

A Formal Definition of Algol 60

C.D.Allen
D.N.Chapman
C.B. Jones

Unrestricted

August 1972 215-8052-0

IBM United Kingdom Laboratories lested
Hursley Park
Winchester Hampshire

A_FORMAL DEFINITION OF ALGOL 60 _ CONTENTS

Chapters 1. Background
2. Discussion

3. Notation

4, Mechanism

C.D. Allen 5. Definition
" D.N. Chapman '
C.B. Jones « Acknowl edgements
) References
Appendix Cross Reference Index

Programming Technology Dept.
IBM Product Test Laboratory
Bursley

Winchester

England

BSTRACT

This paper contains a formal definition of the semantics of the ECMA subset
of Algol 60. The definition is written as a series of recursive functions.
Although some of the ideas of the "Vienna Definition Language® are adopted,
the use of the control mechanism is specifically avoided.

i . : Unrestricted Unrestricted

1. BACKGROUND

This paper contains a formal definition of the ECMA subset of Algol 60.
The definition is written as a family of recursive functions. Specific
details of the notation used are given in Chapter 3 below. Before coming
to this it is, perhaps, worth reviewing the motivation for this work.

First it must be clear that the hope is to illustrate language definition
ideas rather than to provide a definition of an already widely understood
language.

The authors were 1lead to undertake this definition as a result of an
interest in correctness proofs for compilers. Some of the work on this
topic (begqun Ref. 8, see also ref. 9) has been based on "Vienna-style%"
definitions (generally referred to as VDL definitions). In spite of the
relative success of this 1line of work, it was clear that certain
difficulties were the result of the definition method. 1In particular the
way in which the sequencing of operations was handled by the control
complicates reasoning about the order of operations. This and other
problems are discussed in the next Chapter. Ideas existed for
circumventing some of these problems (e.g. ref. 7). The definition given
below shows how these ideas are worked out in detail on a reasonable size
language.

There is, of course, an existing formal definition of Algol 60 in the
Vienna-style (ref. 6). The reader will find that differences exist between
that and the current definition other than those caused by the discussed
changes of method. Most of these can be explained by an attempt to come
closer to the present authors®' understanding of the "spirit of Algol". The
best example of this is the use in the current definition of a fairly
direct form of the copy-rule, whereas ref. 6 had exhibited the relation to
the VDL definitions of PL/1 (ref. 5) by using the environment mechanism
from that model. The existence of such options in the construction of a
definition is a result of the use of the constructive definition method and
the choices made in the current definition may not be universally liked.

The language defined in Ref. 6 is full Algol (i.e. ref. 1). The current
definition is of the ECMA subset plus recursion (see ref. 2). This has two
‘advantages. On the one hand it avoids some of the less clearly defined
areas of Algol (e.g. own) and, on the other hand, it defines a language
which is more oriented towards static "compilation".

Unrestricted

TR.12.105

1

The next Chapter contains a discussion of the main changes made in the
current definition with respect to ref. 5. The remainder of the report is
a self-contained definition. Chapter 3 describes the notation used in the
formal definition. Chapter & describes some of the ideas built into the
formal definition. Chapter 5 presents, on facing pages, prose and formal
descriptions of the language following the structure of ref. 1. The prose
description is an amalgam of refs. 1 and 2 with "comments® prompted by ref.
3. The BAppendix contains a cross reference index of functions and
predicates as an aid to the reader.

The major divisions of the paper have been called Chapters to avoid
confusion with the sections cof the Algol Report. References into the Algol
Report are of the form BA.R. followed by a section number. References
consisting of only a section number are to the formal definition (i.e. the
left hand pages of Chapter 5).

2 TR.12.105

Unrestricted

2. DISCUSSION

This section contains a discussion of the main changes to the definition
style which have been made with respect to ref. 6.

The_Control Component

The control component of a VDL style definition is described in, for
example, ref. 4. It is basically a record of what remains to be done in
the interpretation. This is achieved by storing instruction names and
their arguments in the control. 1In the VDL definitions the control is made
an actual state component. This has two interesting consequences: being a
normal object it can be of a tree form; also explicit changes are possible.

The tree form of the control provides a good model for arbitrary ordering
between elementary operations. This is achieved by providing a control
function (LAMBDA) which selects the next operation from amongst the
terminal nodes of the tree. This models in a fairly natural way the
arbitrary order of sub-expression evaluation prescribed for Algol.

Without arbitrary ordering the control would exhibit an obvious stack type
behaviour; the generalisation in the tree case is also not difficult to
envisage. The ability to explicitly change the control complicates this
picture.

The jump concept, present in most languages as a local goto (see below for
discussion of non-local goto's), has the effect of cutting across the
obvious recursive structure of evaluation instructions. This can be
modelled by an explicit change to the control whose effect is to delete
those entries which corresponded to instructions which looked as though
they were to be executed. This explicit change obviously invalidates the
simple generalised picture of the stack behaviour of the machine.

"Freezing" of the arbitrary order of evaluation (e.g. entry to a function
referenced in expression evaluation) can be modelled by storing away an old
control component and installing a new one whose last action will be to re-
instate the stored control. Such a model, whilst adequate, causes further
distortion of the intuitive stack behaviour since non-local goto commands
may now discard stored control components. Another problem caused by
storing the 0ld control is that the control can no longer be used to return
a value from a function reference (cf. ref. 6).

Unrestricted

TR.12.105

3

Perhaps it is unfair to describe the next item as a “consequence", but the
possibility of explicitly changing the control can be over-utilized as a
short cut. such a short cut is used in ref. 6 to handle for statements:
the result is one of the less clear parts of that definition.

Finally, the necessity to use two levels of function (i.e. the LAMBDA
control function and the instructions) was unfortunate, and the description
of this (see ref. 5) difficult to understand. It should be admitted that
the mechanism now offered is also far from simple. The present authors put
more emphasis on a "purely functional" definition and leave the decision on
compr ehensibility to the reader.

The problems with the control have long been understood (cf. ref. 10).
Ideas for modelling the required language features without resort to a
control have also been suggested: Ref. 7 shows how the abnormal
termination of blocks can be modelled without explicitly changing the
control. The basic idea is to anticipate the possibility of an "abnormal"
return and to return an indicator which can be tested in the invoking
routine. These tests then control the abnormal returns in an orderly
fashion rather than goto's "taking the machine by surprise®. The problem
of the disappointingly large numbers of places where the abnormal value can
be returned in the Algol definition is mitigated by the uniformity with
which the condition is handled.

The related gquestion of goto commands into structured statements, such as
compound and conditional statements, is handled by "cue" functions which
set up the appropriate continuation without interpreting those parts of the
program which are jumped over.

The problem of representing the required degree of arbitrary ordering in
expression evaluation is handled by having a function which accepts the
whole expression tree and performs an arbitrary selection of the next
operation. Of course, this mirrors the exact role played by the LAMBDA
function. The difference, which the present authors consider relevant, is
that the tree is part of an abstract program rather than a control
containing function names. It is also important to observe that it is only
the order of access of variables and function calls which is not defined,
the order of evaluation of expressions is defined as left to right. This
situation is modelled closely below by having separate functions which
access values and which apply operators to values.

Use of-the.copy rule

Use is made of a form of the copy rule. This results in an extremely
natural model of by name parameter passing. :

4 TR.12.105

Unrestricted

Elimination of the state

VDL models have a state which is global and can be changed by side effect.
A fairly mechanical rewriting into functions which have this state as part
of their domain and range is possible. It is then clear which parts of the
state are not required by or cannot be modified by each function: the
domains/ranges can be reduced to only the required items.

A related point is the existence of values of local variables after their
blocks cease to exist. Explicit delete operations appear in the current
definition which remove the values left in limbo in ref. 6.

Error Detection

There is a class of defects which force a program to be considered invalid
for which it is simple to devise static tests (e.g. undeclared variables).
If a definition checks for these dynamically the question is left open as
to whether a program is in error if such a defect occurs in an "unexecuted"
portion. If formal definitions are to provide a reference point for
implementations a suitable rule might be "any implementation should produce
(one of) the result (s) of the definition unless the latter results in error
- in which case the implementation is not further constrained". Clearly
such a rule is untenable if compiler checkable (i.e. static) defects such
as undeclared variables do not result in error. It is equally clear that
one could never define all special cases of errors which are statically
checkable. The break-point adopted below 1is basically to check those
things which rely only on symbol matching and omit those checks which, in
general, rely on values of symbols. Thus items not statically checked in
the current definition are:

Upper bound vs lower bound of arrays

Validity of procedure body after by name substitution
Incompatibility of formal/actual parameters
Applicability of array bounds

Goto into for statement

However, declaration of variables and applicability of operators to their
operands is checked by stating the properties of abstract programs which
the translator will pass.

Array Values

There is no requirement in Algol to consider array values as structured
(cf. ref. 6) . They are treated in the current definition as pairings of
integer lists with simple values, where the integer lists correspond to the
subscript list.

Unrestricted

TR.12.105

5

Abstract Syntax

The abstract preoegram has been made to correspond more closely to the
concrete program by leaving labels on the statements and by not using
identifiers as selectors. Objects for which identifiers were used as
selectors are now shown as sets. This, however, does 1lead to certain
difficulties caused by the lack of text selectors.

Changes_to_ the defined_language

Apart from the change to the ECMA subset plus recursion, a few points of
detail have been changed from the language defined in ref. 6.

Ref. 6 copies the <array list> onto each array identifier declared. Since
this may result in a different number of invocations of any functions
referenced from that expected, this decision has not been followed.

Since it is not entirely clear if it is possible to have formal parameters
of type procedure passed by value it has been banned in the current
definition (see A.R. 4.7.5.4).

There would appear to be no justification for specifying a left to right
order of evaluation for subscript expressions occurring other than on the
left of an assignment: the restriction of ref. 6 is relaxed in the current
definition.

6 TR.12.105

Unrestricted

3. NOTATION

Introduction

The definition 1is a set of functions and predicates which together define
the interpretation of any valid ALGOL 60 program. This Chapter describes
the notation used to define functions and predicates.

The notation is that of refs. 4 and 11, with slight changes in typography.

In this section, an underlined word indicates that the meaning of that
particular term is given at this point.

Objects and_ Selectors

The basic elements operated on throughout the definition are called
objects. Objects may be elementary, that 1is having no structure, or
composite. Composite objects have structure in that they are composed of
parts which may be extracted or replaced by the appropriate functions.

The elementary objects used in this definition include members of the
following classes:

ids: these are objects used in place of the identifiers of the
ALGOL 60 source text,
values: these are the usual arithmetic and boolean values,
the empty list <>: see below under Lists,
sets: various kinds of sets are used; any set is an elementary
object, including the empty set {}.

Several other specific elementary objects are used; they are denoted by
names spelt in capitals. Thus REAL, INTG, BOOL are the elementary objects
corresponding to the ALGOL 60 keywords real, integer, Boolean.

Construction of Composite Objects

Composite objects are constructed out of elementary objects and function
names using the function p, as follows. Let OBA, OBB, OBC be three
elementary objects to be made parts of a composite object. To extract these
three parts of the composite object we need three function names (functions
intended for this purpose are given names beginning "s-", and are called

Unrestricted

TR.12.105

7

selectors). Let s-1, s-2, s-3 be the three selectors chosen to operate on
the object being constructed. These are paired with the elementary object
they are to select (notation <s-1:0BA>) and the pairs given to the function
Mo as arguments, thus:

Mo (<S-1:0BA>, <s~-2:0BB>,<s-3:0BC>) .

The resulting object, say obl, has three parts:

OBA = s-1 (obl)
OBB = s-2 (obl)
OBC = s-3(obl) .

Note that this definition of obl has also defined new values of each of the
functions s-1, s-2 and s-3, namely those given above. (Note also the use of
colons as separators in the pairs within the p, arguments. Elsewhere a
comma is used for this purpose ~- see below under Lists.))

Composite objects may also be used as the second member of an argument to
Mo- Thus if ob2 and ob3 are two further objects, either elementary or
composite, then we might define ob# as:

obl4 = u4(<s—a:0bl>,<s-b:ob2>,<s-c:0b3>) .

Then:
s-a (obl) = obl
s-b (obd) = ob2
s-c(obl4) = ob3 .

The arguments to p, may beAspecified as a set, provided the order in which
they are taken does not affect the final object. Thus in the definition of
tail (section 1, Lists) we use:

po ({<elem (i) :elem (i+1) (list)>]1<i<length (list) })

Here the arguments are the pairs <elem(i):elem(i+1l) (list)> where i is in
the appropriate range. (Note that the function p, applied to an empty set
in this way gives 2, see below.)

Selector functions, and in fact any functions, may be composed by the
functional composition operator, e. The composition of two functions f1 and
£f2 is defined as follows:

f2ef1 (x) = £2(f1 (x)) .

8 TR.12.105

Unrestricted

Note that in this use, fi must be defined for argument x, and if it then
returns y, f2 must be defined for this argument. Using this notation, we
have from the definitions of ob4 and obl:

s-1es-a(ob4) = s-1(s-a(ob4)) = s-1(obl) = OBA .
Composite selectors are functions formed by composition of selectors in

this way. Selectors which are not composite are called elementary
selectors.

Composite objects may be thought of as trees, having each branch from one
node to another named by a selector, and having elementary objects at each
of the terminal nodes. Thus ob4 may be shown diagramatically as a tree as
follows.

et i e o e e e e e

O
o
P
o]

If ob2 and ob3 are composite, then there will be further structure beneath
these nodes.

Values of selector functions for specific arguments thus become defined by
the definition of composite objects using them. If a selector is used with
an argument for which no value has been defined in this way, then the value
is taken to be a special object called Q. Any selector applied to any
elementary object gives @ (with the sole exception of the identity
selector, I, see below). With the example objects defined above:

s-1(obl4) = @
s-af{obl) =1
s-aes-a(ob4) = a .

Note that any selector applied to @ gives Q, by definition.

Unrestricted

The selectors used in the arguments to p, must all be different, otherwise
a unique value for the selectors would not be defined if they were applied
to the constructed object. For example

ob = pg (€<s=x:0bl>,<s=x%x:0b2>,<{s—2:0b3>}
does not give a defined value for s-x{ob) -- it might be obi or ob2. Hence
this formula is invalid. However the same selector may be re-used at a
different level of the tree, e.g.:

ob5 = ug(<s=1:0bl>,<s-2:0b2>,<s-3:0b3>)
is quite legitimate, giving:

s—~1 {(ob5}) = obl
s-1es-1 {ob5) = OBA .

The identity function, I, is included in the selector functions, since it
may be successfully applied to any object. It is defined by:

I(x}) = x
-- where =x is any argument whatever. When applied to an elementary object
it returns that object, not 2. (This is the only selector that does not
give 2 when applied to an elementary object.}
Modification of Objects
Composite objects may be modified by replacing the sub-tree below one node
{itself an object) by another object; additions may be made by replacing
the empty sub-tree below one node by an object. The function used is g,
with arguments:

i) the object to be modified,

ii) a pair -- as for pg -- consisting of the selector identifying
the part of the object to be replaced and the object to be
inserted at this point.

For example, with the objects defined above, if
obé = u({obl;<s-b:0b7>})
obé has the structure of ob4 with ob2 (= s-b(ob#4)} replaced by ob7. Thus

s-b{ob6) = ob7 .

10 TR.12.105

(Note the semi-colon following the object to be modified.)
Predicates

Meanings are given to the operations & (and), and v (or) of predicate
calculus when some of their operands are undefined. 1In the notation used
here (explained below under Definition of Functions) they may be defined
as:

X &y =
cases: X
FALSE: FALSE
TRUE: y

X Vv y =
cases: x
TRUE: TRUE
FALSE: y

The effect of the conditional definitions is that logical expressions
become undefined if, working from left to right, an undefined operand is
encountered before the value of the expression has been determined. Once a
value has been determined, the fact that one or more of the remaining
operands is undefined does not make the expression undefined.

The remaining operators are defined as usual in terms of & and v where
necessary, using these meanings of & and v. The operators are:

not (undefined if its operand is undefined)
and

or

implies (x
is equivalent to (x
existential quantifier
universal quantifier
{iota) see below .

ﬂxvy)
(x & y) v {~x & y))

~
[

oy

e <€ Wil U < o Jd

The i operator is used in the same way as a quantifier, e.g.:
(i x) (is-pred(x)) .

This expression denotes the unique x such that is-pred(x) is true, if one
and only one such x exists; otherwise its value is undefined.

Unrestricted TR.12.105

11

In quantified expressions, the bound variable (that following the
quantifier symbol in the opening parentheses) is frequently a name that has
a corresponding predicate, e.g. (v¥sel) (...} with the corresponding
predicate is-sel. 1In such cases the bound variable is assumed toc take only
values satisfying the predicate. Thus in the example given above, sel is
assumed to take only values satisfying is-sel; this is equivalent to adding
to the gquantified expression inside the second pair of parentheses a term
is-sel(sel) & ... If the quantified variable is i oxr Jj, then the
corresponding predicate is understood to be is-intg-val.

The quantifiers ¥ and 3 are only used on expressions that are defined for
all values of the gquantified variable in the range of that variable. This
range may be indicated by the name of the variable, as mentioned above; if
not, the range is unrestricted.

Predicates are functions whose values are truth-values (either TRUE or
FALSE). They may thus be relational expressions, such as x<£i, or
expressions built of other predicates using the above operators. Generally
they are given names beginning with “is-®,

Predicate expressions are sometimes used; they have one of the following
forms, defined as below.

(i) {is~predi v is-pred2) (x} = is-predl(x} v is-pred2(x) ,
{(1i) (is-predl & is-pred?) (x}) = is—predl (x) & is-pred2(x}

Each kelementary object whose name is spelt in capitals has an associated
predicate whose name is the name of the object prefixed with is-. Thus

REAL)

is-REAL(x) = (x
= INTG} , etc..

is-INTG (x) {x

For composite objects, many predicates are defined in terms of their
selectors and predicates applying to their parts. For example:

is-real-op{x} =

is=-REALes~-type(x) & is-real-vales-value (x} &
(1s~-CONST v is-{)es-const (x) &
({sel # s~type & sel # s-value & sel # s-const) =
is-Qesel (x})

defines is~real-op to be true of x if and only if x has twe or three parts,
one selected by s-type and satisfying is-REAL {i.e. it is the elementary
object REAL), one selected by s-value and satisfying the predicate is-real-
val, and a third which may not be present (indicated by the is-2

12 TR.12.105

Unrestricted

alternative of the predicate) but if it is it must satisfy the predicate
is-CONST. Note that x may not have any other parts. This kind of definition
is so frequently used that an abbreviated notation is used for it. The
general form is: :

is-x = (<s-a:is-a>,
<{s-h:is-b>,

<{s-n:is-nd>) .
This defines is-x to be true of an object if and only if it has parts
selected by s-a, s-b, ...,s5-n satisfying the predicates is-a,is-b,...,is-n
respectively. No other parts may be present; the parts mentioned may be
missing if 2 satisfies the relevant predicate. Thus the definition of is-
real-op given above takes the form:
is-real-op = (<s-type:is-REAL>,
<s-value:is-real-val>,
<{s-const:is-CONST v is-Q>) .
(See Operands in section 1.) In this style we also use:
is-predl = (<is-pred2,is-pred3>)

to define is-predl as true only of pairs whose elements satisfy is-pred2
and is-pred3 respectively, and:

is-pred4 = ({is-predS}
to define is-predd as true only of sets whose elements satisfy is-pred5.
Lists
Lists (strictly, non-empty lists) are objects constructed with the special
selectors elem(l), elem(2),...,elem(n), where n is the number of elements

in the list (the length of the list). They satisfy the predicate:

is-non-empty-list = (<elem(l):is-el>,<elem(2):is-el>,...
<elem (n) :is-el>)

for some n, where is-el is false of [, but true of any other object.

An ordering is defined on the elements of a list by the integer arguments
to elem. The ith element of a list is

elem(i) (1ist) .

Unrestricted

TR.12.105

13

For i greater than the length of the list, elem(i) {(list) = @; elem(i) may
not be used with i £ 0.

The abbreviation:
elem({i,list) for elem(i) (list)
is sometimes used to economise on parentheses.
We also use the notation
<ell,el?2,...,eln>
to denote the list with elements ell, el2,...,eln in that order, i.e.

<ell,el2,...,eln> = pg (<elem(1) :ell>,
<elem (2) :el2>,

<elem{n) :elnd>) .

Functions head, giving the first element of a list; tail, giving the list
with its first element removed -- and the remaining elements renumbered;
length, giving the length of the list are defined (see section 1, Lists).
The concatenation operator, ", is also defined between two lists. The empty
list, <>, is defined to be an elementary object, since elem(i) (<>) = Q for
any positive i; it satisfies the predicate is-<>, which is false for any
other object. It also satisfies the predicate is-list, thus :

is=list = is-non-empty-list v is-< .

Any predicate is-pred has an associated predicate is-pred-list, which is
true of <> and of any list all of whose elements satisfy is-pred.

Sets

Sets are elementary objects, since although they have elements no structure
is defined on them. A set having specific elements a,b,c,...,n may be
defined by:

setl = {a,b,c,.e.,n}
-- in which the ordexr of the arguments is immaterial. Thus

{a'lblc}‘.; {b,c,a} = [blalc} hd

14 TR.12.105

Unrestricted

The notation {} represents the empty set, having no elements. We may also

.define sets using the notation:

set2 = {f(x) | is~pred(x)} .

In this case the set is formed by taking all the objects satisfying is-
pred, operating on them with the function f, and putting all the results in
the set. (Frequently there will be no f, just x, in such a definition
implying that the objects satisfying is-pred themselves are to be the
members of the set.)

Any predicate is-pred has an associated predicate is~pred-set which is true
of any set all of whose elements satisfy is-pred, and is also true of the
empty set {}. The empty set satisfies the predicate is-{ }, which is false
for any other object. The predicate is—-set is true of any set, including
the empty set.

The following operators on sets are used with their usual meaning

v set union
- set difference
€ is a member of

Paths_and Path-els

The existence of sets embedded in the abstract structure of a program, and
the lack of selectors to select elements of a set 1is inconvenient in
specifying some of the contextual constraints on a correct program. To
overcome this difficulty, functions called path-els are assumed to exist. A
path-el is either a selector or a function , like a selector, from a set to

one of its elements. It is assumed that, in a given set in the abstract

program, each element of the set may be obtained from the set itself by
such a path-el function, distinct path-els giving distinct elements of the
set. A path is a composition of path-els, so that any part of a given
abstract program may be obtained by applying some path to it. Distinct
paths give distinct parts of the program.

Defipition of Functions

Definitions of functions are given in the normal way, and also by cases
using the following basic form:

- Unrestricted

TR.12.105

15

funct (args) =

cases: f (args)
is-predl: def-1
is-pred2: def-2

is-predn: def-n

-- where args may be one or more arguments. This form is to be interpreted
in the following way. If is-predl is true of f (args), then funct (args) is
defined by def-1; if is-predl is false of f (args) and is-pred2 is true of
f (axrgs) then funct (args) is defined by def-2, etc.. If any of the
predicates is-predi, i =1,...,n, is undefined and none of the preceding
predicates is true of f(args), then funct (args) is undefined. 1If all the
predicates are false of f(args), then also funct(args} is undefined. Thus
functions defined this way may be partial, i.e. they may not be defined for
all values of their arguments. 1In this definition, the interpretation of a
program never becomes undefined in this way. If argument values for which
a function is not defined are presented to it, then the program must be in
error. In such cases, we write a final case giving %“error" as the
definition. (Occasionally such a definition may appear as a case other than
the last, with the same significance.) This indicates that it is an
erroneous program being interpreted if this case of the definition is
required.

Definitions of this form may be nested within each other, Thus in the above
form, def-1 may again be such a definition.

The args given ¢to the function f may be a subset of the arguments of the
main function. 1If the case depends on the value of an argument itself, and
not some value constructed from it, then the function f is omitted, and the
predicates are then applied to the single argument. If the predicates are
testing for equality with a particular elementary cbject, then we write the
object, 0B, rather than the corresponding predicate is-OB. The final
predlcate may be required to be satisfied in all cases not accepted by the
previous predicates; in this case the constant predicate T, true for all
arguments (and any number of arguments) may be used. Thus the erroneous
case mentioned above is written: :

T:errxor .

For example consider the definition of,arithm-prefix—opr of section 3.3:

16 TR.12.105

arithm-prefix—-opr (op,opr) =

cases: s~type {op)
INTG: cases: opr
PLUS: op
MINUS: mk-op(INTG, - s-value (op))
REAL: mk-op (REAL,real-prefix-value (s-value (Op) ,0pr))

This is constructed as follows. The definition deals with two basic cases,
where s-type(op) satisfies is-INTG or is-REAL. Since these predicates test
for equality with the elementary objects INTG or REAL, we write these
objects in place of the predicates in the basic form. In the first case,
i.e. if s-type{op) = INTG then there are twc sub-cases. The first applies
if the argument opr is the elementary object PLUS. In this case arithm-
prefix-opr(op,opr) is defined to be just the object op. In the second sub-
case, if the argument opr is the elementary object MINUS, then arithm-
prefix-opr (op,opr) is defined to be the value of the function mk-op applied
to arguments INTG and -s-value(op) . If s-type(op) is REAL then arithm-
prefix-op 1is defined to be the value of the function mk-op applied to
arguments REAL and the value of real-prefix-value(s-value (op),0pr). The
majority of functions in the definition return more than one object; they
may be thought of as returning a list of objects. Where such a composite
returned value is referred to, we use the notation (ell,el2?,...,eln) rather
than the usual notation <ell,el2?,...,eln> for such a list.

In many function definitions, the cases depend on the values of more than
one object returned by another function, or some combination of predicates
applied to more than one of the arguments. In such cases, a single
predicate or elementary object determining the case may be replaced by a
list of predicates or elementary objects. For example in the definition of
cue-int-st-list in section 4.1: :

cue-int-st-list (targ-sel,t,i,dn,vl) =

cases: cue-int-st(targ-sel,elem(i,t),dn,vl)
(vlt,Q): int-st-list(t,i+1,dn,v11)
(vli,élabl) : cases: labt

local(lab?,t): ...

the function cue-int-st returns a list of two objects. The first case of
the definition is taken if the second of these is Q; in this case we use

‘the parameter name vl! to refer to the first of the returned objects

(whatever it may be) in the following definition of the function. (Note
that this use of the parameter vl1 holds only within this case of the
definition. This means of introducing a new name to represent something

Unrestricted

TR.12.105

17

occurring in the definition is a special case of the abbreviation by means
of let clauses described immediately below.) Here we have used one
elementary object (Q) instead of a predicate is-2; the fact that the other
name in the case definition is neither an elementary object nor a predicate
indicates that the corresponding returned object plays no part in the case
distinction.

In many function definitions, abbreviations are used to shorten the text.

They are introduced by the word let; following this one or more names are
defined as meanlng some longer expre551on or name. Thus in the definition
of convert-one-sub in section 3.1:

convert—-one-sub (eb,op) =

let: vi = convert(INTG,op)

cases: s—lbd(eb)<v1<s-ubd(eb)

TRUE: vt

FALSE: error
the v! is used as an abbreviation for the expression on the right of the =
in the let statement. Again such an abbreviation applies only within the
case in which it is defined. Thus in the definition of iterate-for,
section 4.6:

iterate-for (cvar, for-elem,t,dn,vl) =

cases: for-elem
is-arithmexpr:
cases: eval-expr (for-elem,dn,vl)
{opt,vlt,Q): let: v = convert (s-type (cvar) ,op?)
vl2z = assign(cvar, v,vll)
int-st (t,dn,v12)
(opt,vlt,labt): (vlt,labl)
is-step-until-elem:
cases: eval-expr(s-init-expr (for-elem) ,dn,vl)
(opt,vlt ,Q): let: v = convert {s-type (cvar) ,op?t)
vlz = assign (cvar,v,vll)
iterate-step-until-elem(cvar,
s-step-expr (for-elem),
s—untll-expr(for-elem) t,dn,v1?)
(opt,vlt,labt): (vll,lab?l)
is-while-elem: iterate-whlle(cvar,for-elem,t,dn,vl)

the abbreviations op! and vlt! are defined differently in the first two
cases of for-elem.

18 TR.12.105

Unrestricted

In some function definitions, an operation is required to be performed on
an element of a set, but which element of the set is arbitrary. (This is
necessary if, for instance, the elements of a set are to be operated on in
an arbitrary order, not determined by the definition.) Thus the function
defined becomes non-deterministic, in that it does not return a uniquely
defined result, but rather one of many possible results. A special
notation is wused to indicate this. For example in the definition of mk-
pairs, section 4:

mk-pairs (id-set,t,dn) =

cases: id-set
()} {} , ,
-is-{ }: for some id! e id-set
{mk-pa (idt,t,dn) } v mk-pairs (id-set - {idt},t,dn)

the definition of the second case, where id-set is not empty, requires that
some element of id-set is to be used as id! in the case definition, but
which one 1is not defined -- any choice will satisfy the definition. In

cases such as this, where the set is already given, we use the phrase for

some, followed by a requirement on the object denoted by an abbreviation --
in this case that it be an element of the set decl-set,

Each function definition is followed by a clause giving the type of
arguments for which it is defined, and the type of values it returns. These
types are specified using predicates, which in this use stand for the set
of objects satisfying them. The notation

type: is-predl X is-pred2 - is-pred3 X is-preds
indicates that the function accepts two arguments satisfying is-predl and

is-pred2 respectively, and returns two objects satisfying is-pred3 and is-
predd4 respectively.

Unrestricted

TR.12.105

19

4. MECHANISM

The_Sequencing Mechanism

The order in which the functions of the definition are evaluated is
determined solely by their nesting. Thus int-program (section 4.1) is
defined as an application of int-block. In the evaluation of int-block,
the function eval-array-decls is evaluated first, since this determines
whether or not the values of the other functions will be required.
Following this, the functions intr-ids, mk-pairs, change-block, augment-dn,
mod-set, int-block-body, seconds, epilogque are evaluated, necessarily in
that order since each has as argument the result (or part of the result) of
that preceding; the only exception is the pair augment-dn and mod-set,
which may be evaluated in either order, since their results are both
arguments to int-block-body. The purely functional nature of the
definition ensures that the result is the same whichever order is used,
since the results of a function evaluation depend only on its arguments,
all of which are written explicitly.

Thus the ordering required by the language on the various defined
operations must be reflected in the structure of the function definitions.

Two particular styles of definition are used to specify an operation
performed on elements of a list in sequence. The simpler one is to define
a function - say fl({el,res) - to operate on a single element, and combine
this with the results from the preceding elements of the 1list. This is
then used in a recursive definition of a function, say f2, defined as:

f2{list,res) =

cases: 1list

<> : res

~is-<>:; let: res' = f1(head(list),res)
- f2(tail (list) ,res') .

{For example, see iterate-for-list,section U.6.)

This mechanism does not permit the ordering to depend on the results of any
of the functions. In the case of statement sequencing, where exceptions
may occur on executing a goto statement, a different mechanism is needed.
Here we use an iteration driven by an index to the next statement in the
list, as exemplified in int-st-list (section U4.1), and described below.

20 TR.12.105

Unrestricted

Normal segquencing through successive statements of a statement list is
modelled by int-st-list, with the list and an index, initially 1, as its
first two arguments. The effect of execution of the statements is to
change the values in vl; int-st-list returns the changed vl as well as an
abn component {explained below). The denotations, dn, affect the
execution, so dn and the initial values, vl are given to int-st-list as its
third and fourth arguments.

Generally, int-st-1list has arguments t -- a statement list, i —-- the index
of a statement in t, dn -- the denotations appropriate to the execution of
t, and vl -- the values of known variables after execution of the first i-1

statements of t. The values to be returned are obtained as the result of
applying int-st-list to t, i+1, dn, and vl}, where vlt! is vl with any
changes caused by the execution of the ith statement of t; these are
obtained by applying int-st to elem(i,t) -- the ith statement, dn, and vl.
The recursion of int-st-list in this way produces a sequence of vVvl's,
giving the changes to values resulting from the execution of the statements
of t in normal sequence. The recursion terminates when the new value of i
is greater than length(t), and the final vl is returned by int-st-list.

If a goto is executed at some point in the sequence, the appropriate
application of int-st will return a label in the abn component of its
returned value. The vl resulting from further execution is no longer that
obtained by interpreting the remainder of the list. If the label is on a
statement within the list, an appropriate vl is obtained from int-st-list
with an index to the labelled statement; this is obtained via cue-int-st-
list and cue-int-st, which ensure that the mechanism to continue normal

sequencing from the labelled statement is set up (the 1labelled statement

may be within a nest of compound statements). If the label is not on a
statement of the list, execution of this 1list is terminated with the
current vl, and the label is returned to the functions interpreting the
surrounding statement list.

The Evaluation of Expressions

In the evaluation of expressions, the order in which arithmetic and boolean
operations are performed is well defined. It is reflected, together with
any modifications introduced by parentheses, in the form of the abstract
text of the expression. However the order in which subexpressions, e.g. in
subscript or actual parameter 1lists, should be evaluated, and values of
variables accessed is not defined.

The formal definition of this situation depends on the following two facts.
Firstly, since arithmetic operations do not have any side effects, the

order in which they are done relative to the other accessing and evaluation-

operations cannot affect the final result. Secondly, the resolution of

Unrestricted

TR.12.105

21

conditional expressions to the then or else expression, and the resolution
of switch designators to the appropriate expression from their switch list,
make available further text of the expression; to allow the maximum freedom
of choice of ordering, these resolutions should be done as early as
possible.

In the definition therefore the choice is made to delay arithmetic and
boolean operations as long as possible. The function apply, which deals
with these, is thereby given a text in which all operands are ops -- i.e.
they have been reduced to values. The function reduce-cond-switch deals
with conditionals and switch designators; it is used recursively, since the
text introduced by one application of it may contain other conditionals or
switch designators which may be resolved immediately. The function access
deals with the remaining operations in arbitrary order. These comprise
evaluation of the following components of the expression: function
references, all of whose by name actual parameters have been fully
accessed: simple variables: subscripted variables, all of whose subscripts
have been fully accessed: array names (appearing in actual parameter
lists). Fully accessed means here that their values can be obtained by
apply; this function is used where appropriate to obtain the final value of
these parts of the expression.

Static_ Type Checking

The translation makes use of a function desc (section 1, Miscellaneous),

which returns a descriptor from the declarations or specifier from the

parameter specifications within whose scope a particular appearance of an
identifier lies. The first argument to desc is a path to that appearance
of the id: the second is the text which contains this appearance and the
declaration or formal parameter specification whose scope contains it.
Thus the path applied to the text gives the id. The result depends on the
context of an appearance of the id, thus a path to the id within the text
is required as an argument rather than the id itself. (The same id may be
declared or specified more than once within the text, and different
descriptors or specifiers may then be appropriate to different appearances
of the same id within the same text).

Procedure Invocations and Function Values

Procedure statements are interpreted by int-proc-st (section 4.7). This
function uses access to evaluate the by value actual parameters, and proc-
access (section 3.2) to achieve the call. The access mechanism (see the
Accessing of variables above) also uses proc-access (section 3.2).

The function proc-access finishes the evaluation of parameters with a final
apply, and passes them to activate-proc. This makes various tests on the

22 TR.12.105

Unrestricted

matching of actual and formal parameters, and forms a set of pairs of
formal parameter identifiers and their replacements. For by value
parameters, the replacement is an identifier - different from the formal
parameter identifier if this is already known as a non-local variable - to
which the value of the actual parameter is given in vl, and the description
of the formal parameter is given in dn. (This is achieved in the test of
the actual parameter).

The set of pairs is passed to non-type-proc or type-proc as appropriate.
The function type-proc establishes a new identifier to receive the returned
value (with +type of the procedure being called) in dn and uses insert-ret
to modify the relevant appearances of the procedure identifier within its
body. It then applies non-type-proc (section 4.7) to proceed with the call.

The function non-type-proc uses the change-text function to insert the
replacements for the formal parameters in the procedure body, and passes
the modified body to int-proc-body. This function then executes the
modified procedure body in the usual way.

Note that the formal parameters are local to the procedure; thus they, or
any identifiers by which they were replaced, will be deleted from vl at the
epilogue of the procedure. However, the identifier installed for the
returned value will not be deleted, since it was not included in the 1list
of such identifiers passed to epilogue by activate-proc. Thus type-proc
can extract the type and value of this identifier, and return it through
activate-proc and proc-access to fn-access, which will return it into the
evaluation of the expression in which the function call occurred.

The Copy Rule

Entry to a procédure involves replacing the by name formal parameters by

the text of the corresponding actual parameters. If this text contains

ijdentifiers that are declared within the procedure, those declared within
the procedure are changed to a different, distinct, identifier. 1In the
definition on entry to any block, the declared identifiers are changed to
ids different from those already known (i.e. having entries in the current
dn) and from all those declared within any internal blocks or procedure
descriptors. (Note that label constants are given entries in dn solely to
prevent re-use of their id.) This ensures that no conflicts can occur when
these new identifiers appear in by name actual parameters passed to the
declared procedures. It should be noted that such substitution for by name
formal parameters may give rise to syntactically incorrect text; if this is
the case the program is in error.

Unrestricted

TR.12.105

23

5. DEFINITION INFORMAL DESCRIPTION

This is taken from the ‘Revised Report on the Algorithmic Language
ALGOL 60' (Ed. P.Naur})

ECMA CHANGES: This version of the report has been

changed to reflect the restrictions made for the

ECMA subset (see CACM Vol. 6 no. 10 Oct. 1963 pp

595-597) . The restriction to non-recursive

1 DESCRIPTION OF THE REFERENCE LANGUAGE procedures and the uniqueness of identifiers being

controlled only by the first six characters have

1.1 FORMALISM FOR THE DESCRIPTION not been applied. In addition to the changes listed

in the reference, sections 2.3, 5.2.1 and 5.2.5

Introduction ' were changed to delete references to gwn. All
changes are marked.

The syntax of <program> is as given in the Algol Report. A string satisfying this syntax

is translated into an object which satisfies is-program as defined under the 'Abstract . Some examples in the Algol Report use language
Syntax' headings below. (The notation used is described in the Notation section.} For the , features not in the ECMA subset. Such examples are
main part the translation is obvious, but the Translator also performs some additional marked NON ECMA LANGUAGE.

checking. This checking is described under the "Translation" headings by stating
properties (in the form of implications) which will hold of any object created by the

Translator. As a result of this some programs which satisfy the concrete syntax are COMMENT: Where it was felt that the report was open
rejected and their semantics are not defined. to more than one interpretation (e.g. see Knuth

CACM Vol. 10 no. 10) a comment is included to
Some extra predicates are defined in the 'Auxiliary Predicate' sections, and are used as specify the interpretation taken.

abbreviations for collections of abstract syntax predicates. WNote that all predicates
defined in the abstract syntax and auxiliary predicate sections begin with is-.

The interpretation of an abstract program is then defined in the 'Interpretation' sections

as the application of the function int-program to the translated program. The actual DESCRIPTION OF THE REFERENCE LANGUAGE
definition given of int-program is a trivial one reflecting the fact that strict Algol 60

programs can only cause any observable effects by calling code procedures. This

interpretation corresponds to the semantic description of the Algol 60 language in the

sense that it defines the result of interpretation (termination or 1looping and values

available to code procedures), not the way of computing this result.

1. STRUCTURE OF THE LANGUAGE

Appended to the function definitions are the following: a list of references to any

predicates or functions not contained in the relevant section or in section 1; a The algorithmic language has three different kinds of representations -
description of any error cases; any explanatory notes required; the type of the defined reference, hardware, and publication - and the development described in the
function shown as a domain and range separated by "-" and stated in terms of cartesian sequel 1is in terms of the reference representation. This means that all
products of (sets satisfying) predicates. objects defined within the language are represented by a given set of

symbols - and it is only in the choice of symbols that the other two
The remainder of this section contains the definitions of some predicates and functions representations may differ. Structure and content must be the same for all
used throughout the formal definition. ' representations.

24 TR.12.105 - Unrestricted Unrestricted TR.12.105 25

Qbijects

(1) is-object =
This predicate is true only of elementary objects (is-set, is-basic-symbol, is-real-val,
is-intg-val, is-id, is-<>, and anything of the form is-CAPS. It is false of Q.

(2) is-ob =

(3)

(4

(5)

(6)

N

This predicate is true only of elementary or composite objects.,

is-selector =

This predicate is true only of elementary selectors. (It is false for I.)

is-sel =

This predicate is true only of elementary or composite selectors (including I).

is-path-el =
A path-el is either a selector or a function from a set to an element of that set. There
is some path-el from any set in the abstract form of the program being interpreted to
any element of that set. ‘

is—péth =

This predicate is true of objects satisfying is-path-el or compositions thereof.

is-set =

This predicate is true of any set, including the empty set, {}.

26 TR.12.105 ‘ Unrestricted

The purpose of the algorithmic language is to describe computational
processes. The basic concept used for the description of calculating rules
is the well-known arithmetic expression containing as constituents numbers,
variables, and functions. From such expressions are compounded, by
applying rules of arithmetic composition, self-contained units of the
language - explicit formulae - called assignment statements.

To show the flow of computational processes, certain non-arithmetic
statements and statement clauses are added which may describe, e.g.
alternatives, or iterative repetitions of computing statements. Since it
is necessary for the function of these statements that one statement refers
to another, statements may be provided with labels. A sequence of
statements may be enclosed between the statement brackets begin and end to
form a compound statement.

Statements are supported by declarations which are not themselves
computing instructions, but inform the translator of the existence and
certain properties of objects appearing in statements, such as the class of
numbers taken on as values by a variable, the dimension of an array of
numbers, or even the set of rules defining a function. A sequence of
declarations followed by a sequence of statements and enclosed between
begin and end constitutes a block. Every declaration appears in a block in
this way and is valid only for that block.

A program is a block or compound statement which is not contained
within another statement and which makes no use of other statements not
contained within it.

In the sequel the syntax and semantics of the language will be given.

Whenever the precision of arithmetic is stated as being in general not
specified, or the outcaome of a certain process is left undefined or said to
be undefined, this 1is to be interpreted in the sense that a program only
fully defines a computational process if the accompanying information
specifies the ' precision assumed, the kind of arithmetic assumed, and the
course of action to be taken in all such cases as may occur during the
execution of the computation.

1.1 FORMALISM FOR SYNTACTIC DESCRIPTION

The syntax will be described with the aid of metalinguistic formulae,
Their interpretation is best explained by an example:

<ab> ::3= (] [1 <ab>{ | <ab> <a>

Unrestricted

TR.12.105

27

(8) is-[pred J-set (set) =

Pairs

is-set(set) & (¥el) (el € set = is-[pred](el))

note: Any defined predicate name, with the initial is—- deleted, may be substituted for

[pred] in the above definition. For example
is~ob~set(set) = is-set(set) & (vel) (el ¢ set = is-ob(el))
is obtained in this way, using the defined predicate is-ob, 1(2).

type: is-ob - is-bool-val

(9) is-pr = (<is-ob,is-ob>)

(10) is-idpr = (<is-id,is-id>)

refs: is-id 2.4

(11) s (e,pr—-set) =

cases: e
(Je-1) (Ke,e~1> ¢ pr-set): (i e-1) (Ke,e-1> ¢ pr-set)
T: error

error: e is not first element of a pair in pr-set. (Only occurs for uninitialised values.)

type: is-ob X is-pr-set - is-ob

(12) del-set (pr-set,ob-set) =

{<e-1,e-2> | <e-1l,e-2> € pr-set & ~{e-1l ¢ ob-set)}

type: is-pr-set X is-ob-set -~ is-pr-set

{13) mod-set(pr—set-l,pr—set—Z) =

28 TR.12.105

{<e-1,e-2> | ({Ke-1,e-2> e pr-set-2 v
(<e-1,e-2> e pr-set-1 & -~{<e-1,0b> e pr-set-2)))}

type: is-pr-set X is-pr-set - is-pr-set

Unrestricted

Sequences of characters enclosed in the brackets <> represent
metalinguistic variables whose values are sequences of symbols. The marks
::= and | (the 1latter with the meaning of or) are metalinguistic
connectives. Any mark in a formula, which is not a variable or a
connective, denotes itself (or the class of marks which are similar to it).
Juxtaposition of marks and/or variables in a formula signifies
juxtaposition of the sequences denoted. Thus the fomula above gives a
recursive rule for the formation of values of the variable <abd. It
indicates that <ab> may have the value (or [or that given some legitimate
value of <ab>, another may be formed by following it with the character (
or by following it with some value of the variable <d@>. If the values of
<d@> are the decimal digits, some values of <ab> are:

[(((A@37¢
(12345 (
(((

[86

In order to facilitate the study, the symbols used for distinguishing the
metalinguistic variables (i.e. the sequences of characters appearing within
the brackets <> as ab in the above example) have been chosen to be words
describing approximately the nature of the corresponding variable. Where
words which have appeared in this manner are used elsewhere in the text
they will refer to the corresponding syntactic definition. In addition
some formulae have been given in moxe than one place.

Definition:

<empty> ::=
(i.e. the null string of symbols).

Unrestricted

TR.12.105

29

(14) firsts (pr-set) =
{ob-1]| <ob-1,0b-2> € pr-set}

type: is-pr-set - is-ob-set

(15) seconds (pr-set) =
{ob-2 | <ob-1,0b-2> ¢ pr-set}

type: is-pr-set - is-ob-set

Denotations
(16) is-type-den = (<s—-type:is-type>)
refs: is-type 5.1
(17 is-eb = (<s-1lbd:is-intg-val>,
<s-ubd:;is-intg-val>)
refs: is-intg-val 2.5
(18) is-array-den = (<s-type:is-type-array>,
<s-bounds: is-eb-1list>)
refs: is-type-array 5.2
(19) is-label-den = (<s-type:is-LABEL>,
<s-value:is-id v is-Q>)
refs: is-id 2.4

note: Label denotations contain a value only for by value parameters and the identifier
is that of the actual parameter.

(20) is-switch-den = ({s-switch-list:is-des—expr-list>,
<s-type:is-SWITCHD)
refs: is-des-expr 3.5

30 TR.12.105 Unrestricted

(21) is-proc-den = (<{s-type:is-type-proc v is-PROC>,
<s—-form-par-list:is-id-list>,
<{s-spec—-pt: is-spec-set>,
<s-value-pt:is~-id-set>,
<s-body:is-block v is-code>)

refs: is-type-proc 5.4, is-id 2.4, is-spec 5.4, is-block 4.1, is-code 5.4

(22) is-den = is-type-den v is—-array-den v is-proc-den v is-label-den v is-switch-den
(23) is-dn = ({<is-id,is-den>})

refs: is-id 2.4

Values
(24) is~arithmval = is-real-val v is-intg-val

refs: is-real-val 2.5, is-intg-val 2.5

(25) is-simple-val = is~-bool-val v is-arithm-val

refs: is-bool-val 2.2

(26) is-arithm-array-val = ({<is-intg-val-list,is-arithm-val>})

refs: is-intg-val 2.5

(21 is-bool-array-val = ({<is-intg-val-list,is-bool-val>})

refs: is-intg-val 2.5,is-bool-val 2.2

{28) is-array-val = is-arithm-array-val v is-bool~array-val
{29) is-val = is-simple-val v is—-array-val
(30) is-vl = ({<is-id,is~val>})

refs: is-id 2.4

32 TR.12.105) Unrestricted

operands

(31)
(32)

(33)
(3w

(35)

(36)

(37)
(38)
(39)

(40)

is-arithm-array-op = (<s-type:is-INTG-ARRAY v is-REAL-ARRAY>,
<s-bounds: is-eb-1list>,
<s-value:is-arithm-array-val>)
is-bool-array-op = (<s—-type:is-BOOL-ARRAY>,
<s-bounds:is-eb—-1list>,
<s-value: is-bool-array-val>)
is-array-op = is-arithmarray-op v is-bool-array-op
is-real-op = (<s-type:is-REAL>,
<{s-value: is-real-val>,
<s-const:is-CONST v is-Q>)
refs: is-real-val 2.5
is-intg-op = (<s—-type:is-INTG>,
<s-value:is-intg-val>,
<s-const:is=CONST v is-0>)
refs: is-intg-val 2.5
is-bool-op = (<s-type:is-BOOL>,
<s-value: is-bool-val>,
<s-const:is-CONST v is-0>}

refs: is-bool-val 2.2

is-arithm-op = is~real-op v is-intg-op

is—typeoop = is-arithm-op v is-bool-op

is-label-op = (<s—-type:is-LABEL>,
<s-value: is-id>,
{s-const:is-CONST v is-Q>)

refs:is-id 2.4

is-op = is—type-op v is-array-op v is-label-op

34 TR.12.105

Unrestricted

(41) mk-op (type,v) =
ug (<s-type:type>,<{s~value:Vv>)

type: (is-type v is-LABEL} X (is-simple-val v is-id) -~ is-op

Lists
(42) is-list = is=-<> v (<elem(1l}:is-el>,<elem(2) :is—-el>,..«,<elem(n) :is-el>)

note: is-el is true of any object except Q.

{u3) head (list) = elem(l) (list)

type: is-list - is-ob

(un) tail (list) = pg ({<elem{i):elem(i+1) (list)>|1<i<length (list} })

type: is-list - is-1list

{45) length (list)} =
cases: list
<S: 0
=is=<>: (i j) (elem({j) (list) # Q & ig-0Q (elem(j+1i,1ist)))

type: is-list - is-intg-val

{46) list=-1 ® list-2 =
p(list-1;{<elem({length (list~1) +i):elem{i, list-2)> | 1i<i<length(list-2) })

type: is-list X is-list - is-list

36 TR.12.105 Unrestricted

(47) is-[pred]-1list (list) =

is-list (list) & (¥i) (1<i<length(list) = is-[pred]selem (i) (list})

note: Any defined predicate name, with the initial is- deleted, may be substituted for

[pred] in the definition above. For example

is-eb-list(list) =

is-list(list) & (¥i) (1£i<length(list) > is—-ebeelem (i) (list))

is obtained in this way, using the defined predicate is-eb, 1(17).

type: is-ob - is-bool-val

Builtin functions

(48) sign (x) =
cases: x
x>0: 1
x=0: 0
x<0: -1

type: is-real-val - is-intg-val

(49) entier (x) =
(1 i) (is-intg-val(i) & isx<i+l)
refs: is-intg-val 2.5
type: is-real-val - is-intg-val
(50) abs (x) = x * sign(x)

type: is-real-val -~ is-real-val

38 TR.12.105

Unrestricted

Miscellaneous

(51) desc (path,t) =

desc-1(path(t) ,path,t)

note: is-id(path(t))
type: is-path ¥ is-text - (is-specifier v is-desc v is-label-desc)

(52) desc-1 (id,path-elepath,t) =

cases: path-elepath (t)

is-proc-desc: desc-proc (id,path-elepath,t)
is-block: desc-block(id,path-elepath,t)

T: desc-1(id,path,t)

refs: is-proc-desc 5.4, desc-proc 5.4, is-block 4.1, desc-block 4.1
type: is-id X is-path X is-program - (is-specifier v is-desc v is-label-desc)

(53) is-abn = is-id v is-Q

(54) is-

(55) is-

(56) is-

(57 is-

40 TR.I12.105

refs: is-id 2.4

intr = is-decl v is-label-decl

refs: is—-decl 5

lab-selector =

One of the elementary selectors s-st-pt, elem(i); s-then-st, s-else-st, or s-st.

lab-sel =

Compositions of lab-selectors (including I).

label-decl = (<s-id-set:is-id-set>,
<{s-desc:is-label-desc>)

refs: is-id 2.4, is-label-desc 5

Unrestricted

'(58) is-text (t) = (3p,path) (is-program(p) & is-path (path) & t=path (p))

refs: is-program 4.1

(59) disj (set-1,set-2) =
~(3el) (el ¢ set-1 & el ¢ set-2)

type: is-ob-set X is-ob-set + is-bool-val

(60) main-pt (sel) =
(1 sel-1) (is-selector (sel-1) & (3Isel-2) (sel-2ssel-1 =sel))

type: is-sel - is-selector

(61) rest-pt (sel) =
(i sel-1) (sel-lemain-pt (sel) =sel)

type: is-sel - is-sel

(62) is-opt-[pred] = is-[pred] v is-@

note: Any defined predicate name, with the initial is- deleted, may be substituted for
[pred] in the definition above. For example

is-opt-op = is-op v is-Q

is obtained in this way, using the defined predicate is-op, 1(40).

42 TR.12.105 Unrestricted

2 BASICS 2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS

BASIC CONCEPTS
Translation

(1) All <labels> other than label parameters are translated into label constants.

Abstract syntax The reference language is built up from the following basic symbols:

(2) is-basic-symbol = <basic symbol> ::= <letter> | <digit> | <logical value> | <delimiter>
The set of symbols which are members of the concrete syntax
classes <letter>, <digit>, <logical value>, <delimiters>.

(3) is-type-const = is-arithm-const v is-bool-const

refs: is-arithm-const 2.5, is-bool-const 2.2 2.1 LETTERS

- <letter> ::= ajblcldie|figlhlijjikiliminjolpiqlirisitiulviwixiylz
(4) is-const = is-type-const v is-label-const .

ECMA CHANGE
refs: is-label-const 3.5
This alphabet may arbitrarily be restricted, or extended with any other
distinctive character (i.e. character not cecinciding with any digit,
logical value or delimiter).

Letters do not have individual meaning. They are used for forming
identifiers and strings (cf. sections 2.4 Identifiers, 2.6 Strings).

44 TR.12.105 Unrestricted Unrestricted

TR.12.105

45

2.2 DIGITS/LOGICAL VALUES

Abstract syntax
(1) is-bool-val = is-TRUE Vv is-FALSE
(2) is-bool-const = (<s-type:is-BOOL>,

<s-value: is-bool-val>,
<{s-const: is-CONST>)

2.3 DELIMITERS

Translation

(1) The Translator drops delimiters and comments.

46 TR.12.105

Unrestricted

2.2 DIGITS/LOGICAL VALUES

2.2.1 Digits

<digit> ::=0 11121314 15)6171819

Digits are used for forming numbers, identifiers, and strings.

2:2.2 Logical Values

<logical value> ::= true | false

The logical values have a fixed obvious meaning.

DELIMITERS

<delimiter> ::= <operator> | <separator> | <bracket> | <declarator> | <specificator>

<operator> ::= <arithmetic operator> | <relational operator> | <logical operator> |

<sequential operator>

<arithmetic operator> ::= + | = | * | / | = | ¢
<relational operator> :z:= < | £] = 121> | #
<logical operator> ::= = | 2 | v | & | =

<{sequential operator> ::= goto | if | then | else | for | do
<seperator> ::=, | « | 10 1 5 1 5 1 := 1 ¥ | step | until | while | comment
<bracket> =z:= (1) 1L V31 1<+ | begin | end
<declarator> ::= Boolean | integer | xeal | array | switch | procedure
ECMA CHANGE

<specificator> ::= string | label | value

Unrestricted

TR.12.105 47

Delimiters have a fixed meaning which for the most paxt is obvious, oxr
else will be given at the appropriate place in the sequel.

Typographical features such as blank space or change to a new line have
no significance in the reference language. They may, however , be used
freely for facilitating reading.

For the purpose "of including text among the symbols of a program the
following "comment" conventions hold:

The sequence of basic symbols: is equivalent to
;comment <any sequence not containing;>; :
beqin comment <any sequence not containing;>; begin
end <any sequence not containing end or ; or else> end.

By equivalence is here meant that any of the three structures shown in the
left-hand column may, in any occurrence outside of strings, be replaced by
the symbol shown on the same line in the right-hand column without any
effect on the action of the program. It is further understood that the
comment structure encountered first in the text when reading from left to
right has precedence in being replaced over later structures contained in
the sequence.

2.4 IDENTIFIERS 2.4 IDENTIFIERS
Abstract syntax 2.4.1 Syntax
(1) is-id = <identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>
Infinite class of Algol identifiers. 2.4.2 Examples
q
Soup
Viva
a34kTMNs
MARILYN

48 TR.12.105 . Unréstricted v Unrestricted TR.12.105 49

2.4.3 Semantics

;dentifie;s have no inherent meaning, but serve for the identification
of simple variables, arrays, labels, switches, and procedures., They may be
chosen freely (cf., however, section 3.2.4 Standard functions) .

The same identifier cannot be used to denote two different guantities
except when these quantities have disjoint scopes as defined by the

declarat%ons of the program (cf. section 2.7 Quantities, kinds and scopes,
and section 5 Declarations).

2.5 NUMBERS 2.5 NUMBERS
Abstract syntax 2.5.1 Syntax
(1) is-real-val = <unsigned integer> ::= <digit> | <unsigned integer> <digit>

Real values are as defined in A.R. <integer> ::= <unsigned integer> | + <unsigned integer> | - <unsigned integer>

<decimal fraction> ::= . <unsigned integer>
2 is-intg-val = .
@ o <exponent part> ::= ;g <integer>

Integer values are as defined in A.R. <decimal number> ::= <unsigned integer> | <decimal fraction> |
note: It is assumed that is-intg-val (x) > is-real-val (x). <unsigned integer> <decimal fraction>

<unsigned number> ::= <decimal number> | <exponent part> | <decimal number> <exponent part>

(3) is-non-neg-intg-val (x) = is-intg-val(x) & x20 <number> ::= <unsigned number> | + <unsigned number> | - <unsigned number>
(w) is-real-const = (<s-type:is-REAL>,
<s-value:is-real-val>, 2.5.2 Examples
<s-const: is-CONST>) 0 ~200.084 -.083,4-02
i i - - -’
(5) is-intg-const = (<{s=-type:is-INTG>, 17 5384 +0; 2310310 10-“
<s-value:is-intg-val>, +0.7300 2. -ﬁo +:g+5
<s-const: is-CONST>) : o
(6) is-non-neg-intg-const = (<s~type:is-INTG>, 2-5.3 semantics
<{s—-value: is-non-neg-intg-val>, ' Decimal numbers have their conventional meaning. The exponent part is

<{s-const: is-CONST>) a scale factor expressed as an integral power of 10.

(7) is-arithm-const = is-real-const v is-intg-const ‘
50 TR.12.105 ' Unrestricted Unrestricted : TR.12.105 51

2.6 STRINGS

Abstract _syntax
(1) is-string-elem = is-basic-symbol v is-string

refs: is-basic-symbol 2

(2) is-string = is-string-elem-list

52 TR.12.105

Unrestricted

2_.5,“ Types

Integers are of type integer. All other numbers are of type real (cf.
section 5.1 Type declarations).

2.6 STRINGS

2-6.1 Syntax

<proper string> ::= <any sequence of basic symbols not containing t or 2> | <empty>
<open string> ::= <proper string> | t<open string>! | <open string> <open string>
<string> ::= <open string>4

2.6.2 Examples

LSk, = L[[[L&=/:TI LIS
L, .Thispispaprstrings4

2.6.3 Semantics

In order to enable the language to handle arbitrary sequences of basic
symbols the string quotes t and 2 are introduced. The symbol } denotes a
space. It has no significance outside strings.

Strings are used as actual parameters of procedures {(cf. sections 3.2
Function designators and 4.7 Procedure statements).

2.7 QUANTITIES, KINDS AND SCOPES

The following kinds of quantities are distinguished: simple variables,
arrays, labels, switches, and procedures.

Unrestricted)) TR.12.105

53

The scope of a quantity is the set of statements and expressions in
which the declaration of the identifier associated with that quantity is
valid. For labels see section #.1.3.

2.8 VALUES AND TYPES

A value is an ordered set of numbers (special case: a single number),
an ordered set of logical values (special case: a single logical value), or
a label.

Certain of the syntactic units are said to possess values. These
values will in general change during the execution of the program. The
values of expressions and their constituents are defined in section 3. The
value of an array identifier is the ordered set of values of the
corresponding array of subscripted variables (cf. section 3.1.4.1).

The various types (integer, real, Boolean) basically denote properties
of values. The types associated with syntactic units refer to the values
of these units.,

Unrestricted

TR.12.105

55

3 EXPRESSIONS 3. EXPRESSIONS

In the 1language the primary constituents of the programs describing

Notes algorithmic processes are arithmetic, Boolean, and designational,
.] .. , expressions. Constituents of these expressions, except for certain

In order to avoid the necessity of defining a separate class of objects to cover the delimiters, are logical values, numbers, variables, function designators,

changed expressions gengr§t9d by interpretation, the definition of is-expr permits and elementary arithmetic, relational, logical, and sequential, operators.

operands to occur as primitive elements. Since the syntactic definition of both variables and function designators

. contains expressions, the definition of expressions, and their

Translation constituents, is necessarily recursive.

(1) Only constants (a subset of operands) can occur: COMMENT: The order in which the primaries are
L .] . referenced within expressions 1is taken to be
is-expr(e) & is-sel(sel) & is-opesel (e) = is-constesel (e) arbitrary. Ssince the evaluation of function

. designators may cause a change in the value
refs: is-const 2 designated by a variable (i.e. side-effects), the
value of an expression may not be unique.

Abstract syntax <expression> ::= <arithmetic expession> | <Boolean expression> | <designational expression>

(2) is—-expr = is-arithmexpr v is-bool-expr v is-des—-expr

refs; is-arithm-expr 3.3, is-bool-expr 3.4, is-des-expr 3.5

Auxiliary predicates
(3) is-op-expr (t) =
is-expr (t) & (~(3sel) ({is-funct-ref v is-var v is-switch=des) (sel (t)}) &
(is—-cond-expresel (t) » is-opes-decisionesel (t) &
(is-TRUEes-valuess-decisionesel (t) > is-op-expres-then-expresel(t)) &
(is-FALSEes-valuees-decisionesel (t) > is-op-expres-else-expresel (t))))

refs: is-funct-ref 3.2, is-var 3.1, is-switch-des 3.5, is-cond-expr 3.3

56 TR.12.105 Unrestricted Unrestricted TR.12.105 57

Interpretation

() eval-expr (t,dn,vl) =

cases: t

is-funct-ref: cases: access (t,dn,vl)
(t1,v1?,Q): fn-access(tt,dn,vll)
(t2,v1t,1ab?): (Q,v1li,labt)

~is-funct-ref: cases: access(t,dn,vl)
(t2,v12,0): (apply(t2),vl12,Q)
(t2,vl2,1ab2): (9,vl12,1lab?)

refs: is-funct-ref 3.2, fn-access 3.2

note: The case distinction is made because access will not invoke the final function
reference (cf. note on access). }

type: is-expr X is-dn X is-vl - is-opt-op X is-vl X is-abn

(5) accéss(t,dn,vl)

let: t1! = reduce-cond-switch (t,dn)

cases: (t!,ready-set (t1,dn))

((is-funct-ref v is-proc-st),{I}):
(t1,v1,Q)

(-~ (is-funct-ref v is-proc-st),{}:
(t2,v1,Q)

T: for some sell ¢ ready-set(t!,dn)
cases: one-access (selt? (tt) ,dn,vl)
(t2,v12,0): access({u(t!;<sell:t2>),dn,v1?2)
(t2,vl2,1ab2): (2,v1l2,lab?)

refs: is-funct-ref 3.2, is-proc-st #.7

note: Since this function handles procedure statements the final access is handled as a
special case in order to avoid the check for no returned value.

type: is-text X is-dn X is-vl - is-opt-text X is-vl X is-abn

58 TR.12.105 Unrestricted

(6) reduce-cond-switch({t,dn) =

cases: t
is-op v is-object v is-simple-var: t
is-funct-ref:
cases: s-act-par-list (t)
2: t .
~is-Q: p(t;{<elem(i) es-act-par-list:
: reduce-cond-switch (elem(i) es-act-par-list (t),dn)> |
1<i<lengthes-act-par-list (t) & is-value-parm(i,s(s-id(t),dn)) })
is-switch-des:
let: sub-list?®! = reduce-cond-switch (s-subscr-list (t),dn)
cases: sub-listt ‘ :
~is-op-expr-list: p(t;<s-subscr-list:sub-list1>)
is-op-expr-list:
let: vt = convert (INTG,applyeelem (1,sub-listt))
listt = s-switch-listes (s-id (t) ,dn)
cases: vi
1<vi<length (list?l):
reduce-cond-switch (elem(vt,listt) dn)
T: error
is-cond-expr:
let: dec2 = reduce-cond-switch (s-decision(t) ,dn)
cases: dec?
~is-op-expr: u(t;<s-decision:dec2>)
is-op-expr:
let: op? = apply (dec?)
cases: s-value (op?2)
TRUE: u(t;<s-decision:op2>,
<s-then-expr: reduce-cond-switch (s-then-expr (t), dn) >)
FALSE: p(t;<s-decision:op2>,
<s-else-expr:reduce-cond-switch (s-else-expr (t) ,dn) >)
is-ob: pg ({ <sel:reduce-cond-switch (sel (t) ,dn)> | is-selector (sel) & -is-Qesel(t) })

refs: is-simple-var 3.1, is-funct-ref 3.2, is-switch-des 3.5, convert 4.2,
is-cond-expr 3.3
type: is-text X is-dn - is-text

60 TR.12.105 Unrestricted

(N ready-set (t,dn) =

cases: t
is-object v is-op: (1}
is-simple-var v is-array-name: {I}
is-subscr-var:
let: set?! = ready-set(s-subscr-list(t),dn)
cases: sett
{}: {1}
=is-{ }: {seles-subscr-list | sel e seti}
is-funct-ref:
cases:s~act-par-list (t)
Q: {1}
~is-0: let: set2 = {seleelem(i) | seleready-set (elem (i) es—act-par-list (t),dn) &
1<i<lengthes-act-par-list(t) &
is-value-parm(i,s (s-id(t),dn)) }

cases: set2
{}: {1}
~is-{ }: {seles-act-par-list | sel e set2}

is-cond-expr:
cases: s—decision (t)
~is-op: {seles-decision | sel e ready-set (s-decision (t),dn) }
is-op: cases: s-value (s-decision (t))
TRUE: {seles-then-expr | sel e ready-set (s-then-expr (t),dn) }
FALSE: {seles-else-expr | sel e ready-set(s-else-expr (t),dn) }
is-ob: {selesel-1 | -is-Qesel-1(t) & is-selector (sel-1) &
sel ¢ ready-set (sel-1(t),dn) }

refs: is-simple-var 3.1, is-array-name 3.2, is-subscr-var 3.1, is-funct-ref 3.2,
is-cond-expr 3.3 '
type: is-text X is-dn - is-sel-set

(8) one-access (t,dn,vl) =

cases: t

is-funct-ref: fn-access(t,dn,vl)

is-simple-var: (simp-var-access(t,dn,vl),vl,Q)
is-subscr-var: (subscr-var-access(t,dn,vl),vl,Q)
is-array-name: (array-access(t,dn,vl) ,vl,Qq)

refs: is-funct-ref 3.2, fn-access 3.2, is-simple-var 3.1, simp-var-access 3.1,

is-subscr-var 3.1, subscr-var-access 3.1, is-array-name 3.2, array-access 3.1
type: is-text X is-dn X is-vl - is-opt-op X is-vl X is-abn

62 TR.12.105 Unrestricted

(9)

(10)

apply(e) =

cases:
is-op:

e
e

is-arithm-expr: apply-arithm-opr (e)
is-bool-expr: apply-bool-opr (e)
is-des-expr: apply-des-opr (e)

refs: is-arithm-expr 3.3, apply-arithm-opr 3.3, is-bool-expr 3.4,

is~des~expr 3.5, apply-des-opr 3.5
type: (is—-expr v is-array-op) - is-op

is-value-parm(i,den) =

elem (i) es-form-par-list (den) ¢ s-value-pt (den)

type: is-intg-val X is-proc-den -~ is-bool-val

3.1 VARIABLES

Translation

(1)
(2)
(3)
(#

(3)

(6)

All variable identifiers must be declared in declarations or specifications:

is-path(path) & is-real-simple-varepath(prog) > is-REALedesc (s-idepath,proq)

is-path (path)
is-path (path)

is-path (path)
is-path (path)

is-path (path)

64 TR.12.105

&

&

is-intg-simple-varepath (prog)
is-bool-simple-varepath (prog)

is-real-subscr-varepath (prog)
is-intg-subscr-varepath (prog)

is-bool-subscr-varepath (progq)

5> is-INTGedesc (s-idepath,progqg)

> is-BOOLedesc (s-idepath, progq)

apply-bool-opr 3.4,

5> (is-REAL-ARRAYes—-typeedesc(s-idepath,prog) v
is-REAL-ARRAYedesc (s-idepath, prog))

7}

(is-INTG-ARRAYes-typeedesc (s-idepath,prog) v

is-INTG-ARRAYedesc (s-idepath, prog))

U

(is-BOOL-ARRAYes-typeedesc (s-idepath,prog) v

is=-BOOL-ARRAYedesc (s-idepath,progqg))

- Unrestricted -

3.1 VARIABLES

Unrestricted

TR.12.105

65

Abstract Syntax 3.1.1 Syntax

o is-real-simple-var = (§§:i$;if;§f;§AL>, <variable identifier> ::= <identifier>
refs: is-id 2.4 <simple variable> ::= <variable identifier>
. <subscript expression> ::= <arithmetic expression>
@ teTreal-subscr-var = (E::iggiz;igzét:(is—arithm—expr—list & ~is-<>) >, <subscript list> ::= <subscript expression> | <subscript list> , <subscript expression>
<s-type: 1s-REAL>) (array identifier> ::= <identifier>
refs: is-id 2.u,vis-arithm—expr 3.3 <subscripted variable> ::= <array identifier> [<subscript list>]
(9) is-intg-simple-var = (<s-id:is-id>, <variable> ::= <simple variable> | <subscripted variable>

<s-type:is-INTG>) .
3.1.2 Examples
refs:is-id 2.4

epsilon
detA
(10) is-intg-subscr-var = (<s-id:is-id>, al’z
<s~subscr-list: (is-arithm-expr-list & -is-<>)>, o[7.2]
<s-type: is-INTGD) x[sin (n*pi/2) ,Q[3,n,41]]
refs: is-id 2.4, is-arithm-expr 3.3 K
(11) is-bool-simple-var = (<s-id:is-id>,
<s-type: is-BOOL>)
refs: is-id 2.4
(12) is-bool-subscr-var = (<s-id:is-id>,
<s-subscr-list: (is-arithm-expr-list & -is-<>)>,
<s-type:is-BOOL>)
refs: is-id 2.4, is-arithmexpr 3.3
(13) is-real-var = is-real-simple-var v is-real-subscr-var
(14) is-intg-var = is-intg-simple-var v is-intg-subscr-var
(15) is-arithm-var = is~real-var v is-intg-var
Unrestricted - - "TR.12.105 67

66 TR.12.105 Unrestricted

(16) is-bool-var = is-bool-simple-var v is-bool-subscr-var

Auxiliary Predicates

(17) is-simple~var = is-real-simple-var v is-intg-simple-var v is-bool-simple-var v
is-label-var

refs: is-label-var 3.5

(19) is-subscr-var = is-real-subscr-var v is-intg-subscr-var v is-bool-subscr-var

(19) is-var = is~-simple-var v is-subscr-var

Intexrpretation
(20) simp-var—-access (t,dn,vl) =
cases: s—-type (t)
LABEL: mk-op(LABEL,s-valuess (s-id (t) ,dn))
is-type: mk-op(s-type(t),s(s-id(t),vl))
refs: is-type 5.1
type: is-simple-var X is-dn X is-vl = (is-type-op v is-label-op)
(21) subscr-var-access(t,dn,vl) =

let: sublt

yo ({ <elem (i) : applyeelem (i) es-subscr-1list (t) > |
1<i<lengthss-subscr-1list (t) 1)
subl2 = convert-subs (s-boundses (s-id (t) ,dn) , subl 1)
mk-op (s—-type (t) ,s (subl?,s (s-id (t) ,v1)))

refs: apply 3
type: is-subscr-var X is-dn X is-vl - is-type-op

68 TR.12.105 . Unrestricted

3;1.3 Semantics

A variable is a designation given to. a single value., This value may be
used in expressions for forming other values and may be changed at will by
means -of assignment statements (section 4.2). The type of the value of a
particular variable is defined in the declaration for the variable itself
(cf. section 5.1 Type declarations) or for the corresponding array

- identifier (cf. section 5.2 Array declarations).

3.1.4 Subscripts

3.1.4.1 Subscripted variables designate values which are components of
multidimensional arrays (cf. section 5.2 Array declarations). Each

‘arithmetic expression of the subscript list occupies one subscript position

of the subscripted variable, and is called a subscript. The complete 1list
of subscripts is '~ enclosed in the subscript brackets []. The array
component referred to by a subscripted variable is specified by the actual
numerical value of its subscripts (cf. section 3.3 Arithmetic expressions).

3.1.4.2 Each subscript position acts like a variable of: type integer
and the evaluation of the subscript is understood to be equivalent to an
assignment to this fictitious variable (cf. section 4.2.4).

COMMENT: The order in which references within
subscripts are made is not constrained. (see 3,
also cf. 4.2.3.1)

The value of the subscripted variable is defined only if the value of the
subscript expression is within the subscript bounds of the array (cf.
section 5.2 Array declarations).

Unrestricted

TR.12.105

69

(22) convert-subs (eb~-1list,sub-list) =

cases: length(eb-list) = length(sub-list)
TRUE: {<elem(i):convert-one-sub (elem(i,eb-list) ,elem(i,sub-list))> |
1<i<length(eb-1list) }

FALSE: error

error: If lengths of bound list and subscript list are unequal.
type: is-eb-list X is-arithmop-list - is—-intg-val-list

(23) convert-one-sub (eb,op) =

let: vi = convert (INTG,op)
cases: s-1bd(eb) £vi<s-ubd (eb)
TRUE: v1

-FALSE: erxror

refs: convert 4.2
error: If the subscript value is outside the bounds.
type: is-eb X is-arithm-op = is-intg-val

(24) array-access (arr-name,dn,vl) =

let: id = s-id(arr-name)
ebl = s-bounds (s(id,dn))
subl-set! = {<j(1),3(2) 4e+-,j(n)> | n = length(ebl) &
(1€i<n » is-intg-valej(i) & s-lbdeelem(i) (ebl) <j (i) S<s-ubdeelem (i) (ebl)) }
cases: (¥subl) (subl e subl-set! > (3val) (<subl,val> e s(s-id(t),v]1)))
TRUE: pg {<s-bounds:s-boundses (s-id (t) ,dn)>,
<s-value:s(s-id(t),vl)>,
<{s-type:s-type (t) >)
FALSE: error

refs: is-intg-val 2.5
error: If any element of the array is not initialised.
type: is-array-name X is-dn X is-vl - is-array-op

70 TR.12.105 Unrestricted

3.2 FUNCTION DESIGNATORS

Translation

Function designators are characterised as follows:

(1) is-path(path) & (is-real-funct-ref (path(prog)) =

is-REAL-PROC (s-typeedesc (s-idepath,prog)) v is-REAL-PROC (desc (s-idepath,prog))

(2) is-path(path) & (is-intg-funct-ref (path(prog)) =

is-INTG-PROC (s-typeedesc(s-idepath,prog)) v is-INTG-PROC (desc (s-idepath,progq))

(3) is-path(path) & (is-bool-funct-ref (path(prog)) =

<

is-BOOL-PROC (s-typeedesc(s-idepath,prog)) is-BOOL-PROC (desc (s—-idepath,prog))

(4) is-path(path) & is—-non-type-proc-nameepath (prog) =

(3)

is-PROCes-typeedesc (s-idepath,prog) v is-PROCedesc (s-idepath,prog)

Unsubscripted array variables are only permitted in actual parameter lists:

is-path(path) & is-array-nameepath (prog) -

(Ipath-1,i) (path = elem(i) es—act-par-listepath-1) &
is-type-arrayedesc (s-idepath,prog) v is-type-arrayess-typeedesc (s-idepath,proq)

refs: is-type-array 5.2

Abstract_syntax

(6) is-non-type-proc-name = (<s-id:is-id>,

<s-type: is-PROC>)

refs: is-id 2.4

(7 is-array-name = (<s-id:is-id>,

<s-type: is-type-array>)

refs: is-id 2.4, is-type-array 5.2

(8) is-act-par = is-expr v is-array-name v is-non-type-proc-name v is-string

72 TR.12.105

refs: is-expr 3, is-string 2.6
note: Procedure identifiers referring to type procedures satisfy is—-expr.

Unrestricted

3.2 FUNCTION DESIGNATORS

észgisgntax

<procedure identifier> ::= <identifier>

<actual parameter> ::= <string> | <expression> | <array identifier> | <switch identifier> |
<procedure identifier>

<letter string> ::= <letter> | <letter string> <letter>

<parameter delimeter> ::= , |) <letter string> : (

<actual parameter list>

<actual parameter part>

<function designator> ::

Unrestricted

= <actual parameter> |}

<actual parameter list> <parameter delimeter> <actual parameter>

= <empty> | (<actual parameter list>)

<procedure identifier> <actual parameter part>

TR.12.105

73

{9

(10)

(11)

is-real-funct-ref = (<s-id:is-1id>,

<s—-act-parxr-list:is-act-par-list v is-0>,
<s-type: is-REAL~PROC>)

refs: is-id 2.4

is-intg-funct-ref = (<g-id:is-id>,

<{s-act-par-list:is-act-par-1list v is-0>,
<s-type: is—-INTG-PROCD>)

refs: is-id 2.4

is-bool-funct~ref = (<s-id:is-id>,

<s-act-par-list:is-act-par-list v is-0>,
<s-type: i3-BOOL-PROC>)

refs: is-id 2.4

Auxiliary predicates

(12)
(13)

is-

is-funct-ref = is-real-funct-ref v is-intg-funct-ref v is-bool-funct-ref

fn-ret = (<s-type:is-type>,
<{s-value:is-simple-val v is-0>)

refs: is—type‘5.1

Interpretation

(14)

74

TR.12.105

fn~access (t,dn,vl) =

cases: proc-access (t,dn,vl)
(opt,vl:,Q): cases: op?
-is-0: (op?,vl1i,Q)
Q: . error
(op?,vl:, lab?): (Q,v1t,lab?)

error: If a procedure (invoked by a function reference) terminates normally but does not

return a value.
type: is-funct-ref X is-dn X is-vl - is-opt-op X is-vl X is-abn

Unrestricted

3.2.2 Examples

sin (a-b)

J(vts,n)

R

S (s—-5) Temperature: (T) Pressure: (P}
Compile (t:=4) Stack: (Q)

3.2.3 Semantics

Function designators define single numerical or logical values, which
result through the application of given sets of rules defined by a
procedure declaration ({cf. section 5.4 Procedure declarations) to fixed
sets of actual parameters. The rules governing specification of actual
parameters are given in section 4.7 Procedure statements. Not every
procedure declaration defines the value of a function designator.

3.2.4 standard functions

Certain identifiers should be resexved for the standard functions of
analysis, which will be expressed as procedures. It 1is recommended that
this reserved list should contain:

Unrestricted

TR.12.105

75

(15) proc-access (t,dn,vl) =

76 TR.12.105

refs:
type:

let: act-par-list?®! = cases: s—act-par-list(t)
2: <>
~is-0: p(s-act-par-list (t) ;

{<elem (i) :applyeelem (i) es-act-par-list (t) > |
1<i<lengthes-act-par-list (t) &
is-value-parm(i,s (s-id (t),dn)) })

activate-proc (s (s-id (t) ,dn),s-id (t) ,s-type (t) ,act-par-list?,dn,vl)

apply 3, is-value-parm 3
(is-funct-ref v is-proc-st) X is-dn X is-vl -+ is-opt-op X is-vl X is-abn

Unrestricted

abs (E) for the modulus (absolute value} of the
value of the expression E

sign (E} for the sign of the value of E (+1 for E>O0,
0 for E=0, -1 for E<0)

sqrt (E} for the square root of the value of E

sin (E) for the sine of the value of E

cos (E) for the cosine of the value of E

arctan (E) for the principal value of the arctangent
of the value of E

1n (E} for the natural logarithm of the value of E
exp (E) for the exponential function of the value of
E (e ¢t E}.

These functions are all undexrstood to operate indifferently on
arguments both of type real and ipnteger. They will all yield values of type
real, except for sign(E) which will have values of type integer. In a
particular representation these functions may be available without explicit
declarations (cf. section 5 Declarations).

3.2.5 Transfer functions

It is understood that transfer functions between any pair of quantities
and expressions may be defined. Among the standard functions it is
recommended that there be one, namely

entier(E) ,
which "transfers"™ an expression of real type to one of integer type, and

assigns to it the value which is the largest integer not greater <than the
value of E.

Unrestricted

TR.12.105

77

(16) activate-proc(proc,id,type,act-par-l1list,dn,vl}

let: formpart (i) = elem(i,s-form-par-list (procj))
lengtht = length (s-form-par-list (proc))

cases: length({act-par-list) = lengtht

FALSE: error

TRUE:

let: conv-act-par-list = eval-act-par-list {(act-par-list,s-form-par-1list (procj,
s=spec-pt (proc) ,s-value-pt (proc}}
act-part (i) = elem(i,conv-act-par—-list)
name-repl = {<form—-par?t (i) ,act-part (i}> |}
1<i<length?® & -is—-value-parm{i,proc} }
val-repl = mk-pairs{{form—-par? (i) |
1<i<length! & is-value-parm {i,proc) },proc,dnj
dnt = mod-set (dn,{<id2,val-den{act—par? {(i})> |
1<i<length?! & <id?,id2> ¢ val-repl & id®? = form—-part (i) })
mod-set (vl ,{<id2,s~value (act-part (i}}> |
1<i<length?® & <id?,id2> ¢ val-repl &
-is-label-op{act-pari(i}} & id: = form—-par? {i) })

vit

cases: type
1s-PROC: cases: non-type—-proc (s—-body (proc) ,val-repl ¢ name~repl,dnt,vlii)
(viz Q) : (2,epilogue {seconds (val-repl) ,v1Z2) ,0Q)
(vl2 ,1ab2): (Q2,epilogue (seconds (val—-repl)},.vliz), lab2}
is=-type-proc: cases: type-proc (proc,id,type,val-repl ¢y name-repl,dni,v1i)
{op2,vl2,40): (op2,epilogue {seconds (val-repl},v1l2},0)
(op2,vi2,1lab2): (f,epilogue {seconds (val-repl),viz},6 1ab2}

refs: is-value-parm 3, mk-pairs #.1, non-type-proc 4.7, epilogue #.1, is-type-proc 5.4
error: If lengths of actual and formal parameter lists are unequal.
note: This function called im both procedure and functional cases of procedure
invocation.
type: is-proc-den X is-id X is-type-proc X is-act-pax-list X is~dn X is-vl -
is-opt-op ¥ is-vl X is-abn

]

{17 eval-act—par-list {act-par-list,form par-list,spec-pt,val-pt)
let: spec! {i) = (i1 spec) (spec e spec-pt & s-id(spec) = elem(i, form—-par—list})
pg ({<elem({i) seval-act-par (elem(i, act-par-1list) ,s-specifier (spect (i}).,
{elem({i, form—paxr—-list)eval-pt))> | 1<iflength (form=-par-1list} })

type: is—act-=par-list ¥ is-id-1list ¥ is-spec-set X is—-id-set - is—act-par-list

78 TR.12.105 Unrestricted

{18} eval-act-par (act—-par,spec, flag} =

cases: flag
TRUE: cases: spec
is-arithm: cases: act-par
is-arithm-op: let: val = convert (spec,act-pax)
mk-op {spec,val}
~is-arithm-op: erxor
is~BOOL: cases: act-par
is=bool-op: act—par
=is=-bool=-o0p: exror
is-arithmarray:
cases: act-par
is-arithm-array-op: let: val = convert-array (spec,act-par)
p (act-par;<s—type:spec>,
<s=-value:val>)
~is-arithm-array-op: error
is=-BOOL-ARRAY:
cases: act-parxr
is-bool-array-op: act-par
~is-bool-array-op: error
is-LABEL: cases: act-par
is-label-op: act-par
~is-label-op: error
FALSE: cases: match(spec,act-par)
TRUE: act-par
FALSE: errox

refs: is-arithm $5.1i, convert 4.2, is-arithm-array 5.2
error: If act-par and spec do not conform.
note: flag is TRUE if and only if act-par is passed by value.
See also 5.4 (8) for constraints on by value specifications.
type: is—act-par X is-specifier X is-bool-val - is-act-par

(19) convert-array (spec,act-par} =

{<int-list,val> | <int-1list,v> ¢ s-value (act-par) &
val = convert-array-el (spec,v} }

type: is-arithm-array X is-arithm-array-op - is-arithm-array-val

80 TR.12.105

Unrestricted

(20) convert-array-el (arr-type,val) =

cases: (arr-type,val)

(REAL-ARRAY, is-intg-val): val
(INTG-ARRAY,is-real-val): entier(val+0.5)
T: val

type: is-arithm-array X is-arithm-val - is-arithm-val

(21) match (spec,act-par) =

is-STRING (spec) & is-string(act-par) v

is—-INTG (spec) & is-intg-expr (act-par) v
is-REAL (spec) & is-real-expr (act-par) v
is-BOOL (spec) & is-bool-expr (act-apr) v
is-type-array (spec) & spec = s—-type{act-par) v
is-LABEL (spec) & is-des-expr (act-par) v
is-SWITCH (spec) & s-type (act-par) = spec v
is-PROC (spec) & spec = s-type{act-par) v
is-type-proc(spec) & spec = s-type(act-parj

refs: is-string 2.6, is-intg-expr 3.3, is-real-expr 3.3, is-bool-expr 3.4,
is-type-array 5.2, is—-des-expr 3.5, is-type-proc 5.4
type: is-specifier X is-act-par - is-bool-val

(22) val-den (act-par) =

cases: act-par

is-type-op: ug (<{s—type: s-type (act-par) >)

is-array-op: pg (<s-type:s-type (act-par)>,
<s-bounds: s-bounds (act-par) >)

is~-label-op: act-par

type: is-op - is-den

82 TR.12.105 Unrestricted

{23) type-proc (den,id,type,pr-set,dn,vl) =

let: {<id,id:>} = mk~pairs({id}.den,dn)
typet = cases: type
’ REAL-PROC: REAL
INTG-PROC: INTG
BOOL-~PROC: BOOL
t? = insert-ret(id,id?,typel,s-body(den)}
dnt! = mod-set (dn,{<id?l, pg (<s~-type:typetd>)>})
cases: non-type-proc(t!,pr-set,dnt,vl)
(vlii, Q) : cases: (3v) (K<id:r,v> e Vv1l)
TRUE: (pg ({s-type:typeld,<s-value:s(id2,vll)>),epilogue ({id?},v11),Q)
FALSE: (pg (<s-type:typel>,<s-value:92>) ,epilogue({id1},v1il)Q)
(vlt,labl) : (2,epilogue ({id? },v11) ,1labl)

refs: mk-pairs 4.1, non-type-proc 4.7, epilogue 4.1
note: func-id is made into a var with ret-id as its s-id component.
Although no value is being returned from a type procedure, error should not be
given unless invoked as a function reference (see fn-access). »
type: is-proc-den X is-id X is-type-proc X is-pr-set X is-dn X is-vl -~ :
is-opt-fn-ret X is-vl X is-abn

(24) insert-ret (func-id, ret-id, type,t) =

cases: t

is-code: t

is-assign-st: p(t;{<elem(i) es-1p: g (<s-id:ret-id>,<s-type:typed>)> |
1<i<length(s-1lp(t)) & is-activated-fn (elem(i,s-1p(t))) &
s-id(elem(i,s-1p(t)))= func-id})

is-set: {insert-ret(func-id,ret-id,type,el) | el e t}

is-object: t

is-ob: pg ({<sel:insert-ret (func-id,ret-id,type,sel (t))> | is-selector(sel) &

-~is-Q(sel (t))} D)

refs: is-code 5.4, is-assign-st 4.2, is-activated-fn 4.2
type: is-id X is-id X is-type X is-text - is-text

84 TR.12.105 Unrestricted

3.3 ARITHMETIC EXPRESSIONS
3.3 ARITHMETIC EXPRESSIONS

Translation

(1) The precedence of operators and use of brackets is reflected in the abstract object
representing the expression.

Abstract Syntax
(2) is-arithm-prefix-opr = is-PLUS v is-MINUS

3.3.1. Syntax

<adding operator> ::= + | -

(3) is-real-prefix—expr = (<s-op:is-real-expr>,
<s-opr:is-arithm-prefix-opr>) <multiplying operator> ::= % | / | ¢
(4) is-intg-prefix-expr = (<s-op:is-intg-expr>, <primary> ::= <unsigned number> | <variable> | <function designator> | (<arithmetic expression>)
<s-opr:is-arithmprefix-opr>)
<factor> ::= <primary> | <factor> % <primary>
{(5) is-real-infix-opr = is-PLUS v is-MINUS v is-MULT v is-DIV v is-POWER .
<term> ::= <factor> | <term> <multiplying operator> <factor>
(6) is-real-infix-expr-1 = (<s-op-l:is-real-expr>, .
<s-op-2:is-real-expr>, <simple arithmetic expression> ::= <term> | <adding operator> <term> |
<s—-opr:is-real-infix-opr>) <simple arithmetic expression> <adding operator> <term>
(7N is-real-infix-expr-2 = (<s-op-l:is-real-expr>, " <if clause> ::= if <Boolean expression> then
<s-op-2:is-intg-expr>,
<s-opr:is-real-infix-opr>) ~ <arithmetic expression> ::= <simple arithmetic expression> i
<if clause> <simple arithmetic expression> else <arithmetic expression
(8) is-real-infix-expr-3 = (<s-op-1l:is-intg-expr>,
<s—-op-2:is-real-expr>,
<s-opr:is-real-infix-opr>}
= (<s-op-1l:is-intg-expr>,

(9) is-real-infix-expr-4
‘ : <s-op-2: (is-intg-expr & -~is-non-neg-intg-const} >,
<s-o0pr: is-POWERD)

refs: is-non-neg-intg-const 2.5

(10) is-real-infix-expr-5 = (<s-op-l:is-intg-expr>,
<s-op-2:is-intg-expr>,
<s—-opr:is-DIV>)

(11 is-real-infix-expr = is~real-infix-expr-1 v is-real-infix-expr-2 v is-real-infix-expr-3 v
, "is-real-infix-expr-4 v is-real-infix-expr-5

86 TR.12.105 : Unrestricted Unrestricted ' TR.12.105 87

(12) is-intg-infix-opr = is-PLUS v is-MINUS v is-MULT v is-INTGDIV v is-POWER 3.3.2 Examples

{13) is-intg-infix-expr-1 = (<s-op-1:is-intg-expr>, Primaries:
<s—-op—-2:is-intg-expr>, T.394, -8
<s-opr: (is-intg-infix-opr & =-is-POWER) >} sum

wl{i+2,8]

cos (y+2*3)
{(a-3/y+vut8)

[}

{{s-op—-1:is-intg-expr>,
{s-op—-2:is-non-neg-intg-const>,
<s-opr: is-POWER>)

{(14) is-intg-infix-expr-2

Factors:
omega
sumécos (y+z#*3)
7.39U, o—8¢w[142,811 (a-3/y+vut8)

refs: is—-non-neg-intg-const 2.5

(15) is-intg-infix-expr = is-intg-infix-expr-1 v is-intg-infix-expr-2
Terms:

U
omega*sumtcos (y+z*3) /7.390 448
tw[ie2,8]t (a-3/y+vuig)

(16) is-real-cond-expr-1 = (<s-decision:is-bool-expr>,
<s-then-expr:is-real-expr>,
<s-else-expr: is-real-exprd>)

Simple arithmetic expression:
U~-Yu+omega*sumtcos (y+z*3) /7.394,,-8
twl[i+2,87¢ {(a~3/y¢vuig)

refs: is-bool-expr 3.4

(17 is-real-cond-expr-2 = (<s-decision:is-bool-expr>,
<s-then-expr: is-real-expr>,
<s-else-expr:is-intg-expr>)

Arithmetic expressions:

wEu~Q (S+Cu) ¢2

if g>0 then S+3*Q/A else 2*S+3%q

if a<0 then U+V else if a*b>17 then U/V else if k#y
then V/U else 0

a¥sin (omega#*t)

0.574g12%a[N* (N~-1) /2,0]

{A*arctan (y} +Z) t {(7+Q)

if q then n-1 else n

if a<0 then A/B else if b=0 then B/A else z

refs: is-bool-expr 3.4

(18) is-real-cond-expr-3 = (<s-decision:is-bool-expr>,
<s-then-expr: is-intg-expr>,
<{s-else-expr:is-real-exprd>)

refs: is-bool-expr 3.4

(19) is-real-cond-expr is-real-cond-expr-1 v is-real-cond-expr-2 v is-real-cond-expr-3

(<s-decision: is-bool-expr>,
<s-then—-expr:is-intg-expr>,
<{s-else-expr: is-intg-expr>)

(20) is-intg-cond-expr

refs: is-bool-expr 3.4

88 TR.12.105 . Unrestricted Unrestricted TR.12.1G5 89

{(21) is-real-expr = is-real-op v is-real-var v is-real-funct-ref v is-real-prefix-expr v

{(22) is-

{23) is-

is-real-infix-expr v is-real-cond-expr

refs: is-real-var 3.1, is~real-funct-ref 3.2

intg-expr = is-intg-op v is-intg-var v is-intg-funct-ref v is-intg-prefix-expr v

is-intg-infix-expr v is-intg-cond-expr

refs: is-intg-var 3.1, is¥intg—funct—ref 3.2

arithm-expr = is-real-expr v is-intg-expr

Auxiliary predicates

{(24) is-
{25) is-
(26) is-

(27 is~

(28) is-

90 TR.12.105

arithm-prefix-expr = is-real-prefix-expr v is-intg-prefix-expr
arithminfix-expr = is-real-infix-expr v is-intg-infix-expr
arithm-cond-expr = is-real-cond-expr v is-intg-cond-expr

cond-expr = is-arithm-cond-expr v is-bool-cond-expr v is-des-cond-expr

refs: is-bool-cond-expr 3.4, is-des—cond-expr 3.5

arithm-infix-opr = is-real-infix-opr v is-intg-infix-opr

Unrestricted

Interpretation
(29) apply-arithm-opr (e} =

cases: e
is-arithmprefix-expr: arithm-prefix-opr (applyes-op (e},s—opxr (e))
is-arithminfix-expr: arithm-infix-opr (applyes-op-1 (e),applyes-op-2(e},s—opr{e})
is-arithm-cond-expr: cases: s-valuees-decision (e)
TRUE: cases: is-intg-expres-then-expr (e) & is-real-expr (e)
TRUE: mk-op (REAL,s-valueeapply (s-then-expr (e))}
FALSE: applyes-then-expr (e)
FALSE: cases: is-intg-expres-else-expr (e) & is-real-expr (e)
TRUE: mk-op (REAL,s-valueeapply (s-else-expr (e)})
FALSE: applyes-else-expr (e)

refs: apply 3
type: is-arithmexpr - is-arithm-op
(30) arithm-prefix-opr (op,opr) =
cases: s—-type(op)
INTG: cases: opr
PLUS: op
MINUS: mk-op(INTG, - s-value{op))
REAL: mk-op (REAL,real-prefix-value (s-value (opj ,o0pr))

type: is-arithm-op X is-arithm-prefix-opr - is-arithm-op

(31) real-prefix-value(v,opr) =
This function is implementation-defined.

type: is-real-val X is-arithm—-prefix-opr - is-real-val

92 TR.12.105 . Unrestricted

3:3.3 Semantics

An arithmetic expression is a rule for computing a numerical value. In
case of simple arithmetic expressions this value is obtained by executing
the indicated arithmetic operations on the actual numerical values of the
primaries of the expression, as explained in detail in section 3.3.% below.

The actual numerical value of a primary is obviocus in the case of numbers.
For variables it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising from the computing
rules defining the procedure (cf. section 5.4.4% Values of function
designators) when applied to the current values of the procedure parameters
given in the expression. Finally, for arithmetic expressions enclosed in
parentheses the value must through a recursive analysis be expressed in
terms of the values of primaries of the other three kinds.

In the more general arithmetic expressions, which include if clauses,
one out of several simple arithmetic expressions is selected on the basis
of the actual values of the Boolean expressions (cf. section 3.4 Boolean
expressions) . This selection is made as follows: The Boolean expressions of
the if <clauses are evaluated one by one in sequence from left to right
until one having the value true is found. The value of the arithmetic
expression is then the value of the first arithmetic expression following
this Boolean (the largest arithmetic expression found in this position is
under stood) .

The construction:

else <simple arithmetic expression>

is equivalent to the construction:

else if true then <simple arithmetic expression>

COMMENT: WNo references within either branch of a
conditional expression are made until the <Boolean
expression> is referenced fully. When this is fully
referenced it can be determined which branch is to
be used, and no references in the other branch are
made.

COMMENT: The ¢type of a conditional expression
depends on the <types of both branches. The
expression being of type integer only in the case
when both branches are of type integer. Thus if the
types of the branches are different, depending on

Unrestricted

TR.12.105

93

(32)

(33)

(34)

arithm-infix-opr (op-1i,0p-2,0px) =

refs:

let: type! = s-type (op-1)

type2 = s-type (op-2)

vEi = s-value(op-1)

vZ = s-value(op-2)
cases: (typel,typeZ,opr}
(is-arithm, INTG, POWER) : intg-power—opr (op-1,0p-2))
(is-arithm,REAL, POWER) : mk-op (REAL, real-power-value (vi,v2)}
(INTG, INTG,is-intg-infix-opr) : mk-op (INTG,intg-arithm-infix-value (vi,v2,0pr)j
(is-arithm,is-arithm,is-real-infix-opr) :

mk-op (REAL,real-arithm-infix-value (vi,v2,opr))

is-arithm 5.1

type: is-arithm-op X is-arithm-op X is-arithm-infix-opr - is-arithm-op

refs:
nocte:

type:

intg-power-opr (op-1,0p-2) =

let: vi = intg-power-opr-val (op-1,s-value {(op-2))
cases: is-intg-op(op-1) & is-non-neg-intg-const (op-2)
TRUE: mk-op (INTG,vi)

FALSE: mk-op(REAL,V?)

is-non-neg-intg-const 2.5
intg~op to power non-neg-intg-const yields an intg result.
is-arithm-op X is-intg-op - is-arithm-op

intg-power-opr-val (op,i) =

cases: 1
i>0: s-valueeself-mult (op,i)
i=0: cases: s-value(op) # 0
TRUE: mk-op (s—-type (op) ,1)
FALSE: error
i<0: cases: s-value(op) # O
TRUE: arithm-infix-opr (mk-op (REAL,1),self-mult (op,-i),DIV)
FALSE: error

error: If s-value(op) = 0 and i<0.

type:

94 TR.12.105

is-arithm-op X is-intg-val - is-arithm-val

Unrestricted

which branch is evaluated, a conversion may be
necessary. { see 3.3.4)

3.3.4 Operators and types

Apart from the Boolean expressions of if clauses, the constituents of
simple arithmetic expressions must be of types real or integer (cf.
section 5.1 Type declarations). The meaning of the basic operators and the
types of the expressions to which they lead are given by a set of rules.
However if the type of an arithmetic expression according to the rules
cannot be determined without evaluating an expression or ascertaining the
type or value of an actual parameter, it is real.

ECMA CHANGE
COMMENT: (See 3 and 3.3.4.3)

These rules are:

3.3.4.1 The operators +, -, and * have the conventional meaning
(addition,subtraction,and multiplication) . The type of the expression will
be jnteger if both of the operands are of integer type, otherwise real.

3.3.4.2 The operations <term>/<{factor> and <term> < <factor> both
denote division, to be understood as a multiplication of the texrm by the
reciprocal of the factor with due regard to the rules of precedence (cf.
section 3.3.5). Thus, for example

a/b * 7/(p - q) * v/s
means
((((a * (bt-1)) * 7) *({{p - Q) t-1)) * v) * (st-1)
The operator / 1is defined for all four combinations of types real and
integer and will yield results of real type in any case. The operator ¢ is

defined only for two operands both of type integer and will yield a result
of type integer, mathematically defined as follows:

a = b= sign (a/b) * entiexr (abs{a/b}}
(cf.sections 3.2.4 and 3.2.5}.

Unrestricted

TR.12.105

935

(35) self-mult (op,i)

cases: i
i>1: arithminfix-opr (self-mult (op,i-1) ,0p,MULT)
i=1l: op

type: is-arithm-op X is-non-neg-intg-val - is-arithm-op

(36) real-power-value (v-1,v-2) =

cases: v-1
v-1>0: real-arithm-infix-value (v-1,v-2,POWER)
v-1=0: cases: v-2
v-2>0: 0
v-2<0: error
v-1<0: error

error: If a zero value is raised to a negative or zero power, or a negative value is

raised to any power.
type: is-arithm-val X is-real-val - is-real-val
(37) real-arithminfix-value(v-1,v-2,0pr} =
This function is implementation defined.

type: is-real-val X is-real-val X is-real-infix-opr - is-real-val

{38) intg-arithm-infix-value(v-1,v-2,0pr) =

cases: opr

PLUS: v-1 + v-2

MINUS: v-1 - v-2

MULT: v-1 * v-2

INTGDIV: sign(v-1/v-2) # entiersabs{v-1/v-2)

type: is-intg-val X is-intg-val X is-intg-infix-opr - is-intg-val

96 TR.12.105

Unrestricted

3.3.4.3 The operation <factor> ¢ <primary> denoctes exponentiation,
where the factor is the base and the primary is the exponent. Thus, for
example

2 ¢t nt k means {(2tn) tk
while
2t (n t m) means 2t (ntm)

Writing i for a number of integer type, r for a number of real type, and a
for a number of either integer or real type, the result is given by the
following rules:

at i If i>0,a * a * ... * a(i times) ,of the

same type as a.

If i=0,if a # 0,1,0f the same type as a,
if a=0, undefined.

If i<0,if a # 0, 1/(a * a * .., * a)
(the denominator has -i factors),
of type real,
if a=0, undefined.

COMMENT: In the case where a is of type integer,
then if i is not a constant, its value affects the
value of the expression. In this case the
expression is of type real. (see 3.3.4)

atr If a>0,exp(r * 1ln(a)) ,0of type real.
If a=0,if r >0, 0.0, of type real,
if r<0, undefined.
If a<0, always undefined.

3.3.5 Precedence_of_ operators

The sequence of operations within one expression is generally from left
to right, with the following additional rules:

3.3.5.1 According to the syntax given in section 3.3.1 the following
rules of precedence hold:
first: t
second: * / 2
third: + -

3.3.5.2 The expression bhetween a 1left parenthesis and the matching
right parenthesis is evaluated by itself and this value 1is used in

Unrestricted

TR.12.105

97

subsequent calculations. Consequently the desired order of execution of
operations within an expression can always be arranged by appropriate
positioning of parentheses.

3.3.6 Arithmetics of real guantities

Numbers and variables of type real must be interpreted in the sense of
numerical analysis, i.e. as entities defined inherently with only a finite
accuracy. Similarly, the possibility of the occurrence of a finite
deviation from the mathematically defined result in any arithmetic
expression is explicitly understood. No exact arithmetic will be specified,
however, and it is indeed understood that different hardware
representations may evaluate arithmetic expressions differently. The
control of the possible consequences of such differences must be carried
out by the methods of numerical analysis. This control must be considered a
part of the process to be described, and will therefore be expressed in
terms of the language itself.

Unrestricted

TR.12.105

99

3.4 BOOLEAN EXPRESSIONS

Translation

(1)

The precedence of operators and use of brackets is reflected in the abstract object
representing the expression.

Abstract_ Syntax

(2)

(3)

(4

(3)

(6)
(n

(8)

(<{s-opr: is-NOT>,<s-op:is-bool-expr>)

is-bool-prefix-expr

is-bool-infix-opr = is-AND v is-OR v is-IMPL v is-EQUIV

(<s-opr:is-bool-infix-opr>,
<s-op-1:is-bool-expr>,
<s-op-2:1is-bool-expr>)

is-bool-infix-expr

{{s-decision:is-bool-expr>,
<s~-then-expr:is-bool-expr>,
<s-else-expr:is-bool-expr>)

is-bool-cond-expr

is-GT v is-GE v is-EQ v is~LE v is-LT v is-NE

is-arithm—-relat-opr

(<s~opr: is-arithm-relat-opr>,
<s-op-1:is-arithm-expr>,
<s-op-2:is-arithm-exprd>)

is-arithm-relat-expr

refs: is-arithm-expr 3.3

is-bool-expr = is-bool-op v is-bool-var v is-bool-funct-ref v is-bool-prefix-expr v
is-bool-infix-expr v is-bool-cond-expr v is-arithm-relat-expr

refs: is~bool-var 3.1, is-bool-funct-ref 3.2

100 TR.12.105 Unrestricted

3.4 BOOLEAN EXPRESSIONS

3.8.1 Syntax

IA

<relational operator> ::= < | 1=121>1 4%

<relation> ::= <simple arithmetic expression> <relational operator>
<simple arithmetic expression>

<Boolean primary> ::= <logical value> | <variable> | <function designator> | <relation> |
(<Boolean expression>)

<Boolean secondary> ::= <Boolean primary> | - <Boolean primary>

<Boolean factor> ::= <Boolean secondary> | <Boolean factor> & <Boolean secondary>
<Boolean term> ::= <Boolean factor> | <Boolean term> v <Boolean factor>
<implication> ::= <Boolean term> | <implication> > <Boolean term>

<simple Boolean> ::= <implication> | <simple Boolean> = <implication>

<Boolean expression> ::= <simple Boolean> |
<if clause> <simple Boolean> else <Boolean expression>

3.4.2 Examples

x = -2
Y > Vv z£qg
atb > -5 & z-d>qt2
p & q Vv x#y
g=-~a&bag-cvdvensaf
if k<1 then s>w else h<c
if if if a then b else c then d else f then g else h<k
Unrestricted TR.12.105

101

Interpretation
(9) apply-bool=-opr {e) =
cases: e ,
is-bool-prefix-expr: mk-op(BOOL, - s-valueeapplyes—op (e})
is-bool-infix-expr: bool-infix-opr (applyes-op-1 (e),applyes-op-2(e),s—opr (e))
is-arithmrelat-expr: arithm-relat-opr (applyes-op-1 (e) ,applyes—-op-2(e),s~opr(e))
is-bool-cond-expr: cases: s-valuees-decision (e)
TRUE: applyes-then-expr (e)
FALSE: applyes-else-expr (e)
refs: apply 3
type: is-bool-expr -~ is-bool-op
(10) bool-infix-opr(op-1,0p~2,0pr) =
mk-op (BOOL,bool-infix~value (s-value (op-1) ,s-value (op-2) ,0pr))

type: is-bool-op X is-bool-op X is-bool-infix-opr - is-bool-op

(11) bool-infix-value (v-1,v-2,0pr) =

cases: opr

AND : v-1 & v-2
OR : v-1 v v=2
IMPL : v-1 > v-2
EQUIV: v-1 = v-2

type: is-bool-val X is-bool-val X is-bool-infix-opr - is-bool-val

(12) arithm-relat-opr (op-1,0p-2,0pr) =
mk-op (BOOL,arithm-relat-value (s-value (op-1) ,s-value (op-2) ,0pr))

type: is-arithm-op X is-arithm-op X is-arithm-relat-opr - is-bool-op

102 TR.12.105 . Unrestricted

3.4.3 Semantics

A Boolean expression 1is a rule for computing a logical wvalue. The
principles of evaluation are entirely analogous to those given for
arithmetic expressions in section 3.3.3.

3.4.04 Types

Variables and function designators entered as Boolean primaries must be
declared Boolean (cf. section 5.1 Type declarations and section 5.4.U4
Values of function designators).

3.4.5 The operators

Relations take on the value true whenever the corresponding relation is
satisfied for the expressions involved; otherwise false.

The meaning of the logical operators -(not), & (and), v (or), =

(implies), and = (equivalent), is given by the following function table.
bi false false true true
b2 false true false true
- bl true true false false

bl & b2 false false false true
bl v b2 false true true true

> b2 true true false true
bl = b2 true false false true

3.4.6 Precedence of operators

The sequence of operations within one expression is generally from left
to right, with the following additional rules:

Unrestricted

TR.12.105

103

(13) arithm-relat-value (v-1,v-2,0pr) =

cases: Opr

GT: v=-1 > v=-2
GE: v~1 2 v-2
EQ: v-1 = v=-2
LE: v-1 € v-2
LT: v-1 < v-2
NE: v-1 # v2

type: is-arithm-val X is-arithm-val X is-relat-opr - is-bool-val

3.5 DESIGNATIONAL EXPRESSIONS
Translation

(1) is-path (path) & is-switch-desepath (prog) > (is-switch-desce=desc(s~idepath,prog) v
is-SWITCHedesc (s-idepath, prog))

refs: is-switch-desc 5.3
(2) is~-path (path) & is-label-const(path(prog)) =
is-label-desc (desc (s-idepath,prog))
refs: is-label-desc 5
(3 is-path(path) & is-label-var (path(prog)) =
1s-LABEL (desc (s-idepath,prog))

note: This only applies to the translation of label parameters.

Abstract Syntax

(4) is-switch-des = (<s~id:is-id>,
<s-subscr-1list: (<elem (1) :is-arithm-expr>)>,
<s-type: is-SWITCH>)

refs: is-id 2.4, is—arithm—expr 3.3

104 TR.12.105 Unrestricted

3.4.6,1 According to the syntax given in section 3.4.1 the following

rules of precedence hold:

first:arithmetic expressions according to section 3.3.5.

second: < £ 2> #
third:
fourth:
fifth:
sixth:
seventh:

Hu < g

3.4.6.2 The use of parentheses will be interpreted in the sense given

in section 3.3.5.2,

3.5 DESIGNATIONAL EXPRESSIONS

3.5.1 Syntax

<label> ::= <identifier>

<{switch identifier>

Unrestricted

ECMA CHANGE

::= <identifier>

TR.12.105

105

(5)

(6)

(N

(8)

is-des~-cond-expr = ({s~decision:is-bool-expxr>,
<s-then-expr:is-des-expr>,
{s-else-expr: is-des-expr>)
refs: is-bool-expr 3.4
is-label-var = (<s-id:;is-id>,
<{s—-type: is-LABEL>)
refs: is-id 2.4 ‘
is-label-const = (<s-type:is-LABEL>,
<s-value:is-id>,
<s-const: is—-CONST>)

refs: is-id 2.4

is-des-expr = is-label-op v is-label-var v is-switch-des v is-des-cond-expr

Ipterpretation

(9)

apply-des-opr (e) =

cases: s—valuees-decision{e}
TRUE: applyes-then-expr (e)
FALSE: applyes-else-expr (e)

refs: apply 3
type: is-des-cond-expr - is-label-op

106 TR.12.105

Unrestricted

<switch designator> ::= <switch identifier> [<subscript expression>]

<simple designational expression> ::= <label> | <switch designator> |
(<designational expression>)

<designational expression> ::= <simple designational expression> |

<if clause> <simple designational expression> else

<designational expression>

3.5.2 Examples

17
NON ECMA LANGUAGE

PO

Choose[n-1]

Town[i1f y<0 then N else N+1]

if Ab<c then 17 else gq[if w<0 then 2 else n]
NON ECMA LANGUAGE

3.5.3 Semantics

A designational expression is a rule for obtaining a label of a
statement (cf. section 4 Statements). Again, the principle of the
evaluation is entirely analogous to that of arithmetic expressions (section
3.3.3). In the general case the Boolean expressions of the if clauses will
select a simple designational expression. If this is a label the desired
result is already found. A switch designator refers to the corresponding
switch declaration (cf. section 5.3 Switch declarations) and by the actual
numerical value of 1its subscript expression selects one of the
designational expressions 1listed in the switch declaration by counting
these from left to right. Since the designational expression thus selected
may again by a switch designator this evaluation is obviously a recursive

process.

3.5.4 The subscript expression

The evaluation of the subscript expression is analogous to that of
subscripted variables (cf. section 3.1.4.2). The wvalue of a switch
designator is defined only if the subscript expression assumes one of the
positive values 1,2,3,...,n, where n is the number of entries in the switch
list.

3.5.5
Deleted.

ECMA CHANGE

Unrestricted

TR.12.105

107

4 STATEMENTS 4. STATEMENTS

The units of operation within the language are called statements. They

Translation will normally be executed consecutively as written. However, this sequence
of operations may be broken by goto statements, which define their

successor explicitly, and shortened by conditional statements, which may

(1) The <labels> at the head of a <basic statement> etc. are collected into a set. cause certain statements to be skipped.
(2) The Translator rejects any <program> in which errors of duplication would be hidden In order to make it possible to define a specific dynamic succession,
by (1) (e.g. lab:lab:x:=1;). statements may be provided with labels.
. Since sequences of statements may be grouped together into compound
(3) local (id,t) = statements and blocks, the definition of statement must necessarily be
recursive. Also since declarations, described 1in section 5, enter
(3sel) (ides-label-ptesel (t) & -~(3sel-i,sel-2) (sel=sel-2esel-1 & is—blockesel-1(t))) fundamentally into the syntactic structure, the syntactic definition of

statements must suppose declarations to be already defined.

refs: is-block 4.1
note: It is implicit in the above definition that labels within procedure declarations

are omitted because no selector will yield components of the declaration set.
type: is-id X is-text - is-bool-val

(4) make-st-sel (id,t) =

(i sel) (ides-label-ptesel (t) & -~ (3Isel-1,sel-2) (sel=sel-2esel-1 & is-blockesel-1(t)}}

refs: is-block 4.1

note: Only used if local (id,t).
type: is-id X is-text - is-lab-sel

Abstract_syntax

(5) is-unlab-st = is-comp-st v is-block v is-assign-st v is-goto-st v is-dummy-st v
is-cond-st v is-for-st v is-proc-st

refs: is-comp-st 4.1, is-block 4.1, is-assign-st 4.2, is-goto-st 4.3, is-dummy-st 4.4,
is-cond-st 4.5, is-for-st 4.6, is-proc-st 4.7
(6) is-st = (<s-label-pt:is-id-set>,
<{s=-st-pt:is-unlab-st>)

refs: is-id 2.4

108 TR.12.105 ' Unrestricted Unrestricted TR.12.105 109

Interpretation

(7) int-st (st,dn,vl) =

cases: int-unlab-st (s-st-pt(st) ,dn,vl)

(vir,) : (vli,Q)

(vli,labt): cases: lab?
local (labtl,st): cue-int-st (make-st-sel (labt,st),st,dn,v11)
-local (labt,st): (vli,blabt)

type: is-st X is-dn X is-vl - is-vl X is-abn

(8) int-unlab-st (t,dn,vl) =

cases: t

is-comp-st: int-st-list(t,1,dn,vl)
is-block: int-block(t,dn,vl)
is-assign-st: int-assign-st(t,dn,vl)
is-goto-st: int-goto-st(t,dn,vl)
is-dummy-st: (vl1,Q)

is-cond-st: int-cond-st(t,dn,vl)
is-for-st: int-for-st(t,dn,vl}
is-proc-st: int-prac-st(t,dn,vl)

refs: is-comp-st #.1, int-st-list 4.1, is-block 4,1, int-block 4.1, is-assign-st 4.2,
int-assign-st 4.2, is-goto-st 4.3, int-goto-st 4.3, is-dummy-st U4.4, is-cond-st 4.5,
int-cond-st 4.5, is-for-st 4.6, int-for-st 4.6, is-proc-st 4.7, int-proc-st 4.7

type: is-unlab-st X is-dn X is-vl - is-vl X is-abn

(%) ° cue-int-st (targ-sel,st,dn,vl) =

cases: targ-sel
I: int-st(st,dn,vl)
-is-1: cages: cue-int-unlab-st (rest-pt(targ-sel),s-st-pt(st),dn,vl)
(vl ,9): (v1i,Q)
(vlt,1abt}: cases: lab!?
local (labt,st) : cue-int-st (make-st-sel (1abl,st),st,dn,v1}l)
~local (labt,st) : (vli,labt)

type: is-lab-sel X is-st X is-dn X is-vl - is-vl X is-abn

110 TR.12.105 Unrestricted

{10) cue—int—unlahrst(targ-sel,t,dn,vl) =
cases: t
is-comp-st: let: i? = (i i) (main-pt (targ~sel) = elem(i))
cue-int-st-1list (rest-pt (targ-sel) ,t,i%,dn,v1)
is-cond-st: cue-int-st(rest-pt(targ-sel) . main-pt (targ-sel) (t),dn,v1)
is-for-st: error
refs: is~comp-st 4.1, cue-int-st-list 4.1, is-cond-st 4.5, is-for-st 4.6

error: goto into for not allowed (see A.R. U4.6.6) .
type: is-lab-sel X is-unlab-st X is~dn X is-vl -» is-vl X is—abn

4.1 COMPOUND STATEMENTS AND BLOCKS

Translation

(1) All <programs> are surrounded by an embracing block which introduces all of the standard
functions (see AR 3.2,.4). SIGN must be included since it is used in interpretation as
though referenced in the text.

(2) All <procedure bodies> which are not <code> are converted to blocks.

(3 intr-ids () =
{id | (3d) (d e s-decl-pt(t) & id e s-id-set{d}} } v local-labs (t)

type: is-block - is-id-set

{u) local-labs {t) =
{id | local (id,t) }

refs: local &
type: is-block - is-id-set

112 TR.12.105 . Unrestricted

4.1 COMPOUND STATEMENTS AND BLOCKS

Unrestricted

TR.12.105

113

)] desc-block {id,path-elepath,t] =

caseg: id : :
{3decl) {decl ¢ s-decl-ptepath-elepath(t) & id ¢ s-id-set (decl)):

let: deci? = (i decl) {decles—-decl-ptepath-elepath(t) & 1d e séiaoseﬁ{decisﬁ

s-desc (decl?)
id e local-labs(path-elepath(t)): pp (<s-type:LABEL>}
T: desc-1(id,path,%)

type: is-id X is-path X is-program - (is-specifier v is-desc v is-label-desc)

Abstract syntax

(6} is-comp-st = is-st-1list
refs: is-st &4
(73 is-block = (<s-decl-pt:is-decl-set>,
<{s-st-list:is-st-1list>)

refs: is-decl 5, is-st 4

(8) is-program = is-block

114 TR.12.105

Unrestricted

<unlabelled basic statement> ::= <assignment statement> | <goto statement> | <dummy statement>

<procedure statement>
<basic statement> ::= <unlabelled basic statement> | <label> : <basic statement>
<unconditional statement> ::= <basic statement> | <compound statement> | <block>
<{statement> ::= <unconditional statement> | <conditional statement> | <for statement>
<compound tail> ::= <statement> end | <statement> ; <compound tail>
<block head> ::= begin <declaration> | <block head> ; <declaration>
<unlabelled compound> ::= begin <compound taild>
<unlabelled block> ::= <block head> ; <compound tail>
<compound statement> ::= <unlabelled compound> | <label> : <compound statement>
<block> ::= <unlabelled block> | <label> : <block>
<program> ::= <block> | <compound statement>

This syntax may be illustrated as follows: Denoting arbitrary

statements, declarations, and labels, by letters S, D, and L, respectively,
the basic syntactic units take the forms:

Compound statement:

L:L:...begin S;S;...5;5 end

Unrestricted : TR.12.105

115

Interpretation
(9) int-program(t) =

cases: ini-block(t.{},{})
({},9): EMPTY

note: Only possible case.
type: is-program -~ EMPTY
{10} int-block{t,dn,vl) =
cages: eval-array-decls (s-decl-pt(t) .dn,vl}

(decl-sett v1t, Q):
let: pr-set! = mk-pairs (intr-ids(t} ,t.dn)

tt = change-block{u(t;<s-decl-pt:decl- setl>y,prmset!3

116 TR.12.105

Unrestricted

Block:
L:L:...begin D;D;...D;5;S;...5;S end

It should be kept in mind that each of the statements S may again be a
complete compound statement or block.

4.31.2 Examples

Basic statements:
a := ptq
goto Naples
START: CONTINUE:W:=7.993

Compound statement:
begin x := 0; for y:=1 step 1 until n do x:= x+A[Y]:
if x>q then goto STOP else if x>w-2 then goto §;
Aw:St:W:= x+bob end

Block:
Q: begin integer i, k; real w;
for 1--1 step 1 until m do
for =i+1 step 1 until m g_
pegin we=A[1,k]:A[(i,k :=A[k,i];
Alk,i}):=w
end for i and k
end block Q

|_a

4,1.3 Semantics

Every block automatically introduces a new level of nomenclature. This
is realized as follows: Any identifier occurring within the block may
through a suitable declaration (cf. section 5 Declarations) be specified to
be local to the block in question. This means (a) that the entity
represented by this identifier inside the block has no existence outside
it, and (b) that any entity represented by this identifier outside the
block is completely inaccessible inside the block.

Identifiers (except those representing labels) occurring within a block
and not being declared to this block will be non-local to it, i.e. will
represent the same entity inside the block and in the level immediately
outside it. A label separated by a colon from a statement, i.e. 1labelling
that statement, behaves as though declared in the head of the smallest
embracing block, i.e. the smallest block whose brackets begin and end
enclose that statement. In this context a procedure body must be
considered as if it were enclosed by begin and end and treated as a block.

Unrestricted

TR.12.105

117

labs? = pg (<s-id-set:{id | idelocal-labs(t!) }>, , Since a statement of a block may again itself be a block the concepts

<s~-desc: ug (<{s~type:is-LABEL>) >) local and non-local to a block must be understood recursively. Thus an
dn® = augment-dn (s-decl-pt (tt) vy {labs?},dn) i "entifier, which is non-local to a block A, may or may not be non-local to
vl2 = mod-set(vl3,{<id,{ }>]decles~decl-pt (tl) & the block B in which A is one statement.

is-array-desces-desc {decl) & id e s—id-set(decl) })
(vli3,abn3) = int-block-body (s-st-list (t?) ,dni,v12)
vle¢ = epilogue (seconds (pr-setti) ,v13)
{vle,abn3)
{decl-set?,vit,labl): (v1ii,labt)

refs: eval-array-decls 5.2, change-block #.7, augment-dn 5, is—-array-desc 5.2

note: Array bounds are evaluated before the new dn is installed, no local refs are
possible, nor are local gotos (see A.R. 5.2.4.2).

type: is-block X is-dn X is-vl - is-vl X is-abn

{(11) mk-pairs (id-set,t,dn) =

let: used-sett = all-intrs(t) v {id } pden ¢ seconds(dn) & is-proc-den(pden} &
id e all-intrs (pden) }
avoid-sett! = id-set y used-set?
construct-pairs (id-set,used-sett? ,avoid-set?)

type: is-id-set X (is-block v is-proc-den) X is-dn - is-idpr-set

(12) construct-pairs (id-set,us-set,av-set) =

cases: id-set
0: [} .
=is-{ }: for some id e id-set
let: id: = cases: id e us-set
FALSE: id
TRUE: for some id2 ¢ {id | is-id(id) & -~(id ¢ av-set)}
) idz
{<id,id1>} v construct-pairs(id-set - {id},us-set,av-set v {id!})

refs: is-id 2.4
note: The arbitrary order does not affect the result.
No name is chosen which either has been used or is bound in a piece of text
which can become active.
type: is-id-set X is-id-set X is-id-set - is-idpr-set

118 TR.12.105 . Unrestricted Unrestricted ’ TR.12.105 119

(13) all-intrs(t) =

{id | (3path) (path#I & (is-block (path(t)}) & (id e intr-ids(path(t)) v
is-proc-desc(path(t)) & (3i) (elem (i) es-form-par-list (path(t))=id))) }

refs: is-proc-desc 5.4

note: This function collects all identifiers bound in nested blocks or procedure
declarations. (Not those of the argument text.)

type: is-text - is-id-set

{14y change-block (t, pr-set) =

Ho ({s—decl-pt:{change-text (d,pr-set) | des-decl-pt (t) }>,
<s-st-list:change-text (s-st-1list (t) ,pr-set)>)

refs: change-text 4.7

note: Split in this way in order to change the ocuter block with a non-deleted set.
Always produces an object satisfying is-block because id-prs used.

type: is-block X is-id-pr-set - is-block

(15) int-block-body(t,dn,vl) =
int-st-list (t,1,dn,vl)

type: is-st-list X is-dn X is-vl - is-vl X is-abn

(16) int-st-list(t,i,dn,vl) =

cases: i
i > length(t): (v1,Q)
i € length(t):
cases: int-st(elem(i,t) .,dn,vl)
(vl:,Q): int-st-list(t,i+l1,dn,v1%)
(vli,labl): cases: lab?
local (labti,t): let: ext = make-st-sel (labi,t)
it = (i j) (elem(j) = main-pt (ext))
cue-int-st-1list (rest-pt (ext),t,it,dn,v1})
-]local (labt ,t): (vlt,labi}

refs: int-st 4, local 4, make-st-sel U
type: is-st-list X is-intg-val X is-dn X is-vl - is-vl X is-abn

120 TR.12.105 ’ Unrestricted

(17 cue—int-st-list(targ-sel,t,i,dn,vl)

cases: cue-int-st (targ-sel,elem{i,t),dn,vl)

refs:

type: is-lab-sel X is-st-list X is-intg-val X is-dn X is-vl = is-vl X is~abn

(18) epilogue (id-set,vl) =

{(vli,Q): int-st-list(t,i+1,dn,v1})
(v12,labt): cases: lab?
local (labt,t): let: ext = make-st-sel (lab?,t)
it = (i J) (elem(3J) = main-pt (ext))
cue-int-st-list (rest-pt (ext),t,i?,dn,v1?)

~local (labt,t) : (vli,labt)

cue-int-st 4, local 4, make-st-sel 4

. del-set (vl,id-set)

type: is-id-set X is-vl = is-vl

122 TR.12.105

Unrestricted

4.2 ASSIGNMENT STATEMENTS : 4,2 ASSTIGNMENT STATEMENTS
Translation

A procedure identifier cam only appear on the left of an assignment statement if it is a
type procedure and the assignment statement is within the body of the procedure itself.
In such cases the type of the procedure is noted in the abstract text.

{1} is-path(path) & is-real-activated-fn (path (prog)) =
(3 path-1,path-2) (is-proc-descespath-1{prog) & path = path-2epath-1 &
path-1 (prog) = desc(s-idepath,prog) &
is-REAL-PROCes-typeedesc (s-idepath,prog)})

refs: is-proc-desc 5.4

(2) is-path (path) & is-intg-activated-fn (path(prog)j =
(3 path-1,path-2) (is-proc-descepath-1(prog} & path = path~-2spath-1 &
path-1 (prog) = desc{s-idepath,progj &
is—-INTG-PROCes-typeedesc (s-idepath,progj}

refs: is-proc-desc 5.4
(3) is-path (path} & is-bool-activated-fn{path(prog}} =
(3 path-1,path-2) (is-proc-descepath-1{prog} & path = path-2epath-1i &
path-1 (prog} = desc(s-idepath,prog} &
is-BOOL-PROCes-typeedesc {s-idepath,prog)})

refs: is-proc-desc 5.4

Abstract syntax 4.2.1 Syntax
(4) is-real-activated-fn = (<s-id:is-id>, <left part> ::= <variable> := | <{procedure identifier> :=

<s—-type:is-REAL~PROC>) .

<left part list> ::= <left part> | <left part list> <left part>

refs: is-id 2.4 v
<assignment statement> ::= <left part list> <arithmetic expression> |

<left part list> <Boolean expression>
(5) is-real-lp = is-real-var v is-real-activated-fn

refs: is-real-var 3.1

124 TR.12.105 Unrestricted Unrestricted : TR.12.105 125

(6) is-intg-activated-fn = (<s-id:is-id>,

<s-type: 1s-INTG=PROC>}

refs: is-id 2.4

{7 is~intg-1lp = is-intg-var v iSeintQQactivatedofn

refs: is-intg-var 3.1

{8y is-bogl-activated-fn = (<{s-id:is-id>,

<{s~type: is-BOOL-PROC>}

refs: is-id 2.4

{9) is-bool-1p = is-bool-var v is-bool-activated-fn

(10) is-

refs: is-bool~-var 3.1

real-assign-st = (<s~1lp: (is-real-1lp~list & -is-<>}>,
<s-rp:is-arithm-expr>)

refs: is-arithm-expr 3.3

(i1) is-intg-assign-st =k(<s-lp:(is—intg—lp-list & =~is-<>)>,

<s-rp:is-arithm-expr>)

refs: is-atithm—expr 3.3

{12) is-bool-assign-st = (<s~1lp: (is-bool-1lp-list & -~is=<>})>,

(13) is-assign-st = is-intg-assign-st v is-real-assign-st v is-bool-assign-st

126 TR.12.105

<s-rp: is-bool-exprd>)

refs: is-bool-expr 3.4

Unrestricted

4.2.2 Examples

Unrestricted

s := p[0] := n := ntl+s
n := n+l
A := B/C-v-q*S

S[v,k+2] := 3-arctan(s*zeta)
V :=Q0>Y & 2

TR.12.105

127

Auxiliary predicates

(14) is-activated-fn = is-real-activated-fn v is-intg-activated-fn v is-bool-activated-fn

(15) is-1p = is-real-1lp v is-intg-1lp v is-bool-1lp

Interpretation

(16) int-assign-st(t,dn,vl) =

cases: eval-lp~-list(s-1lp(t),dn,vl)

(1p-listt1,vlt , Q) :
cases: eval-expr(s-rp(t),dn,vl1)
(op2,v12,Q): (change-lp-vars (lp-list?, op?2,dn,v12),Q)
(op2,v12,1ab2): (vl2,6lab?)

{1p-1listt,v1lt,1lab?): (vli,lab?)

ref: eval-expr 3
note: All left parts now satisfy is-var (cf. insert-ret 3.2)
type: is-assign-st X is-dn X is-vl - is-vl X is-abn .

(17 eval-lp-1list (1p-list,dn,vl) =

cases: 1lp-list
<> (O, v1,Q)
~is-<>:
cagses: eval-lp(head (lp~list) ,dn,vi})
(lpt,vlt,Q):
cases: eval-lp-list{tail (1p-list)} ,dn,v1l)
(lp-list2,v12,Q): (<1lp1>%1lp-list2,v12,Q)
(lp-list2,v12,1ab2): (2,v12,1ab?)
(1pt,vlt, labl): (Q,v11,labl)

type: is-var-list X is-dn X is-vl - is-opt-var-list X is-vl X is-abn

128 TR.12.105

" Unrestricted

4.2.3 Semantics

Assignment statements serve for assigning the value of an expression to
one or several variables or procedure identifiers. Assignment to a
procedure identifier may only occur within the body of a procedure defining
the value of a function designator (cf. section 5.4.4#). The process will
in the general case be understood to take place in three steps as follows:

4.2.3.1 Any subscript expressions occurring in the left part variables
are evaluated in sequence from left to right.

COMMENT: This 1is taken to mean that all subscript
expressions of variables of the left part list are
evaluated in sequence from left to right. (cf. 3)

4.2.3.2 The expression of the statement is evaluated.

4.2.3.3 The value of the expression is assigned to all the left part
variables, with any subscript expressions having values as evaluated in
step 4.2,3.1.

4.2.4 Types

The type associated with all variables and procedure identifiers of a
left part list must be the same. If this type is Boolean, the expression
must likewise be Boolean. If the type is real or integer, the expression
must be arithmetic. If the type of the arithmetic expression differs from
that associated with the variables and procedure identifiers, appropriate
transfer functions are understood to be automatically invoked. For
transfer from real to integer type the transfer function is understood to
vield a result equivalent to

entier(E + 0.5)
where E 1is the value of the expression. The type associated with a

procedure identifier is given by the declarator which appears as the first
symbol of the corresponding procedure declaration (cf. section 5.4.4).

Unrestricted

TR.12.105

129

(18) eval-lp(lp,dn,vl) =

cases: 1lp
is-simple-var: (lp,vl1,Q)
is-subscr-var:

cases: eval-subs(s-subscr-list (1p),dn,vl)

(op-listti,vlt, Q):
let: e-sub-list = convert-subs (s-boundsss (s-id (1p),dn),op-listt)
varl = p(lp;<s-subscr-list:e-sub-list>)
(vart,vlt Q)
(op-listt,vlt,labl): (Q,v11,labl)

refs: is-simple-var 3.1, is-subscr-var 3.1, convert-subs 3.1
type: is-var X is-dn X is-vl - is-opt-var X is-vl X is-abn

(19) eval-subs (sub-1list,dn,vl) =

cases: sub-list

<> <O

—is=-<>:

cases: eval-expr (head (sub-list) ,dn,Vvl)

(e-hd,v1l1,Q):
cases: eval-subs(tail (sub-list) ,dn,vl1t)
(e-tl,vlz,q): (<e-hdd>%e-tl,vlZz,q)
(e-tl,v12,lab2): (2,v12,1ab?2)

(e-hd,vlt ,labt): (Q,v1t,labl)

refs: eval-expr 3
type: is-arithm-expr-list X is-dn X is-vl - is-opt-op-list X is-vl X is-abn

(20) change-lp-vars(lp~list,op,dn,vl)

let: vt = cases: lp-list
is-real-1lp-list: convert (REAL,oOp)
is-intg-1lp-list: convert (INTG,op)
is-bool-1p-list: op

assign-to-1lp-list (1lp-list,vl,vl)

type: is-var-list X is-op X is-dn X is-vl - is-vl

130 TR.12.105

Unrestricted

(21 convert (type,op) =

cases: (type,s-type (op))
(REAL, INTG) : s—-value (op)
(INTG,REAL) : entier (s-value(op) + 0.5)
T: s-value (op)

type: is-arithm X is-arithm-op - is-arithm-val

(22) assign-to-1lp-list(lp-list,val,vl) =

cases: lp-list

<3>: vl

~is~<>:; let: vlt = assign(head (1p-list),val,vl)
assign-to-1lp-1list (tail (1p-list) ,val,vl?t)

type: is-var-list X is-simple-val X is-vl - is-vl

(23) assign{lp,v,vl) =

cases: 1lp

is-simple-var: mod-set (vl,{<s-id (1p),v>)

is-subscr-var: mod-set (vl,{<s-id (1p) ,mod-set (s (s-1id (1p) ,V1},
{<s—-subscr-1list (1p) ,v>})>})

refs: is-simple-var 3.1, is-subscr-var 3.1
type: is-var X is-simple-val X is-vl -+ is-vl

4.3 GOTO STATEMENTS 4 5 GO TO STATEMENTS

Abstract syntax

4.3.1 Syntax

1 is-goto-st = (<s-des-expr:is-des-expr> . .
(1) £l (Xp pr>) <go to statement> ::= goto <designational expression>

refs: is-des—-expr 3.5

132 TR.12.105 .) Unrestricted Unrestricted ’ TR.12.105 133

Interpretation

(2) int-goto-st (t,dn,vl) =
cases: eval-expr (s-des-expr (t) ,dn,vl)
(lab-den,vlt,Q): (vl1,s-value{lab-den})
(lab-den,vl!,1labl): (v11,6labl)
refs: eval-expr 3

note: Switch designators whose value is undefined give error in

eval-expr {(cf. A.R. U4.3.5}. .
type: is-goto-st X is-dn X is-vl - is-vl X is-abn

4.4 DUMMY STATEMENTS
Translation

(1) The elementary object DUMMY is inserted in place of the <dummy statement>.

134 TR.12.105

Unrestricted

4.3.2 Examples

goto 8
NON ECMA LANGUAGE

goto exit[n+l]

goto Town[if y<0 then N else N+1]

goto if Ab<c then 17 else q[if w<0 then 2 else n]
NON ECMA LANGUAGE

4.3.3 Semantics

A goto statement interrupts the normal sequence of operations, defined
by the write-up of statements, by defining its successor explicitly by the
value of a designational expression. Thus the next statement to be
executed will be the one having this value as its label,

4.3.4 Restriction
Since 1labels are inherently 1local, no goto statement can lead from
outside into a block. A goto statement may, however, 1lead from outside

into a compound statement.

4.3.5 Go_to_an undefined switch designator

A goto statement is undefined if the designational expression is a
switch designator whose value is undefined.

' ECMA CHANGE

4.4 DUMMY STATEMENTS

Unrestricted

TR.12.105

135

Abstract syntax
(2% is-dummy-st = is-DUMMY

Interpretation

(3) see int-unlab-st :~ is-dummy-st

refs: int-unlab-st 4

4.5 CONDITIONAL STATEMENTS

Translation

(1)

A dummy-st is inserted as the s-else-st if none is present in the <conditional statement>.

Abstract syntax

{2} is=cond-st = ((s4decision:is-bool-expr),

136 TR.12.105

{s-then-st:is-st>,
{s-else-st:is-std>)

refs: is-bool-expr 3.4, is-st 4

note: The concrete syntax is such that: -is-cond-st (s-st-pt(s-then-st(t))).

Unrestricted

4.4.1 Syntax

<dummy statement> :: = <empty>

4.4.2 Examples

4.4.3 Semantics

L:

begin...;John:end

A dummy statement executes no operation. It may serve to place a

label.

4.5 CONDITIONAL STATEMENTS

4.5.1 Syntax

<if clause> ::= if <Boolean expression> then

<unconditional statement> ::= <basic statement> | <compound statement> | <block>

<if statement>

<if clause> <unconditional statement>

<conditional statement> ::= <if statement> | <if statement> else <statement> |

4.5.2 Examples

Unrestricted

e

=S

<if clause> <for statement>

f x>0 then n:=n+l

v>u then V:q:=n+m else goto R

| <label>

s<0 v P<Q then AA:begin if g<v then a:=v/s

else y:=2%*a end

else if v>s then a:=v-q
else if v>s-1 then goto S

: <conditional statement>

- TR.12.105

137

Interpretation

(3)

138

int-cond-st (t,dn,vl) =

cases:eval-expr (s-decision (t) ,dn,v1l)
{(bool-opt,vlit Q): cases: s-value (bool-opt)
TRUE: int-st (s-then-st(t),dn,vl})
FALSE: int-st({s-else-st(t).,dn,v1t}
{bool-opt,vlit, labl): (vli,labl)

refs: eval-expr 3, int-st &
type: is-cond-st X is-dn X is-vl - is-vl X is-abn

TR.12.105

Unrestricted

4.,5.3 Semantics

Conditional statements cause certain statements to be executed or
skipped depending on the running values of specified Boolean expressions.

4,5.3.1 If statement. The unconditional statement of an if statement
will be executed if the Boolean expression of the if clause is true.
Otherwise it will be skipped and the operation will be continued with the
next statement.

4.5.3.2 Conditional statement, According to the syntax two different
forms of conditional statements are possible. These may be illustrated as
follows:

if B1 then S1 else if B2 then S2 else S3;S4

and

if Bl then S1 else if B2 then S2 else if B3 then S3;sS4

Here Bl to B3 are Boolean expressions, while S1 to S3 are unconditional
statements. sS4 is the statement following the complete conditional

statement.

The execution of a conditional statement may be described as follows:
The Boolean expressions of the if clauses are evaluated one after the other
in sequence from left to right until one yielding the value true is found.
Then the unconditional statement following this Boolean is executed.
Unless this statement defines its successor explicitly the next statement
to be executed will be S4, the statement following the complete conditional
statement. Thus the effect of the delimiter else may be described by
saying that it defines the successor of the statement it follows to be the
statement following the complete conditional statement.

The construction
€lse <unconditional statement>
is equivalent to
else if true then <unconditional statement>

If none of the Boolean expressions of the if clauses is true, the
effect of the whole conditional statement will be equivalent to that of a
dummy statement. o

Unrestricted

4,6 FOR STATEMENTS

Abstract syntax

(1) is-while-elem = (<s-init-expr:is-arithm-expr>,
<s-while—-expr: is-bool-expr>)

refs: is-arithm—expr 3.3, is-bool-expr 3.4
(2) is-step-until-elem = (<{s-init-expr:is-arithm-expr>,
<s-step—-expr:is-arithm—-expr>,
<s-until-expr:is-arithm-expr>)

refs: is~arithm-expr 3.3

140 TR.12.105

COMMENT: This equivalence is taken to be an
indication of the sequencing and not to require the
reversal of any side effects of the evaluation of
the boolean expression.

For further explanation the following picture may be useful:

Bl false B2 false
4.5.4 Go to into_ a conditional statement-

The effect of a goto statement leading into a conditional statement
follows directly from the above explanation of the effect of else.

4.6 FOR STATEMENTS

4.6.1 Syntax

<for list element> ::= <arithmetic expression> |
<arithmetic expression> step <arithmetic expression> until
<arithmetic expression>|
<arithmetic expression> while <Boolean expression>
<for list> ::= <for list element> | <for list> , <for list element>
<for clause> ::= for <variable> := <for list> do

<for statement> ::= <for clause> <statement> | <label> : <for statement>

Unrestricted . TR.12.105

141

(3) is-for-elem = is-arithmexpr v is-while-elem v is-step-until-elem
refs: is-arithmexpr 3.3
(4) is-for-st = (<s-contr-var:is-arithm-var>,
<s-for-list: (is-for-elem-list & -~is-<>)>,
<s-st:is-std)

refs: is-arithmvar 3.1, is-st 4

Interpretation
(5) int-for—st(t,dn,vl) =

cases: eval-1lp(s-contr-var (t) ,dn,vl)
(cvar,vll,Q): iterate-for-list (cvar,s-for-list (t),s-st(t),dn,v1l)
(cvar,v1ll,labl): (vli,labl)

refs: eval-lp 4.2

note: goto from evaluation of a for list is considered as external to a for statement.
The control variable is evaluated once only.

type: is-for-st X is-dn X is-vl - is-vl X is-abn

(6) iterate-for-list (cvar,for-1list,t,dn,vl) =

cases: for-list
<>: cases: cvar
is-simple-var: (del-set(vl,s-id (cvar)),Q)
is-subscr-var: (mod-set(vl, {<s-1d(cvar) sdel-set (s (s-id (cvar), vl),
s-subscr-list (cvar))>}),Q)

~is-<>: cases: iterate-for (cvar,head (for-list),t,dn,vl)
(vlt,Q): iterate-for-1list (cvar,tail (for-list),t,dn,v1?)
(vli,labl): (v1t,labl)

refs: is-simple-var 3.1, is-subscr-var 3.1
type: is-arithm-var X is-for-elem-list X is-st X is-dn X is-vl -+ is-vl X is-abn

142 TR.12.105 : Unrestricted

4.6.2 Examples

for gq:=1 step s until n do A[{g]}:=B[q]
for k:=1, V1#2 while V1<N do
for =I+G, L, 1 step 1 until N, C+D do

for j:
Ak, 1:=B(k, 3]

4.6.3 Semantics

A for clause causes the statement S which it precedes to be repeatedly
executed zero or more times. In addition it performs a sequence of
assignments to 1its controlled variable. The process may be visualized by
means of the following picture:

Initialize ; test ; statement S ; advance ; successor

o ——————— — — —— . " " — —— A

for list exhausted

In this picture the word initialize means: perform the first assignment of
the for clause. Advance means: perform the next assignment of the for
clause. Test determines if the last assignment has been done. If so the
execution continues with the successor of the for statement. If not the-
statement following the for clause is executed.

4.6.4 The for list elements

The for 1list gives a rule for obtaining the values which are
consecutively assigned to the controlled variable. This sequence of values
is obtained from. the for list elements by taking these one by one in the
order in which they are written.

COMMENT: In order that the expansions given below
are equivalent to the for statement, it would
appear that the reference to the controlled
variable can be evaluated more than once. This
section, however, talks about the controlled
variable implying that there is one unique
evaluation. The reference to the controlled
variable is thus evaluated only once.

Unrestricted

(7) iterate-for (cvar,for-elem,t,dn,vl) =

cases: for-elem
is-arithm-expr:
cases: eval-expr (for-elem,dn,vl)
(opt,vlt,Q): let: v = convert (s-type (cvar) ,op!)
vl2 = assign (cvar,v,vll)
int-st (t,dn,v12)
(opt,vlt,labt): (vlt,lab?)
is-step-until-elem:
cases: eval-expr(s-init-expr (for-elem) ,dn,vl)
(opt,vl? ,Q): let: v = convert (s-type (cvar) ,op!)
vl2 = assign (cvar,v,vll)
iterate-step-until-elem(cvar, s-step-expr (for-elem),
s-until-expr (for-elem),t,dn,v12)
{(opt,v1t,labt): (vlt,lab?)
is-while-elem: iterate-while (cvar,for-elem,t,dn,vl)

refs: is-arithm-expr 3.3, eval-expr 3, convert 4.2, assign 4.2, int-st 4
note: Init expr eval once only.
type: is-arithm—var X is-for-elem X is-st X is-dn X is-vl -+ is-vl X is-abn

(8) iterate-step-until-elem(cvar,step-expr,until-expr,t,dn,vl) =

cases: eval-until (cvar,step-expr,until-expr,dn,vl)
(bool-opt,vlt:,Q):
cases: s-value (bool-op?!)
TRUE: (v1t,Q)
FALSE:
cases: int-st(t,dn,vlt)
(viz, q):
cases: eval-step(cvar,step-expr,dn,vl?2)
(op3,v13,Q):
let: v = convert (s-type (cvar) ,op3)
vl4 = assign (cvar,v,vl?3)
iterate-step-until-elem (cvar,step-expr,until-expr,t,dn,vl%)
(op3,vl3,1lab3): (v13,1lab?3)
(vl2,lab2): (v1l2,1lab?)
(bool-op?,vl1,labt): (vl1l1,lab?)

refs: int-st 4, convert 4,2, assign 4,2
note: Step-expr is evaluated twice per iteratiom,
until-expr is evaluated once per iteration. ,
type: is-arithm-var X is-arithm-expr X is-arithm-expr X is-st X is-dn X is-vl -
' is-vl X is-abn

144 TR.12.105 i Unrestricted

COMMENT: Since the for statement is taken to be
equivalent to these expansions (except as mentioned
above) the various expressions occurring within the
for list elements can be evaluated more than once.

COMMENT: The controlled variable cannot be an
activated function since the expansion of the for
list elements prohibits this.

The sequence of values generated by each of the three species of for list
elements and the corresponding execution of the statement S are given by
the following rules:

4,6.4,1 Arithmetic expression. This element gives rise to one value,
namely the value of the given arithmetic expression as calculated
immediately before the corresponding execution of the statement S.

4.6.4.2 Step-until-element. An element of the form A step B until C,
where A, B, and C are arithmetic expressions, gives rise to an execution
which may be described most concisely in terms of additional ALGOL
statements as follows:

Vi=Aa;
L1: if (Vv - C) * sign(B)>0 then goto Element exhausted;

Statement S;

V:=V + B;

goto L1;
where V is the controlled variable of the for clause and Element exhausted
points to the evaluation according to the next element in the for list, or

if the step-until-element is the last of the list, to the next statement in
the program. .

Unrestricted)) TR.12.105 145

(9) eval-until (cvar,step-expr,until-expr,dn,vl)

eval-expr (pgo (<s-opr:GT>,
<s-op-1:p4 ({s-opr:MULT>,
<s-op~1l:pgy (<s-opr:MINUS>,
<s-op-l:cvar>,
<s-op-2:until-expr>) >,
<{s-0p-2:pg (<s-id:SIGN>,
<s-type:INTG-PROC>,

<s-arg-list:<step-expr>>)>)>,
<s-0p-2: g ({<s-type:INTG>,

<s-value:0>)>) ,dn,vl)
refs: eval-expr 3

type: is-arithm-var X is-arithm-expr X is-arithm-expr X is-dn X is-vl -
is-opt-bool-op X is-vl X is-abn

(10) eval-step (cvar, step-expr,dn,vl)
eval-expr (pgo (<s-opr:PLUS>,
<{s-op-1l:cvar>,
<s-op-2:step-expr>) ,dn,vl)
refs: eval-expr 3
type: is-arithm-var X is-arithm-expr X is-dn X is-vl - is-opt-arithm-op X is-vl X is-abn
(11)

iterate-while(cvar,while-elem,t,dn,vl) =

cases: eval-expr(s-init-expr (while-elem) ,dn,vl)
(opt,vl:,Q): let: v = convert (s-type (cvar) ,opl)
vl2 = assign (cvar,v,vll)

cases: eval-expr (s-while-expr(while-elem),dn,vl2)
(bool-op3,v13,2):

cases: s-value (bool-op3)
FALSE: (v13,Q)

TRUE: cases: int-st (t,dn,vl13)

(vl4,Q): iterate-while (cvar,while-elem,t,dn,v1¢%)
(vle,1lab4): (v14,labs)
(bool-op3,vl13,1ab3): (v1l3,1lab3)
(opt,vl1ll,labl): (v11,labl)
refs:

eval-expr 3, convert 4.2, assign 4.2, int-st U4
type:

is-arithm-var X is-while-elem X is-st X is-dn X is-vl - is-vl X is-abn
146 TR.12.105

Unrestricted

4.6,4.3 While-element.

The execution governed by a for list element of

the form E while F, where E is an arithmetic and F a Boolean expression, is
most

concisely described in terms of

additional ALGOL
follows:

L3: V:=E; .

if -~F then goto Element exhausted;
Statement S;

goto L3;

where the notation is the same as in 4.6.4.2 above.

Unrestricted

statements as

TR.12.105

147

4.6.5 The value of the controlled variable upon exit

Upon exit out of the statement S (supposed to be compound) through a
goto statement the value of the controlled variable will be the same as it
was immediately preceding the execution of the goto statement.

If the exit is due to exhaustion of the for list, on the other hand,
the value of the controlled variable is undefined after the exit.

4,6.6 Go _to_leading into a for statement

The effect of a goto statement, outside a for statement, which refers
to a label within the for statement, is undefined.

COMMENT: A goto statement resulting from the
evaluation of an expression in the for 1list is
considered external to the for statement, and thus
is undefined if it refers to a label within the for
statement.

Unrestricted

TR.12.105

149

4.7 PROCEDURE STATEMENTS

Translation

(1) is-path (path) & is-proc-stepath (prog) & is-PROCes-typespath (prog) =
is~PROCes-typeedesc(s-idepath,prog) v is—-PROCedesc (s-idepath,prog)

(2) See also 3.2 for type procs in proc statements.

Abstract syntax

(3) is-proc-st = (€s-id:is-id>,
{s-act-par-list:is~act-par~list v is-0>,
<s-type:is-type-proc v is-PROC>)

refs: is-id 2.4, is-act-par 3.2, is-type-proc 5.4

Auxiliary Predicates

(®) is-changed-text =

This predicate is true of text satisfying is-text except that some identifiers may have
been replaced by text satisfying is-act-par. Such text, obtained as a result of copying

by name actual parameters, may not satisfy is-text.
(This leads to error in int-proc-body.)

Interpretation
(5) int-proc-st (t,dn,vl) =

cases: access(t,dn,vl)

(tt,v11,0): cases: proc-access (ti,dn,vli)
{op2,vl2,q): (vl1Zz,Q)
(op2,v12,1ab2): (v12,1ab?)

{tr,vl?,1abt): (vl1t,blabt)

refs: access 3, proc-access 3,2
type:is-proc-st X is-dn X is-vl - is-vl X is-abn

150 TR.12.105

Unrestricted

4.7 PROCEDURE STATEMENTS

4,.7.1 Svyntax

<actual parameter> ::= <string> | <expression> | <array identifier> | <switch identifier> |

<procedure identifier>
<letter string> ::= <letter> | <letter string> <letter>
<parameter delimeter> ::= , |) <letter string> : (

<actual parameter list> ::= <actual parameter> |

<actual parameter list> <parameter delimiter>
<actual parameter>

<actual parameter part> ::= <empty> | (<actual parameter list>)

<procedure statement> ::= <procedure identifier> <actual parameter part>

ﬁ ale2 Exa![}glgs

Spur {(A)Order: {7) Result to: (V}
Transpose (W,v+1)

Absmax (A,N,M,Yy,I,K)

Innerproduct (A[t,P,u],B{P],10,P,Y)

These examples correspond to examples given in section 5.4.2.

4.7.3 Semantics

A procedure statement serves to invoke (call for) the execution of a
procedure body (cf. section 5.4 Procedure declarations). Where the
procedure body is a statement written in ALGOL the effect of this execution
will be equivalent to the effect of performing the following operations on
the program at the time of execution of the procedure statement:

Unrestricted

TR.12.105

151

(6) non-type-proc (t,pr-set,dn,vl) =
int-proc-body (change-text (t, pr-set) ,dn,vl)

note: Called from activate-proc 3.2, which is called from proc-access 3.2,
type: (is-block v is-code) X is-pr-set X is-dn X is-vl - is-vl X is-abn

() change-text (t,pr-set) =

cases: t
is-code: t
is-id: cases: t € firsts(pr-set)
TRUE: s(t,pr-set)
FALSE: t
is-block: let: red-set! = del-set(pr-set,intr-ids(t))
Mo ({s—-st-list:change-text (s-st-1list (t) ,red-setl)>,
<s-decl-pt: { change-text (d,red-setl) | des—-decl-pt (t) }>)
is-proc-desc: let: id-set2 = {id | (3i) (id = elem(i,s-form-par-list (t)
p (t; <s-body: change-text (s-body (t) ,del-set (pr-set,id-set?2
is-set: {change-text(el,pr-set) | el ¢ t}
is-object: t

))
))

)
>)

is-ob: pg ({ <sel:change-text (sel (t) ,pr-set)> | is-selector (sel) & -is-f(sel (t)) })

refs: is-code 4, is-id 2.4, is-block 4.1, intr-ids 4.1, is-proc-desc 5.4
type: is-text X is-pr-set - is-changed-text
(8) int-proc-body (t,dn,vl) =
cases: t
is-unlab-st: int-unlab-st(t,dn,vl)
is-code: int-code (t,dn,vl)
T: error
refs:; is-unlab~st 4, int-unlab-st 4, is-code 5.u4
error: If the result of change-block is not a well formed prog.
type: is-changed-text X is-dn X is-vl - is-vl X is-abn
(9) int-code(t,dn,vl) =

This function is implementation defined.

type: is-code X is-dn X is-vl -~ is-vl X is-abn

152 TR.12.105

Unrestricted

4.7.3.1 Value assignment (call by value). All formal parameters quoted
in the value part of the procedure declaration heading are assigned the
values (cf. section 2.8 Values and types) of the corresponding actual
parameters, these assignments being considered as being performed
explicitly before entering the procedure body.

COMMENT: Thus the order in which primaries are
referenced within expressions corresponding to by
value parameters is arbitrary. (See 3)

The effect 1is as though an additional block embracing the procedure body
were created in which these assignments were made to variables 1local to
this fictitious block with types as given in the corresponding
specifications (cf. section 5.4.5). As a consequence, variables called by
value are to be considered as non-local to the body of the procedure, but
local to the fictitious block (cf. section 5.4.3).

4.7.3.2 Name replacement (call by name). Any formal parameter not
quoted in the value list is replaced, throughout the procedure body, by the
corresponding actual parameter, after enclosing this latter in parentheses
wherever syntactically possible. Possible conflicts between identifiers
inserted through this process and other identifiers already present within
the procedure body will be avoided by suitable systematic changes of the
formal or local identifiers involved.

4.7.3.3 Body replacement and execution. Finally the procedure body,
modified as above, is inserted in place of the procedure statement, and
executed. If the procedure is called from a place outside the scope of any
non-local quantity of the procedure body, the conflicts between the
identifiers inserted through this process of body replacement and the
identifiers whose declarations are valid at the place of the procedure
statement or function designator will be avoided through suitable
systematic changes of the latter identifiers.

4.7.4 Actual-formal correspondence

The correspondence between the actual parameters of the procedure
statement and the formal parameters of the procedure heading is established
as follows: The actual parameter list of the procedure statement must have
the same number of entries as the formal parameter list of the procedure
declaration heading. The correspondence is obtained by taking the entries
of these two lists in the same order.

Unrestricted

TR.12.105

153

4.7.5 Restrictions

For a procedure statement to be defined it is evidently necessary that
the operations on the procedure body defined in sections 4.7.3.1 and
4.7.3.2 lead to a correct ALGOL statement.

This poses the restriction on any procedure statement that the kind and
type of each actual parameter be compatible with the kind and type of the
corresponding formal parameter. Some important particular cases of this
general rule are the following:

4.7.5.1 If a string is supplied as an actual parameter in a procedure
statement or function designator, whose defining procedure body is an ALGOL
60 statement (as opposed to non-ALGOL code, cf. section 4.7.8), then this
string can only be used within the procedure body as an actual parameter in
further procedure calls. Ultimately it can only be used by a procedure
body expressed in non-ALGOL code.

4.7.5.2 A formal parameter which occurs as a left part variable in an
assignment statement within the procedure body and which is not called by
value can only correspond to an actual parameter which is a variable
{special case of expression).

4.7.5.3 A formal parameter which is used within the procedure body as
an array identifier can only correspond to an actual parameter which is an
array identifier of an array of the same dimensions. In addition, if the
formal parameter is called by value, the local array created during the
call will have the same subscript bounds as the actual array.

4.7.5.4 A formal parameter which is called by value cannot in general
correspond to a switch identifier or a procedure identifier or a string,
because these latter do not possess values (the exception is the procedure
identifier of a procedure declaration which has an empty formal parameter
part (cf. section 5.4.1) and which defines the value of a function
designator (cf. section 5.4.4). This procedure identifier is in itself a
complete expression).

COMMENT: This exception is interpreted as though
the function were called and its value passed to
the corresponding formal parameter which is a
variable. This is justified by noting that u4.7.4
‘talks of correspondence of actual-formal
parameters. Thus here 'correspond to' is read as
‘correspond to an actual parameter which is'.

Unrestricted

TR.12.105

155

4.7.5.5 Kind and type of actual parameters must be the same as those of
the corresponding formal parxameters, if called by name.

ECMA CHANGE

8,7.6 Deleted

84.7.7 Parameter delimiters

All parameter delimiters are understood to be equivalent. No
correspondence between the parameter delimiters used in a procedure
statement and those used in the procedure heading is expected beyond their
number being the same. Thus the information conveyed by using the
elaborate ones is entirely optional.

4.7.8 Procedure body expressed in code

The restrictions imposed on a procedure statement calling a procedure
having its body expressed in non-ALGOL code evidently can only be derived
from the characteristics of the code used and the intent of the user, and
thus fall outside the scope of the reference language.

Unrestricted

TR.12.105

157

5 DECLARATIONS 5. DECLARATIONS

Declarations serve to define certain properties of the quantities used

Iranslation in the program, and to associate them with identifiers. A declaration of
. . . an identifier is valid for one block. Outside this block the particular
(1) The <declarations> in a <block head> are collected into a set. identifier may be used ;or other purposes (cf. sectioi 4.1.3). P
(2) The <identifiers> introduced in a single <declaration> are collected into a set. Dynamically this implies the following: at the time of an entry into a
) . . .] . block (through the begin, since the labels insid local and therefore
(3) The Translator rejects any <programs> in which errors of duplication would be hidden inacceésibleg from gutside; 211 jdentifiers éeﬁlg;:d goi thenblock assume
by (1) and (2) (e.g. real x,x; real y; real y;). the significance implied by the nature of the declarations given. If these
.] . . .] identifiers had already been defined by other declarati tside th ar
(4) The Translator re]ects.abstract programs in which an identifier is declared (or used as a for the time beingrgivgn s new signifigance?r igeii?f122: °3hfihe arzy nog
label) more than once in the same scope:- declared for the block, on the other hand, retain their old meaning.
is-b}ogk(t! & decl-1 e s-degl-pt(t) & decl-2 e¢ s—decl-pt(t) & decl-1 # decl-2 o At the time of an exit from a block (through end, or by a go to
disj(s-id-set (decl-1) ,s-id-set(decl-2)) & ’ statement) all identifiers which are declared for the block 1lose their
disj(s-id-set (decl-1) ,local-labs(t)) & local significance.
(id-1 € local-labs(t) & id-2 e local-labs(t) & id-1 #id-2 >
make-st-sel (id-1,t) # make-st-sel (id-2,t)) ECMA CHANGE
refs: is-block 4.1, local-labs 4.1, make-st-sel 4 Apart from labels and formal parameters of procedure declarations and

with the possible exception of those for standard functions (cf. sections
3.2.4 and 3.2.5) all identifiers of a program must be declared. No
identifier may be declared more than once im any one block head.

Abstract_ syntax
Syntax
(5 is-desc = is-var-desc v is-array-desc v is-switch-desc v is-proc-desc . . '
<declaration> ::= <type delaration> | <array declaration> | <switch declaration> |

refs: is-var-desc 5.1, is-array-desc 5.2, is-switch-desc 5.3, is-proc-desc 5.4 <{procedure declaration>

(6) is-decl = (<s-id-set:is-id-set>,
<s-desc:is-desc>)
refs: is-id 2.4 . .
note: The s-id-set of switch or procedure declarations will always be a unit set.

Ruxiliary predicates
(n is-label-desc = (<s-type:is-LABEL>)

158 TR.12.105 . Unrestricted Unrestricted TR.12.105 159

Interpretation

(8) augment-dn (decl-set,dn) =

mod-set (dn, { <id,make-den (desc) > [(3decl) (decledecl-set & desc=s~-desc (decl) &

type: is-intr-set X is-dn - is-dn

(9 make-den (desc) =

cases: desc

is-var-desc: p, (<s-type:desc>)

is-array-desc: desc

is-switch-desc: pg (<{s-switch-list:desc>,<{s-type:SWITCH>)

is-label-desc: desc
is-proc-desc: desc

& ides-id-set (decl)) })

refs: is-var-desc 5.1, is-array-desc 5.2, is-switch-desc 5.3, is-proc-desc 5.4

type: (is-desc v is-label-desc) - is-den

5.1 TYPE DECLARATIONS

Abstract_ syntax

(1) is-arithm = is-INTG v is-REAL
(2) is-type = is-arithm v is-BOOL
(3) is-var-desc = is-type

160 TR.12.105

Unrestricted

5.1 TYPE DECLARATIONS

5.1.1 Syntax
<type list> ::= <simple variable> | <simple variable> , <type list>

<type> ::= real | integer | Boolean
<type declaration> ::= <type> <type list>
ECMA CHANGE

5.1.2 Examples

integer p;q,s
own Boolean Acryl,n
NCON ECMA LANGUAGE

Unrestricted

TR.12.105

161

Intexrpretation

(4) see make-den :- is-var-desc

refs: make-den 5

5.2 ARRAY DECLARATIONS
Translation
(1) The Translator rejects any program in which array bound expressions use local names:-

is-block (block) = (¥decl) (decl e¢ s-decl-pt(block) & is-array-desc(s-desc(decl)) >
(seles-bounds (s-desc (decl)) = id-1 > =~ (id-1 e intr-ids (block))))

refs: is-block 4, intr-ids 4.1
note: Declarations of the form array are treated as real array (see A.R. 5.2.3.3).

Abstract _syntax

(2) is-arithm-array = is-REAL-ARRAY Vv is-INTG-ARRAY
(3) is-type-array = is-arithm-array v is-BOOL-ARRAY
(4) is-bound-pair = (<s-1bd:is-arithm-expr>,

<s-ubd: is-arithm-expr>)

refs: is-arithm-expr 3.3

(5) is-array-desc = (<s—type:is-type-array>,
<s-bounds: (is-bound-pair-list & -is-<>)>)

162 TR.12.105 . Unrestricted

5:1.3 Semantics

Type declarations serve to declare certain identifiers to represent
simple variables of a given type. Real declared variables may only assume
positive or negative values including zero. Integer declared variables may
only assume positive and negative integral values, including zero. Boglean
declared variables may only assume the values true and false.

In arithmetic expressions any position which can be occupied by a real
declared variable may be occupied by an integer declared variable.

ECMA CHANGE

5.2 ARRAY DECLARATIONS

5.2.1 syntax

<lower bound> ::= <arithmetic expression>
<upper bound> ::= <arithmetic expression>

<bound pair> ::= <lower bound> : <upper bound>

Unrestricted

" TR.12.105

163

Auxiliary predicates

(6) is-array-decl = (<s-id-set:is-id-set>,
<s-desc:is—-array-desc>)

refs: is-id 2.4

Interpretation

(7 see make-den :- is-array-desc

refs: make-~den 5

(8) eval-array-decls (decl-set,dn,vl) =

cases: decl-set

(¥decl!) (decl! ¢ decl-set & is-array-decl (decl!) > is-array-den(s-desc(decll))):
(decl-set,vl, Q)

T: for some decl® e decl-set & is-array-decl (decl!) & -~is-array-den (s-desc (decl!))
cases: eval-array-bds (s-desc (decl!) ,dn,vl)
(desc2,v12,Q): cases: eval-array-decls (decl-set - {decl!},dn,v1?2)

(decl-set3,v13,Q): (decl-set3 v (p(decl2;<s-desc:desc2>) },v13, Q)
: (decl-set3,vl13,1ab3): (2,v13,1ab3)
(desc2,v12,1ab2): (2,vl2,lab2)

type: is-decl-set X is-dn X is-vl ~ is-opt-decl-set X is-vl X is-abn

164 TR.12.105) : Unrestricted

<bound pair list> ::= <bound pair> | <bound pair 1iist> , <bound pair>

<array segment> ::= <array identifier> [<bound pair list>] | <array identifier> , <array segment>

<array list> ::= <array segment> | <array list> , <array segment>
<array declaration> ::= array <array list> | <type> array <array list>
ECMA CHANGE

5.2.2_ Examples

array a,b,c[7:n,2:m},s[-2:10]
own integer array A[if c<0 then 2 else 1:20]
NON ECMA LANGUAGE

real array q[-7:-1}

5.2.3 Semantics

An array declaration declares one or several identifiers to represent
multidimensional arrays of subscripted variables and gives the dimensions
of the arrays, the bounds of the subscripts and the types of the variables.

5.2.3.1 Subscript bounds. The subscript bounds for any array are given
in the first subscript bracket following the identifier of +this array in
the form of a bound pair list. Each item of this list gives the lower and
upper bound of a subscript in the form of two arithmetic expressions
separated by the delimiter : . The bound pair list gives the bounds of all
subscripts taken in order from left to right.

5.2.3.2 Dimensions. The dimensions are given as the number of entries
in the bound pair lists.

5.2.3.3 Types. All arrays declared in one declaration are of the same
quoted type. If no type declarator is given the type real is understood.

5.2.4 Lower upper_ bound expressions

S.2.4.1 The expressions will be evaluated in the same way as subscript
expressions (cf. section 3.1.4.2).

COMMENT: References within bound pair lists are
performed in arbitrary order; bound pair lists are
evaluated in arbitrary order within a declaration
part. However, references of different bound pair
lists are not intermixed.

Unrestricted

TR.12.105

165

(9) eval—-array-hbds (desc,dn,vl) = 5.2.4.2 The expressions can only depend on variables and procedures
which are non-local to the block for which the array declaration is valid.
cases: access (s-bounds (desc) ,dn,vl)

(abds,v11, 1) : COMMENT: It is assumed that "variables" can be
let: ebds = pg ({<sel-leelem(i) :apply(sel-lselem (i) (abds))> | taken to include 1labels at this point. Thus a
(sel-1 = s-1bd v sel-1 = s-ubd) & 1<i<length (abds) }) function reference within such expressions may not
cases: ebds have any local labels as actual parameters.
(v¥i) (1<i<length(ebds) = s-1bd (elem (i,ebds)) < s~ubd(elem(i,ebds))):
(¢ (desc; <s-bounds: ebds>) ,v11,9Q) Consequently in the outermost block of a program only array declarations
T: error with constant bounds may be declared.

(abds,v1t,labt): (Q,v11,1labt)
5.2.4.3 An array is defined only when the values of all upper subscript

refs: access 3, apply 3 bounds are not smaller than those of the corresponding lower bounds.

error: No array is defined if any upper bound is less than the corresponding lower bound.

type: 1ls-array-desc X is-dn X is-vl - is-opt-array-den X is-vl X is-abn 5.2.4.4 The expressions will be evaluated once at each entrance into
, ; the block.

5.2.5 The identity of subscripted variables

The identity of a subscripted variable is not related to the subscript
bounds given in the array declaration . However , the values of the
corresponding subscripted variables will, at any time, be defined only for
those of these variables which have subscripts within the most recently
calculated subscript bounds.

ECMA CHANGE

5.3 SWITCH DECLARATIONS 5.3 SWITCH DECLARATIONS

Abstract syntax 5.3.1 Syntax '

(1) is-switch-desc = (is-des-expr-list & -is-<>) <switch 1ist> ::= <designational expression> | <switch list> , <designational expression>
refs: is-des-expr 3.5 | <switch declaration> ::= switch <switch identifier> := <{switch list>

5.3.2 Examples

switch S:=s1, S2, Q[m], if v>-5 then S3 else SH
switch Q:=pl, w

166 TR.12.105 Unrestricted Unrestricted TR.12.105 167

Interpretation

(2)

see

make-den :- is-switch-desc

refs: make-den 5

5.4 PROCEDURE DECLARATIONS

Translation

(1)

(2)
(3

(t

168

TR.12.105

The entries in the <specification part> are collected into a set which associates one
copy of the appropriate <specifier> with each <identifier>.

The <identifiers> in the <value part> are collected into a set.

The Translator rejects any <program> in which errors of duplication would be hidden
by (1) and (2) (e.g. procedure p(x); value x,x; real x; real X; ...).

The <specifier> array is treated as real array.

Unrestricted

5.3.3 Semantics

A switch declaration defines the set of values of the corresponding
switch designators. These values are given one by one as the values of the
designational expressions entered in the switch list. With each of these
designational expressions there is associated a positive integer, 1,2 ...,
obtained by counting the items in the list from left to right. The value
of the switch designator corresponding to a given value of the subscript
expression (cf. section 3.5 Designational expressions§) is the value of the
designational expression in the switch list having this given value as its
associated integer.

5.3.4 Evaluation of expressions_in_ the switch list

An expression in the switch list will be evaluated every time the item
of the list in which the expression occurs is referred to, using the
current values of all variables involved.

5.3.5 Influence of scopes

If a switch designator occurs outside the scope of a quantity entering
into a designational expression in the switch list, and an evaluation of
this switch designator selects the designational expression, then the
conflicts between the identifiers for the quantities in this expression and
the identifiers whose declarations are valid at the place of the switch
designator will be avoided through suitable systematic changes of the
latter identifiers. ’

5.4 PROCEDURE DECLARATIONS

Unrestricted

TR.12.105

169

(5) The body of a procedure (except the case of code) is formed into a block (see A.R. 5.4.3).

(6) The Translator rejects abstract programs in which an identifier appears in more than one
spec:-

is—-proc-desc (pd) & spec-1 ¢ s—-spec-pt(pd) & spec-2 ¢ s—-spec-pt (pd) =
(s—1id (spec-1) = s-id(spec-2) = spec-1 = spec-2)
(N The Translator rejects abstract programs in which the same identifier occurs in more than
one position in the form-par-list:-
is-proc-desc(pd) & elem(i,s—-form-par-list (pd)) = elem(j,s-form-par-list (pd)) = i=j
(8) The Translator rejects any programs in which a formal parameter does not have a
corresponding specifier (see A.R. 5.4.5) :-
is-proc-desc (pd) & 1<i<lengthss-form-par-list (pd) =
(Ispec) (speces-spec-pt (pd) & s-id(spec) = elem(i) es-form-par-list (pd))
(9) The Translator rejects any programs in which an identifier appears in the value part
but not in the formal parameter list :-
is-proc-desc (pd) & ides-value-pt(pd) = (31i) (elem(i) es-form-par-list = id)
(10) The Translator rejects abstract programs in which procedure, string or switch parameters
appear in the value-pt:-
is-proc-desc (pd) & spec ¢ s—-spec-pt(pd) &
(is-type-proc (s-specifier (spec)) v
is-PROC (s—-specifier(spec)) v

is-STRING (s-specifier (spec)) v
is-SWITCH (s-specifier(spec))) = -(s-id(spec) ¢ s-value-pt (pd))

170 TR.12.105 Unrestricted

(11) The following function is used to determine the type of references etc. :-
desc-proc (id,path-elepath,t) =

cases: id

(Ispec) (spec € s-spec-ptepath-elepath(t) & id = s-id (spec)):
let: spec! = (1 spec) (speces-spec-ptepath-elepath (t) & id=s-id(spec))
s-specifier (specl)

T: desc-1(id,path,t)

type: is-id X is-path X is-program - (is-specifier v is-desc v is-label-desc)

5.4.1 Syntax

Abstract syntax .
<formal parameter> :;:= <identifier>

(12) is~code =
<formal parameter list> ::= <formal parameter> |
This predicate is implementation defined. The objects satisfying it are distinct <formal parameter list> <parameter delimeter> <formal parameter>
elementary objects (thus is-sel(sel) & is-code(t) = is-Qesel(t)). _
<formal parameter part> ::= <empty> | { <formal parameter list> }

(13) is-type-proc = jis-REAL-PROC v is-INTG-PROC v is-BOOL-PRQC ' <identifier list> ::= <identifier> | <identifier list> , <identifier>
(14) is-specifier = is-type v is-type-array v is-type-proc v is-PROC v is-LABEL v <value part> ::= value <identifier list> ; | <empty>

is-STRING v is-SWITCH
<specifier> ;:= gtring [<type> | array | <type> array | label | switch |
refs: is-type 5.1, is-type-array 5.2 . procedure | <type> procedure

‘ <specification part> ::= <empty> | <specifier> <identifier list> ; |
(15) is-spec = (<s-id:is-id>, <specification part> <specifier> <identifier list> ;
{s-specifier:is-specifier>) ’
<procedure heading> ::= <procedure identifier> <formal parameter part> ; <value part> <specification part>
refs: is-id 2.4
<procedure body> ::= <statement> | <code>

(16) is-proc-desc = (<s-type:is-type-proc v is-PROC>, <procedure declaration> ::= procedure <procedure heading> <procedure body> |
<s-formpar-list:is-id-list>, <type> procedure <procedure heading> <procedure body>
<{s-spec-pt:is~-spec-set>,;
<s—-value-pt: is~-id-set>, 5.4.2 Examples (see also the examples at the end of the report)

<s~-body:is-block v is-code>)
procedure Spur (a)Order: {n) Result: (s} ; value n;

refs; is-id 2.4, is-block 4] . array a; integer n; real s;
note: The body of a procedure, unless code, is made into a block. begin integer k:
s:=0;
for k:=1 step 1 until n do s:=s+a[k,k]
Unrestricted end .

| TR.12.105 173
172 TR.12.105 - Unrestricted

Intexrpretation

(17) see mk-den :- is-proc-desc

174 TR.12.105

refs:

make-den S

Unrestricted

procedure Transpose (a) Order: (n) ; value n:
array a; integer n;
begin real w; integer i,k;
for i:=1 step 1 until n do
for k:=1+i step 1 until n do
begin w:=a[i,k];
afi,k]):=afk,i];
alk,i]:=w

(o7

en
end Transpose

|

integer procedure Step (u); real u:
Step:= if 0<u & usl then 1 else 0

procedure Absmax(a)size: (n,m) Result: (y) Subscripts: (i, k) ;

comment The absolute greatest element of the matrix a,of
size n by m is transferred to y, and the subscripts
of this element to i and k;

array a; integer n,m,i,k; real y;

begin integer p,q;

y:=0;

for

1 step 1 until n do for q:=1 step 1 until m do

p:= =
if abs(a[p,q])>y then begin y:=abs(a[p,q]) :

-

i:=p;'k:=q end end Absmax
procedure Innerproduct (a,b}Order: (k,p) Result: (y);
value k;

integer k,p; real y,a,b;

begin real s; s:=0;

for p:=1 step 1 until k do s:=s+a#*b;

Yi=S;

end Innerproduct

5.4.3 Semantics

A - procedure declaration serves to define the procedure associated with
a procedure identifier. The principal constituent of a procedure
declaration is a statement or a piece of code, the procedure body, which
through the use of procedure statements and/or function designators may be
activated from other parts of the block in the head of which the procedure
declaration appears. Associated with the body is a heading, which
specifies certain identifiers occurring within the body to represent formal
parameters. Formal parameters in the procedure body will, whenever the
procedure 1is activated . {(cf. section 3.2 Function designators and section

Unrestricted

TR.12.105

175

4.7 Procedure statements) be assigned the values of or replaced by actual
parameters. Identifiers in the procedure body which are not formal will be
either local or non-local to the body depending on whether they are
declared within the body or not. Those of them which are non-local to the
body may well be local to the block in the head of which the procedure
declaration appears. The procedure body always acts like a block, whether
it has the form of one or not. Consequently the scope of any 1label
labelling a statement within the body or the body itself can never extend
beyond the procedure body. In addition, if the identifier of a formal
parameter is declared anew within the procedure body ({including the case of
its use as a label as in section 4.1.3), it 1is thereby given a 1local
significance and actual parameters which correspond to it are inaccessible
throughout the scope of this inner local quantity.

5.4.8 Values of function designators

- Por a procedure declaration to define the value of a function
designator there must, within the procedure body, occur one or more
explicit assignment statements with the procedure identifier in a left
part; at least one of these must be executed, and the type associated with
the procedure identifier must be declared through the appearance of a type
declarator as the very first symbol of the procedure declaration. The last
value so assigned is used to continue the evaluation of the expression in

which the function designator occurs. Any occurrence of the procedure.

identifier within the body of the procedure other than in a left part in an
assignment statement denotes activation of the procedure.

COMMENT: If the procedure is terminated by a goto
out of the procedure body, the value of the
procedure is not used.

5.4.,5 Specifications

In the heading a specification part, giving information about the kinds
and types of the formal parameters by means of an obvious notation, may be
included. In this part no formal parameter may occur more than once.
Specifications of all formal parameters if any must be supplied.

ECMA CHANGE

5.4.6 Code_ as_procedure body

It 1is understood that the procedure body may be expressed in non-ALGOL
lanquage. Since it is intended that the use of this feature should be

Unrestricted

TR.12.105

177

entirely a question of hardware representation, no further rules concerning
this code language can be given within the reference language.

Examples of procedure declarations,
NON ECMA LANGUAGE USED

Example 1

procedure euler (fct,sum,eps,tim) ;value eps,tim;
integer tim;
real procedure fct; real sum,eps;
comment euler computes the sum of fct (i) for i from zero
up to infinity by means of a suitably refined euler
transformation, The summation is stopped as soon as tim
times in succession the absolute value of the terms of
the transformed series are found to be less than eps.
Hence, one should provide a function fct with one integer
argument, an upper bound eps, and an integer tim. The
output is the sum sum. euler is particularly efficient in
the case of a slowly convergent or divergent alternating
series;
begin integer i,k,n,t; arrxay m{0:15];
i:=n:=t:=0; m[0]:=fct (0) ; sum:=m[0]/2;
nextterm: i:=i+1; mn:=fct(i);
for k:=0 step 1 until n do
begin mp:=(mn+mfk])/2; m{k]:=mn;
mn:=mp end means;
if (abs(mn)<abs(m[n])) & (n<1S) then
begin ds:=mn/2; n:=n+1;
m[n]:=mn end accept
else ds:=mn;
sum: =sum+ds;
if abs({ds)<eps then t:;=t+1 else t:=0;
if t<tim then goto nextterm
end euler

real mn,mp,ds;

Example 2

procedure RK(x,y,n,FKT,eps,eta,xE,yE,fi) ;
value x,y; integer n;

Boolean fi; real x,eps,eta,xE; array Y,YE;
procedure FKT;

Unrestricted TR.12.105 179

Unrestricted

comment: RK integrates the system
yii{k) = £ (k) (xtyasyzw-m'ayh)' (k=1,2, ¢os,4n)
of differential equations with the method of Runge-Kutta
with automatic search for appropriate length of integration
step. Parameters are: The initial values x and y[k] for
x and the unknown functions y (k) (x). The order n of the
system. The procedure FKT (x,y,n,z) which represents the
system to be integrated, i.e. the set of functions £ (k).
The tolerance values eps and eta which govern the
accuracy of the numerical integration. The end of the
integration interval xE. The output parameter yE which
represents the solution at x=xE. The Boolean variable fi,
which must always be given the value true for an isolated
or first entry into RK, If,however, the functions y must
be available at several meshpoints x(0) ,x(1) ,..«,X (D),
then the procedure must be called repeatedly (with x=x (k)
xE=x (k+1), for k=0,1,...,n-1) and then the later calls
may occur with fi=false which saves computing time. The
input parameters of FKT must be x,y.,n, the output
parameter z represents the set of derivatives
z{kJ}=f (k) (x.¥y[1],Y[2]),---,Y[n]) for x and the actual y's.
A procedure comp enters as a non-local identifier;
begin
array z,yl,y2,y3[1:n]; real x1,x2,x3,H;
Boolean out; '
integer k,3j; own real s,Hs;
procedure RK1ST(x,y,h,xe,ye); real x,h,xe;
array y,ye;
comment : RK1ST integrates one single RUNGE-KUTTA
step with initial values x,y[k] which yields the
output parameters xe=x+h and ye[k], the latter being
the solution at xe. IMPORTANT: the parameters n,FKT,
z enter RK1ST as non-local entities;
begin
array w[1l:n], a[1:5]; integer k,j;
af1):=a[2]):=a[5):=h/2; a[3]:=a[t]:=h;

Xe:=x;
for k:=1 step 1 until n do ye[k]:=w[k]:=y[k];
for j:=1 step 1 until 4 do

FKT (xe,w,n,z) ;
xe:=x+al[j];
for k:=1 step 1 until n do

TR.12.105

181

Unrestrictéd

begin
wlk]l:=y[k1*a[j]1*z[k];
ve(k]l:=ye[k]+a(j+1]*z[k /3
end k
end j
end RK1ST;

BEGIN OF PROGRAM:

cC:

DD:

if fi then begin H:=xE-x; s:=0 end

else H:=Hs; out:=false;
if (x+2.01*H-xE>0) = (H>0) then

begin Hs:=H; out:=true;H:= (XE-x) /2

end if;

RK1ST (x,y.,2*H,x1,y1);

RK1ST (x,y,H,x2,y2) ;RK1ST (x2,y2,H,x3,v¥3);

for k:=1 step 1 until n do

if comp(yl(k],y3[(k],eta)>eps then goto CC;

comment : comp(a,b,c) is a function designator the
value of which is the absolute value of the
difference of the mantissae of a and b, after the
exponents of these gquantities have been made equal
to the largest of the exponents of the originally
given parameters a,b,c;)

x:=x3; if out then goto DD;

for k:=1 step 1 until n do y[(k]:=y3[k];

if s=5 then begin s:=0;H:=2%H end if;

¢

s:=s+l; goto AA;

H:=0.5%*H; out:=false ; xl:=x2;

for k:=1 step 1 until n do yi(k]:=y2[k];
goto BB;

for k:=1 step 1 until n do yE[k]:=y3[k]
end RK

|

TR.12.105 183

Acknowledgements

Thanks are due +to IFIP W.G. 2.1 (The Algol working group) for kindly
allowing the reproduction of the Revised Algol Report in the form
presented., Also to members of +the IBM Laboratory, Vienna for useful
discussions on general problems of the definition method and on specifics
of their Algol definition.

References

1. Naur, P. (Ed.) "Revised Report on the Algorithmic language Algol 60"
Comm_ACM Vol. 6 No. 1 pp 1-17 (Jan 1963)

2. Duncan, F.G. "ECMA Subset of Algol 60"
Comm_ACM Vol. 6 No. 10 pp 595-597 (Oct 1963)

3. Knuth, D.E. "The Remaining Trouble spots in Algol 60%
Comm ACM Vol. 10 No. 10 pp 611-618 (Oct 1967)

4. Lucas, P. and Walk, K. "On the Formal Description of PL/I"
Annual Review_in Automatic Programming Vol. 6 Part 3 Pergamon Press (1969)

5. Lucas, P., Lauer, P. and Stigleitner, H.
"Method and Notation for the Formal Definition of Programming Languages"®
IBM Lab. Vienna, Tech. Report TR25.087 (June 1968)

6. Lauver, P. "Formal Definition of Algol 60"
IBM Lab. Vienna, Tech. Report TR25.088 (Dec 1968)

7. Henhapl, W. and Jones, C.B. "On the Interpretation of GOTO Statements in the ULD"
IBM Lab. Vienna, Lab. note LN25.3.065 (March 1970)

8. Lucas, P. "Two Constructive Realisations of the Block Concept and Their equivalence"
IBM Lab. Vienna, Tech. Report TR25.085 (Jan 1968)

9. Jones C.B. and Lucas, P. "Proving Correctness of Implementation Techniques"
Symposium_on Semantics of Algorithmic Lanquages (Ed. Engeler, E.)
Lecture notes in Mathematics 188, Springer-Verlag pp 178-211

10. Bekic, H. "On the Formal Definition of Programming Languages"
Proceedings of International Computing Symposium Bonn (1970)

11. Burstall,R.M. "Proving Properties of Programs by Structural Induction"
Comp_Journal Vol. 12 No. 1 pp 4#1-48 (Feb 1969)

184 TR.12.105 Unrestricted

NAME

" abs

access
activate-proc
all-intrs

apply
apply-arithm-opr
apply-bool-opr
apply-des-opr
arithm-infix-opr
arithm-prefix-opr
arithm-relat~opr
arithm-relat-value
array-access
assign
assign~to-lp-1list
augment-dn
bool-infix-opr
bool-infix~value
change-block

change-lp-vars

Unrestricted

APPENDIX: Cross Reference Index

DCLN
1(50)
3(5)
3.2 (16)
4.1(13)
3(9)
3.3(29)
3.4(9)
3.5(9)
3.3(32)
3.3(30)
3.4(12)
3.4(13)
3.1 (24)
4.2 (23)
4.2 (22)
5(8)
3.4(10)
3.4 (11)
4.1 (14)

4.2 (20)

USED IN
3.3(38)

3(4),3(5),4.7(5),5-2(9)

3.2(15)

4.1(11)
3(4),3(6),3.1(21),3.2(15),3.3(29),3.4(9),3.5(9),5.2(9)
3(9)

3(9)

3(9)

3.3(29),3.3(34),3.3(35)

3.3(29)

3.4(9)

3.4(12)

3(8)

4.2(22) ,4.6(7) ,4.6(8) ,4.6(11)

4.2(20) ,4.2(22)

4.1(10)

3.4(9)

3.4 (10)

4.1(10)

4.2(16)

TR.12.105

185

NAME DCLN USED 1IN NAME DCLN USED IN

change-text u.7(7 4.1(14) ,4.7(6),4.7(7) eval-expr 3(4) b.2(16) ,4.2(19),4.3(2),4.5(3) ,4.6(7),4.6(9),4.6(10)
) v 4.6(11)
construct-pairs 4.,1(12) 4.1(11),4.1(12)
eval-lp 4.2 (18) 4.2(17),4.6(5)
convert 4.2 (21) 3(6),3.1(23),3.2(18) ,4.2(20) ,4.6(7),4.6(8),4.6(11)
eval-lp-list 4.2(17) 4,2(16),4.2(17)
convert-array 3.2(19) 3.2(18)
eval-step 4.6 (10) 4.6(8)
convert-array-el 3.2(20) 3.2(19)
. eval-subs 4.2(19) 4.2(18),4.2(19)
convert-one-sub 3.1(23) 3.1(22)
eval-until 4.6 (9) 4.6 (3
convert-subs 3.1(22) 3.1(21) ,4.2(18)
firsts 1(14) 4.7(7N
cue-int-st 4 (9) 4(7) ,4(9) ,4(10),4.12(17)
fn-access 3.2(14) 3(W) ,3(9)
cue-int-st-list 4.1(17) 4 (10),4.1(16) ,4.1(17)
head 1(43) 4.2(17),4.2(19) ,4.2{22) ,4.6 (6)
cue-int-unlab-st 4(10) 4(9) -
insert-ret 3.2(24) 3.2(23),3.2(2W)
del-set 1({12) 4.1(18) ,4.6(6) ,4.7(7)
int-assign-st 4,2 (16) 4 (8)
desc) 1(51)
int-block 4.1(10) 4(8) ,4.1(9)
desc-block 4.1(5) 1(52)
int-block-body 4.1 (15) 4.1 (10)
desc-proc 5.4(11) 1(52)
: int-code 4.7 (9) 4.7 (8)
desc-1 1(52) 1(51),1(52),4.1(5),5.4(11)
. int-cond-st 4.5(3) 4 (8)
disj 1 (59)
int-for-st -) 4,6 (5) 4(8)
entier 1 (49) 3.2(20) ,3.3(38) ,4.2(21)
int-goto-st , , 4.3{2) 4 (8)
epilogue 4.1(18) 3.2(16),3.2(23),4.1(10) :
int-proc-body 4.7(8) 4.7 (6)
eval-act-par 3.2(18) 3.2(17)
int-proc-st 4.7(5) 4(8)
eval-act-par-list 3.2(17) 3.2(16)
int-program 4.1(9)
eval-array-bds 5.2 (9) 5.2(8) progr
int-st u(7n 4(9) ,4.1(16) ,4.5(3) ,U4.6(7),4.6(8),u4.6(11)
eval-array-decls 5.2(8) 4.1(10),5.2(8)
int-st-list 4.1(16) 4(8) ,4.1(15),u4.1(16) ,4.1(17)

186 TR.12.105 ‘ Unrestricted Unrestricted ‘ o ' TR.12.105 187

NAME

int-unlab-st

intg~-arithm-infix-value

intg-power-opr
intg-power-aopr-val
intr-ids

is- (pred) -list

is- (pred) —-set
is-abn

is-act-par
is-activated-£fn
is-arithm
is-arithm~array
is-arithm~array-op
is-arithm-array-val
is—arithm-cond-expr
is-arithm-const

is-arithm-expr

is-arithm-infix-expr
is—arithm-infix-opr
is-arithm-op
is—-arithm-prefix-expr
is-arithm-prefix-opr

188 TR.12.105

DCLN
4(8)
3.3(38)
3.3(33)

3.3 (34)
4.1(3)
1 (47)

1 (8)
1(53)
3.2(8)
4.2 (14)
5.1 (1)
5.2(2)
1(31)

1 (26)
3.3(26)
2.5(7)

3.3 (23)

3.3 (25)
3.3(28)
1(37)

3.3 (24)

3.3(2)

USED IN
4 (7),4.7(8)

3.3(32)
3.3(32)

3.3(33)

4.1(10) ,4.1(13) ,4.7(7)

3.2(9) ,3.2(10) ,3.2(11),4.7(3)

3.2(24)
3,2(18),3.3(32),5.1(2)
3.2(18),5.2(3)
1(33),3.2(18)
1(28),1(31)
3.3(27),3.3(29)

2(3)

3(2),3(9),3.1(8),3.1(10),3.1(12),3.4(7),3.5{4),u.2(10)
4.2(11) ,4.6(1) ,4.6(2),4.6(3),4.6(7),5.2(4)

3.3(29)

1(38),3.2(18)
3.3(29)

3.3(3),3.3(4)

Unrestricted

- NAME

is-arithm-relat-expxy

is-arithmerelat-opxr

is-arithm-val
is-arithm-var
is-array-decl

is—array-den

is~array-desc

is-array—-name
is-array-op
is-array-val
is-assign-st
is~basicrsymbol

is-block

is-bool-activated-£fn
is-bool-array-op
is-bool-array-val
is-bool-assign-st
is~-bool-cond-expr
is-bool-const

is-bool~expr

is-bool-funct-ref

Unrestricted

DCLN
3.4 (7)
3.4 (6)
1 (2u)
3.1 (15)
5.2 (6)
1(18)
5.2 (5)
3.2(7)
1 (33)
1(28)
4.2(13)
2(2)

4.1(7)

4.2(8)
1(32)
1(27)
4.2(12)
3.4 (5)
2.2(2)
3.4 (8)

3.2(11)

USED IN
3.4(8) ,3.4(9)
3.8(7)

1(25) ,1(26)
4.6 (4)

5.2(8)
1(22),5.2(8)

4,1(10) ,5(5) »5(9) »5.2(6)

3(T),3(8) ,3.2(8)
1(40),3.2(22)
1(29)

3.2(24) ,4(5) ,b (8)

1(11,2.6(1)

1(21) ,1(52) ,4(3) ,4(4) ,4(5),4(8),4.1(8),4.1(13),8.7(7)

5.4 (16)

4.2(9) ,4.2(14)
1(33),3.2(18)
1(28),1(32)

4.2(13)
3.3(27),3.4(8),3.4(9)

2(3)

3(2),3(9),3.2(21),3.3(16),3.3(17),3.3(18),3.3(20),3.4(2)
3.4l ,3.4(5),3.5(5),4.2(12),4.5(2),4.6(1)

3.2(12) ,3.4(8)

TR.12.105

189

NAME

is-bool-infix-expr

is-bool-infix~opr

is-bool-1lp

is-bool-op

is-bool-prefix-expr
is-bool-simple-var

is-bool-subscr-var

is-bool-val
is-bool-var

is-bound-pair

is~-changed-text

is-code
is-comp-st
is-cond-expr
is-cond-st
is-const
is-decl

is-den

is-des-cond-expr

is~des-expr
is-desc

is-dn

190 TR.12.105

DCUN
3.4 (4)
3.4 (3)
4.2(9)
1(36)
3.4(2)
3.1 (11)
3.1(12)
2.2(1)
3.1 (16)
5.2 (4)
4.7 (4)
5.4 (12)
4.1(6)
3.3(27)
4.5(2)
2 (4).

5 (6)
1(22)
3.5 (5)
3.5(8)
5(5)
1(23)

USED IN

3.4(8),3.4(9)

3.4 (4)

4.2(12) ,4.2(15) ,4.2(20)
1(38),3.2(18),3.4(8)

3.4 (8),3.4(9)

3.1(16) ,3.1(17)

3.1(16) ,3.1(18)
1(25),1(27) ,1(36),2.2(2)
3.4(8) ,4.2(9)

5.2 (5)

1(21) ,3.2(24) ,4.7(7),4.7(8),5.4(16)
4(5) ,4(8),4(10)
3(3),3(6),3(7N

4(5) ,4(8),4(10)

1(54),4.1(7)
1(23)

3.3(27),3.5(8)

1(20),3(2).,3(9),3.2(21) ,3.5(5),4.3(1),5.3(1)

5 (6)

NAME
is-dummy-st
is-eb
is-expr
is-fn-ret
is-for-elem
is-for-st
is-funct-ref
is-goto-st

is-id

is-idpr
is-intg-activated-fn
is-intg-assign-st
is-intg~cond-expr
is-intg-const

is-intg-expr

. is-intg-funct-ref

is-intg-infix-expr
is-intg-infix-expr-1
is-intg-infix-expr-2

is~intg-infix-opr

Unrestricted

DCLN
4.4 (2)
1(17)
3(2)
3.2(13)
4.6 (3)
4.6 (4)
3.2 (12)
4.3 (1)

2.4 (1)

1(10)
4.2(6)
4.2 (11)
3.3 (20)
2.5(5)
3.3(22)

3.2(10)
3.3(15)
3.3(13)
3.3(14)
3.3(12)

USED IN
4 (5) ,u4(8)
1(18),1(31) ,1(32)
3(3),3.2(8)

4.6 (4)
4 (5) ,4(8),4(10)

3(3),3(4),3(5),3(6),3(7),3(8)

4 (5) ,4(8)
1(1),1(10),1(19),1(21),1(23),1(30),1(39),1(53),1(57)
3.1(7),3.1(8) ,3.1(9),3.1(10),3.1(11),3.1(12),3.2(6)
3.2(7) ,3.2(9) ,3.2(10) ,3.2(11),3.5(4),3.5(6),3.5(7) .4 (6)

4.1(12) ,4.2(4) ,4.2(6),4.2(8) ,4.7(3),4.7(7),5(6),5.2(6)
5.4(15),5.4(16)

4.2 (7) ,4.2 (14)
4.2(13)
3.3(22),3.3(26)
2.5(7)

3.2(21) ,3.3(4),3.3(7),3.3(8),3.3(9),3.3(10),3.3(13)
3.3(14),3.3(17),3.3(18) ,3.3(20),3.3(23),3.3(29),3.3(33)

3.2(12),3.3(22)
3.3(22),3.3(25)

3.3(15)

3.3(15)

3.3(13),3.3(28) ,3.3(32)

TR.12.105

191

NAME
is-intg-1lp

is-intg-op

is-intg-prefix-expr
is-intg-simple-var

is~intg-subscr~var

is-intg-val

is-intg-var
is-intr
is-lab-sel
is-lab-selector
is-label~const
is-label-decl
is-label-den
is-label-desc
is-label-op
is-label-var
is-list

is-1p

is-non-neg-intg-const
is-non-neg-intg-val

is-non-type-proc-name

is-ob
192 TR.12.105

DCLN
4.2(7)
1(35)
3.3 (%)
3.1(9)
3.1 (10)

2.5(2)

3.1(14)
1(54)
1(56)

1 (55)
3.5(7)
1(57)
1(19)

5 (7)
1(39)
3.5(6)
1 (42)
4.2 (15)
2.5 (6)
2.5(3)
3.2 (6)

1(2)

USED IN
4.2(11),4.2 (15) , 4.2 (20)
1(37),3.3(22)
3.3(22),3.3(24)

3.1(14) ,3.1(17)

3.1(14) ,3.1(18)

1(1),1(17y,1(24) ,1(26),1(27),1(35),1(49),2.5(3),2.5(5)

3.1(24)

3.1(15) ,3.3(22) ,4.2(7)

1(56)
2(4)

1(54)
1(22)

1(57),5(9

1(40) ,3.2(16),3.2(18) ,3.2(22),3.5(8)

3.1(17) ,3.5(9)

1(47)

3.3(9),3.3(14) ,3.3(33)

2.5 (6)

3.2(8)

1(9),3(6),3.2(24),4.7(7)

Unrestricted

NAME
is-obiject
is-op
is-op—-expr
is-opt- (pred)
is-path

is-path-el

is-pr

is-proc-den
is-proc-desc
is-prdc-st
is-program
is-real-activated-fn
is-real-assign-st
is-real-cond-expr
is-real-cond-expr-1
is-real-cond-expr-2
is-real-cond-expr-3
is-real~const

is-real-expr

is-real-funct-ref
is-real-infix~expr
is-real-infix-expr-1

Unrestricted

DCLN
1(1)
1§u0)
3¢3)

1 (62)

1 (6)
1(5)
1(9)
1(21)
5.4 (16)
4.7 (3)
4.1 (8)
4.2 (4)
4.2 (10)
3.3(19)
3;3(16)

3.3(17)

3.3(18)
2.5 (4)
3.3(21)

3.2(9)
3.3(11)
3.3(6)

USED IN

3(6),3(7),3-2(24) ,8.7(7)
3(3),3(6).,3(7M ,3(%

3(3),3(8)

1 (58)
1(6)

1(22),4.1(11)

1(52) ,4.1(13) ,4.7(7) ,5(5).,5(9)

3(5).,4(5),4(®
1 (58)

4.2(5) ,4.2(14)
4.2(13)
3.3(21),3.3(26)
3.3(19)

3.3(19)

3.3(19)

2.5(7)

3.2(21) ,3.3(3),3.3(6),3.3(7) ,3.3(8),3.3(16),3.3(17)
3.3(18),3.3(23),3.3(29)

3.2(12),3.3(21)
3.3(21),3.3(25)
3.3(11)

TR.12.105

193

NAME
is-real-infix-expr-2
is-real-infix-expr-3
is-real-infix-expr-4
is-real-infix-expr-5
is-real-infix-opr
is-real-1lp
is-real-op
is-real-prefix-expr
is-real-simple-var
is-real-subscr-var
is-real-val
is-real-var

is-sel

is-selector

is-set

is-simple-val
is-simple-var
is-spec
is-specifier

is-st
is-step-until-elem

is-string

194 TR.12.105

DCLN
3.3(7)
3.3(8)
3.3(9)
3.3(10)
3.3(5)
4.2(5)
1(34)
3.3(3)
3.1(7)
3.1(8)
2.5(1)
3.1(13)
1(w)
1(3)
1(7)
1(25)
3.1(17)
5.4 (15)
5.4 (14)
4 (6)
4.6(2)
2.6 (2)

USED IN
3.3(11)

3.3(11)

3.3(11)

3.3(11)

3.3(6),3.3(7) ,3.3(8),3.3(28),3.3(32)
4.2(10) ,4.2(15) ,4.2(20)
1(37),3.3(21)

3.3(21),3.3(24)

3.1(13),3.1(17)

3.1(13),3.1(18)

1(1),1(24) ,1(34),2.5 (4)
3.1(15),3.3(21) ,4.2(5)

1(5) ,1(60) ,3(6) ,3(7),3.2(24) ,4.7(7)
1(1),1(5),1(8),3.2(24),4.7(7)
1(29),3.2(13)

3(6),3(7),3(8) ,3.1(19),4.2(18),4.2(23),4.6(6)

1(21),5.4(16)

5.4 (15)

4.1(6) ,4.1(7) ,4.5(2) ,4.6(L)
4.6(3) ,4.6(7)

2.6(1) ,3.2(8) ,3.2(21)

'NAME

is-string-elem
is-subscr-var
is=switch—den
is-switch-des
is-switch-desc
is-text
is-type
is-type-array
is-type-const
is-type-den
is-~type~-op
is-type-proc
is-unlab-st
is-val
is-value~parm
is-var

is-var-desc

is-vl

is-while-elem

iterate-for

iterate-for-list

DCLN
2.6 (1)
3.1(19)
1(20)
3.5 (4)
5.3 (1)
1(58)
5.1 (2)
5.2 (3)
2(3)

1 (16)

1 (38)
5.4 (13)
4 (5)
1(29)
3(10)
3.1(19)
5.1(3)
1(30)
4.6 (1)
4.6 (7)

4.6 (6)

iterate-step-until-elem 4.6 (8)

Unrestricted

USED IN

2.6 (2)

3(7) ,3(8),3.1(19),4.2(18) ,4.2(23),4.6(6)

1(22)
3(3) ,3(6),3.5(8)

5(5) .5 (9)

1(16),3.1(20) ,3.2(13) ,5.1(3) ,5.4(14)
1(18),3.2(7) ,3.2(21) ,5.2(5),5.4(14)
2 (W)

1(22)

1(40),3.2(22)

1(21),3.2(16),3;2(21),u.7(3),5.u(1u),5.u(16)

4 (6) ,4.7(8)
1(30)

3(6) ,3(7),3.2(15) ,3.2(16)
3(3)

5(5) ,5(9)

4.6(3),4.6(T)
4.6 (6)
4.6(5),4.6(6)

4.6(7) ,4.6(8)

NAME
iterate-while

length

local
local-labs
main-pt
make~den
make-st-sel
match‘

mk-op

mk-pairs

mod-set
non-type-~proc
one-access
proc-access
ready-set
real-arithm-infix-value
real-power-value
real-prefix-value
reduce-cond~switch
rest-pt |

S

196 TR.12.105

DCLN
4.6 (11)

1(45)

4(3)
4.1 (8)
1(60)
5(9)
4 (1)
3.2(21)

1(u1)

4.1(11)
1(13)
4.7 (6)
3(8)
3.2(15)
3(7)
3.3(37)
3.3(36)
3.3(31)
3 (6)
1(61)

1(11)

USED IN
4.6(7) ,4.6(11)

1(44),1(47),3(6),3(7),3.1(21),3.1(22),3.1(24),3.2(15)
3.2(16) ,3.2(17),3.2(24) ,4.1(16),5.2(9)

4(7),4(9),4.1(4) ,4.1(16),4.1(17)
4.1(3),4.1(5) ,4.1(10)

1(61) ,4(10) ,4.1(16) ,4.1(17)

5 (8)

4(7),4(9),4.1(16) ,4.1(17)
3.2(18)

3.1(20),3.1(21),3.2(18),3.3(29),3.3(30),3.3(32),3.3(33)
3.3(34),3.4(9) ,3.4(10),3.4(12)

3.2(16) ,3.2(23) ,4.1(10)
3.2(16) ,3.2(23) ,4.1(10) ,4.2(23),4.6(6),5(8)
3.2(16) ,3.2(23)

3¢(5)

3.2 (14) ,4.7(5)

3(5),3(7)

3.3(32),3.3(36)

3.3(32)

3.3(30)

3(5).,3(6)

4(9) ,4(10) ,4.1(16),4.1(17)

3(6) ,3(7) +3.1(20) ,3.1(21) ,3.1(24) ,3.2(15),3.2(23),4.2(18)
4.2(23) ,4.6(6) ,4.7(7)

Unrestricted

NAME

seconds

self-mult
sign

simp-var-access

subscr-var-access

" tail

type-proc

val-den

Unrestricted

DCLN

1 (15)

3.3 (35)
1 (48)

3.1(20)
3.1(21)
1 (44)

3.2(23)
3.2(22)

USED IN

3.2(16) ,4.1(10) ,4.1({11)

3.3(3#),3.3(35)
1(50),3.3(38)

3(8)

3(8)

4.2(17),4.2(19) ,4.2(22) ,4.6 (6)
3.2(16)

3.2(16)

TR.12.105

197

