"OPERATIONS and Formal Development" 4 1 7 8 C B Jones Product Test Laboratory IBM United Kingdom Limited Hursley Park Hursley 14 15 Nr Winchester 16 Hampshire 10 11 12 13 TN9004 (Unrestricted) 3 September 1972 naturally. | Refs 1 and 2 present examples of "Formal Development of Programs", which owe much, and are closely related, to the work in Refs 3, 4 and 5. One shortcoming of refs 1 and 2 is that they yield functions which have then to be translated into programs. The decision to use functions resulted from a desire to use rather more detailed arguments of correctness than given in refs 3 and 5 and the fact that certain problems had been encountered with the use of the axioms of ref 4. This note shows a way of overcoming these difficulties which appears to make more routine the construction, and add to the clarity, of "formal developments". | 23
24
25
26
27
28
29
30
31
32 | |--|--| | The first difficulty encountered with using Hoare's axioms was | 34 | | that termination is not treated: ref 4 in fact does not discuss | 35 | | termination until the complete algorithm has been developed. It | 36 | | is the view of the current author that termination should be | 37 | | proven at each level of refinement of the algorithm. | 38 | | proven de eden level of tellhement of the algorithm. | 38 | | A socond difficulty regulated from the first that the day | | | A second difficulty resulted from the fact that the domains of | 40 | | both the pre and post conditions is a single state. Thus to | 41 | | require that an operation does not change the value of a | 42 | | variable, requires the use of a free variable, thus:- | | | proving properties dixed with books this requires handlenge | | | $ x=x_0 \{OP\}x=x_0 $ | 44 | | the system given below has post conditions of state pairs | 47 | | thus reducing the use of free variables. | 48 | | | | | Ref 4 does not show how different levels of abstraction of an algorithm can use different data representations (although | 51 | | Professor Hoare has privately communicated his work in this | 52 | | area): the system below appears to handle this problem | 53 | | of property of the | 55 | | PURE OPERATIONS AS RELATIONS ON STATES | 56 | |---|---------------------------------| | Given a domain of states, say Σ , and members thereof σ , σ^* etc "operations" are considered as relations on states: | c, 58
59 | | OP = Σ x Σ Strictly this role considers OP: 5-5 | 61 | | written: | term 63 | | $\sigma[OP]\sigma^{\bullet}$ | 65 | | Operations can be decomposed (combined) in a number of ways:- | 68 | | $\sigma[OP1;OP2]\sigma^{"} \equiv (\exists \sigma^{"}) (\sigma[OP1]\sigma^{"} \wedge \sigma^{"}[OP2]\sigma^{"})$ | 70 parsumed to low non risk-off | | $\sigma[\underline{if} \ p \ \underline{then} \ OP1 \ \underline{else} \ OP2]\sigma' \equiv \\ (p(\sigma) \land \sigma[OP1]\sigma') \lor (\sim p(\sigma) \land \sigma[OP2]\sigma')$ | 72 | | $\sigma[\underline{\text{while p do OP}}]\sigma^{n} \equiv (\neg p(\sigma) \land \sigma^{n} = \sigma) \lor$ | 75
76 | | ($p(\sigma) \wedge (\exists \sigma') (\sigma[OP]\sigma' \wedge \sigma'[\underline{while} p \underline{do} OP]\sigma'$ | | | | | | Notice that the while property does not give an immediate way of | | | proving properties about while loops: this requires knowledge | ge 83 | | about (inductive) properties of the states. | | 85 87 86 By using, for example, restricted identity relations for the tests, it would be possible to present a more complete theory in terms of relations: this is not done since it is the system of relations between conditions which is of interset here. | | It is obviously not possible to give properties required of operations by enumeration of the relations discussed above. The process of reasoning about the class of computations caused by an operation uses the following notation: | 92
94
95 | |--|--|---| | | OP:: Σ an operation on states from Σ α : $\Sigma + \{T,F\}$ a predicate on Σ ω : $\Sigma \times \Sigma + \{T,F\}$ a predicate on pairs of elements of Σ | 98
99
100 | | | $\alpha \langle OP \rangle \omega$ is written only if:- $\alpha (\sigma) \wedge \sigma [OP] \sigma' \Rightarrow \omega (\sigma, \sigma')$ $\alpha (\sigma) \Rightarrow (\exists \sigma') (\sigma [OP] \sigma')$ deterministic approximation | 102
103
104 | | | It is possible to decompose (combine) directly operations whose properties are given implicitly. | 107
108 | | | Sequencing, providing: $\begin{array}{c} \alpha_1(\sigma) & \text{OP1} > \alpha_2(\sigma^1) \land \omega_1(\sigma, \sigma^1) \\ \alpha_2(\sigma^1) & \text{OP2} > \alpha_3(\sigma^0) \land \omega_2(\sigma^1, \sigma^0) \\ \omega_1(\sigma, \sigma^1) & \text{OP2} & \text{OP2} & \text{OP2} \\ & & & & & & & & & & & & & & & & & & $ | 111
112
113
114
115
116 | | | Conditional, providing:- $\alpha(\sigma) \wedge p(\sigma) < OP1>\omega(\sigma,\sigma')$ $\alpha(\sigma) \wedge \sim p(\sigma) < OP2>\omega(\sigma,\sigma')$ then:- $\alpha(\sigma) < \underline{if} \ p \ \underline{then} \ OP1 \ \underline{else} \ OP2>\omega(\sigma,\sigma')$ | 118
119
120
121
122 | | | Repetition (Hoare style), providing:- $inv(\sigma) \land p(\sigma) \land OP > inv(\sigma')$ a function term can be found s.t. $inv(\sigma) \Rightarrow term(\sigma) \ge 0$ $term(\sigma) = 0 \equiv \neg p(\sigma)$ $\sigma[OP]\sigma' \Rightarrow term(\sigma') \land term(\sigma)$ then:- $inv(\sigma) \land while p do OP > inv(\sigma') \land \neg p(\sigma')$ | 124
125
126
127
128
129
130
131 | | | Repetition (one of many alternatives), providing:- $\alpha(\sigma) \wedge p(\sigma) \langle OP \rangle \alpha(\sigma') \wedge \omega(\sigma, \sigma')$ $C(\sigma, \sigma') \wedge \omega(\sigma', \sigma'') \Rightarrow C(\sigma, \sigma'')$ term as above then:- $\alpha(\sigma) \wedge C(\sigma, \sigma) \langle \underline{\text{while }} p \underline{\text{do }} OP \rangle \alpha(\sigma') \wedge C(\sigma, \sigma') \wedge \neg p(\sigma')$ | 133
134
135
136
137
138 | | | notice that if:- $\alpha < OP > \omega$ providing:- $strong\alpha(\sigma) > \alpha(\sigma)$ then:- $strong\alpha < OP > \omega$ or providing:- $\omega(\sigma, \sigma') > weak\omega(\sigma, \sigma')$ then:- $\alpha < OP > weak\omega$ | 140
141
142
143
144
145
146
147
148 | | 2 | (EXTENDED) OPERATIONS | 151 | |-----|---|---------------------------------| | 3 3 | It has in fact been found necessary to use operations which, as well as changing a state, accept arguments and produce results. One way of treating such operations, when they arise, is to consider a stack from which arguments are taken and to which results are returned. This could be written: | 154
155
156
157
158 | | | OP:: $\Sigma : \Delta \rightarrow P$ $\sigma, s^{\circ} \delta[OP] \sigma^{\circ}, s^{\circ} P$ $\alpha : \Sigma x \Delta \rightarrow \{T, F\}$ $\omega : \Sigma x \Delta x \Sigma x P \rightarrow \{T, F\}$ | 161
162
163
164 | | 1 | $\alpha < OP > \omega$ is written only if:- $\alpha (\sigma, \delta) \land \sigma, s \land \delta [Op] \sigma', s \land p \Rightarrow \omega (\sigma, \delta, \sigma', p)$ $\alpha (\sigma, \delta) \Rightarrow (\exists \sigma', p) (\sigma, s \land \delta [Op] \sigma', s \land p)$ | 166
167
168 | | 8 | This would facilitate (if desired!) an extension of the conditional or repetitive constructs to permit state changes by | 171
172 | p = of(s)? the predicate. | MORE ON STATES | 174 | |---|-------------------| | States can be structured and the notation used below is: | 176 | | $\Sigma = (\langle n_1 : p_1 \rangle, \langle n_2 : p_2 \rangle,$ | 179
180
181 | | $\langle n_n:p_n \rangle$) | 182
183
184 | | selection is written as | 186 | | $\sigma(n_1)$ etc. | 188 | | or, if no ambiguity is likely, parts of Σ , Σ ' can be written: | 190 | | n ₁ or n ₁ etc. | 192 | | In spite of the liberties taken with the Vienna notation for objects, μ is used with its usual meaning. | 194
195 | | | | | "THE" EXAMPLE | 198 | |---|------------| | Specification | 200 | | Σ = (<n:i>,</n:i> | 202
203 | | where I is the set of non negative integers (this assumption about the state is used below to shorten the proofs.) | 205
206 | | find:- | 208 | | F:: Σ | 210 | | such that: The share well and the | 212 | | $T_{i} < (F_{i} > \omega)$ | 214 | | where $\omega(\sigma, \sigma^{\bullet}) \equiv \text{fn}^{\bullet} = \text{n!}$
ie $\sigma^{\bullet}(\text{fn}) = (\sigma(\text{n}))!$ | 216
217 | | | 2.71 | | Stage 1 The state of | 219 | | Assume we have two operations: | 221 | | OP1, OP2 :: Σ | 223 | | such that: - ') * was (we see the see that | 225 | | T <op1> ω_1 where $\omega_1(\sigma,\sigma^*) \equiv \sigma^* = \mu(\sigma; \langle fn:1 \rangle)$</op1> | 227
228 | | T <op2> ω_2 where $\omega_2(\sigma^i, \sigma^{ii}) \equiv fn^{ii} = fn^i$. (n'!)</op2> | 230
231 | | Assertion:- F = OP1;OP2 satisfies the specification. | 233
234 | | Justification required is $T\omega$ proof follows from combination of "conditions" since | 236
237 | | $\omega_1(\sigma,\sigma^1) \wedge \omega_2(\sigma^1,\sigma^{11}) \supset \omega(\sigma,\sigma^{11})$ | 239 | | | | | | | | Stage 2 | 242 | | Assume we have an operation | 244 | | ΟP3 :: Σ | 246 | | such that:- | 248 | | prop where $\alpha_3(\sigma) \equiv n \geq 1$ required to ensure valid state, I | 250
251 | |--|---------------------------------| | avol $\omega_3 (\sigma, \sigma^*) \equiv f n^* = f n$, $n \wedge \sigma^* = f n$, $n \wedge \sigma^* = f n$ | 253
254 | | Assertion:- nd OP2 = while n≥1 do OP3 satisfies the requirements | 256
257 | | Justification required is T< $\underline{\text{while}}$ n \geq 1 $\underline{\text{do}}$ OP3 > ω_2 | 259 | | proof for all σ by induction on σ (n). Basis, suppose σ (n) =0:- | 261 | | $\sigma[\underline{\text{while}} \ n \ge 1 \ \underline{\text{do}} \ \text{OP3}] \sigma$ so $(\exists \sigma^*) (\sigma[\underline{\text{while}} \ n \ge 1 \ \underline{\text{do}} \ \text{OP3}] \sigma^*)$ further since $0! = 1$ $\omega_2 (\sigma, \sigma)$ Thus $T < \underline{\text{while}} \ n \ge 1 \ \underline{\text{do}} \ \text{OP3} > \omega_2$ | 263
264
265
266
267 | | Suppose true for $0 \le \sigma(n) \le r$ prove for $\sigma(n) = x$ | 269 | | since $\alpha_3(\sigma)$ ($\exists \sigma'$) ($\sigma[OP3]\sigma' \wedge \omega_3(\sigma,\sigma')$) $n' < x$ thus by Induction Hypotheses ($\exists \sigma''$) ($\sigma'[\underline{while} \ n \ge 1 \ \underline{do} \ OP3]\sigma'' \wedge \omega_2(\sigma',\sigma'')$) | 271
272
273
274
275 | | since $fn'' = fn' \cdot (n'!)$ $= fn \cdot n \cdot ((n-1)!)$ $= fn \cdot (n!)$ $\omega_3(\sigma, \sigma') \wedge \omega_2(\sigma', \sigma'') \Rightarrow \omega_2(\sigma, \sigma'')$ | 277
278
279
280
281 | | $\omega_2 (\sigma, \sigma^{n})$ | 283 | | thus
T< <u>while</u> n≥1 <u>do</u> OP3 > ω ₂ | 285
286 | | which concludes the proof. | 288 | | | | | Program | 291 | | A "reasonable" language should allow:- | 293 | | $\alpha_3 < \text{fn} := 1 > \omega_1$
$\alpha_3 < \text{fn} := \text{fn}_n ; n := n-1 > \omega_3$ | 295
296 | | | | Comments 300 Notice the effect of permitting operations to rely only on 302 properties of their initial state (not on the way it was formed), 303 305 and also that there is no requirement for a temporary variable to avoid overwitting the original value of n. Termination follows 306 in the above from the way the induction was made. 1988A The above proof can easily be made using the alternative 308 induction axiom with: ifaul that $c(\sigma,\sigma') = fn'.n'! = n! \cdot fn$ 310 toolo The proof using the Hoare axiom is left as an excercise to the 312 reader. which sususped Progra - Commer angstanting A "rea Apple / 38 * 11 196 11 15 1161 | Supp | <u>ING</u>
ose some stage of d | evelopment use | s:- | | 315
316 | |-------|--|--|--|--------------|--| | | OPd :: D | | | | 318 | | such | that: | | | | 320 | | | αd < OPd> ωd | | | | 322 | | that | is:T | | | | 324 | | | α d(d) α d[OPd]d' α d(Dbd) α d(DFd) d' α d(DFd) d' α |]d*) | | | 326
327 | | Then | the next stage coul | d use:- | | | 329 | | | OPe :: E | | Not prove but as | 8 7 | 331 | | such | that:- | | dat to the | | 333 | | | αe < CPe > ωe | | | | 335 | | prov | ided a relation:- | | | | 337 | | | θ : D x E \rightarrow {T,F} | | | | 339 | | is to | ound such that:- | | | | 341 | | | θ (d¹,e) \wedge θ (d²,e) \Rightarrow α d (d) \Rightarrow (∃e) (θ (d,e) \Rightarrow α e (d,e) \wedge ω e (e,e¹) \wedge ω e (e,e¹) \Rightarrow |)
(e)
θ(d',e') > ωd | (d,d*) | nature | 343
344
345
346
347 | | then |) max | | | | 349 | | | $d[OPd]d' \equiv \theta(d,e) \wedge$ | e[OPe]e' ^ θ(o | l',e') | | 351 | | | satisfies the | properties requ | aired for OPd | | 353 | | | general form, whose above, is justified a | | ally look far | simpler than | 355
356 | | | αd (d) ^ θ (d,e) ^ e[| Pe]e' ^ θ(d',e | e') = wd (d,d') | * | 358 | | becau | ise:- | | | | 360 | | | αd(d) ^ θ(d,e)
αe(e)
e[OPe]e'
ωe(e,e')
θ(d',e')
ωd(d,d') | give
which with
gives
which with abo
gives | ove and | | 362
363
364
365
366
367 | | and: | - | | , and the second | | 369 | | becau | αd(d) > (∃d')(θ(d,e) | ^ e[OPe]e' ^ | θ(d¹,e¹)) | | 371
372 | | | αd (d) | gives | | | 374 | | War of the and the second | 7 7 | |---|-----| | (∃e) (θ (d, e)) | 375 | | let this be called e | 376 | | $\alpha e(e)$ at the thus | 377 | | (Je') (e[OPe]e') | 378 | | let this be called e' | 379 | | $(\exists d') (\theta (d', e'))$ thus | 380 | | (3d') (θ (d,e) \wedge e[OPe]e' \wedge θ (d',e')) | 381 | | A family of operations over some domain can be mapped to a new | 383 | | domain providing they are connected with "valid" sequencing | 384 | | | | | constructs. | 385 | | | | | | | | ACKNO | <u>OWLEDGEMENTS</u> | 389 | |-------|--|--------------------------| | auth | t from the influence of the referenced publications the or gratefully acknowledges the stimulus of private ussions on "Structured Programming" with Profs Dijkstra, e and Wirth. | 392 | | REFE | RENCES | 397 | | 1. | C B Jones "Formal Development of Correct Algorithms: an Example based on Earley's Recogniser." December 1971 | 399
400
401
402 | | 2. | C D Allen, C B Jones "The Formal Development of an Algorithm" September 1972 | 404
405
406 | | 3. | E W Dijkstra "A Short Introduction to the Art of Programming" August 1971 | 408
409
410 | | 4. | C A R Hoare "The Proof of a Program: FIND" January 1971 | 412
413
414 | | 5. | N. Wirth "Program development by Stepwise refinement" April 1972 | 416
417
418 |