VAB

IBM LAB VIENNA LN 25.3.108

SOME REQUIREMENTS FOR SPECIFICATICHN LANGUAGES

C.B.Jones

1976, February 27,

Abstract

There is evidence that a 1large proportion of errers in past

computer systems have resulted from veaknesses at the
specification and design stage. The conmplexity of the systens
which are being considered today is such that precise

specifications are mandatory.

Although practical experience with sopme particular specification
languages is discussed, the approach adooted here is not to
propose one language but rather to identify those concepts which
appear important in writing specifications. It is argued that any
oputative specification language should be capable of expressing
these concepts.

This note contains basically the same material as a paper of the
sane title which is to be presented at an TIBM sympesium in
Yorktown Heights Research Lab.

page 1

VAB

IBM LAB VIENNA LN 25.3.108

Q. _INTRODUCTION

A number of studies of the development process for large progran
systens have indicated that a significant ©proportion of their
errors result from +the very early stages of the process. This
observation has not been a surprise to those who have had to base
their own work on the specificaticns cf any large system either
hardware or software. The, so-called, specifications £ail in
their task of delineating what should be the final system: for
those who should build it, their job is not defined; for those
who should build to employ it, their assumptions are not defined.
Most seriously, the two {or more) views of the specification nwmay
make divergent assumptions as to what was intended,

Nor does the problem diminish when the development project moves
beyond its overall specification to the early stages of design.
The systems under consideration today are such that the early
stages of design must, in turn, generate large specifications.
For a design to be correct, the combination of components built
according to the sub-specifications should fulfil the overall
specification: the probability that +this is +true, given
specifications of todays quality, is low.

The subject of this paper is "Specification Languages", and from
here on no arguments will be offered for the need to improve on
the techniques in current use.

It 1is not, however, the aim of this paper to argue that one
particular specification language will comnpletely resolve the
problem. Rather, the intention is to list some properties which
any vputative specification 1language should embody. These
properties are developed in sections 2 - 5 from an analysis,
which is given in section 1, of what a specification should
achieve,

The lack of a concrete proposal may disappcint the reader. There
are two main reasons why the author is reluctant to go so far at
this time, Tirstly there are certain technical problems (see
section 7) without vhose resolution it would be premature to
claim to have a final solution. Secondly, there are many matters
of taste in designing any language and it is a mistake to cloud
the 1issue of what is required in a specification language with
what should be the secondary questicn, cf choosing its concrete
syntax.

That a paper with the current objectives is required is indicated
by the flagrant way in which the points of the last paragraph are
ignored. Proponents of some new specification technigue tend
first to become dogmatic about concrete syntax and only later, if
ever, attempt to show how any basic problems have been resolved.

Section 6 will discuss practical experience with a series of
meta-languages which have been employed in the specifications of
various systems and embody many of the properties defined. A
summary of the main points of the paper is given in Section 7.

page 2

VAHB

IBM LAB VIENNA LN 25.3.108

1. _WHAT IS A SPECIFICATIONZ?

A specification should specify what is an acceptable system. Fron
the point of view of those responsible for irplementing the
systenmn this means that when their work is complete the only
objections which can be raised will <ccntain a reference to a
reguirement in the specification which has not been met, (For the
bulk of the current paper, only the function of the systemn is
considered: Section 7 includes some comments on performance
specification). The potential user of the services of the systen
being specified has another viewpoint: the specification should
define those functions on which he can rely. If a user assumes
cther properties will hold, he does so at his own peril.

It is important to see where such a specification can be created
in the development cycle. It is nct the first +thing that gets
written about a system, because it is too difficult to simply
begin writing and expect to produce a final T"contract” between
user and developer. The first sketches of various desirable
properties, which the system under consideration should have,
play an important part in the prccess of developing the
specification. But they are not the specification itself, this
is created out of the intuitive sketches (and since this process
provides feedback, it is iterative).

Having said what the specification should define, it is worth
considering what it should not constrain. Unless they are
essential to the function which 4is to be performed, the
specification should not dictate implementation technigues. The
choice of how to achieve his stated objective is exactly the role
of the designer {(this does not preclude the possibility that the
same people will be involved in writing both specification and
design. Tt only arqgues that, for the benefit of the documents
that must be produced, the roles shculd be kept separate.) There
are several reasons why commitment to design decisions should be
kept to a minimum in the specification. Firstly the specification
may be used for more than one implermentation, on different
machines for exanple. Even if this is not the case the design
decisions are likely to be more fluid than the specification,
Perhaps most importantly, it is freguently possible to specify
what is reguired much more succintly than to describe how it «can
be achieved. For this reason, and because of the extra checking
possible, it is often profitable to document a specification even
if the implementation is "known",

If a specification is to define exactly thg croperties the
proposed system should possess, what properties do we expect of
the specification itself?

R specification must clearly be precise. If it is ambiguous and
allows the possibility that two readers will interpret a
requirement differently, the contract between user and developer

will fail to fulfil its purpose,

To be meaningful, a specification must also be non-contradictory.
Although one can state with' some precision the properties

rage 3

VAB

IBM LAB VIENNA LN 25.3.108

required of "the largest prime number", the precision will not
facilitate its computation.

Furthermore, a specification must be conplete in that the user
must not be allowed to reject a final system which matches all of
the documented requirements on the basis of one not recorded in
the specification.

To be wuseful a specification must ke reascnably short. If one
were orepared to accept a definiticn a vposteriori, the code
listing of an operating system satisfies the properties given
above: it would not, however, be considered as a reasonable

document from which to understand the properties of the systen.

The question of utility also comes up with regard to
organisation. If a particular system concept is being considered
it should be possible to locate all those places which contribute
ta its specification., Furthermore, the number of places should be

kept to a minimunm.

The language in which the specification is written nust itself ke
conprehensible, A distinction will be made below between the
ability to read or write the svecification language. In both
cases it is important to avoid unecessary barriers for the user.

The six properties required of a specification have not heen
presented in any order of importance. The last three are, in a
sense, in a different plane from the first three. It is nct clear
that this is a consistent set of preoperties! It is hoped that the
practical experience outlined in Section 6 will indicate that
such a goal is obtainable.

The discussior below (Sections 2 - 5), identifies the properties
reguired of a specification language and 1is not 1in one-one
correspondence ¥ith the above 1list. In each section, an
indication of which specification properties are being considered
will be given.

2. _ON_TORMALITY

The meaning of a program written in a high level programming
language is fixed in the sense that it will always compute the
sare algorithm. {How one can precisely define the semantics of a
programming language leads directly back to the subject of
specifications!) In the sense that their semantics are fixed,
programming languages are formal. Tt is in this ﬁense that +the
currert author believes a specification language” must be formal.
Only if the semantics of the specification language are fixed can
one write precise specifications. Tf, as is the case with natural
languages, statements can be constructed which are ambiguous, it
will not be possible to guarantee unambiguous specifications.

There is one key area where a precise description is particularly
crucial and that is the description of objects (see below for
discussion of ‘'"state"™). The essential structure of all obhjects
mentioned in a specification must be defined. Moreover, the

page 4

VAD

8

TBH LAB VIENNA LN 25.3.108

description must be such that precise ways of referencing the
objects and their components are defined.

An interesting example of a specification which attemrts to use
English as a definition language is the joint ECAM/ANST vproposed
PL/T standard (ref /18/). In this definitieon the requirement to
define precisely the class of (abstract) PL/I programs and the
state of the defining machine led to the use of a formal abstract
syntax notation. The attempts to use natural language in order to
describe the state transitions has led to a very stilted style
which is by no means easy to read. The 1level of forpality of
this standard is a considerable step forward over its
predecessors, but it might well have been easier to make the
conmplete step to a formal meta-language.

The development of formal languages is not an easy task and if
one were to begin afresh for a specification language the burden
on its designer and student would be unacceptable. There is then
a very strong argument for basing a specification language on
existing notation where appropriate. 1In sonme cases it will be
advantageous to use notation known frcm mathematics (e.g. set
theory, functions) or logic (e.g. propositional connectives).
This use of an existing base should aid communication.
Unfortunately, because of a misunderstanding, it actually hinders
communication. The nmisunderstanding results from the concern
that a potential user nmight have to be well versed in all of the
areas of mathenatics from which notation 1is Dborrowed. It |is,
however, only +the notation which is norrally adopted, not the
deep results of the branch of mathematics. '

In spite of the above praise of formalism, it is not intended to
argque that the whole of a specification mnust be completely
formal. Not only are there sonme items which are so much part of
our common experience base that they can be adeauately
communicated by a comment (e.g. Sort a vector) but also there are
times when it is convenient to specify by a comment knowing that
the comment will be replaced {or suprplemented) by a more formal
description at a later point in time. The claim that a conrpletely
formal specification can be well crganised in the sense of
localising information is made plausible by experience with well-
structured prograns and supported by the evidence of experiments
{see section 6). It is, perhaps, less obvious how a specification
which contains sone informal comments can ke so organised as to
provide extra information. Consider an incomplete program vwhich
in place of a block has a comment purporting to describe the
effect of that block. Not only may the algorithr be incompletely
specified, but also it is not a priori clear which known
variables will be referenced or changed. TIf however the block is
replaced by .a call to a (external) procedure with a given
argument list, it will be necessary to show (via nanme/value
distinctions) nore about the effect of the final block even
though its function is defined by basically the same comment,
With care, this method of incorporating inforeally defined
functions into a specification will do little darage either to
the precision or organisation of the whole. Moreover, it will
always be clear which parts require more precision in the case of
uncertainty.

Another arqgument in favour of wusing a formal specification
language comes from the desire to provide mechanical aids to the

page 5

VAB

IBM LAB VIEHNA- LN 25.3.108

writer of a specification. Such aids might range from a syntax
checker and cross-reference program to a retrieval system which
could, for example} locate all references to certain classes of
objects. Such programs would reguire, at least, a description of
the syntax of the specification language,

The argunmnents to this point for formality could all be satisfied
by a programming language (although the next +two secticns will
indicate directions in which this would be inadeguate) there is a
further step in the requirement of formality which would anyway
preclude the wunrestricted use of almcst any current grogramming
language. The subject of proofs «¢f implementation correctness
will not be covered in this paper (see ref. /12/). But if one
desired to wuse a svecification as a base for correctness
arqguments of implementations, it would not be enough that the
semantics of the language were fixed: it would alsc be necessary
that the semantics were defined in terms of mathematically
tractable objects. The experience o¢f attempting to prove
compiling methods correct from the original PL/Y definitions
{definitions ref /15/, proof work ref /10/) showed that, although
the meta-language had a carefully defined meaning, the proofs
vere unnecessarily cumbersome. The meta-language used in the more
recent definition of PL/T (ref /1/) is defined more directly in
terms of mathematical functions and is in conseguence a mnore
suitable base for correctness argqunents,

It 1is thus claimed that choosing a formal, rather than a natural
language, for the specification langnage will further the aims of
precision, conciseness and organisation as well as sipplifying a
check for «completeness of specifications written in that
language.

[{9%]

ON_TIMPLICIT DEFINITIONS *

. R

Tn considering the input/cutput relation for a function, it is
sonetimes easier to define the properties required of a result
rather than to provide an algorithm for its computation (e.g.
sguare root, matrix inverse, etc.). This might then provide a way
of shortening specifications. There are also, however, inherent
dangers in such definitions and the utmost caution is reguired in
order to avoid specifying either non-existent results or an
unintentionally wide range thereof.

The danger of specifying a result which cannot be computed comes
fron the difficulty of <checking, where wmany vproperties are
stated, that they are non-contradictory. If the description is
sufficiently complicated the contradiction may remain undetected
until the attempt to construct an alqgorithm falters,

It is sometines necessary to document only properties required of
a permissable result in order to leave the implementation a
degree of freedom {(with which the user knows he can achieve his
task). An inconmplete list of specifications, on the other hand,
can introduce unintended ambiguity as to what is reguired,

Evidence for the extreme difficulty cf constructing axionatic
definitions of complex systems can be found in the attempts to

page 6

VAB

IBY LAB VIENNA® LN 25.3.108

provide axiomatic definitions of programming lanquages (e.g., ref
/7/). In spite of the dangers a typical, informal, specification
will mix required properties and constructive definitions in a
rather rash manner,

The alternative to using inplicit specification 1is to be
constructive. That a constructive definition can be made far
shorter and clearer than an inplementation will be argued in the
next section. However, the dangers of axiomatic methods should
not force us to eschevw their use entirely: where the saving is
significant it 1is desirable to be able to define results
implicitly. One of the best precautions, in so doing, is to limit
the definitions to self-contained functions.,

It 4is thus claimed that a specification language should be able
to define results implicitly 1in order to achieve shorter
descriptions. The organisation and care in use must be relied
upon to avoid introducing contradictions or unintentional lack of
precision.

4, ABSTRACTION

>~

Abstraction is the most important aid the mind has for governing
complexity. If we can identify what is crucial to a situation and
leave aside details which are accidental, we will have reduced
the anmount of information we must hold or manipulate when
considering that situation. The implicit definitions of section 3
are already an exanmple of this in that the required input/ocutput
relation was separated from details of how to compute such a
relation (Dijkstra refers to this as "QOperational Abstraction®),

The use of abstraction which is advocated in this section is the
enploynent of "Abstract Objects" in specifications. In a sense
the degree of abstraction is relative (e.g. an array in FORTRAN
is an abstraction of the linear storage on which it is built).
What should be sought in a specification is that the objects used
are as close as possible to the c¢bjects 4inherent 1in the
architecture of the systen being specified. In other words, the
objects of the specification should not possess any properties
which are dirrelevant to defining the function of the system. To
give an example: the authors of the PL/I definition (ref /18/)
tried +to minimize the number of object types and avoided the use
of sets. In representing sets as lists a number of problems vwere
artifically created: testing for membership and element removal
are rather tedious to define; much more crucially, the reader can
only determine that the ordering is not used at some point in the
definition by locating and checking all uses of such objects,.

Finding the appropriate abstract objects on which to base a
definition is essential to the provision of a short and clear
definition: in this way an essentially algorithmic (i.e.
constructive) specification can be written which avoids
implementation details (see below for a more implicit view).
Seeking such abstract objects is extrerely difficult, it requires
a full wunderstanding of the key rroperties of the system under
consideration. The search is almost invariably an iterative

page 7

VAB

IBM LAB VIENNA- LN 25.3.108

process in which the writer of the specification is forced to
clarify his ideas.

The trivial example of using a set where no ordering oroperty
will be used in a «collection of data has been wmentioned;
considering a compiler dictionary as a mapring from identifiers
to data attributes is a more significant simplification; perhaps
the most telling example is the use of "Abstract PL/I Programs”,
The PL/T definition {ref /1/) defines the meaning of an abstract
tree form of PL/T programs. Such a tree is a ncrmal form for many
concrete PL/T programs whose differences are irrelevant to their
meaning (e.g. placing of procedures, order of attributes, etc.,)
Defining the semantics in terms of such a normalisaticn avoids
the proliferation of testing for the various forms. Furthermore
the location of information is far simprler in this tree form than
ir a linear text. The relation of abhstract programs to concrete
is not difficult to docunent. But of more interest is the use for
which the PL/I definition was intended: a mapping to machine code
was to have been derived from the definition. This mapping would
have also been based on abstract programs. The next stage of the
plan was to use this mapping as a specification to develop the
back~end of a conpiler, where the front-end was to be taken fronm
the PL/TI Checker. Thus, for this task, abstract programs were
being used as an abstraction of the "CTEXT" and dictionary of the
Checker. This representation of PL/I programs was extremely

complicated because of the desire to facilitate efficient access.

To have specified the back-end mapping directly would have again
proliferated this complexity through the entire dccument. Tnstead
this specification can be deduced from the description of the
relation from CTEXT to abstract programs (see ref /17/) and the
docunmented mapping. '

It has so far been argued that specifications can be simplified
by the use of abstract objects. Clearly, then, a specification
lanquage must permit the use of such abstractions. Unfortunately,
this is not the only reguirement. The first point to be made is
that the objects reguired will differ frerm cne specification to
another. So that, not only are the existing data types of for
example PL/I or APL not rich enough, but also any attemot to
provide a fixed list of objects with which an existing language
should be extended will not be adeauate for all purposes. It is
necessary that a specification language should permit the
definition of new objects {(e.g. STG in ref /1/).

Some of the clearest examples of the use of abstract data are
given in the work of Hoare (refs /8/, /6/). There is one way in
vhich this author regrets the emphasis which cones frem this work
{and this leads to the second auxiliary requirement). Basically
the presentation of new data objects is made via the Simula class
concept. In the class definition cne records the orperations which
are allowed for objects of this class, and one is then in a
position to declare objects belonging to this class and to
manipulate +then with the given operations. The body of the class
can then give realisations of the ogperaticns in terms of nore
basic objects and their operations. This gives a view of the
process which is very like macro exvansion (similar comments are
valid for refs /14/, /3/)-

But when an implicit specificaticn fcr an operation states that
the input/output variables should satisfy:

page 8

VAB

IBM LAB VIENNA- LN 25.3.108

A(i,o) & B{i,o0)

one would not expect to macro expand this intec two programs which
compute the sets of values satisfying A and B and then "exvand”
the "&" to an intersection operation! If we wish ta ccmbine the
advantages of implicit definition of «cperaticns with those of
ahstract objects e nust expect to f£ind implicit specifications
in terms of operations on an object, where the c¢perations are
never expanded! TFor exanple, in rtef /11/ there is a stage of
development where it is shown that if a set is computed such
that:

LOWER = x < HIGHER

then x can be used to determine the final result of the progran.
However, the operation subset is never in any way cocded in the
final progran.

(Ifn ref /8/, this problem is recognised and overcome by the use
of "recoding™ cf. page 128).

This section has arqued that in crder to shorten specifications
and to make them nore conprehensible a specification 1language
should contain a reasonable set of abstract objects (the notation
should be close to that of mathematics to facilitate reasoning);
have the ability to define new abstract objects; and encourage
the implicit definition of operations using abstract objects.

There 1is one consequence of these conclusicns that is considered
by some people to be extremely unfortunate,

If objects, or indeed functions, exist which are implicitly
defined, it is unlikely that an interpreter of the specification
language can be constructed. Firstly even for the base set of
objects the performance of the interpreter would be poor. For
inplicitly defired objects a model must be found. If such a model
were found it would, of «<course, then give a particular
interpretation which night be one of many. To this author, this
is an indication that seeking interpretation at this stage is a
mistake. The role of the specification is to define the range of
possibilities. This range should be understccd by the designer
and it 1is precisely his task to find models {and to show their
relationship to the specification). 0Of course, this 1is not an
argument against having an interpreter for a subset of the
specification language. The design process is then one of working
tovards efficient models of the specification which <can be
expressed in this subset, (Tor an extremely interesting approach
to the problem of executing intermediate design stages see ref

/5/4)

5. _NOTATION

It 1is clear that a specification language nust have sufficient
expressive power to describe anything required in the
specification (cf. Section 7).

page 9

VAB -

IBY LAB VIENNA' LN 25.3.108

The remainder of this section discusses choices which must be
made in the design of a specificatien langquage in order to
inmprove the usefulness of resulting specifications. Cne inmportant
distinction which should be kept in mind is the difference
between reading and writing a specification. Tt has already been
vointed out that seeking appropriate abstract objects for a

specification can be extremely difficult., TIf the writer
accomplishes his task the reader will have 1less difficulty in
understanding the definition. (The difference alsc becomes

apparent in the amount of training reguired to perform the
respective tasks.)

Tt has been arqgued at several points above that existing
{nathematical) notation should be wused in a specification
language vwhere appropriate, There are, on the other hand, areas
where concepts like those of programming languages are required
{e.g. seguencing, 1iteration): in such cases it would seen
appropriate for the intended audience to make the corresponding
constructs look like those of programming languages. In ordetr to
satisfy the c¢riteria of formality, it may be necessary to
constrain their use,

A particular issue in relation to progranming languages is
whether a specification language should be purely functional.
Experience suggests that, if this 1is sc, either the argqument
lists become rather long or all possible objects are combined
together into one component, In this latter case the distinctions
as to what a function actually relies cn or changes are lost. The
most satisfactory solution appears to be to have a "State" into
which are collected all of the system objects which are subject
to change even at the lowest functional level. It is then a
convention that this state can {like a glcbal variable) be
referenced by any operation. All other ohjects are explicitly
handled as arguments. Even in this case it 1s worthwhile to
distinguish those pure functions which do not depend on the
state.

Apart from these points the usual rules of good language design

{cf. ref /9/) should be followed. Care nmust alsc be given to the
provision of supporting comments, .

_EXPERIENCE WITH_SPECIFICATION LANGUAGES

Most of the ideas presented in this paper were first developed in
the context of providing formal definitions for high level
programming languages. Three versions of FL/T definitions were
developed by the IBM Lab Vienna {for a good overview, and further
references, sece /15/). The notation used became known as “VDL"
{Vienna Definition Language) and was applied to a number of other
larquages. vienna, meanwhile, exnperimented with wusing the
definitions as a basis for proofs of irplementation correctness
(e.g. ref /10/). Although this work was successful in that it
showed such proofs to be possible, it became clear that certain
problems existed which could only be resclved by changing the
stvyle in which the definitions were written (see ref /12/). The
definition of PL/I provided in ref /1/ is an attempt to resolve

page 10

VAB

TBM LAB VIENNA LN 25.3.108

these difficulties and subseguent wcrk on using this style for
implementation correctness is encouraging.

Turning now to systems other than 1languages, VDL itself was
applied to experimental machine architectures. Other uses
include /2/.

The description language used in /1/ has become known as "Heta-
Iv", IExperinents were made on the application of Meta-IV to the
description of nachine and system architectures.

Another application of Meta~IV is the definition of a relational
data base systenm (ref /4/): the work was based on the PRTV systenm
of the IBM Scientific Centre in Peterlee, U.K.

7. _DISCUSSION

This paper has not attempted to offer a comrlete answer to the
need for a specification langnage (althocugh it should be clear
fron the preceding section that this author helieves "Meta-IV" is
at least a basis for further work). Some of the technical
problens which are known to exist should now be discussed.

Because of the danger that new application areas will reguire
expression of new concepts, the cempleteness of expressive power
is difficult to establish. One problem is known. Cne of the most
difficult issues is the definiticn of systems which vperait
parallelism. In order to define programming languages like PL/T
it was necessary to adopt a notation to indicate arbitrary
merging. This part of Heta-IV 1is perhaps the least clearly
defined and is the subject of ongoing work. But it is not 1likely
that +the rather primitive notation adopted will prove adeguate
for systems with richer merging and seguencing concepts.

A further specification language problem is the incorporation of
other requirements into the model which defines the rtequired
function. It would, for example, be very attractive to use the
same structure for simulation medels which were used to
specify/estimate the performance. This remains an open area.

There are a numbher of areas where the problems of making a
specification language more attractive to users pose a technical
challenge. The question of support systems has already been
discussed; the role of other communication modes than 1linear
strings of formulae has a bearing therecon. The enthusiasm shown
by some people for HIPO charts suggests that providing a grapnhic
way of presenting the same information content may make users
rmore prepared to generate the required data. This 1leads to the
concent of ore system which contains a formal model with a number
of different user interfaces.

The current paver began with a description cf properties reguired
of a specification (Precision, consistency, cowmpleteness,
succinctness, organisation, comprehensibility) from this a nunber
of reguirements have been developed for Specification Languages
(Formality, Irplicit definitions, Abstract Objects, Clean
Notation). It would be possible, perhavs, tc go on and show how

page 11

VAB

TBM LAB VIENNA- LN 25.3.108

Meta-IV is a realisation of these properties, It would however
only be one such realisation (and one that 1is kncwn to bhe
imperfect).

RETTRENCES

yavs H.Bekic, b,Bjorner, W.Henhapl, C.B.Jones, P.Lucas: WA
Tormal Definition of a PL/T Subset", Parts I and TII, 1IBH
Lab vienna, Techn.Rep.TR 25,139, Dec 1974,

/27 A.Birman: "Correctness in Design: The S-Machine
Experipent”, Yorktown Heights Res.lab, Techn,Rep RC-4193,
Jan 1973.

Vit A.Hansal: 9%Software Devices for Processing Graphs Using
PL/T Conpile-time TFacilities", Information Processing
Letters, 1974,

S4/ A.Hansal: "Pormal Definitien c¢f a Relaticnal Data Base

System”, Forthcoming IBM Techn.Report.
/5/ P.Henderson, R.A.Showdon: ™A Tool for Structured Program
Development®, IFIP Proceedings Stcckhelm 1974,

/b7 C.A.R.Hoare: "proof of Correctness of Data
Representations™, Acta Informatica, Vol.1, pp.271-281,
1972,

/17 C.A.R.Hoare and N.Wirth: "in Axiomatic Definition of the
Programming Language Pascal', Report of ETH Zurich,
November 1972.

/8/ C.A.R.Hoare: "Notes on Data Structuring”, in "Structured
Progranming"®, A,P.T.C. Studies in Data Processing, WNo.8,
Acadenic Press, 1972,

e C.hA.R,Hoare: "Hints on Programming Language Design",
SIGACT/SIGPLAN Conference on ™"Principles of Programming
Languages", October 1973.

/107 C.B.Jones and P.Lucas: "Proving Correctness of
Implementation Techniques®, in "Symposium on Semantics of
Algorithmic Languages™ (Ed.) E.Engeler, Sporinger-Verlag
Lecture Notes in Mathematics HWo. 188, October 1970,

/11/ C.B.Jones: YFormal Development of Correct Algorithms: An
Example Based on Rarley's Reccgniser"™, gpresented at ACH
SIGPLAN Conference, SIGPLAN Notices Vol.7, No.1, January
1972 (also as TR 12.095). e

/12/ C.B.Jones: "Formal Definitien in Program Development",
Springer Verlaq Lecture Notes in Computer Science ¥No.23,
1975, "Programning Methodology”.

/13/ C.B.Jones: "Tormal Definition in Compiler Development¥, IBHN
Lab vienna, Techn. Rep., TR 25.145, Feb. 1976.

/14y B.Liskov and S.Zilles: "Prcgramming with Abstract Data
Types", Project MAC report, CSG-99, Sept 1974,

/15/ P.Lucas and K.%alk: "On the Fcrmal Description of PL/I", in
"Annual Review in Automatic Programming", Vol.6, Fart 3,
Pergamon Press, 1969.

/16/ D.L.Parnas: "A Technique for Software Module Specification
with Exanmples®, Comm. ACHM, May 1972.

/17/ T.WeissenhBck: "A Formal Interface Specification™, IBM Lab
Vienna, Techn.Rep. TR 25,141, February 1975.

/18/ "PL/I BASIS/1-12", LCMA ANST working document, July 1974,

page 12

=

