IBM LABORATORY VIENNA, Austria

A COMPARISON OF TWO APPROACHES TO
LANGUAGE DEFINITION AS BASES FOR THE
CONSTRUCTION OF PROOFS

C.B.JONES

ABSTRACT:

Two approaches to language definition are considered: the functional
approach developed by McCarthy in ref /4/ and the "Vienna Method".
Definitions of two simple languages are used to compare proofs for

the correctness of their compilers.

LN 25.,3.050
3 February 1969

IBM LAB VIENNA ~ 1 - LN 25.3.050

0. INTRODUCTTION

‘The aim of this note is to consider the merits of language
definitions, constructed in two different ways, as bases for the
creation of proofs relating to the defined languages. In particular,
the problem of proving the correctness of compilers is considered.
The starting point is the language used by McCarthy in /1/. We re-
define this in the style of /2/ and show two proofs based on the

new definition.

The language is then extended so as to tax the methods of
definition and proof construction with an important facet of
procedural languages. Some observations are made in an attempt to

summarise the limited results.

Familiarity with the Vienna Method (e.g. /2/) is assumed, as

is an awareness of Recursion Induction (e.g. /3/).

REFERENCES

&

1r McCARTHY, J., PAINTER, J.: Correctness of a Compiler for
Arithmetic Expressions.- Stanford University, A.I.-Memo
No. L0, April 1966.

12/ LUCAS, P., LAUER, P., STIGLEITNER, H.: Method and Notation for
the Formal Definition of Programming Languages.-
IBM Laboratory Vienna, Techn.Rep. TR 25.081, June 1968,

/37 McCARTHY, J.: A Basis for a Mathematical Theory of Computation.-
In: Computer Prog?amming and Formal Systems, P.Braffort &
D.Hirschberg (Eds.). '

/) McCARTHY, J.: ‘A Formal Description of a Subset of ALGOL.-
In: Formal Language Description Languages, T.Steel (Ed.)

Vienna Conference, September 1964,

IBM LAB VIENNA ~ O = LN 25.3.050

i APPLICATION OF THE VIENNA METHOD TO McCARTHY'S PROOF

The use of some notational aspects of the "VM" has permitted
a slight shortening of this proof (the reasons for this are examined
at the end of the section). However, the language defined is very

simple and section 3 develops a more interesting example.

Transliteration of Proof:

In order to facilitate comparison with the original, its
sequence of presentation is followed; transliterated formulae are
given their original number preceded by M. Other than the changes
which can be attributed to the "VM", conditional expression form

has been used to aid readability.

M2 The Source Language

The abstract syntax of source expressions is:

is-expr = is-const V is-var v is-sum

is-sum = (<s-1l:is~expr>,<s-2:is-expr>)

L= el not defined
is-const

The semantics of the source language is given by the function

value whose second argument is a "state vector" which is defined by:
is~i—8tate(§) = ({<var:is-value> || is—var(va?)})

The function is defined:

vai(e),

e(g), _
value(s—i(e),g) + value(s—2(e),g))

M2.1 value(e,§) = (is-const(e)

is-var(e)

is-sum(e)

for: is-expr(e) and is-l-state(§)
where: the function val gives the numerical value of a constant,

and is not further defined.

IBM LAB VIENNA ~ 3 = LN 25.3.050

Note: The function ¢ of /1/ is exactly replaced by the ap-

plication of the variable name as a selector to the state.

We shall use the induction principle of /1/: Suppose ¢ is a
predicate applicable to expressions, and suppose that for all expres-

sions e we have:

igs-const(e) > ¢ (e)

is-var(e) > ¢ (e)
is-sum(e) AE(s-1(e)) A ¥(s-2(e)) 23 (e)

then we may conclude that $(e) is true for all expressions e,

M3_Thé Object Language

The abstract syntax of the object language is:

is-program = is-instr-list

is-instr = is-1i v is-load v is-sto v is-add
Lg=Ti = (<s-t:LI>,<s-arg:is-consts)

is=-load = (<s~t:LOAD>,<s~adr:is-adr>)

ig§-~sta = (<s-t:ST0>,<s~adr:is-adr>)

is-add = (<s-t:ADD>,<s-adr:is-adr>)

where: is-adr is true for any valid selector of is-state.
We shall use the constructors of 1/ as abbreviations,
thus:
mk-load(x) = p(<s-t:LOAD>,<s-adr:xs)
The meaning of the object language is given by the stepa”
and outcome functions whose second argument is a "state
vector" defined by:
ig-state = (<s"ac:is~value>,<s~v—pt:is—v—pt>,

<s-t-ptiis-value-lists)

is-v-pt = (f{<var:is-value» Il is-var(var)i)

Note: The functions a and e of /1/, applied to machine states,
are ‘replaced by A& functions and selectors using appro-

priate composite selectors.

IBM LAB VIENNA - I = LN 25.3.050

We shall abbreviate s-elem(i)oes-t-pt(§) to i.s-t-pt(§)
throughout the sequel.

The semantics of the object language are given by:

M3.11 step(s,q) = (is-1i(s) — wly;<s-ac:is-arg(s)>),
is-load(g)—= aulyics~ac ; s=adris)(n)>);
is-sto(s) —= u(g3<s-adr(s):s-ac(y)>),
is-add(s) —= plyi<s-ac:is-adr(s) () + s-ac(y)>))

M3.12 outcome(p,g) = (is—<>(p) Wy

T — outcome(tail(p),step(head(p),4)))

for: is-program(p) and is-state(®)
Ref. /1/ states the following lemma without proof:
M2.43 outcome(pl’\pQ,@) = outcome(p2,ocutcome(pl,y))

M4 The Compiler

Note: The mapping function of /1/, "loc", can be thought of as
mapping a variable name, say v, onto the composite selector

for this value in is-state, i.e. loc(v,map) = Vo 8-Vv-pt -

Our statement of the relationship of the initial object machine

and language "state vectors", called 7 and 3 respectively, becomes:
Mb.1 s=v-pt(7) =‘§
The compiler is defined by:

M4.2 compile(e,t) =
(is-const(e) ——= <mk-1li(val(e))s ,
ig~var(e) —= <mk-load(ees-v-pt) >, "
is-sum(e) —= compile(s-1(e),t)” " <mk-sto(t)s " .

' compile(s-2(e),t+1) " <mk-add(+t)>)

- for: is-expr(e) and is-integer(t)

IBM LAB VIENNA o o o LN 25.3.050

Partial equality of objects (i.e. equality for a limited set

of selectors) is shown by:

51 - {ory sctys v v v sttt 52 = (@ (5, = Oéi(gz) A
' do(§y) = Ay a
@ (§) = (%))

Partial equality satisfies the following relations:

M4 .3 51 - §2 is equivalent to fz “is | (8(5%9 F2) v (S(gz) £ 0 x}B&
M4.4 if AeB and §, = 4 €, then §, = A)

My.5 if §, = , €, then w(§ s<xiaz) = AU{X}/J’(§2';<X:0{/>)
Mu.6 if x4 A then wlfs<x:w>) = , §
a7 if €=, F,andf, =5 fithenl, =, 5 By

The correctness of the compiler is stated in:

Mi.8 Theorem 1

If ¢ and g are states and language states respectively, such
that M4.1 holds, then

outcome (compile(e,t),7) V_pt}KMCQ;<s—ac:va1ue(e,§)>)

- § e~al g8~

for: is-expr(e) and is-integer(t).
M5 Proof ‘of Theorem 1

For reference we state, without proof, an axiom of/u_functions: =

1.1 s—i(ﬁig;<s—2:m>)) = (s-1 = =2 —= ¢ ,
T — 5-1(%))

Case I: is-const(e)

outcome(compile(e,t),?) = outcome(<mk-1i(val(e))l> ,%) My, 2
= step(mk-li(val(e)),?) M3.12
) & }K7;<S—ao:S—arg(mk~1i(va1(e»)>) M3.11
= plys<s—-acival(e)>) " |
:!#(2;<s~ac:value(e,§)>) M2.1

1

{s~ac,s—v—pt}ﬂ(2;<s—ac:value(e,?)>)
ML .3, MU,

IBM LAB VIENNA - & = ' LY 2543000

Case II: is-var(e)

outcome(compile(e,t),4)

= outcomef <mk-load(ess-v-pt)>,7) ML, 2
= step(mk-load(eecs-v-pt) .7) Ma.12
=1#(%;<s—ac:s-adr(mk-load(ees~v—pt))(@)>) 1 s
= M(ns<s-aciees-v=-pt(#)>) Tl
:/A@L;<s—ac:e(§)>) My .1
=/bC@;<s-ac:value(e,§)>) R
= {s—ac,s~y—pt}/o(?;<8—ac:value(e,§)>) M4, 3,M4. 4

Case III:ié—sum(e)
outcome(compile(e,t),«)
= outcome(compile(s—l(e),t)/“<mk~sto(t)$f‘compile(s—?(e),t+1)h
o <mk-add(t)>,7) Mu,2
= outcome(<mk—add(t)>,outcome(compile(SwQ(e),t+1),

outcome(<mk-sto(t)>, outcome(compile(s-1(e),t),%))))

M3.13
Now we introduce some notation:
let v E value(e,g)
g * value(s-1(e),E)
v, = value(s-2(e),%)
then v = vl + v?2 M2.1
let 51 = outcome(compile(s-1(e),t),7)
£y © outcome(<mk-sto(t)>, 51)
£3 = outcome(compile(s—Q(e),t+1),§2)
54 2 Outcome(<mk~add(t),§3>)
so that gq = outcome(compile(e,t),?), we wish to prove
gu = {s~ac,s-v—pt}/u17}<s~ac:v>)
We have
fi = outcome(compile(s-1(e),t),%)
= {s—ac;5~v~ptifbﬁf;<5—ac=v1>) L .H.

outcome(<mk~sto(t)>,§1)

Now -52
U8 33 to s-t-ptis-ac(€,)>) M3.12,M3.11

IBM LAB VIENNA o LN 25.3.050

Next §y = outcome(compile(s-2(e) ,t+1),5,)

_ {S*ae,s—v—pt,toSft—pt:/L(§2;<s~ac:v2>) L T.H.1D

Finally ‘
gq = outcome(<mk—add(i)>,§3) .

:/L(§3;<s—ac:tos—t~pt(§3) + s-ac(§3)>) M3.12 M3.41
but t°s~t—pt(§3) = tos—t—pt(gz) = s-ac(g,) = vi 1.1
and s—ac(Ss) = V2 ' 5 s |
. & 54 =/w(§3;<s—ac:v>)
now €, = {s-v-pt} §2 = {s-v-pt? ?1 = {s-v-pti 1.1
- s Eu = {s—ac,s—v—pt}fb(%;<s-ac:v>) ' My,5,Mu.1

This concludes the proof
Comment on differences:

We can now tabulate the differences, between the above and the
original, alongside the changes in the definition which brought them
about:

a) The abstract syntax is defined by a single set of predicates.

This eliminates the relationships between synthetic and analytic

syntaxes listed in M3.1 - M3.h (these are now properties of

objects and selectors).

b) A predefined list notation is used. This eliminates M3.5 -
M3.7.
c) The state vectors are defined as objects. This immediately

yields M3.8 - M3.10 as properties of the w function. It also
allows some steps of case III of the proof to be omitted,
without loss of clarity, because of the ease of tracing back

through fo@perations using L%

1) The Tnduction Hypothesis can be applied because 52 = {s-v-ptf ¢,

IBM LAB VIENNA - @ - LN 25.3.050

2. PROOF OF THEOREM 1 BY RECURSION INDUCTION

The formulation of the problem in the above notation prompts
a proof by recursion induction (see /3/). This section can be thought
of as an alternative M5, it would also remove the need for the

Induction Principle of M2 and the notion of partial equality of Mu.

Theorem 1 Given % and g are machine and language state vectors

respectively such that:

2.1 s-v-pt(sg) =5§ 7
show: outcome(compile(e,t),n) = {s—ac,s-v—pt}/b@z;<s—ac:va1ue(e,§}>)
Part 1: with respect to s-v-pt ' ‘

s-v-pt(step(s,3)) # s-v-pt(y) > s=mk-sto(ves-v-pt) |

is-var(wv) M3 11
but)
;Véfelem(i)o compile (e,t) # mk-sto{voes-v-pt) |
oo 2 is=var(v) A is-integer(i) MYy, 2
therefore
s-v-pt(outcome(compilel(e,t),4)) = s-v-ptiyg)
Now: s—v~pt9m(Q;<s~ac:va1ue(e,§)7)) = s—v-pt(q) Tsd

Therefore they are equal, which proves part I.

Lemma Before tackling part 2 we prove a lemma which shows that
s-ac of theé state after evaluating the second part of an expression,
would have been the same if the second subexpression had been evaluat-

ed first.

gewspllyy) = s-v—pt(qz) =
s—ac(outcome(compile(e,t),71)) & M3.11,M38.12
s—ac(outcome(compile(e,t),72)) M4, 2

since
s—v~pt(outcome(Compile(e,t),‘mknsto(t),Q}) =
s=v-pt(7) ditto

IBM LAB VIENNA ~ g = LN 25.3.050

then : 1

2.2 fy = Outcome(compile(e,t)r\mk—sto(t),@gD

s-ac(outcome(compile(e,,t),7,)) = s—aé(outcome(compile(ez,t),71)

Part 2 : with respect to s-ac, the theorem becomes

s—ac(outcome(compile(e,t),Q)) = value(é,%)

We consider both of these as functions of e and # over the

domain is-expr(e), is-state(y) and is-integer(t). We use the equation:

f(e,?¢) = (is-const(e) —— val(e),
igs=-var(e) ——= eos-v-pt(«),
is-sum(e) — f(s~1(e);g,t) + Flg=2lel), Tel))

This function must terminate because there can be no infinite
chain of non identity selectors (i.e. the result of a finite number

of applications of s-1 is an object of type is-const or is=-var).

Now value(e,§) M2.1
= (is-const(e) — val(e),
is-var(e) —= ngh
is-sum(e) —= value(s-i(e),g) + walue(s~2(&),E3) i
= (is-const(e) —= val(e),
ig-var(e) —= gog-v-pt(#n), 251
w—value(s—i(e),?) + value(s—?(e),f))

igs-sum(e)

Clearly %) this satisfies f.-

Sl fi1(e,n,t)

value(e,§) where # and § are related by 2.1

]

(is~-const(e) —= val(e),
ig-var(e) —= e°s~-v-pt(4y),
1g~sumle) — £ {5-10ed 9, t) + £1(s~2(e) ,%,£+1]))

IBM LAB VIENNA 7 = A0 == LN 25.3.050

From M4.2"and the distributive law for condition expressions:

Svac(outcome(compile(e,t),@)) i
s~ac(is~const(e) — outcome(<mk~1li(val(e))>,7)
is-var(e) — outcome(<mk—1oad(eos—v~pt))>,7),

is-sum(e) —= oufcome(<mk~add(t)>,g3))

M3.13

where &, = outcome(compile(s—2(e),t+1),§2)
§2 = outcome(<mk—sto(t)>,§1)

s

outcome(compile(s-1(e),t),7)

by M3.12 and M3.11 we get:
s—aé(is—const(e)~*W=/»(Q;<s—ac:val(e)>),

is-var(e) -—- }dﬁg<s~ac:ecs—v-pt(ﬂ)>),

is—sum(e)-——~h/M(§3;<s—ac:tcs—t-pt(§3) - s~ac(§3)>))

Now since tes-t-pt(outcome(compile(s-2(e), t+1),§2)) =
t°s~t—pt(§2) ML, 2

t°s—t-pt(§3) toSmt-pt(gz)
tos—t~pt(outcome(<mk—sto(t)>,51))

S—ac(gi) Ma.12,M3.11

1

1"

and s~ac(§3) s~ac(outcome(compile(s—Q(e),t+1),EQ))

s~ac(outcome(compile(s-2(e) ,t+1),%)) i,

n

we get, by-the distributive law:

(is-const(e) —— val(e),
ig=var(e) —= geg=v-pLl{9),
is-sum(e) — s-ac(outcome(compile(s-1(e),t),7)) +

s—ac{outcome({compile(s-2(e) ,t+1),9)))

Clearly this also satisfies f, which concludes the proof.

IBM LAB VIENNA “ dd = LN 25.3.050Q

3. AN EXTENDED LANGUAGE

The language defined in Section 1 was such that it was defined,
both. in the original and with use of objects and selectors, in a
purely functional way. A central part of the Vienna Method is its
use of a machine and we now extend the language we are defining to
illustrate this basic difference between a purely functional notation
and the Vienna Method. These definitions will be used as bases for con-

struction of proofs in the next section.

The language of /1/ did not permit any "side-effects" to occur.
(Thus the order of evaluation of sub-expressions can safely be left
undefined in M2.1). We now define a language ofrexpressions which
include -embedded assignment. We assume the language fixes the order
of evaluation 1). The abstract syntax of the language is:

is-expr = is-const v is-var v is-assign v is-sum
is-assign = (<s-l:is-var>,<s-r:is-expr>)
is-sum = (<s-1:is-expr>,<s-2:is-expr>)

We first define the semantics using the functional approach.

2)

It appears to be necessary to show the state dependancies ex-
plicitly, either by functions returning states as well as values or
by defining two different functions as shown here. The languagé is
defined by two functions of an expression and a state: value returns

a single number result and eval returns a, possibly modified, state.

D Thus the Vienna Method definition will use only a control stack, not
a tree.

2) The definition of /4/ includes the possibility of states altering
during execution and is handled by passing the new state to a recursive
call of the semantic function. The other argument contains a statement
number which is used as the value of a bound variable to select the
appropriate successor instruction. However, this technique does not
appear to be applicable to recursive evaluation (e.g. that used for
expressions). '

IBM LAB VIENNA , - 12 - LN 25.3.050

3.i value(e,§) = (is-const(e) —= vall(e),

is-var(e) —= e(3),

is-assign(e) value(s-r(e),8E),
is-sum(e) —= value(s-1(e),E) +

value(s~2(e),eval(s~1(e),§))5

P eval(e,¥) = (is-const(e) it B
ig~varle) —= £,
is-assign(e) ———*7u(eval(s—r(e),§);
" ¢s-1(e):value(s-r(e),E)s),

is-sum(e) ——= eval(s-2(e), eval(s-1(e),%)))

for: is-expr(e) and is-l-state(¥)

We have used/@ functions and selectors, rather than the a & c

functions of McCarthy, for ease in Section 4.

The "V.M." notation allows the more direct definition:

3.3 wvalue(e) =

is-gongt{e) ——
PASS:val(e)
is-var(e) — =
PASS:e(%)
is~assign(e) — gﬁgggg(s—l(e),v)ﬁ
vivalue(s-r(e))
is-sum(e) —=— add(vl,v2);
v2:value(s-2(e));
vl:value(s-1(e))
3.4 assign(var,val) =
PASS:val
E_vu(§;<va?:val>)

S add vl vw2Z) =
PASS:v1l + v2

IBM LAB VIENNA T R LN 25.3.050

4. PROOFS BASED ON EXTENDED LANGUAGE

In this section we define a new compiler,whose domain is
is-expr as defined in Section 3, which creates programs for the
machine of M3. We then use the definitions of the last section to
prove the correctness of the compiler. Theorem 2 uses recursion
induction to prdve the compiler correct for 3.1 and 3.2. Theorem 3
proves the compiler correct from 3.3 - 3.5 by induction. The ULD
definition is not directly suited to a RI proof because of the hidden
state argument. Clearly, in this case, the function definition can

easily be formed from the "V.M." definition.
The compiler is defined by:

| compile(e,t) =

(is-const(e) —= <mk-1li(val(e))>,
is-var(e) —= <mk-load(eecs~-v-pt))>,
is-assign(e) f——%»compile(s-r(e),t)fﬁ
<mk-sto(s-1(e)os-v-pt)>,
is-sum(e) — compile(s=~1(e),t) " <mk-sto(tes-t-pt)>
'compile(s—?(e),t+1)f\<mk—add(tos—t~pt)>)

Theorem 2:

Given:
L,2 s=v-pt(yn) = €

Show:
s-ac(outcome(compile(e,t),?)) = value(e,§)

and s-v-pt(outcome(compile(e,t),n)) = eval(e,¥)

We consider all four of these as functions of e and % over the

ranges is-expr(e) and is-state(). We shall show the pairs satisfy:

Il = {1e-tomstie) =—=ygligly
dg=vrarle) — g v%g-3~pEii) ,
is-assign(e) —=f(s-r(e),v),

is-sum(e) — f(s-l(e),z) + f(s~2(e),g(s—1(e),7}))

IBM LAB VIENNA - 14 - ' LN 25.3.050

g(e,a) = (is~constle} — s=v=ptln),
: is-var{e) — s—v—pt(ﬂ),

H(gls-rled,n);
<s—l(e):f(s-r(e),1)>),

is-assign(e)
is-sum(e) —— g(s-2(e),gls~-1(e),7)))

Functions f and g must terminate because the chains of

selectors must be finite.
Using 4.2, 3.1 and 3.2 satisfy f and g directly.
By the distributive law and 4.1 we can write
4.3 outcome(compile(e,t),y) =
(is-const(e) —= outcome(<mk-li(val(e))>,),
is=-var(e) — outcome(<mk-load(ees-v-pt)>,%),
is—assign(g)-w*—b‘outcome(<mk~sto(s—l(e)os—v-pt)>,gu),

is-sum(e) —— outcome(<mk—add(t°s—t—pt)>,§3))

where

1"

54 outcome(compile(s-r(e),t),n) M3:13
53 outcome(compile(s—Q(e),t+1),gz)
52 outcome(<mk-sto(t°S‘t"Pt)>agi) ' -

51 = outcome(compile(s-1(e),t),%)

Now by M3.12 and M3.11 we can write:

s~ac(outcomo(compile(e,t)}q)) =
(is-const(e) ““*h~s—acgw(qﬁ<s—ae:val(e)>)),
is-var(e) *———vs—acgw(Q3<s—ac:eos—v—pt(ﬂ)>)),
is-assign(e) ———b-s~ac@w(§u;<s~l(e)os—v—pt:s—ac(§4)>)),
is-sum(e) *fﬁ*”’S—aq9w(§3;<5"ac:f08—t—pt(53) + s-acQ33)>)))

IBM LAB VIENNA = 15 =~ LN 25,3.050

Now since t is not changed by outcome(compile(s-Z(e),t+1),52):

My,2

tos—t—pt(gz)
= tes-t-pt(outcome(<mk-sto (t°s—t—pt)>,§1))
= s—ac(sl) M3.,72,.03.14

t°s—t—pt(§3)

and outcome(compile(s—Q(e),t+1),§2) relies only on s-v~pt(§%)

1t

s—ac(ga) S—ac(outcome(oompile(é—?(e),t+1),s—v-pt(§2)))

s—ac(outcome(compile(s—Q(e),t+1),s—v~pt(§1))) M3.11

H

Therefore we get, by 1.1

(is-const(e) : val(e),
is~var(e) ~— ess-v-pt(4),
is-assign(e) —— s-ac(outcome(compile(s-r(e),t),n)),
is-sum(e) —= s-ac(outcome(compile(s-1(e),t),7)) +
'~ g-ac(outcome(compile(s-2(e),t+1),
s-v-pt(outcome(compile(s=-1(e),t),%)))

which clearly satisfies f.
Reverting to L.3, we use M3.12 & M3.11 to write:

s-v-pt(outcome(compile(e,t),n)) =

(is-const(e) s—v—pt(ﬂ%@;<5“ac:val(e)>)),

JAg=varle] =i S—v—ptSML@;<s—ac:eos—v—pt(@)>)),
js-asgign(e) —= s—v—ptgu(fu;<s~l(e)°s~v~pt:s~ac(§u)>)),
is—sum(e)—ﬁ*ﬂW's—v—pt(ﬂi§3;<s—ac:tos—t—pt(és) !

s—ac(§3)>)))

Now s—v—th§3) = S—v-pt(outcome(compile(s~2(e),t+1),§2))
s—v—pt(outcome(compile(s-?(e),t+1),§i)) MB:11

IBM LAB VIENNA - 16 - LN 25.3.050

Therefore using 1.1, we get:

(is-const(e) ——== s-v-pt(7),
is-var(e) —= s-v-ptlg),
is-assign(e) ——“—“wis—v—pt(outcome(compile(s—r(e),t),@));
"~ <s-1(e) es-v-pt:s~ac(outcome(compile
(s—r(e),t),@))>);
is-sum(e) — s-v-pt(outcome(compile(s=-2(e),t+1),

s-v-ptloutcome(compilels-1(e) ,tY;9)J))
This satisfies g, which concludes the proof of Theorem 2.

Theorem 3

Notation: In order to talk about the results of the execution of
Instructions we use the notation RE;gggp(args),gl‘to represent the
result passed by instr, when executed in state % with arguments
args; and S[instr(args,€)] to represent the value of the state

after this exeeuiion.

.o b4 Given s—v—pt(q) = ¥ show:
S—ac(outeome(compile(e,t),2)) = Rbvalue(e),§]

and s—v—pt(outcome(compile(e,t),@)) = SEvalue(e),gl

Case I: is-const(e)

outcome(compile(e,t),@) = outcome(<mk—1i(val(e))>,g) b.1
- =/ﬂ(@;<s~ac:val(e)>) Ma.12 3. 1%
Therefore
s-ac(outcome(compile(e,t),4)) = val(e)
but REValue(e),gj = walfe) : | 3.3
and s-v-pt(outcome(compilele,t),n)) = s-v-pt(n) o |

but SCvalue(e),¥1 = s-v-pt(%)

This proves case I.

IBM LAB VIENNA - 47 = LN 25.3.050

Case II: is-var(e)
outcome(<mk-load(eecs-v-pt)>,%) 4.1
flys<s-aciess-v-ptln)>) e 12 Mg A1

outcome(compile(e,t),q))

Therefore
s—ac(outcome(compile(e,t),2)) = e°sg-v-pt(y)
but Rlvalue(e),¥] = e(&)
= e°s-v-pt(y)

and s-v-pt(outcome(compile(e,t),q)) = s-v-ptisg)
but Slvalue(e),¥] ='§
= s-v-pt(9) L. b

This proves case II.

Case III: is-assign(e) .
outcome(compile(e,t),n) = outoome(<mk—sto(s—l(e)os-v—pt)>,gu) h.1

where: fu = outcome(compile(s-r(e),t), %) M3.13
Thus ﬂigu;<s~l(e)°s~v—pt:s—ac(gq)>) M8.12,M3.11

Now s-ac(outcome(compile(s-r(e),t),7)) = RLvalue(s-r(e)) 5]
which we shall call vr . IND
s-v-pt(outcome(compile(s-r(e),t),%)) = Sl value(s-r(e)) ,El HYP
which we shall call Sr

So s—aé(outcome(compile(e,t),Q)) = VD _ 1.1
but Rlyaluele),§] = Rlassign(s-1(e),vr),E]
| = vp 3.4

And s-v-pt(outcome(compilele,t),#)) =/l(s—v—pt(éu);<s-l(e):s~ac(§u)>)
=/w(§P;<s—l(e):vr>)

but Slvalue(e) 51 = S[§§§ign(s—l(e),vr),§r] ' Y

/L(gp;<5~l(e):vr>) 3.4

This provesg case III.

IBM LAB VIENNA =18 = LN 25.3.050

Cage IV: is—suﬁ(e)

outcome(compile(e,t),n) = outcome(<mk—add(t°s~t—pt)>,§3) 4.1
where §3 = outcome(compile(s~2(e),t+1),52) _ M3.13
52 = outcome(<mk—sto(t°s—t—pt)?,Si) '
51 = outcome(compile(s-1(e),t),#)
Thus p(Ey3<s-ac:tes-t-pt(§,) * s—ac(§3)>) M3.12,M3.11

Now s-ac(outcome(compile(s-1(e),t),%)) = Rlvalue(s-1(e)),5]
which we shall call vsl . _ IND
s-v-pt(outcome(compile(s-1(e),t),4)) = S[value(s-1(e)),E]1 | HYD
which we shall call 351 -

€ = u(¥ j<tes-t-ptis-ac(f,)>) ' M3.12,M3.11
2 T 1

Therefore
4.5 s—v—pt(outcome(<mk—sto(t°s—t—pt)>,51)) = §81
and t°s—t—pt(outdome(<mk—sto(t°s—t—pt)>,gi)) = vsl

Now, since 5~v-pt(§2) = %ﬂ

S*ac(outcome(compile(s—Z(e),t+1),52)) = RExg;gg(s—2(eD,§;1] b.5
which we shall call vs 2 IND
s-v—pt(outcome(compile(s—?(e),t+1),52)) = ; HYD
S[value(s-Q(eD,Esij
which we shall call 582

also t°s~t~pt(outcome(compile(5—2(e),t+1),§2)) = e

So s-ac(outcome(compilele,t), %)) t°s~t~pt(53) + s-ae(éa) s

= ysl + vs?2

Rlvalue(e),§] = R[add(vsl,st),E%zj _ | 3.2
= vsl + vs? 3.5
s-v-pt(outcome(compile(e,t),§)) = 582
Slvalue(e),§] = sladd(vi,v2), 382] 3.3
' = g 2 3: 58
S

This proves case IV, which concludes the proof of Theorem 3.

IBM LAB VIENNA =:19 = LN 2543,050

5. SUMMARY

In addition to showing the convenience of the "V.M." for
defining languages, this note has considered its use as a basis
for proof work. The single abstract syntax and use of formal ob-
jects in a definition provide a base whose properties are already

known, and thus shorten proofs of this type,

The underlying concept of Vienna Method definitions is that
of a machine. Although such definitions are well suited to defining
algorithmic languages, proofs using them as a basis are less direct
since the initial steps must be deductions about the effect of
instructions. In particular, the useful Recursion Induction technique;
which relies on manipulation of (conditional) expressions, is no

longer directly applicable.

~

