syttt
(13

"OPERATIONS and Formal Development® 4

TN90O0O4 (Unrestricted) 7
3 September 1972 8
C B Jones 10
Product Test Laboratory 11
IBM United Kingdom Limited 12
Hursley Park 13
Hursley 14
Nr wWinchester ’ 15

Hampshire 16

BACKGROUND

Rets 1 and 2 present examples of %“Formal Development of
Programs", which owe much, and are closely related, to the work
in Rets 3, 4 and 5. One shortcoming of refs 1 and 2 is that they
yleld functions which have then to be translated into programs.
The decision to use functions resulted from a desire to use
rather more detailed arguments of correctness than given in refs
3 and 5 and the tact that certain problems had been encountered
with the use of the axioms of ref 4. This note shows a way of
overcominyg these difficulties which appears to make more routine
the construction , and add to the clarity; of formal
developments®,

Ine first difficulty encountered with using Hoare's axioms was
that termination is not treated: ref 4 in fact does not discuss
termination until the complete algorithm has been developed. It
is the view of the current author that termination should be
proven at each level of refinement of the algorithm.

A second difficulty resulted from the fact that the domains of

both the pre and post conditions is a single state. Thus to

require that an operation does not change the value of a

variable, requires the use of a free variable, thus:-
X=Xy OP }x=x,4

the system given Dbelow has post conditions of state pairs
thus reducing the use of free variables.

Ret 4 does not show how different levels of abstraction of an

algorithm can use different data representations {(although
Protessor Hoare has privately communicated his work in this
area) : the system below appears to handle this problem

naturally.

20

23
24
25
26
27
28
29
30
31
a2

34
35
36
37
38

40
41
42
44

§7
48

51

52
53

PURE_CPERATIONS AS_RELATIONS ON_STATES

Given a domain of states, say r, and members thereof ¢, ¢' etc,
"operations” are considered as relations on states:—

OP e ¥ x & Lol 4
written:— i
of OP jo?
Operations can be decomposed (combined) in a number of ways:—

ol OP1;0P2]e" = (30¢') (s[OP1l o' A o'[OP2]a")

HH

olLxf p then OP1 else OPZ]o'
(plo) ~ o[OPL]a") v (~p(o) ~ o[OP2]e")

o[while p do OPJo" =
(~p{o) ~ o¥=g) Vv
{ p(o) A~ (Ja') (s[{OP o' A o'[while p do OP]e"))

Notice that the while property does not jive an immediate way of
proving properties about while loops: this requires knowledge
about (inductive) properties of the states.

By using, for example, restricted identity relations for the
tests, 1t would be possible to present a more complete theory in
terms of relations: this is not done since it is the system of
relations between conditions which is of interset here.

56

58
59

61
63
65
68
70

72
73

75
76
77

82
83

85
86
87

Mg Asad)

CONDITIONS ON_PURE OPERATIONS

It 1s obviously not possible to give properties required of
operations by enumeration of the relations discussed above. The
process of reasoning about the class of computations caused by an
operation uses the following notation:-

8P -3z ¥ an operation on states from %

a : i - {T,F} a predicate on I

w : ¥ x ¥ - {T,F} a predicate on pairs of elements of I
a<OP>uw is written only if:- eny

a{e)ro[CPJo' ® w(o,a") Jodin
af{e) = (da') (o[OP]a")

It 1s ©possible to decompose (combine) directly operations whose
properties are given implicitly.

Seguencing, providing:- T -
oy (0)<OP1>as (o) A wy {og,0")
2y (6") <OP2>a5 (oM™} A wa{o',d")
wy {0,8") A wyfo',0"} > wlo,o")
then:-
oy (0) KOP1;0P2>w(o,6") A as{o?)

Conditional, providing:—
(o) ~ p{o)<OPLl>w(o,s")
a{g) A ~p(g)<0P22w{o,0")
then:-
a(o)<if p then OP1 else OP2>w(ad,a')

Repetition (Hoare style), providing:-
inv{ec) ~ p{g)<OP>inv{e?)
a function term can be found s.t.
inv {e¢) = term(e) 20
term(o)=0 = ~p{s)
al OP Jo!' =2 term(e'} <term/q)
then: -
inv (o) <while p do OP>inv{e') A ~p(s')

Repetition {one of many alternatives), providing:—
(o) A p(o)LOPPa(s') A w(a,0')
Clo,0') A w({o?,o") > Cc(o,0")
term as-—above
then:- o ——
a{o) ~ Clo,0)<while p do OP>a{a') A C(o,0') A ~p(a")

notice that if:-

a<OP>w
provading:—

stronga{s) = a{c)
then: -

strongoa<0P>w
Oor providing:=

w(o,0’) 2 wWweakw(og,o?)
then:-

a{OP>weakw

90

92
94
95

98
99
100

102
103
104

107
108

111
112
113
114
115
116

118
115
120
121
122

124
125
126
127
128
129
130
131

133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149

(EXTENDED) OPERATIONS

It has 1in fact been found necessary to use operations which, as

well as changing a state, accept arguments and produce results..

One way of treating such operations, when they arise, is to
consider a stack from which arguments are taken and to which
results are returned. This could be written:-

C

P i £ 1.4 -9

+ 3" 6[{0CPJes?,s D
:LXA - {T,F}
ToLxAxyxP - {T,F}

£E R Q

a<OP>w 1s written only if:-
a{o,d)rs,8" 6 0OpP]Je",s"p 2 wie,5,0",p)
x{s,0) = (Jo¢',p) lo,576[0Op]o?,s" D)

This would facilitate (if desired!) an extension of the
conditional or repetitive constructs to permit state changes by
the predicate.

151

154
155
156
157
158

161
162
163
164

166
167
168

171
172

MORE ON_STATES

States can be structured and the notation used below is:

X = [(<ny : P>,
<n2 o {.’2>,
<Nn : Pn>)

selection 1s written as
o (n,) etc.

or, 1f no ambiguity 1is likely, parts of £, t' can be written:
n, or ni etc.

In spite of the liberties taken with the Vienna notation for
objects, p 1s used with its usual meaning.

174
176
179
180
181
182
183
184
186
188
190
192

194
195

WTHE" EXAMPLE

Specitication

2 = (<n:1>,
{in:1I>)

where I 1s the set of non negative integers{this assumption about
the state is used below to shorten the proofs.)

tind:~

¥y L
such that:-

T < F > w

where w{o,0') = fn' = nl!
ie ' (fn) = {oe(M)) 1!

stage 1
Assume we have two operations;:-
oPl, OP2 2: L

such that:-

T<OP1> w,

where wy{o,0") = o' = plo;<in:1>)
T<OP2> ws

where wy{e',e") = fn¥ = fn?' . (n'!)

Assertion:—
F = OP1;0P2 satisfties the specification.

Justitication required is T<OP1;0P2>uw
proot foliows from combination of "conditions" since

wy {0,0') A wy{o’,0") > w(o,o")

Assume we have an operation
OP3 21 L

Such that:-

198
200

202
203

205
206

208
210
212
214

216
217

219
221
223
225

222
228

230
231

233
234

236
237

239

242
244
246

248

¢) <Op3>(\33
where ajz{(¢) = n 21 required to ensure valid state, I
wzle,0') = fn*' = fn _, n A
n' = n-1
Assertion:-—

OPZ = while n21 do OP3 satisfies the requirements

Justification required is T<while n > 1 do OP3 > wa

proot for all ¢ by induction on o(n). Basls, suppose o (n)=0:-

SO (du') (e[while n>1 do OP3]a')
turther since 0! = 1

wa f[o,0)

Thus T<while n21 do OP3Du,

Suppose true for 0<¢ (n) <x prove for ¢(n)=x

since ag {o)

{(367) (a[OP3]o" A w3 (0,0'))

nt < x

thus by Induction Hypotheses

(3¢") (o'[while n21 do OP3 1" A w, (o', "))

since

fa" = fn* _[Mm*'l)
= fn_.n, {{(n~1)1)
= tn, {nl!)

w3 {o,0') A wyfa',o") > wa(o,o")
wa (0,0")

thus
T<while n21 do OP3 > w,

which concludes the proof.

———

A "reasonable” language should allow:-

€

1 > w,y
tn,n 5 n:=n-1 > wy

o

T < fn :
ny < fn:

e e . s e

250
251

253
254

256
237

259
261

263
264
265
266
267
269
271
272
273
274
275
277
278
279
280
281
283

285
286

288

291
293

295
296

300

Notice the effect of permitting operations to rely only on
properties ot their initial state (not on the way it was formed),
and also that there is no requirement for a temporary variable to
avoid overwitting the original value of n. Termination follows
in the above trom the way the induction was made.

The above proof can easily be made using the alternative
induction axiom with:-—

c{o,0') = fn'.n'! = n!

The proof using the Hoare axiom is left as an excercise to the
reader.

302
303
305
306

308

310

312

. e S e i

Suppose some stage of development uses:-
CkPd :: D

such that:-
ad < OPA> wd

that is:~

ad (d) A d[OPd]d' > w, (d,d")
ad(d) = (3d') (d[OPd]d")

Then the next stage could use:-
OPe :1: E
such that:-
ae < CPe > we
provided a relation:—
8 : Dx E~{T,F}
is found such that:-
9(dl,e) A B(d2?,e) = di=dz2 ?
ad(d) = (de) (8(d,e))
ad(d) A ©(d,e) > ae(e)
8{d,e}) A wele,e') A~ 0(d',e') 2 wd{d,d")
ae(e) ~ we(e,e') > (3d') (b(d',e'))
then:-
d{ OPd Jd' = ©(d,e) ~ e[OPeje' A g(d",e")

satisfies the properties required for OPd

This general form, whose use will normally look far simpler than
the above, is justified as foilows:

ad {d) ~ 9(d,e) A e[OPele' A~ B{d',e') > wd(d,d?)

because:~
ad(d) ~ ©(d,e) give
ae (e) which with
e[GPe Je? gives
we(e,e’) which with above and
Y (d?,e') gives
wd {d,d")
aficts =

ad(d) > (3d') (8(d,e) A e[OPeje' A 9(d?',e"))
because:—

ad {(d) gives

315
316

318
324
322
324

326
327

329
331
333
335
337
339
341
343
34y
345
346
347
349
351
353

355
356
358
360
362
363
364
365
366
367
369
371
372

374

(de) (B8 {d,e))

let this be called e

ae(e) thus
{(de') {ef OPe Je?')

let this be called e?

{dd*) (B (d',e')) thus
[3d') (B [d,e) A~ e[OPele' A B (d',e?))

A tamily of operations over some domain can be mapped to a new
domain providing they are connected with "valid" sequencing
constructs.

375
376
377
378
379
380
381

383
384
385

ACKNOWLEDGEMENTS

Apart from the influence of the referenced publications the
author gratetully acknowledges the stimulus of private
discussions on "Structured Programming” with Profs Dijkstra,
Hoare and Wirth.

REFERENCES

i. C B Jones
"Formal Development of Correct Algorithms: an Example
based on Earley's Recogniser.”
December 1971

Za C D Allen, C B Jones
"The Formal Development of an Algorithm®
September 1972

3. E W Dijkstra
"a Short Introduction to the Art of Programming®
August 1971

4, C A ® Hoare
"The Proof of a Program: FIND"
January 1971

B N. Wirth
#program development by Stepwise refinement®
April 1972

389

391
392
393
39%

597

399
400
401
402

404
405
4O6

408
409
410

412
413
414y

416
417
418

