e o
5 e (R "”*

IBM LABORATORY VIENNA, Austria

‘A PROOF OF THE CORRECTNESS OF SOME
OPTIMIZING TECHNIQUES

C«B«JONES

ABSTRACT:

The application of certain well known optimizing techniques, to a
very simple language, is proved tc be correct. The proofs are based
on properties of the language which, following Hoare, are shown as

Axiom schema of statements.

,._
N
3]
Wy
)
(o8
1

)
ot
y
c
4]
[
w
1]
Ce]

IBM LAB VIENNA IR, ' LN 25.3.051
1. INTRODUCTION

This note looks at certain optimizing techniques and attémpts
to show that their application to a program yields a modified program
which, given any set of input values, will create the same cutput
values as the original. The following techniques are commonly used

(e.g. Ref. U):

Elimination of common sub-expressions
Interchange of statements

Removal of statements from lcops
Removal of statements from conditionals
Rearrangement of conditicnals

. Substitution of eguivalent expressions

~N) o E W N

Reducticon of slow operations such as multiply to
faster ones within for loops

8. Commoning of "subsumed variables'" (e.g. registers)

The first & of these are easily specified in the source -language

and are ccnsidered in section 3.

IBM LAB VIENNA % 2 ¥ LN 25.3.051

2. THE LANGUAGE
Progrars of the language conform to the following abstract syntax:

is-program = is-st-list

is-st = is-null-st v is-as-st v is-cond-st v is-it-st
is-null-st = is-NULL '

lg~as~st = (<g=1-ptiis~vars>,<g-p~ptils—exprs)

is-cond-st = (<s-cond:is-b-expr>,<s-then-st:is-st-lists,

<g=else-st:is-st-lists)

is-it-st = (<s-while-cl:is~b-expr>,<s-body:is-st-lists)

The important omissions are any constructs which could cause
side effects and goto statements. It should be noted that all of the

proofs given below rely on these assumptions.

All of the proofs are based on "properties of the statements of
the language". These properties are expressed as axiom schema which
are taken from Refs./1/ and /2/. They are all written in the notation
of Ref. /2/.

Al is-null~st
P{Q}IP
A2 is—-as-st

P(E, W) {x:=f} P(x,V)

A3 is-cond~-st
((PA DIAIR)A(P 4 = bi{B}SN=>P {if b then A else B}JR v S

Al lg=-it~-st
(R A b{AIR)DR {while b do A} R A = b
A5 ig=gt=1list

(P{AYQ A Q{BIR) oP{A;B]IR

R1 Rule of conseque:

ence
if P>Q and Qf{A!R can be derived, then PJ{AIR

AN o

L. 3

IBM LAB VIENN - 3 =~ IN 25.3.051

Note on the axiom of assignment:

The axiom A2 is derived from Igarashi (Ref./3/), and is rather

more convenient for the construction of proofs than the form given

in Floyd (Ref./1/):

A2 E(x,V)-{x:zfcx,F)}_axG.(P(xo,V) A x = £(x_5F))
We show the equivalence of the two forms as follows:

Theorem: A2FP {x:=f} Q iff A2'FP {x:=f1Q

i) if A2 FP {x:=f} Q then A2'F P {x:=f1}Q

P(F(x,F),V) { x:=£(x,F)} P(x,V)

now taking P(x,V) as P'(f(x,F),V) we can write

P'(f(x,F),V) {x::f(x,P)}.3xo.<P'<f(xo,F),V) A ox o= f(x,F))

SO PU(E(x,F)L,V) [xi=f(x,F)} P'(x,V)
Thus if AZ FP {xo=f] § then A F P (ol L0
ii) if A2'}F P {x:=f} Q then A2FP {x:=f1Q

P(x,V) {x::f(x,F)}ggxo.(P(xo,V) A X f{xo,F))

now taking P(x,V) as 1 x -PM(x V) Ax = f(xO,V) we can

write

ﬂxo.(P'(xo,V)A Elx,F) = f(XO,F)) {x::f(x,F)}
on.(P'(xo,V)A % B f(xoﬁ?})

mwow Prilx V)= 3 xO.P'(xO,V}

and T > 3 x .f(x,F) = f(x ,F
] O C’ ’

;
- PPl XY {m 1= $lz,T0) EXOQ{P'(x05V)A ¥%, f(xO,F))

Thus if A2'F P {x:= £}Q then A2 F P{x:= £}Q
Combining these two results wes get A /

iff A2'F P{x :=£1Q

/2

A2!

A2t

A2

R1

IBM LAB VIENNA - 4 - LN 25.3.051

3. PROOFS

Each optimizing technique to be discussed will be exhibited by
a pair of schema, into which substitution of elements satiéfying
the preconditions is alleged to yield a pair of equivalent sequences
of statements. By "equivalent" we mean that after execution of one
of the sequences of statements, on any environment, it is not possible

to determine which sequence was executed. We write this relation L XR,

Our proofs of these conjectures are made by showing that if any
ordered pair of predicates are respectively true before and after
execution of one of the' sequences they will also be true before and
after the other. The free variables of thé predicates being chosen
from the variables of the program. Or, using " F" to denote "can

be derived from the axioms":
VYP,0. (FP{L}Q iff [P{R}Q)

We shall use the following notational conventions:

ByQsRsB Predicates

B o B 10 Arbitrary sequences of statements

ACE) A(x) with f substituted for every free occurence of x

L{AJ The set of all variables occuring on the left of
assignment statements in A

R[A] The set of all variables occuring in expressions of A

VLA] L{AT v RIA]

v The set of all free variables of both statement
sequences ‘

A(S) The function which is considered to show the transforma-
tion A(S) causes to LLA(S)] thus A(S) T LLA(S)T:= 4(S)

In deriving sequences of sezntznces from the axioms the predicate

on the right of } is sometimes ed, the implied predicate is that
e

on the left of { in the precsading lin

IBM LAB VIENNA - 5 - LN 25.3.051

1: Elimination of common sub-~expressions

ACE) T t 1= £3 A(t) where (tuV[fDnLLA(E)] =

This can in fact be made less restrictive by allowing the last

statement, in which the substitution is performed, to change a free

variable of f.

AiEYs m 1= alf) § & o= £y ACE)s x 12 g8

where (tv VIfI) A LLACE)] = @ and x e VLFJ

Let
Vit] = t
VIF]} - x = T
LEATEYD = L '

Y - (tvFul) = V

Theorem: A(f(x,F),x,F,L,V); gl (s T) ats s Ly

ct =
3]

1h

Proof :

Ly QCg(fix,F) ;%;F,L,V),F,L;V) {x 5 gl(f(x,F),x,F,L,V)3}Q (x,F,L,V)

Qg CF (o, a0, B o GF Oy FPamt o P 4 Ly U] 5 VD o F, BLE B0 o 2, B 5 Ls V)W)
{ACE(RE} 8L VO }

R) QleltyosFalia VI F LV at = FLlx,F) Ix 12 gl Dol V)T 0 [xsFeluVra

]xo.(t = flx_»F)ax = glt,x_,F,L,V))
Qlglt,x ,F,#(t, 2, F L. V) VIF f(t XL, V), V) £ = £(x,F)
{A(taansL:V)}

QCg(f(X:F)sXaFaﬁ(f<X9F)9X3F5L9V>>V)5F7£(f(X:F)3X5F5L5V)9V)

it 1= £f(x,F)}
Thus ignoring the information about the temporary,

FP{L}Q e Fp {RT Q

Flx,FYt ALt %, F,. L,V xis glt.%,F.,L,T)

A?

A2

A2 ,R1

A2

A?

A5

IBM LAB VIENNA - 6 - LE 25.3.051

Notice that if we allow f to be moved out of the range of a
conditional statement or a while statement it may be evaluated with
values of the free variables that would not be used in A because of

the conditional. Thus f must be a total function.

It is, in.theory, possible to avoid this problem but, since the
set of predicates which govern execution of a statement may contain
variables whose values change, it would probably make the necessary

tests too expensive.

2: Move calculations to beginning of loops

A3;B T B3;A where L[A1 nLIB] = LL[A) nRIB] = L[BJ] AR[A] = ¢
Let L [A] = LA '
L [BJ] = LB
(R[A] - LAYV (R [B] - LB) = R

Theorem: A(LA,R); B(LB,R) % B(LB,R); A(LA,R)

Proof:

L) Q(LA,#(LB,R),R) {B(LB,R)} Q(LA,LB,R) A2
Q(4(LA,R),B(LB,R),R) {A(LA,R)} A2

R) Q(4(LA,R),B,R) {ACLA,R)} Q(LA,LB,R) A2
Q(4(LA,R),3(LB,R),R) {B(LB,R)} A2
Thus FP {L} Q ki i FP {R} Q - A5

3: Removal of statements from loops

B; while p do A ¥ while pdo B; A
"where LIATNLIB] = L[ATN RIBR] = LIBInVIip] = 0

IBM LAB VIEHNNA - 7 - LN 29+3+951

Let LLAT LA
L[B] LB
(RCAT v R[B]) - (LAULB) =R
vipl - LA - R = VP

Il

Theorem: B(LB,R); while p{LA,R,VP) do A(LA,LB,R)
while p(LA,R,VP) do B(LB,R); A (LA,LB,R)

1",

Egpof:

L) We assume the strongest invariant for the loop is such that

A(LB,R)A p(LA,R,VP) {A(LA,LB,R)}
Q(LA,LB,R,VP) A LB =7 (LB,R)

%(LB,R) {while p(LA,R,VP) do A(LA,LB,R)} AL

Q{LA,LB,R,VP) A LB = B(LB,R) n =1 p(LA,R,VP)

E FQ(LA,LB,R,VP) A LB

~Q(LA,LB,R,VP) A LB

1§

Q(LA,%(LB,R) ,R,VP) {B(LB,R)} A2
R) From HI
Q(LA,%(LB,R),R,VP) A p(LA,R,VP) {B(LB,R); A(LA,LB,R)?} A2 ,AS

Q(LA,LB,R,VP) A LB = #4(LB,R)
~Q(LA,%A(LB,R) ,R,VP) { while p(LA,R,VP) do B(LB,R); A(LA,LB,R)} AL
Q(LA,LB,R,VP) A LB = Z(LB,R) A = p(LA,R,VP)
Thus we have shown
if FP{L} Q then FP {R1 Q A5

Using the first line of R above as an invariant, we can show, via A2':

if b P {R}.Q then FP {L} Q

-
e
e
=
e o4
2
[
h
-y
-+
g
ey
g
S
O

IBM LAB VIENNA - 8 - LN 25.3.041

4: Removal of statements from arms of a conditional

a) A; if p then B else C = i p Then A B else A €
where LI[Aln VLPI = ¢

Lat LLA] = L&
Y- 1A =V

Theorem: A(LA,V); if p(V) then B(LA,V) else C(LA,V)
¥ if p(V) then A(LA,V); B(LA,V) else
ACLA,V); CCLA,V)

Proof:

L) We first assume
H1 P(LA,V) A p(V) {B(LA,VDI R
H2 P(LA,V) A1 p{V) {C(LA,V)} 8

. P(LA,V) {if p(V) then B(LA,V) else C(LA,V)} RvS A3
P(A(LA,V),V) {ACLA,V)} P(LA,V) A2
R) From Hi P(YCLA,V),V) A p(V) [A(LA,V); B(LA,V) 1 R A5 ,A2
From H?2 P(Z(LA,V) ,V) A1 p(V) JACLA,V); C(LA,V)} S A5 ,A2

. WPCE(LA,V)L,V) {if p(V) then A(LA,V); B(LA,V) else A(LA,V);
C(LA,V)T RS A3
Thus FP {L} Q iff P {r} Q AS

n

U

b) In the following case it is possible to remove the statement even
if it affects p.

Let 7~ x =V

Theoremn:

% 15 FOx,¥): if Plx) then Alx,V] else:Blx,V)
if p(f(x,V)) then x := £(x,V); A(x,V) else

in Blx)y Bix.N)

e

™

IBM LAB VIENNA - g .= LN 25.3.051
Proof: We first assume
L) Hi1 P(x,V) A p(x) {A(x,V)} R
H? Pl V) A ~rpleed 1 B, V) 18
LP(x,V) {-if p(x) then A(x,V) else B(x,V)} RVS A3
PUE(x VY, V) doe ts £lx,V3F Plx,V) A2
R) From H1 PCE(x,V),V) A DCECx,V)) {x := £(x,V);A(x,V)} R AS5,A2
From H2 P(f(x,V),V) A =mip(Ef(x,V)) {x:=f(x,V); B(x,V)1 S A5,A2

e P(E(x,V), V) {if p(£f(x,V)) then x := £(x,V); A(x,V) else
x 15 Flx,V)y Blx,ViT R v 8 A3
Thus FP{L} Q iff FP{R} Q _ A5

5: If statements

The object of performing these transformations is to avoid evaluating
boolean expressions completely where possible. The transformations are
shown in terms of copying the text although a real compiler would use
goto statements.

a) if paq then A else B ¥ if = p then B else (if q then A else B)

Proot:
L) We first assume:
H1 Pa(pnqg) {A} R
H2 Pa=ilpng) {B} S

.'. P{if pAq then A else B} RvS A3

R) PApAg [A} R . - H1
Pap ai1g £{B} S 12

.« PAp fif g then A else B} R¥ S A3

Pa1p {BT S

P {if =1 p then B else (if g then A else B)¥ Rv S A3

Thus FP {LY Q iff FP {R} Q

IBM LAB VIENNA = 10 = : LN 25.3.051

b) if pvq then A else B if p then A else (if q then A else B)

Proof:

1) We first assume:

H1 Palpvg) {A} R
H2 Pa=(pvq) {B} S

.".P {if pvq then A else B}RvVS A3
R) PA=pA-1qg{B}sS H?
PA pn q AT R H1
.".PA =1 p{if q then A else B] Rv S A3
Pap {A} R , H1
.".P{if p then A else (if g then A else B} Rv S A3

Thus FP {L} Q iff F P {R7Q

6: Substitution of expressions

Some examples of when a compiler might use such substitutions are

1) special cases of exponentiation
ii) division by constants changed to multiplication

i1i) use of reordered predicates

a) Tf F = g, then x iz L(F) & = =z L{g)
Proof:
L) P(L(F),V) tm ox LESIF P,V
R) P(L(g),V) {x 1= Llg)} P(x, ™
but PLLCg),¥) B PLLCE] VD
thus FP {x:= L(E)} Q iff Fp 4 Liz)} 0

=

TBM LAB VIENNA - 11 - LN 25.3.05

b) If p £ g then if p then A else B £ if q then A else B

Prooi:

1.) We assume

H1 Pap {A} R
H? Pa-ip {Bt S
*:P§ if p then A ‘¢lse B}RvVS A3

R) now PaAq = PAp and PA-1q = PA-p

.".Paa {AT R H1,R1
and Pa—q {B} S H2,R1
2 gl {éﬁ p then A else B} Rv S A3

Thus FP {L}Q iff kP {R}Q)

Clearly a similar proof permits substitution of equivalent predicates

in a while clause.

¢) If p>f = 5 then if p then x := f3 A else B = if p then x := gj
A else B

Proof: Follows from:
L) PCE(x,V),V) A p(F(x,V),V) {x := £(x,V) T P(x,V) A p(x,V) A2
R) P(g(x,V),V) A plglx,V),V) {x := g(x,V)} Ploa, V) & plx, V) A2

T Ce V), V) 2 Plain, V),V
plg(x,V),V) 2 P(g(x,V),V)
P CE(x, V),V A p(E(x,V),V) B P(g(x,V),V) A plglx,V),V)

Thus FP {L} Q iff kP {R} Q
Clearly b can be extended to the case where the equivalence 1is

implied by a predicate used in a conditional. Both this and ¢

could then be further extended to cover a nest of such preconditions

or a seguence of intervening statements which do not change any of

the free variables of the predicate.

IBM LAB VIENNA - 12 = : LN 25.3.051

4. SUMMARY

The approach used in section 3. appears to yield straightforward
proofs for a number of optimizing techniques. The problem of extending
the work is more in stating the optimization in the source language

than in costructing the proof.
It is worth noting that a program with its set of predicates would

be a very good guide to an optimizing compiler in showing exactly

what relationsips must be preserved.

REFERENCES
/17 R.W.FLOYD: Assigning Meaning to Programs.- 20 May 1966.

/2/ C.A.R.HOARE: The Axiomatic Basis of Computer Programming.-
To be published.

i S.IGARASHI: Equivalence-Theoretical Treatment of Verifica-

tion Conditions.-

/u/ E.S.LOWRY and C.W.,MEDLOCK: Object Code Optimization.-
Comm.ACM 12 (1969) No. 1. '

