B

IBM United Kingdom
Laboratories Limited

Formal Development of Correct
Algorithms: An Example
Based on Earley’s Recogniser

C. B. Jones

ﬂ@ah_mwlwﬁ@ ort T.R 1‘2 “:f

AR WW\»&M e R e e o T N e B T S S e

d Unrestricted

Technical Report T.R.12.095

Formal Development of Correct

Algorithms: An Example

Based on Earley’s Recogniser

C.B. Jones

Unrestricted

December 1971 215-8043-0

IBM United Kingdom Laboratories Limited
Hursley Park
Winchester Hampshire

0. Introduction ., . ., . .

.

i, OGeneral Comments on Method

2, HNotation

P

Functions . . .+ . .

Sets .

P T T R ST S

Logical Connectives

Objects/Selectors

, Problem Definition . .

. Farley's State-Sets ,

. Mapping State-Sets ontc Lists

. Structure for Store

3
4
5, Creating State-Sets .,
6
7
8

. A Modification

9., Coding in PL/L

10, Discussion . . + .+ . &

References

Appendix
Appendix
Appendix
Appendix
Appendix

I.
1T,
IIL,
Iv,
V.

PR T S Y

.

.

.

.

.

.

o

]

PL/1 Version of the Recogniser

PL/I Version of IPGR
PL/I Version of IPSTR
PL/I Version of IPTEST

A Run of the Recogniser

o

+

e Y Y L

13
19
23
29
31
33
35
37
41
45

47

Contents

it

Abstract

This paper contains the formal development of a correct algorithm from an implicit definition of the task
to be performed. Each step of the development is accompanied by a proof of its correctness. As well as

ensuring the correctness of the final program, the structured development gives considerable insight into
the algorithm and possible alternatives.

The example used is a simplified form of the recognition algorithm due to Farley.

Acknowledgements

The author gratefully acknowledges that the idea of levels of an algorithm was suggested by P Lucas.
The current paper represents a reasonably complex example and the author's own view of how to add the
proafs,

Earley's paper provided not only the ideas of the algorithm but also the basis for some of the proofs
of the first sections. The author is also grateful for useful discussions with € 7 Allen, D N Chapman,
and P D Wright for providing the oviginal running program.

Although differing in impertant respects, the author acknowledges the stimulus of the works of Dijkstra,
Hoare and Mills relating to development of programs.

Note: Parts of this paper are to be presented at the ACM STGPLAN symposium on "Proving Assertions about
Programs", the current report having been printed to make the full details of the proofs available. As a
courtesy to the intended publishers, distribution should be restricted.

G. Introduction

The published literature on proving programs correct has tended to confine itself to rather simple
algorithms. Apart from the obvious difficulties of long papers, part of the reason for avoiding proofs
of larger programs may be that they are almest invariably incorrect! In order to avoid writing a
plausible algorithm and then constructing an equally plausible proof which misses the errors, it is
necessary for the proof comstruction to be extremely detailed. The combination of large programs and
detailed proofs makes the whole picture diffieult to grasp: any errors that are present become elusive.

Is there an alternative? This paper supports an affirmative answer by going through a formal

development of a reasonable-sized algorithm. The steps of development represent a, hopefully, natural
evolution from the problem specification to the final program. Each step is stated in a formal notation
which makes it possible to construct the proof, Although the overall size may appear large, the structure
of the development makes it easy to absorb,

At each stage of development certain assumptions are made which may range from implicit function
definitions to properties of data types and their operations. At the same time, functions are also
defined further, or properties of data types added. A proof is constructed that, under the new set of
assumptions, this stage of development fulfils the earlier assumptions. The new assumptions provide,
of course, the specification for the next stage. Thus, at each level, it is only necessary to prove
that the hypotheses of the preceding level hold: not to prove again earlier results. Moreover, the
development is not a chain of equivalences. It is a completely structured development in which it is
possible to think, and prove theorems, about one set of problems at a time.

An example of this development taken from the paper begins with an impiicit definition of a set (that is,
an object with no order); at the next stage operations are given whose closure en an initial set is
shown to satisfy the implicit definition; a mapping of the set onte a iist is then given as the next
stage and the problems of mimicking the closure are considered.

This paper does not purport to present a worked-out methoed of formal development, although the author
ventures some general comments in the next section. The hope is to encourage further work on a range
of examples. Such work should throw light on some of the problems referred te in the discussion of
Section 10. In particular there are some areas requiring a much more thorough approach. However, if
this ig handled correctly further developments should be less difficult than that given below because
they can appeal te general theorems.

The body of the paper {Sectioms 3 through 7 and Section 9), consists of the development of the algorithm,
The example chosen was a recogniser using a simplified form of the ideas of TLarley. The reader is asked
to refer Lo reference 1 for a description, since such a readable presentation would make detailed
exposition in the current paper pointless. Suffice it to say that the algorithm carries out all possible
top down parses in parallel, keeping track of them in sets of states. (The simplificatiocn made for the
current paper was to omit Earley's H look~ahead) .

As a result of a draft. of this paper the question of modifying developed programs was posed: an attemph
to address this guestion is made in Section 8 with an, albeit rather simple, modification.

Unrestricted TRi2.095

1. General Comments on Method

As already mentioned, this section is far from presenting a complete general method for Formal
Development. It is confined to making some observations resulting from the development contained below,

The most pervasive rule in Formal Development appears to be to define as little as possible at each step.
Thus only enough new properties are introduced to give some point to the step. Addition of too much,
firstly, clouds the structure of the proof and, secondly, may be regretted. The process consists of
adding properties at each step; removal would require backing up to the point of introduction. An
example of the addition of properties is the use of (finite) sets of data types until the main lines of
the algorithm are clear, at which time the additional properties of ordering are considered.

The actual mode of development used by the author was at each step to sketch a solution using
"ynderstood" notation; thenm to go back and, in provipg that step formally, write down exactly what
properties were required of the notation. This provides a detailed specification for the next level,

Particular care must be taken over the use of logical operators between {potentially} undefined operands.
1f, for example, the second operand of a conjunction can be undefined when the first is false, care must
be taken to record this fact (see 2-2%. Reference 4 discusses the problems of such "three-valued" logic,

There 1s an important division in the subsequent development between the areas with which proofs are

e

concerned, The proofs of Sections & and 5 ave exclusively related to the Problem domain, the subsequent
ones are related more to the Data and Language domains.

Comments on the process of modification are left to Section 8.

Unrestricted TR12.095 3

2. Notation

This section reviews the notation used below. Whilst an attempt has been made to minimise the quantity
of non-standard notation, use has been made of parts of, so called, VDL (see reference 2 for a fuller
treatment}. Those parts adopted are defined below in a way which, hopefully, makes this paper self-

contained.

FUNCTIONS

Srandard notation 1s used to display functions (e.g. conditional expressions, where clauses) except
that!

(2~-1) f : A - B

je taken to imply that f is total over its domain A.

Given a function:
£ 1 AxDB->C

its speciatisation to a particular fixed value in A will be written:
fa B - C

with obvious meaning.

SETS
lormal set notation is used (i.e. 5,&,£,u,n,¢, {x!lp(x)}) and the following sets are assumed:

N

{1,2,3,...}

W = £0,1,2,...}

= {1,2,...,0}

The power set (that is, set of all subsets) of § will be written:

8(s) = {s|s=s}

LOGICAL CONNECTIVES
In addition te the normal notation (i.e. ~,A,v,»,2,3), bounded guantifiers:

(Ix) (p{x3?}

xeX

are used where appropriate.

"There exists exactly one cbject' is written:
(30 W plx) ice. @)Y A (00 A ply) = x=y)

Under the hypothesis that such a unique object exists it may be denoted using the ilota operator:
(o) p(ed)

The conditional expression form of "and" {i.e. false if first operand is false even if second is
undefined) is written:

{2-2) 2 &b

OBJECTS/SELECTORS

Certain sets of elementary objects are given (e.g. N). Composite objects can be viewed as finite tree
structures with elementary objects at the terminal nodes. Branches are named with, so called, selectors.

Unsestricted TRIZL9S 5

No two branches emanating from the same node may have the same selector name. Subtrees of a given object
are called components. As well as naming branches, selectors are used to select components from given
objects, Thus:

s{x}

denotes the component of x named s.

Selectors are used in the sequel only when such a component exists. ITterated selection is represented
by:

5=~2(s~1{x))
Predicates defining classes of objects are written in an obvious way, thus:
(2-3) is—p = (<s-liis~p-l»,<s-2:tig-p-2>,. .. ,<s-n:is~p-n>)

represents a class of objects each with n sub-components etc.

The convention of using the prefixes "is-" and "s-", for predicates and seleclors respectively, is followed
below. Upper case occurrences of predicate names (excluding the "is-") are used to denote the set of
objects satisfying the predicate:

{2-4) P = {x | is~p(x})

The selectors of 2-3 can be described as:

(2-5) s~1 : P =» P~}

$=2 : P -> P-2

s-n : P -» P=n
Certain "obvicus extensions™ of strict VDL are cmployed, for example:
(2-563 is-p = is-(<s-liis—p-1>,7s=2:i5-p=2>)

. n
Lists can be considered as objects whose components are named by a subset of the natural number (N).
However, selection will be shown by conventional subscript notation., Thus:

(z-7) L= lel~1,el=2,...,el-n!
(2-8) i{L}y = =n length of list
(2-9) for T9i<e{L) : Li = @l

The class of objects satisfying is-p-list is the slass of all lists whose elements satisfy is-p. Thus:

(2-10) 21 P-LIST -» x°
{2113 8" : PeLIST - P subscripts, where N is the set {1,2,...,2(1ist)}

It is also convenient to have certain lists indexed from zero. The notation:
.)
(2-12) iLs-p-iist

is used with obvious meaning.

The class of objects satisfying is-p-set is the class of all finite sets whose members satisfy is-p. Thus:

(2-13) is-p-get denotes a class of finite sets.

(2-14) e P x B(P) -» {T,F} "is a member of" written as an infix predicate symbol
{2-15) x e {elp(e)) = p(x) implicit set definition

(2-16) Ur 8 % § »» § set union

such that ® e(A U B) = (xeA VvV %eB)

{2-17) sets cannot contain “duplicate elements"™

6 TR12.095 Unrestricted

3. Prohlem Definition

This section gives the definition of the task to be performed by the aiporithm which is developed in
subsequent sections. In outline: the class of grammars is defined in 31 to 3-4 in the familiar
terminal /non-terminal way; the class of strings which can be produced from a given grammar is defined in
3-5 and 3-6; a function "root" is introduced in 3-9 which is assumed to provide the non-terminal from
which acceptable strings must be derivable. The recognition task, for given string and grammar, can now
be defined in 3-10 using the above noticns. A useful Temma on productions is given in 3-7.
The class of grammars is defined:
(3-1) is—grammar = is-rule-setl
which is assumed to have properties 2-13, 2-i4
(3-2) is—rule = {<s-lhs:is-nt>,<s-rhs:is-el-list>)
properties 2-5 and 210, 2-i] are assumed

¥ will be used as an abbreviation for (s-rhs(r))
(3-3) is~el = is-nt Vv is~-t
(3-4) NI n T = ¢ non-terminal and terminal sets are disjoint

The following production symbols are defined:

for is-el-list (o), is-el-list(B), is-grammar{G):

(3-5) @ hB = ey B E @ro)(s-lhs(x) = A & s-rhs(r) = y)
*
(3-6) o i R z (%@m)(Hao,a],...,am)(u:u0:>u1:>a2:>...E?wm=5))

In the sequel, the grammar can be omitted from the production symbol with wo danger of confusion.
The following Lemma can be proved from 3-5, 3-6:
(3-73 Lemma

%
¥ o=> o1 o3 (3t],...,L2{Y}){}:t]ht R

L)

w
-

¥

I RN :l‘.

ey 7T ’

Coen-1" T

The "specification” of the algorithm to be developed, say rec¢, can now be stated as follows:

{3-8) rec : T-LIST » GRAMMAR ->{ YES, NO }
(3-9) such that for is-t~List(X) assuming properties 2-10, 2-1]
is—grammar (G} see 3-~1
root : GRAMMAR ~> NT a predefined function
(3-10) rec (X,6) = YES iff root(G) 2> X
NO otherwise

Given that 3-8 requires that rec be total (see 2-1), the second part of 3-10 is not proved explicitly
below.

Unrestricted TRI12.095 7

4. Earley’s State-Sets

The reader is assumed to be familiar with the concepts of states and state-sets as described'by Earley
in rveference 1. (The simplification in the current paper d?ops the fourth element of Eariey's states.}
Collections of state—sets correspond to objects satisfying is—5 (sce Awg) from vhlch individual stéte~
cors can be retrieved using the Function “state-set'. The only properties required ﬁf the data cbject
containing state—sels {see 4-3) are the applicability‘of the predicate ”1§ member of' and the 1§ck of
duplicate members. Objects containing states are defined by 4-4 o be triples whose contents will be

ceferred to via given selectors o using the specified abbreviaticon. More properties of the storage will
he added as the algorithm evolves, Chose given so far are enough Lo express the first ideas about the

algorithm,

Tt is convenient to assume that there is only one rule of the grammar of which root(G) is the left—hand
side., This restriction is made im 4~1 since it has no real effect on the class of valid grammars:

(4-1) (30) (s~ths{y) = root(6))
reG

The object containing all state-sets sacisfies:
(4=2) is-§
which is characterised by the §xistenco of two fupnctions:

len 1+ 5 —» W

state-set : N x § -» STATE SET

gﬁg{g_Nn is the set 10,1,...,len(8)]

(43 ig~statesel = is-state-set
of whicl 2-14 and 2-17 are required to hold.
{&-4) js-state = (<s-rule:is-ruler, <s-jiis-nr, 2g={1ig=n*)

of which 2-5 is required to hold.

The abbreviation:
<r,j,

is used for the object, say s, fov which:
s-rule(s} = ¢

s~1(s}
5—f(s)

Hi|

States will be used to record partial parses. The presence of a particular state, say <r,j,f>, in the
ith state-set will mean that a string cen be derived from the grammar, G, which consists of the first
f characters of X (the string to be recognised) followed by ieft-hand side of r. It will alse mean that
the first j elements of the right-hand side of v can produce from G the string Xf+1...X;. This propertcy

1$ stated formally in 4~7 below and represents an upper hound for valid state—sets: any state present
must possess this property. In order to permit the "rec' algorithm to decide recognition, not all of
these states are essential, so 4-6 and 4-8 set a lower bound on valid state-sets: the formey specifies a
start element which must be present; the latter specifies that if <v,j,f» ig in the ith state-set and the
next element (that is, j+! th) of the right-hand side of r can produce X, C K, then <x,j+1,f> must be
a mewber of the mth state-set. ixl m

It is fundamental to the style of development proposed by this paper that the freedom to choose which
set between the lower and upper bound will be generated, is left for the time being. The properties
given permit the development of the first steps of the algorithm (see 4-5) and the proof that, under the
assumptions on Che creation of &, it fulfils the task described in Section 3. This freedom is used to
S§UW the sorrectness of an optimisation modification in Section 8 and could be used to validate many
different algorithms including the use of Rarley-style look-ahead. Furthermore, the proof of the actual

$tate-sets consLructed in Section § has been simplified by only having to prove tlhat these looser
properties hold.

J et
Unsestricted TR12095 9

The definition of a function, alleged to satisfy 3-8, 3-10, can now be given:

(4=5) rec (X,8) = <rr,;?,0> ¢ state-set {(2(x),5) -> YES
T -» NO

where i1s-§5 (3}
and len 5y = 2 (D

and rr = (ir Y(s-lhs{r) = root ()Y
reG

The correctness of this function relies on the following assumptions about 5. (These assumptions will,
of course, form the definition for further development.)

Some base element must exist in b

(4-63 <rr,0,0> » state-sel (0,5

Any element of a state-set must, at least, satisfy the properties:
(4-7% Ot LX) & r,j,fr « staterset (1,5 = rao G

k
{(Ja ¥ (root{G) Zv XI...X£Sw1hs(r)a}A
is-el-1ist{a) -

(j=0 = s—rhs(r)}...S#rhs(r)j =3 Xf+|"'xi) A

jix A
0593
Certain elements must be Ln the state-sels:
(4-8) Ori<ndx) & =v,j,fr o state—set{i,5) ~ } # r & (Bm Y(s-rhs{r} LKD)
) it lamea(R) jel i+l m
cp, il fr oo state-~set (m,5)
(4-9) 7 must be created in a finite amount of time.

Property 4-9 above is given to ensure thal any subsequent algorithm generates state~sets in a usaeful way
and permits the proof (see 4-13) that 4-3 is total, After a trivial Lemma {4-10) on the finiteness of
state-sets, the proofs rhat both implicarions of the first part of 3-10 hold are given in &4~11 and 4-1Z.

-

0f course, these proofs all vely on the assumptions that & satisfies 4~6 to 4-9.
(4=10) Lemma

for 0<i<len{S) : state-setl (i,5) is finite.

procf
a) G is finite 3-1,2-13
bY reG 2 1N 3-7,2-10
i.e. is finite
c) Thus, since the cross—product of finite sets is also finite,
the Lemma is proved. a,b,4~7,4-3,2-17
(4-11) Theorem
rec (X,G) = XEE 5 root{g) §>)4
proof
a) assume : rec {X,G) = YES
b) let v rr = (1r)(s-lhs(x) = root(G)
aoltice that use of iota is valid 4-1

10 TR12.095 Unrestricted

¢) then : <rr,??}0> ¢ state-set (L(x},5) a,4-5

*
d) s—rhs(rl)]...sﬂrhs(rr)ﬁgA=» X}...Ki(x) c,4-7
* rr
a) s—lhs(rr}) => XI"'XE(X) 4,36
*
£3 root(G) =» X e, b
(4-12) Theorem
root(G) =» X > rec(X,G) = YES
proof
a) assume: root{G) s X
L) let vy = () (s~lhs{(v) = root{G}) 4-1
3 HEX()* X X
d s-rha(rr) => X ...X
¢ FASAEE l H b, 36
d) Gryseen,r st Lot =RX) A o, 37
rr re
s=rhs{rr), => X,...N A
] i L
. I
s—rha(ry) = X X 3
o [3 (X}
Bl
&) <rr,0,0> £ state-set (0,5) 4—t
using rr applications of G4
) <rr,1,0* ¢ state-set (Ll,ﬁ) oLd
ary,rr,0r ¢ state-set (2(X),5)
&) rec {¥,G) = YES {,4-5
(4-13) Theorem
rec 1s total
proof
state—setl is used only on given domaln b5, 42
s ¢ stateset is used only on given domain b5 =3 214
the use of iota i1z valid 4-5,4-1
Furthermore:
S5 is ereated in finite time 4=9
state-set (%(X),5) is finite 4--10

thus membership test takes finite time

Thevefore rec terminates

Untestricted TRI12.095 1

1

5. Crasting State-Sets

Section 4 introduced the concept of state-sets and some essentlal properties thereof, but offered no way
of creating them. In fact t(s=ths(rr)) entries, presumably created by magic, would have been sufficient
to fulfil the properties stated, This section shows how state-sets can be constructed using the main
ideas (that is, prediction, completion, scanning) of Earley's method. In order to facilitate comstruction
of the reguired elements, many other states are generated. It is interesting to consider the parallel
with proof construction where an induction hypothesis stronger than the theorem statement is used in order
to prove the latter.

First, the definition of rr which was in the last section a local convention, is adopted for the sequel.

{5-0) rr = (1r){s-1hs{r) = root(G)) see 4-1
reG

Earley's operations of prediction etc, are, of course, described in terms of lists of states. As will be
ctear shortly, many of the interesting points about these operations can be brought out using sets of
states. Again it is found that deferring part of the detail, in this case the special ordering problems
imposed by using lists, will structure and clarify the proofs.

1t will be necessary Lo use implicit set notation for creation of stale-sets so now Lhe restriction:

(5-1) Property 2-15 holds for is-stateset
15 added.

Using sets of states which are eumulative, prompts the idea of using the notion of the closure of a set
under an operation as generating function. Intuitively the closure of an operation on a set is the
minimem set containing the base set and having the property that applying the operation to any element
creates only elements already in the set. We shall use the following properties:

for op ¢ P -> A(P) i.e, from elements of P to sets of such elements
{5-23 closure : (op) % B(P) ~> B(P} i.e. from sets of elements to selts of elements

such that for & ¢ P:

¥ ¢ (closure of op on 8) = x ¢ 8 v (Jy){x ¢ closure of op on {op(yi})

yes
Notice that closure is total for suitable op.
It should be clear that closure is monotonic. That is:
{5~3) S] 3_82 > {closure of op on S]) < {closure of op on Sz)

Using closure it is now possible to show how the basic operations (that is, prediction ete¢) are used Lo
¢reate the state-sets. The base element is inserted by 5-4 which also shows that prediction is the only
applicable operation on the ¢ th state-set., The creatiom, for all other state-sets, of a kernel set of
states resulting from the scanning operation on the preceding state-set is specified in 5-5. Toth the
prediction and completion operations are emploved on all state-sets but the last, where the former is not
required. The closure is created from the kernel set described. The importance of the reliance by the
completer on 5 (strictly on a part of §) is returned to in the next section.

(5~4)t state-set(0,5) = closure of predicto’xgG on f<rr,0,0>}
(5-5) for 1£is8(X):

state-set(i,5)° = scan(i,%,6,state-set(i~1,5))
(5-6) for 15i<L(¥X):

state-set (i,5) = closure of predictiyx’c on State—set(i,S)s

completes’i’X’G
(3-7) state-set (£(X),5) = closure of completeg . on state~set (2{X),5}°
,1,%,6

S

T Wotice use of function specialisation, see Section 2.

Unsestri
ricted TRE2,095 13

The definitrions of the basic operations of predicticn, scanning and completion can now be given. For
reasons discussed in Section 1, it is important to guard against predicates becoming undefined by
careless use of "A" which is not normally defined for three valued logic.

(5-93

(5-10)

predict(i,X,6,<x,j,6>) = {<s5,0,i> | j=r & ismnt(s-rhs (),) & 5 ¢ G & s-lns(s)=s-rhs(r))
scan(i,X,G,ss8) = fep, i+l ,fr]<r,},f>c88 A 34t & is—t(s—rhs(r)j+i) & X, = S"rhs(r)j+]}
complete{S,i,X,G,<r,j,f») =

{<s,m+1,g>§j=; & <s,m,grcstate-set{f£,5) & meEs & iSHnt(s—rhs(s)m+l} & s~rhs(5)m+| = g=1lhs{x)}

In order to resolve any possible difficulties deriving from too heavy a reliance on formalism the example
used in reference ! is now presented in the terms of the current paper. (¥otice the addition of R to

satisfy 4-1).

Consider the

G = fri, r?, r3, v4, r5, ré6}
where 1l = <<s-lhg : R»,<s-rhs TEl»
r2 = <<g-lhs : E»>,<s-rhs {T]»>
r3 = <<g-lhs : E>,<s-vhs :LE,+ Ti>>
r4 = <<s-lhs : T»,<s~rhs :[Fl»>
r4 = <<s—lhs 1 Tr,<s-vhs :[T,%,Pl»>
rfh = <<s~lhs : P»,<s-rhs fal>>

such that is—nt(R), is-nt{E}, is-nc(T), is-nt{P), is=t{+), is-t (¥}, is=t{a)

recognition of:

Let rr = vl

state-set (0,%) = closure of predict on [«r?,0,0:}
= ¢losure of predict on { ,<r2, 0,050
= ¢losure of predict on { ,<rh 0,0 x5 0,05}
= ¢losure of prodict on | L <rh,0,057

= fer1,0,00,062,0,05,<0d 0,05,r5,0,0>,6,0,0x}

oy S .
state=set (1,5)7 = scan (state-set{0,.)}

= {arh,),0>}

o : - 8
state-set{},5) = closure of predict/complete on state-set(},5)

= closure of predict/complete on {<vf, 1,05, <r4d 1,05, <x5,1,0:]
= closure of predict/complere on { Ler2,1,02,2v3,1,0:7

= closure of predict/complete on | Lerd, 1,001

oy 5 .
state-set{2,5)" = scan(state-set(),5))

= {er3,2,0>}

state-set(2,5) = closure of predict/complete on state-set (Z,S)S

= closure of predict/complete cn {<«r3,2,0>,<r4,0,2>,<r5,0,2>}
= glosure of predict/complete on { ,<r6,0,2>}

= {<v3,2,0%,<v4,0,2>,<x5,0,2>,<r6,0,2>}

state—set(B,S)s = scan {state-set{2,3))}

14

TR12.055

= {<r6,1,2>)

Unrestricted

state-set(3,5) = closure of complete on state-set{B,S}s
= closure of complete on {<r6,1,2>,<r4,!,2>}
= closure of complete on { ,<r3,3,0>,<r5,4,25)
= ¢closure of complete on { y<rly 1,03
= [<r6,1,2>,<r4,1,2>,<13,3,0>,<r5,1,2>,<rl,1,0>}
Referring to 4-5 gives:
rec (X,G) = YES
The algorithm represents a way of generating some set of states between those specified by 4-8 and 4-7.
The justificationf consists of proving this containment {see 5-12, 5-13) and establishing 4-6 and 4-9
(see 5-11, 5-14 respectively)., DNotice that this is all! It is not necessary to prove again any of the
results dealt with in Section 3.
{(5~11) Theorem
<rr,0,0> ¢ state-set(0,5)
proof
foillows immediately from 5-4, 5-3,
(5-12) Theorem

05152(X) & <v,j,f» £ state-set{(L,5) =2 v ¢ G A

#
(s Y (root(G) =» Koo X s-1hs{r}a) A
is=el-list (y)

; 5 s . ®

(i=0¢ o s rhs(r)]...g rhs(r)j > Xf+!"'xi) A
js; A

0zfzi

[

proof: shows that the set satisfying the above is a fixed point of 5-4 to 5-7 (i.e. that given such a
set the operations create only elements of that set). Use, without reference, is made of
3-3 below to argue that once inserted, elements are not lost.

a) consider <rr,0,0=: see 5-4

b} rr € G 50

¢) root {G) Z s-lhs{xr) 5-0,3-6

d) i=0 a

e) Osrr 3-2,2-10

£) 0200

2} thus <rr,0,0> is a member of the set satisfying 5-12. b,c,d,e,f

h) consider predict{i,X,G,«<r,},f>») on <r,j,f> ¢ {set satisfying 5-12}: see 5-4,5-6

i) reG k,5~12

k2 (3a) Y (xroot (G} i> X]...Xf s=1hs{r)a} h,5-12
is~el-list(a)

k) (j>0 » s—rhs{r)l.,.s~rhs(r}j Zs Xf+]"'xi} h,5-12

1 jer h,5-12

" It should be possible to construct a direct proof that a set given by 4-7, with equivalence replacing
impiication, is the minimum fixed point (see ref 3) of 5-4 to 5-10. The current author's attempts have
foundered on the ordering problems caused by the complieter.

Unrestricted TRI2Z.095 15

m) 0zfsi

o} case j = r:
o) no new elements created n,5-8
p) case j®r:
q) case ~ is-nt{s-rhs(r).):
j+!
r) no new elements created q,5"8
5) case is-nt{s-rhs(r}. ,}:
i+t
£) let s be a member of ¢ such that s—ihs(s) = s~rhs(r)jH
u) 5 ¢ G t
*
v) {d. Y(root (G) =» X .. XK., ---X, s-lbs(s)a) i,k,376,t
. . I £UF+1 1
is~el-list (u)
w) 0-i9i
%) Thus <5,0,i> is a member of the set satisfying 5-12 u,V,w
) Thus the predict operation stays within the set satisfying 5-12 0,r,X
b 8 ,
2} consider scan (i,X,G,ss8): see 55
aa) Jet «<r,j,fr be a typical element of ss {i.e. of state-set(i-1,5)) assm
ab) r e G aa,512
%
ac) (s Y (root{G) => X ...X s-ths(r)a) aa,5~12
; . 1 £
is-el-1ist (u}
*
(00 5 serhs(r) . ..serhs(ey, =2 XKoo K aa, 512
ad) (>0 5 rhs(1)l.. s 1.hs(r);j \f+l Xl“l} aa,% e
ae) jf; aa,S5-12
af} Gefri- aa,h-12
ag) case j = T
ah) no new clements created ag.,5-9
ai) case 3 ¥ T
aj) case ~(1s—t(s"rhs(r)j+ﬁ & X, = 5"thS(T)j+})
ah) no new elements created aj,59
al) case 15mt(s~rhs(r)j+1) A Xi = s"rhs(r)j+1
’ k r -
art) is rhs(r)l...s rhs(m)j+] =t xf+1...xi ad,al ,3-6
an) j+1 = ¥ ae,al
ao) Thus <r,i+!,f> is a member of the set with index i
satisfying 512 ab,ac,am,an,af
ap) Thus the scan function stays within the set satisfying 5-12 ah,ak,a0
aq) consider complete (5,1,%,G,<r,i,f») on <r,j,f> ¢ set satisfying 5-12 see 5-6,5-7
ar) r el aq,5-12
*
as) {Jo Y (reot(G) == X ... %, s~lhs(r)e) aq,5-12
is—el-list(a) ' '
Lo m g —rhe l -
at) i»0 o s rhs(r}l...s rhs{r)j => Xf+i"'xi aq,5-12

16 TR12.095 Unrestricted

au)
av)
aw)
ax)
ay)
az)
ba)

bb)
be)d

bd)

be)
bE)

bg)
bh)

bi)

bi)
bk}
bl)

by

(5-13)

a)
b}
<)
d)

@)
)
2)
h)
i)
i
k)

Unsestricted

jer

Osfsi

case j * r:

case

mE S

no new elements created
j o= e

iet <s,m,g> be a member of state-set(f,7) such that

is-—nt(s*rhS(S)mM)

s~1rhs (S)mﬂ = s=1hs(r)

s ¢ G

(36

fg-el-list(p)

m > 0

m % 5

Osgsf

. x
s~rhs(s)]4..s—rhs(s)m s-rhs(s)m+] => %

mtl=ss

Osgsi

*
Y (root (G) == Xl . .Xg s-1hs{s}3)

*
5 s-rhs(s) e swrhs(s)m =

Thus <s,m+l,g> is a member of the set satis{ying 5-12

Thus the complete operation stops within the set satisfving 5-12

This completes the proof.

Theorem

0si<t{¥) & <r,j,f> ¢ state-set(i,d) » j'hmf & (dm)(s;*rhs(r)i;r1

1l emaEd (X0

wo<y,i+l,fr ¢ state-set(m,&)

. . . W
proof by induction om n (the number of =» steps in =3}

0=i<a(X)

<r,j,£» ¢ state-selb{i,5)

iy

Gm Y{s-rhs(x).
3+l

i+lsm<d (X)

LD S §
h1+l m}

basis =zero steps:

s-rhs(r}, = %
il

i+]

is~t{s~rhs (r)j +!)

<r,i+l,f> ¢ state-set(3i+1,5)

which covers this case

Sb 4 5=

-

e

sce

aq,5-12

aq,5-12

aw,5-10

assm

assm

assm

az,5-12
az,53-12
az,5-12
az,5—12
az,5-12
bf,hc,at,ay,3-6
ba,bg

bh,av
bd,be,bi,bi,bk

ax,bl

5+6,5-7g,y,ap,bn

25,36
assm
ASSM
assm

assm

e,3~6,d

£,3-10

5-5,5-9,b,c,g,£

induction from generation sequences up to length n-l to sequences of length n:

>0

j

TR12.093

*
1) s—rhs(r)j+ => g => X, ,..X 3-6,k

H o i+ m
m) is—nt(s~rh5(r)j+}) 3~5,1
n) iox 0(x) 1,310, 2-11
*
o) (s Y (s~1lhs(s) = s—rhs(r).+J A s—rhs(s)l...s—rhs(s)ﬁ = Ximlb..xﬂ} 35,1
566] 5 ' '
p) let s be such a rule:
q) <s,0,i> ¢ state-set(i,%) 5=6,5-8,c,m,p,0
) (3';],...t__)(i+]'ft:]"'t?' R 0,37
S) $
5 al g
. smrhs(s)} B Xi+l"'“t A
. 1
srhs (s} =» Xt +1°"KL)
5 - -
g—1 5
Applying induction hypotheses s times {(productions less than n long} i
s) LTI I Stat&—sat(t},ﬁ) v,5-13%
©5,8,i% ¢ state-set{m,7)
L) <r,j+l,fe o state-set(m,5)
which completes the proof 8,5

(5~14) Theorem
is created in finite time

proof

The Finiltencss of the clo
References to clements of

2 fol
string}

stakte—set (1,5} is used within bounds

i8 TRI12.095

Uniestricted

6. Mapping State-Sets onto Lists

So far state-~sets have been assumed to be set-like objects and they have been created by closure, Whilst
it would be possible to model this state of affairs in a conventional store it would be much more
convenient if we could show how the sets can be mapped onto lists, The lists will obviously have extra
properties, in particular an ordered property. If closure can now be replaced by a new, more efficient,
operation which relies on this ordering, an increase in ecfficiency results. This section makes precisely
this mapping. Subject to a restriction on grammars (see 6-9), the extension is performed by a single
scan over the lists. It is, in the author’s opinion, worthwhile understanding the cause of the
restriction., It would for instance be a relatively simple task, at this level, to avoid introducing the
restriction by utilising a more sophisticated scanm.

So far the only properties assumed of state-sets are those required by 4-3 and 5-1. That is:
¢ ¢ STATE=STATESET -» {T,F}
% ¢ {state 1 pistate}} I p(x)
state-sets do nol contain duplicates
This section describes how these objects can be mapped onto lists. Thus:
(6-1} {s~stateset = is-state-~list
assuming properties 2-10 and 2-11

Now the membership and implicit set definitions are reinterpreted as follows:

(6-2) e £ s becomes (i)(si = e} but will be abbreviated to ¢ ¢ s
1e150(s)
(6-3) {s 1 p(s)} Dbecomes create-state-list(p) but will be abbreviated to isip(s)l

with the following properties:
let i(islp(s}i) = n

p(x) 5 (AN (Uslpisy]
1<isn

= %)

j
1Eise o p({sfp(ad D)

A new operation will be required to manipulate state-sels.
(64} combine (list],listz) which will be written
with the following properties:

s ¢ (1ist}

(33 .k Y ({tist
1Sj,k§i(1istlglist7}

u 1ist2) Ts g st vos g list,

- 1ist2)j = (listl i 1i.5t2)k s3 o= k)

12iz20(list) o (list, u lisc,}, = {list).
i — 271 I

!

The properties required of state-sets can now be verified:
(6~5) Lemma

a) ¢ : STATE x STATESET -» {T,F)

b} x ¢ {state | p(state)} & p(x)

¢) state-sets contain no duplicates

proofs

a) immediate from 6+2,6-]

Unrestricied TRIZ.095 19

b} immediate from 6-2,6-1 and 6-3

c) rrue if basic lists contain no duplicates (which inciudes implicit definition}
and 211 combinations made with u 6-3,6~4

Operating on lists makes it desirable to replace the closure operations (see 5-2) with iinear scans. It

will be found necessary to introduce a restriction on grammars in oxder to fulfil property 5~2,

The construction of 5 is now given by:

(6-6) 5 o= g% yhere next {z+1) = end
(6-7) next (1) = {0,1)
for ix»!

next (i) = Q(state~set(j,5i~1)} =k -» j#2(X) & 5tate—set(j+],si—l)i[} -» (3+1,1)
d - end
T -> (3,k+1)
where (3,k) = next {(i-1)
(6-8) state-set(0,57) = 1-rr,0,0>]
for 0<i=g(X}):
statc—set(i,So) = I
for k=0
e ¥ oA i<n(R) & is—nt(s—rhs(r)j+])

statemset(i,5k+]) = state“set(i,sk)gviﬁlﬁépredict(i,X,G,<r,j,f>)l

3 ;,a:MA‘»" : '\.__ s~rhs (r - - oy
i T 1<i{X) & is~t{s 1hs(1)j+}) & s rhs(r)j+l Xi+l -

. k+
stm_-e“set(Ju-?-},S(1

. .kt .k Joo .
jo=oroe state—sct(x,si Y o= stateﬂset(l,5()g£5185complete(sk,1,X,G,<r,j,f>)l

y o= state~set{i+l,Sk)gisgsgscam{i+l,X,G,<r,j,f>){

. +
otherwise State"set(p,Sk i) = state—set(p,sk}

. . Lk
where «r,j,f>= state-set(i,S)1
T T

where (i,n) = next (k+1)

The "algorithm" as shown would not work for all possible grammars! In particular, if che grammar
includes rules which generate Lhe empty string, the sequential pass over state-sets, coupled with the
fact that although created many rimes only one copy of a state appears in a state-sel, prevents the
completer creating the full closure.

Consider G = {rl,r2}

where vl = <cg=lhs : Re,<s-rhs :fa,B,E,al>>»
r?2 = <<s—-1hs : E»,<s-rhs I
¥ o= la,al

]

stace-set{0,3) f<y1,0,0=]

it

state-set(1,5) T<rl,1,0>,<r2,0,l>,<rl,2,0>}
and no more elements will be appended to the list.

The folleowing restriction on grammars is made:

(6+9) regor >0

20 TR12.095 Unrestricted

It should be c¢lear that Lemma 3-7 now becomes:

* *
(6-10) v o= T2 (3t1,...,tg(Y))(IEtl<t2<...<t£(Y)=£(T) R P T]...Ttl A

*

Tatyy 7T)

a1
-1t fay

The proof that the state-sets of Section 5 and the state lists of this section contain the same elements
(assuming 6-9) is now given in 6-11. Since closure was considered total (see 5~2) it is also necessary
to show that the scanning which replaced it is total. Notice that, once again, the theorems revolve
around only those things which have been changed, and the earlier theorems still apply because properties
are only enhanced.

(6-11) Theorem

5 ¢ state-set(i,s%) see 6-8
iff
s ¢ state~set(i,s) see 5-4,5-5,5-6,5-7
proof
The only differences in closure and the single scan is that:
1) Former applies all operations to all elements
2) Regardless of order of creation, all combinations are considered
But 1) Inspection of 5-8,5-9,5~10 shows that at most one operation can be applicable to any

particular state

2) The only operation relying on combinations is the completer 5-8,5-9,5-10
The f state set will always be earlier than current scan (f<i) 6-10
Since next completes a state-set before proceeding to subsequent ones 67

The differences do not change the elements created
Therefore the sets are equivalent.
Because 52 claimed completeness for closure, it is also necessary Lo prove:
(6~12) Theorem

The ereation of 5 given in 6-6G to 6-8 is total

proof
state~set is used within given bounds 6-7,6~8
£ is used within given bounds 6-7,6~8
s-rhs . P .
¥ lists are used within given bounds 68
next must terminate 6-7,4-10

Unrestricted TR12.095 21

7. Structure for Store

The preceding section represented a solution to the main parts of the recognition task. However, for a
aumber of reasons it is net a program which can be run on a computer. The principal point is that the
algorithm of Section 6 uses a storage object which cannot be represented in any known language, for example
the grammar is just "referred to' whenmever required. Tt might be possible to sit at a console and supply
rules whenever needed, but a more useful program will result if the first step involves reading in both

the grammar and string to be recognised in such a way that subsequent referemces are simple. The particular
storage structure given below has been adapted from an actual program written in the conventional way and
designed with a view to efficiency. This decision was taken so as to avoid the danger of choosing a data
structure particularly suited to the proof but which put limitations on the potential efficiency of the
final algorithm.

The input of grammar and string will be assumed to be carried out by routines called INGR and INSTR
respectively. The grammar is stored in the s-RULES, s-MNONT, s-RULED, $~8TR and s-STRCHAR; the string in
the s—INPUT compoments of the store given in 7-1 to 7-7 below. What were, in the algorithm, references
to the original arguments, now become references to these slorage components and the reinterpretatlons Lo
be made are specified in 7-9 to 7-17.

The object is-8 is also refined in this section and now occupies the s~5 and s-8TATE parts of 7-1 to 7-7.

The store is still presented as a VDL-style object and a further transition to PL/I Data Structures will
be made later, The decision to introduce this step is perhaps questionable, but is probably justified
since the object of 7~1 could be realised in other languages. The only properties required are those in
7-8 and although “bunches' were used with PL/I-based storage in mind, the only objection to an array-style
implementation with numeric "selectors' would be that all elements would have to be of the same lengih.

Stove is considered as an object satisfying:
(7-1) is=f ={<s-§ : iS“State—ptr‘liSto>,
<s-STATE : iLs-STATE-bunch>,
<g=~INPUT : is=-t~list>,
<g~RULES : is-{<s~TYPE : is-T v is-N~-,
<g=N : is-n»} - listz,
<g~NONT : ig-ruled-ptr-list>,
<5=RULED : is—RULED-bunch>,
<g=8TR : i5-{<s~8START : is-nr)-ligst>,

<g~STRCHAR : is-char-list>)

where:
(7-23 is~-state-ptr = is~sel
{7-3} 18~STATE-bunch = {<¢ : stater |lis-sel{x} A is-STATE(state)}
(7-4) is~8PATE = (<s~SIZE : is-n>,
<g=N : is-n>,
<g-INFCQ : is~(<s-RULE : is-{<s~RPTR : is-ruled-ptr=,
<s-~88C : is-n>}>,
<g~RULPOS : is-n>,
<s—=STRPOS : is-n>)}-list>)
(7-5) is-ruled-ptr = ig-sel
(7-6) is~RULED-bunch = {<x : ruled> || is-sei{x) A is—RULED(ruled}}

Unirestricted TR12.095 23

(7-7} is~RULED = (<s~NEXT : is-n>,
<§-RULE : is-{<s-START : is-n>,
<s~LENGT : is-n>)-list>)
(7-8) In all objects of 7-1 ta 7-7:
selectors are assumed to have property 2-5
lists are assumed to have properties 2-10,2-11

Using the above data object as storage the algorithm can now use the following ways of referring to its
arguments:

(7-9) 24%) becomes #(s-ENPUT (&)}
(7-10) Xi becomes SﬁlNPUT{E)i

Now, INGR defines a relation between rules of is-grammar amd objects satisfying
je=(es—RPTR : is-ruled-ptrs,<s-8SC : is-n>} which is written:

To{r,{p,1)}
(7-11) Y

becomes s~LENGT (s~RULE(p(S"RULED(g)))i)
g{s~rhs(r})

(7-12) s~rhs(r)j becomes s—~RULES(Z) <~START (S“RULE(p(S“RULED(E)})i)+j"]

for convenience, let I(s—rhs(r)j) he an abbreviation for SMRULES(E)s—START(s—RULE(p(s"RHLED(ﬁ}))i)+j"!

(7-13) iS"t(s-rhs(r)i) becomes s"TYPE(f(SVrhs(r)j)) = T
{7-14) is—nt(swrhs(r)i) becomes 5~TYPE(!(s~rhs(r)§)) = N
(7-15) for iS*t(SMrhs{r)j):

s—rhs(r)j becomes s=-STRCHAR(E) smN(!(S"rhs(r)j)}

(7-186) for is*nt(s—rhs(r)j):
s=rhis{r). = s—-1hs(s) becomes 5=-NONT (£) =g
J S#N(f(s~rhs(r)é))
vhere I (s,{q,k)}
(7-17) v ¢ G becomes Ls~RULER(p (s~RULED(L))) & L<g=NEXT (p{s-RULED(L) 1)

¥ow, it is necessary to show that the reinterpretations of these functions still satisfy the stated
properties (3-8 and 3-1 to 3-4).

(7-18) Lemma

2: T-LIST -» ¥° see 7-9,3-8,2-10
s T-LIST - T see 7-10,3-8,2-11

Both results follow immediately from 7-1,7-8,2-10,2-11.

24 TR12.095 Unrestricted

|
;
|
a

{7-19) Lemma .
a) $-RULES, s-NONT ,s~RULED,s-STR,s~STRCHAR are finite see 3-1,2~13

) ¢: (RULED-PTR x M) x (RULES,...,STRCHAR)} =-> (T,F} see 7-17,3-1,2-16

c) £ (RULED-PTR x N) x (RULES,...,STRCHAR) ~» N see 7-11,3-2,2-10

d) *™: (RULED-PTR = ¥) » (RULES,...,STRCHAR) —» see 7-15,7-16,3-2,2-11

) N(iS"nt(SHrhs(r)i) A is~t(s—rhs(r)j)) see 7-13,7-14,3-3,3-4
proofs

a follows from 7-1,7-5,7-6,7-7,7-8

b follows fxom 7-17,7-1,7-5,7-6,7-7,7-8

¢ follows from 7-11,7-1,7-5,7-6,7-7,7-8

d follows fyom 7-15,7-~16,7-1,7-5,7-6,7-7,7-8

e follows from 7-13,7-14
However, it is not possible to simply change the problem definition (see 3-i0 and 3-5,3-8) which is
stated in terms of the original operations (e.g. r ¢ G). It was clear from the beginning that routines
1ike INSTR and INGR would be raquired and it would have been possible to use different operations in the
algorithm and note the equivalences which must hold between the original and algorithm notations. This
was not done since it would have made the subsequent writing more tedious, In making the change to the

re-interpreted operations we must now, carefully, check what properties are required and use them as a
specification of the INSTR and INGR routines.

(7-20) Constraints on INSTR:

By = R(s—INPUT(E))
{ o= e TREPT .
X s=INPUT (&)

(7-21) Constraints on INGR:

let (F(r,(p,1))

¥y ¢ G z Ls=RULED (p{s—RULED(#))) A i <g=NEXT (p{(s-RULED(}})
¥ s-LENGT (s-RULE{p(s-RULED(£))).)
i5mt(3mrhs(r)j) 3 s—IYPE (I(s"rhs(r)j)} = T

iS“Dt(S“IhS(r)j) w 5-~TYPE (f(s"rhs(r)i)) = N
for is—t(s—rhs(r)i):

- - - 1 GTRCH ¢)
s rhs(m)j E s ‘fj.R(HAR\E_‘)P}1 (E(S"rhs(r}i))

for is"nt(S“rhs(r)i):

s-rhs(x}. = s-ihs{s) = s=NONT () =
3 s=¥ (7 (s=rhs(x) ;)

where (s, (q,k))

The storage structure given in 7-1 to 7-4 also gives us an interpretation of the collection of
state-sets (see 4-~2):

(7-22) len(S) becomes iO(S”S(ﬁ))

Unrestrieted TR12.095

25

(7-23) state-set(i,S) becomes s-S(g)i(SMSTATE(g)}

for is~state(s)

(7-24) s-rule{s) becomes s-RULE {5}
(7=25) s=j (s} becomes s-RULPOS (s)
(7-26) s—£(s) becomes s~STRPOS(s)

it is, of course, necessary te check that the required properties still hold.

{7-27) Lemma

ﬁo P85 - Nn see &4-2
state-set : N7 x § -» STATE-SET see 42
s~RULE : see h=f
s~-RULPOS see 4~4
s-STRPOS : cee 4ok

proefs all follew from 7-1,7-2,7-3,7-4,7-8
The resulting reinterpretations of is-stateset ave:
{7-28) %: STATE-SET -» N becomes s~N(STATE)

(7-29) N": STATE-SET ~> STATE becomes SHINFO(STATE}E.

(7-30) Lenma
The obvious equivalences hold,
Follows from 7-1,7-4,7-8

Motice that ¢ and (see 6-2 and 6-4) are automatically corrvect.

It is now possible Lo rewrite the "algorithm” of Sectiom & so that it uses the data structures of 7-1

to 7-7, that is, using the various reinterpretations set out above,
(7=31) rec{¥X,G) = ree’ (io)
where £° created by TNSTR(X)
INGR(G)
and 29(s-8(£%)) = 2(X)

and s-S(£%) (s-STATECE™)) = {<rr,0,0}

and for 1#158(5

s~s(g°}i(s—STATE(g°)) = {}

26 TRi2.095

Unrestricted

(7-32) rec’ () =

«rr,rr,05 € s-S(£%) , (s=STATE(E®)) —> YES

2{X
T -> NO

where Ez such that next (z+1) = end

(5—35) next(1} = (8,1
. for it
next (i) = s~N(s—s(gi“})j(s—STATE(gi“]))} =k ->

j = Q(s~1NPUT{gi"]}) & s—N(s—s(gi")i+](SHSTATE(Ei—]))) 2 0 - {j+1,1)

T ~» end
T > (3,k+1)

where {(j,k} = next (i~1)

(7-34) for kx0:
i=r A Lo< i(s“TNPUT(Ek)) A s—TYPE(I(s~rhs(r)j+])) =N o

s«S(gk“)i (s-sTarE(e<t 1Y)y = sHS(Ek)i(S"STATE(Ek)) u {sls ¢ predict(i,X,6,er,i,f2)}

P . ~ Ris TP T (ae = - £ =
JoEr A G 2 2(s=INPUT(E™)Y A s~TYPE(I (s rhs(r)j+‘)) T & s STRCHAR(,)S_N{I(S_rhs(r)j+]))

gk _
S=INPUT(E7), | =

sms(fk+})i+](SWSTATE(gk+}})ﬂS“S(gk)i+1(s—STATE(gk)} g L sls ¢ scan(i+1,X,6,cr,],65)1

o

e=5 (55 (smsnatn (£X 1)) -5 (51 (s-smaTE(ES)) uls|secomplee(£X,1,%,6, 3,1, 8))

orhérwise
s~S(gk+l)p(s—STATE(Ck+]}) = s—s(gk)p (s~STATE(E"))

where <r,j,f> = szNFO{smS{Ek)i(SMSTATE(ER)))H
and ¥ = SMLENGT(S~RULE(p(SMRULED(gk))i})

where (p,i) = r

where (i,n) = next (k+1)

Untestrieted TR12.095 27

8. A Modification

Changes of specification and new ideas to, for example, improve efficiency are facts of life: if Formal
Development is to be an accepted way of constructing programs its influence on subsegquent changes must
he understood. It is the opinion of the author that, if generality and abstractness have been the
keynotes of the development, the difficulty of installing changes should be in realistic relation to how
drastic that change is. Certainly more work will be required than with a "quick patch', but the same
gains of certainty as with Formal Development should make the investment worthwhile.

The modification made in this section is an optimisation to reduce the number of irrelevant states created
and scamned. It is, again, taken from a conventiocnally built version of the program. The concept is to
append to rules an inevitable terminal character {that is, a character with which any derivation of the
rule must start), if such exists. This is specified formally in 8-2. During prediction this look-ahead
character, if it exists, is compared to the next character of the string: if they are unequal no state

for this rule need be generated. Any such state would, after some number of further predictions, have
heen shown to be a "blind ailey' by the scanner. This test will ke performed by the predicate "cond"
whose essential property is stated in §-3: an obvious realisation is given in 9-13.

The effect of this change is now traced, beginning with the definition of is-rule(3-2) which is extended
to include the pre-computed look-ahead symbols:

e-1) is~rule = {(<s~lhs : is-nt>,
<g-rhs : is~el-list>,

< g-1k 1 is-t»}

Farther, the restriction on the look-ahead character is:

b
{8-23 for v ¢ G : s-1k(r) = ®H o (s-rhs(r) => a A is"t(al) vy = s~1k{x))
Now a check of the development process is made to determine the extent of the changes.

Consider the problem definition (Section 3) - there is no change to be made since the whole point is to
recognise the same strings, but to do it nove efficiently.

Consider the outiine of EKarley's state-sets (Sectionm 4) - therve will be no change since the cut-down
state-sets will still fall between those which satisfy equations 4-7 and 4-8.

Consider the creation of state-sets (Secltion 5) — A predicate "cond” is introduced which is assumed Lo
satisfy the property:

*x
(8-3) for r ¢ G : s—rhs(r) => o A is*t{al) 2 cond(r,a])
cond: RULE x T -> {T,F}
Then 5~8 is modified to employ cond:
(8~4) predict (i,X,6,<r,i,f>) = {<5,0,i>|] « r & ismnt(s—rhs(r)i_'_]} &5 G &

s~1hs{s) :s—rhs{r}j_H A cond(s,xi+i)}

The proof that the state-sets still satisfy 4-6 to 4-9 is modified as follows:

Theorem 5-11 unchanged

ki

Theorem 5-132 unaffected, because the set satisfying 8-4 is clearly a subset of that
satisfying 5-8.

Theorem 5-13 changed by replacing line g with:
qa} cond(s,Xi+l} o,p,8~3
gb) <s,0,1» ¢ state-set{i,5) qa,5-6,5-8,c,m,p,0

Notice no other steps of 5-13 refer to 5-8.

Unrestricted TRI2Z.095 29

Theorem 5-14 add:
predict only used for i< 2{X)
thus reference to Xi+l is in range
cond oniy used over its domain
Consider the mapping of state-sets to lists (Section 6) - no change to be made.
Consider the structuring for store (Section 7) - the reinterpretation of 8-1 (see 7-17) includes:

(8~5) s-1k (r) becomes s~STRCHAR(ED o (r(gm
s-N (7(s rhs(r}o))

and the additional constraint on INGR (see 7-21):

(8-63 s~1k (1) = s—STRCHAR(i)S_N (F(s*rhs(r)c))

Notice that this simple change to the input properties would require a fairly drastic change to INGR
in that space must now be left for all the look ahead characters in s~RULES.

3¢ TRI12,095 Ungestricted

9. Coding in PL/}

This scction discusses the PL/I version {sce Appendix I) of the developed algerithm {see Section 7, plus
5-8,5-9,5-10 and wodifications of Section 8). The transition is not shown in full detail since this would
require a significant portion of the theery of PL/I to be formalised. This is not only cutside the scope
of the ecurrent paper, it would zlso be inappropriate since it should be part of a2 larger, more general,
endeavour,

First a number of comstructs of PL/I are related to the propertics that have been used above; then a
number of spreific results are established.

PL/1 data properties:
zors {as 2-6) can be veplaced by PL/T structures and the named selectors can be
nicked by qualified naming. Hotice that this property only holds with selectors which
cannot vield the null object {(see veference 2).

can be veplaced by a collection of allocations of a based variable. In this case the
ectors are veplaced by pointers. (Note: Tn the representation of STATE-SETS given, the
iR option has also been used to obtain the possibility to dynamically vary the maximum
size of a state-set).

{9-3) Lists (as in 2-310, 2-11) can be veplaced by PL/I arrays; these present upper bound problems
which make the algorithm non-total, Referencing is via subscripting and the current length is
usually stored in another variable,

(9-4) As an alternative, lists of characters can be replaced by PL/L variable character strings.
In this casc selection is wia the SUBSTR built—in function, and length can be found via the
LENGTH built-in function.

(9-53 Integers are represented by FIXED BINARY numbers of length 15, This again introduces a
restriction on the domain of the algorithm which is difficult to specify.

PL/T statement properties:

(9-6) Conditional expressions can be replaced by PL/T statements of the form:

THEN. ..

IF 0y

BLSE IF p_ THEN. ..
n

(973 With objects which extend monotonically (for example, stalte—sets) assignment can be used with
no loss of information,

(9-8) The use of where clauses can be replaced by computing the required value and assigning it to
a variable that is referred to wherever the name is used (this can be thought of as
"assignment as an abbreviation').

(9-9) PL/T DO loops ave used to specify the sequencing of operations. In particular, nested DO
loops iterating through the collection of state-sets and through the members of a state-set
are used to mirvoer the function of '"next' (see 7-33). lNotice that the correctness of this
relies on the fact that PL/I re-evaluates the "while” clause of a D0 loop at each iteration.
Thus a DO BY TO construct would faill

(9-10) The conditional expression form of "and" (see 2-2) is translated so that the second operand
is not evaluated if the first is false. '

Unrestricted TRE2.005 3

Special results:

(9-113 Lemma
gs” = ss ul<sr]

yields the same result as a procedure whose argument is a state and which changes the state-set by side
effect:

DO cv = 1 BY I TO 2(s8) ;

IF ss{cv) = <s> THEN RETURN ;

END
Ssg(ss)+i =gk]
(9-12) T.emma The effect of adding a set defined implicitly can be obtained by an ordered search,

calling the procedure of 9-11 each time a candidate for addition is located.

{9-13) Lemma
cond (r,t) = a-lk{r)y =H v t = 5=k (¥}
satisfies 8-3
proof

a} s~rhs (1} Lo 48 5m

b) is*t(«]} assm

<) case s-ik(r) = B

d) cond(x,£) G-12

@) case s-lk(r) =%

£) ay = s-1k(r) g2 ,e,8,b

%) cond{r,t?} g-12
This completes the proof of 8-3. d,g

The program invokes procedures called INGR and INSTR to yead grammar and string into store {see hppendices
11, 111): these routines were in fact taken fyom the conventionally built program. A procedure TPTEST

is cthen invoked (see Appendix 1V) o chack restrictions 4-1,6-9,7~20 and 7-21,8-2, Clearly the relation
to the input grammar cannot be checked directly and the expedient of printing the graumar as it 'must

have Looked" is adopted. Finally, the parsing proper is performed {a 1isting of a run is given in
Appendix V3.

32 TRI12.085 Unrestricted

10. Discussion

This section attempts to discuss some of the open questions.

Breaking the development down into steps has given a clearer picture of the algorithm and its correctness:
is the work justified? Making a comparison with the more widely used "write then attempt proof' there
are few portions of the above work which are wasted. (One example is the need to set up the same
inductive form for proofs at two or mere steps.) In view of the difficulty in composing a complete
algorithm correctly from the beginning, this cost is not great, The proofs given here also tend to

foliow the intuitive program ideas more ciosely. Comparisons with methods not involving formal proofs

are more difficult, but the opinicn of the present author is that without the discipline of proof such
methods will migrate poorly from their original environment.

The comment was made by an experienced programmer during a presentation of this work, that the much
maligned tendency to start coding teoo early may be a symptom of wanting to write something formal but
lacking any alternative language in which to state the partially thought-out ideas!

The development given here was aided by the existence and knowledge of a working version of the program.
In an actual development much more backtracking would be required: it is certainly not claimed that the
formal development approach would give rise to inspirations like Earley's state-scts. However, the
formal. approach would certainly offer a framework in which to search.

One of the principal preblems is the level of formality required in the preofs. The developed algorithm
was keypunched and run on an Algol grammar. Although no errors have been uncovered, this does not
establish that the above level of proof would be formal enough to provide security against errors. There
is cerrainly an important distinction to be made between assumptions on the darta which are extremely
dangerous (heing the source of many conventional programming erxors), and formality in the deductions
which is not attempted. LIn particular, the extremely attvactive notion of machine checkable proofs may
not be practical because of the tedium of formalising the deductive steps. A& specific problem of this
distinction is the failure in the development to separate variables of the problem and language (for
example, control varlables) domains.

There are many general problems which become apparent in the above development: is there a clear set of
ways of using storage/assigoment (see 9-7,9-8)? Are there better ways of specifying order than the
usual DO loops? Questions like this could provide valuable feedback to language design from a problem,
rather than the usweal machine, angle. o

1t is the hope that work on Formal Development will be applied to a variety of examples in an attempt to
resolve these and other questions,

Unrestricted TR12.085 33

References

EARLEY, J, "An Efficient Context-Free Parsing Algorithm”, COMM ACM, Vel 13, No. Z,
February 1370.

LUCAS, P and WALK, K, "On the Formal Desecription of PL/I™, ANNUAL REVIEW IN AUTOMATIC
PROGRAMMING, Vol 6, Part 3, Pergamon Press, 1969.

PARK, D, "Fixpoint Induction and Proofs of Program Properties", MACHINE INTELLIGERCE,
vol 5, Edinburgh University Press, 1969,

MANNA, 7 and McCARTEY, J, "Properties of Programs and Partial Function Logic', Al Memo
100 from Stanford Unmiversity, 1970.

TR12.095

Appendix 1. PL/1 Version of the Recogniser

This appendix contains a PL/1 program corresponding to the algorithm of Sectiens 7 and 8, The trans—
literation uses the ideas of Section 9.

STMT LEV NT

1 EARLY: PROC OPTIONS{MAINY;

2 i BGL (LENGTH,; SUBSTRY BUILTING

3 1 OCL INPUT CHAR({5000) VARYING EXTERNALS
4 1 DCL L RULES(4CG00} EXTERNAL,

2 TYPE CHAR({1),
2 N FIXED BIN(15);

5 i DCL 2 NONT(500) EXTERNAL PTR;
6 1 DCL I RULEC BASEG,
2 MAXNRULES FIXED BIN(L5),
2 NEXT FIXED BIN{151},
2 RULE{NRULES REFER (MAXNRULES))
3 START FIXED BIN{15},
3 LENGT FIXED 8IN{15])3
K 1 BCL 1 STR(250) EXTERNAL,
2 STARY FIXED BIN(15);
8 1 OCL STRCHAR CHAR{4000} VARYING EXTERNAL ENIT(T®)3
9 1 DEL BMRULES FEXED BIN{15) EXTERNAL;
10 1 OCL EPGR ENTRY EXTERNAL;
il L fCL IPSTR ENTRY EXTERNAL;
12 1 GCL IPTEST ENTRY EXTERNALS
13 i GCL 1 STATE BASED {SI)
2 SIZE FIXED BIN(LES),
2 N FIKED BIN{L15},
2 INFG (STATE_SIZE REFER (SIZE}).
3 RULE,
4 RPTR PTR,
4 SS5C FIXED BIN{15).
3 RULPOS FIXED BENILS),
3 STRPOS FIXED BIN{L5);
16 i OCL STATE_SIZE FIXED BIN{15) INIT{70};
15 1 DCL I FEAED BIN{15); /% STATE SET INDEX »MAJGR LOOP *f
16 i DCL N FIXED BIN{L5): F% STATE INDEX e 2ND LOGP o/
17 H OCL PL PTR; /% PTR OF S—RULE GF STATE(N.STATE-SET(I}}) */
18 1 DCL 1L FIXED BIN{15); /% INT OF S—RULE OF STATE(N,STATE=-SET(IL}]) */
19 i DCL & FIXED BIN(L5}; F® RULPOS OF STATE{N,STATE-SETL{I}) *=/
20 1 DCL & FIXED BIN{15); f* STRPOS OF STATE{N,STATE-SET(E}} */
21 1 OCL R_ FIXED BIN(15}; /% LEN~RHS{PI.I1} */
22 i DCL I RHS_EL+s F RES_EL{dele(PLIL)} *f
2 ¥YPE CHAR{1),
2 N FIXED BIN(15);
23 1 DCL P2 PTR; /% PTR PT OF RULES S.T.
RHS NT_EQ_LESUIPL i L} dt+15(P2,2}) */
24 1 DL K FIXED BIN(15); £ PREDICTOR®S RULE INDEX *f
25 i DCL LK CHAR{L); Jx LK_EL(PZ4K} #f

Unrestricted TRI2.095 37

STMT LEV NT

26 1

27
28
29
30

= e

31 1

3z
33

35
36

35
39

et el e et e b s

40
4]

EASIE S

42
43
44
45
46

[ASEEASTIRAER S 16

47
48
49

51
52

wun
o
[N RS RE A AN AN B

38 TRI12.095

PRI ——

BCL KS FIXED BIN{15); /% STATE INDEX MITHIN S{F) S
DCL P3 PTR; /¥ PTR OF S-RULE (STATE(RS,STATE-~SET(F)} %/
GCL T2 FIXED BIN{15); £% INT DF S-RULE (STATE{KS.STATE-SET{E)) %/
BCL L FIXED BIN(15); /% S-RULPOS (STATE(KS,STATE-SET{F)} */
DCL G FIXED BIN(15); /% S~STRPOS [STATE(KS; STATE-SET(F}) #y
DCL L SF_RHS_EL, f% RHS_EL(P3,12) w*/
2 TYPE CHAR(L),
2 N FIXED BIN(15};
DCL 51 PTR; /¥ CONTAINS S{I F COMP RESTR 4
ODCL SF PTR; /% CONTAINS S(Fy F COMP RESTR =/
BCL NONTIPTR PTR; /% CONTAINS NONTI1).PTR : F COMP RESTR /4

CALL [PGR H
CALL IPTEST ;
CALL IPSTR
PUT PAGE;

PUT EDIT((SUBSTRIOINPUT] (Y
TO LENGTHIINPUT))} [301(

/¥ Nobs FPSTR #1AS SQUEZED ALL BL
SAME [N ALGGL SRAMMAR =

BEGIN;G

DCL STGILENGTHEUINPUT)) PTR;

'+Js10) DC Jd=1 BY 10
A{1Q) s X{1)),SKIP);

ANKS TO AVOID REQUIREMENT Y0 CODE
/

OO 1 = 0B BY 18 WHILELI <= LENGTHIINPUT)) ;
ALLOCATE STATE; /R OSETS ST */
S{I) = S1;

SI => STatb.N = OB;

ENG;

51 = S{0b);

ST =% STATE.N = 18,

50 =2 STATE.INFO[LB) RULE.RPTR = NONT(18);

5T => STATEINFOIIG)RULELSSC = 1B;

SE =2 STATELINFO(L1E) .RULPOS = (083

S =2 STATECINFO{LEY.STRPOS = Obs

AR OINITIAL S SaTs 3 I$-5(S)

LASTATE_SET{O) ¥=]

STATECLSTATE_SET(0)) =

CER) (LAS{RI=RO0OTI(5)), 6,0

LEINPUTY IMP
LASTATE_SET{I,51i= O %/

I <=1 <=

Unrestricted

62
63

04

65
66

67

68
69

70

Unrestricted

ENVIN AN V]

[ASIRACIE N

%] (NSNS BN L S N

oM

NP N R

STMT LEV NT

Y —

EASIIAN IR SN

a8]

(%1

SR

Ea

(N2 RN]

Fanl LS RS- ¥ 4

= 08 BY 1B WRILE(I<= LENGTH{INPUTII;
I = 5(I1};
DO N = 1B BY 16 WHILE(N<s Si -> STATE.NI};

P1 = 81 -> STATE.INFU(N).RULE.RPTR;

IL = 51 -> STATE.INFOIN}.RULELSSC;

J o= ST ~> STATE.INFO(N}RULPOS;

F = SI -> STATE.INFO(N}.STRPOS;

R_ = PL -> RULEDRULE{IL).LENGT;

IF(d == R_) &(1 == LENGTH({INPUT)) THEN

DO

RHS_EL = RULES{PL —> RULED-RULE(ILI}.START + J } 3
IF RHS_ EL.TYPE = "N' THEN

BG; /% PREDICTOR */
P2 = NONT{RHS_EL.N};
CO K = 16 BY 1B TU P2 -> RULEDNEXT -1i3
LK = SUBSTR{STRCHAR,
STR{RULES[P2~>RULED.RULE(K)
SSTART-1B) N} START,
1);

[R{Lk=Y f1}{LK=SUBSTR{INPUT I+16.1})THEN
CALL ADUD_SYATE(P2,K.08:1,:1);
END;
END;

elLSE IF{RHS_EL.TYPE = *7T*'} THEN
IF SUBSTR{STROHAR, STRIAHS EL.NY.START1) =
SUBSTRINPUT, 1#1,1) THEN
CALL ADD_STATE(PL,IleJ+18,Fo1+1bk); /% SCANNER %/
END

ELSe fF J = R_ THEN

00; /% COMPLETER */
SF = S({F);
OO KS = LB BY 1B TO SF ~> STATE.N;
P3 = SF ~=> STATE.INFO(KS).RULE.RPTR;
12 = SF ~> STATE.INFG{KSY. RULE.SSCS
L = SF => STATE. INFO[KS).RULPGS;
5 o= SF > STATE.INFOIKSI.STRPOS;
[F L == P3=-D>RULED.RULELTIZ)LENGT THEN
DGs
SFE_RHS_EL = RULESI{P3->RULED.RULE(IZ).START+L);
fF SF_RHS_EL.TYPE = 'N' THEN
IFf NONT{SF_RHS_EL.N) = Pl THEN
CALL ADD_STATEI[P3,I2,L+1By5:1);
END;
END 3
END;
END
END;

/% CHECK FOR END_STATE N S{L{X}) w4

TR12,095

39

STMT LEV NT

87 2
68 Z
9 2
Q0 4
g1 2
93 2
G4 Z
G5 2
96 2
a9 3
Je 3
99 3
16O 3
101 3
102 3
163 3
L O4 3
105 3
106 3
107 3
108 3
1G9 3
110 3
111 3
112 3
113 3
tl4 3
115 3
116 3
I 3
118 3
il9 3
120 2
121 1
40 TR12.093

— e

51 = S(LENGTH(INPUT]];
NONTLPTR = NONTCLEED 5
B0 N = lE BY 1B 70 SI => STATE.N3
IF (St -> STATE.INFD(N)oRULE.RPTR = NONT{LB}))
0S50 -2 STATE.ENFO[N)«RUL&oSSC = 1B)
&ist -2 STATEHINFU(N).RULPDS = NONTiLIPTR ~> RULEC RULE{1B).
LENGT)
(81 -> STA?ﬁoiNFG[N)oSTRPDS = 0B) THEN
318}
pUT EDIT ([t YES? }O{SKIP AY; RETURN 3
END
END S
pPUT EDIT (7 N Y (SKIPRA)S
ADD_SYATE:
PRUL (PTR,INTdsFe1)s
/% AGDS (1PTRINTYsJsF) 0 OSTATE-SETLL) JUNLESS THERE *f
oL PTR PTR;:
UL INT FILIXED RIN(LES) S
peL J FIRED BINGLSY S
GCL F FIXED BIN{LSYS
oCL ok FI1AFD BINILS);
DCL K OFIXKED BINCLS): /% STATE INDEX WITHIN STATE_SET(I) */
poL S1 PTR; /% CONTAINS SO s f COMP RESTR %/
s = S(iks
Uo ko= ib EBY b TO SE -> STATE.N
iF {51 => S?ATE:[NFD{K)»RULEoRPTR = PTR 1}
g8l ~-> STA¥E.1NFU(K]°RULEoSSC = INT
051 ~> SfﬂTEn[NFD(K),RULPOS = J 1
G058 -2 STATE»[NFD(K}.STRPOS = F) THEN
RETURNS /% STATE ALREADY THERE */
MDY
e SE > STATE.N = 5] ->» STATE.SEZE THEN
0f; Fu STATE SET FULL e
PUT E£DIT(Y STATE SET OVERFLOW Ty {SKIP,ATS
5T0R;
ENG S
ELSE
D03 /& ADD %/
51 =>» STATE.N = 5] -> STATE.N + 183
St =2 STATE. INFO(SL —> STATE«N)DRULEoRPTR = PTR;
51 =2 STATE. INFOUSE =2 STATE.N)RULE.SSC = INT ;
$1 ~> STATE.INFO(SE -3 STATE.N}RULPOS = J3
St > STATE . INFO{ST ~> STATELN) . STRPGS = F3
ENDS
END 3
END G
ENDS

Unrestricted

Appendix li. PL/I Version of IPGR

This appendix contains that part of the conventionally written version of the program which reads in and
stores the grammar.

STMT LEV NT

[ES RS

-~ O

10
12
13
14

15

17

30
32
33
34
35

37
38

39

Unrestricted

—

g e et g = BP0 = I S T

o I

—

IPGR:PROC;
DOL {LENGTH, SUBSTRY BUILTINS
DCL 1 NONS{SCO} EXTERNAL,
2 START FIXED BIN(15}),
2 LENGT FIXED BIN{1IS),
2 PTR PTR;
DCL NONTCHAR CHAR{3000)} VARYING INIT(F') EXTERNAL;
GCL NONTNAME CHAR{LCOO)} VARYIENG;
DCL STRNAME CHARCLO0CQG) VARYING;
DCL 1 TEMP,
2 TYPE CHAR{1l]),
2 N FIXED BIN{153);
(. { IedeKel oMy NEXTRULES INIT{i),
NUSTRS INIT(O}} FIXKED BIN{LSY;
DCL (NRULES,NUNONTS INITL0)} FIXED BIN{L5} EXTERNAL;
DCL CARD CHAR{BO);
DCL ENGFILE BIT{1) INIT{*0'Bi;
DCL (Pe@ } PIR 3
CCL 1 NONT({5GG) EXTERNAL PTRj
OCL 1 STR{250) EXTERNAL,
2 START FIXED BiIN{15};
DCL STROHAR CHAR(4000) VARYING INIT{''] EXTERNAL;
GCL 1 RULES(4000) EXTERNAL,
2 TYPE CHAR(1l1,
2 N FIXED BIN(15]);
GCL 1 RULED BASED(Q) .
2 MAXNRULES FEIXED BINC1S),
g NEXT FIXED BIN {15]),
2 RULE{NRULES REFER (MAXNRULES))s
3 START FIXED BIN{15)+
3 LENGT FIXED BIN{151);

ON ENDFILE{SYSIN) BEGIN;
ENOFILE="1'B;
GOTO SETRULE;
END 3
GET EDIT{(CARD) {A(80)};
LO: NONTNAME = *7;
DO I[=2 8Y 1 WHILE{SUBSTRI{CARD,Is1) ~='2>%);3
NONTNAME = NONTNAME] {SUBSTR{CARD.Is11}3
END;
J% 1 IS POSITION ON CARD #*/
DO J=1 10O NUNONTS;:
IF NONTNAME = SUBSTR{NONTCHARNONS{J).START,
NONS{J}LENGT!}
THEN GODTO L1;
END

J% A MEW NONTERMINAL HAS TO BE ADDED */
NUNONTS = NUNONTS + 1;
NONS{NUNONTS} . START
NONS{NUNUNTS) . LENGT

NRULES = 5 3
ALLOCATE RULED:
NONT { NUNONTS) = @3
RULED.NEXT = 1;
NONTCHAR = NONTCHAR] INONTNAMES
J = NUNONTS;
/% J CONTAINS NONTERMINAL IGENTEIFIER */
L1z L= 0;

LENGTH{NONTCHARY + 13
LENGTHINONTNAME) 5

[H 1]

TRI2.695 41

STMT LEV
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 i
50 I
51 1
52 i1
53 1
54 1
55 1
56 13
57 1
58 1
59 i
60 i
6l 1
62 1
63 1
64 1
65 1
66 L
67 1
68 1
69 1
10 1
T 1
T2 1
73 1
T4 1
75 i
76 i
T7
T8 1
79 1
80 i
81 1
gz 1
83 1
84 i
85 1
86 1
87 1
88 1
89 1
90 b
91 1
g2 1
93 L
4 i
95 1
96 i

42 TR12.095

NT

Pt et i

—

STRNAME=SUBSTRICARD:73:1);

DO K=1 BY 1 TO NUSTRS;
[F STRNAME=SUBSTR{STRCHAR, STRIK}.START,1
THEN GOTO LA;

END 3

NUSTRS=NUSTRS+1;

STR{NUSTRS) START=LENGTH{STRCHAR]) +1;

STRCHAR=STRCHAR] | STRNAME;

LA: RULESINEXTRULESY «N=K;
RULESI{NEXTRULES)} . TYPE=TT!;
NEXTRULES=NEXTRULES+L;

/% NOW PROCESS THE RHS OF THE CARD *x/

L2: L = L+1;
L3: IF I >= 71 ThEN ROj
GET COPY EDIT(CARD) {A(BO}):
[F SUBSTRICARD, 1,1} = 7<% THEN GOU¥C SETRULE;
ELSE I = 13
END;
ELSE | = I+1;
1F SUBSTR{CARCsI1s1) = * ¢ THEN GOTO L33
IF SUBSTRICARDsI,1) = '<* THEN GGTO NONTERM;
GOTQ CHAR;

NONTERMINUONTNAME = 1%
00 1 = F+1 BY 1 WHILE
NONTNAME =

(SUBSTRCARD k1) == ¥3%);

NONTNAME} | SUBSTRICARDs I+113

END;

D0 K=1 TO NUNONTSS
IF NONTNAME = SUBSTR{NONTCHAR NONS[K}.START,

NGNS (K LENGT)

THEN GOTO Lé4&;
END
J% A NEW NONTERMINAL HAS Y0 BE ADOweD */
NUNONTS = NUNGNTS + 1;

NUNSINUNGNTS) . START

NONS{NUNONTS) LENGT
NRULES = 5 3
ALLGCATE
NONT (NUNONTS)
RULEDNEXT

NONTCHAR =

LENGTHINONTCHARY + 13
LENGTHINGNTNAME) 5

i

RULED:

= @
= 13

NGNTCHAR} I NONTNAME 3

K=NUNONTS
/% INSERT VALUE IN RULE DICTIONARY */
L4 RULESINEXTRULES) L TYPE =¥N';
RULESINEXTRULESY N =Kj;
NEXTRULES = NEXTRULES + 13
/% RETURN T0O PRGCESS MNEXT ©LEMENT ON RHS OF RULE */
50T0 L2}
STRNAME = SUBSTR(CARDsI,1);
00 K=1 B8Y 1 TO NUSTRS;
IF STRNAME = SUBSTR(STRCHARGSTR{K}.START;1)
THEN GOTO LS5

CHAR:

END;

NEW CHARACTER STRING HAS TO BE ADDED #*/
NUSTRS = NUSTRS + L3
STRINUSTRS)«STFART = LENGTH{STRCHARI
STRCHAR = STRCHAR|[STRNAME;
€ = NUSTRS;

/% INSERT VALUE IN RULE DICTIONARY #*/

L5: RULESINEXTRULESY.TYPE = *T°%;

RULES(NEXTRULES).N = K3

/A

+ 13

NEXTRULES = NEXTRULES + 13
/% RETURN TO PROCESS NEXT ELEMENT ON RHS OF RULE */
GOTO i2;
/% ADD RULE TO RULE DICTIOGNARY - ALLOCATING RULED AS NECESSARY
SETRULE:P = NCGNT{J) H
IF P-D>RULED.MAXNRULES = P-DRULED.NEXT ~ 1
THEN DO;
NRULES = P-> RULED.MAXNRULES + 5 ;
ALLGCATE RULED;
RULEDNEXT = P=~>RULED.NEXT H

%/

Unrestricted

STMT LEV NT

97 1 1 0O M=1 BY 1 TO P-> RULED.NEXT ~ 13
98 1 2 RULEDLRULE{M) = P=D>RULED.RULE(M);
99 12 END;
100 1 1 NRULES=P~>RULED . MAXNRULES;
101 1 i FREE P-~>RULED;
102 11 PeNONT(J} = Q3
103 1 1 END;
104 1 M = P=> RULED.NEXT ;
105 1 P-DRULED.NEXT =P—>RULEL NEXT +1;
106 1 P~>RULEG.RULE(M} .START = NEXTRULES - L + L ;
107 1 P=>RULED.RULE{M)LENGT = [- 1 3
/% RETURN FOR NEXT CARD IF THERE ARE ANY */
108 1 IF ENDFILE = 'YO'B THEN GOTC LO;
109 1 END3

Unrestricted TRI2.095 43

Appendix {11 PL/I Version of IPSTR

This appendix contains that part of the conventionally written version of the program which reads in and
stores the string to be recognised.

STMT LEV NT

1 [PSTR:PROCS

2 1 DCL (LENGTH,SUBSTR) BUILTIN;

3 1 DCL J FIXED BINCLS);

4 1 DEL CARD CHAR{BOIL;

5 1 DCL BFLAG BIT{1)} INIT(*L'B);

& 1 DL INPUT CHAR(5000) VARYING EXTERNAL;
K 1 INPUT = '7;

8 1 GeTh: GET FILE(EN) EDITICARDY (A(80));:

g H IF SUBSTR{CARC,L,L} = *"% THEN F% 7.8 AS ENC EFP FILE */

RETURN;

ic 1 Do o J=)1 BY L YOG 725

il 11 IF SUBSTRICARD;Jsk) == ¢ ¥ THEN D03
12 1 2 INPUT=INPUTIISUBSTRICARDJe1)3
13 1 2 BFLAG='0'H;

14 P2 END3
L5 | I ELSE DO;
L6 1 2z IF BFLAG=*0'8 THEN DO;

17 1 3 BFLAG="1'0B;3

18 i 3 END;

19 1 2 END3
20 L1 END;
21 1 GOT0 GETL;
22 i END;

Unrestricted TR12.095 45

Appendix IV, PL/l Version of IPTEST

Yhis appendix contains a PL/T program to check that the various restrictions, which were relied on during
the development, have been met. As mentioned, the relation of the stored te the given grammar is checked
by printing out the former. The look-ahead character, if present, is printed between asterisks after the
production arrow.

STHMT LEV NT

DCL T BI¥(2)3s
DCL 1 TEMP , 2 TYPE CHAR(1),
2 N FEIXED BIN{15);

i3 IPTEST:
PROC
2 1 OCL (LENGTH SUBSTRY BUILTING
3 b1 DCL 1L NONT(S500} EXTERMAL PIR;
4)3 BCL 1 STR{Z250)} EXTERNAL:
2 START FIXED BIN(15);
5 1 DCL SYRCHAR CHAR{400GQ) VARYING INIT(T'} EXTERNALG
&} i DCL 1 RULES(4C00) EXTERNAL,
2 TYPE CHAR(L).
2 N FIXED BINCLS);
1 i DCL 1 RULED BASED v
2 MAXNRULES FIXED BIN{15},
2 NEXT FIXED BIN {15),
2 RULE(NRULES REFER (MAXNRULES?],
3 START FIXED BIN{15},
3 LENGT FIXED BIN{15);
8 L DCL NRULES FIXED BIN{LES) EXTERNALS
9 i DCL NUNONTS FIXED BIN(L15) EXTERNAL;
10 i DCL 1 NONS(500) EXTERNAL,
2 START FIXED BIN{15),
2 LENGT FEXED BIN{15},
2 PTR PTR;
11 1 DCL WNOMTCHAR CHAR(3000) VARYING INIT(®®) EXTERNAL;
12 3 oL I FEXED BIN{1S5) ;
13 13 bcL J FIXED BIN(LS) 3
L4 L oot K FIXED BINLLS) 3
L5 1 DL P PTR:
16 i DCL N FIXED BIN(ES)S
Ly 1 DCE R FIXED BIN{15);
16 1 DCL NP PTR;
ig 1 BCL LK CHAR(L):
1
1

22 1 CALL PRINTDIC;
23 1 PUT EDIT {(*INPUT TESTH®) {(PAGE,A};
24 1 NP =NONT(18) H
25 i1 PUT EDIT(® R1 -~ TESYT NO OF ROOT(G) RULES: T)(SKIP:A);
26 i IF NP -3 RULED.NEXT = 2 THEN
PUT EDIT (*RL OK*']) (Al
27 1 ELSE
PUT EDIT (*RL FAILED') { Al
28 1 PUT EDIT(Y RG~ LENGTH GF RHS® ' R3 - S—LK IS OK*}(SKIPyAsSKIPgAL;
29 1 D0 N = 1B BY 1B T{O NUNONTS;
30 i1 NP = NONT(N} H
31 i1 00 R = 18 BY 1B TO NP-DRULED.NEXT -~ 1B;
32 1 2 IF NP-D>RULED.RULE{R)LENGT = O THEN
PUT EDET {'RO FAILED FOR ' N,RI(SKIP,A,F(5),F[5});

33 1z LK = SUBSTR{STRCHAR,STRIRULESINP-DPRULEDRULEIRY.START —1B1}.N)

~START 113
34 1 2 IF LK-= ' * THEN

DGs

35 P03 PUT EDIT [NeR} {SKIPF(5}:F{5));
36 13 TEMP = RULES{NP~DRULED-RULE(RI-START }s

Unzestricted TR12.095 47

STHMT LEV

37t
38 1
39 1
40 1
41 1
47 1
&3 1
44
45 1
46 1
47 1
43 1
49 2
50 2
51 2
52 2
53 2
54 2
55 2
56 2
57 2
58 Z
59 2
&G 2
81 2
62 2
63 2
b4% 2
65 2
66 2
67 2
68 2
69 2
70 2
1L 2
12 2
732
T4 2
75 2
76 2
1T 2

48 TRI1Z.095

NT

[RSIEAN]

> W £ o wwN W

[IO

IF TEMPL.TYPE = *T' THEN
IF SUBSTR{STRCHAR,STRITEMP.N)Y.START 1} = LK THEN
PUT EDIT (' OK'I{A);

ELSE
PUT EDIT {* FAILED'){A)};
ELSE
00;
T = TEST_LK{OByLEyNONT{TEMP.N) HH
IF SUBSTR {T,2,;1) = *0%B THEN
PUT EDIT {* FAILED ty(A);
ELSE
IF SUBSTR{Tsl,1i) = *0%'B THEN
PUT EDIT [' UNDECIDED'1}(A};
ELSE
PUT EDIT (* OK Y1{A);s
END;
END;
END
END;
PRINTDIC:
PRGC;
DCL XREF CHAR{L20)} VMARYING;
DCL BL CHAR{120) INIT (% *);
DCL CHAR BUILTIN;
PUT PAGE;
DO 4= 1B TO NUNONTS;
P o= NONT(J) ;
If P-> RULED.NEXT = 1B THEN
PUT EDIT {'%% NO RULES FOR %% ¢,°<%,
SURSTRINCGNTCHAR ; NONS(J} o STARTyNONS () o LENGT)y
it
(SKIPs Ay As AINONS(IYLLENGT)Y A);
ELSE
DO 1 = 1B TO P->RULED.NEXT-18;
XREF = ¢
PUT EDIT(7<Y; SUBSTRINONTCHARNONS(J) o STARTSNONSIJYLENGT),
e>egu_>u)
(SKIP Az AINONS(JY LENGT) oA X(2)¢8(2));
XREF = XREF Fl SUBSTRI(BL,LsNONS{J).LENGT ~ 1B 1} |}
SUBSTR{CHAR{J,93,:7:3) |} ¢ e

IF SUBSTRISTRCHAR;STRIRULESIP=DPRULED.RULE(I}START ~1B).N)
JSTARTS 1} —-= ' * THEN
D03
PUT EDIT{e*% SUBSTRISTRCHAR:STR{RULESIP~>RULED.
RULE(T)}.START-1B) N} oSTART1LI %7}
{As ALY A}
XREF = XREF || ¢ '3
END3:
DO K = 1B TO P-> RULED RULE(TI?.LENGT;
TEMP = RULES{P-DRULED.RULE{T)}.START + K —1IB};
IF TEMP.TYPE =%NY THEN
DO
PUT EDIT{*<* ¢ SUBSTR{NONTCHAR ;NONS{TEMP N} .START,
NONS{TEMP.N) LENGT)}s®*>%])
(X{L)s A ATNONS{TEMP-N) LENGT) A3
XREF = XREF |! SUBSTR{BLs1NOMS{TEMP.N}.LENGT} |}
SUBSTR{CHAR(TEMP.N:9Ye T3)3
END 3
ELSE
00;
PUT EDIT{SUBSTRISTRCHARSTRITEMP.N}-START 11}
(X{1)Y.,A{L});

XREF = XREF || ® *®3
END;
END3;
PUT EDIT{XREF} (SKIPsA(120)};
END;

END;

Unrestricted

STMT LEV NT

78 2 END;
79 1 TEST_LK:
PROC {DEPTH,CHAR NT) RECURSIVE RETURNSIBET(2));

BG 2 DCL DEPTH FIXED BIN(LS);
81 2 DCL CHAR CHARI{1)
82 2 OCL NY PTR;
83 2 DCL RESULT BIT(2)3
84 2 DCL R FIXED BIN{L13);
as 2 DEL L TEMP , 2 TYPE CHAR{1),
& N FIXED BIN(151);
8& 2 I# DEPTH = 1018 THEN
RETURN (°01'B);
87 2 ELSE
003
88 2 1 RESULT =*il1l'8 ;
89 Zz 1 0O R = 1B 8Y 18 TO NT->RULED.NEXT - 1B8;
90 2 2 TEMP = RULESINT-DRULED.RULEIR}I.START)
g1 2 2z IF TEMP.TYPE = *T7% THEN
IF SUBSTR{STRCOBARSTRITEMP.N}START 1) == CHAR THEN
RESULT = RESULT & *10'8;
92 Z 2 ELSE
RESULT = RESULT & T11°'B;
93 z 2 ELSE
RESULT = RESULT & FEST_LK{DEPTH+LB,LHAR,
NONT(TEMP.N)):
G4 2 2 END;
a5 2 1 RETURNIRESULT;
96 2 1 END;
at 2 END;
98 i ENDS

Unrestricted TR12.095 49

Appendix V, A Run of the Recogniser

This appendix contains a listing of a run of the recogniser.

<ROOT> -—> <NUMBER>
H

<NUMBER> => <UNSI§NED_NUMBER>
<NUMBER§ e LR <UNSIGNEDmN3M8ER>
(NUMEER? =D A=k ~ <UNSIGNED_NUMBER§
<DIGIT>2 -2%0¥ 0 K
<DIGIT§ =>¥]*]
<D!GIT§ P2 2
<DlGIT2 ~o3% 3
<D§G1T§ —-DELN 4
<DiGIT§ ->%5% 5
<DEGZT§ ->¥6% 6
<DEGIT§ LN L
<BIGET§ ~>ugE g
<DIGIT; ~>%GEk 9
<UNS£G§ED;INTEGER> -2 <DIGIT>
<UNSIGNEDMINTEGER§ - <UNSIG£ED*INTEGER> <DIGIT>
SENTESERS =5 <UN§IGNEDWINTEGER> ‘ ’
<INTEGER§ DA% & <UNSIGNED~IN?EGER>
<ENTEGER§ AR~ <UNSI5NED_INTESER§
<DECEMALEFRAC¥EON> —dL <UNSIGNESMINTEGER>
CEXPONENT_PARTS f>*'* ¥ JINTEGER> :
5

(DECIMAL_NUMBEE) -2 <UNSIGNEDrIN;EGER>
<DECIMAL_NUMBER§ -k & (DECIMALHFRAC??GN>
<OECIMAL_NUMBER§ -> <UNSEGNED_INTEGER> <BECIMAL“FRACTIDN>
(UNSIGNED_NUMBES> -> <DECIMALMNUMBER>4 °
(UNSIGNED_NUMBER? TR <EXPONENTWPA§T>
<UNSIGNED_NUMBERZ -> <DECIMAL_NUMBER> ZEXPONENT_PART>

g 8 7

Unrestricted TR12.095

51

INPUT TEST
Rl — TEST NO OF ROOT(G]
RO~ LENGTH OF RHS

R3 - S-LK
2

O 0 =0 U UL LG L L b RN
PN WSO~ P W~

—l12.3%-4
YES

52 TRi2.095

Is OK
0K
OK
GK
oK
oK

RULES:

R1 OK

Unrestricted

Appendix §. PL/I Version of the Recogniser

This appendix contains a PL/I program correspending to the algorithm of Sections 7 and 8. The ¢
1jiteration uses the ideas of Section 9.

STMT LEV

4

Uy

23
24

25

Unsestricted

[N

P

EARLY: PROC

oLl
DCL

bCL

OCL

ocL

ocL

beL
DCL

DCL
neL

DCL

oCL

DL
DCL
DCL
oL
DCL
OCL
R

DCL

oL
oCL

DCL

(LENGTH, SUBSTR) BUILT

ENG

OPTIONS(MAIND;

INPUT CHARL{S000) VARYING EXTERNALS

I RULES{4000) EXTERNAL:,

2 TYPE CHAR(L),
2 N FIXED BIN(L5D;

1 NONT{500) EXTERNAL PTR;

L RULED BASED,

2 MAXNRULES FIXED BIN{15),

2 NEXT FEXED BIN(15)

2 RULE(NRULES REFER
3 SFTART FIXED BIN{1
3 LENGY FIXED BIN{IL

L STRI{Z250) EXTERNAL,
2 START FIXED BINI[15

v

[{MAXNRULESH) ¢

5)
5);

Vs

STRCHAR CHAR(&G0G) VARYENG EXTERMNAL INEFL{T®);

NRULES FIXED BIN(1B)

{PGR ENTRY EXTERNA
IPSTH ENTRY EXTERNA
IPTEST ENTRY EXTERNA

1 STATE BASED {S51) .
2 S118 FIXED BIN(L
2N FIXED BIN{L

EXTERNAL;

L3
L3
L3

5k,
514

2 INFO {STATE_SIZE REFER (SIZE)).

3 RULE,
4 RPTR PTR,
4 SSC FIXED
3 RULPOS FIXED
3 STRPOS FIXED

STATE_SIZE FIXED BIN(

I FIXED BIN(I15};
N #IXED BIN(15);
P1 PTA;

I1 FIXED BIN{15);
J FIXED BIN(15];
F FIXED BEIN(LD2):
R_ FIXED BIN(15);

L RHS_ELs

2 TYPE CHAR(L}:

2 N FIXED BIN(L15};
P2 PTR;
K FIXED BIN(15);

LK CHAR({11}3

BIN(1IS),
BIN(LS) »
BIN{15);

15}

/=
FE
£
FE
FE
%
Fid

f%*

IE
7%

[

INIT(7C);

STATE SET INDEX MAJOR LOCP

STATE INDEX yZND LCOP

BTR OF S—RULE GF STATE(N,STATE-SET(I}]
INT GF S~RULE OF STATE(N,STATE-SET(IL])
RULPOS OF STATE{N,STATE-SETI(I)}
STRPOS GF STATEIN;STATE-SET(IL))

LEN~RHS{PLl,11}

RHS_EL{J+1,1{P1,1I1))

PTR PT (F RULES 5.T.
RHS_NT_EQ_LHS{{PL, IL)edtls(P2,7)}
PREDICTOR®S RULE INDEX

LK EL{PZ2+K)

rans-—

%/
:k/
W/
7
#*/
#/

%/

=f
o

*/

TR12.095

37

STMT LEV NT

38

26 1
27 L
28 1
29 1
30 1
31 1
3z

[S¥]
(%)
[=

40 1
41

3]

42
43
44
45
56

49
48
49

5t
52

DR Do N N

TR12.095

oy s

DCL KS FIXED BIN({15); J% STATE INDEX WITHIN S(F}

OCL P3 PTR; /% PTR OF S—RULE (STATE(KRS,STATC-SETIF))
DCL 12 FIXED BIN(LS); 7% INT OF S—RULE [STATE{KS,STATE~SET(F})
OCL L FIXED BIN{LS); /% S~RULPCS (STATE{KS,STATE~SET{F}]

OCL G FIXED EIN(15); /% S5~STRPQS

DCL 1 SF_RHS_EL.
2 TYPE CHAR{L),
2 N FIXED BIN[L5};

f¥ RHS_EL{P3,12)

DCL ST PTR; f#% CONTAINS S{E} : F COMP RESTR
DCL SF PFR; /% CONFAINS S{F}¥ : F COMP RESTR
OCL NONTIPTR PTR;
CALL IPGR H
CALL IPTEST 3
CALL IPSTR

PUT PAGE;
PUT EDIT((SUBSTROINPUTIIS® fedel0) DO J=t BY 10
TO LENGTHIENPUTE)) (LOLALLI0) s X (L) 3KIPY;

/% CONTAINS NONT{L).PTR ¢ £ COMP RESTR

ESTATE{KRS STATE-SETI(F})

/% N.B. IPSTR HAS SQUEZED ALL BLANKS T0O AVOID REQUIREMENT T4 (COE

SAME EN ALGGL GRAMMAR %/

BEGIN;
OCL S{O:LENGTELINPUTIY) PTR;

RO I = GF BY IB WHILE(I <= LENGTH{INPUT});
ALLOCATE STATE; /% SETS ST %/
S(0) = 51;

ST =2 STATE.N = 08

ENDG

SI = 5{0b);
51 => STATE.N = 1i;

$1 - STATELINFOULn}RAULELRPTR = NUONT(LB);
ST -> STATE.INFOLILY.RULE.SSC = 1B;
S1 => STATELINFOULE) RULPOS = 083
SI —=> STATE.INFO{1EYSTRPOS = Objs

AR OTHETIAL S S.T. ¢ I5-5{5S)
LOSETATE_SETION)=}
STATE{Ls STATE_SET(O)) =

SIRI{LAS{RY=ROOTIS) 0,02

i <= 1 <= LEINPUT) [MP

LISTATE_SEY{I,s51}}=

0

*f

*/
%/
%/
0/

de /
i f
*f

>}<‘I

Unrestricted

STHMY LEV NY

53 2

54 2 1
55 2 1
56 2 2
57 2 2
58 2 2
59 2 2
60 2 2
61 2 2
&2 2 3
63 2 3
6% 2 4
65 2 4
&6 2 5
67 2 5
68 2 5
69 2 &
70 Z2 3
Tt 2 3
T2 2 2
T3 2 3
T4 2 3
75 2 4
76 2 4
T7 2 4
T8 2 &
9 2 &
80 2 5
81 2 5
8z 2 5
83 2 4
&4 2 3
85 z 2
86 2 1

Unyestricted

NG I = 0B BY 18 WHILE{I<= LENGTHUINPUT});
SI = S1{1};
DO N = 1B BY 18 WHELE{NC= S[-> STATE.N};
Pl = SI ~> STATE.INFO(N).RULE.RPTR;
11 = SI => STATELINFO(N).RULE.SSCS
J = S1 -> STATELEINFO(NI.RULPOS;
Fo= $I -> STATE.INFO(N}.STRPOS;
R. = PL => RULEFD.RULE(I1)Y.LENGT;
EF(J == R_} &(I -~= LENGYHUINPUT)) THEN
DG
RHS_EL = RULESIPL -> RULEDRULE(IL).START + J) 3
IE RHS_EL.TYPE = 'H' THEN
DO; /% PREDICTOR #*/
P2 = NONT{RHS_EL.N};
20 K = 18 BY 18 TU P2 => RULED.NEXT ~1b;
LK = SUBSTR{STRCHAR,
STR{RULFSIPZ2~D>RULEDRULE(K]
SSTART=1B)aN) - START
1)
[E(Lk=% T}{{LK=SUBSTR{INPUT,I+1B,1))}THEN
CALL ADD_STATEIP2,K,0B:1511)5
END;
END;
ELSE IF[RHS_EL.TYPE = *T%} THEN
IF SUBSTR{STROHAR;STR{RHS_EL.N).START,1) =
SUBSTRIINPUT I+l 1) THEN
CALL ADD_STAFTELPL,Iled+iBsFylelids /% SCANNER */
END 3
ELSE IF 4 = R_ THEN
DO fROCOMPLETER %/
SF = S{F);
0O KS = 1B BY LB TO SF =2 SFTATE.N;
P3 = SF => STATELINFO(KS)RULE.RPTR;
P2 = SF -> STATE.EINFUGIKS) RULE.SSCS
L = §F => STATE.INFO(KS).RULPOS;
G = SF ~> STATELINFO(KSI.STRPOSS
I[F L == P3->RULED.RULE(IZ2}.LENGT THEN
DGs
SF_RHS _EL = RULEST{PA-DRULED.RULE{TZ2)Y.5TART+L!};
[F SF_RHS_EL.TYPE = 'N* THEN
IF NONT(SF_RHS_EL.N) = P1 THEN
CALL ADU_ST&TE[P39I2;L+le57{)5
END
END;
END;
END;
END;

/% CHECK FOR END_STATE IN S{L{X)) ®/

TR12.095

39

STMT LEV
87 2
88 2
&9 2
30 2
91 7
93 2
94 2
9% é
s zZ
Q7 3
98)
99 3

160 3
101 3
102 3
103 3
104 3
LGS 3
106 3
107 3
108 3
109 3
110 E)
111 3
112 3
113 3
114 3
115 3
il6 3
LY 3
1ie 3
Li9 3
120 2
121 1

40 TR12.095

MT

2

B o

ST = SILENGTHUINPUT))
NONTLPTR = NONT(LlEDS
DO N = 1B EY 1B TO S1 -> STATE.N;
fF {SI -> STATELENFOIN].RULE.RPTR = NONT(LB))
£15] ~> STATE.INFO(NY.RULE.SSC = 18 1
£(S1 => STATE.INFO(N)-RULPOS = NONTLPTR -» RULEC.RULE(18].
LENGT)
Lisr -> STATE. INFOIN)LSTRPOS = OB } THEN
003
PUT EOIT (' YES' } (SKIP sA); RETURNS
END;
ENDG;
PUT EDIT (' NOTIISKIP,A);
ADD_STATE:
PROC (PTR,INTsJeFs 123
JEOALDS [{PTRGINTI.JF) TO STATE-SET(1) SUNLESS THERE */
DLL PTR PTR;
UoL INT FIXED BINILS);
oL J FIXED BIN(ID);
pCcL F FIXED BINLLISYS
noe I FIXED BINILSY);
OCL K FIXED BIN{15); /% STATE INDEX WITHIN STATE SET(I} /7
OCL ST PTR; /% CONTAINS S(IF = F COMP RESTR #*f
ST = Sii);
00 Kk = LB BY lb TO SE -> STATE.N ;
[F (SI => STATE.INFOIK) . RULE.RPTR = PTR 1}
(ST ~> STATE.INFO(KY RULE.SSC = INT)
S0S1 => STATELENFGIK) RULPOS = 4)
EUS] ~> STATELINFO(K)}.STRPOS = F) THENM
RETUKRN F% STATE ALREADRY THERE =/
END
IE 51 ~> STATE.N = S -> STATE.SIZE THEN
0BG % STATE SET FULL %/
pyUT EDIT(Y STaTE SET OVERFLOW CY(SKIP,AZS
STOPS
BN
ELSE
D05 f® ADD ®=/
S ~> STATELN = 5f —> STATE.N + 1B3
ST -> STATE.INFO{SE —> STATE.N)LRULERPTR = PIR;
SI -=> STATE.INFO(ST -> STATENYRULELSSC = INT;
S1 -> STATE.INFO(S] => STATE.N}.RULPOS = g3
61 +> STATE.INFO({SI —=> STATE.N).STRPOS = F3
END;:
END;
END;:
END;3

Unrestricled

Appendix 11, PL/I Version of IPGR

This appendix contains that part of the conventionally written version of the program which veads in and
stores the grammar,

STMT LEV NTY

1 IPGR:PROCS
2 i DCL (LENGTH,; SUBSTR) BUILTIN;
3 4 DCL 1 NONS(5C0) EXTERNAL,

2 START FIXED BIN{15),
2 LENGT FIXED BIN(151},
2 PTR PTR;
DL NONTCHAR CHAR{3G00) VARYING INIT(7®} EXTERNAL;
LCL NONTNAME CHAR{L1GCO0O) VARYING;
DCL STRNAME CHAR(100C) VARYING;
DCL 1 TEMP,
2 TYPE CHAR({L),
2 N FIXED BENC1ISY);
8 1 LCL { Tydslel oMoy NEXTRULES INET(11}.
NUSTRS INIT{0}) FEXED BIN(1S33

—~ 0w
e e e

3 1 DCL (NRULES,NUNGNTS INIT(0)) FIXED BIN{15) EXTERNAL;
10 1 OCt CARD CHAR{BOI;
1l 1 DCL ENCFILE BIT(L) INIT(*O'B};
12 1 RCL {P,@ 3 PTR ;
i3 1 DCL L NONT({5GG} EXTEARNAL PTR;
14 i BCL 1 STR{250) EXTERNAL,
2 START FIXED BIN(15);
15 1 DCL STRCHAR CHAR({4000) VARYING ENIT(®*) EXTERNAL;
16 1 CCL 1 RULES{400C) EXTERNAL,
2 TYPE CHAR(LlI,
2 N FIXED BIN(15);
17 1 DCL L RULED BASED{Q)Y .
2 MAXNRULES FIXED BIN(LS),
2 NEXT FIXED BIN (15,

2 RULEINRULES REFER (MAXNRULES)!}
3 STARY FIXED BIN{L15),
3 LENGT FIXED BINEiS)H;

ON ENBFILE(SYSIN) BEGIN;

H

19 2 ENDFILE=*1"B;

20 2 S0¥0 SETRULE;

21 2 END;

22 i GET EDIT{CARD)Y (A{80})});

23 i LO: NONTNAME = 7%

24 1 GO =2 BY 1 WHILE(SUBSTR{CARD,I,1} -~=%>%);

25 i 1 NONTNAME = NONTNAME|{SUBSTRICARD 1,13
i1

1 END;
/% 1 IS POSITION ON CARD */
DO J=1 TO NUNONTS;
28 | S IF NONTNAME = SUBSTRINONTCHARSNONS{J).START,
NONSTJ)YLENGT)

N
-l
o

THEN GGTO LL;
29 I 1 END 3

/% A NEW NONTERMINAL HAS TO BE ADDED %/

30 1 NUNONTS = NUNONTS + 1
1 31 1 MONS{NUNGNTS) « START = LENGTHINONTCHAR) + 1
32 1 NONS{NUNONTS}.LENGT = LENGTHINONTINAME];
33 1 NRULES = 5 3
34 1 ALLOCATE RULED;:
35 i1 NOMT (NUNONTS) = Q3
36 i RULED.NEXT = L3
37 1 NONTCHAR = NONTCHAR| | NONTNAME;
38 1 J = NUNONTS;
/% J CONTAINS NONTERMINAL IDENTIFIER %/
39 i Li: L= 0

Unrestricted TRI2.095 41

STMT LEV NT
40 1 STRNAME=SUBSTRICARD:73:11};
41 1 DO K=1 BY 1 TO NUSTRS;
42 1 i iF STRNAME:SUBSTR(STRCHAR:STR(K)cSTARTvl }
THEN GOTO LA;
43 1 1 END;
&4y 1 NUSTRS=NUSTRS+1;
45 1 STRINUSTRS) L START=LENGTH(STRCHAR} +13
46 i STRCHAR=STRCHAR| | STRNAME;
&7 1 LA: RULESI{NEXTRULES) « N=K;
48 1 RULESINEXTRULES) . TYPE="T";
49 1 NEXTRULES=NEXTRULES+1;
/% NOW PROCESS THE RHS COF THE CARD */
50 i1 L2s L = L+1;
51 1 1.3: IF I >= 71 Th&N DO;
52 1 1 GET COPY EDIFT{CARD! (A{80));
53 i 1 [F SUBSTRICARDs1,1)Y = *<' THEN GOYT0 SETRULE:
54 1 1 ELSE I = L3
55 1 i END3
56 1 ELSE [= I+1;
57 1 {F SUBSTR{CAKRC,T41) = * * THEN GOTO L33
58 i 1F SUBSTRICARDsI,1) = t<% THEN GOTO NONTERM;
59 1 G0T0 CHAR;
60 1 NONTERMINONTNAME = "'
61 1 00 1 = 141 BY L WHILE (SUBSTRICARDslg¢l) == >3
62 S NONTNAME = NONTNAME] [SUBSTRICARD,Iy113
63 1 1 END; .
L4 1 B0 K=1 TU NUNONTS;
65 1 1 [F NONTNAME = SUBSTR{NONTCHAR NONSIK)} . START,
NGNS {K}LENGT)
THEN GOTO L4&;
[434) 1 H END;
/% A NEW NONTERMINAL HAS 7O BE ADD:D */
67 1 NUNONTS = NUNGNTS + 1
58 1 NONSINUNONTS) o START = LENGTH(NONTCHAR) + 13
69 1 MONSINUNONTS) LENGT = LENGTHINONTNAME) ;
70 1 NRULES = 5
71 i ALLUOCATE RULED;
12 i NONT {NUNONTS) = @3
73 1 RULEG.NELXT = 13
T4 H MOMTCHAR = NONTCHAR] INONTNAMES
75 1 K=NUNONTS ;
/% [NSERT VALUE IN RULEL DICTIONARY */
T6 1 L4 RULESINEXTRULESY . TYPE ='N*;
77 1 RULESINEXTRULES) N =Kj
78 i NEXTRULES = NEXTRULES + i3
F% RETURN TO PROCESS NeXT ELEMENT ON RHS OF RULE */
19 1 GOTO L2
80 1 CHAR: STRNAME = SUBSTRIGCARD,I+113;
81 1 0O K=1 BY } TO NUSTRS;
82 i1 IF STRNAME = SUBSTRISTROHARSSTRIK) <START, 1}
THEN GOGTO L5;
83 11 END;
F% A NEW CHARACTER STRING HAS TO BE ADDED */
B4 1 NUSTRS = NUSTRS + 13
85 1 STRINUSTRS) . START = LENGTH(STRCHARY + 1;
B6 1 STRCHAR = STRCHARE[STRNAME;
87 1 K o= NUSTRS;
J% [NSERT VALUE IN RULE DICTIONARY X/
88 i1 Lo: RULES{NEXTRULESY.TYPE = 'T*%;
89 1 RULES (NEXTRULES).N = K;
g0 1 NEXTRULES = NEXTRULES + 13
/% RETURN TG PROCESS NEXT ELEMENT ON RHS OF RULE */
g1 1 GOTO L2
/% ADD RULE TO RULE DICTECNARY ~ ALLOCATINSG RULED AS NECESSARY */
Q2 1 SETRULEIP = NONT(J) H
93 1 IF P->RULED.MAXNRULES = P->RULED.NEXT -1
THEN DO
94 1 i NRULES = P=> RULED.MAXNRULES + 5 3
95 1 1 ALLOCATE RULED;
96 1 1 RULEDGNEXT = P~>RULED.NEXT H
42 TRi2.095 Unrestricted

STMT LEV NT

e e DO e

ut
<
¥

el i R o e

—
(=]
fo2]
—

Unrestricted

END;

DG M=1 BY 1 TO P-> RULED.NEXT
RULED.RULE{M} = P~>RULED.RULE(M);

END;

NRULES=P->RULED.MAXNRULES;
FREE P~>RULED;

PeNONT{J) = Q3
END;
M = P=> RULED.NEXT H

P=>RULED.NEXT

P=>RULED.RULE(M)}.START = NEXTRULES -
P->RULEDRULE{M)LLENGT = L — I 3
/% RETURN FOR NEXT CARD [F THERE ARE ANY */

IF ENDFILE

TQ'B THEN GOTC Lu;

=P->RULEG.NEXT +1;

L+ 1

L;

E3

TR12,095

43

Appendix 1. PL/I Version of IPSTR

This appendix contains that part of the conventionally written version of the program which reads in and
stores the string to be recognised.

STMT LEV NT

IPSTR:PROCS
OCL (LENGTH; SUBSTR} BUILTIN;
OCL J FIXED BIN(15);
DCL CARD CHAR{8O}:
DCL BFLAG BIT{L] INIT(®17B);
OcL INPUT CHAR{5000) VARYING EXTERNAL;
INPUT = * 73

WO e O L PO e
e g e = pee

GeTh: GET FILEUINY EDIT(CARD) (AlBO});
IF SUBSTR(CARD,1s1} = *'"* THEN /% 7,8 AS END I/P FILE %/
RETURN;

DO J4=1 BY 1 TG 723

1
il 1 1 [F SUBSTRICARDsJo1) == ' ¥ THEN 0OO;
12 1 2 INPUT=INPUT]ESUBSTRICARDJs 1)
13 12 BRFLAG='Y0Y8;
14 1 2 ENGS
15 1 1 ELSE DG;
16 L2 IF BFLAG='0"B THEN DO;
L7 L 3 GFLAG="1'B;
18 1 3 END3
19 | I END;
20 1 i END3
21 1 5070 GETL;

E

END 3

Unrestricted TR12.095 45

This appendix contains a PL
the development, have been met,
by printing out the former.

production arrow.

STMT LEV NT

22
24
25
26
2%
28
30
31
3z
33
34

35
36

Unrestricted

ot et s e P et e b e v jb s e et p— o

—

s e b e e

My =

IPY
PRO
ocL

DCL
neL
DCL
et
el
DCL

Appendix |V. PL/1 Version of IPTEST

£57:
Cs
{LENGTH, SUBSTR) BUILTIN;
DCL 1 NONT(500) EXTERNMNAL PIR;
DCL 1 STR{Z250) EXTERNAL.
2 START FIXED BIN{15);
DCL STRCHAR CHAR(40G0) VARYING INIT('') EXTERNAL;
DCL) RULES{4C00}; EXTERMNALS
2 TYPE CHAR(1),
2 N FIXED BIN{15};
DCL 1 RULED BASED v
7 MAXNRULES FIXED BIN(LS),
2 NEXT FIXED BIN (151},
2 RULE{NRULES REFER {(MAXNRULES}I),
3 START FEXED BIN{15),
3 LENGT FIXED BIN{15);
DCL WRULES FEXED BEN(15) EXTERNMALS
DCL NUNONTS FIXED BIN{15) EXTERNAL;
DCL 1 NONS{500) EXTERNALS,
2 START FEXED BIN{LS),
2 LENGT FIXED BIN(L5),
2 PTR PTR:
DCL NONTCHAR CHAR(3000) VARYING INIT(®®) EXTERNAL;S
DL I FIXED BIN{LS5) 3
DL J FEXED BIN{LS)
BCL K FIXED BIN(L15) 3
BCL P PTRS
N FIXKED BIN{(15);
R FIXED BIN{LIS5);
NPORTR:
LK CHARTTD :
T BITI2);
1 TEMP . 2 TYPE CHAR(L},

2 N FIXED BIN(1ID)H;
CALL PRINTDICS
PUT EDIT (*PINPUT TEST') (PAGE.A):
NP =NONTIIR} H
PUT EDIT(® RLI — TEST NG GF ROOTI5)Y RULES: T)(SKIP,A);
IF NP ~> RULEDNEXT = 2 THEN
PUT EDIT (*RL OK®*) (Als
ELSE
PUT EDIT (*RLI FAILED®) { Ads
PUT EDIT(® RO~ LENGTH OF RHST,7 R3 = S—LK IS OK*}(SKIPsA+SKIP,A);
DO N = 1B BY 1B TO NUNONTS;
NP = NONT(N) 3
B0 R = 1B BY 1B TO NP->RULEC.NEXT - 183
IF NP-DRULED.RULEIR)-LENGT = O THEN
PUT EDIT ('RO FAILED FOR * N,RI{SKIPsA,F{5)sF(5});
LK = SUBSTR{STRCHAR:STR{RULESINP->RULED.RULE(R}.START ~1B}.N)
.START, 1)
IF LK== * " THEN
DOs
PUT EDIT {NsR} (SKIP.F{5)<F(5));
TEMP = RULES{NP-~>RULED.RULE{R}.START 13

TR12.095

/1 pregram to check that the various restrictions, which were relied en during
As mentioned, the relatien of the stored to the given grammar is checked
The look-ahead character, if present, is printed between asterisks after the

47

STMT LEV NT

37 1 3
38 1 3
39 1 3
40 1 4
S S
42 1 4
43 1 4
44 1 &
45 1 3
46 1 2
47 1 1
48 1

49 2

50 2

51 2

52 2

53 2

54 2 1
55 2 |1
56 2 1
51 2 2
58 2 2
59 2 2
66 2 2
61 2 3
62 2 3
63 2 3
b6 2 2
65 2 3
66 2 3
67T 2 4
68 2 4
69 2 4
0 2 3
1 2 4
2 2 4
73 2 4
T4 2 3
s 2 2
% 2 2
7T 2 1

48 TRI12.095

iF TEMP.TYPE = *TY THEN
IF SUBSTRISTRCHARSTRITEMP.N)START,1) = LK THEN
PUT EDIT (% CK'){A)3
ELSE
PUT EDIT (' FAILED*)(A};
ELSE
0o;
T = TEST_LK{OBs;LKy;NONT{TEMP.N) ¥
IF SUBSTR (T,;2+1) = "0*B THEN
PUT EDITF (' FAILED L . D
ELSE
IF SUBSTR{T¢Ll:1) = *0'B THEN
PUT EDIT {*' UNDECIDEDR®*}(A};
ELSE
PUT EDIT (% 0K PI{A);
END;
END:
END
END;

PRINTDIC:
PROC
DCL XREF CHAR(120) VARYING;
OCL BL CHAR(E20) INIT ({® *3;
OCL CHAR BUILTIN;
PUT PAGE; .
DO J= 1B TO NUNONTS;:
Po= NONT(J) H
If P-> RULED.NEXT = 1B THEN
PUT EGIT (%% NO RULES FOR %%k 9,09,
SUBSTRINONTCHAR ; NONSTJS) STARTsNONS{J 1. LENGT s
TS
(SKEP A, As ATNONS{J) oLENGT YA 3
ELSE
BP0 I = 1B TG P~>RULED.NEXT~18;
XREF = "v
PUT EDIT(F<", SUBSTR(NONTCHARNONS{J) STARTNONSIJ) LENGT
ﬂ>9,ﬂ_.>¢}
(SKIPs A AINONS(J) o LENGT) A X(2),8(2))
XREF = XREF }| SUBSTRI(BLyLeMNONS{J}LENGT — 18 ¥ |1
SUBSTR{CHAR(J,93,7¢3) || ¢ '
IF SUBSTRISTRCHAR; STR{RULES(P->RULEDRULE{F}START ~1B).N)
oSTART 1) -= ' ¥ THEN
D03
PUT EDITE* % SUBSTRISTRCHARSTRIRULES(P->RULED.
RULE({E)oSTART—1B) NI START 1) ,%5%%)
[As ALY A
XREF = XREF |1 * '
END;
DG K = 16 TG P-> RULED +RULELE}.LENGT;
TEMP = RULES{P~>RULEDRULE{I).START + K -~1B);
If TEMP.TYPE ='N' THEN
Do;
PUT EDIT('< ,SUBSTRINDNTCHARNONSITEMP . N} . START,
NONS(TEMP N) LENGT) s 75%)
(X{L) s A AINONS{TEMPoNILENGTIA)S
XREF = XREF || SUBSTR{BL;1;NONS{TEMP.NILENGT) |1
SUBSTRICHARITEMP.N:9)s7s31);
END;
ELSE
Do;
PUT EDIT{SUBSTR{STRCHARSTRITEMP.N)START 1))
(XU1Y,AC010)3

XREF = XREF [| * 93
END3
END 3
PUT EDIT{XREF) (SKIP,A({1201);
END;

END;

Unrestricted

SEMT

8
79
80
82
83
84
85
86
87

88
89
Ele
91

92
93
G4
95
96

Q7
98

Unrestricted

MNOR RN NN =

N

™

NN NN

N

P NN R RS

LEV NT

PR

END3
TEST_LK:
PROC (DEPTH,CHARyNT) RECURSIVE RETURNSIBIT(23});
DCL DEPTH FEIXED BIN{15);
DCL CHAR CHARI{L);
BCL NT PTR;
OCL RESULT BIT(2);
DCL R FIXED BIN{L1S);
BCL 1 TEMP ¢ 2 TYPE CHAR{L11},
2 N FIXED BIN(L15);
IF DEPTH = 101B THEN
RETURN (°C1'B);
ELSE
003
RESULT =Y11%8
DO R = 1B 8Y 1B T0O NT->RULED.NEXT - 18;
TEMP = RULESINT->RULED.RULEIR}.START]
If TEMP.TYPE = 'T% THEN
IF SUBSTR{STRUHAR STRITEMP.N},START.1) - CHAR THEN
RESULYT = RESULT & *10%B;

ELSE
RESULT = RESULT & *11%8;
ELSE
RESULT = RESULT & VEST_LKIDEPTH+1B,CHAR,
NONT{TEMP N} bs
END;
RETURNIRESULT);
END 3
END;
END;

TR12.095

49

Appendix V. A Run of the Recogniser

This appendix contains a listing of a run of the recogniser,

<RODT> —~> <NUMBER>

(NUMBéR) -> <UNSEENED_NUMBER>

<NUMBER§ 4R ¥ <UNSIGNED_N3MBER>

<NUMBER§ ==k - <UNSIGNEDMNUMBER2

<DiGIT>2 ->%0% 0 ’
3

COIGIT> =>%1%* 1
3
LDIGITY> =—>%2% 2

(DIGITi ~>#3% 3

(DIGITi >4 4

<DIGET§ ->%5% 5

<DIGIT§ =DHREE O

<DiGIT§ ~>%TE T

<D{GIT§ -2>%8* 8

<DIGIT§ ~>RYE G

<UNSIG£E§_INYEGER> -> <DIGET>

<UNSIGNEDHZNTEGER§ - (UNSIG&ED_INTEGER> <DIGIT>

CINTEGER> -2 <UN§IGNED_INYEGER> " ’

<INTEGER§ ~pEeF 4 <UNSIGNED_IN$EGER>

<IN?EGER§ —DH-F - <UNSISNED_ENTEGER§

<DECIMALEFRACTION> —>EL L, (UNSEGNESﬁENTEGER)

<EXPONENT _PART> f-:>*°’i'c ¢ {INTEGERD> ‘

<DECIMALHNUMBE;> -2 <UNSEGNEDTIN?EGER>

<DECIMAL,NUMBER§ —ok, <DECIMAL_FRACT?DN>

<DEC£MALWNUMBER§ ~> SUNSIGNED_INTEGER> <gECIMﬂL_FRAC?[DN>

<UNSKGNEDMNUMBES> -> <DECIMAL_NUMBER>4 ¢

<UNSIGNED~NUMBER3 AP <EXPONENT_PA§T>

<UNSIGNEDMNUMBER§ -> <DEC[MAL_NUMBER; ZEXPONENT_PART>
7

Unrestricted TRI12.095 5}

INPUT TEST

R1 - TEST NO OF ROOT(S5) RULES: R1 OK
RO~ LENGTH OF RHS

R3 = S§-L¥ IS OK

[N« JE NI I IS I PR VU USRI TS I CLIR VU PRI CLIR S R EU R LS Rt
Mo Mo = = PG D U NN
o
x

~12.3'-4%
YES

52 TR12.085 Unrestricted

	5
	5a

