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ABSTRACT

It is well known that the syntax of declarative programming languages is not context-free, and
that this is due to their ability to declare names which may then occur only in specific contexts.
This report explores the idea that declarations modify the context-free grammar of any program
in which they appear. The name dynamic syntax has been given to this concept. The report

presents a functional formulation of dynamic syntax and applies the resulting metalanguage to
the description of the syntax of Algol 60.
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1. INTRODUCTION

The subject of this report is the formal specification of the syntactically valid programs in a
declarative programming language. Conventionally, such a specification takes the form of a
context-free grammar. However, the context-free grammar always specifies some superset of
the actual set of valid programs. The members of this superset which are truly valid programs
are those which satisfy a number of additional syntactic constraints which the context-free
grammar is unable to express. Current practice is to express these additional constraints in-
formally as a set of rules which require that certain relationships exist between the declarations
of names and their use elsewhere in the program.

The report explores the notion that the declarative statements of a program construct a context-
free grammar for the imperative statements of that particular program, and that the required
relationships can be represented by the rules for constructing this grammar. The concept has
been termed dynamic syntax since it implies a dynamic context-free grammar.

Using the language of the lambda-calculus, the report gives a functional realisation of dynamic
syntax, allowing the construction of an expression which denotes the set of language strings of
a given programming language. In the Appendix the method is applied to the description of

a large subset of Algol 607.

T All subsequent, unqualified references to Algol should be taken as references to Algol 60.
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2. CONTEXT-FREE LANGUAGES

A context-free language is defined in the following way:

A vocabulary V is a finite set of symbols. A string over the vocabulary is a finite sequence of
these symbols. The set of all strings over V' (where the set includes the empty string) will be
denoted by V*. Arbitrary symbols will be denoted by upper-case Latin letters A, B, .. .. and
strings by lower-case Latin lettersa, b, ... .

A context-free grammar G consists of:

1. A vocabulary V.

2. A non-empty subset of the cross-product set ¥ (x) V*. Let (A,a) be a pair belonging to
this subset. Then (A,a) is called a production rule and the binary relation between the
symbol A and the string a is denoted by A - a. A symbol of ¥V which occurs as the left-
hand element of some production rule is called a nonterminal symbol. A symbol for which
there is no such production rule is called a terminal symbol.

3. One of the nonterminal symbols, S, called the sentence symbol.

Define the binary relation = between strings by:
a>b=(3 x,y,z,W)(a=xWy,b=xzy, W~ z)
If a*> b, we say that a directly produces b. Thus, this means that b can be obtained from a
by the application of some production rule.
Now define the binary relation % between strings to be the transitive closure of =, i.e.
a>b=(a=b)v(a>b)v( 3c)(a>cnrc>b)

If a ib, we say that a produces b. This means that b can be obtained from a by a sequence
(possibly empty) of applications of production rules.

Then, the context-free language L with grammar ¢ is defined to be the set of strings, over

the terminal symbols, which are produced by S. That is, if T is the set of terminal symbols,
then:

L={xeT*|S>x}
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As an example of a context-free language, the set of strings of a’s and b’s of the form:
d....ab....b
where the a and b sequences are of arbitrary non-zero length, is defined by the grammar:

vocabulary: a,b,AB,S
production rules: S— AB
A-—a
A - Aa
B-b
B Bb
sentence symbol: S

This grammar has terminal symbols a, b and nonterminal symbols A, B, S.

Some further terminology: A terminal string is a string over the terminal symbols. A phrase
is a terminal string produced by a nonterminal symbol. Suppose A is a nonterminal symbol.
Then a phrase produced by A is called an A-phrase and the set of all phrases produced by A is
called the A-phrase class.

We now introduce a variant of the above notation for context-free grammars which will be more
convenient for development in the sequel. A nonterminal symbol is written as a descriptive
multi-character identifier, possibly hyphenated, e.g. simple-arithmetic-expression. A terminal
symbol is either a single character, e.g. g, or an identifier in bold type, e.g. then. We generalise
the idea of a terminal symbol and use it to denote a string which we choose to leave undefined.
This allows us to shorten grammars by using symbols like letter, letter-or-digit. The operation
of concatenation is indicated explicitly by the infix operator " . The right-hand side of a
production rule can contain any number of direct productions for the left-hand nonterminal,
separated by the operator | (‘or’).

As an example, the definition of a simple arithmetic expression in Algol may be written:

. . . . : I
simple-arithmetic-expression = term | adding-operator R term
simple-arithmetic-expression " adding-operator = term



Unrestricted T.R.12.090 Page 5

We shall refer to such a multi-production rule simply as a production rule (or rule).
The affinity with the BNF! metalinguistic formula:

<simple arithmetic expression> : : = <term> [ < adding operator> <term>|
<simple arithmetic expression> <adding operator> <term>

is evident.
We postulate the existence of strings emptystring and nullstring which satisfy:

A .
emptystring x =Ax Aemptystrmg =X
nullstring ™ x=x nullstring = nullstring

for all strings x.
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THE SYNTAX OF PROGRAMMING LANGUAGES

This and the subsequent section suggest that a method for the complete description of the syntax
of declarative programming languages can be based on a consideration of the syntactic role of
declarations.

Section 1 of the Algol 60 report2 says ‘“...statements are supported by declarations which

are not themselves computing instructions but inform the translator of the existence and certain
properties of objects appearing in statements...”’. The use of declarations characterises many
present-day programming languages.

An Algol declaration associates a set of properties with a computational object. These properties
can be represented by three items:

1. A set of values which can be taken by the object.

2. A specification of the contexts in which the name of the object may occur in statements.

3. A specification of the meaning (effect) of the object in the contexts specified under 2.

This bundle of information constitutes the total interface between the object and the statements
which may use it. Item 2 is the syntactic part of this interface and represents the syntactic
character given to the object by the declaration.

Consider a type declaration for example. The type given to a variable defines the class of
numbers which it may take as values. But the type also determines the kind of expression in
which the variable may occur as a primary. The Algol report (Section 3.3) says, for example
‘. ... the constituents of simple arithmetic expressions must be of type real or integer . ... .

Because it permits declarations, Algol 60 is not a context-free language. Floyd’s® proof of
this concentrates attention on a program of the form:

begin real x"; x" : = x" end
where x" stands for the identifier x x . . . . x consisting of n x’s. This is a valid program only if

all the x" sequences have equal length. The plausibility of Floyd’s result can be seen intuitively

as follows. A derivation of a program of this form from a context-free grammar can be considered
to involve the intermediate string: ’

N A A ~ A N
begin real identifier ; identifier := identifier end
At this point we need to specify that all three occurrences of identifier must produce identical
terminal strings. This identity constraint cannot be expressed by a context-free grammar.
Other Algol programs illustrate further types of constraint. To derive a valid program from:
n " A AN
begin real identifier , identifier ; end
we need to specify that the two occurrences of identifier should produce non-identical terminal
strings. We cannot express this non-identify constraint with a context-free grammar.
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Again, to derive a valid program from:
A A AN A A NN N A AN
begin array X [ bound-pairlist ] ; X/\[ subscript-list ] :=
X [ subscriptlist ] end

PN

we must specify that bound-pair-list and subscript-list produce lists of the same length. This is
essentially an identity constraint and we are unable to express it with a context-free grammar.

Abstract forms of the above three kinds of constraint are respectively exhibited by the following
sets of strings over { a,b,ce } -

{anoanoan |n>0}
aMea"eaP | m,n,p>0 and pairwise unequal }
{aebMec" | n=0}

All three sets are non-context-free languages.
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4. THE CONCEPT OF DYNAMIC SYNTAX

This section puts forward a certain view of the syntactic constraints imposed by declarations.

With a slight re-arrangement to help bring out the point we wish to make, the Algol grammar
for expressions contains a rule of the form:

primary > simple-variable | .. ..
and the grammar for declarations contains the rules:
type-declaration - type Atype-list P
type-list + simple-variable | simple-variable , type-list
The grammar defines simple variables by the rules:

simple-variable - variable-identifier
variable-identifier — identifier

Now the last two rules merely say that a simple variable is an identifier; the grammar could
therefore be simplified by throwing away these rules and replacing simple-variable by identifier
throughout the grammar. Why were the above five rules formulated in this redundant way? (In

a document as carefully composed as the Algol report we can be confident that this was by

design.) The reason has been expressedt as follows: “they (the rules) are trying to say something
which the notation cannot convey, namely, that a simple variable is an identifier which has occurred
in a type declaration”. Out of the infinite set of simple variables defined by the context-free
grammar, only those which have been declared may be used as primaries.

Consider the following alternative scheme for saying that a simple variable is an identifier which
has occurred in a type declaration:

1. Leave unchanged the grammar for expressions, including the rule:
primary - simple-variable | . ...
2. In the grammar for declarations, replace simple-variable by identifier to obtain:

. N .
type-declaration - type type-list
type-list = identifier [ identifier " ; Atype-list

4

T Higman”, page 48.
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3a. Erase the rules:

simple-variable - variable-identifier
variable-identifier - identifier

b. Specify (in some convenient notation) that the production of an identifier, say a, in a
type declaration causes the rule:

simple-variable > a
to be added to the grammar.

3a opens up a gap in the grammar, since simple-variable is used in the definition of expressions
but is nowhere defined. 3b shows how this gap is bridged during the process of producing a
program.

Initially, there is no production rule for simple-variable. Each time an identifier is declared in a
type declaration, a rule for simple-variable is added to the grammar. Thus, the specification of
the identifiers V1, V2, .. ... .. .Vmin type declarations leads to the rule:

simple-variable + V1 | V2 ‘ ..... 1 Vmf¥

Now, declarations do not always simply introduce the identifiers which can occur in statements;
the declaration of a complex object may determine the form of certain grammatical units which
can be associated with the name of the object. Thus, the declared dimension of an array deter-

mines the number of subscripts in a reference to an element of the array; and the declaration of

a procedure specifies the number and form of the actual parameters which can occur in a call of
the procedure.

These complications do not, however, prevent us from treating such declarations by the method

outlined above. For example, the specification of the identifiers A1, A2, ... .. as arrays of
dimension 2, 1, ...... respectively leads to new rules:
identifi RIIRZ ..
—
array-identifier AL P N

subscripted-variable — 51 [ subscrlpt expression
[ subscript-expression

, subscript-expression ]
/\] |

+ To simplify the above discussion we found it convenient to ignore the distinction made in Algol between
arithmetic simple variables and boolean simple variables.
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Similarly, the declaration of proceduresP1,P2,..... adds rules of the form:

. . g’ or
procedure-identifier > P1 | P2 | Ce
. . oA . epe N B A
function-designator - P1 A(Aarray-ldentlfler , /ﬁtr;l\ng ) ] N
2 ( boolean-expression , procedure-identifier )|

where the number and form of the parenthesised actual parameter specifications depend on the
procedure declaration.

We are now in a position to make the following observation: at any point in an Algol program,
the arithmetic expressions which may occur form a context-free language. That is, if we take
any arithmetic expression of any Algol program and ask what is the nature of the set of all
expressions which could validly be written at this point, we find that this set constitutes a
context-free language. For, if we ignore declarations, then the valid expressions are all those
expressions which can be constructed solely from constants, and this set constitutes a context-
free language. Now take into account the declarations. We saw above that these can be
considered to add certain context-free production rules to the grammar. The result follows.

The above discussion relates only to arithmetic expressions and to a program consisting of a
single block. Also, our observation (on the context-free nature of the set of valid expressions

at any given program point) concerns the static nature of an Algol program in which the
declarations are taken to be fixed. We shall show, however, that the approach we have taken here
provides a basis for describing the full syntax of Algol. That is, we shall show that it is possible -
to devise a program-writing scheme such that, at any point in the process where a terminal string
is written down, the choice of available strings forms a context-free language. In this scheme the
writing down of a string may be associated with the appearance of new context-free production
rules.

The principal formulation problems to be solved are:

1. How do production rules appear as a result of declarations and how are these new produc-
tion rules made available?

2. How do production rules disappear as a result of the re-declaration of an identifier (the
problem of scope)?

3. How can a reference to a declared object appear in a statement which precedes the declara-
tion of that object (the problem of use before declaration)?

4. How can the solutions to the above problems be expressed in a formal metalanguage?

We have given the name dynamic syntax to the concept that a declaration has a metasyntactic
effect which can be represented by the dynamic creation of context-free production rules.
The remainder of the report is mainly devoted to providing a workable notation for dynamic
syntax. The next section deals with a number of preliminaries.
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5. SOME PRELIMINARIES

This section reviews some mathematical techniques used in the metalanguage developed in the '
next section.

5.1 LAMBDA-NOTATION

We shall use the lambda-notation of Church? , as modified by Landin®. The notation is
summarised here. For a fuller account see Landin’s paper.

The lambda-notation pins down the notion of a function as an object in a universe of discourse.
It allows functions to be manipulated with the same freedom as more conventional objects and
in particular to be used as arguments and values of other functions.

The function<femexarmpey which squares its argument is denoted by A x . x?, so that the
definition:

square (x) = x*

can also be written:
square = A X . x°

The lambda-expression A x . x* is the name of a function. In normal usage, square (x) is used
indiscriminately to name both a function and the result of applying that function to an argument
x. In the lambda-notation, A x . x® stands unambiguously for the function in itself, i.e., for an
object which is a mapping.

The lambda-notation makes a clear distinction between functional abstraction, the creation of a
function object A x . E and functional application, the process of evaluating a function by apply-
ing it to an argument. Functional application is denoted by a combination M N. The value of
the operator M must be a function and the value of the operand N must be a valid argument of
that function. The argument may itself be a function, as may the value of M N.

The expressions considered here have been of three types: identifiers, lambda-expressions and
combinations. These are collectively termed applicative expressions. A detailed discussion of
the evaluation process for combinations can be found in Landin®.
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A description of a function must be structured to give an expression for the value of the function
and to indicate the use of the argument in this expression. Let E be an expression involving
xT. Then the lambda-expression:

Ax.E

denotes the function which has the value E when the argument has the value x. The lambda-
expression has bound variable x and body E.

We are now able to paraphrase an expression of the form:
....square (a)....
by:
o oxax®) (@)
where the name of a function has been replaced by an expression designating the function.

The idea of a function as an object leads to the possibility of using a variable to stand for a
function and of passing a function as an argument. In the expression:

(A n.square (n)) (10)
with value 100, a function is applied to a number. Now consider:
(n f.f(10)) (square)
which again has the value 100. Here the bound variable occurs as a function in the body of the

lambda-expression, so that a function is required as argument. The latter example is equivalent
to:

(A f.F(10)) (x x.x?)

A function may not only be passed as a function argument but may also be returned as a
function value as with:

Am.Ax.mx+c

When applied to a number, this function returns a function which multiplies its argument by
this number and adds c.

t Strictly speaking, E is to be a form in which x is the only free variable.
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A function which returns a function is called function-producing. There follow two examples
of function-producing functions, both of which require a function as argument. The function
double, defined by:

double=x f. X\ x. f(x) + f(x)

or alternatively: N.;“""J %e

double(f) = x . f(x) + f(x)

accepts a function f and returns a function whose value is double the value 07 The function
twice, defined by: ——

twice =X . x x . f(f(x))
or:
twice(f) = A x . f (f(x))

accepts a function f and returns a function which applies f twice over to the argument.

5.2 A REVISED NOTATION

This section introduces two devices to simplify the writing of applicative expressions.

5.2.1 Omitting Parentheses and Commas

The use of function-producing functions involves operators which are themselves combinations,
as in the formulae:

(double (square))} (4) =¢42 + &

(twice (square)) (4) = (4*)?

We can avoid parentheses by adopting the rule that juxtaposition stands for functional
application and associates to the left. This allows us to write, for example:

square 4 for square (4)
double square 4 for (double (square)) (4)
twice square 4  for (twice (square}) (4)
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This technique can be extended to allow the dropping of parentheses and commas in the argument
lists of multi-argument functions. If x,y,..... .z are variables and E is an expression involving
XYoo oo .z, then by a straightforward extension of functional abstraction to allow a list of

to denote the function of x,y,. .. .. .z that E is. We prefer, however, to represent a function of
several arguments by repeated use of simple functional-abstraction involving a single argument.

To illustrate the idea, the combination:
Axy.x*+y?) (3,4)

can be represented as:
(Ax.Ay.x2+y?)(3)(4)

or:

(Ax.Ay.x2+y?)34

In the definition of a function we may choose to write the bound variables on the left-hand side
following the function name. Again we can dispense with parentheses and commas. Thus, the
following definitions of the function sumsquare are all equivalent:

sumsquare X y = x> +y?

sumsquare =AXYy.X® +y?

sumsquare =Ax.Ay.x?+y?

sumsquare x =Ay.x? +y?

An application of the sumsquare function’ommﬁ-y-ﬂw:
sumsquare (3, 4)
is now written:

sumsquare 3 4

Parentheses now have no meaning other than as grouping signs which are used to vary the standard
evaluation sequence. Examples of this use are the formulae:

double (twice square) 4 =% (4%)> ¥ (QL)IL&‘L*Q‘-)L + L l‘"*&‘)"

twice (double square) 4 =
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5.2.2 The “where’” Notation

The expression:
(A\x.E)a

will be denoted by:

E
where x = a

When the argument is a function, bound variables will be written on the left-hand side. For
example:

(Af.E) (A x.G)

will be written:

E
where fx=G

The where part is an auxiliary definition.

The where notation may be extended to handle a function of more than one argument (i.e.
iterated application). For example, the expression:

»
(A x.Ay.x/y)a> —b%a? +b? i
voxiyia - ik X
with value a? — b?/a? + b? is paraphrased by:
x/y
where x = a* — b?
and y=a’>+b?

An indented layout is used to indicate the scope of auxiliary definitions. For example, the
above applicative expression is equivalent to:

Ax.Ay.x/y)((Af.fab)(Ax.Ay.x* —y?))
(hg.gab) (A x.xy.x*+vy?))

or:

x/y

where x =fab
where f x y = x* — y?

and y=gab
where g x y = x? +y?
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5.3 RECURSIVE DEFINITIONS

A recursive definition of an object x is a definition of the form:

where the x in the definiens is a reference to the object being defined rather than a reference
to some other object existing in the environment of the definition. We shall indicate the
recursive nature of a definition by writing:

An example of an expression involving the auxiliary definition of a recursive function is:

fact 5 + fact 7
where rec fact n = (if n = 0 then 1 else n x fact (n — 1))

In the expression:

head L
whererec L = (a, (b, L))

L is the infinite list structure (a, (b, (a, (b,

or

The use of rec can be extended to a group of simultaneous recursive definitions. For example:

(L, L)
where rec L = (a, M)
and M = (L, M)

+ The conditional expression can be formalised in terms of lambda-notation.
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Here, L is the infinite list-structure:

The formulation of rec in terms of a fixed-point operator is described in Landin®.

5.4 STRUCTURE DEFINITIONS

We describe here the use of structure definitions or abstract syntax for specifying how a new
class of objects is constructed from existing classes of objects. The specification ignores written
representations and talks only in terms of a set of functions which operate on the objects being
defined.

The following structure definition defines the class of complex numbers:

a complex-number has a real-part which is a real-number
and an imaginary-part which is a real-number

A complex number is thus an object which can deliver a real part and an imaginary part both of
which are real numbers (assumed already defined). The new class is described by specifying two
new functions real-part and imaginary-part whose domains are the new class and whose ranges
are existing classes. These functions are termed selectors. Corresponding to the new class is a
predicate function wnich tests for membership of this class. Thus the structure definition for the
class of complex numbers introduces two selector functions and a predicate function.

A structure definition is accompanied by a constructor function which produces members of
the new class. A constructor which creates a complex number from two real numbers is defined
by the axioms:

real-part (construct-complex x y) = x
imaginary-part (construct-complex x y) =y
construct-complex (real-part w) (imaginary-part w) = w
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The structure description for complex numbers is an example of a format specification. A class
may however contain objects of a number of different formats. To describe such a class we
specify predicate functions which test the format of a member of the class. As an example, we
give below a structure description for the class of applicative-expressions, which has three
formats. This also illustrates the fact that a structure definition may be recursive. The definition
is prefixed by rec to indicate that where the name applicative-expression occurs in the body of
the definition this refers to the class being defined.

rec an applicative-expression is
either an identifier
or a lambda-expression and has a bound-variable which is an identifier
and a body which is an applicative-expression
or a combination and has an operator which is an applicative-expression
and an operand which is an applicative-expression

A similar technique to structure definitions is availabie for the description of objects rather than
classes of objects. The complex number 1 + 2i may be defined by:

has a real which is 1
and an imaginary which is 2

This defines a single object and constitutes an ad soc definition of the functions real and
imaginary when applied to this particular object. This gives us a standard form of syntax for
describing objects. In place of the above we shall write:

<real : 1, imaginary : 2>

M g emle el Ronsl
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6. DYNAMIC PRODUCTION SYSTEMS

Section 2 introduced context-free production systems for the description of syntax and Section

3 showed that these are inadequate for declarative programming languages. Section 4 put forward
a concept of dynamic syntax as a basis for the complete description of the syntax of such
languages. This section shows how this concept can be implemented in terms of dynamic pro-
duction systems which are a generalisation of context-free production systems. In our descrip-
tion of dynamic production systems we shall make use of the techniques reviewed in Section 5
for specifying functions and constructed objects.

Section 6.1 will show how a context-free grammar may be written in lambda-notation. Section
6.2 will describe a metalanguage based on dynamic syntax and Section 6.3 will apply this
metalanguage to a subset of Algol 60. Section 6.4 will discuss a slightly different interpretation
of BNF from the normal one.

6.1 A VARIANT OF CONTEXT-FREE GRAMMARS

The definition of a context-free grammar may be sharpened by being written as an applicative
expression. In particular, the interdependencies between the definitions of certain phrase
classes may be clearly displayed. Figure 1 is a definition of expressions in Algol. This

clearly indicates that the definitions of arithmetic-expression, simple-arithmetic-expression,
boolean-expression, relation and variable form a group of simultaneous recursive definitions.

It also shows, for example, that the definition of primary is auxiliary to the definition of simple-
arithmetic-expression and is needed nowhere else in the grammar.

6.2 A REALISATION OF DYNAMIC SYNTAX

This section presents the basic ideas for a metalanguage which implements the concept of
dynamic syntax. Our realisation of dynamic syntax makes use of the notion of syntactic
functions to solve the problems posed at the end of Section 4. In the following discussion,
each topic is introduced through an example drawn from Algol.
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6.2.1 Ruie Creation : A Rule as Part of a Produced Object

A simple form of a real type declaration in Algol can be defined by the following production

Tule:
3 N
real-type-declaration — <text : real x,

rule : real-simple-variable - x>
where x — identifier

This says that a real type declaration is a constructed object with two components. One compo-
nent (with selector text) is a string of the form:

AN
real x

and the other component (with selector rule) is a production rule of the form:
real-simple-variable - x

x stands for an identifier and both occurrences of x are to be replaced by the same identifier. The
constructed object has the following interpretation: the first component is a program phrase, the
second component is a production rule representing the metasyntactic effect which that phrase
has on any program in which it appears.

Declarations are therefore obtained through functions which return constructed objects as their
values. These constructed objects have two components, one a piece of program text and the
other a set of new rules. In this way. the production of a declaration is associated with the crea-
tion of new production rules.

There is a serious objection to the above formulation. In the evaluation of the combination:

A
(A x . < text : real x, rule: real-simple-variable -~ x>) identifier

we insist that the operand identifier be fully evaluated to a terminal string before the operator

is applied to it. An evaluation process in which the operand of a combination is always evaluated
before application of the operator has been termed normal evaluation by Landin®. The lambda-
calculus however lays down no particular evaluation process since all processes give the same
result. The difficulty arises because in our application of the lambda-calculus to generative
grammars we use as a primitive the operator [ (‘or’) which is non-deterministic. We shall return
to this point in Section 6.4, where we shall see that the difficulty disappears if we interpret a
grammar as a definition of a set of strings rather than as a recipe for getting some string. Mean-
while, normal evaluation of operator/operand combinations is assumed.
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6.2.2 Use Before Declaration: Representing Partially Produced Text by a Function

Consider the formulation of a labelled statement in Algol (for simplicity assume that it can
declare only a single label). A context-free representation is:

AA
labelled-statement — label : unlabelled-statement

Now, the label implicitly declared here may be referenced in any statement of the same block,
including those statements which precede this particular labelled statement (it may even be
referenced in the labelled statement itself).

“Hw.sJ;le set of grammatically correct unlabelled statements of the block depends{on all those
identifiers chosen as labels in the block. We deal with this problem by formulating the defini-
tion of a labelled statement as follows:

A A
labelled-statement - <text-function : A y . x : unlabelled-statementy,
rule : label = x>

This says that a labelled statement is a constructed object with two components. One component
is a function:

Ay. x/\:/\umabelled-statement y
whose body contains an identifier x.
The other component is a rule of the form:
label » x
The two occurrences of x stand for the same identifier.

The effect of this scheme is that the (initial) production of a labelled statement is incomplete:
merely the label is produced. This enables the metasyntactic effect of this labelled statement
to be derived, in the form of a new rule. The incomplete production becomes the body of a
function. A subsequent application of this function to some argument will produce a program
phrase consisting of a statement with the identifier as its label.

Thus, use before declaration is dealt with by means of function-producing functions (more
precisely, functions which return constructed objects with function components). This effect-
ively allows the partial production of a program phrase through a function whose second
component is, as before, a set of new production rules but whose first component is not a phrase,
but a function which can be subsequently applied to obtain a phrase. The body of this

function component contains the declarative sub-phrases which have greated the production rules

of the second component. Coultbel ”ﬂ, w..tq.. 06
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To summarise, so far we have seen how new production rules appear as a result of declarations
and how functions may be created containing partially produced phrases. We look next at how
new production rules subsequently become available for use in the production process and how
produced functions subsequently get applied. These topics are discussed in the context of the
Algol structure.

6.2.3 Using Created Rules: Rules as Arguments of Other Rules
An Algol block B has the form:
beginD ;D ;....;D;S;S;......... ;Send

where D stands for an explicit declaration (i.e. any declaration except an implicit label declara-
tion) and S stands for a statement.

Declarations made outside B have scope which includes B, except where their identifiers are re-
declared. Declarations made inside B have scope B. This leads us to give the following interpre-
tation to a block:

Let an environment be some complete representation of the metasyntactic effect of a set of
declarations. Then a block is a function of an environment. The argument passed to a block is
a global environment representing the declarations made outside the block.

The function block is defined in terms of an object block* which has two components. The
first component is a function (of an environment argument) whose body contains all of the
declarative phrases of the value of block. The second component is a local environment
representing the metasyntactic effect of these declarations. block now forms a total updated
environment from the global environment passed to it as argument and the local environment
created by block*. block then applies the function component of block* to the total environ-
ment. The result is a phrase which is an Algol block.

Thus, effectively, block* is the first pass in a two-pass production process.

This has assumed the existence of a class of objects, called environments, which completely
characterise the metasyntactic effect of the declarations of a block-structured program. We
shall implement an environment as a set of generated production rules together with a
mechanism for delimiting the scope of these rules. This scope mechanism is based on the
concept of a dynamic set of symbols. When a declaration uses an identifier to name a new
object, a new symbol is created. We call a symbol created by a declaration a generated symbol
and say that the identifier belongs to the generated symbol. Then a generated symbol designates
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a particular declaration of the identifier which belongs to it. At any point in the program an
identifier may belong to at most one generated symbol: if the identifier is re-declared, the
generated symbol to which it belongs in the enclosing block does not exist in the enclosed block.
The scope of the declaration (and therefore of its metasyntactic effect) is just that part of the
program in which the corresponding generated symbol exists.

Let us represent a generated symbol by an (identifier, token) pair, where a foken is some mark
unique to a particular generated symbol. For each block B there is a local set of identifiers

and a local set of generated symbols. Both are initially empty. When a new local identifier is
declared, any identifier not already in the local set of identifiers may be chosen. An (identifier,
token) pair is created and added to the set of generated symbols. An inexhaustible source of

different tokens is assumed.

The block B also has a global set of generated symbols, with a member for each declared
identifier whose scope includes the block immediately surrounding B. The local and global sets
of generated symbols for B are summed to form a set whose members designate those declared
identifiers whose scope includes B. Any global generated symbol whose identifier occurs also
in a local generated symbol is excluded from the sum set. The members of this sum set are the
generated symbols for B.

Generated symbols control the scope of generated production rules in the following way. In a
generated rule a declared identifier i is represented, not by itself, but by a function whose
argument is a set s of generated symbols. The function tests if i is a member of s and, if it is,
returns i; in the case that i is not a member of s, the function returns the nullstring, thus
creating a blind alley in the production process. In this way the use of a generated production
rule is blocked off in any block outside its scope. The method requires that all generated
production rules be functions of a set of generated symbols.

As an example, the Algol declaration:

real ABC

creates:

1. A generated symbol (ABC, 23), say, (assuming tokens are obtained by enumerating the
integers).

2. The generated production rule:
real-simple-variable s — if (ABC, 23) ¢ s then ABC else nullstring.
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We can now restate our view of a block as follows. To improve readability, the application of
selector functions is distinguished from the application of other functions by using the applica-
tion operator of in the case of selectors.

block global-rules global-symbols =
partial-text all-rules active-symbols
where partial-text - text-functionofblock™
and all-rules — union global-rules local-rules
where local-rules - rulesofblock™
and active-symbols » update-symbols global-symbols local-symbols
where local-symbols - symbolsofblock®
where block* - etc.

In words, the function block of two arguments global-rules and global-symbols is defined as
follows:

1. An object block* with three components is produced.

2. The set local-symbols is obtained by applying the selector symbols to block*.

3. The set active-symbols is obtained by applying the function update-symbols to the set
global-symbols and the set local-symbols.

4. The set local-rules is obtained by applying the selector rules to block*.

5. The set all-rules is obtained by applying the function union to the set global-rules and the
set local-rules.

6. The function partial-text is obtained by applying the selector text-function to block*.

7. The block is obtained by applying the function partial-text to the set all-rules and the set
active-symbols.

To summarise:

a.  Part of the value of a declaration is a set of new production rules which represent its
metasyntactic effect.

b. The ability to use an identifier before declaring it can be modelled by a multi-pass
production scheme in which one pass produces a function and an argument which are
combined in the next pass.

¢.  Scope in a block-structure language can be formulated in terms of generated symbols and
production rules with arguments: a block is a function of a set of generated production

rules and a set of generated symbols; a generated production rule is a function of a set of
generated symbols.
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6.3 THE DEFINITION OF A SUBSET OF ALGOL 60

A definition of the complete syntax of a subset of ECMA Algol7 is given in the Appendix. To
shorten the definition, the following cuts have been made in the language: procedure declara-
tions and the built-in procedures are omitted; a bound pair expression is restricted to be a

number; the operator + may take operands of type real as well as type integer; a program must

be a block. (m > ')

We first review the auxiliary definition%vhich support the syntax description.
The concatenation of two functions is defined by:
N
function-concatenation fg=x x.fx gx

function-concatenation operates on two string functions f and g to produce a function whose
value for a given argument is the concatenation of the values of f and g for the same argument.Jf

Because of the importance of this function, we introduce an infix operator to denote it:
A

A x -
f g = function-concatenation f g

We often wish to use a function corresponding to some set of delimiters as an operand of the
A : ; .. ..
operator . A n-ary function which always returns the delimiter then (for example) is given by
k., then, where k, is the function-producing function defined by:
KnX=AY1.AY2.... ¥y X
We shall omit the k,. Thus (for example) the expression:
if " boolean-expression A then
where boolean-expression is a binary function, is to be interpreted as:
LA . A
k, if " boolean-expression " k, then
i.e. as the function:
Ax.Ay.if i boolean-expression x y ™ then
Throughout the definition, a set is represented by a list formed from its elements. A structure

definition schema is given for lists. By substituting rule and symbol for the parameter, definitions
are obtained for rule-list and symbol-list.

head selects the first item of a list. tail selects all but the first item of a list. prefix creates a list
from a head item and a tail list. unitlist creates a list of one item. append joins two lists.
concatenate joins the members of a list of lists. union is a synonym for append and unitset is a
synonym for unitlist.

tHere, and throughout the report, functional application takes precedence over the concatenation operator. -
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Two functions are defined which involve sets (lists) of generated symbols. update-set-with-symbol
adds a generated symbol to a set of generated symbols, knocking out of the set any existing
element with the same identifier as the new element. update-set-with-set sums two sets of
generated symbols in a similar manner, with elements of the second set knocking out elements

of the first set.

There follow two functions that simplify the writing of syntax definitions. list1 accepts two
string functions and returns a function which is the concatenation of some arbitrary non-zero
number of occurrences of the second argument separated by occurrences of the first argument.
In all cases, the first argument corresponds to some set of delimiters.

list2 is a generalised function-producing function for the definition of a class of phrase class
functions with a certain structure, essentially that of a list of names in which each name can
occur at most once. This structure is exhibited in declarative programming languages by lists
of phrases in which each phrase depends on the set of declared identifiers and each phrase adds
a new identifier to this set. Examples in Algol are a declaration list (block head) and a label
declaration list.

Consider a label declaration list, for example. This is derived from:
I NN N

label-declaration " : " label-declaration " § e ¢ : label-declaration
In the left-to-right production of such a list, the first label must be different from the set |
of local identifiers so far declared and each successive label must be different both from the
members of | and from the labels which precede it in the list. This is expressed by making
label-declaration a function of the set of local identifiers and by adding each new label to the
set of local identifiers immediately it is declared. The first label of a label declaration list is
produced by a call of label-declaration with argument 1; if this first label is p, then the second
label is produced by a call of label-declaration with argument | v { p } ; similarly for the
production of each label. list2 has been designed to handle this kind of non-context-free
syntactic pattern.

list2 creates a function from three functions f, g and h. In our applications of list2, f is a phrase
class function (typically, label-declaration) and list2 f g h is also a phrase class function
(label-declaration-list). f is called an arbitrary non-zero number of times. g is used to create

the argument for each successive call from the result of the preceding call. h is used to combine
the values resulting from successive calls of f. For example, in the case of a label declaration
list, g creates the argument for a call of label-declaration by adding the label produced by the
preceding call into the argument set of local identifiers; and h (in part) inserts the commas
between the labels of the produced list. h is a function of two arguments. In our use of list2,

g is always a selector function operating on a constructed object.
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The function list2 is defined as follows: list2 f g h is a function. A value of this function for
an argument x is given either by applying f to x, or by first applying f to x to obtain agthen

recursively applying list2 f g h to g a to obtain byand finally combining a and b by means of h§
rec list2fghx=a | ha(list2fgh (ga))
where a = f x

The definition of label-declaration-list in terms of list2 is:

label-declaration-list | —

list2 label-declaration locals A x . A y . < text: textofx ™ Atextofy
rules : union rulesofx symbolsofy
symbols : union symbolsofx symbolsofy
locals:  localsofy>

The h function here combines two 4-component objects into a single 4-component object. The
g function, locals, is a selector for one of the components of these objects.

Given two sets of string functions A, B, we define their concatenated-cross-product to be the set
{ iR g | feA,geB } . The function function-cross-product is the extension which accepts
an arbitrary number of sets of string functions.

The function new-value accepts a list, a function and an argument for that function. It returns
a value of the given function for the glvran argument such that the value doe ccur in the
list. For this to make sense, the argumen ﬁ” must b non-deterrmms;.’ have an
mfmlte number of possible va.lues for a given argument. These conditions are sat1sf1ed by our
use of the new-value function to produce a new local identifier: we apply new-value to a list
of local identifiers, the O-ary function identifier and the empty argument.

rule is the constructor function for creating a rule from a nonterminal and a set of productions.

Finally, get-prod is a function which accepts a nonterminal symbol x and a set r of rules and
returns a replacement for x out of r. This replacement is a function of a set of symbols. Ifr
contains no rule for x, get-prod returns the constant function k nullstring. get-prod uses an
unspecified function random-element which makes a random choice of an element from its

list argument. - g ) , ALMU ,&_}g (

We are now in a position to deses#e the definition of the Algol subset. "r“-h-rs-ts-dan.e by
indicating how an informal explanation of a line of the definition can be derived more or less
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mechanically from the line itself. Some of the locutions used are as follows. Functional
application in a combination M N is rendered by ‘an M is produced from an N’. Arguments
r, s, | are referred to as ‘a (the) set r of rules’, ‘a (the) set s of symbols’ and ‘a (the) set | of
locals’. The part of a constructed object obj with selector sel is referred to as ‘the sel part of

-9

obj’.

Note that the selector operator of is assumed to have higher precedence than normal functional
application, which has higher precedence than the concatenation operators Mand A, Also,
recall that a symbol typed in bold, e.g. arithmetic-operator, denotes a string of some set of
strings that is considered to be a primitive and is left undefined.

In the following excerpt from the Appendix, the indented structure is not shown:
program - block () ()
A program is a block produced from an empty set of rules and an empty set of symbols

where rec block r s > begin " block-body r s ™ end

where a block is produced trom a set r of rules and a set s of symbols, and is a begin followed by
a block-body produced from r and s followed by an end

where block-body r s = functionofx (union r rulesofx) (update-set-with-set s symbolsofx)

where a block-body is produced from a set r of rules and a set s symbols, and is produced by
the function part of x from the set of rules given by adding to r the rules part of x, and the set
of symbols given by updating s with the symbols part of x,

where x - block-body* ()

where x is a block-body* produced from an empty set of locals

where block-body* | = < function : functionofx A : A functionofy
rules : union rulesofx rulesofy
symbols:  union symbolsofx symbolsofy
locals : localsofy >

where a block-body* is produced from a set | of locals and consists of:

i. the concatenation of the function part of x, the constant function k, ; and the function
part of y

the union of the rules part of x and the rules part of y

iii. the union of the symbols part of x and the symbols part of y

iv. the locals part of y

1
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where y - statement-list* localsofx

where vy is a statement-list* produced from the locals part of x (Nofe: x is a declaration-list*)

where rec statement-list* | =

. . . A i
list2 statement® locals A x . A y . < function: functionofx il f functionofy

rules :

union rulesofx rulesofy

symbols :  union symbolsofx symbolsofy

locals :

localsofy >

where a statement-list* is produced from a set | of locals and is constructed from a sequence of
statement*s (where the first statement* of the sequence is produced from | and each subsequent
statement* is produced from the locals part of its predecessor) and consists of:

i the concatenation of the function parts of the statement®s separated by the constant

function k; ;

ii.  the union of the rules parts of the statement*s
ili. the union of the symbols parts of the statement*s
iv.  the locals part of the final statement™,

where rec statement® | -

unlabelled-statement® | , <function :
rules :
symbols :
locals :

A
functionofx * functionofy
union rulesofx rulesofy
union symbolsofx symbolsofy
localsofy>

where a statement* is produced from a set | of locals and is either an unlabelled-statement*

produced from | or consists of:

i, the concatenation of the function part of x and the function part of y

ii.  the union of the rules part of x and

the rules part of y

iii. the union of the symbols part of x and the symbols part of y

iv.  the locals part of y

where y - unlabelled-statement™ localsofx °

where y is an unlabelled-statement* produced from the locals part of x

where x — label-declaration-list |

where x is a label-declaration-list produced from a set | of locals
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where label-declaration-list | -

list2 label-declaration locals A x . A y . < text: textofx " : " textofy
rules : union rulesofx rulesofy
symbols : union symbolsofx symbolsofy
locals: localsofy >

where a label-declaration-list is produced from a set | of locals and is constructed from a
sequence of label-declarations (where the first label-declaration of the sequence is produced
from | and each subsequent label-declaration is produced from the locals part of its predecessor)
and consists of:

1. the concatenation of the text parts of the label-declarations separated by colons

ii.  the union of the rules parts of the label-declarations

ifi. the union of the symbols parts of the label-declarations

iv.  the locals part of the last label-declaration

where label-declaration | - < text: X
rules : rule ‘label’ definiensofx
symbols : symbolsofx
locals : localsofx>

where a label-declaration is produced from a set | of locals and consists of:
i X

ii.  arule for label whose right-hand side is the definiens part of x

iii. the symbols part of x

iv.  the locals part of x

where x = declaration-identifier |

where x is a declaration-identifier produced from a set | of locals

where declaration-identifier | -
' < text: X
definiens : unitset A r. X s. if y € s then x else nullstring
symbols: unitsety
locals : prefix x I>
where a declaration-identifier is produced from a set | of locals and consists of:
i.  x
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ii. afunction of a set r of rules and a set s of symbols which tests if y is a member of s and if
it is returns x and otherwise returns the nullstring

iii. aset whose sole element isy

iv. aset obtained by adding x to the set | of locals.

where y —construct-symbol x t

where y is a generated symbol created from x and t

where x - new-identifier |
where x is a new-identifier produced from a set | of locals

where new-identifier | — new-value | identifier ( )

where a new-identifier is produced from a set | of locals and is a new-value produced from the
set | of locals, the O-ary function identifier and an empty argument

and t — token ()

and t is a new token

6.4 ADIFFERENT VIEW-POINT

In this section we discuss an alternative interpretation of syntax definitions which has a
technical advantage over the conventional interpretation.

We interpreted a context-free grammar as the specification of an automaton (production system)
whose input is a unique starting symbol (sentence symbol) and whose final output is some

string of the language defined. In general, the automaton is nondeterministic since its apyiliary
symbols (nonterminal symbols) may have more than one rule. A o A

To represent noncontext-free languages we generalised a rule so that‘é nonterminal symbol may
be replaced by a complex object with, in general, an applicative structure. This generalisation
ran us into a difficulty however, (see Section 6.2), due to the conjunction of functional
application and nondeterminism. This forced us to take a non-standard and restrictive interpre-
tation of applicative structure to ensure that any nondeterminism is removed from an operand
before an operator is applied to it. This difficulty and the restriction disappear if we take the
following view of syntax definitions.

A syntax definition may be interpreted as the explicit recursive definition of a set of terminal
strings, involving the definition of auxiliary sets of strings. Under this interpretation, a
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nonterminal symbol stands for a set of strings and the operators | and " denote union and
concatenated cross-product respectively:

A | B= {x lxeAvxeB%
A" B= {appendxy | xe A nyeB}

where A and B are sets of strings. If emptyset is the empty set of strings and emptystringset is
the set whose only member is the emptystring then, for any set A:

A | emptyset = emptyset | A=A
A" emptyset = emptyset A= emptyset
F& . . N
A emptystringset = emptystringset * A= A

Thus, emptyset and emptystringset act as zero and identity elements respectively.

Syntax definitions can be generalised under the string set interpretation analogously to their
generalisation under the production interpretation. But now there is no nondeterminism and it
is no longer necessary to a restricted rule of functional application.

Corresponding to the production-oriented language definition of the Appendix, a definition can
be made in terms of sets of strings. This makes use of the function map defined by:

map fs= {fx| xes |

map applies its functional argument f to all the items of its set argument s and returns the set
of results. To improve readability we can introduce infix operators for and e. Then, in place
of map f s, the following can be written:

fxforxes
The following excerpt from the Appendix serves as an example:

. . A . A
compound-statement® | = < function : begin ' functionofx = end

rules : rulesofx

symbols : symbolsofx

locals : localsofx >

where x - statement-list* |
becomes:

. A . A

compound-statement* | - < function : begin~ functionofx ' end

rules : rulesofx

symbols: symbolsofx

locals : localsofx >

for x e statement-list* |
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For the analogue of the Appendix definition it is helpful to extend the for notation to allow
expressions of the form:

fxyforxesandyet

with meaning map f (s () t), where (X) is an operator for set cross-product, and also to allow
expressions of the form:

fxyforyegxforxes

with meaning sumset (map (A x . map (f x) (g x)) s). sumset forms the union of a set of sets.
g is a set-valued function.
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7. RELATED WORK

After a characterisation of work on the syntax of programming languages, this section reviews
very briefly the work of some other authors on the formal description of non-context-free
syntax.

Three main areas of work in the syntax of programming languages can be distinguished

(ignoring relevant work in the theory of automata). The first concerns syntax-directed compilers,
in which a BNF grammar is used to structure the compiler. This is realised either by an interpre-
tive parsing routine which is driven by a stored form of the grammar and uses a push-down
organisationg, or by a set of interdependent parsing routines which are mechanically produced
from the grammar?. In both cases the BNF grammar is augmented by compiling directives.

In syntax-directed methods, a grammar is used in analysing a given string as a prelude to
determining its meaning. The power and efficiency (and in the case of ambiguity, the

meaning) of a grammar used in this way depend not only on the grammar but on the algorithm
which uses it. The second area of development in syntax has been concerned with searching for
special types of context-free grammar which lend themselves to cconomical parsing. This work
seeks to establish new nodes below the context-free node in the hierarchy of grammars.

The third area of development, on the other hand, is concerned with establishing new nodes
above context-free grammars in the hierarchy and is motivated by the inability of context-free
grammars to fully describe the syntax of present-day high-level programming languages.
Although presently of interest mainly to people working in formal language definition, solutions
to this problem could lead to new techniques in compiler production.

It is to the third line of development that the present report aims to contribute.
Some of the work done to date on the formal specification of the complete syntax of
programming languages is now mentioned.
Context-free languages are Chomsky Type 2 languages. In Chomsky Type 1 or context-
Sensitive languagesm, production rules have the form:

XAy—>xay
X, Y, a are strings and A is a nonterminal symbol. A can produce a if A occurs in the context
characterised as being bordered on the left by x and on the right by y. Although Type 1

grammars are powerful enough to describe non-context-free features of programming languages,
their use is not a practical proposition owing to the extreme complexity of such descriptions.

i 11 i i i é@—%‘v
Whitney */ defines table grammars which are an extension of BNF grammars. The right-hand
side of a production contains table functions which carry out table operations similar to the
dictionary table operations in compilers. The approach can thus be considered as an idealisation
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of the notion of syntax-driven compilers. Whereas the generation of a string from a BNF
grammar involves a single object — a string which is successively modified by application of the
productions of the grammar — generation from a table grammar involves three objects: a
string which is a head-string of the eventual language string, a pushdown string store for the as
yet unwritten parts of the productions selected in the generation process and a table for
recording all declarative information met so far. For block-structure languages, the table is
replaced by a pushdown table store. A table grammar is defined only for a left-to-right
generation sequence, that is, one in which at each replacement step the leftmost nonterminal
symbol is the one chosen for rewriting. The functions incorporated in productions are designed
as follows:

1. They return a terminal string value.

2. They may act on the table by side effect.

3. They may apply a predicate to the table, which if not satisfied will cause the generation
to be abandoned.

A use before declaration is considered as a request for a subsequent declaration. The request is
recorded in the table and predicates are used to check that all such requests have been satisfied.
Table grammars are able to handle the declaration of scalar variables but fail to handle more
complicated situations.

Ghandour!? and Donovan and Ledgard] 3 have taken an approach using canonic systems, which
are variants of Post’s!4 canonical systems and Smullyan’s 13 elementary formal systems.

Canonic systems are capable of specifying any recursively enumerable set and are used here to
recursively define sets of strings. The syntax of a computer language is specified by defining a
set which is just the set of all syntactically valid programs. Although canonic systems are capable
of fully describing the syntax of programming languages, the specification of even severe subsets
of actual high-level languages tend to lose clarity and intuitive appeal — see the specification of
‘Little PL/T" given by Donovan and Ledgard{.

The Algol 68 reportlé uses a method for syntax definition due to van Wijngaarden. Chastellier
and Colmerauer!” call this the method of W-grammars. Sintzoff!® has shown that W-grammars
are powerful enough to define every recursively enumerable set. However, in the Algol 68
report, which defines a proper program to be a program satisfying certain context conditions,

: these QOEtext conditions are described in natural language.

@i Forino?? was the first to propose the line of attack taken in this report. Our discovery of the
concept of a dynamic set of context-free rules was made independently of the work offdi Forino.
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8. SUMMARY

In summarising the paper it is possible, and hopefully interesting, to trace the development of
the ideas. The authors were faced with the problem of writing a ““test-case” generator: a
program which created syntactically correct but meaningless programs for any arbitrary
language. As has been indicated above, context-free languages were not adequate for our
purposes. The idea that the complete syntax of a language could be defined by a context-free
grammar which has the power to modify itself occurred to us in late 1966.

In order to utilise this simple idea one has to provide a notation with which the dynamic
changes can be described. A notation was developed2 0 with which several languages were
defined and this was used as the basis for our ““text-case g,enerator”2 1 However, this notation

had several algorithmic facets which the authors considered were unacceptable in a language-
definition language.

In a rather intermittent way, the authors discussed the notation during 1968/9 and eventually
developed the current notation in which one language (that of functions written in the lambda-
calculus) is used to describe both the syntax rules and their modification.

The authors hope that this uniformity has provided a language in which the syntax of
programming languages can be clearly presented. We are, however, aware that our work is

extremely informal by the standard of most work on grammars, but-aseunable-te=fil-this-gapr—
i i bie-asde-the auLhu“,ﬂrO'PO'Sk'iﬁEd'hzﬂﬂnmwr-m—\
sthe problesiemes,
(4 PO
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APPENDIX

STRUCTURE DEFINITIONS

An x-list is either null

or nonnull and has a head which is an x
and a tail which is an x-list

A symbol has an id which is an identifier
and a name which is a token

A rule has a l.h.s. which is a nonterminal symbol
and a r.h.s. which is a production-list

PRIMITIVE FUNCTIONS
List Functions

prefix is the constructor function for creating a list from a given head and tail. The functions
head, tail and prefix satisfy the following axioms:

prefix (head l) (tail 1) =1

head (prefix x 1) = x

tail (prefix x 1) =1
unitlist x = prefix x ()

rec append | m = if null | then m
else prefix (head ) (append (tail |) m)

rec concatenate L = if null L then ()
else append (head L) (concatenate (tail L))

Symbol-table Functions

rec update-set-with-symbol t s =
if null t then unitlist s
else if id (head t) = id s then prefix s (tail t)
else prefix (head t) (update-set-with-symbol (tail t) s)

update-set-with-symbol accepts a symbol-set and a symbol. A symbol is an (identifier, token)
pair. If some symbol in the set has the same identifier as the argument symbol, the set symbol
is replaced by the argument symbol. Otherwise, the argument symbol is added to the set.

rec update-set-with-set tu =
~ifnull u then t
else update-set-with-set (update-set-with-symbol t (head u)) (tail u)

update-set-with-set creates a new set of symbols from an old set and an updating set.
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String Functions

A
reclistl fg=g 1 gﬂf’n‘lisﬂ fg
reclist2fghx=a | ha(list2fgh (g a))

where a = f x
. A A A
function-cross-product (A;, A,, ..., A,) = { .

New-Value Function

rec new-value | fa= (A x . if x e | then new-value | f a else x}(f a)

Rule Functions

rule x y creates a production rule from a nonterminal x and a list y of productions.

rec get-prod x r = if null r then k nullstring

else if x = .h.s. (head r) then random-element (r.h.s.{head r))
else get-prod x (tail r)

o B | fieBi=1 208




pragram —* block () () N
where rec block r s -+ begin block-body r s end
where block-body r s =+ functionofx (union r rulesofx) (update-set-with-set s symbolsofx)

Figure 2.

where x — block-body* {) Sk
where block-body * | + <function: functionofx";’\functiomfy
rules: union rulesofx rulesofy
symbels: union symbolsofx symbolsofy
locals:  localsofy>
where y — statement-list* localsofx A A
where rec statement-list® | - |ist2 statement” locals Ax.hy.<function: functionofx , functionofy |
rules: union rulesofx rulesofy
symbals: union symbolsofx symbolsofy
focals: localsofy>
where rec statement™| - uniabelled-statement* | | <function: functionofx” functionofy
rules: union rulesofx rulesofy
symbols: union symbolsofx symbolsofy
locals:  localsofy>
where y — unlabeiled-statement*® localsofx
where unlabelled-statement™ | - unconditienal-statement* | | conditional-statement” | | for-statement* |
where rec unconditional-statement* | - <function: assignment-statement>> ‘ <function: goto-statement>> .
<function: block™ | compound-statement® |
where assignment-statement r s > real-left-part-list r 5/‘.‘='\arithmet\'c-expression rs \ o
integer-left-part-list r s :="arithmetic-expression r s |
boolean-left-part-list r s,\:=/\bmolen-expression rs
where real-left-part-list = list1 := real-variable
and integer-left-part-list = list1 := integer-variable
and boolean-left-part-list —+ list1 := boolean-variable
and goto-statement r s - gutoAdesignatianal—expressiun rs
and compound-statement™ | =+ <function: begin’\‘functionofx"and
rules: rulesofx
symbols: symbalsofx
locals:  localsofx>
where x — statement-list* | P ~ 9
and conditional-statement™ | - <function: if/\bou\ean-exprassicn/\!henAfunctionofx
rules: rulesofx
symbols: symbolsofx
\cn:als.: !o;:\\alsofx> A A ) A A .
<function: if "~ boolean-expression” then” functionofx else functionofy
rules: union rulesofx rulesofy
symbols: union symbolsofx symbolsofy
locals:  localsofx>>
where y > statement™ localsofx

where x -+ unconditional-statement* | . A A
P 3 A . T 5 AT 5
and for-statement™ | = <function: for " arithmetic-variabie” := list1, for-list-element do’ functionofx
rules: rulesofx
symbols: symbolsofx
locals:  localsofx>

where x — statement” |
where for-list-element r s — arithmetic-expression r s |
arithmetic-expression r s"step"arithmetic—expression r sAumilAamhmmic-expression rs
arithmetic-expression r s'\while/\boulean-expression rs
where x -+ |abel-declaration-list |
where label-declaration-list | = list2 label-declaration locals AxAy.<text: textn[xntextofv |
rules: union rulesofx rulesofy
symbols: union symbolsofx symbolsofy
locals:  localsofy>
where label-declaration | -+ <text: x™
rules:  rule “label’ definiensofx
symbols: symbolsofx
locals:  localsofx>>
where x - declaration-identifier |
where x - declaration-list* {) A A
where declaration-list™ | - list2 declaration* locals Ax.Ay.<function: functianofXA:Afunctionofv I
rules: union rulesofx rulesofy
symbols: union symbolsofx symbolsofy
locals:  localsofy>

where declaration™ | = type-declaration® | t array-declaration® | i switch-declaration™ |
where type-declaration® | = <function: Rr.hs.textolx'\textofy
rules: rule simple-variable-definiendumofx definiensofy

symbols: symbolsofy
locals:  localsofy>
where x > type
where type - <text: real <text: integer <text: boolean
simple-variable-definiendum: ‘real-simple-variable > simple-variable-definiendum: ‘integer-simple-variable™ simple-variable-definiendum: ‘boclean-simple-variable™
and y — declaration-identifier-list |
and array-declaration” | - <function: Ar.\s.textofx "textofy
rules: union (rule subscripted-variable-definiendumofx subscripted-variable-definiensofy)
(rule array-definiendumofx array-definiensofy)
symbols: symbolsofy

locals:  localsofy>
where x — type
where type —+ <text: array real "array <text: integer "array <text: boolean"array
subscripted-variable-definiendum: ‘real-subscripted-variable’ subscripted-variable-definiendum: ‘integer-subscripted-variable’ simple-variable-definiendum: ‘boolean-subscripted-variable’
array-definiendum: ‘real-array "> array-definiendum: ‘integer-array > array-definiendum: ‘boolean-array >
and y - array-list | A
where array-list | > list2 array-segment locals A Ay, <text: textofx ; textofy [
subscripted-variable-definiens: union subscripted-variable-definiensofx subscripted-variable-definiensofy
array-definiens: union array-definiensofx array-definiensofy
symbols: union symbolsofx symbolsofy
locals: A localsofy>
where array-segment | —+ <text: textofx ; textofy I
subscripted-variable-definiens: function-cross-product (definiensofx, unitset [ subscript-list-definiensofy unitset]
array-definiens: definiensofx
symbols: symbolsofx
locals: localsofx>
where x = declaration-identifier-list |
and y = bound-pair-list {} —
where bound-pair-list w = list2 bound-pair empty Ax Ay <text: textofx , textofy w
subscript-list-definiens: function-cross-product (unitset arithmetic-expression,unitset ,,subscript-list-definiensofy)
where bound-pair w = <text: number”™; Anumber
~ . \subscript-list-deﬁniens: unitset arithmetic-expressior>>
and switch-declaration” | - <function: switch” textofx” :=""switch-body

rule ‘switch’ definiensofx
symbolsofx
localsofx>
where x —+ declaration-identifier |
and switch-body — list1 ; designational-expression A A
where declaration-identifier-list | - list2 declaration-identifier locals Ax.Ay.<text: textofx , textofy |
definiens: union definiensofx definiensofy
symbols: union symbolsofx symbolsofy
locals: localsofy>
where declaration-identifier | = <text: X
definiens: unitset Ar.\s.if y € s then x else nullstring
symbols: unitset y
locals: prefix x 1>
where y =+ construct-symbol x t
where x = new-identifier |
where new-identifier | - new-value | identifier ()
and t > token ()
where rec arithmetic-expression r s - simple-arithmetic-expression r s|
it boolean-expression r sAthenAsimpie-an'thmetic—expremon F s/\else’\arithmetic-expressTon rs
and simple-arithmetic-expression = list1 arithmetic-operator arithmetic-primary ‘
add-operator/\listl arithmetic-operator arithmetic-primary
where arithmetic-primary r s - unsigned-number ‘
arithmetic-variable r s |
(™ arithmetic-expression r s )
and boolean-expression r s - simple-boolean-expression r s |
il/\bouleanrexpressicn r sAlhe?lAsimple-buolean-expression 3 s/\else/\bomean-expressian rs
where simple-boolean-expression = list1 boolean-hinary-operator boolean-secondary
where boolean-secondary r s > bo/t\:&eanrprimary rs [
"1 boolean-primary r s
where boolean-primary r s -» boolean-constant [
boolean-variable r |
relation r s [
(j\ boolean-expression r s
where relation r s > simple-arithmetic-expression r sArelationa}-operatarAsimp\a~arilhmetic-expression rs
and designational-expression r s + simple-designational-expression r 5| P
if" boolean-expression r s “then” simple-designational-expression r s else designational-expression r s

i

where simple-designational-expression r s — label r s ‘A 5
switchrs [ arithmetic-expressionrs |
(Adesignaliuna\-expression rs7)
where label r s > get-prod “label’ rs -
and switch r s = get-prod ‘switch'r s
where arithmetic-variable r s + get-prod ‘real-simple-variable’ r s |
get-prod 'integer-simple-variable’ r sj
get-prod 'real-subscripted-variable’ r's|
get-prod ‘integer-subscripted-variable’ r s
and boolean-variable r s > get-prod 'boolean-simple-variable’ r s |
get-prod 'boolean-subscripted-variable’ r s

A Definition of the Complete Svntax of a Suhset of FOMA Alool

p 28eg



