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YET ANOTHER PROCF OF THE CORRECT-
NESS OF BLOCK IMPLEMENTATION
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ABSTRACT :

A number of proofs of the correctness of implementations for the
"Block Concept" have been given. These proofs have been based on a
definition using an abstract machine. This note attempts to repeat
the exercise with an alternative definition. The relative merits of

the approaches are reviewed.
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INTRODUCTION

This note is an attempt to indicate how proofs of correctness
of "block implementations" might be simplified in contrast to /2/,
/1/ etc. The approach is to base the proof on a different style of
definition: instead of having a base abstract interpreter machine,
an attempt is made to give properties required of a model in terms

of an equivalence relation over occurences of identifiers in blocks.

The current form of the note relies heavily on /1/ with which
the reader is assumed to be familiar. The two methods which are proved
to be correct models of the definition are basically the defining
model and mechanism 1 of /1/ except that call by reference has been
included. This choice of mechanisms will facilitate the more complete
discussion which is reserved for a later section, which will also
review to what extent the given definition can be considered to be

"machine-free'.
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NOTATION

The notation of /1/ will be used throughout the sequel. Certain
formulas should be compared or contrasted to those of /1/ and in such

cases the appropriate reference is given on the right.

Equivalence relations are used below and the relevant facts are

now presented:

ﬁ%s is said to be an equivalence relation on a set S if it is sym-
metric, reflexive and transitive over that set. (The name of

the set is omitted when there is no danger of confusion.)
7%8 partitions S into disjoint subsets or cosets such that
R g $pV BpASeST for #€ S
# 5T 35 an extension of 4S providing
&, pesS 2 (m)’%SUTﬂzoéﬁ}Sﬁ)

The following ways of relating elements, ¥, of T are examples

of how the extension can be defined to satisfy the above

i) for exactly one «,a2€5, specify ¥ %iSUT¢

ii) specify ¥ ﬁﬁUT = {¥} (no element except ¥ is in the coset
of ¢)
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DEFTINITION

t - . .
A "'reference' can occur in an active block/procedure and is re-

presented by an identifier, activation pair.
References are related using:

a) a set of all possible references

b) an equivalence relation over the set a)

for each active (dynamic) occurence of a block/procedure. The effect
of blocks/procedures on relations between identifiers can be expressed

by showing how new sets and relations are formed.
basic sets:

D1 D identifilers
D2 PT activation markers

D3 REF « ID x PT
the interpretation of (id,i) € REF is id i1s known in

activation i.

the following abbreviation is used:

P : .
T o BB 5 fid | (id,p) ¢ REF}
relation:
Du &%REF is an equivalence relation;
the interpretation of ritﬁREF we, FTor PlL, e REP,
is r1 and r2 refer to the same entity.
values:
; : : : REF "
D5 a value i1s an object associated with a coset of P4} , Ands il
a procedure introduced in activation r, ID' can be determined.
initial:

I1  REFT = {}



IBM LAB VIENNA - 4 -

block: suppose the block to be interpreted is encountered in activa-

e D
let: REF, %EREF be the set and relation at activation p
D be the set of names declared in the block
B1 choose q & PT such that = (3 r)(re REF A 2nd(r) = q)
then the block is interpreted with:
g2 1% = 1DPREF y p
B3 REF' = REFu {(id,q) | ide 1D%%
1
extendJQREF to %BEF as follows:
!
Bl 4y e REF st AR 4 = £ BFEE 2
1
BS  id¢D o ((id,q) #TET  (id,p))
1
B6  ideD » ((id,) #FEY = [(id,q)])
B7 execution of the nested block has no influence on REF or &
of aectivation p
B8 for id e D: value associated with (id,q) is introduced

1R 8
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procedure: suppose the call is encountered in activation p, and the

procedure invoked was introduced in activation r.

let: REF, ﬁ%REP be the set and relation at activation p

P be the names of the parameter list
A be the names of the argument list used Bith BB
sets and lists
PO if id is the name of the procedure called, then:

(id,p) ¢ REF
i ; ; REF . ‘
value associated with (ld,p)f@ is the denotation of the

invoked procedure.

P1 choose g e PT such that —(3 r)(r € REF A 2nd(r) = q)

then the procedure is interpreted with:

P2 1p? = p¥eREF, p

P3 REF' = RET u{(id,q) | id eID%?}

'
extend #FT to &QREF as follows:

Py o, € REF o(« AREL' o 4 AREF 1y

REF'
&4

P5 id ¢P > ((id,q) (id,r))

3 RET! '
77 execution of the called procedure has no influence on REF,?@

of activation p.

To show that a model satisfies these prope?ties, it is neces-
sary to define D1 - D5 in terms of its state and show that these

realizations satisfy I1; B1 - B8 and PO - P7.
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First Model

State: ,

g1 is-state(§) » (is-dump(s-d(§)) A
is-dendir(s-dn(§)) A
s-U(§) ¢ UN)

52 is-dump(d) » is—de(di) for 1 <

83 is-de(de) o (s-tp(de)e TP A

" is-env(s-e(de)))

sh is-env(e) > (D(e) ¢ ID A
R(e) ¢ UN)
sb is-dendir(dn) > (D(dn) ¢ UN A
R(dn) ¢ DEN)
s6 is-proc-den(den) = (den ¢ DEN »

s-tp(den) e TP A

is-env(s-e(den)))

State transitions:

Interpretation of a program begins with init
Interpretation of a block consists of terme...eobloc

and of a procedure terme, ..
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(s1)

(5 )

(53)

(SH)

(S5)

(S86)

Only elements of a computatibn formed by init, bloc, proc

or term are considered below.

init: ==$>%1
i1 1ah) =1
i?2 ot =
i3 dant =Q

iv vl =gy
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bloc : E“%?EI

b1 D(eo-b) = D (T8)
b2 R(eo-b) N U = {} (T9)
b3  idi(eo-b) = id2(eo-b) # £ > id1 = id2

by rest(d') = d : (T10)
b5 for i < 1(d):u€ R(s-e(d,)) > u(dn') = u(dn) (T13)
b6 U' = R(eo-b) U U (Tiy)
b7 e' = update(e,eo-b) (‘t17)
b8 for ue R(eo-b) A is-proc-den(u(dn')): (T19b)

s-e(u(dn')) = e’
proc: §=> %I
pl id-pe D(e) (T20)
P2 u-p = id-p(e) (722)
-p = s-e(u-p(dn))

p3 is-proc-den(u-p(dn)) : (T21)
pi D(eo-b) = P = | (T8)
ok for 1 = i < 1(P):P;(eo-b) = Ai(e)

pb6 rest(d') = d (T10)
p7 for i = l(d):uezR(s—e(di)) > uldn') ;“é(dn) LA
D8 U' = U | (T1u)
P9 e' = update(e-p,eo-b) (T23)

term: §>=#?§'

t1 d' = rest(d) (T26)
e for i = l(d'):ue;R(s~e(di)) > u(dn‘) = u(dn) | UEas)
T3 ur = U - (T28)

12 Strictly, the model should exhibit a way of storing P with the de-

notation, the omission derives from the use of /1/ as base.
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Further, let (for some state E)f

mi Dt = D(e.)
m2 PT = N indexes to the dump
m3 REF = {(id,:) | ideIDt A 0 < 1 < 1(d)}

ml (id1,i)# (id2,3) B 1d1(ei) 2 (A 1d1(ei) = 1d2(ej)
Two lemmas can be proved about the model:
4, for £: ueU > —(31id,3)(j = 1(d) A u = id(ej))

A proof by induction (similar to L5 of /1/) of a strengthened

proposition can be given using:

basis il
induction bloc bt s bBs H74 bB
proc p5, p6, p8, p9, PO, m3
term t1, t3
172 for : for a procedure introduced in activation r such that

id(e) gives its unique name:

s-e(id(e)(dn)) = =

A proof by induction (similar to L6 of /1/, but made simpler
by the differences b5 to T13 etc.) can be given using:

basis 17
induction bloc b4y BBy b74 bE
broc p5, p6, p7, p9, PO, m3

term tl. 2



IBM LAB VIENNA - LN 75,3.075

Theorem: The above model satisfies the properties required by the

definition.

Proocf:
D1, D2, D3: The basic sets are defined , il s sitem? ymB
Dy. %2is an equivalence relation over the given sets ml ,m3 ,m4
D5 values are associated with the cosets of & via mh,s5
unique names, and ID" for procedures can be found. P12
I1: IDT = {} mi,i2
.". REFY = {1} m3,i1
Bl: {1d,1)e REF 5 i = 1(d) m3
. . g = 1(d') fulfils the conditions bl
B2: IDY = p(e") B1,mi
= D(ep)u D(eo-b) b7
= 1pPsREF  p | mi,bl
B3: REF' = REFv {(id,q) | ide¢ IDY} m3,bl,B2
BY: «y/Je REF > 2nd(«) < 1(d) a 2nd(f) =< 1{d) m3
) !
L BREE g wRER 4 mY , bl , B3
B5: id¢ D > id(e') = id(e) b7,b1
. _
G, 02 id,p) B1,bl ,mb
B6: ideD > id(e') = id(eo=-b) b3 Bl
id(e') ¢ U b2
=3 1d,90] € 1(d) a idle’) = id(ej)) 11
!

e (id, ) 2% o peia,q)} B3 ,m4 ,b3

Bi: termebloc 1s an identity with respect to:
REF m3,bl,t1

anidl B b mt , Bl ,B5,B6
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P :

P2:

P3:

Py .

PS¢

P6:

P7:

(4d.5) e FEE 8 1. € 1ld)

¢ Px g 2 2(@') fulfils the econdition

H

g
fial
1

= D(e")

D(er)u D(eo-b)

r,REFU P

= ID
REF' = REFu {(id,q) | id ¢ ID%3

£, 4 REF > 2nd(&) < 1(d) A 2nd(f) = 1(d)
Coa RREE s 2w ARE

id¢ P > id(eé) = id(e,)

" (id,q)b@REF'(id,r)
idg P = Pi(eé) — Pi(eo—b)
= Ai(e)

. 1

termeproc is an identity with respect to:

RET

and thus #
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m3

Db

B1,m1
ml.p6,phH

m3 ,pb.P2

m3

pb ,mi
p9,p4,P0,12,p2
P1,p6.,mYy

p9,pl

pPo

po,mhb

m3,p6,t1l

m4 ,P4,P5,F6
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Second Model:

State:
sl
s?

s3

sl

sb

sb

State

i1
K

i3

b1
b2
b3
by

bb

is-state(£) > is-dump(s-d(%))
is-dump(d) > is-de(di) for 1 < 1 < 1(4)

is-de(de) o (s-tp(de)e TP A
is~-dendir(s-dn(de)) A

s-epal(de) ¢ N)

is-dendir(dn) > (D{(dn) ID A
R(dn) < DEN)

mn

n

is-proc-den{den) > (dene¢ DEN A
s-tp(den) € TP A

s-epa(den) e N)

is-parm-den{(den) > (den ¢ DEN A
s=id(den) ¢ ID)

transitions:
{nde: =¥
1¢aty = 1
an = L

bloc: §==§§'

D(dn') = D

— (3dn)(dn € R(dn') A is-parm-den(dn))
Pestldl) = 4

epa' = 1(d)

for is-proc-den(id(dn')):
s-epa(id(dn')) = 1(d)
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(81)
(S52)

(532

(85)

(S6)

(T1)
(T4)

(TH)

(T8)

(T10)
(T18)

(T19)
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proc: £ = &

pl is-proc-den(find-d(id-p,d)) (T21)
p2 epa-p = s-epa(find-d(id-p,d)) ‘(T22)
p3 D(dn') = P ' (T8)
pU fom 4 = 4 % l(P):s—id(Pi(dn')) = Ai

pb rest(d') = d (T10)
p6 epa' = epa-p (T2u)

term: £ => ¢
t1 d' = rest(d) (T26)

Further, let (for some state §):

1(d) = 12— Q2

is-parm-den(id(dn)) —= find(id(dn),rest(d))
id € D(dn) — id(dn)

T — find(id,rest(d,epa))

mO find(id,d)

n

where: dn = s-dn(top(d))
epa = s-epa(top(d))

To simplify the equivalence relation m4,find-p is used which
differs from find only in that the third case distinction yields the
PRLF (1d; 104} ¥

m1 Ipt = {id | find(id,rest(d,i)) # {0}
m2 PT = N
m3 REF = {(id,3) | ideID? A 0 < j < 1(d)}?

find-p(idl,rest(d,i)) # (2 A
find-p(idil,rest(d,i)) = find-p(id2,rest(d,]))

mb (id1,1i)2(id2,3) o
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The following lemma can be proved about the model:

11 for g: for a procedure introduced in activation r such that

find(id,d) gives its denotation:
s-epa(find(id,d)) = r
A proof by induction can be given:
basis il ,m0
induotion bloc b3,bl4,b5,m0
proc p2,p3,;pk,p5,p6,P0,m3

term +1

Theorem: The above model satisfies the properties required by the

definition.
Proof:
D1,D2,D3: The basic sets are defined ml,m0,sl,m2,m3
D4 }%is an equivalence relation over the given sets ml,m3 ,mb
D5: values are associated with the cosets of i my ,mO, sl
via find, and IDY for procedures can be found. P11
I1: 1Dt = {} | ml,m0,i1

. REFT = () m3,i1
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B1l:

B2:

B3:

BL:

B5:

B6:

B7

(id,i) e REF = i < 1(d) ' m3
.. g = 1(d'") is satisfactory b3
1p? = {id | find(id,a) # Q3 Bi,m1
= {id | find(id,rest(d)) # (]} u Dan") m0,b2, bk
= 7pP»BBEy g m1,b3,bl
REF' = REF v {(id,q) | ide1D%% m3,B2,b3
«, f/ REF > 2nd(d) < 1(d) & 2nd(8) < 1(d) m3
t
1d.¢ ID > find-p(id,d") = Fimd-p{id,restld")) - m0,bl,bl
. . ' -
. Gid,a) £ T Ga,p B1,b3,mu
ideD > find-p(id,d') =(id,q) m0 ,b1,b2
(id,1) e REF > 1 £ q B1
DEF! .
o ¥y Tdd.ad ;Q'EP = {(id,q)¥ B3 ,my

termebloc is an identity with respect to:

REF _ m3 ,b3,t1

and thus b ml4 ,B4,B5,B6
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Pi:

P2

P3;

Phy:

P&

P&

P7:

(1d,1)e REF 2 1 £ 1(d) m3
.. q = 1(d") is satisfactory p5
D% = {id | find(id,d') # Q} B1,ml

{id | find(id,rest(d,r)) #{) } u D(dn') m0,PO,m3,11,mi,p6

= TR SERE L p p5,m1,p3
REF' = REFy {(id,q) | ide ID%7} | P2,m3,p5
o, /4 REF > 2nd(#) < 1(d) A 2nd(f) s p m3
.'.oéi%?REF'K “:‘oaﬁREFﬂ P3,mb4

id<#P > find-p(id,d') = find-p(id,rest(d',r)) p3,m0,p6,p2,P0,11

- 1
Lt id, ) 2R Ga,m B1,ml
ideP = find-p(Pi,d‘) = find—p(Ai,rest(d)) p3,m0,pl
1
L BT (AgD) mt

termeproc is an identity with respect to
REF m3,p5,t1

and thus A ml , P4 ,P5,P6

The remaining steps of the proof to obtain the same result as

in /1/ consist of:

show find(id,d) = ld(S-EO(dindex(s(id,d),d)))) by Rl

then (L9), Theorem II, (L10), (L11), Theorem ITII

Notice that the transition made above, of incorporating the

denotations in the stack was not formally justified in /1/.
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Discussion

The. previous proofs of block implementations (e.g. /1/ and /2/)
have taken as the definition an abstract machine giving a, hopefully

simple, model. The disadvantages of this approach can be seen:

(a) It is not clear where the division between the essential and
inessential properties of the defining model lays. It is poss-
ible that this difficulty could be ninimized by supplying ad-

ditional notes.

(b) Proving the correctness (i.e. equivalence) of an implementation
often requires that difficult lemmas on the base model are
established. Notice that Lemmas 5 and 6 of /1/ occur above in
the proof of the base model not in the proof of the implementation.
It is possible that this difficulty could be overcome by prov-
ing a suitable set of lemmas about the base model and incorporat-

ing them with the definition.

(c) If a convenient common range for the results of the definition
and implementation functions is not available, the equivalence‘
may be difficult to state. For example, a formal proof of the
inclusion of the denotations in the stack in /1/ would not have

had the set of unique names as a common range.

This paper is an attempt to go beyond noting what is important
in, or what lemmas can be deduced from, the defining model: facts like
these replace the model as a definition. Naturally, it is not possible
to simply write down these defining properties. Not only is it an
easier task to formulate one model but the study of a range of models
is the key to finding the essential properites.(In fact the idea to
use equivalence relations came to the author when trying to formulate

a correctness condition between the first two models of /2/.)
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Although the above definition fulfils the required role for a
number of models, it is certainly not general enough. In particular,
it would be necessary to change the equivalence relation to one
references, as in the text, in order to cover the Copy rule. At least
for this reason the above definition cannot be claimed to be machine-

free.

As well as being easier to formulate, and possibly to read,
definitions by models have the advantage that when an implementation
uses precisely the same algorithm as the definition for some, or all,
sub-problems, these points can be ignored by the proof (this is done
at several points in /1/). However, the author suspects that to obtain,
in general, more straightforward proofs of implementations, the more
promising approach is to develop properties which models could be
shown to fulfil. To substantiate this suspicion other areas of langu-

ages must be investigated.
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