stage. We
use a recursive definition of a function (F3,) for the latter
purpose as a convenient notation at this point. This does not
imply a commitment to use recursion in the final program; the
choice of methods to implement the iteration is still open, and
will depend on the facilities available in the programming
language.

Assumpt;ogs

Suppose functions can be found such that:-
P3 : B(U)3 - {T,F}
1. P3(Vy,V2,V3) = V2] > 1

F3, : p(U)3 X I - B(U)3
2. B (V,£,Vi,Va,Va) & 1V2I>1 & (V1,VE,VY) = F34(Va,Va,Va, )
F By (V,£,V],VE,VY) & O<|VEI<|V,]

F3; : ()3 X I - B(U)3

3. “P3 (Vy,V2,Vs) F F32(Vy,Va,V3,f) = (Vai,V2,V3)
4. P3(Va,V2,V3) F F32(V1,V2,Va,f) = F3,(F34(V1,V2,V3,5),1L)
Assertions

5. F22 (Vy,V2,V3,£f) = F35(Vy,V2,Va, 1)
satisfies 4.2.

Justification

The assertion follows from:-
6. a(v:f) & 51 (vlflvllv2lv3) & Ival 2 1 &
(V1,VL,Va) = F35(Vy,V2,Vs,f) F
By (V,£,V1,V4,VE) & V3] =1

Proof

T a(V, f) Hyp
8. Bs (V,£,V1,V2,Va) Hyp
9. 1Val 21 Hyp
10. (V1,V4,V3) = F33(Vy,V2,Vs,f) ' Eyp
Now proceed by induction on n = |V3]

Basis, assuming:-
11. |Va) =1
12. = P3(Vy,V2,Va) 11,4,
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13. F32(Va,Va,V3,f) = (V1,V2,Va) 3,12
14, (V4,VE,V8) = (Vi,Va,Va) 10,13
15. Ba (V,£,VI,Vi,VE) & [Vi] =1 8,14,11

Now assume that the theorem holds for V,,V,,Vs where
1<V, |<n. Then assuming:-
16. |Va] > 1

T7+ P3(Mi.Va:Vs) 16,1
18. F32 (Vllvatvalf) = F32 (F31(V11V21V3 :f) lf) '4,17
19. (V1,V3,VL) = F3,5(F34(Vy,Va,Vs, 1), 1) 10,18
writing:-

20, (Vy,Vy,vY) = F3,(Vy,V2,V;3,1)

then:-
2. PBa(V,£,VE,VE,VY) & 0<|VY|<|V,] 16,8,20,2
22.  (Vi,V4i,V8) = F35(VY,VY,VY,£) 19,20

The assumption that the theorem holds for sets in which [VY[<n
gives, writing(vy{,VvyY,VvY) for (V,,Va,V3):-

23. By (V,E,Vi,Vi,VE) & |VE] =1 6,7,21,22
Hence by 15 and 23, 6 is true for all |V,].

The Jjustification consists of an inductive proof, over the
recursive structure of F3,, that the truth of B; 1is preserved
down to the point at which |V,] = 1. At this point, by the
definition of F3, the algorithm terminates. Note that the
additional condition on F3,, that |V,] 1is reduced by it,
guarantees termination.
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6. Stage U

In this stage we develop F3, into a construction from two other
functions, F4, and Fu4,, where Fli, breaks up V, into three
subsets, and Fi, recombines these with V, and V5 to obtain new
V:_,Vz,Va satlsfying ﬂil

Assumptions

suppose functions Fl, and F4, can be found, such that:-
Fi, : B(U) = B(0)3
1. V2121 & V4 I<ES|VL1+1V2] & (Xa s X5,Xe) = Fly(V2) F
We (VZJXGJXS +Xe)

F4, : p(U)s XI - B (U3
2. ﬁl(vtflv11v2:v3) & “4(V21X41X51X6) &
(Vi,Vs,Vy) = Fuz(vltx4:X51X61v3:f)
F By (V,E,VL,VE,VE) & 0<|VEI<]IV2]

where:-

S We (VtiQJXSlXB) =
pdis (Xs,Xs,%e) &
XquXsuXg = Va &
(1X4 120 v 1Xs|#0) &
(1Xs1#0 v [Xe [#0) &
(1X41#0 v [Xe 1#0) &
Xe $* Xg <* Xg &
Ty 5% %

(Note. The last term is necessary since Xg can be &, and <* is
not transitive across g.)

Assertion

4. F31(V1-V2:V3:f) = Fﬂz(V,,Fﬂl(Vz),V3,f)
satisfies 5.2.

Justification
The assertion follows from:-
5. ﬂs. (ch;V:.-Vz:Va) & |V2|>1 &
(Vi,V4,Vs) = Fl, (Ve ,Fé4(Va) ,Va,f) F
By (V,£,V1,VE,VE) & O0CIVEI<IV2]
Proof

6. ﬂ:l. (Vl f:VJ.:VZtV:i) Hyp
s 1Va]l > 1 Hyp
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writing:-
8. (Xe s Xs5,Xe) = Fl4 (Va)

then:-

9. (Vi,V4,V3) = Fl,y(Vy,X4,X5,X6sVa,f) Eyp,8
10. Vy4] € £ 2 |V |+1Val 6,3.2
11. we (V2 ,Xa,Xs+%6) 7,8,10,1
12. By (V,£,VL,V5,Vs) & 0<|V3|<|Va] 6,11,9,2

The Jjustification shows that an appropriate combination of FUu,

and F4, has the properties required of F3;. We continue with the
development of Fi,.
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7. Stage 5

In this stage we show that Fi4, can be defined by cases, depending
on which of the three sets X4, Xs, X¢ given by Fh, contains the
f th element. There results an explicit definition, in terms of
operations on sets, of a function F5 that will serve as Fl,.

Assumptions

FS : B(U)S X I - B(U)3

1. (Vllvilvé) = FS(V1:X41X5:X61v3:f) =
[£S1Va1+1Xal 2 (V1,V3,V8) = (V;1,X4,Xs0XeuV3) ] &
[1Vi]1+]Xe 141Xs I<E 2 (V],V4,V8) = (VyuXauXs5,X6,V3) ] &
[1VL 1 +]1Xa I<ESIVy [+ ]1ZX 1*]Xs] 2
(V1,V3,V4) = (VyuX4,Xs5,%XeuV3) )

Assertion

e e e T e

2. FUy (Vy,XeuXs5,%X6,V3,E) = F5 (V4 ,X4+X5,X6+V3,£)
satisfies 6.2.

ustification

The assertion follows from:-
3. B (V,E,V1,V2,V3) & we (Va2,Xa,Xs5,%Xe) &
(Vi,V3,V4) = FS (Vi1 ,Xa,Xs5,X6,V3,f) F
By, (V,£,V1,Vs,VE) & 0 < [VE] < |Val

Proof

4. B (V,£,V1,V2,V3) Hyp
5. “4(V2'x4cX51x6) Eyp
6. (Vlrvi:vé) = FS(V11X4:XSIX61v31f) Hyp
7. pdis (Vy ,V2,V3) 4,3.2
8. VyuVauVz =V 4,3.2
9. Vil < £ £ [Vy1+1Va] 4,3.2
10. V, <* Vy <* Vi 532
11. pdis (X4 ,Xs,Xe) 5,6.3
12. X4UX5I.IX5 = Vz 5,6-3
13. |Xe]#0 v [Xg]#0 5,6.3
14, |Xs]#0 v ]Xe|#0 5,6.3
15. |X41#0 v |Xe]#0 5,6.3
16. X, <* Xg <* X 5,6.3
17. X4 <* Xg 5,6.3
18. Pdis(vilXQIXS:Xalvs) 711 112t2-7
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Consider the three cases of the definition 1 of F5, first:-
19. £ £ |Vil+]1X,1

20.  (V1,V3,VE) = (Vi,Xs,Xs50Xe0V3) 6,19,1

21 pdis [V],Vi,VY) 18,2.8,20

22. V]uViuVy = VyuXauXsuXguVs 20

23. =V 22,12,8

20, (Vi1 € £ £ |1V11+]1VY] 9,20,19

25. Vg =% ¥, 10,12,2.6

26, V§ <*x V3 25,20

27. X4 <* Vj; 10,12,2.6

28. V§ <*x V3 27,20,16,17,2.6
29. B4 (V,E,Vi,.Vi,VY) 21,23,24,26,28,3.2
30, (V4] € £ < [Vil+]Xe] 9,19

31. 0 < X4 30

32, |Xs] <€ 1Va2] 12,14,11

33, 0 < VL] < |Val 31,32,20

which concludes the case. 29,33

The second case:-
34, VL +]|Xs]*]Xs)] < £

is justified in a similar way.

The third case:-
35, |Val+|Xal < £ 2 |Vo[+]Xal+1X5s]

Jé. (Vi,V3,V4) = (ViuXs ,Xs,XguV3) 6,1,35
37. pdis (V],Vi,V3) 18,36,2.8
38, V3iuViuVy = ViuXauX¥suXguVs 36

39. =V 8,12

40. 1Vi] < £ £ [V1]+]|Vi| 35,36,18
u1. V1UXQ <* Xs 10,12, 16
2. Xg <* XguVj 10,12,16
43. Vi <*x VL <*x V4 41,42,36
4y, B, (V,£,Vi,VL,Vy) 37,39,40,43,3.2
us,. 1Xs] > 0 35

4o, 1Xs1 < 1Val 15, 12,11
47. 0 < Vil < 1Val 4s,u6,36
which concludes the case. uy 47

The Jjustification shows that F5 as defined has the properties
required of F4,. Since we now have an explicit definition for F5
in terms of operations on sets, and the remaining functions Fli,
and F3; cannot be further developed in terms of sets, we must now
consider mapping the algorithm as so far developed into data
types which can be used in the programming language. For
convenience we summarise the algorithm as developed in the next
section, postponing the maprping until section 9.
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8. summary_of Development

At this point we summarise the outstanding assumptions about
functions not yet developed, and summarise the current state of
development of the overall function FIND. We also provide an
overall justification, based on the assertions proved in the
preceding sections.

Assumptions

Suppose we have functions:-
1. FIND1 : B(U) X I - B(U)3

2. FIND1 (V,£) = F3, (F24 (V) ,E) 3.,3,4.3,5.5
3. F2,: B(U) - B(U)3
4. F2, (V) = (#.,V.9) 4.1
5. P3 : B(U)3 = {T,F}
6. P3 (Vl,v;,V3) = IV3I>1 5«1
7. F3,: B(U)3 X I - B(U)3
8. ~P3 (Vy,V2,Vs) F F32(Va,V2,Va,f) = (Va,V2,V3) 5.3
9. P3(Vy,V2,Va) F F3a2 (Vi,Va,Va,f) =
F3, (FS (V4 ,Fl4(V2) ,Va,f) ) 5.4,6.4,7.2

10. Fly: p(U) = B(0)3
11.  |VaI>1 & |V4I<E5|Va]+]Va] & (Xe,X5:Xe) = Fla(Va) F
“Q(VZrXGfXSJXG) 6.1

— where ws is defined in 6.3,

12. F5 ¢ p(U)s X I - B(U)3
134 (Vifvilvé) = FS(Vi,X4,X5,X6,V3,f) k=
[£<I1Va1+1Xel = (V1,V3,VY) = (Vi,X4,XsuXeuV3) ] &
[1VL1+I1Xe 1#1%s I<E 2 (V1,V3,V8) = (ViuXeuXs,Xe,V3) ] &
[|V1|+|X‘|<f$|V1}+]X4|+|X51 3
(Vi,V4,V4) = (ViuXasXs,XeuV2) 7.1

Assertion

14, FIND(V,£) = FIND1 (V,I)
satisfies 2.1.

Justification

In justifying this assertion, we can use the assertions of pre-
vious sections provided their assumptions are shown to be met (or
maintained as assumptions in this section).
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Putting:-

15. FlU3 (Vi,X4+%X5,X64Va, £) = F5(Vy,X4,%5,X6,V3,£)

we have:-

16. FlU, (Vy,X4,%X5,%X6,V3,f) satisfies 6.2, Fs 2513
Putting:-

17. F3, (Vi,V2,V53,£f) = Fuz(v1:Fu1(Vz)cV31f)

we have:-

18. F3,(Vy,Va,Va,f) = F5(Vy,Fl,(Va) ,Va,f) 17,15

19. F34 (V4,V2,V53,f) satisfies 5.2. 6.4,11,16
20, P3(Vy,Va,Vs) F F35(Vy,Vy,V;5,f) = F3,(F3,(V4,V2,Va,£),£) 9,18
Putting:-

21. F22 (V1:V21V3tf) = F32 (vilVZtV.’:lrf)

we have:-

22. F25(Vy,V5,V5,f) satisfies 4.2. 5.5,6,9,8, 20
Putting:-

23. F1(V,£f) = F3,(F2,L (V) ,D)

24, = FIND1 (V,£) 23,21,4

we have:-

25. Fl(V,f) satisfies 3.1. 4.,3,u4,22

Finally, putting:-
26. FIND(V,£f) = F1(V,f)
27. = FIND1 (V,f) 26,24

we have:-
28. FIND(V,f) satisfies 2.1. 3.3,25

Since 2.1 is the original specification for the function FIND,
the development so far is correct,
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9. Stage 6

This stage maps the sets of section 8 into a new data type
(available in the programming language) consisting of T"duplicate

freev arrays, and the functions from sets to sets into
corresponding functions from arrays and indices to arrays and
indices. The domain of arrays will be denoted by D:

D: I - U
- i.e. the arrays are basically functions from I to O. Ne have:

1. AeD=> (A= (A[1L,A[2],...,A[IVI])) & 6(A,1,1V])

- i.e. the arrays are indexed from 1 to V], and
6§ : DX 12 - {T,F}
2. 6(A,x,y) = (x £ u,v =y &A[ul=A[v] > u=v)

Various maps from B(U) to D will be used, such that, if X maps
into A(x], A[x+1],...,A[y], then 0 (X,A,x,y), where:
& : B(U) XD X I2 - {T,F}
3. 0 (X,A,x,y) = 1£x & x-1<y & y<|V] & 6(A,x,y) &
X = {A[u]] x<usy}

Note that, under this definition:
4. 9 (X,A,x,y) & 8(Y,A,x,y) 2 X =Y

that 1is, a particular part of an array is a map of the same set
under any of these mappings.

A generalization of 6 is also used:

Ba O((XesX3se0esXn)s (A,XgeXase0ee,%n)) =
e(xiaArXOin) a e(XZ:AJX:L"'ltXa) &
0 (X3,A,%x2+1,%x3) & ... & O(Xn,A,Xn—*+1,Xn))

The mappings used are not completely specified at this point; the
order in which the elements of the set appear in the array may be
different in different situations. The essential fact about the
mappings, included formally in the definition of 6, is that the
array obtained from a set shall have exactly the same elements,
no more, no less, and none duplicated. With this property, it
can be ensured that the requirements on the set arguments and
results of the various functions which guarantee the correctness
of the algorithm are satisfied, since these refer only to the
sets - the order of elements within the arrays is immaterial.

Assumptions

Suppose we have functions:
F6y : B(U) = D (mapping V)
6. A = F6qs (V) F B8 (V,A,1,1V])
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F6, : D= D X I2 (napping F2,)
7. F F64 (A) = (A,1,1V]))

P6 : DX I2 - {T,F} (napping P3)
g + P6(A,m,n) = m<n

F65 : D X I2 - D X I2 (napping FU4,)

9. 0Sm~-1<n<jVvV] & 6(A,m,n) & m<n & m<f<n &
(a',1i',3') = F63(A,m,n) +
7e (A,A',m,n) & §(A',m,n) & we{(A',m,n,i',j")

where:

10. 7ye¢ (A,A',m,n) =
(1<usm=1 v n+lgu<|V] > A'[u] = Afu)]) &
{A'[u]] mSusn } = {Afu]| m<usn}

11, We (Al‘mlnl‘il‘ j) = 7
m-1<j<i-1<n & -~ (i-1<m) & -~ (n<j+1) &
(m<j+1 v i-1<n) &
(m<x<j & j+1<y<i-1 - A[x]L.A[y]) &
(mx<j & igy<n > A[x]<.A[y]) &
(J#lsx<i-1 & isy<n > A[x]<.A[(Y))

Féga : IS - 12 (mapping F5)
12. 02m-1<j<i-1<n<|V] & §(A,m,n) &
(m',n') = Fé4 (m,n,1i,j,£f) +
(f<9 > m'=m & n'=j) &
(i-1<f » m'=i & n'=n) &
(j<f<i-1 = m'=j+1 & n'=i-1)

Fé6, : DX I3 - D X 12 (mapping F33)
13. 0<m=-1<n<|V] & m<n & m<f<n & 6 (A,m,n) &
-P6(A,m,n) + F6,(A,m,n,f) = (A,m,n)

14, 0Sm=1<ns2|V] & m<n & m<f<n & 6§ (A,m,n) &
P6(A:m:n) & (A‘li'lj') = F63(Almfn) F
F6,{(A,m,n,f) = F6a(A' ,F64(m,n,i",j*,£) ,f)

Fés : D X I2 - B(U)3 (mapping the results)
15. O0<m-1<n<|V|] & 6{A,1,m~1) & 6§(A,m,n) &
6(A,n+l,|V]) & (Vi,V3,V4) = F65(A,m,n) F
o ((Vilvilvél) f (Acllm-l'lnt IV”)

In the justifications below, we make use of the following lemmas:

16. V,_UVZUV3 =V & pdiS(V,_,Va,V:.,)" 2
(3a,m,n) (6 ((Va,V2,V3),(A,1,m~1,n, V1))

Proof:
de V1UV2UV3 =V HYP
b. pdis (V4 ,V2,V3) Hyp
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Let:
C. mg = |Vq]+1

and {A,,1,m;) be such that:
ds Ve = {Aj[u]l 12usmy-11}

This is possible, since V; contains m,-1 elements. Since there

are no duplicated elements in V,, and (A;,1,m;-1)
element of V; once and once only:
e. G(Ai'llml-l)

Also:

f£. 0LV | £1V]

o 0 0Smy =1 & me—-1<|V]
h. 0 (Vi,A1,1,m-1)

Similarly with:

Je ng, = |[Va]+iVal]

k. Vy, = {A[u]imgsusn, }

and

1. Va = {A[u]ln,+15u<|V]}

we have:

M. 5(A:l.tm1ln1) & 5(?\1,111"‘1,1\71)

Nn. 1<my, & my-1<n; <|V] & 12n,3+1 & n;21|V]

p. B (Va,A1,My,Nn4)
9. 0 (Va,A1,ns¥1,1V])
r. 9((V11V21V3)1(Aifllmi-lcn:l.tlvl))

contains each

o323

(Mn,K
o
Peq

" % 0w
0w W

- which proves the lemma, with A = A;, m = my and n = n,.

17. 0<m~-1<n<|V] & 6§(A,1,m1) & 6§(A,m,n) & 6(A,m+1,|V]) =
(3V1,V2,V3) (8 ((Ve,V2,Va), (A,1,m=1,n,IV])))

Proof

a. 0€m=1£n=]V]
b. 5§ {(A,1,m-1)
Cu 5§ (A, m,n)

d. 6§ (A,n+1,]V])
e. 0<m-1£|V]
Let:

£. Vs = {A[u]]l<usm1}
g. 6(Vs,a,1,m1)

Similarly, let:
h, Vo = {A[u]lm=usn}
J-. 0 (Vo,A,m,n)

Hyp
Hyp
Hyp
Hyp




UNRESTRICTED TR.12.110 Page 23

and let:

k. Va = {A[u]ln+l<ug|V]}

1. 8 (Vz,A,n+l,|V]) a,d,k
me. B ((Ve,Va,V3),(A,1,m1,n,]1V])) 9.3.1.5

- and the conclusion follows.

Next we show that, whenever F3, (and hence F5 and F4,) is used by
the algorithm with arguments V;,V,,V53,f, we have:

18. By (V,£,Vi,Va,V3)

Alsc that, whenever F5 and F4, are used, it is in the expression:
19. F3, (F5(Vy,Fl, (Va),V,£),£)

and in such cases:
20. (X4 ,Xs,Xé) = Fll,_(V,_) 2 XQUXSUX5 = Vz & pﬂiS(X‘,XS-}(s)

For proofs, we note that all assumptions made prior to section 8
are justified by the definitions and assumptions of section 8.
Under these assumptions we have:

2, FIND.DH = Bi,(F2.019 .5 8.27,8.2

22. ﬂ::. (Vlff¢lvl¢)

- as shown in section 4 (4.13) from the hypothesis o (V,£) (2.2).
Thus:
23, (Ve ,Va,V3) = F2,(V) 2 By (V,£,Ve,Va,V3) & V221

8.0,22,2,2

- S0 the conclusion 1is true for the initial arguments to F3,.
All other uses of F3, arise from 8.9 (as do all uses of F4,; and
FS). 1In such cases we have:

24, P3(Vye,Va,Vs)

- where V4,V;,V3 are prior arguments tc F3,. We assume for these
prior arguments:
25. By (V,£,V4e,V2,V3)

Then, by 7.2, F5 satisfies the conditions of 6.2 on F4, of these
arguments; thence, by 6.4, F5(V,,F4,(Vy),Va,f) satisfies the
conditions of 5.2 on F34 (Vy,V3,V3), i.2.:
26. By (V,E£,Vy,Va,V3) & |Va]>1 &
(vy,Vv4,v4) = F5(V,,Fl4, (V3) ,Vz,f) =
Ba (V,£,VE,V4,VY) & O0<|VYI<|V2a]
27. 1Va1>1 24,8.6
28.  (VQ,VY4,VY) = F5(Vy,Fl4(V3),Va,f) = By (V,E,VY, VY, VY)
25427 ,26
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- i.e. By is true of the new arguments to F3,. Since it is true
of the initial arguments, by 23, then by induction it is true for
all arguments to F3,.

Also, since B3 is true of all arguments to F3,, we have, for such
arguments:
29.  |V4|<ES|Va]+]|Va]

F4,; is used on these arguments if and only if:

30. (Va1 8.9,8.6

{i.e. P3(V4,V>,V3) 1is true) thus:

31. (XasXs,Xe) = Fly (V2) 2 wa (Va,X4,Xs,X6) 8.11,29,30

32. > X4uXsuXg = Va & pdis (X4,Xs,Xe)
31,643,

Thus, in mapping the functions F3,, F5,F4, we may use 18 as an
hypothesis on the arguments to F3,, and 18 and 20 as hypothesis
on those of F5 and Fl4,.

We now show that the various functions specified in this section
map those of the development so far. In general, for a function
F' (¥) of arguments ¥ to map a function F(X)of arguments X under a
relation MAP(X,Y) we require:

PRE-F (X) = (3Y) (MAP(X,Y))

PRE-F(X) & MAP(X,Y) = PRE-F'(Y)

PRE-F(X) & MAP(X,Y) & ¥' = F'(Y) > (3X') (MAP(X',¥"))

PRE-F(X) & MAP(X,Y) & ¥' = F'(¥) & MAP(X',Y') >

POST-F (X,X")

- where the specifications for F(X) and F'(Y¥) are of the forms:
PRE-F(X) & X'=F(X) = POST-F (X,X')
PRE-F'(Y) & ¥' = F'(Y) = POST-F'(¥,¥")

The assertions that follow are the non-trivial cases of the four
relations above.

Assertion_1

33. (3A,m,n) (8 (V,A,m,n))
34. e (V,A,m,n) & (A',m',n') = F6,(a) =
(3IVL,Vs,V3y) (6((V],VL,Vs),(AL,1,m'"=-1,n',|V])))
35. e (v,A,m,n) & (A',m',n") = F6,(A) &
o((vVli,vs,V3),(A',1,m'-1,n',1V])) >
Vi=g & V3=V & Vi=g

- and hence F6, maps F2,.
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Justification

36. (3A) (8(V,A,1,1V]))

- and 33 follows, with 1 as the m and |V| as the n. For 34 we
have:

37. ©(V,A,m,n) Hyp
38. (A',m',n"') = F64 (A7) Hyp
39. A'=A & m'=1l & n'=|V] 38,7
40. 0<m'-1<n'<|V] 39,2.2
41. 1<€m & m-1<n & n<|V] 37,3
42, 6 (A,m,n) 37,3
43. V = {A[u]lm<u<n} 37,3
44. V] = n-m+l 42,43
45. m>1 o n>|V]| uy
4e. m=z1 45,41
47. m =1 46,41
48. n = |V] 47,44
49. &6 (A*',1,1V]) u42,39,47,48
50. &6(Aa',1,m'-1) & 6(A',m',n') & S(A',n'+1,|V])
49,40,2
51. (3v1,Vvi,V8) (O (((VL,VE,VS),(A',1,m"'-1,n"',|V])))
40,50,17

= which proves 34. For 35, we have the hypotheses 37,38
above, and hence the results 39 - 51 of that proof, and
also:

52. 8((VJ_,V§,V5),(A',l,m'—l,n',lvn) Hyp
53. 6(vi],A',1,m'-1) 52,5
5. V] =4 53,39,3
55. ©(Vi,A',m',n') 52,5
56. Vi = V 55,39,3
57. 8 (V4,A', m'+1,|V]) 52,9
58. V) = g 57,39,3

and the conclusion follows from 54, 56, 58.

Assertion 2

59. (3A'lmln) (e ( (vl 1V21V3) s (Aol fm"lfnl IV”)
60. ©((Vy,V2,V3),(A,1,m1,n,|V])) > m<n = 1IVal>1

and hence P6 maps P3.

Justification

61. leV2UV3 =V & pdis (Vl IVZIVB) 18

- and 59 follows from this and 16.
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For 60:

62. e(((vilvaava)l(Afllm_lrnllvl)) Hyp
63. ©(Va,A,m,n) 62,5
64. & (A, m,n) 63,3
65. V, = {A[u]|m<u<n} 63,3
66. |Vu,] = n-m+l 64,65
67. m<n = |V,|>1 66

- proving 60.

Assertion 3

68. IV21>1 & |V1|<fS|V1]+|V2| =
(EA:m:n)(ef(vltvzlva)I(Atltm“ltntlvl)))

69. [Val>1 & V4 |<E£S|V4[+]Val & O((Vy,Va,Va) ] (A,1,m-1,n,]|V])) >
0Sm-1<n<|V] & 6§(A,m,n) & m<n & m<f<n

T0. Vo211 & VL |<KES VL [+]|V2] & 0((Vy,Va,Vs), (A,1,m-1,n,1V])) &
(A'li‘lj') = F63(A,m,n) =

(3X4 s X5 ,%Xe) (O((XasXs,Xg) , (A", m,j',i"-1,n)))

Tl. V21>l & | V4 |<EL|Vy|+]Va] & 8((Ve,V2,V3),(A,1,m=1,n,]V])) &
(A',1i',3') = F653(A,m,n) &
9((x4,X5,X6),(A',m,j',i'—l,n)) 2 wge{Va,¥Xe,Xs5,%6)

and hence F6, maps F4,.

Justification

72. VyuVauVsz = V & pdis(V,y,Va,Vs) 18

and the conclusion of 68 follows from this and 16.

For 69:

73. Vs>l Eyp
The (V4 [<ESIV4 4]V, Hyp
75. 8 ({Ve,Va,V3), (A,1,m1,n,]V])) Eyp
76. 0<m-12n<|V] 15,5;13
77. & (a,m,n) 75,5, 3
78. V, = {A[u]Im<usn} 75,5, 3
79. |Va] = n-m#l 77,78
80. m<n 73,79
81. |Vy] = m-1 75,5, 3
82, m=-1<£f<n T4,79,81
83. m<f<n 82

- and the conclusion follows from 76, 77, 80, 83.

For 70 we have the hypotheses 73 - 75, and hence the statements
76 - 82 of the above proof, and also:
84. (A',i',3') = Fé63(A,m,n) Eyp
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85. 7Ye¢(A,A',m,n) & 6(A',m,n) & wg(A',m,n,i",j") 8.9,76,77,80,
83,84

86. 1<m & m—1<3j' & J'<|V] 76 ,85,11

87. O6(A',m, ") 85,86,2

Now, let:

88. X, = {A'[u]lmsn<i'}

then:

89. 06 (X4,A',m,3") 86+87:;88;3

Similarly with:
X = {A'(u]]j'+1<u<i'-1}

90.
91.

0 (Xs,A',j'+1,i'-1)

and with:
Xe = {A'[u]li'fusn}
e(xslA'li'rn)
0 ((Xe,Xs5,X6) s (A,m,]",1'=1,n))

92.
93.
9u.

- which proves

and:
95.

- from which the definitions 88,90,82 follow by 5
and:

Then
96.
97.
98.
99,
100.
101.
102.
1.03.
104.

105.
106.
107.
108.
109.
110.
111.
112.
1.13.

114.
116.
117.

70‘

8 ({XesX%Xs5,%e), (A,Mm,]j",1"-1,n))

the statements 76-94 are valid,
6 (A',Mm,n)
pdis (Xe4 X5, Xe)

X¢UX5UX6

= V2

m-1<j'<i'-1<n

i'=1=n
m<jt+el
m<jr+l
X8| =

1X4 120
1Xs] =

m<x< 3!
Ky,
m<x<j!

¥ ji*-1gn
Jjr=m+1l &

v X120
g = it—1
i'<m
i*<n

n<j?’
m<j"’

UUUVUUU

15 |

| Xg | #0

| X4 1#0
(1Xe | #0V]Xg [ #0) & (X5 [#0 Vv
(1Xs]#0 v

jl

= {A[u]|Im=susn}

= i!-j!,l &

& jr41<y<i'-1 > A'[x] <.

& i'<y<n = A'[x] <.

Atly]

1X6 |

1Xe 1#0) &
1 X4 1#0)
A'ly]

89,91,83,5

For 71 we have the hypotheses 73 - 75,

Hyp
and 3.

85
88,90,92,96
88,90,92
98,78
85,8.11
85,8411
B5,8:11
85,8.11

= n-i'+1
86,90,92,100
103,104
104
106,102
107,80
108,104
106,101
110,80
111,104

105,109,112
85,8.11
114,88,90
85,8.11

84,
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118. X $*Xg 116,88,92

119. j'+1<x<i'-1 & i'<y<n > A'[x] <. A'([Y] 85,8.11

120. Xs <* X, 119,90,92

121 wy (V2,XeeXs,Xs) 6.3,97,99,113,

116,118,120
- proving 71.
Assertion_ U4

122, (3A,m,n,i,3) (® ((Vy,X4,X5,%6,V3) ,(A,1,m-1,3,i-1,n,|V])))
123. 9((V1,X4,X5,X6,V3),(A,l,m*l,j,i-l,n,]Vl)) >
0€m-1<j<€i-1<n< | V] & 6 (A, m,n)
124, 8((Ve,sX4sXs5+%6+¢Va),(A,1,m1,3,i-1,n,|V])) &
(m',n') = Fé4(m,n,i,j,f) =
(3vyi,vi,Vs) (6 ((VL,VL,VY),(A,1,m'-1,n"',]V])))
125. 8 ((V1,X4,%X5,%6.,V3),(A,1,m1,73,i-1,n,]V])) &
{m*,n') = Fé4 (m,n,i,j,£f) &
e((vllvélvs)I(Alllm'*lln'llvl)) =
[£S Vi [+1Xa] 2 (V1,V3,VY) = (Vy,X4.Xs50XguV3) ] &
[IVi1+1Xe 1#[Xs 1<E 2> (V],VL,VY) = (ViuX4uXs5,Xe,V3a) ] &
[IVLI+] X I<ES |V [+1Xg [+ ]Xs5] 2
(Vllvilvé) = (V1UX4:X51X6UV3)]

and hence F6, maps FS.

Justification

126. XQUX50X6 = Va & pdiS(X¢,X5,X6) . 20
127. VIUVQUV3 =V & pdiS(VI,V2,V3) 18
Now let:

128. my = |V |41

and let the first my-1 elements of A, be those of V,:
129- Vl = {Al[u]]lSUSml—l} & 6(A1,1‘m1_1)

130. 0Zmy-1£€]V] 127,128
131. O (V4,A;,1,my-1) 130,129, 3
Let:

132. j1 = IX‘|+m1*1

and the elements from my to j; of A; be those of X,;:
133. X4 = {As[u]ImySu<gjs } & 6(Ag,Mg,J4)

134, 1€my & my-1<3; & J151V] 4 126,127,130,132
135. 6 (X4 ,A1,My, J1) 134,133,3
Let:

137. i3 = |Xs|+Ja¥1
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and the elements from j;+1 to i;~1 of A, be those of Xs:
138. X5 = {As[u]lja+l<u<is-1} & 65(A1,ja*1,1i,-1)

139, 1<9,+1 & Jy<%ig-1 & i,-125|V] 132,130,137,128,
126,127

140. 6 (X5,A3,J1%1,14-1) 138,139,3

Let:

141. ny = |Xel*+ig-1

and the elements from i, to n, of A; be those of Xg4:

142, X6 ] {A[u]illﬁuﬁni} & 6(A1,i1,n1}

143, 1<i, & 13-1%ny & ny,<|V] 139,141,126,127
144, Q(XG,Ai,il,ni) 1”2,143,3

and let the elements from n,+1 to |V] of A; be those of Vj:
145. V3 = {A[ul]lng+1zug|V]} & 6(A,n,+1,1V])

(for |Va| = [VI-IVal-1Va] 127
= [V[=|Vel-1Xe 1= 1Xs 1= X6 | 126
= |V]-ny) 141,137,132,128
146. 1<n,+1 & ng <1V] 143
147, 8 (Va,A;,n141,1V]) 146,145,3

148. © ((Virxﬂle:Xs cV:a) z (Asl :miﬂlrjltii_ltnil |V”)

proving 122. For 123:

Ah9y © ( (vltXQtXS !Xﬁ ,V3) ’ (All rm-lfjli".llnl IV”) HYP
150. 6 (V4,8,1,m1) 149,5
151. 0<m-1 150, 3
152. 8 (X4.,A,m, ) 149,5
153. m-1<j 152, 3
154, 6 (Xs5,B,3+1,i-1) 149,5
155. j=<i-1 154,3
156. 6 (X¢,A,1i,n) 149,5
157« i~1isn 156,3
158. 6 (Va,A,n-1,|V]) 149,5
159. n<|V] 158,3
160. 6 (A,m, ) 152, 3
161. 6 (A, j+1,1i-1) 154, 3
162. 6 (A,i,n) 156, 3
163. 6 (A, m,n) 160-162,126

- and the conclusion of 123 follows from 151, 153, 155, 157, 159,
163. For 124 we have the hypothesis 149, and hence the
statements 150-163, and also: -

164, (m',n') = Féq (m,n,i,Jj,f) Hyp

165. 0<m-1<j<i-1<n<|V] & &(A,m,n)

- as proved above.
166. f<j > m'=m & n'=] 164,165,8.12
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167.
168.

and we consider the three cases separately,

i-1<f > m'=i & n'=n
j<f<i-1 > m'=j+1 & n'=i-1

Case 1

169.
170.

Put:
171,
172.

Put:
173.
17“-

Put:
175.
176.
1717.

178.
179.
180.
181.

<3
m'=m & n'=j

Vi =V,
8(Vi,A,1,m"'-1)

Vi = X,
8 (Vi,A,m',n')

Vi = {A[u]lj+1<ug|V]}
pdiS (XS [ X6 [ V3)
6(A,j+1,1V])

1341 & §=<)V]

O (V3,A,j+1,1V])

B (V3,A,n'+1,|V])

e((Vi,vi,Vv3), (A,1,m'-1,n"',|V]))

proving 123 for this case.

Case 2

182.
183.

Put:
184,
185,
186.
187.
188,
189.

Put:
190.
191.

Put:
192.

i-1<¥f
m'=si & n'>n

Vi = {A[u]]1=2u<fi-1}
pdis (Vy , X4, Xs)
5(A,1,i-1)

0<i-1 & i-1<]V]

e (Vi,A,1,i-1)
8{(vi,A,1,m*'-1)

Vi = Xg¢
6 (Vi,A,m',n')

Vy =V,

164,165,8.12
164,165,8.12

169,166

150,171,170

152,173,170

126,127
154,156, 158, 3,
176

154,152, 3
178,177,175, 3
179,170
172,174,180

182,167

126,127
150,152, 154, 3
156,3,154
187,186, 184, 3
188,183

156,183
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193. o (V4,A,n'+1,|V])
194, & ((VI,VL,V8),(A,1,m*-1,n',|V]))

proving 123 for this case.

195. j<f<i-1
196. m'=j+1 & n'=i-1

197. V] = {A[u]]12u<j}
198. pdis (V; ,Xs)

199. 6(a,1,7)

200. 0<§ & <V

201. o (V{,A,1, )

202. 6 (V{,A,1,m"-1)

203. V3 = Xg
204. © (VY,A,m',n")

Put:

205. V4 = {A[u]li<usgiv]}

206. pdis (Xg,.V3)

207. 6(A,1i,]1V])

208. 1<i & i-1 £ |V]|

209. e (Vy,A,1,]V])

210. 6 {(V4,A,n"+1,]V])

211. o ((v{,V3,V8), (A,1,m'-1,n"',|V]))

proving 123 for this case. Now:
212. f<£9 v j<£<£i-1 v i-1<f

- hence these three cases exhaust the possibilities,

proved.

189,191,193,5

195,168

126,127
150,152, 3,198
154,3,152
200,199,197, 3
201,196

154,196

126,127
156,158, 3, 206
156,3,154
208,207, 205, 3
209,196
202,204,210,5

155

For 124, we have hypotheses 149, 164 and hence the statements 150

- 168. Also:

213. 8 ((V1,V4,V8),(A,1,m*'-1,n"', V1))
214. 0 (V{,A,1,m'-1)

215. 6 (Vi,a,m',n')

216. 9 (V3,A,n"+1,|V}])

and we consider the three terms of the conclusion

separately.

Hyp

213,5
213,5
213,5

and 123 is
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Case 1 Assuming:
217. fS)Vy|+]Xe |
218. ££3

219. m'=m & n'=j
220. 8 (V],A,1,m1)
221. 8 (V3,A,m, J)
222. 8 (V3,A,3+1,1V])
223. V] = v,

224, V3 = X, 3
225, pdis (Xs5,Xe,V3)
226. Vi = XsuXguVsy

227. £X|Vy|+1Xa] > (V1,V3,V4) = (V;,Xe,Xs0XeuVs)

- recalling assumption 217.

Case 2. Assuming:
228, |Vy|+|Xe]+]Xs1<E
229, i-1<f

230. m'=i & n'=n

231. 9 (Vi ,A,1,1i-1)
232. ©(V3,A,i,n)

233. 8 (Vi,Aa,n+1,]1V])
234, pdis (Vy,Xe,Xs)
235- Vl = V:_UXQUXS

236. Vi = X,
237. V§ = v,

217,150,152
166,218

214,219

215,219

216,219
220,150, 4
221,152,4
126,127
154,156, 158, 225
223,224,226

228,150,152, 154
229,167

214,230

215,230

216,230

126,127
150,152,154, 234
334

232,156, 4
233,158,4

238. Vi |+I1Xs1+IXs|I<E = (V1,V3,V8) = (V,0X4uXs,Xe,V3)

- recalling assumption 228.

Case 3. Assuming:

239, Vi |+1XGI<ES|Vy[+]1X 1+]Xs]

240. j<f=<i-1

241, m'=j+1 & n'=i-1

242, o (Vi,A,1,H

243, 9 (Vi,A,j+1,1i-1)

244, B (V4,A,1i,1V])

245, dis (Vy ,X,)

246, Vl = VJ_UX‘

247, V) = Xg

248. dis (X¢,V3)

249, Vy = X uV,

250. |V | +1Xg I <ES| |V [+1X4 1+]Xs] 2.
(vi,vs,vy) = (ViuXs ,Xs ,XguV3)

235,236,237

218,229
240,168
214,241
215,241
216,241
126,127
150,152,245, 207
243,154
126,127
156,158, 248, 244

246,247,249

= recalling assumption 239. Then 125 follows from 227, 238 and

250.
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Assertion 5

251. (3A,m,n) (6 ((Vy,V2,V3),(A,1,m1,n,[V])))
252. 8 ((Vy,Va,V3),(A,1,m1,n,|V])) & (A',m',n") = F6,(A,m,n, £f) =

(3vy,V3i,V8) (O ((V],V4,VY) ,(A',1,m'-1,n",]|V])))
- and hence F6, maps F3,.

Justification

251 is identical to 59, and has been proved above. For 252 we
have an induction on:
253. kK = n-m

as follows:

254. k<20 Hyp

255. 0((V1,V2,Va), (A,1,m-1,n,|V])) Hyp

256. (A',m',n') = Fé6,(A,m,n,f) Hyp

257. -P6(A,m,n) 254,253,8

258. 0<m-1<n<|V] 259,53

259. 6§ (A,m,n) 25545,3

260. Fé6, (A,m,n,£f) = (A,m,n) 258,259,257,13
261. (A',m',n') = (A,m,n) 256,260

262. 0 ((Va,Va,V3),(A",1,m'-1,n",|V])) 255,261

- and the conclusion follows.

Now assume that the theorem is true for n,-m;<k, i.e. writing:
263- kl = nl"ml
264, kj.(k & 9((V11,V21,V31) J(Ailllml-llnll]v’)) &

(Al,my,n"y) = F65(Ay,m4,n,,f) >

(3Ve1,V2],Va]) (B((Vy{,Val,Va]) ,(A],1,m]-1,n},IVI])))

We prove that it is true for k>0 as follows:

265. k>0 Hyp
266. 0 ({(Vy,Va,V3),(A,1,m1,n,]V])) Hyp
267. (A*,m',n') = Fé,{(A,m,n,f) Hyp

Since A,m,n map V;,V>,V3 and F6, maps F3,, by 18 we have:
268. B4 (V,£,V1,Va,V3)

269. |Vy|<ES|Ve]+|Val] 268, 3.2

270. m<f<n 269, 266,5, 3

271. m<n 265,253

272. 0<m-1<n<|V] 266,5,3

273. 6 (A,m,n) o 266,5,3

274. (3A',i',3j') (A',i',3j') = F6s(A,m,n)) 272,39 3. 911,
270,9 :

Let A,,i,,3j2 be such, so that:
215; (AZtinjz) - F63 (Almln)
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276. v¢ (A,Az,m,n) & 6 (Az,m,n) & we (Az,m,n,i;,32) 9

Now we have:

277. Va2l 266,5,3,271
278. (3X4 4 X5,X6) (0 ((Xe ,X5,%6) , (A2,M,F2,i2-1,n)) 277,269,266,275
70

Let X4,Xs,X¢ be such, so that:
279. 8 ((X44sXs5,X6) s (A2,M,ja2,i2-1,n))

280. wy (Va,Xa,Xs %) 277,269, 266, 275
, 279,71

281. O (Vy,Az,1,m~1) & ©(V3,As,n+l, |V]) 266,5,3,276,10

282. 0 ((Va,Xe,Xss%Xs,Va), (A2,1,m-1,52,i2-1,n,|V])) 281,279.5

283. 0<m~1%j,<i,-1<n<|V] & &(A,,m,n) 282,123

284. (3m',n') ((M',n') = F64(M,n,is,j2,f)) 283,12

Let ma,n, be such, so that:
285. (mp,ny) = Fé64 (Myn,is,J2,1)
286. (3V1,Vs,V4) (6 ((VL,V3,V3),(A2,1,ma-1,n,,1V])))

282,285,124
Let V44,V24,V34 be such, so that:
287- S ((V:_:L:st.-vai) . (Az l'l tmz—ltnal |V”)
288. (Vi1,VY24,Vas) = F5(Vy,Xe,Xs,Xe,V3,f) 282,285,287,13

Now , by 7.2, (Vi1,V241,V3,) satisfy +the conditions of 6.2 on
Fly (V4 ,X4,X5,%X6,Va,f) and in particular:
289. 0<|Va11<IVa]

290. np-my+1<n-m+l 289, 287, 266

291. ka<k 290,263, 253

292. P6 (A,m,n) 271, 8

293. F62 (A, m,n,f) = F6, (A,,F64(m,n,is,ja,F),f) 372,273, 292, 215
14

294, = F6, (As,mz,n,,f) 293,285

295. (3A,m,n) (A,m,n) = Fé, (A,,Mms,ns,f) 272,273,292,14

Let Al,m],n] be such, so that:

296. (Al,mi,n]) = F65(Az,mz,n,,f)

297. (3IVe],Val,V3]) (8 ((Vad,Val,Vad),(A',1,m]I-1,n4,|V])))
291,287,286, 264

298. (A',m',n') = (a],mJ,nd) 267,294,296
299. (3V4,VE,V8) (6 ((VL,V3,V8),(A',1,m'~1,n",|V])))

297,298
= which proves the theorem in this case. Since it is true for

k=0 (262) then by induction it is true for all k.
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Thus we have shown that any mapping, 6, with the property 3 turns
the sets of the previous development into one-dimensional arrays
(which contain no duplicate elements, since they are mapped from
sets). If the assumptions on F6,, P6, F6,, F6,, F6, are
satisfied, then in the new system these functions of arrays model
the functions F2,, P3, F3,, F4, F5 of the sets in such a way that
the required properties hold in the new form. We can now
continue with the development of F65; (F4 of section 6), towards a

definition involving only operations available in the programming
language.
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10 Stage 7

In this stage we develop a function equivalent to F65. This
function requires an arbitrary element of the middle set as a
basis for comparisons. Since we know that the f th element of
the current array is in the middle set, we use Alf] for this
purpose, and give it to the function as an explicit argument.
This will lead to the use of A[f] as a standard element for the
construction of X, and Xg, containing elements lower and higher
than A[f] respectively.

Assumptions

F7 : DX I2 XU =D X I?
1. 6(A,m,n) & m<n & m<x<n & r=A[x] &
(AR*;i'3Y) = T (amn,r) &
Ye (A,A',m,n) & 6(A',m,n) & Mg TAT o, 0,3 Y5

Assertion

24 Fé3 A,m,n) = F7(A,m,n,A[f))
satisfies 9.9.

Justification

The assertion follows from:-

3 6 (A, m,n) & m<n & m<f<n & (A',1',3")=F7(A,m,n,A[£f]) +
Ye (A,A',myn) & §(A',m,n) & wg(A',m,n,i?,j")

Proof

immediate with x = f
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11s Stage 8

The direction of development is now towards an iterative process
for computing the F7 of the previous section, so as in section 3
we produce an inductive predicate Bs, and modify the
specification accordingly.

Assumptions

F8 : DX I2 XU~-D X I2
1 6(A,m,n) & mén & (A',i',j')=F8(A,m,n,r) +
7e (A,A',m,n) & 6§(A'",m,n) & Bg(A',m,n,xr,i",j') & j'<i°

where:-

2' ﬁs (Almlnlrlilj) =
(i=m = (Jj+1<x<n = r <. A[x]) &
(j=n = (m<x<£i-1 = (A[x] <. 1)) &
m<i & j%n & i-2%3j &
{(m<x<i = A[x] <. x) &
{j<x<n > r <. A[x])

Assertion

3. F7(A,m,n,r) = F8(A,m,n,x)
satisfies 10.1.

Justification

The assertion follows from:-
4. 6 (A,m,n) & m<n & m<x<n & r=A[x] &
(A',i',j")=F8{(A,m,n,Y) +
Ye (A,A',m,n) & 6§(A',m,n) & weg{(A',m,n,i?,j")

Proof

9. 5 (A, m,n) Hyp

6. m < n Hyp

7. m<x<n Hyp

8. r = Alx] Hyp

o [ (A ,i',j') = F8(A,m,n,r) Hyp

10. e (A,A',m,n) 5,6,9,1
11. 6 (A',m,n)’ 5,6,9,1
12. Ps AV, m,n,r,i',.9"%) 5,6,9,1
3. =" < 4t 5,6,9,1
suppose:-

14, i'-1 < m

15. i' =m 14,12,2

16. j'+1<x<n > r <. A[x] 15,12, 2
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17. i'sxsn > r <. A[x] 16,13
18. m<xs<n = r <. A[x] 17,15
but this contradicts 7,8,

thus:-

19. -(i'-1 < m)

similarly:-

20. = (n < j'+1)

suppose:-

21. j'+1<m & n<i'-1

22. mfi' & j'=<n 12,2
23. it=2 £ 3¢ 12,2
2. n < m 23,21
but this contradicts 6,

thus:-

25, m<jr+l v it-1<n

26. m<x<i' =2 A'[x] =. 12,2
27. 3j'<x<n > r <. A'[x] 12,2
28. m<i'-1 & j'+1<n 19,20
29, ir=-2<3 2,12
30. m<£j'+1l & i'-1<n 28,29

31. m<x<j' & jr+l<y<i'-1 o A'[x] <.

32, j'+1<x<i'-1 & i'<y<n = A'[x] £.A'[vy]
33, m<x<j' & i'<y<n = A'[x] <.A'[y]

34, m-1<j'<i'-1<n
35. We (A'.,m;nwi'lj')

which concludes the proof.

13,26,27,30,1.2
13,26,27,30,1.2
13,76,27,1.2
30,13
34,19, 20, 25, 31,
32,33,9.11b
10,11, 35

The Jjustification, as in section 3, consists of showing that the

revised specification for <the function

original.

strong as the
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1.2, Stage 9

We now consider the initialisation and iteration separately as in
section 4. Here, however, +the initialisation is explicit,
setting i = m, J = n, so that it does not appear as another
function. The specification on the function F9 now becomes the
preservation of the truth of the inductive predicate Bj,.

Assumptions

F9 : DX UX I2 - D X I2
1. 6(A,m,n) & m<n & Bg(A,m,n,r,i,j) &
(At,i',3') = FO9(A,r,i,]J) F
Ye (A,A',m,n) & §(A',m,n) & Bg(A',m,n,r,i',j') & J'<i"

2. F8(A,m,n,r) = F9{A,r,m,n)
satisfies 11.1.

Justification

The assertion follows from:-
3. § (A,m,n) & mé<n & (A',i',j") = F9{(A,r,m,n) F
7e¢ (A,A',m,n) & 6§(A',m,n) & Bg(A',m,n,r,i',j") & j'<i!

Proof

4. 6 (A, m,n) Hyp
s m < n Hyp
6. (A*,i',j')y = F9(A,r,m,n) Hyp

the following statements are vacuously true:-

7. n+l<x<n > r <.A[x]

8. m<x<m-1 = A[x] <.r

9. m<m

10. n £ n

11. m-2 £ n 5
12. m<x<m > A[x] <.r

13. n<x<n = r <.A[x]

14, PBg(A,m,n,xr,m,n) 7-13,11.2

15. 7 (A,A',m,n) ‘ 4,5,14,6,1
16. 6 (A',m,n) 4,5,14,6,1
17. Bg(@A',m,n,xr,i',Jj") : 4,5,14,6,1
18. 3j* < i ' 4,5,14,6,1

which concludes the proof 15,16,17,18
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The justification shows that Bg is true initially, hence if it is
preserved by F9, then the additional conditions 1y and JU'<i?
ensure that the conditions on F8 of the previous section are
satisfied.
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13. Stage 10

Here we develop the iterative computation of F9, using F10, to
define the structure of the algorithm and F10, to carry the body
of the iteration. The remarks at the beginning of section 5
apply here also.

Assumptions

F10, : DX U X I2 - D X I2
1. 6(A,m,n) & Bag(A,m,n,r,i,j) & i<j &
(A',i',j')=F101(A,r,i,j) I
Te (AIA"mln) & 6(A'lmln) & BB (A'Imlnlrli'lj') &
{i<iY ¥ <) & 1£iY & %€
F10, : DX U X I2 - D X 12
2. j<i + F10,(A,r,i,j)=(n,i,3)
3. i<j & (A',i',3')=F10, (A,r,i,J) F
Floz (Alrli'j)=F102(A'lrli'l‘j')
Assertion

4. F9(A,r,1i,3) = F10,(A,x,i,.7)
satisfies 12.1.

Justification

The assertion follows from:-
S 6(A,myn) & m<n & Bg (A,m,n,r,i,j) & (A',i',j")=F10,(A,xr,i,3) F
e (A,A',m,n) & §(A',m,n) & Bg(A',m,n,r,i?,j') & jFr<i?

Proof

6. 6 (A, m,n) Hyp
j m<n Eyp
8. Bg (A, m,n,xr,i,J) Hyp
9. (aA*,i',3') = Flo.(A,r,i,J) Hyp

Proceed by induction on j-i.
Basis, assume :-
10. j-i <€ 0

11, ({At,i',3j') = (A,i,3) 10,9,2
12. ve (A A',m,n) 11,9.11a
13. S6(A',m,n) ' 6,11

14, Bg(A',m,n,xr,i',3i"%) 8,11

15 3" € it ' 10,11

sO0 5 is true for j-i<o0 12-15
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Induction, suppose true for 0 < j-i < x, show
for 5-1i = x &=

l6. i £ 3j

writing:-

17. (@a",i",3") = F10,(A,r,i,]3)

18. 1v¢ (A,A",m,n) 6,8,16,17,1
19. &6 (A", m,n) 6,8,16,17,1
20. ﬁs {A"lmlnlrl i"lj") 618116; 17:1
2.  (i<i" v J"<§) & igiv & jngj 6,8,16,17,1
22. (A',i',3') = F10,(A",x,i","M) 16,9,3,17
since j"<i" < x, from 21, we get by assumption:-

23. 76 (A,A',m,n) 19,7,20,22,5
24, S5 (A',m,n) 19,7,20,22,5
25. Bg(A',m,n,r,i*,3j") 19,7, 20,22, 5
26, JY ¥ 1v 19,7, 20,22, 9

which concludes the induction.

The justification consists of the inductive proof that if Bg is
preserved during the iteration, then the additional condition 1y,
becomes true when finally j'<i'. Note that the conditions i<i°
and 3j'<j ensure that ultimately 3j'<i' , and the iteration
terminates.
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14, Stage 11

In +this final stage, we develop an explicit definition of F1ll1 by
cases, using operations available in the programming 1language,
that satisfies the specification of the last section for F10,.

Assumption

F11 : DX U X 12 - D X 12
1. 6(A,m,n) & Bg{(A,m,n,r,i,Jj) & i<j & (A',i',j")=Fli(Aa,r,i,]) F
[(r €<.A[1] & A[J] €.x) = ((x#1i & x#j = A'[x]=A[x]) &
A'[i]=A[j] & A'[j)=A[i] &
i'=i+l & j'=j-1)] &
[A[1i] <.xr 2 (A'=A & i'=i+1 & j'=5 )] &
[x<.A(1] » (A'=A & i'=i & j'=3j-1) ]
Assertion

2. F10, A,x,i,3) = F1l1{(A,r,i,])
satisfies 13.1.

Justification

The assertion follows from:-

3. 6(A,m,n) & Bg(A,m,n,r,i,j) & i<j & (A',i',j") = Fl1(A,r,i,3)
F re (A,A',m,n) & §(A',m,n) & Bg(A',m,n,r,i',j') &
(i<i' v j'<3) & i<i' & j'<5

Proof

4. (A, m,n) Hyp

5. Be (A,m,n,xr,1i,7) Hyp

6. i< Hyp

7. (A*,1i',3*) = F11(a,r,i,3) Hyp

8. i=m = (j+lx<n > r <.A[x]) 5: 112
9. j=n > (m<x<i-1 > A[x]K. 1) 5; 112
10. m<£i & jsn & i-2%5j 5,11.2
11. m<x<i = Af(x] £.rx 5,11.2
12. j<x<n = r <.A[x] 5,11.2

Consider the three cases of the definition 1 of F11, first:-
13. r £.A[i] & A[]] %.rx

14, x#i & x#j 2 A'[x)=A[x] 4,5,6,7,13,1
15. A'[i]=A[3j] & A'[Jj)A[L] : 5,0, 1,13 ,1
16. 1i'=i+l1l & j'=j-1 B,5,6,7,13,1

the following two statements become (vacuously) true
17. i' = m > (j'+1<x<n > r <.A'[x])) 10,16
18. Jj' = n > (m£x<i'™1 = A'[x] <.1x) 10,16
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19. m<i' & j'<n 10,16
20, A'=2 & 6,16

21, m<x<i' > A'[x] £L.r
22. j'<x<n > r<.A'[x]

23. ﬁS (A'lmlnlrli'lj')
24, y¢ (A,A',m,n)

25. © [AY,m, 1)

26.  i<iv & <5

which concludes this case.

Second case:-
27 Ali KK.r

28. A' = p

29, 1i' = i+l

30. it = 3

the following statement is (vacuously)
31. i' = m 2(j*'+1<x<n =2 r<.A'[x])

32. Jj' = n o2(mS<x<i'-1 osA'[x)K.x)

33. m<i' & j'<n

34, irv-2<5¢

35. msx<i' 2 AY[x]L.¥

36. Jj'<x<n = r<.A'(x]

37. Bs(A',m,n,r,i',3j")
38. 76 (A,A',m,n)

39. &6 {At,m,n)

40. 1i<i' & j'<7

which concludes this case.

The final case is similar to 27-40 above.

6,11,13,16,14,15
6,12,13,16,14,15
17-22,11.2
9.11a,10,14,15
4,10,14,15

16

24,25,23,26

-

B E
- - LY
L a;
L - -
oo o
~
N N

NN
~
L T T Y
el

» - -

10,29
9,27,28
10,29, 30
6,29,30
11,27,28, 29
12,30, 28
31-36,11.2
9.,11a, 28
4,28

29, 30
38,39, 37,40

At this point we have arrived at a statement of an algorithm

which can be mapped directly into

high~level programming
language. In the following two sections
algorithm as developed, and give, without further

summarise the
justification,

the corresponding program in an ALGOL-like language.
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15. Summary of Development

In this section we summarise (as in section 8) the development in
preparation for translation into a program.

Assumptions

Suppose we have functions:-
F11 : D X U X 12 - D X I2
1. 6§(A,m,n) & Bg(A,m,n,r,i,j) & i<j & (A',it*,j*)=F11(A,r,i,]j) F
[ (r <.A[1i] & A[J] €.1) > ((x#1i & x#j > A'[x]=A[x]) &
A'[i]=A[j] & A'[J]=A[1i] &
ift=i+1 & j'=j-1)1 &
[A[i] <.r = (A'=A & i'=i+l & j'=j )] &

[r<.A[i] = (A'=A & i'=1i & j'=3j-1) ] 10,3
F10, : D X U X I2 - D X IZ2
2. j<i + F10,(A,r,i,3j)=(A,1i,3) 13.2
3. 1£j & {A',i*,.§")=Fll(a,xr,1i,3) ~
P10, (B, x,1, 1)=F10,{A" ,x? ,i',1"Y) 13.3,14.2
F6g : B(U) - D
4. A = F6q (V) + 6(V,A,L,IV]) 9.6
F61 : DD X IZ
s 10 F F6; (A) = [A1,1V])) 9.7

P6 : DX 12 - {T,F}
6 F P6(A,m,n) = m<n 9.8

Fé6y : IS - I=2
Fo 0<m-1<j<i-1<n<|V] & 6 (A,m,n) &
(m*,n') = Fég(m,n,i,j, f) F
(f£9 » m"=m & n'=3j) &
(i-1<f > m'=i & n'=n) &
(j<££i-1 = m'=j+1 & n'=i-1) 9,12

F6, : DX I3 - D X I2
8. 0<m=-1<n<)V] & m<n & m<f<n & 6§(A,m,n) &
-P6(A,m,n) + F6,(A,m,n,£f) = (A,m,n) 913
9. 0<m-1<n<]V] & m<n & m<f<n & 6(A,m,n) &
P6 (Almln) & (A'li'lj‘) = FlOZ(AlA[f]lmln) +
F6, (A,m,n,f) = F65(A' ,F6a(m,n,i"*,j',£),£)
. 9.14,10.2,11.3,
12.2,13.4
F6s : D X I2 - B(U)3
10. 0fm-1<n<|VvV] & 6(A,1,m-1) & 6(A,m,n) &
6(A,n+1,1V]) & (V]{,Vi,V4) = F6s{A,m,n) F
O ((Vi, Vi, Vi) ,(A,1,m1,n,|V])) 9.15
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Assertion

11. FIND(V,f) = Fb6s5 (F65(F6, (F64 (V)) ,))

Justification

Putting:~

12. F104(A,r,i,Jj) = F11(A,r,i,])

we have:-

13. F10, (A,r,i, j) satisfies 13.1 14.2,1
Putting:-

14. F9(A,r,1,3) = Fl0,(A,x,i,9)

we have:-

15. F9(A,r,i,3j) satisfies 12.1 138, 2,3;12:13
Putting:-

lé. F8(A,m,n,xr) = F9{A,xr,m,n)

17T = Fl105,(A,r,m,n) 16,14
we have:-

18. F8{A,m,n,r) satisfies 11.1 12:2,15
Putting:-

19. F7(@A,m,n,xr) = F8(A,m,n,r)

20. = F10,{(A,r,m,n) 19,17
we have:-

21. F7(A,m,n,r) satisfies 10.1 11.3,18
Putting:-

22. F63(A,m,n) = F7(A,m,n,A[f)])

23 = F10, (A,A[f],m,n) 22,20
we have:-

24, Fé653(A,m,n) satisfies 9.9 10.2,21
Now: -

25. FIND(V,f) = F3, (F24(V),f) satisfies 2.1 8.14,8.2

Thus the assumptions of section 9 are satisfied (or re-assumed
above) as follows. 9.6 is 4, 9.7 is 5, 9.8 is 6, 9.9 is 24, 9.12
is 7, 9.13 is 8, 9.15 is 10. For the remaining assumption 9.14
we have:
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26, 0fm-1<n<|V] & m>n & m<f<n & § (A,m,n) &
P6(A,m,n) & (A',i',j')=F65(A,m,n) +
F6,(A,m,n,f) = F6,(A' ,F64(m,n,i",j*',£f),.£) 9,23

Thus all the mappings of section 9 are valid, and we may map the
right-hand side of 24 as follows:

27. V =~ F6q (V) 9.6 -
28. F2, (V) = F6, (F64 (V)) 27,9.33-35
29. F3,(F2, (V),f) = F6, (F64 (F64 (V) ,£) 28,9.251-252
i = F65 (F6, (F64 (F6g (V)) ,£)) 29,9.15

and the assertion follows from 30 and 25.
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16. The Program

In this section we show a program in an ALGOL-like language,
corresponding to the functional expansion of FIND summarised in
the previous section. No formal justification of this stage is
given. To provide it, formal statements of properties of the
particular constructs of the language, as used in the program,
would be required. Such rroperties might for instance be deduced
from a formal definition of the language.

Notes on the Statements.

3 element must be a declaration appropriate to the elements
of A.
7 set must be a declaration appropriate to the form of V

passed to the program.
9-11 are the realization of F6, according to 9.7.
19-30 are the realization of F11 according to 14.1.
17-31 are the realization of F10, according to 15.30, 15.31.
13-31 are the realization of F6,; according to 15.20.
31-38 are the realization of F6, according to 9.12.
12 tests P6 according to 9.8.
12-39 are the realization of F6, according to 15.28, 15.29.
Hence the program realizes FIND according to 15.8,9,10.

NMote that we have not written the input routine, which sets up A
from V in whatever form it was passed, nor the output routine ¢to
produce the sets V,,V,,V3, in whatever form they are required.
However, the formal developrment process has automatically given a
complete formal specification of the interfaces between these
routines and the program. Also, depending on the type o0f the
array elements, the operators <. and <. in lines 19, 27, 29 may
need a sub-program (in or out of 1line) to realise them.
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1 procedure FIND(V,£f) ;
2 integer f,m,n,i,Jj;
3 element temp,r;
4 element array A;
5 array procedure INPUT(V) ;
comment returns an array A such that 6 (V,A,1,1V]);
6 sets procedure OUTPUT(A,1,m,n,|V]) ;
comment returns three sets V,,V,,Vs3 such that
6((Vy,V2,V3),(A,1,m,n,IV]));
7 set V;
8 begin
9 A := INPUT(V);

10 m:= 1; n:=|V];
12 while m<n do
13 begin

14 r:= A[ £];

15 i:= m; j:=n;

17 while i<j do

18 begin

19 if r <.A(i] & A[j] S.r then
20 begin

21 temp := A(i];

22 A[i] := A[J];

23 A[j] := temp;

24 i = 1 + 1;

25 jo:= j-1

26 end

27 else if A[i] <.r then i := i+1
29 else if r<.A[ j] then j :=j-1
n end

32 if f<3j then n := j

33 else if i-1<f then m := i

34 else if j<£<i-1 then

35 begin

36 m:= Jj+l;

37 n:= i-1

38 end

39 end;

40 FIND := OUTPUT(A,1,m,n, |V])

41  end
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