
The

Ma t h e m a t i c a l Se m a n t i c s

of

Al g o l 60

by

Peter Mosses

Technical Monograph PRG-12

January, 1974.

Oxford University Computing Laboratory,
Programming Research Group,
45 Banbury Road,
Oxford.

© 1974 Peter Mosses
Oxford University Computing Laboratory,
Programming Research Group,
45 Banbury Road,
Oxford.

ABSTRACT

This paper describes the programming language ALGOL 60
(omitting own declarations) by using the Scott-Strachey mathematical
semantics. A separate commentary on this description is provided, in
cluding an indication of the correspondence between the semantic
description language and the λ-calculus.

Familiarity with previous publications on mathematical
semantics, e.g. [6,8,10,13], and with the λ-calculus, is assumed.

CONTENTS

References

Page

2

Introduction 3

Acknowledgements 4

Syntax 5

Domains 8

Semantic Functions 12

Auxiliary Functions 23

Index 27

[The commentary is bound separately.]

1

2

REFERENCES

[1] Allen, C.D.; Chapman, D.N.; & Jones, C.B., A Formal
Definition of ALGOL 60, IBM U.K. Technical Report TR12.105.

[2] Knuth, D . , The Remaining Trouble Spots in ALGOL 60,
Comm. ACM 10 (1967), pp. 611-618.

[3] Landin, P.J., A Correspondence Between ALGOL 60 and
Church's Lambda-Notation, Comm. ACM 8 (1965), pp. 89-101,
158-165.

[4] Lauer, P . , Formal Definition of ALGOL 60, IBM Lab. Vienna,
Technical Report TR.25.088 (1968)

[5] Naur, P. (Ed.) Revised Report on the Algorithmic Language
ALGOL 60, Comm. ACM 6 (1963), pp.1-17.

* [6] Scott, D . , Outline of a Mathematical Theory of Computation,
Proceedings of the Fourth Annual Princeton Conference on
Information Sciences and Systems (1970), pp. 169-176.

[7] Scott, D., Lambda Calculus and Recursion Theory, Private
Communication.

*[8] Scott, D; Strachey, C. Towards a Mathematical Semantics for
Computer Languages, Proc. Symposium on Computers and Automata.
Microwave Institute Symposia Series 21, Polytechnic Institute
of Brooklyn.

[9] Scott, D ; Strachey, C. Data Types as Lattices, (in
preparation).

*[10] Strachey, C , Varieties of Programming Language, Proc.
International Computing Symposium, Cini Foundation, Venice
(1972), pp. 222-233.

[11] Strachey, C. An Abstract Model for Storage, (in preparation).

[12] Strachey, C.; Wadsworth, C .P . Continuations : A Mathematical
Semantics with Full Jumps, Programming Research Group
Technical Monograph PRG-11.

[13] Tennent, R.D., Mathematical Semantics of Programming Languages
Technical Report 73-15 (May 1973) Dept. Computing & Information
Science, Queen's University, Kingston, Ontario.

[14] Utman, R.E. (Chairman ASA X3.4.2) Suggestions on ALGOL 60
(Rome) Issues, Comm. ACM 6 (1963) pp. 20-23.

* also available as a Programming Research Group Technical Monograph.

3

INTRODUCTION

This paper presents the 'semantic clauses' of ALGOL 60, using
the methods developed at Oxford by Professor C . Strachey and others.
The language described is that specified in the Revised Report on ALGOL
60 [5] (referred to below as "the Report"), except that 'own' declara
tions have been omitted - this will be discussed below.

The dividing lines between syntax and semantics, and semantics
and implementation, are rather hazy - especially those between the
latter two. The policy taken here has been to define primitive opera
tions, such as ApplyFn and Jump, in a minimal fashion, and to give only
axioms about the store-management functions. An implementation of this
semantics could stipulate new definitions of these operations, but
should preserve any theorems deducible from the original definitions
and axioms (i.e. under some suitable formalism, e.g. that of the
language LAMBDA [7]).

The mathematics and the comments upon it are presented
separately, with the aim of exhibiting the structure of the semantic
functions more clearly. In the commentary, ¶... refers to a section
of the Report. The commentary on a function is headed by the name of
that function, and an index is given to all functions, together with
an indication of their types.

As in any large program before 'debugging', there will pro
bably be several syntactical and semantical errors in this description.
However, the author hopes soon to have a 'compiler' for semantic des
criptions, the use of which should increase one's degree of belief
in their correctness - this project is to form part of the author ’s
thesis, to be submitted in supplication for the degree of D.Phil.

For the mathematical justification of the approach used here,
see [6, 8, 9, 10, 11]. Also of interest as tutorial papers, in using
and understanding semantic clauses, are [12, 13].

In connection with the omission of 'own’ declarations, see
[2, 14]. The doubts expressed in [14], about the lack of initialisation
of 'own' identifiers, seem well-founded, as the semantics of the ALGOL
60 construction is very untidy. A more natural construction might be
to allow initialised definitions in procedure headings, so that the scope

4

of the definition is the body of the procedure, whilst its extent
is the same as that of the procedure identifier. This suggestion
was made by Landin in [3], and can be incorporated into the given syn
tax and semantics at almost no cost.

This report is here put forward less as 'the last word' on
ALGOL 60 semantics, than as an experiment in using the Scott-
Strachey semantic method to describe practical programming languages.

Any comments on the report, or suggestions for its improvement,
will be very welcome.

ACKNOWLEDGEMENTS

The original inspiration for this report came from reading
[1] and [3], as it was felt that a shorter and less algorithmic
description of ALGOL 60 could be formulated in the Scott-Strachey
semantics.

Many thanks are due to the members of the Programming Research

Group, Oxford University, who studied earlier versions of this report
and made many helpful comments.

This report was written whilst the author was being supported
by an SRC Research Studentship.

5

SYNTAX

Prog → Sta

Sta → begin DecL DefL StaL end
→ begin StaL end
→ if Exp then Sta1 el se Sta2
→ Ide : Sta
→ goto Exp
→ Var := AssL
→ for Var := ForL do Sta
→ Ide(ExpL)
→ ∧

StaL → Sta ; StaL
→ Sta

DecL → Dec {; Dec}*| ∧

Dec → Type IdeL
→ Type IdeL [BdsL]

IdeL → Ide {, Ide}*

BdsL → Bds {, Bds}*

Bds → Exp1 : Ex p2

DefL → Def {; Def}* | ∧

Def → switch Ide := ExpL
→ Type Ide (ParL); Sta

ParL → Par {,Par}* | ∧

Par → Type Ide name
→ Type Ide value

6

Type → real | integer | boolean
→ array | Type array
→ procedure | Type procedure
→ label | string | switch

AssL → Var := AssL
→ Exp

ForL → For {, For}*

For → Exp
→ Exp1 while Exp2
→ Exp1 step Exp2 until Exp3

ExpL → Exp {, Exp}* | ∧

Exp → if Exp1 then Exp2 else Exp3
→ Exp1 Op Exp2
→ Op Exp
→ Id e (ExpL)
→ Ide[ExpL]
→ Ide
→ Const
→ Str
→ (Exp)

Var → Ide[ExpL]
→ Ide

Op → LogOp
→ RelOp
→ NumOp

LogOp → ≡ | ⊃ | ∨ | ∧ |

RelOp → < | < = | = | ≠ | > = | >

NumOp → + | - | x | / | ÷ | ↑

Const → true | false
→ P INT
→ P REAL

Str → P STRING

Ide → P IDE

DOMAINS

(i) Standard Domains:

I (identifiers)
N (integers)
0 (empty domain)
Q (strings)
T {true, false}

(ii) Syntactic Domains:

AssL
Bds
BdsL
Const
Dec
DecL
Def
DefL
El = Bds + Dec + Def + Exp + Ide + Par

Exp
ExpL
For
ForL
IDE (undefined)
Ide
IdeL
INT (undefined)
List = BdsL + DecL + DefL + ExpL + IdeL + ParL

LogOp
NumOp
Op
Par
ParL
Prog

9

REAL (undefined)
RelOp
Sta
StaL
Str
STRING (undefined)
Type
Var

(iii) Semantic Domains:

ActiveFn = MakeActiveFn(ResLocn:Locn, Fn : Fn)
Area (indicating locations in use)
Array = MakeArray{BdsL:Bds*, LocnL:Locn*)
Bds = MakeBds(LBd:N, UBd:N)
C = S → S
D = Locn + Array + Switch + Fn + ActiveFn + Rt + Label + String

+ Name
Den =< D,Typ>
E = D+V+Bds
Fn = Param* → W
G = C → C
K = E → C
Label = MakeLabel(ProperArea :Area, Code: C)
Locn (addresses of real, integer and boolean values)
M = {"ev" , "jv", "lv", "rv" }
Map (associating locations with values)

Name = M → W
Param = Typ → M → W
R (real numbers)

Rt = Param* → G
S = MakeS(SArea:Area, SMap:Map)
String = (ALGOL 60 strings)

Switch = N → W

10

Typ = Typ1 + Typ2 + ... + Typ7

Typ1 = MakeTyp (Main:X1 , Qual:0)

Typ2 = MakeTyp(Main:X2, Qual:Typ1)

Typ = MakeTyp (Main : X3 , Qual:0) 3
Typ4 = MakeTyp(Main: X4 , Qual:Typ1)

Typ5 = MakeTyp(Main: X5, Qual:0)

Typ6 = MakeTyp(Main:X6 , Qual:Typ1+Typ2+Typ3+Typ4+Typ5)

Typ7 = MakeTyp(Main: X7 , Qual:Typ4)

U = I → Den

V = N + R + T

W = K → C

X = X1 + X2 + ... + X7

X1 = {"real", "integer", "boolean", "num"}

X2 = {"array"}

X3 = {"label"}

X4 = {"fn"}

X5 = {"rt", "string", "switch"}

X6 = {"name"}

X7 = {"active"}

11

(iv) Denotation Domains of Bound Variables:

α : Locn

β : T
γ : G
δ : D
ε : Basic
ζ - untyped
η : Area
θ : C
ι : I
k : K + [E* → C]
(λ)
μ : M
ν : N
ξ : N + R
(o)
π : Param
ρ : U
σ : S

τ : Typ
υ : M → W
φ - untyped

χ : X
ψ : Bds
ω : W

t denotes a "deduction tree" belonging to a syntactic domain.

12

SEMANTIC FUNCTIONS

compiler λt:Prog. λρ0 . λθ0 .
let τ1 = MakeTyp("fn" , MakeTyp("real" , ?)) in
"let τ2 = MakeTyp ("fn", MakeTyp("integer", ?)) in
let ρl = ρ0[Abs/τ1/id"abs"]

[Sign/τ2/id"sign"]
[Sqrt/τ1/id"sqrt"]
[Sin/τ1/id"sin"]
[Cos/ τ 1/id"cos"]
[Arctan / τ 1 /id"arctan"]
[Ln/τ1/id"ln"]
[Exp/τ1/id"exp"]
[Entier/τ2 / id"entier"]

in
switch label of t in
§
case"Sta":P[[Sta]]ρlθ0

$

def P [[t : Sta]] ρθ =
let <ι*,τ*> = <I*lab[[t]], T*lab[[t]]> in

Area ||
λη . C[[t]]ρ[(fix δ*. G[[t]]ρ[δ*/τ*/ι*]ηθ) /τ*/ι*] || θ

def C*[[t :StaL]]ρθ = switch label of t in
§
case "Sta ; StaL" : C[[Sta]]ρ||C*[[StaL]] ρ || θ
case "Sta": C [[Sta]]ρθ$

def C[[t:Sta]]ρθ = switch label of t in

§
case"begin DecL DefL StaL end":

let <ι*1,τ*1> = (I*dec[[DecL]] , T * dec[[DecL]]> in
let <ι*2,τ*2> = <I*def[[DefL]]> T *def[[DefL]]> in
let < ι*3,τ*3> = <I*lab[[StaL]], T *lab[[StaL]]> in
Indistinct (ι*1 cat ι*2 cat ι*3) → ?,

Area ||
ληl . D*[[DecL]]ρ[?/ ?/ ι*1 cat ι*2 cat ι*3] ||
λδ*1. Area ||

λη2 . let ρ1 = ρ[δ*1/τ*1/ι*1] in
let θ1 = SetArea(η1){θ} in

C *[[StaL]]ρ l(fix δ*.let ρ2=ρ 1 [δ*/τ*2 cat τ*3/ι*2 cat ι*3] in
H *[[DefL]]ρ2 cat G *[[StaL]]ρ2η2θ1)

/ τ*2 cat τ*3 / ι*2 cat ι*3] || θ1

case"begin StaL end": C*[[StaL]]ρ θ

case"if Exp then Sta1 else Sta2" :
R[[Exp]]ρ "boolean" {λβ. β → C [[Sta1]]ρθ , C[Sta2]]ρθ}

case"Ide:Sta": let <δ,τ> = ρ[[Ide]] in Hop(δ)

case"goto Exp": J [[Exp]|ρ "l abel" || λδ. Jump(δ)

case"Var := AssL":
let χ = Main(T var[[Var]]ρ) in A[[t]]ρχ<> || θ

case"for Var := ForL do Sta":
let τ = T var[[Var]]ρ in Mainτ = "boolean" → ?,
F *[[ForL]]ρ(Mainτ)(V[[Var]]ρ τ)(P[[Sta]]ρ) || θ

case"Ide(ExpL)":
Coerce(ρ[[Ide]])(MakeTyp("rt",?))"ev" ||
λδ. ApplyRt (δ) (U*[[ExpL]ρ){θ}

case"∧ ": θ

$

13

14

def D*[[t:DecL]]ρκ = π (X2[[t]](λt1.D [[t1]ρ)) || κ

def D [[t :Dec]]ρκ = switch labelof t in
§
case"Type IdeL":

let τ = T[[Type]] in π (X1[[IdeL]] (λt1 . Newτ)) || k
case"Type IdeL[BdsL]":

let τ = T[[Type]] in

B [[BdsL]] ρ || λψ*. π(X 1[[IdeL]](λt1. NewArrayτψ*)) || k

$

def H*[[t:DefL]]ρ = X1[[t]](λt1.H [[t]]ρ)

def H [[t :Def]] ρ = switch labelof t in
§
case"switch Ide := ExpL":

let ω* = X 1[[ExpL] (λt1 . J [[t1]]ρ" label") in λν . ω*↓ν
case"Type Ide(ParL); Sta":

switch labelof "Type" of t in

§
case"procedure":

λπ*. λθ.

Area ||
λη. Q*[[ParL]]π* ||
λδ*. P [[Sta]]ρ[δ */T*par[[ParL]]/ I *par[[ParL]]] ||
SetArea(η) || θ

case"Type procedure":

let <δ,τ> = ρ[[Ide]] in
λπ*. λk .
Area ||
λη. New(Qualτ) ||

λα. let <δ1 ,τ1>=<MakeActiveFn(α ,δ), MakeTyp("active",τ)> in
Q * [[ParL]] π* ||

λδ*. P[[Stal]]ρ[δlpreδ*/τ 1 preT*par[[ParL]] I [[Ide]]preI*par[[ParL]]]||
Contents(α) ||
λβ. SetArea(η) || κ(β)

 $$

def Q*[[t:ParL]]π*κ = π(X3[[t]](π*)(Q)) ||κ

defQ[[t:Par]]πκ = switch labelof t in

§
case "Type Ide name": κ(π(T[[Type]]))
case "Type Ide value":

let τ = T[[Type]] in
Mainτ = "label" → π(τ)"jv" || κ ,

Mainτ = "array" → π(τ)"rv" || λδ. CopyArrayδτ || κ ,
π(τ)"rv" || λε. Newτ || λα. Setαε || κ(α)

$

def G *[[t:StaL]]ρηθ = switch labelof t in

§
case"Sta ; StaL": G[[Sta]]ρη(C*|StaL]]ρθ) cat G *[[StaL]]ρnθ
case"Sta": G [[Sta]]ρηθ

$

def G[[t:Sta]]ρ ηθ = switch labelof t in
§
case "begin DecL DefL StaL end": <>
case "begin StaL end": G*[[StaL]]ρ ηθ

case "if Exp then Sta1 else Sta2": G[[Sta1]]ρηθ cat G[[Sta2]]ρηθ
case"Ide: Sta": MakeLabel (η ,C[[Sta]]ρ θ) pre G[[Sta]]ρ ηθ
case"goto Exp":
case"Var := AssL":
case"for Var := ForL do Sta":
case"Ide(ExpL)" :
case"∧" : <>

$

def A [[t:AssL]]ρ χα*θ = switch labelof t in
§

case"Var := AssL" : L[[Var]]ρχ || λα. A [[AssL]] ρχ (α pre α*) || θ
case "Exp" : R[[Exp]]ρχ || λε. SetMany (α)(ε) || θ

$

15

16

def F*[[t : ForL]] ρχυγθ = X 4[[t]] (λt1 . F [[t1]] ρχυγ) || θ

def F[[t:For]]ρχυγθ = switch labelof t in
§
case "Exp": υ " lv" ||

λα. R[[Exp]] ρχ ||
λξ. Setαξ || θ

case"Exp1 while Exp2" :
fix θ'. υ "lv" ||

λα. R [E x p 1]] ρχ ||
λξ. Setαξ ||

R [[Exρ2]] ρχ ||
λβ. β → γ {θ' } , θ

case"Exp1 step Exp2 until Exp3":

ϑ "lv" ||
λα. R[[Exp1]] ρχ ||
λξ1 . Setαξ ||

fix θ'. π (υ "rv", R[[Exp2]] ρχ, R[Exp3]] ρχ) ||
λ(ξ,ξ2 ,ξ3) . Finished(ξ,ξ2 ,ξ3) → θ ,

γ {υ "lv" ||
λα'. π (υ " r v" , R[[Exp2]]ρχ) ||
λ<ξ',ξ2'>. Set(α ')(Plus(ξ' ,ξ'2) || θ'}

$

def I[[t :Ide]] = IdeVal("IDE"of t)
def I*dec[[t:DecL]]= X2[[t]](Idec)
def Idec[[t:Dec]] = X 1[[IdeL]](I)
def I*def [[t:DefL]] = X 1 [[t]](Idef)

def Idef[[t :Def]]=I[[Ide]]

def I *par[[t:ParL]] = X1[[t]](Ipar)
def Ipar[[t:Par]] = I[[Ide]]

def I*lαb[[T:StaL]] = switch labelof t in
§
case"Sta ; StaL" : Ilab[[Sta]] cat I *lab[[StaL]]

case"Sta": Ilab[[Sta]]

$

def Ilab[[t:S t a]] = switch labelof t in
§
case“begin DecL DefL StaL end": <>

case"begin StaL end": I *lab[[StaL]]
case"i f Exp then Sta1 else Sta2": Ilab[[Sta1]] cat Ilab[[Sta2]]
case"Ide: Sta": I [[Ide]] pre Ilab[[Sta]]
case"goto Exp":
case"Var := AssL" :
case"for Var := ForL do Sta":
case"Ide(ExpL) ":
case"∧ ": <>

$

def T[[t:Type]] = switch labelof t in
§

case"real":
case"integer":
case"boolean": MakeTyp(labelof t , ?)
case"array": MakeTyp(“array", MakeTyp("real" ,?))
case"Type array": MakeTyp("array",T[[Type]])

case"procedure": MakeTyp("rt", ?)
case"Type procedure": MakeTyp("fn", T[[Type]])
case"label":
case"string":
case"switch": MakeTyp (labelof t, ?)

$

def T*dec[[t :DecL]] = X2[[t]](Tdec)
def T dec[[t:Dec]] = let τ = T[[Type]] in X 1[[IdeL]](λt' . τ)
def T *def[[t:DefL]]= X1[[t]](Tdef)
def Tdef[[t :Def]]=T[[Typ e]]

def T *par[[t:ParL]] = X 1 [t]](Tpar)

def Tpar[[t:Par]] = switch labelof t in
§
case"Type Ide name": MakeTyp("name", T [[Type]])
case"Type Ide value": T[[Type]]

$

17

def T * [[t :StaL]] = switch labelof t in lab
§
case"Sta ; StaL": T lab[[Sta]] cat T * lab[[StaL]]
case"Sta" : T lab[[Sta]]
$

def T lab[[T:Sta]] = switch labelof t in

§
case"begin DecL DefL StaL end": <>
case"begin StaL end": T*lab[[StaL]]

case"if Exp then Sta1 else Sta2" : Tlab[[Sta1]] cat T lab[[Sta2]]
case:Ide: Sta": MakeTyp("label", ?) pre T lab[[Sta]]
case"goto Exp":
case"Var := AssL":
case"for Var := ForL do Sta":

case"Ide(ExpL)":
case"∧ ": <>

$

def T var[[t :Var]]ρ = let<δ,τ> = ρ[[Ide]] in BasicTyp(τ)

d e f T [[t:Op]] = switch labelof t inres
§
case"LogOp":
case"RelOp": MakeTyp("boolean", ?)

case"NumOp": MakeTyp("num", ?)

$

d e f T [[t :Op]] = switch labelof t in αrg
§
case"LogOp " : MakeTyp("boolean", ?)
case"RelOp":
case"NumOp": MakeTyp("num", ?)

$

18

19

def T [[t:Const]] = switch labelof t inconst

case"P REAL": MakeTyp("real", ?)
case"P INT": MakeTyp("integer", ?)
case"true"
case"false": MakeTyp("boolean", ?)

def V [[t :Exp]]ρτ1 μκ =
let χ1 = Main τ1 in
switch μ in
§
case"ev":

switch labelof t in
§
case"Ide": Coerce(ρ[[Ide]])τ1μκ
case"Str": χ1≠"string” → ? , κ (S[[Str]])

$
case "jv":

switch labelof t in
§
case"if Exp1 then Exp2 else Exp3" :

R[[Exp1]] ρ"boolean"{λβ.β → V[[Exp2]]ρ τ1μκ,V [[Exp3]]ρ τ1μκ
case"Ide[ExpL]":

χ1≠"label" → ?,Coerce(ρ [[Ide])(MakeTyp(" SWitch",?))"ev" ||
λδ. N 1[[ExpL]ρ || λv. δ(v){κ}

case"Ide": Coerce(ρ [[Ide]]τ1μκ

$
case"l v" :

switch labelof t in
§
case"Ide[ExpL]": Coerce(ρ[[Ide]]) (MakeTyp("array", τ1))"ev" ||

λδ. N *[[ExpL]]ρ || λv*. κ(Accessδv*)

case"Ide" : Coerce (ρ[[Ide]])τ1 μκ

$

20

case"rv":

let κ 1 = (χ1="real"v χ 1="integer") → κ°Transferχ1 , k in
switch labelof t in
§
case"if Exp1 then Exp2 else Exp3":

R[[Exp1]]ρ"boolean"{λβ.β → V [[Exp2]]ρ τ1μκ,V[Exp3]]ρτ1μκ}
case"Exp1 Op Exp2" :

let <χ,χ'> = <Main(T [[Op]]), Main(T [[Op]])> in
 res arg

~Goodχχ1 μ → ? ,
π(R[[Exp1]]ρχ',R[[Exp2]]ρχ ') ||κ1°W2[[Op]]

case"Op Exp":

l e t < χ , χ '> = (Main(T [[Op]]), Main(T [[Op]])>in res arg
~Goodχχ1 μ → ? ,

R[[Exp]]ρχ' || κ1°W1[[Op]]
case"Ide(ExpL)":

Coerce(ρ[[Ide]])(MakeTyp("fn",τ1))μ ||
λδ. ApplyFn(δ)(U*[[ExpL]]ρ){κ1}

case"Ide[ExpL]":
Coerce(ρ[[Ide]])(MakeTyp("array",τ1))μ ||

λδ.N*[[ExpL]]ρ || λv*.Contents (Accessδv*)| | κ 1

case"Ide":
Coerce(ρ[[Ide]])τ1μκ1

case"Const":
~Gοod(Main(T [[Const]]))χ1μ → ?, κ1 (K[[Const]])

const
case"(Exp)" :

V [[Exp]]ρτ1μκ$$

def W 2[[t:Op]](ε,ε 1) = switch label of (1 of t) in
§
case"≡": E q v (ε , ε)
case"⊃": Imp(ε,ε1)

case"∨": Or(ε,ε)
case"∧" : And(ε,ε1)
case"<": Lt(ε,ε1)
case"<=" : Le(ε,ε1)
case"=" : Eq (ε,ε)
case"≠": Ne(ε,ε1)
case ">=": G e (ε ,ε1)
case">": G t (ε, ε 1)

21

def W1[[t:Op]]ε = switch labelof(1 of t) in
§
case" " : Not ε
case"+": ε
case"-": Negate ε

$

def K [[t : Const]] = switch labelof t in

§
case"P REAL": RealVal("REAL"of t)
case"P INT": IntVa l("INT"of t)
case"true": true
case"false": false

$

de f J[[t :Expl]]ρχκ = V[[t]]ρ (MakeTyp(χ,?))"jv"κ
def L[[t:Var]]ρχκ = V[[t]]ρ(MakeTyp(χ ,?))"l v"κ
def P[[t:Exp]]ρχκ = V [[t]]ρ (MakeTyp(χ,?))"rv"κ
def B*[[t:BdsL]]ρ κ = π0(X1[[t]](λt1. B [[t 1]]ρ))| | κ
def B [[t:Bds]]ρ κ = π(N[[Exp1]]ρN [[Exp2]]ρ)| | κ °MakeBds
def N*[[t:ExpL]]ρ κ = π 0(X1[[t]](λt 1. N [[t]]ρ)| | κ
def N[[t:Exp]]ρκ = R[[t]]ρ"int"κ
def N 1[[t :ExpL]]ρκ = dimof t ≠ 1 → ? , N [[1 of t]]ρκ

def U*[[t:ExpL]]ρ = X1[[t]] (λt1. V[[t1]]ρ)
def S[[t:Str]] = StringVal("STRING" of t)

22

case"+": Plus(ε,ε1)
Minus(ε ,ε1)
Mult(ε,ε1)
RDiv(ε,ε 1)

let ε ' = RDiv(ε,ε1) in
Mult(Signε ', Entier(Absε')),

?

case"↑": IsIntε1 →
Eq (Z e r o ,ε1)→

{Ne(Zero,ε) → On e , ? },
{let ε ' = Iter(Int(Absε1))(λε2. Mult(ε2,ε)) (One) in
Gt(Zero ,ε1) → ε ', RDiv (One,ε ')},

IsRealε1 →

Eq(Zero,ε) →
{Gt(Zero,ε1) → Real(Zero),?},

Gt(Zero,ε) →
Exp(Mult(ε1 ,Lnε)),

$

? ,
?

case"-":
case"×":
case"/":
case"=": IsIntε ∧ IsIntε1 →

def X 1[[t :List]]φ = X 2[[t]](λt1. <φ[[t1]]>)
def X 2 [[t:List]]φ = CatMap (dimof t)(λν. φ[[ν of t]])
def X 3[[t :ParL]]π*φ = dimof t ≠ dimof π* → ? ,

CatMap(dimof t) (λν . <φ [[ν of t]](π*↓ ν)>)
def X 4 [[t :ForL]φθ = Compound(dimof t)(λν . φ [[v of t]])(θ)

23

AUXILIARY FUNCTIONS

(i) Defined:

def ApplyFn(δ:Fn)π*κ = δπ*κ
def ApρlyRt(δ :Rt)π*θ = δπ*θ
def Areaκσ = κ(SArea(σ))(σ)
def BasicTyp(τ) = switch Mainτ in
§
case"name":
case"active":
case"fn":
case"array": BasicTyp(Qualτ)
case"real":
case"integer":
case"boolean": τ
default: ?

$
def Coerce (δ,τ)τ1 μκ =

let <χ,τ'> = (Mainτ, Qualτ) in
let<χ 1,τ'1> = (Mainτ1,Qualτ1) in

switch χ in
§

case"name" : δ(μ){λδ'. Coerce (δ',τ')τ1μκ

case"active": μ="ev" ∨ μ="rv" → Coerce (Fnδ,τ')τ1κ,
μ="lv" → Coerce (Locnδ,Qua lτ')τ1κ,?

case"fn": μ="ev" ∧ χ1="fn" ∧ Good(Mainτ')(Main τ'1)(μ) → κ(δ),
μ="ev" ∧ χ1="rt" → κ(λπ*.λθ. δπ*{λε.θ}),
μ="rv" ∧ Good(Mainτ ')(χ1)μ → ApplyFn(δ)<>{ κ}, ?

case"array": (μ="ev"∨ μ="rv")∧ χ1="array" ∧ Good(Mainτ')(Mainτ'1)(μ)
→ κ(δ), ?

case"real":
case"integer":

case"boolean": μ="lv" ∧ Goodχχ1μ → κ(δ),
μ=" rv" ∧ Goodχχ1μ → Contentsδ{ k}, ?

case"label": μ="jv" ∧ χ1="label" → κ(δ), ?
case"rt" :
case"string":
case"switch": μ = "ev" ∧ χ1 = χ → κ(δ), ? $

def Finished (ξ1 ,ξ2 ,ξ3) = Lt(Mult(Minus(ξ3 ,ξ1), Sign(ξ2)), Zero)
def Goodχχ1μ = switch μ in

§
case"ev":
case"lv": χ=χ1
case"rv": χ="bool ean" → χ1 = χ,

χ="integer" ∨ χ="real" → (χ1="integer"∨ χ ="real"∨χ1="num"),
false

default: false

$

24

def Hop(δ:Label) = Code(δ)
def Int(ξ) = Entier(Plus(ξ,Half))
def Jump(δ:Label) = SetArea(ProperAreaδ) || Code(δ)
def SetAreaηθσ = θ(MakeS(η ,SMapσ))
def SetManyα*εθ = Compound(dimof α*)(λν . S et(α*↓ ν)(ε))(θ)
def Transferχξ =

χ="real" → Realξ
χ="integer" → Intξ, ?

(ii) Informally defined:

def CatMap(ν)(φ) = φ (1) cat φ(2) cat ... cat φ(ν)
def Compound(ν)(φ)(θ) = φ (1) || φ (2) || ... if φ(ν) || θ
def Indistinct (ι*) = let ν = dimof ι* in

(ι* 1 = ι*↓ 2) ∨ (ι*↓1=ι*↓3) ∨ ... ∨ (ι*↓1=ι*↓ν)
∨ (ι* ↓2=ι*↓ 3) ∨ ... ∨ (ι*↓ 2= ι*↓ ν)

∨ (ι*↓ (ν -1)=ι*↓ ν)

def Insideψ*ν* = let ν '= dimof ν* in

LBd(ψ*↓1) <= ν*↓1 <= UBd(ψ*↓1)
LBd(ψ*↓2) <= ν*↓2 <= UBd(ψ*↓2)

LBd(ψ*↓ν') <= ν*↓ν' < = UBd(ψ*↓ν ')

def Iter(ν)(φ:Basic→ Basic)(ε) = φ (φ (.. . φ (ε)...))
ν occurrences of φ .

def πω*κ = let ν = dimof ω* in

l e t p = SomePermof1to(ν) in
ω*↓p(1) || λζp(1). ω*↓p(2) || λζp(2)...ω*↓p(ν).||λζp(ν).κ(ζ1,ζ2,...,ζν)

def π 0ω*κ = let ν = dimof ω* in
ω*↓1 || λζ1 . ω*↓2 || λζ2 ω*↓ν || λξν . κ (ζl, ζ2, ...,ζν)

(iii) Restricting axioms:

We abbreviate as follows.

(a) φ- eq E asserts that the argument of φ is true, i.e. that

axiom E[T/φ] = E[K/φ]
where
T = λβ. β→ I, ?
K = λβ. I
I = λσ. σ

(b) axiom E1↔E2 denotes

axiom π <E1,E2> = π0< E 1,E2> (i.e. E 1 and E2 commute).

(c) Free variables are universally quantified over their domains.

25

26

φ-eq Newτ || λα. InAreaα || λβ. φ(β)
φ-eq Newτ || λα. Contentsα || λε. φ(ε=?)
φ-eq InAreaα || λβ. Newτ || λα1. φ(β ⊃ α≠α1)
φ-eq InAreaα || λβ. Setαε || Contentsα || λε φ(ε=ε1)
φ-eq InAreaα || λβ. Contentsα || λε. Contentsα || λε1. φ (ε=ε1)

φ-eq InAreaα || λβ. NewArrayτψ* || λδ. φ(β ⊃ (Insideψ*ν* ⊃ Accessδν*≠α))
φ-eq NewArrayτψ* || λδ. φ(BdsL(δ) = ψ*)
φ-eq NewArrayτψ* || λδ. φ((Insideψ*ν* ∧ Insideψ*ν*1 ∧ Accessδν* = Accessδν *1)

⊃ ν*=ν* 1)
φ-eq NewArrayτψ* || λδ. InArea(Accessδν*) || λβ. φ(Insideψ*ν* ⊃ β)
φ-eq NewArrayτψ* || λδ. Contents(Accessδν*) || λε. φ(Insideψ*ν* ⊃ ε= ?)
φ-eq InAreaα || λβ. NewArrayτψ* || λδ. φ (β ⊃ (Insideψ*ν* ⊃ Accessδν*≠α))
φ-eq CopyArrayδ1τ || λδ. φ(BdsL(δ)=BdsL(δ1))
φ-eq Copy Arrayδ1τ || λδ. InArea(Accessδν*) || λβ. φ(Insideψ*ν* ⊃ 3)
φ-eq CopyArrayδ1τ || λδ. Contents (Accessδv*) || λε. Contents(Accessδ1ν*)||

λε1. φ(Inside(BdsL(δ))(ν*) ⊃ ε=Trarsfer(BαsicTypτ)(ε1))
φ-eq InAreaα || λβ. CopyArrayδ1τ || λδ. φ(β ⊃ (Inside(BdsL(δ))(ν*) ⊃

Accessδν*≠α))

axiom α ≠ α 1 ⊃ Contentsα↔ λκ. Setα1ε{κ(?))
axiom α≠α1 ⊃ Contentsα ↔ InAreaα1
axiom α≠α1 ⊃ Contentsα↔ → Contentsα 1

27

INDEX

A [[t :AssL]]ρχα*θ = θ' 15, C14
B [[t:Bds]]ρ κ = θ 21, C17
B*[[t:BdsL]]ρκ = θ 21, C16
C[[t:Sta]]ρ θ = θ' 13, C9
C*[[t:StaL]]ρ θ = θ' 12, C9
D[[t:Def]]ρκ = θ 14, C11
D*[[t:DefL]]ρ κ = θ 14, C11
F[[t:For]]ρ χυγθ = θ ' 16, C14
F*[[t:ForL]]ρ χ υ yθ = θ' 16, C14
G[[t :Sta]]ρ ηθ = δ*:Label* 15, C13
G*[[t:StaL]]ρ ηθ = δ *:Label * 15, C13
H[[t:Dec]]ρ = δ :Fn+Rt+Switch 14, C12
H*[[t:DecL]]ρ = δ*:[Fn+Rt+Switch]* 14, C11
I[[t:Ide]] = ι 16, C15

Idec[[t:Dec]]
= ι* 16, C15

I *dec[[t:DecL]]
= ι* 16, C15

Idef[[t:Def]] = ι 16, C15
I*def[[t:DefL]] = ι* 16, C15

I lab[[t:Sta]]
= ι* 17, C15

I*lab[[t:StaL]]
= ι* 16, C15

Ipar[[t:Par]]
I *par[[t:ParL]]

= ι 16, C15
= ι* 16, C15

J[[t:Exp]]ρχκ = θ 21, C16
K[[t:Const]]κ = θ 21, C17
L[[t:Var]]ρχκ = θ 21, C16
N[[t:Exp]]ρκ = θ 21, C17
N*[[t:ExpL]]ρκ = θ 21, C17
N 1[[t:ExpL]]ρκ = θ 21, C17
P[[t:Sta]]ρθ = θ ' 12, C9
Q[[t:Par]]πκ = θ 15, C12
Q*[[t:ParL]]π*κ = θ 15, C12
R[[t:Exp]]ρχκ = θ 21, C16
S[[t:Str]] = δ:String 21, C17
T[[t:Type]] = τ 17, C15
T[[t:Op]] αrg

= τ 18, C15

28

T const[[t:Const]]
= τ 19, C15

Tdec[[t:Dec]] = τ* 17, C15

T * dec[[t:DecL]] = t* 17, C15
Tdef[[t:Def]] = τ 17, C15
T *def[[t:DefL]] = τ* 17, C15
T lab[[t:Sta]] = τ* 18, C15
T *lab[[t:StaL]] = τ* 18, C15
Tpar[[t:Par]] = τ 17, C15
T*par[[t:ParL]] = τ* 17, C15

T res[[t:OP]] = τ 18, C15

T var[[t:Var]]ρ = τ 18, C15
U*[[t:ExpL]]ρ = π* 21, C17
V[[t:Exp]]ρτμκ = θ 19, C15
W 1[[t:Op]]ε = ε' 21, C17
W 2[[t:Op]](ε,ε1) = ε' 21, C17
X 1[[t :List]]φ = ω* 22, C17
X 2[[t:List]]φ = ω* 22, C17
X 3[[t:ParL]]π*φ = ω* 22, C17
X 4[[t:ForL]]φθ = θ' 22, C17

Abs ξ = ξ ' - _

Accessδν*=α - C20
And (β,β1) = β' - -
ApplyFn (δ:Fn)π*κ=θ 23, C18
ApplyRt (δ:Rt)π*θ=θ' 23, C18
Arctan ξ = ξ ' - -
Area κ = θ 23, C18
BasicTyp τ = τ' 23, C18
BdsL (δ:Array) = ψ* 9, -
CatMap νφ = ζ* 24, -
Code (δ :Label) = θ 9, -
Coerce (δ ,τ)τ1μκ = θ 23, C18
Compound νφθ = θ' 24, -
Contents ακ = θ - C20
CopyArray δτκ = θ - C20
Cos ξ = ξ' _ -

Entierξ = ν - -

Eq(ξ,ξ1) = β - -
Eqv(β ,β1) = β' - -
Expξ = ξ' - -
Finished(ξ1 ,ξ2 ,ξ3) = β 24, C18
Fn (δ:ActiveFn) = δ:Fn 9, -
Ge(ξ,ξ1) = β - -
Goodχχ1μ = β 24, C18

Gt(ξ,ξ1) = β -
Half = ξ -
Hop(δ:Label) = θ 24, C18
IdeVal(t:IDE) = ι - C3
Imp(β,β1) = β' -
InAreaακ = θ - C20
Indistinct(ι*) = β 24
Insideψ*ν* = β 25, C20
Intξ = ϑ 24, C19
IntVal(t:INT) = ϑ - C3
IsIntξ = β - -
IsRealξ = β - -
Iterνφε = ε ' 25 -
Jump(δ:Label) = θ 24, C19
LBd(ψ) = ϑ 9 -
Le(ξ,ξ1) = β - -
Lnξ = ξ' - -
LocnL (δ :Array) = α* 9 -
Lt(ξ,ξ1) = β - -
Mainτ = χ 10 -
MakeActiveFn(δ:Fn,α)=δ 9 -
MakeArray(ψ*,α*) = δ 9 -
MakeBds(ν ,ν 1) = ψ 9 -
MakeLabel(η ,γ) = δ 9 -

MakeS (η ,φ :Map) = σ 9 -
MakeTyp(χ ,τ) = τ 10 -
Minus(ξ,ξ1) = ξ ' - -
Mult(ξ,ξ1) = ξ ' --

29

30

Ne (ξ,ξ1) = β - -
Negateξ = ξ' - -
Newτκ = θ - C20
NewArrayτψ*κ = θ - C20
Notβ = β' -

 One = ν -
Or (β,βι) = β' -
Plus(ξ,ξ1) = ξ' -

ProρerArea(δ:Label)= η 9 -
Qualτ = τ ' 10
RDiv(ξ,ξ1) = ξ' -
Realξ = ξ' -

RealVal(t:REAL) = ξ - C3
ResLocn(δ:ActiveFn)= α 9 -
SomePermof1to(ν) = ζ:N→N

SAreaσ = η 9 -
Setαεθ = θ ' -

SetAreaηθ = θ ' 24, C19

SetManyα*εθ = θ ' 24, C19
Signξ = ν - -

Sinξ = ξ' - -
SMapσ = φ :Map 9 -
Sqrtξ = ξ' - -

StringVal(t:STRING)= δ - C3
Transferχξ = ξ ' 24, C19
UBdψ = ν 9
Zero = ν

π ω*κ = θ 25, C19
π 0ω*κ = θ 25, C19

COMMENTARY

ON

The Mathematical Semantics

OF

ALGOL 60

by

[It is intended that this commentary be read in parallel with the
semantic clauses.]

Peter Mosses

Contents:
Page

Syntax-Commentary
Domains-Commentary
Semantic Functions-Commentary
Auxiliary Functions-Commentary

C2
C3
C6

C18

C2

The grammar is written in an abbreviated BNF, with syntactic
categories being denoted by words such as Prog, DecL. Subscripts
to these words, as in Sta1 , do not distinguish different categories.
∧ denotes the null category, and lexical categories, such as identifiers
and numerals, which are not defined here, are prefixed by P , e.g. P IDE.

∧ star (*) indicates that the preceding category, or group of
categories enclosed in braces ({,}), may be present zero or more times.

The grammar given is (very) ambiguous, but this doesn't matter
here, as we shall use it only to describe deduction trees, and not to
tell us how to form them. It was derived from an unambiguous grammar
by combining categories to remove semantic ally irrelevant information,
such as whether an expression Exp is a summand, multiplicand, or what
ever. This caused a reasonable contraction in the size of the grammar,
and in the number of syntactic categories.

Some additional transformations have been made to the original
ALGOL 60 grammar. These should perhaps he expressed formally, but
their descriptions are rather tedious, and need not detain us here.
Informally, the transformations are:

(i) if Exp then Sta becomes if Exp then Sta else ∧ ;

(ii) Empty parameter lists are added to identifiers occurring as
(procedure) statements, and to definitions of parameter-less procedures;

(iii) Parameter specifications are 'rationalised' to combine the
type (which must be specified) with the formal parameter name and
the name/value specification;

(iv) Declarations are sorted into two lists, DecL and DefL. DecL
contains the non-recursive declarations of type and array identifiers,
whereas DefL contains switches and procedures. The purpose of this
will become apparent in the definition of C in SEMANTIC FUNCTIONS.

(v) Comments are ignored; and parameter delimiters are denoted by
commas.

Note that no attempt is made to specify any type matching
at the syntactic level - this is done in the semantics, using the
environment parameter ρ.

SYNTAX - COMMENTARY

C3

(i) Standard Domains

These domains are associated with the interpretation of the
meta-language (used in SEMANTIC and AUXILIARY FUNCTIONS), rather than
that of the source language ALGOL 60. However, N and T are used here
also as semantic domains for ALGOL integer numerals and booleans
(true, false), respectively, so as to avoid the continual use of
transfer-functions. I i s a primitive domain, and its elements may be
tested for equality only.

(ii) Syntactic Domains

Most of the syntactic domains correspond to categories of the
same name in SYNTAX, and are specified by the grammar. The domains
should be regarded as domains of "annotated deduction trees", in the
words of [8], Ch.1. Here we shall take the annotation at a node of
a tree, to be the string (in Q) of symbols on the right-hand-side of
that production which was used in forming the node. The branches from
the node belong to domains corresponding to other syntactic categories.
To write out these domain definitions fully would give us, e.g.

DefL = node("Def{;Def}*")(Def pre Def*) + node("∧")<>

Def = node("switchIde:=ExpL")< Ide,ExpL) +

node ("TypeIde(ParL);Sta")<Type,Ide,ParL,Sta>

(using some extra notation). The annotations at the nodes are used
by the infix operator 'of', which is described in SEMANTIC FUNCTIONS-
COMMENTARY: Meta-language.

List, and the domain of list elements El, are introduced to
abbreviate the description of functionalities.

IDE, INT, REAL and STRING are, like the corresponding categories
in SYNTAX, undefined here. They are to be evaluated in an implementation
of these semantics by functions IdeVal: IDE→I; IntVal:INT→N ; etc.

(iii) Semantic Domains

Some notation has been introduced here, so that the structure
of a domain may be indicated without making arbitrary (and irrelevant)

DOMAINS - COMMENTARY

C4

choices about the ordering of its component domains. E.g., consider

ActiveFn = MakeActiveFn(ResLocn :Locn,Fn :Fn)

This is meant to indicate that MakeActiveFn is the constructor
function, and ResLocn ,Fn are the corresponding selector functions, for
elements of the domain ActiveFn.

Area

This domain might contain information about which locations
(of Locn) are in use, i.e. have been supplied by an application of
New (or of NewArray). The function SetArea 'reclaims' locations which
are no longer accessible through program variables - this is not
strictly necessary for ALGOL 60, and SetArea may be re-defined to have
no effect on the store.

As the ALGOL 60 version of 'own' variables is not described
in this semantics, further specification of the store S could give
Locn the structure of a stack, and then Area would be just the 'top-of-
stack pointer'.

Map

Like Area, Map is not further specified, although it is implicitly
restricted by the 'axioms' of AUXILIARY FUNCTIONS, (iii).

R
String

These domains are not restricted. See ¶3.3.6 and ¶2.6.3.

X1, etc.
Literal strings are used to denote elements of these "known"

finite domains. This enables basic symbols of the source language
to be mentioned, without disturbing the lexical conventions of the
meta-language.

(iv) Denotation Domains

These indications of the 'types' of bound variables are given
only as an aid to the reader, and their mathematical significance is
not exploited in this paper. The types are further indicated in the
bound-variable lists of λ-expressions and defined functions.

With the aid of these denotation domains (of the metalanguage),

C5

the type of any function may be found from the INDEX, e.g. we get
A : [AssL→ [U→ [X→ [Locn*→ [C→C]]]]].

Note: For the purposes of this paper, each domain is assumed to in
clude an "error found" element, denoted by '?'. A domain is in fact
a lattice, in accordance with [8], etc., and the idea is for '?' to
be incomparable with all elements of the domain (except with ⊥ and ⊤ ,
of course). '?' should be subscripted with an indication of its
domain, but this is usually clear from the context and so is omitted
in this semantics. It is convenient to be able to test x=?, where,
for example, x might be the 'looking-up' of an identifier in an
environment.

C6

SEMANTIC FUNCTIONS - COMMENTARY

Meta-language:

The functions are defined using a variation of the 'semantic
clauses' notation of Strachey (e.g. in [8, 12]). The main differences
are the disappearance of some special operators, and the introduction
of a more structured definitional form. The result of the latter has
been to make the meta-language look much more like a programming lan
guage itself - the implementation of this language is to form part of
the author's D.Phil, thesis. However, it should be stressed that
the whole definition is just as mathematically-based and referentially
transparent as before.

An informal guide to the metalanguage is given below. The reader
is warned that the meta-language is still evolving, and that the
variant used here is experimental.

α , α1,α',t... are bound variables
α *,α* 1... are bound variables denoting tuples.

(N.B. Star (*) has no operational significance in
this paper.)

A,Aabc,A 1,... are semantic functions,
A,A*abc,... are semantic functions on a List.
A,ABc123 are auxiliary functions.
A,A1,...)

) are semantic domainsa* ,a*1,...

? is the "error found" element (of the appropriate domain).

<> is the empty tuple
< a1 ,...,am> denotes a tuple, a* say, of known dimension,
dimof a* = m
a*↓i = ai
a*cat<b1,...,bn> = < a1 ,...,am ,b1,...,bn>
e pre t = <e> cat t

λx.e, λx:A.e, λ<x1 ,x2> .e are λ-expressions, optionally typed,
fix x . e is the minimal fixed point of e with respect to the bound
variable x. (An earlier notation was Y(λx.e).)

C7

fxyz = ((f(x))(y))(z))
a||b||c = a{b{c}}) abbreviations to avoid a multitude of brackets

Note: || is less binding than juxtaposition and →, but does not
terminate a λ-expression.

(e) ,{e} are used for parsing purposes, and to help readability,
e(a1 ,. . . ,am) = e<a1,...,am>
[[e]] - e must denote a deduction tree. See 'of' below.

If t denotes a deduction tree, then:
labelof t gives the annotation at t ,
dimof t gives the number of branches from t (c.f. dimof α*),
ν of t gives the ν-th branch of t, and
"ABc" of t where 'ABc' is a syntax category, gives the 'correct' branch
of t - this is deduced from the labelof t and takes any subscript on
'ABc' into account.

N.B. Throughout the definitions of the semantic functions,
[["ABc" of t]] is abbreviated to, simply, [[ABc]]. The longer form is
used when the denotation of the parameter deduction tree is not
(literally) t.

id "abc" converts from Q to I

ρ[δ/τ/ι] =ρ ' , where ρ '[[ι ']] = <δ,τ> if ι ' = ι
ρ[[ι ']] if ι' = ι

ρ[δ*/τ*/ι*] = ρ[δ1/τ1/ι1][δ2/τ2/ι2]...[δn/τn/ιn]
where δ* = <δl ,...,δn>, etc., but only if ι1 ,...ιn, are
distinct.

e1→e2 ,e3 = (e2 if e1 = true
(e3 if e1 = false
(? if e1 = ?T

switch a in
§ case b 11: case b12:...case b1n : e1

case b : ... case b> : emm 1 mn mm
default: em+1

$

C8

- the expressions bij are tested sequentially for equality with a,
and if a match is found the result of the switch is the corresponding
ei. If no match is found, the result is em +1 . The default case is
in fact optional, and its omission is equivalent to specifying default
Note the bracketting use of § and $.

let x=e1 in
let <y,z> = e2 in e3
- non-recursive definition of local variables, equivalent to
(λx.(λ<y,z>.e3)(e2))(e1).

compiler e
def A[[t]]αβγ = e1

def Abcαβγ = en

- the complete mutually-recursive definition of the semantic and
auxiliary functions, specifying formal parameters. The scope of the
functions includes e , the body of compiler, which is the main semantic
function transforming a program's deduction tree into its mathematical
value.

C9

ALGOL 60 Semantic Functions:

compiler...
ρ0 is to contain any input/output procedures, and extra

system procedures.

let ρ1=ρ0[...
Here, the 'standard' procedures of ALGOL 60 are added to ρ0.

Abs, Sign, etc. are elements of Fn, hence also of D. Note that 'sin'
may be re-declared to be something completely different, in the
source program t.

case"Sta":...
A valid element of Prog has "Sta" as its label. P deals with

any labels occurring outside the outermost block of the program.

def P[[t :Sta]]ρ θ = ...
ι* is to be the list of label identifiers declared in t, but

not inside any inner block. See I*lab.

τ* is to be the list of their types (all MakeTyp("label",?)).
See T* .lab

G gives a list of the corresponding entry points, incorporating
in them η as the ProperArea.

fix is used, as labels are inherently recursive.

defC*[[t:StaL]]ρθ = ...
Continuations are used, to compound the effects of the state

ments of a sequence whilst allowing jumps out of the statements. See
[12] for a description of the general method of using continuations.

defC[[t:Sta]]ρθ = ...
This adds the effect of a single statement, to that of θ.

§
case"begin DecL...

This is, thankfully, the most complicated case. It would
be even worse without the assumed re-ordering of the declarations into
the two lists DecL and DefL.

Note that array bounds in DecL are not simply evaluated in ρ
(see D *,D). This is to conform with ¶5 and ¶5.2.4.2, in that

CIO

integer n; n:=10;
begin array A[1:n]

procedure n(x);...

is not to be allowed.

λη1.D*...
The area is found so that, on a normal exit from the block,

locations which have become inaccessible through program variables
may be 'garbage-collected' using SetArea,

λη2.let ...
The area η2 is incorporated into the values of labels, to

enable 'garbage-collection' after jumping out of an inner block.
See Jump.

case"begin StaL end":
Here, begin and end are used only as brackets, and do not

affect meaning or scopes.

case"if Exp then...
The Exp is evaluated 'first'. Note that the effect of
if Exp then Sta else ∧;

is not necessarily null when the value of Exp is false (in T), in
contrast to ¶4.5.3.2. It should not be considered a disadvantage
of the semantic clauses, that one cannot easily describe in them
(without explicitly copying σ) the semantics given in ¶4.5.3.2, which
requires the reversibility of any side-effects occasioned by the eval
uation of Exp.

case"Ide: Sta":
It can be seen that when C is applied to t:Sta and ρ , all

the labels declared in t will have been added to p already. Hence
the continuation from the label, which forms part of the value of a
label, may be found from ρ[[Ide]] here.

Hop is like Jump , but omits the (unnecessary) resetting of the
store area.

C11

case"goto Exp":
J evaluates a designational expression.

case"Var := AssL":
The type of Var is "manifest", i.e. ascertainable without

applying the program to a store σ - without "running" the program. A
insists that all the left-parts of AssL are of the same type as Var;
a n d R, when called from A, inserts a transfer function, converting
the expression to this type.

case"for Var := ForL do Sta":
Again the type of Var is manifest, and must here be arithmetic.

Var is "called by name" - note that V[[Var]]ρτ has not been applied to
k or σ. Main selects part of a (structured) type, as does Qual later.

case"Ide(ExpL)":
Note that Coerce allows Ide to be a function designator - see

[2], Correction 4.

case"∧" :
A dummy statement adds nothing to the continuation parameter θ.

$

def D*[[t:DecL]]ρ κ=...

X 2[[t]]φ maps elements of t:List with φ.
π (ω*)κ evaluates the ωi in an unspecified order, and applies

κ to the (possibly) re-sorted list of results.

def D [[t :Dec]]ρ κ=...

§
case"Type IdeL":

Declaration of type identifiers.

case"Type IdeL[BdsL]":
Declaration of array identifiers. Note that BdsL is only

evaluated once.

$
def H*[[t:DefL]]ρ =...

This function produces a tuple of switches, routines and
functions, to be added to an environment. See C, case"begin DecL...".

C12

def H [[t:Def]]ρ=...
§
case"switch Ide := ExpL":

Expressions in ExpL are evaluated only after they are selected
by a use of the switch.

case"Type Ide (ParL); Sta":
§
case"procedure":

Q * sets up call-by-value parameters.
P sets up labels and calls C.
Area is found to facilitate re-use of locations which have

become inaccessible, after a normal return from the procedure body.

case"Type procedure":
The location α will be set when Ide (above) appears as the

left-part of an assignment statement in Sta. The type of δ is tagged
with "active" to distinguish the function designator inside and outside
Sta.

$$

def Q*[[t :ParL]]π*κ=...
checks that there is the same number of actual parameters

in π*, as formal parameters in t.
π sets up the parameters in some unspecified order.

def Q[[t:Par]]πκ=...
§
case"Type Ide name":

When used, the parameter will be coerced to T [[Type]] , see V .
Note that the Type has to be specified. This implies that

one cannot write, e.g., the following (new?) horror:
integer procedure f ; f := next;
integer procedure g; if next=1 then g:=next ;
procedure h(x); x;

h(if next=2 then f else g);
which, by ¶4.7.3.2, is equivalent to

if next=2 then f else g; .
Thus, although an arbitrary expression may not stand alone as a state
ment, a conditional expression has become, through the call by name

C13

Incidentally, one might perhaps invoke ¶5.4.4 to invalidate
the above example. This illustrates what seems to be the cause of
several ALGOL 60 ambiguities: the prescription of several clashing
universal rules, with no indication of the intended order of their
application. Note that this problem does not occur in the mathematical
semantics.

case"Type Ide value":
CopyArray inserts transfer functions between real and integer

values, if necessary. This is so that subscripted variables may
conform to ¶5.1.3, and to allow system routines to accept real or
integer arrays indifferently.

$

def G*[[t:StaL]]ρηθ=...
This function gives a tuple of the label values declared in

t. Although it takes a continuation θ, it is not applied to the store.

def G[[t:Sta]]ρηθ= ...
§
case"begin DecL...

Label scopes do not extend out of a block.

case"begin StaL end":
A compound statement does not restrict label scopes,

case"if Exp then...
Jumps may be made into the arms of a conditional statement,

case"Ide: Sta":
Each label is constructed from the local area η, and the con

tinuation through the rest of the program. In fact the latter is
usually just the continuation to the next label, followed by a Hop
- see C .

case"goto Exp":

case"Var := AssL":

case"for Var := ForL do Sta":
Jumps into a for-statement are prohibited by restricting the

scopes of the labels in Sta. This is slightly at variance with ¶4.6.6.

mechanism, a conditional statement!

C14

case"Ide(ExpL)":

case"∧":
Note that label values are not extracted from procedure

declarations.

$

def A[[t:AssL]]ρ χα*θ=...
χ is the type to which the left-parts must conform, and α*

accumulates the locations found by evaluating the left-parts.
§

case"Var := AssL":
The left-parts are evaluated in left-to-right order,

case"Exp":
The right-part is evaluated, and the (coerced) value is

assigned to all the previously-found locations in α*.

$

def F * [[t :ForL]]ρ χυγθ=...
Contrary to the Report, 'the' controlled variable is not un

defined after exit due to exhaustion of the for-list. To make it un
defined would need another evaluation of 'the' variable, which might
be of significance if it is a subscripted variable. See [2], Ambiguity:

def F[[t:For]]ρχυγθ=...
§

case"Exp":

case"Exp1 while Exp2":

case"Exp1 step Exp2 until Exp3":
The "conservative" interpretation of the Report.
An alternative is to use υ to evaluate α in F * , omitting

υ"l v" || λα. throughout, and replacing υ"rv" by Contents α. Then
the location α may be set to be undefined after a controlled exit (in F *)

$

C15

def I ...
def I *dec ... c.f. D *

def Idec...
d e f I*def... c.f. H*
def Idef ...
def I*par ... c.f. Q*
def I ... par
d e f I*lab... c.f. G *

def Ilab...

def T ...
def T * ... c.f. I* dec dec
d e f T*dec...
de f T*def... c.f. I*def
d e f T def...
def T*par ... c.f. I* par
def T par
def T * lab ... c.f. I*lab

def T var[t :Var]]ρ...
Used in C , case"Var := AssL", case"for Var := ..."

def T res[[t :Op]]
def T arg[[t :Op]]

Used for type-checking in V, case"Exp1 Op Exp2", case"Op Exp".

def T const[[t :Const]]
Used only in V, case"Const".

def V[[t:Exp]]ρτ1 μκ=.. .
§
case"ev":

This mode is used when an element of
Array + Switch + Fn + Rt + String

is required.

case"jv":
Used for designational expressions, giving an element of Label,

case"lv":
Used on left-part expressions, giving a result in Locn.

C16

case"rv":
Transfer χ1 will only be inserted at the outermost level of

an expression, see T arg .
§
case"if Exp1 then Exp2 else Exp3" :

The program will not 'fail at run-time' if, say, Exp2 is of the
wrong type, but only Exp3 is used.

case"Exp1 Op Exp2":
The Report leaves unspecified the order of evaluation of

operands - so does the use of π here.

case"Op Exp":
Op will be +, - or (logical negation),

case"Ide(ExpL)":
Parameter-less function designators are catered for by case"Ide",

below.

case"Ide[ExpL]":
Coerce allows a real array to be used when an integer value

is wanted, and vice versa, but does not insert the transfer function
itself.

case"Ide":
Here we deal with parameter-less function designators, as

well as with simple variables.

case"Const":
This gives the value associated with a numeral or logical value.

case" (Exp)":
Note that this case only appears under case"rv".

$$

def J[[t :Exp]]ρχκ=...
def L [[t :Var]]ρχκ=...
def R[[t:Exp]]ρχκ=...

These functions just abbreviate standard calls of V.

def B *[[t:BdsL]]ρκ=...

π 0 evaluates a list in left-to-right order, see ¶4.2.3.

C17

def B...
def N*[[t:ExpL]]ρκ=...

The order of evaluation in N * is again left-to-right - assuming
that ¶4.2.3.1 applies to variables in arithmetic expressions as well.

def N . ..
def N1[[t:ExpL]]ρ κ=...

This function is used to evaluate a switch designator, which
may have only one "subscript".

def U *[[t:ExpL]]ρ=...
The actual parameters in t are partially evaluated in the

correct environment ρ .

def S . . .
def K ...
def W 1...
def W 2...

def X1[[t :List]]φ=...
This is like X 2 , but φ, when applied to an element of t, gives

only a single value, not a tuple.

def X 2[[t:List]]φ=...
φ is applied to each element of t, and the resulting tuples

are concatenated.

def X 3[[t:ParL]]π*φ=...
This function is used only in Q * .

def X 4[[t:ForL]]φθ= ...
Used only in F * .

C18

AUXILIARY FUNCTIONS - COMMENTARY

(i) Defined Functions

To some extent these functions are defined rather arbitrarily.
However, the attempt has been made to keep them as simple as possible.

def ApplyFn...
def ApplyRt...

def Areaκσ=...
This, and SetArea, are the only defined functions which need to

manipulate σ explicitly. Note that SMaρ(σ) is not duplicated. The
copying of SArea(o) could be justified by formulating a model for
storage for ALGOL 60, in which Locn=N, Area=N and Map=N→V, and by
defining New, Contents, InArea, etc. to satisfy the restricting
axioms of (iii).

def BasicTyp...

def Coerce(δ,τ)τ1μ= ...
This function deals with most of the type-checking on identi

fiers, and effects the various coercions specified by the Report.
The only point of divergence from (one reasonable interpretation of)
the Report is in connection with "active" functions, i.e. function
designators inside the definition of that same function. It is caused
by the fact that the semantics presented here give ¶4.7.3.2 precedence
over ¶5.4.4 (which is incorrect anyway - [2], Correction 4). Briefly,
a routine r(f) may specify f to be, e.g., an integer, called by name,
and then proceed to assign to it. ¶5.4.4 indicates that r(g) may be
called from inside the definition of g - for substitution of the body
of r will give a legal ALGOL 60 program!

def Finished...
def Good...

def Hop(δ :Label)=...
This function is used to effect a Jump, when it is known that

the area will not need changing.

C19

def Int...

def Jump(δ:Label)= ...
The incorporation of the local store area into label values

facilitates 'garbage collection'. See Area.

def SetAreaηθσ=...
See DOMAINS-COMMENTARY, (iii), Area.

def SetManyα*εθ=...
The order of setting is irrelevant.

def Transferχε=...
This function is called only from V , case"rv". It is needed

because the types of expressions involving '↑' may not be ascertainable
before 'running' the program.

(ii) Informally defined

A looser notation is used here, as we are not concerned with
the implementation of these functions. The only point of note is:

def πω*κ=...
This operator was introduced to describe some features of

ALGOL 60 which are intentionally (?) left unspecified by the Report,
e.g. the order of evaluation of the operands in an expression.

SomePermof1to(ν) gives an unspecified permutation of 1,2,...,ν ;
and successive applications of this function should be regarded as
giving (possibly) distinct permutations. Hence a degree of arbitrariness
cannot be eliminated from the semantic value of a source-language
program, when that program 'depends' on an unspecified part of ALGOL 60.

def π 0 ω*κ=...
This version of π evaluates the elements of ω* in left-to-right

order.

C20

(iii) Restricting axioms

The functions restricted are as follows.

Accessδν*=α
δ is an array, and ν* is a subscript list. The array contains

its bounds-list, which acts as its "dope vector".

Contentsακ=θ
κ is applied to that element of V which is currently associated

with α by the store.

CopyArrayδτκ=θ
A new array, with the same bounds-list as δ , is produced, and

its locations are set to the contents of the locations of δ , these
values being transferred to Main(τ).

InAreaακ=θ
κ is applied to the result of testing whether or not α is in

the current area of the store. This function is redundant in ALGOL 60
without own declarations, as extent is the same as scope.

Insideψ*ν*=β
This function checks that subscripts are within array bounds.

Newτκ=θ

κ is applied to an unused location, suitable for contents
described by type τ.

NewArrayτψ*κ=θ
κ is applied to an array, constructed from a suitable number

of unused locations and the bounds-list ψ*.

Note: The form of the axioms is new, and not entirely satisfactory.
However, it was thought better to include this section with the
ALGOL 60 description, rather than to omit it, or wait until a better
formalism is found.

	The Mathematical Semantics of Algol 60
	Abstract
	Contents
	References
	Introduction
	Acknowledgements
	Syntax
	Domains
	Semantic Functions
	Auxiliary Functions
	Index

	Commentary on the Mathematical Semantics of Algol 60
	Syntax - Commentary
	Domains - Commentary
	Semantic Functions - Commentary
	Auxiliary Functions - Commentary

