
T E C H N I C A L R E P O R T

T R 2 5 . 0 8 8

1 3 D e c e m b e r 1 9 6 8

F O R M A L D E F I N I T I O N O F

A L G O L 6 0

P. L A U E R

L A B O R A T O R Y V I E N N A

J

18 A p r i l 1969

E R R A T A SHEET

for T R 25.088, "Formal D e f i n i t i o n of A l g o l 60", b y P . E . L a u e r

P a g e F o r m u l a L i n e (← = "to b e r e p l a c e d by")

5-2 2 : h y p h on ← h y p h e n

5-6 (11) : p r i o r i t i e s sh o u l d be as fo llo ws

1 ← 7

2 ← 8

3 ← 9
4 ← 1

...

9 ← 6

5-9 (25) : B L O C K [t] ← B L O C K [t] ⇒

5-9 (26) 1 : D E C L [t] ← D E C L [t] ⇒ λ

2 : D E C L [t] ⇒ λ ← D E C L [t] ⇒

5-12 (61) : to be r e p l a c e d b y the f o l l o w i n g schema:

i s - l - d u m m y - s t ∘s-else-st(t) & i s - l - c o n d - s t ∘s-then-st(t):

CO N D S T [t] ⇒

if E X P R [s - d e c i s i o n (t)] t h e n L S T [s - t h e n - s t (t)]

 (is-l -c ond -st ⋁ is -l-for-st) ∘s-then-st(t) :CO N D S T [t] ⇒

if E X P R [s - d e c i s i o n (t)] th en L S T [s - t h e n - s t (t)]

else L S T [s - e l s e - s t (t)]

5-13 (64) 13 : lsit ← list
 :

(1≤ i ≤length ← (∀ i) (1 ≤ i ≤ l e n g t h

17 : E X P R L [t] ← E X P R [t]

2 : D E C L [t] ⇒ λ ← D E C L [t] ⇒

5-12 (61) : to be r e p l a c e d b y the f o l l o w i n g schema:

i s - l - d u m m y - s t ∘s-else-st(t) & i s - l - c o n d - s t ∘s-then-st(t)

CO N D S T [t] ⇒

IBM LABORATORY VIENNA, Austria

FORMAL DEFINITION OF ALGOL 60

by

P.E. LAUER

ABSTRACT

This report constitutes a formal definition of the syntax and semantics of the
algorithmic language ALGOL 60. The method is based on an abstract syntax speci
fying programs in an abstract form. These are interpreted by means of an abstract
machine characterized by the set of the states it can assume and its state transi
tion function. An abstract program specifies an initial state of the machine and
the subsequent behaviour of the machine is said to define the interpretation of
the given abstract program. The concrete representation of abstract programs as
character strings is achieved by means of a representation system.

Locator Terms for IBM Subject Index

ALGOL 60
Formal Definition
Syntax
Semantics
21 PROGRAMMING

TR 25.088
13 December 1968

1

C O N T E N T S

‘ Page

PREFACE , ACKNOWLEDGEMENT, REFERENCES iii

1. INTRODUCTION 1-1

1.1 Notation and Conventions 1-1
1.1.1 Selectors 1-2
1.1.2 Arithmetic Functions 1-2

2. THE SYNTAX OF ABSTRACT PROGRAMS 2-1

2.1 The Structure of Programs 2-2
2.2 Declarations 2-2
2.3 Data Attributes 2-4
2.4 Statements 2-4
2.5 Expressions 2-6

3. STATE COMPONENTS AND COMPUTATION OF THE ALGOL 60 MACHINE 3-1

3.1 The Computation of the Machine 3-1
3.1.1 The Control C 3-2
3.1.2 The Language Function of the Machine 3-2

3.2 Flow of Control 3-3
3.2.1 The Dump D 3-3
3.2.2 The Control Information CI 3-4

3.3 Associating Identifiers with Meaning 3-5
3.3.1 Creation of Unique Names 3-5
3.3.2 The Environment E 3-6
3.3.3 The Denotation Directory DN 3-7

4. THE INTERPRETATION OF ABSTRACT PROGRAMS 4-1

4.1 The Treatment of Program Errors 4-1
4.2 The Initial Actions of the Interpreting Machine 4-2
4.3 Metavariables and Abbreviations 4-4
4.4 Interpretation of Blocks and Procedure Statements 4-5

4.4.1 Blocks 4-6
4.4.2 Procedure Statements 4-8

Page

4.5 Interpretation of Statements Influencing the Flow of Control 4-12
4.5.1 Statement Lists and Single Statements 4-13
4.5.2 Conditional Statements 4-15
4.5.3 For Statements 4-16
4.5.4 Goto Statements 4-18

4.6 The Manipulation and Modification of Data 4-22
4.6.1 The Assignment Statement 4-22
4.6.2 Evaluation of Expressions 4-25

5. THE DEFINITION OF A CONCRETE REPRESENTATION OF ABSTRACT PROGRAMS 5-1
«

5.1 The Generalized Representation System 5-1
5.2 A Representation System for Abstract Programs 5-2

5.2.1 Auxiliary Functions and Predicates Applying to
Arguments of the Conditional Replacement Schemata 5-4

5.2.2 The Conditional Replacement Schemata of the
Representation System 5-8

IBM LAB VIENNA iii TR 25.088

PREFACE

This report constitutes a complete formal definition of the programming language
ALGOL 60 as specified by the "Revised Report on the Algorithmic Language ALGOL 60" /l/
and replaces the two Lab Reports /3/ and /4/. The method and notation used in this formal
definition was developed by the IBM Laboratory Vienna, Austria, in the process of com
pleting a formal definition of PL/I. Full historical details about the origins and develop
ment of the method can be found in the "Method and Notation for the Formal Definition of
Programming Languages" TR 25.087 /2/, where the general aspects of the method, i.e., those
not depending on its application to any particular programming language were developed in
detail. A knowledge of /2/ is presupposed and the method used in the present report is
only explained with respect to its departures, either by generalization or specialization,
from the method presented there.

ACKNOWLEDGEMENT

Thanks are due to Mr. P. LUCAS for the many clarifying discussions especially with
respect to the general form of the present report. Special thanks to Dr. K. ALBER,
Dr. H. BEKIĆ and Mr. M. FLECK who have both contributed considerably to the present re
port in the form of discussions and concrete suggestions for modelling specific aspects
of ALGOL 60. Thanks also to Mr. C. JONES for his careful reading of the entire manuscript
and his helpful suggestions with respect to the final form of the report.

REFERENCES

/l/ NAUR, P. (Ed.): Revised Report on the Algorithmic Language ALGOL 60.-
Comm. ACM, Vol. 6 (1963) No. 1; pp. 1-23.

/2/ LUCAS, P., LAUER, P., STIGLEITNER, H.: Method and Notation for the
Formal Definition of Programming Languages.-
IBM Laboratory Vienna, Techn. Report TR 25.087 (June 1968).

/3/ LAUER, P.: Abstract Syntax and Interpretation of ALGOL 60.-
IBM Laboratory Vienna, Lab. Report LR 25.6.001 (April 1968).

/4/ LAUER, P.: Concrete Representation of Abstract ALGOL 60 Programs.-
IBM Laboratory Vienna, Lab. Report LR 25.6.002 (May 1968).

IBM LAB VIENNA 1-1 TR 25.088

1. INTRODUCTION

The basis of the formal definition of ALGOL 60 presented in this report is an ab
stract syntax. This consists of the set of predicate definitions given in chapter 2. The
predicates characterize a class of abstract objects which is identified with a class of
abstract programs.

There is a mapping from the class of abstract programs to the class of correspond
ing concrete representations as character strings producible by the syntactic rules in
Backus Normal Form (BNF rules, for short) given in /l/. This mapping is realized by means
of a representation system as defined in section 3.2.1 of /2/. The specific representa
tion system given in chapter 5 of the present report does not yield concrete representa
tions for all the abstract programs. This is so because the abstract syntax defined in
chapter 2 is wider than the concrete syntax given in /l/ (e.g., the former permits ex
pressions other than boolean in conditional statements and other than designational ex
pressions in goto statements). The set of possible concrete representations defined by
the representation system is precisely the set of programs producible by means of the
syntax rules of /!/.

Abstract programs are interpreted by means of an abstract sequential machine of
the type defined in chapter 4 of /2/. The particular abstract machine, the socalled
ALGOL 60 machine, is defined in chapter 3 of the present report. Furthermore, the notion
of a computation and the nature and function of the different state components of the
machine are described intuitively. Chapter 4 constitutes the interpretation of abstract
programs by means of a definition of the machine behaviour corresponding to the programs.
However, not all abstract programs that have concrete representations have an interpreta
tion. It is well known that there are strings producible by means of the BNF rules, given
in /l/, which are not (syntactically) correct ALGOL 60 programs; i.e., there are certain
context dependencies (e.g., the matching of used identifiers with their corresponding de
clarations, etc.) which cannot be expressed by means of the BNF rules. These context de
pendencies are expressed, in /l/, as constraints formulated in ordinary English through
out the text. These additional constraints are realized in the interpreter presented in
chapter 4, by means of explicit tests.

1.1____ Notation and Conventions

Section 1.3 of /2/ contains a summary of the notational conventions and symbols
taken over from various other theories, e.g., set theory, logic and arithmetic, etc. In
the present section, any additional notations of a general nature used in this report are
summarized and they will be used throughout the report without further comment. Any nota
tion used in this report, not explained in this section or in section 1.3 of /2/, will
have been explained in the body of /2/ and its occurrence in the present report will be
followed by an appropriate reference to /2/.

IBM LAB VIENNA 1-2 TR 25.088

1.1.1 Selectors

(1) is-elem-sel =

Note: This is the predicate characterizing the range of values of the function
elem (cf. 2-17 /2/).

1.1.2 Arithmetic functions

The following metavariable satisfies the predicate :

x is-real-val

(2) sign(x) =

x > 0 → 1
x = 0 → 0
x < 0 → -1

(3) abs(x) =

x * sign(x)

(4) entier(x) =

(i) (is-intg-val(i) & i ≤ x < i+1)

1.1.2

IBM LAB VIENNA 2-1 TR 25.088

2. THE SYNTAX OF ABSTRACT PROGRAMS

Two basic types of syntax, viz. abstract syntax and concrete syntax, may be con
sidered to be constitutive of the syntactic definition of a programming language. An
abstract syntax specifies the programs of the language as to the structures significant
for their subsequent interpretation and not as to how they are to be expressed for the
purpose of communication either to oneself or others. A concrete syntax specifies the pro
grams of the language as a set of character strings. Once the syntax has been given, i.e.,
once it is possible to determine what categories of well-formed programs a language is to
have, one can ask questions as to the possible meanings to be assigned to them.

In this chapter an abstract syntax is presented. On the one hand, programs
satisfying this syntax are mapped onto a set of corresponding concrete representa
tions (i.e., character strings satisfying the BNF rules of /1/) by means of the re
placement system defined in chapter 5. On the other hand, abstract programs are inter
preted by means of an abstract sequential machine, the ALGOL 60 machine, in chapter 4.

Abstract programs are objects satisfying the predicate is-program which
is defined in terms of various auxiliary predicates corresponding to the various sub
phrases of ALGOL 60 programs. The definitional method used is explained in detail in
chapter 2 of /2/. The predicate definitions specifying the abstract syntax have been chosen
as far as possible, so as to correspond to the main types of sub-phrases of ALGOL 60.
Furthermore, if the predicate definitions are applied iteratively, then they describe
the composition of a program in terms of its elementary components.

The elementary components of a program are the following elementary objects:

(a) A finite class of constant elementary objects, usually denoted by names written
in capital letters (e.g. FOR, LABEL, T) including the special elementary object
<> (emptylist).

(b) The infinite class of ALGOL 60 identifiers, characterized by the predicate is-id.

(c) The infinite class of real numbers (containing the class of all integer values
characterized by is-intg-val), characterized by is-real-val.

(d) A finite set of ALGOL 60 basic symbols satisfying the predicate is-char.

Given a string str of capital letters, as mentioned in (a), one can construct a
predicate is-str which is only satisfied by the object denoted by str.

is-str(x) = (x = str)

IBM LAB VIENNA 2-2 TR 25.088

2.1____ The Structure of Programs

A concrete ALGOL 60 program is either a block or a compound statement. Abstract
programs are, however, always blocks. The reason for this is that the fictitious
block, whose declaration part contains only the declarations of the standard functions
together with the declarations of program local labels (if any), is always explicitly
written around the abstract analogue of the concrete ALGOL 60 program. The reason for
explicitly writing the fictitions block is that the interpretation of programs contain
ing standard functions will be exactly the same as that of programs containing functions
defined in the program itself. Furthermore, as already mentioned, the declaration part of
the outermost block contains the declarations of program local labels since in the abstract
program all labels are collected together into the declaration part of the innermost block
containing the labeled statement.

(2.1) is-program = is-block

(2.2) is-block = (<s-decl-pt:is-decl-pt>,
<s-st-list:is-st-list>)

2.2 Declarations

By means of the declaration part of a block a set of names is introduced each of
which is associated with a declaration. The declaration is a description of the properties
the name is to have in the block in which it is being declared. A declaration part is an
object which is constructed in such a way that the application of a name contained in it
yields its declaration. If it occurs in a declaration part, a name is either an identifier
or a selector satisfying the predicate is-elem-sel. The predicate is-elem-sel characterizes
the range of the function elem(i) which is a function mapping integers onto a set of ele
mentary selectors. This device is introduced into the abstract syntax of the declaration
part of a block to accommodate the integer label feature of concrete ALGOL 60.

IBM LAB VIENNA 2-3 TR 25.088

(2.3) is-decl-pt =

({<name:is-decl> || is-id(name) v is-elem-sel(name)})

Note: There is no specified order of the declarations and no factoring of attri
butes implied by the object satisfying the predicate is-decl-pt.

(2.4) is-decl =

is-var-decl v is-proc-decl v is-label-decl v is-switch-decl

(2.5) is-var-decl =

(<s-scope: is-OWN v is-Ω>,
<s-da:is-da>)

(2.6) is-proc-decl = (<s-type: is-type v is-Ω>,
<s-par-list:is-id-list>,
<s-spec-pt:is-spec-pt>,
<s-body:is-st v is-code>)

Note: If the procedure declaration is to define the value of a function designator
then the type component of the declaration contains the type associated with
the declared identifier, otherwise, it is Ω .

(2.7) is-spec-pt =

({<id:is-spec> || is-id(id)})

Note: Only formal parameters called by value are specified, hence the fact that an
identifier is contained in the specification part indicates that it is by
value. All identifiers contained in the parameter list but not in the speci
cation part are treated as by name parameters. Notice that the specification
part may be Ω .

(2.8) is-spec =

is-type v is-type-array v is-LABEL

(2.9) is-type-array =

(<s-array-type:is-type>)

(2.10) is-code =

Note: In /l/ the formulation of procedure bodies in non-ALGOL code is permitted,
but the code language is not specified in the reference language used in /l/,
likewise, such specifications are left open in this document.

(2.11) is-label-decl = is-index-list

IBM LAB VIENNA 2-4 TR 25.088

(2.12) is-index =

is-intg-val v is-bool-val v is-FOR

Note: A label declaration is a list of indices pointing to the statement which is
considered to be labeled by means of the label declared in the declaration
part. Each one of these indices is either a natural number pointing to a
statement in a statement list, or a truth-value pointing either to the then
or else alternative of a conditional statement, or the elementary object FOR
pointing to the statement to be iterated by means of a for statement.

(2.13) is-switch-decl = is-expr-list

2.3 Data Attributes

Data attributes describe the range of a variable.

(2.14) is-da = is-type v is-array

(2.15) is-type = is-arithm v is-BOOL

(2.16) is-arithm = is-INTG v is-REAL

(2.17) is-array = (<s-lbd:is-expr>,
<s-ubd:is-expr>,
<s-elem:is-da>)

Note: A two-dimensional array of scalars is considered as a one-dimensional array
of one-dimensional arrays of scalars.

2.4 Statements

(2.18) is-st = is-block v is-comp-st v is-cond-st v is-for-st v is-goto-st v
is-proc-st v is-assign-st v is-dummy-st

(2.19) is-comp-st = is-st-list

(2.20) is-cond-st = (<s-decision:is-expr>,
<s-then-st:is-st>,
<s-else-st:is-st>)

Note: It is assumed that a conditional statement always has two components, i.e.,
if the corresponding conditional statement in concrete ALGOL 60 had no else
alternative, the abstract conditional statement has a dummy statement.

IBM LAB VIENNA 2-5 TR 25.088

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

is-for-st = (<s-contr-var:is-var>,
<s-for-list:is-for-elem-list>,
<s-st:is-st>)

is-for-elem = is-expr v is-while-elem v is-step-until-elem

is-while-elem = (<s-init-expr:is-expr>,
<s-while-expr:is-expr>)

is-step-until-elem = (<s-init-expr:is-expr>,
<s-step-expr:is-expr>,
<s-until-expr:is-expr>)

is-goto-st = (<s-label:is-expr>)

is-proc-st = (<s-id:is-id>,
<s-arg-list:is-arg-list>)

is-arg = is-expr v is-string

is-string = is-string-elem-list

is-string-elem = is-basic-symbol v is-string

is-basic-symbol =

Note: /1/ allows the handling of arbitary sequences of basic symbols, i.e.,
strings, used as actual parameters of procedures. The alphabet of
basic symbols may vary, however, the nature of these characters
will not be further elaborated in the present paper.

is-assign-st = (<s-lp:is-var-list>,
<s-rp:is-expr>)

is-dummy-st = is-DUMMY

IBM LAB VIENNA 2-6 TR 25.088

2.5 Expressions

(2.33) is-expr = is-cond-expr v is-infix-expr v is-prefix-expr v
is-funct-ref v is-var v is-const

(2.34) is-cond-expr = (<s-decision:is-expr>,
<s-then-expr:is-expr>,
<s-else-expr:is-expr>)

(2.35) is-infix-expr = (<s-opr:is-infix-opr>,
<s-op-l:is-expr>,
<s-op-2:is-expr>)

(2.36) is-infix-opr = is-bool-infix-opr v is-relat-infix-opr v
is-arithm-infix-opr

(2.37) is-bool-infix-opr = is-AND v is-OR v is-IMPL v is-EQUIV

(2.38) is-relat-infix-opr = is-GT v is-GE v is-EQ v is-LE v is-LT v is-NE

(2.39) is-arithm-infix-opr = is-ADD v is-SUBTR v is-MULT v is-DIV v
is-INTGDIV v is-POWER

(2.40) is-prefix-expr = (<s-opr:is-prefix-opr>,
<s-op:is-expr>)

(2.41) is-prefix-opr = is-NOT v is-PLUS v is-MINUS

(2.42) is-funct-ref = (<s-id:is-id>,
<s-arg-list:is-arg-list>)

(2.43) is-var = is-id v is-subscr-var

(2.44) is-id =

Note: This predicate characterizes the infinite class of ALGOL 60 identifiers

(2.45) is-subscr-var = (<s-id:is-id>,
<s-subscr-list:is-expr-list>)

(2.46) is-const = is-bool-const v is-intg-const v is-real-const

(2.47) is-bool-const = (<s-type:is-BOOL>,
<s-value:is-bool-val>)

(2.48) is-bool-val = is-T v is-F

IBM LAB VIENNA 2-7 TR 25.088

(2.49) is-intg-const = (<s-type:is-INTG>,
<s-value:is-intg-val>)

(2.50) is-intg-val =

Note: This predicate characterizes the class of all (positive, zero and
negative) integer values. They are elementary objects and belong to
the class characterized by is-real-val.

(2.51) is-real-const = (<s-type:is-REAL>,
<s-value:is-real-val>)

(2.52) is-real-val =

Note: This predicate characterizes the class of (real) numbers.

IBM LAB VIENNA 3-1 TR 25.088

3. STATE COMPONENTS AND COMPUTATION OF THE ALGOL 60 MACHINE

The ALGOL 60 machine is an abstract sequential machine as described in chapter 4
of the "Method and Notation for the Formal Definition of Programming Languages" /2/. It
is described by the set of all possible states which the machine can assume. This set is
defined by the language function Λ , which applied to a given state yields a set of suc
cessor states, and by the set of possible initial states of the machine. An initial state
of the machine contains, within one of its components, the abstract text to be inter
preted. Any state from the set of possible states satisfies the predicate is-state:

(3.1) is-state = (<s-dn:is-dn>,
<s-un:is-intg-val>,
<s-d:is-d>,
<s-e:is-e>,
<s-ci:is-ci>,
<s-c:is-c>)

Abbreviations and Terms

For reference purposes abbreviations for major components of a given state ξ are
introduced and will be used throughout the report. The terms given name the major state
parts according to their content and use.

Component Abbreviation Term

s-dn(ξ) DN Denotation Directory
s-un(ξ) UN Unique Name Counter
s-d(ξ) D Dump
s-e(ξ) E Environment
s-ci(ξ) CI Control Information
s-c(ξ) C Control

3.1 The Computation of the Machine

Iterated application of the language function to a given initial state containing
a given abstract text produces a sequence of states which the machine is said to
assume. This sequence of states is the computation of the given text on the machine
(chapter 4 of /2/).

The control C of a state of the machine governs the transition from that state to
its successor state. C contains instructions which on execution, change the state as
specified by the definition of the individual instructions.

IBM LAB VIENNA 3-2 TR 25.088

There exist several places in ALGOL 60 where the sequence of operations is relevant
but not specified by the language. Any choice of sequence for sequential execution is
valid though it may result in different computations for different choices. This is why Λ
yields a set of successor states. An example is the evaluation of operands in expressions.

3.1.1 The control C

tions. The control part is an abstract object described by a control representation
(chapter 4, /2/). The instructions of a control part can be considered as arranged in the
form of a control tree where each instruction may have a set of successor instructions and
the instructions at the terminal nodes of the tree are candidates for immediate execution.
The execution of such an instruction modifies the state of the machine as specified for
the individual instruction (which may include changes to C)*

(3.2) is-c .

3.1.2 The language function of the machine

The machine describes the interpretation of an ALGOL 60 program t by defining the
set of possible computations resulting from the program. A computation is a sequence of
states of the machine:

The control part C a state ξ of the ALGOL 60 machine contains a set of instruc

An object of type control satisfies the predicate

satisfying the following two conditions:

(1) ξ 0 is an initial state corresponding to t as given by the function initial-stateξ,
(cf. 4-2)

= initial-state(t)

Each state ξ i+1 is produced by the language function Λ from its predecessor:(2)

IBM LAB VIENNA 3-3 TR 25.088

A computation is successful if it is finite:

ξ 0 , ξ 1,..., ξ n and Λ (ξ n) = {} •

The language function Λ specifying the set of possible successor states of a given
state ξ is defined below. Let x be a selector which, when applied to the control compo
nent of ξ , yields the instruction to be executed next:

(3.3) Λ (ξ) = { Ψ (ξ , x) | x ∈ tn∘s-c (ξ) }

Functions Ψ and tn are formally defined in /2/ and merely listed here.

(3.4) Ψ (ξ ,x)

Note: This function specifies the successor state relative to the execution of the
instruction X ∘s-c(ξ).

(3.5) tn(c)

Note: This function yields the set of all selectors which select a terminal instruc
tion when applied to a control c. A terminal instruction is one which is a
possible candidate for immediate execution.

3.2 Flow of Control

This section describes
control. These components are

the state components of the machine which govern the flow of
the dump D and the control information CI.

3.2.1 The dump D

The dump serves to maintain a history of block activations as long as they are still
active. It is essentially organized as a pushdown stack in order to guarantee the dynamic
nesting of the block structure of the language.

All the information of the state of the machine that is valid only for the time of a
particular block activation is contained in the four block-local state components: the
dump D itself, the environment E, the control information CI, and the control C (cf. 3.1.1).
These components must be accessible during the entire duration of a block activation; in
particular, they have to be preserved during the lifetime of a nested block activation which
may maintain its own block-local state components, in order to be available after termina
tion of the nested block activation. Part of the information contained in these state com
ponents may be inherited by nested block activations, but it may not be reinherited by outer
ones.

j

IBM LAB VIENNA 3-4 TR 25.088

These requirements are satisfied by the dump mechanism. Whenever a new block activa
tion is established, the block-local state components of the old one become components of
the dump; thereby the block-local state components of the immediately preceding block ac
tivation become components of the dump component of the dump, etc.

Upon the termination of a block activation the topmost block-local state components
of the dump are reinstalled in the state.

(3.6) is-d = is-Ω v (<s-d:is-d>,
<s-e:is-e>,
<s-ci:is-ci>,
<s-c:is-c>)

Ref.: is-c (3.2)

3.2.2 The control information CI

The control information determines the flow of control within a single block activa
tion and consists of the following three immediate components and satisfies is-ci:

the text part
the index part
the control dump

(3.7) is-ci = i s - Ω v (<s-text: is-p-st-list v is-p-cond-st v is-p-for-st >,
<s-index: is-index v is-Ω>,
<s-cd:is-cd>)

Note: The predicates is-p-[pred] in the text components are defined at
4-4.

The control dump consists of four immediate components, namely, the same three
immediate components as a control information (i.e. text part, index part and control dump)
and additionally a control. It satisfies the predicate is-cd which is defined as follows:

(3.8) is-cd = (<s-text:is-p-st-list v is-p-cond-st v is-p-for-st v is-Ω>,
<s-index: is-index v is-Ω>,
<s-cd: is-cd v is-Ω>,
<s-c:is-c>)

The text component is, either a statement list and the index component an integer
value pointing to some element of the list, or the text component is a conditional state
ment and the index component is a truth value pointing to one of its alternative component
statements, or the text component is a for statement and the index component is the elemen
tary object FOR pointing to the component statement which is to be iterated by means of the
for statement.

TX = s-text(CI)
I = s-index (CI)
CD = s-cd(CI)

IBM LAB VIENNA 3-5 TR 25.088

It is the interpretation of conditional statements and for statements (i.e., state
ments possibly occurring as elements of statement lists and possibly themselves containing
statement lists, conditional statements and for statements) which require the construction
of the complicated flow of control mechanism. In particular, it is the occurrence of
nested for statements which forces the construction of a dump mechanism CD similar to the
one described for the interpretation of nested blocks, because of the interpretation of
goto statements which are forbidden to transfer the control into a for statement (cf. 4.5.4).

Lastly, it is important to note that the interpretation of an element of a statement
list or a component statement of a conditional statement or for statement may cause the
termination of the current block activation (e.g. because of a goto statement leading out
of the current block).

3.3____ Associating Identifiers with Meaning

For each identifier declared in the declaration part of the text of a block, a unique
name is created upon activation of the block. This unique name is associated with the cor
responding identifier in the environment component of the state. The unique name is in turn
associated in the denotation directory with the declaration corresponding to the identifier
Any additional information determing the meaning of an identifier is also entered under the
unique name in the denotation directory (e.g. the current environment is added to the de
claration of a procedure,or the depth of the current dump to the declaration of a label).
The meaning of any identifier occurring in the text may be found in the following sequence:
the application of the identifier to the environment yields the unique name which, when
applied to the denotation directory, yields the denotation of the identifier.

3.3.1 Creation of unique names

Various situations requiring the use of unique names arise during the interpretation
of programs. Unique names are elementary objects entering as components into state parts,
but they are at the same time simple selectors by means of which components are inserted
into state parts. Hence, they function as links between locations in the state, where they
occur as objects, and the information which has been inserted by means of them while serv
ing as selectors. Thereby the same information can be linked to different locations.

Unique names belong to an infinite ordered subset of the set of elementary objects.
The only function of the unique name counter UN, is to keep count of the unique names al
ready used. This prevents multiple use (or rather generation) of the same unique name.

The counter UN, together with the instruction un-name implements the generation of
the unique names. The instruction makes use of the integer constituting the current UN and
selects a unique name out of the set of unique names.

IBM LAB VIENNA 3-6 TR 25.088

The definitions of the predicates characterizing the unique name counter, unique
names and of the instruction un-name follows:

(3.9) is-un = is-intg-val

(3.10) is-n =

Note: This predicate characterizes the enumerably infinite set of unique names
nQ ,n1,n2,••• which is contained in the set of elementary objects.

(3.11) un-name =

PASS:nUN

s-un:UN+l

Note: For explanation of instruction definitions see chapter 4 of /2/.

3.3.2 The environment E

The environment serves to associate each declared identifier with a unique name.
The same identifier declared in different block activations receives different unique
names and thereby different meanings (except for own declared variables which are asso
ciated with the same unique name, viz., that produced by the prepass (cf. 4.2)). The en
vironment is a block-local state component (cf. 3.2.1) and, hence, the current environment
contains only unique names leading to the meanings of identifiers valid in the current block
activation.

Everything that has been said concerning the environment must, however, be extended
to include the handling of integer labels. Hence, in addition to the pairing of identifiers
and unique names in the environment there occurs a pairing of selectors, corresponding to
integer labels, with unique names. These selectors are from the range of the function
elem(i) where i is an integer value. Given an integer label j, the function elem is applied
to it and the resulting selector is associated in the environment with a unique name. The
range of values of elem are characterized by the predicate is-elem-sel.

There is one further use made of the environment and that is the association of the
unique name of a procedure identifier defining a function reference with the unique name
(function value name) by means of which the value of the function reference may be stored
or retrieved from the denotation directory. Hence, the environment may contain the pairing
of unique names with unique names (cf. 4-10(19)).

The general term name has been used to refer to identifiers, selectors corresponding
to integer labels, and unique names, all of which may be used as selectors in the environ
ment component.

IBM LAB VIENNA 3-7 TR 25.088

The environment component satisfies the predicate is-e defined as follows:

(3.12) is-e = ({<name:is-n> || is-name(name)})

(3.13) is-name = is-id v is-elem-sel v is-n

Ref.: is-id 2-6(44), is-n 3-6(10), is-elem-sel 1-2(1)

Environments are passed as arguments to instructions which interpret text in en-
vironments which may differ from the environment of the block activation current at the
point of interpretation of the text. Such cases occur when the text is to be interpreted
at a time when a nested block is active and has installed its own updated environment in
the state (e.g., in the case of arguments which are passed by name to the formal parameters
of a procedure).

3.3.3 The denotation directory DN

If the declaration of an identifier has already been interpreted in some block ac
tivation, the denotation directory will contain all the information necessary to determine
the meaning of the identifier, except the value of an identifier declared as a variable.
This value appears in the denotation directory only after a value has been assigned to the
variable in the course of the interpretation of the executable text of the block. The in
formation constituting the meaning of an identifier is called its denotation.

Denotations of identifiers vary for the different types of declarations of iden
tifiers. The definition of the predicate characterizing denotation directories will be
followed by definitions of the various types of denotation and an explanation of their
components.

(3.14) is-dn = ({<n:is-den> || is-n(n)})

(3.15) is-den = is-var-den v is-proc-den v is-label-den v
is-switch-den v is-name-par-den

Denotations of variables (including arrays) consist of a data attribute component
and a value component. The former is constructed at the time of the interpretation of the
declaration and is an evaluated data attribute. The latter is either a type (in the case
of a simple variable) or (in the case of an array) an object containing information con
cerning the upper and lower bounds of the array. The value component is constructed at
the time of an assignment of a value to the variable. Previous to the first assignment
the component is Ω . Values can be simple (boolean or real) or array values. Array values
are objects constructed from selectors satisfying the predicate is-elem-sel and other
values (simple or array).

IBM LAB VIENNA 3-8 TR 25.088

(3.16) is-var-den = (<s-da:is-eda>,
<s-value: is-value v is-Ω>)

(3.17) is-eda = is-type v is-array-eda

(3.18) is-array-eda = (<s-lbd:is-intg-val>,
<s-ubd:is-intg-val>,
<s-elem:is-eda>)

(3.19) is-value = is-simple-val v is-array-val

(3.20) is-simple-val = is-bool-val v is-real-val

(3.21) is-array-val = ({<elem(i):is-value> || is-intg-val(i)|)

Procedure denotations are constructed at the time of the interpretation of the de
claration of the procedure identifier and consist of the declaration of the procedure and
an added environment component containing the environment current at the time of the in
terpretation of the declaration. It is this environment which will be used in the inter
pretation of the body of the procedure when the procedure is called.

(3.22) is-proc-den = (<s-type:is-type v is-Ω>,
<s-par-list:is-id-list>,
<s-spec-pt:is-spec-pt>,
<s-body:is-st v is-code>,
<s-e:is-e>)

A label denotation is constructed at the time of the interpretation of its declara
tion and consists of a static location which is identical with the index list from the
label declaration, and a dynamic location which is an integer value indicating the depth
of the dump at the time of the block activation within which the declaration of the label
is being interpreted.

(3.23) is-label-den = (<s-stat-loc:is-index-list>,
<s-dyn-loc:is-intg-val>)

A switch denotation is constructed at the time of the interpretation of the declara
tion of the switch identifier and consists of this declaration together with the environment
current at the time of the interpretation of the declaration.

(3.24) is-switch-den = (<s-switch-list:is-expr-list>,
<s-e:is-e>)

IBM LAB VIENNA 3-9 TR 25.088

The last kind of denotation, which, however, does not originate from a declaration,
is that of parameters specified by name. It is constructed at the time of the interpreta
tion of a procedure call or the invocation of a function designator. It consists of the
text of the argument corresponding to the by name parameter and the environment current at
the time of the call or the invocation.

(3.25) is-name-par-den = (<s-text:is-arg>,
<s-e:is-e>)

A

IBM LAB VIENNA 4-1 TR 25.088

4 . THE INTERPRETATION OF ABSTRACT PROGRAMS

The behaviour of the ALGOL 60 Machine can be described formally by means of instruc
tion definitions. The notational devices for defining instructions have been presented in
/2/. The description of the machine behaviour can be conceived as constituting a defini
tion of the semantics of ALGOL 60 programs. This behaviour is a function of the structure
of the machine state (chapter 3), the abstract syntax of text (chapter 2) and the instruc
tions corresponding to significant parts of abstract program text.

The transition from a given abstract program to the initial state of the inter
preting machine is accomplished by the function initial-state. The language function Λ
is then defined by specifying which instructions are required by the significant program
parts.

The formal definition of the semantics of ALGOL 60 presented in this chapter is
patterned after the above outline. The definition proper is preceded by a statement con
cerning the treatment of program errors by the semantic model, followed by a discussion of
the initial actions of the interpreting machine including the definition of the function
initial-state and the socalled prepass.

The definition of the instructions which perform the interpretation proper is divid
ed into three major sections. The first part contains the definition of instructions
causing the activation and deactivation of blocks. This involves the introduction of names
(identifiers) and the devices for specifying the meaning they are to have within a block
activation (declarations). These instructions constitute the interpretation of the block
and procedure statement. The second part involves the definition of instructions influ
encing the flow of control, i.e. specifying the sequence in which statements are to be
executed. These instructions are constitutive of the meaning of the compound statement
(statement list), conditional statement, for statement and goto statement. The last part
defines the instructions causing the manipulation and modification of data and this con
stitutes the interpretation of the assignment statement and models expression evaluation.

4.1____ The Treatment of Program Errors

The language function Λ. defines the set of successor states of a given state of
the interpreting machine (see 3.2.1). This function is a partial function since there are
states for which no successor states are defined. A program which gives rise to a computa
tion leading to a state for which Λ is undefined is called erroneous.

A successor state of a given state is a function of one of the instructions which
are candidates for execution in that state. A successor state is undefined if the relevant
instruction is undefined. Conditional expressions allow the definition of partial func
tions by incomplete case distinctions. However, in the present report, the instruction
error and the function error are used in conditional expressions to indicate undefined
situations. On the one hand, the occurrence of error or error indicates to the reader

IBM LAB VIENNA 4-2 TR 25.088

that the respective undefined situation actually may arise, whereas, in the case of a
non-occurrence of these in conditional expressions, it is guaranteed that only the de
fined situations may arise when syntactically correct programs are interpreted. On the
other hand, it is possible that the undefined (erroneous) case may appear anywhere in
a list of case distinctions, e.g.

f (x) = p1 → e1

p2 → error

p3 → e2

An instruction is undefined in a given instance,if its execution in some way leads
to the execution of the instruction error or the evaluation of the function error, in
that instance.

There are two additional instances which render an instruction undefined:

a) the application of Ω as a function to any argument,
b) meta-expressions of the form (ιx)(e(x)), if e(x) denotes T for no x, or for

more than one x.

It is important to distinguish undefined successor states in this sense from suc
cessor states defined by implementation defined functions. Range and domain, or constraints
for these functions are specified in the definition as far as they are known.

4.2____ The Initial Actions of the Interpreting Machine

The state ξ of the machine consists of the immediate components listed
in chapter 3, p. 3-1.

The underlined abbreviations for state components are used in defining instructions.
The structure and use of these components have been described in chapter 3.

The computation starts with the initial state ξ 0 . The transition from the given
program t0 , i.e. an abstract object satisfying the predicate is-program, to the initial
state ξ 0 , is accomplished by the function initial-state. Essentially, the action of the
function consists of setting the unique name counter to 0 and setting up the sole in
struction int-program in the control. All other immediate components of the state ξ Q are
Ω . Formally this can be expressed by the definitions

and
ξ0= initial-state (t) o

initial-state(t) = μ 0 (< s-un:0>,<s-c:int-program(t)>)

for: is-program(t)

IBM LAB VIENNA 4-3 TR 25.088

The instruction definitions which now follow constitute the definition of the lan
guage function Λ , i.e. they indicate the possible transitions from one state of the
machine to the next. In other words, they yield the interpretation of the language
ALGOL 60 by specifying the meaning of any arbitrary ALGOL 60 program.

Before the interpretation proper, however, the socalled prepass is performed. This
is indicated formally in the definition of int-program:

(4.1) int-program(t) =

int-block(pt);
pt:prepass-text(t)

for: is-program(t)

The prepass adds to each declaration of an OWN declared variable a unique name as
its unique name component. In this way it is ensured that subsequent entries into blocks
use one and the same unique name.

It should be noted that after the prepass all those parts of the program which may
contain declarations need no longer satisfy the predicates given in the abstract syntax
of program. Instead, corresponding predicates for the modified text are defined. The names
of these predicates are of the form is-p-[pred] instead of is-[pred] (e.g., is-p-block
instead of is-block).

The following definitions utilize as Metavariables:

t is-program the program to be interpreted

un

pt is-p-program

an auxiliary object containing for each declara
tion x (t) its unique name component as x (un)

the text of the program to be interpreted, after
the completed prepass

(4.2) prepass-text(t)

prep-text-l (t,un);
{x(un) :un-name | is-OWN∘s-scope∘ x (t)}

(4.3) prep-text-l (t,un) =

PASS:μ (t; {<s-n∘ x : x (un)> | is-n∘ x (un)})

The following is the definition schema for predicates is-p-[pred] which apply to
objects constituting parts of the given text as modified by the prepass:

IBM LAB VIENNA 4-4 TR 25.088

is-p-[pred] (pt) =

(∃t)(is-[pred](t) & t=δ(pt;{s-n∘x | is-OWN∘s-scope∘ x (pt)})) &

(∀x) (is-OWN∘s-scope∘ x (pt) ⊃ is-n∘s-n∘ x (pt))

In the table below the corresponding predicates is-[pred] of the abstract syntax
of program are given on the right hand side of the table:

modified predicate predicate of the abstract syntax

is-p-var-decl is-var-decl
is-p-decl is-decl
is-p-decl-pt is-decl-pt
is-p-block is-block
is-p-st-list is-st-list
is-p-st is-st
is-p-comp-st is-comp-st
is-p-for-st is-for-st
is-p-cond-st is-cond-st
is-p-proc-decl is-proc-decl

4.3 Metavariables and Abbreviations

The metavariables used throughout the whole definition and the predicates charac-
terizing their range are listed below. Metavariables concerning only one of the subsec
tions of the definition will be similarly listed at the heading of the appropriate sec
tion. If the range of a metavariable x is specified, then this specification holds also
for all metavariables of the form x-i, where i is a decimal digit.

Ranges of metavariables are significant in those cases where they are bound by a
logical quantifier (including the descriptor ι) or by the implicit set notation. In all
other cases the indication of the range has the character of a comment.

arg is-arg
arg-list is-arg-list
body is-st v is-code
cd is-cd
d is-d
den is-den
eda is-eda
env is-e
expr is-expr
i is-intg-val
id is-id

argument
argument list
body of a procedure declaration
control dump
dump
denotation
evaluated data attribute
environment
expression
integer value
identifier

cont'd

TR 25.088IBM LAB VIENNA 4-5

index is-index index(either an integer value, T, F, or FOR)
indl is-index-list index list
lbd is-intg-val integer value constituting the lower bound

of an array attribute

Ip is-var variable used as left part of an assignment
statement

lp-list is-var-list left part list
n is-n unique name
op is-op operand
opr is-infix-opr v

is-prefix-opr
operator

ref is-ref reference
ref-list is-ref-list reference list
sl is-expr-list expression list of a subscripted variable
t text
truth is-boolean-value boolean value (truth value)
type is-type type
ubd is-intg-val integer value constituting the upper bound

of an array attribute

Abbreviations are used in the formulas to retain perspicuity concerning their
structuring. Names used as abbreviations are distinguishable by their subscripts, and
subscripted names are solely used as abbreviations. Abbreviations are defined under the
heading "where:" immediately following the formula in which they are used.

4.4____ Interpretation of Blocks and Procedure Statements

Blocks and procedure statements are treated together in this section because they
both establish new block activations and, hence, introduce new identifiers and specify
their meaning by means of declarations. Since, however, they differ in certain details,
they will themselves be treated separately within this section. The main difference
between blocks and procedure statements is the fact that one and the same procedure can
be called at different locations in the program whereas a block can only be executed (in
terpreted) at the location at which it is written in the program. But this is a difference
which is not significant for our present consideration of the establishment of block acti
vations. Significant differences from this point of view are the fact that the notions of
parameter passing and the return of a value (as in the case of a function designator) do
not apply to blocks. One further difference is the fact that procedures are named enti
ties in ALGOL 60 and blocks are not. Since procedures (and function designators) are named
entities, their identifiers (names) may be used in (or as) arguments of other procedures
or function designators. In such cases they may be called in block-activations the en
vironments of which differ from the environment which was set up at the time of the inter
pretation of the procedure declaration. The body of the procedure must, however, be inter
preted in the latter environment and so it is this environment which is established as the

IBM LAB VIENNA 4-6 TR 25.088

current environment. The arguments of the procedure are, however, evaluated in the en
vironment current at the time of the call of the procedure or the invocation of the func
tion designator.

Metavariables

code is-code code procedure body
da is-da data attribute
decl is-decl declaration
dn is-dn denotation directory
dp is-decl-pt declaration part
name is-name an identifier, a selector from the range of elem

(where the corresponding argument is an integer label),
or a unique name

par-list is-id-list formal parameter list
spec is-spec specifier
spec-pt is-spec-pt specification part

4.4.1 Blocks

A block activation is effected by the instruction int-block. The arguments of the
instruction are program texts as modified by the prepass.

After dumping the block-local state components and establishing new initial block-
local components, the following actions are taken: updating the environment by associating
the locally declared identifiers with unique names, updating the denotation directory by
appropriate entries from the declarations of the locally declared identifiers, interpreting
the statement list of the block and, finally, reinstalling the block-local state components
of the dynamically preceding block activation. These actions are taken as a result of the
execution of appropriate instructions installed in the new control.

Own declared identifiers are associated with the unique names in the unique name
component of their corresponding declarations (which were inserted by the prepass). Array
bounds of own declared variables are recalculated at each new block entry.

(4.4) int-block(t) =

s-d :stack(ξ)
s-ci:Ω
s-c:unstack ;

int-st-list(s-st-list(t));
int-decl-pt(s-decl-pt(t));

update-env(s-decl-pt(t))

for : is-p-block(t)
Ref.: int-st-list 4-13(26)

IBM LAB VIENNA 4-7 TR 25.088

(4.5) stack(ξ) =

μ 0 (<s-d :s-d(ξ) >,
<s-e :s-e (ξ)> ,
<s-ci:s-ci(ξ)>,
<s-c :s-c (ξ)>)

(4.6) update-env(dp) =

null;
{u pd-name(name,n) ;

n :un-name | is-name(name) & i s - Ω ∘name(dp) &
i s - Ω ∘s-scope∘name (dp) } ∪

{ upd-name(name,s-n∘name(dp)) | is-name(name) &
is-OWN ∘ s-scope ∘name(dp)}

Ref.: un-name 3-6(11)

(4.7) upd-name(name,n) =

s-e: μ(E;<name:n>)

(4.8) null =

PASS: Ω

Note: Apart from being used for the interpretation of the dummy statement, this
instruction is used to construct a control tree for instructions to be
executed in an unspecified order (cf. /2/, p. 4-27).

(4.9) int-decl-pt(dp) =

null;
{int-decl (name, dp) | is-name (name) & i s - Ω ∘name (dp)}

T →

upd-dn(name(E),den);
den:mk-den(name(dp))

Note: If the declaration of an identifier is a variable declaration with array
bounds which have to be evaluated, the environment utilized to do this is
the current environment minus the identifiers which were declared in the
declaration part presently being interpreted (see the statement in /1/,

(4.10) int-decl(name,dp)

is-p-var-decl∘name(dp) →

upd-var-dn(name(E),eda);
eda:eval-da(s-da∘name(dp), δ (E; {name-l | is-name(name-l) & name-l (dp) ≠ Ω }))

5.2.4.2).

IBM LAB VIENNA 4-8 TR 25.088

(4.11) eval- d a (da, env) =

is-type(da) → PASS: da

T →

pass(eda);
s-lbd(eda) :eval-intg-expr(s-lbd(da),env),
s-ubd(eda) :eval-intg-expr(s-ubd(da),env),
s-elem(eda):eval-da(s-elem(da),env)

(4.12) pass(x) =

PASS:x

(4.13) upd-var-dn(n,eda) =

s-dn:μ(DN;<s-da∘n:eda>)

(4.14) mk-den(decl) =

is-p-proc-decl(decl) → PASS:μ(decl;<s-e:E>)
is-label-decl (decl) → PASS:μ0(<s-dyn-loc : depth(D)> ,

<s-stat-loc:decl>)
is-switch-decl(decl) → PASS:μ 0 (<s-switch-list:decl>,

<s-e:E>)

for : (is-p-proc-decl v is-label-decl v is-switch-decl)(decl)

Ref.: depth 4-20(49)

(4.15) upd-dn(n,den) =

s-dn:μ (DN;<n:den>)

for: (is-proc-den v is-label-den v is-switch-den)(den)

(4.16) unstack =

s-d :s-d(D)
s-e :s-e (D)
s-ci:s-ci(D)
s-c :s-c(D)

4.4.2 Procedure statements

The procedure statement is interpreted by the instruction int-proc-st. This in
struction has three arguments, the first of which is the text of the procedure statement,
the second is the environment of the block-activation in which the procedure was called and
by means of which the actual parameters (arguments) are to be evaluated, and the third is
the function value name which is the unique name associated with the procedure identifier

IBM LAB VIENNA 4-9 TR 25.088

of a function designator used to access the resulting value of the function designator.
In the case of a non-type procedure or a type procedure called by a procedure statement
the third argument is Ω . Before the interpretation proper, the function value name is
installed in the denotation directory DN and the arguments of the called procedure or in
voked function designator are installed. In many ways, the effect of the interpretation
of a procedure statement on the state of the machine is similar to that of the interpre
tation of a block. The similarities are that the old local state components are stacked,
that the control information is set to Ω and that the last instruction in the control is
unstack which causes the termination of the block activation.

(4.17) int-proc-st(t,env,n) =

is-proc-den(final-dent) →

s-d :stack(ξ)
s-e :s-e(final-dent)
s-ci:Ω
s-c :unstack;

int-st(s-body(final-dent));
install-arg-list(s-par-list(final-dent),

s-spec-pt(final-dent),s-arg-list(t),env);
install-funct (final-nt ,n)

T → error

where: final-dent = final-nt (DN)

final-nt = final-n(s-id(t)(env),DN)

for : is-p-proc-st(t)

Ref. : int-st 4-15(32), unstack 4-8(16), stack 4-7(5)

Note : Error: if t is a by name parameter of some procedure p, and t is called
by a procedure statement or invoked by a function designator in the body
of p but the final denotation of t turns out to be other than a proce
dure denotation.

(4.18) final-n(n,dn) =

 is-name-par-den∘n(dn)→ n

is-id∘s-text∘n (dn) →
final-n(id1 (env1),dn)

T → error

where: id1 = s-text∘n(dn)

env1 = s-e∘n(dn)

Note : Error: if n(dn) is a formal parameter denotation the text component of
which is other than an identifier.

IBM LAB VIENNA 4-10 TR 25.088

(4.19) install-funct(proc-n,funct-n) =

is-Ω (funct-n) & is-type∘ s-type∘proc-n (DN)→

upd-var-dn(n,s-type∘proc-n(DN));
upd-name(proc-n,n);

n:un-name

is-Ω (funct-n) & i s - Ω ∘s-type∘proc-n (DN) → null

is-Ω ∘s-type∘proc-n(DN) → error

T →

upd-var-dn(funct-n,s-type∘proc-n(DN));
upd-name(proc-n,funct-n)

is-n(proc-n) & (is-n v is-Ω) (funct-n)

upd-var-dn 4-8(13), upd-name 4-7(7), un-name 3-6(11)
null 4-7 (8)

This instruction installs the function value name of type procedures, in
voked as function designators, in the environment and enters the appropriate
data attribute in the denotation directory, utilizing the function value
name and the type from the procedure declaration. In the case of a type
procedure called as a procedure, a new unique name is generated, installed
in the environment and associated with the type of the procedure in DN.
This unique name is used in any assignment statement of the body having
the procedure identifier as a left hand side. Since this unique name is not
known outside the block activation caused by the procedure call the value
assigned by means of it will be lost on exit from the procedure. For non
type procedures the instruction is equivalent to null.
Error: if a non-type procedure is invoked as a function designator.

(4.20) install-arg-list(par-list,spec-pt,arg-list,env) =

length(arg-list) = length(par-list) &
(∀ i/j)(i≠j & 1<=i<=length (par-list) ⊃ elem(i,par-list) ≠ elem(j,par-list)) &
(∀ id)(is-id (id) & is- Ω ∘id (spec-pt)⊃ (∃ i)(id=elem (i,par-list)))→

null;
{ install-arg(n,pari (spec-pt),argi,env);

upd-name(pari,n);
n:un-name | 1 <i <length(par-list)}

T → error

where: pari = elem(i,par-list)

argi = elem(i,arg-list)

Ref. : null 4-7(8), upd-name 4-7(7), un-name 3-6(11), length 2-20/2/

Note : Error: if the number of argument positions in the parameter list of the
procedure declaration is not the same as the number of argument positions

for :

Ref. :

Note:

IBM LAB VIENNA 4-11 TR 25.088

in the procedure statement or function designator; or if the formal parameter
list contains two different occurrences of the same identifier; or if param
eters not occurring in the parameter list are specified.

(4.21) install-arg(n,spec,arg,env) =

is-Ω (spec) →

upd-dn(n,μ0 (<s-text:arg>,<s-e:env>))

is-type (spec) →

convert-assign(refn ,op);
op:eval-expr(arg,env),

upd-var-dn(n,spec)

is-type-array(spec) & is-id(arg) & is-array-eda∘s-da(final-denarg)→

assign-array (n, final-narg,s-value,s-da (final-denarg)) ;
upd-var-dn(n,comb-da(s-da(final-denarg),s-array-type(spec)))

is-LABEL(spec) →

upd-dn(n,den);
den:eval-des-expr(arg,env)

T → error

where: refn = μ 0 (<s-type:spec>,
<s-value-sel:s-value∘n>)

final-narg = final-n(arg(env),DN)

final-denarg = final-narg (DN)

Ref. : upd-dn 4-8(15), convert-assign 4-24(63), eval-expr 4-25(66),
upd-var-dn 4-8(13), eval-des-expr 4-19(45)

Note : This function enters the appropriate denotation in the denotation
directory for each argument occurring in the argument list of the pro
cedure statement or function designator. If there is no corresponding
specifier for an argument, this indicates that the argument is to be
passed by name (i.e., all specifications of by name parameters are treated
as comment in the present paper).
Error: if named entities are passed by value other than variables, labels
or parameterless type procedures. In the last case the specification is
the type of the procedure, and the case is handled like the by value case
for simple variables (alternative two in the above instruction definition).

(4.22) comb-da(eda,type) =

is-type(eda) → type

T → μ (eda;<s-elem:comb-da(s-elem(eda),type)>)

IBM LAB VIENNA 4-12 TR 25.088

(4.23) assign-array(par-n,arg-n,sel,eda) =

is-type (eda)→

convert-assign(refpar,op);
op:get-op(refarg)

T →

null;
{assign-array(par-n,arg-n,value-sel(i,sel),s-elem(eda)) |

s-lbd(eda)<=i<=s-ubd(eda)}

where: refpar =μ 0 (<s-type:get-type∘s-da∘par-n(DN)>,
<s-value-sel:sel∘par-n>)

refarg = μ 0 (<s-type:eda> ,
<s-value-sel:sel∘arg-n>)

for : is-n(par-n) & is-n(arg-n)

Ref. : convert-assign 4-24(63), get-op 4-26(70), null 4-7(8)

(4.24) get-type(eda) =

is-type(eda) → eda
T → get-type∘s-elem(eda)

for: (is-da v is-eda)(eda)

(4.25) int-code(code) =

Note: /l/ allows the formulation of procedure bodies in non-ALGOL 60 languages
and leaves the use of this feature entirely up to the hardware representa
tion. Hence, the interpretation of such code cannot be specified further
in this report.

4.5____ Interpretation of Statements Influencing the Flow of Control

The interpretation of ALGOL 60 statements influencing the flow of control is ac
complished by defining instructions specifying the sequencing of interpretation of state
ments. On the one hand, the instruction corresponding to the statement list (regardless
as to whether the list originated from a block or a compound statement) specifies a
sequential order of interpretation of the component statements of the list, viz., the
order in which they are written. On the other hand, the instruction corresponding to the
conditional statement specifies which of its two statements is to be interpreted and the
instruction corresponding to the for statement specifies repeated interpretation of its
statements; both do so depending on certain specifiable conditions. Lastly, the instruc
tion corresponding to the goto statement permits the transfer of the control to previously
specified points in the program. Such transferral may cause the deactivation of blocks but
not the activation of blocks.

IBM LAB VIENNA 4-13 TR 25.088

The general device for modelling the transferral of the control in the various
ways sketched above is the control information component of the machine state (cf. section
3.2.2).

It is only the inclusion of the goto statement in ALGOL 60 which requires that the
interpretation of the conditional statement and the for statement involve the use of the
control information. However, once the goto statement is included it seems more convenient
to treat all instructions, involving the transfer of the control, by means of the control
information device.

Metavariables:

for-elem
for-list

is-for-elem
is-for-elem-list

for list element
for list element list

4.5.1 Statement lists and single statements

As stated in section 3.2.2 the interpretation of statement lists is a function of
the control information CI and the control part C . The text part s-text(CI) contains the
entire text of the statement list elligible for interpretation. The index part s-index(CI)
is an integer value indicating which statement of the list is currently being interpreted.
The control part C contains solely the instruction which interprets this single statement,
updates the index part and places the next statement in the control part for interpretation

But even within one block activation there may be nested statement lists, component
conditional statements and for statements (both of which may again contain statement lists,
conditional statements, etc.). Hence, an additional component of the control information
is needed to model this situation. This component is the control dump s-sc (CI) and it ful
fills a similar function for nested statement lists, conditional statements and for state
ments, as the dump D fulfills for nested block activations. Text part, index part and con
trol part indicate how the innermost nested statement list is to be interpreted whereas
the control dump keeps track of the containing nested statement lists, conditional state
ments and for statements.

(4.26) int-st-list(t) =

is-<>(t) → null

T → upd-ci(l,t)

for : is-p-st-list(t)
Ref.: null 4-7(8)

IBM LAB VIENNA 4-14 TR 25.088

(4.2 7) upd-ci(index, t) =

s-ci:μ 0 (<s-text:t>,
<s-index:index>,
<s-cd:μ(CI;<s-c:C>)>)

s-c :int-st-l

for: is-p-st-list(t)

(4.28) int-st-l =

int-next-st;
int-st(take-st(s-index(CI),s-text(CI)))

(4.29) take-st(index,t) =

is-p-st-list(t) & is-intg-val(index) & 1<=index<=length(t)→

elem(index,t)

is-p-cond-st(t) & is-T(index) → s-then-st(t)
is-p-cond-st(t) & is-F(index) → s-else-st(t)
is-p-for-st(t) & is-FOR(index) → s-st(t)

T → error

for : (is-p-st-list v is-p-cond-st v is-p-for-st)(t)
Ref.: length 2-20/2/
Note: This function is a generalization of the function elem(i,t); it yields the

statement out of t to which i points (cf. 2-20/2/) .
Error: if used in the interpretation of a goto statement and a transfer to a
non-existing statement or a transfer into a block is attempted.

(4.30) int-next-st =

is-intg-val∘s-index(CI) & s-index(CI)<length∘s-text(CI)→

int-st-l;
upd-indexT →

s-ci: δ(s-cd (CI);s-c)
s-c :s-c∘s-sd(CI)

Ref.: length 2-20/2/

(4.31) upd-index =

s-ci :μ(CI;<s-index:s-index(CI) + l>)

IBM LAB VIENNA 4-15 TR 25.088

(4-32) int-st(t) =

is-p-block(t) → int-block(t)
is-p-proc-st(t) → int-proc-st(t,E,Ω)
is-p-comp-st(t) → int-st-list(t)
is-p-cond-st(t) → int-cond-st(t)
is-p-for-st(t) → int-for-st(t)
is-goto-st(t) → int-goto-st(t)
is-assign-st(t) → int-assign-st(t)
is-dummy-st(t) → null
is-code(t) → int-code(t)

for : is-p-st(t)
Ref.: int-block 4-6(4), int-proc-st 4-9(17), int-assign-st 4-23(54),

null 4-7(8), int-code 4-12(25)

4.5.2 Conditional statements

The conditional statement selects, depending on the value of an expression, one
out of two statements for execution.

(4.33) int-cond-st(t) =

upd-ci(truth,t);
truth:eval-truth(s-decision(t),E)

for : is-p-cond-st(t)
Ref.: upd-ci 4-14(27)

(4.34) eval-truth(expr,env) =

test-truth(op);
op:eval-expr(expr,env)

Ref.: eval-expr 4-25(66)

(4.35) test-truth(op) =

is-BOOL∘s-type(op) → PASS:s-value(op)

T → error

Note: This instruction is the semantic equivalent of the ALGOL 60 syntactic
restraint that only boolean expressions may occur at some specific point
in the program (e.g. here in a conditional statement).

IBM LAB VIENNA 4-16 TR 25.088

4.5.3 For statements

The for statement specifies iterated execution of a statement and the number of
iterations is dependent on the values of various types of expressions.

(4.36) int-for-st(t) =

iterate-for-list(ref,s-for-list(t),t);
ref:eval-lp(s-contr-var(t),E)

for : is-p-for-st(t)
Ref.: eval-lp 4-23(57)

(4.37) iterate-for-list (ref ,for-list,t) =

is-<>(for-list) →

s-dn:δ(DN;s-value-sel(ref))

T →

iterate-for-list(ref,tail(for-list),t);
iterate-for(ref,head(for-list),t)

for : is-p-for-st(t)
Ref.: tail 2-20/2/, head 2-20/2/
Note: If the for list element list is exhausted, i.e., the iterative process,

the for statement is left naturally (not by a goto statement), then the
value of the control variable Is undefined.

(4.38) i terate-for(ref,for-elem,t) =

is-expr(for-elem) →

upd-ci (FOR,t);
convert-assign(ref,op);

op:eval-expr(for-elem,E)

is-while-elem(for-elem) →

test-while(truth,ref,for-elem,t);
truth:eval-truth(s-while-expr(for-elem),E);

convert-assign(ref,op);
op:eval-expr(s-init-expr(for-elem),E)

is-step-until-elem(for-elem) →

iterate-for-l (ref,op,s-step-expr(for-elem),s-until-expr(for-elem),t);
convert-assign(ref,op);

op:eval-expr(s-init-expr(for-elem),E)

for : is-p-for-st(t)
Ref.: upd-ci 4-14(27), convert-assign 4-24 (63), eval-expr 4-25 (6 6) ,

eval-truth 4-15(34)

IBM LAB VIENNA 4-17 TR 25.088

(4.39) test-while(truth,ref,while-elem,t) =

truth → iterate-for(ref,while-elem,t);
upd-ci(FOR,t)

T → null

for : is-p-for-st(t) & is-while-elem(while-elem)
Ref.: upd-ci 4-14 (27) ,null4-7(8)

(4.40) iterate-for-l (ref,op,step-expr,until-expr,t) =

test-until(truth,ref,step-expr,until-expr, t) ;
truth:eval-until(op,step-op,until-op);

step-op :eval-expr(step-expr,E),
until-op:eval-expr(until-expr,E)

for : is-p-for-st(t) & is-expr(step-expr) & is-expr(until-expr)
Ref.: eval-expr 4-25(66)

(4.41) eval-until(op,step-op,until-op) =

is-BOOL∘s-type(op) v is-BOOL∘s-type(step-op) v
is-BOOL∘s-type(until-op) → error

Vstep > 0 → PASS: infix-op(vop ,vuntil,GT)

vstep = 0 → PASS:F

vstep < 0 → PASS: infix-op(vop ,vuntil, L T)

where: vop = s-value(op)

vstep = s-value(step-op)

v = s-value (until-op)until
for : is-op(step-op) & is-op(until-op)
Ref.: infix-op 4-27(75)
Note: Error: if one of the arguments has a value of type Boolean and, hence,

the arithmetic relational operations would be undefined.

(4.42) test-until(truth,ref,step-expr,until-expr,t) =

truth → null

T →

iterate-for-l (ref,op,step-expr,until-expr,t);
convert-assign(ref,op);

op:eval-step(ref,step-expr);
upd-ci(FOR,t)

for : is-p-for-st(t) & is-expr(step-expr) & is-expr(until-expr)
Ref.: convert-assign 4-24(63), upd-ci 4-14(27)

IBM LAB VIENNA 4-18 TR 25.088

(4.43) eval-step(ref,expr) =

infix-op(op-1,op-2,ADD);
op-1:get-op(ref),
op-2:eval-expr (expr,E)

Ref.: infix-op 4—27(75), get-op 4-26(70), eval-expr 4-25(66)

4.5.4 Goto statements

The goto statement interrupts the sequential flow of control and transfers it to
a location denoted by a label, where the sequential flow of control starts anew. For this
purpose, the instruction corresponding to the goto statement must change the state of the
machine in such a way that the resulting state is the same as the state which would have
existed, had the labeled statement been reached from the beginning of the program by un
interrupted flow of control.

The localization of the statement denoted by a label, relative to its innermost
containing block, is done statically by means of an index list consisting of integer
values (pointing to elements of statement lists), truth values (pointing to alternatives
of conditional statements) and the elementary object FOR (pointing to the component state
ment of for statements). This index list appears as the text of a label declaration in an
abstract program.

The denotation of a label consists of two components, the statement location, which
is the above mentioned index list and which localizes the labeled statement within one
block activation; further, it consists of an integer value indicating the depth of the
dump at the moment of the interpretation of the label declaration, i.e., uniquely charac
terizing the block activation within which the labeled statement pointed out by the label
under consideration is to be found.

The interpretation of a goto statement is performed in the following four steps:

1) Close blocks until the current block activation is the one denoted by the dynamic
location (dump depth) of the label denotation.

2) Reduce the control dump of the current block activation until the text component
of the current control information contains, possibly nested, the labeled state
ment.

3) Build up appropriate levels in the control dump until the labeled statement is one
of the statements of the current text part.

4) Adjust the index part to point to the labeled statement and continue sequential
interpretation.

IBM LAB VIENNA 4-19 TR 25.088

(4.44) int-goto-st(t) =

goto-l (den);
den:eval-des-expr(s-label(t),E)

for: is-goto-st(t)

(4.45) eval-des-expr(t,env) =

is-cond-expr(t) →

eval-cond-des-expr(truth,s-then-expr(t),s-else-expr(t),env);
truth:eval-truth(s-decision(t),env)

is-subscr-var(t) & length∘s-subscr-list(t) = l & is-switch-den(final-dent) →

eval-switch(i,final-dent);

i:eval-intg-expr(head∘s-subscr-list(t),env)

is-id(t) & is-name-par-den(dent) →

eval-des-expr(s-text(dent),s-e(dent))

is-id(t) & is-label-den(dent)→

PASS:dent

is-intg-const(t) & is-label-den(elem∘s-value(t)(env)(DN)) →

PASS:elem∘s-value(t)(env)(DN)

T → error

where: dent = t(env)(DN)

final-dent = final-n(s-id(t),DN)(DN)

for : is-expr(t) v is-string (t) v is-Ω(t)

Ref. : eval-truth 4-15(34), eval-intg-expr 4-24(59), length 2-20/2/

Note : This instruction differs from the instruction corresponding to non-
designational expressions in that the length of the subscript list of a
subscripted variable (i.e., a switch designator in concrete ALGOL 60) must
be equal to 1, and in that the denotation of an integer constant declared
as a label is not the constant itself but the label denotation associated
with it.
Error: whenever the goto was to an undefined switch designator, since in
that case t = Ω ; and also whenever the instruction, was used in the installa
tion of arguments during the interpretation of a procedure statement and the
argument was a string.

(4.46) eval-cond-des-expr(truth,then-expr,else-expr,env) =

truth → eval-des-expr(then-expr,env)

T → eval-des-expr(else-expr,env)

for: is-expr(then-expr) & is-expr(else-expr)

IBM LAB VIENNA 4-20 TR 25.088

(4.47) eval-switch(i,den) =

eval-des-expr(elem(i,s-switch-list(den)),s-e(den))

for : is-switch-den(den)

Note: This instruction eventually leads to an error when i is greater than the
length of the switch list (see Note to (4.45)). The ALGOL report /1/ states
that a goto to an undefined switch designator is equivalent to a dummy state
ment. The present alternative (leading to an error) was chosen since it would
not be clear what would be meant by "equivalent to a dummy statement" in the
case where a designational expression which was passed as a parameter to a
procedure turned out to be undefined. If one wanted to model the equivalence
to a dummy statement one would just add the state before the execution of
the goto statement as an extra argument to the instruction eval-switch.

(4.48) goto-1 (den) =

depth(D) = s-dyn-loc(den) → goto-2(s-stat-loc(den))

T →

s-d : s-d(D)
s-e : s-e(D)
s-ci : s-ci (D)
s-c : goto-1(den)

for: is-label-den(den)

(4.49) depth(d) =

is-Ω(d) → 0

T → depth∘s-d(d) + 1

(4.50) goto-2(indl) =

(∃ list) (list ≠ <> & indl = listc d ∩ list) →

goto-3((list)(indl = listcd ∩ list))

T →

s-ci:δ(s-cd(CI);s-c)
s-c :goto-2(indl)

where: listcd = index-list∘s-cd(CI)

(4.51) index-list(cd) =

i s - Ω ∘s-ci (cd) → <>

T → index-list∘s-cd∘s-ci(cd) ∩ <s-index∘s-ci(cd)>

IBM LAB VIENNA 4-21 TR 25.088

(4.52) goto-3(indl) =

is-FOR ∘head(indl) & is-FOR∘s-index(CI) → error

length(indl) = l → goto-4(head(indl))

T →

s-ci:μ0 (<s-text:take-st(head(indl),s-text(CI))>,
<s-cd:μ(CI;<s-index:head(indl)>,

<s-c:int-next-st>)>)
s-c :goto-3(tail(indl))

Ref.: int-st-l 4-14(28), int-next-st 4-14(30), head 2-20/2/, tail 2-20/2/,
take-st 4-14(29)

Note: This instruction builds up the control information until the text part is
the statement list, conditional statement or for statement, containing im
mediately the target statement of the goto. The first alternative excludes
goto into a for statement. The second alternative is the basic case eventu
ally to be arrived at: goto within the same level, just resetting
s-index(CI) and continuing normally, i.e. with int-st-l. The last alter
native might insert as text part statements other than a statement list or
a conditional statement (in particular a block) thereby producing a machine
state which does not satisfy the abstract syntax of state. But in this
case, in the next step either goto-3 or goto-4, both using the function
take-st, will lead to an error. This situation arises, if either a for
bidden goto into a block is tried, or if the index list of the label does
not localize a statement.

(4.53) goto-4(index) =

s—ci:μ(CI;<s-index:index>)
s-c :int-st-l

Ref.: int-st-l 4-14(28)

IBM LAB VIENNA 4-22 TR 25.088

4.6___ The Manipulation and Modification of Data

This section involves the definition of the instructions, causing manipulation and
modification of data, which model the interpretation of the assignment statement and the
evaluation of expressions. This involves, in the main, changes in the value part of the
denotation directory DN.

Metavariables:

sel is-value-sel value selector
v is-simple-val simple value

4.6.1 The assignment statement

The assignment statement is interpreted by the instruction int-assign-st. The in
terpretation involves the evaluation of a left part list, the evaluation of the right part
expression and the assignment (with possible conversion) of the value of the latter to
each of the members of the evaluated left part list.

The result of the evaluation of a left part is called a reference and consists of
a type component and a value selector component. The value selector component is a com
pound selector which, when applied to the denotation directory DN, yields a simple value.
Hence, one can think of the reference as a sort of address with associated type informa
tion. Such references are used whenever data is to be accessed or stored in the denota
tion directory.

Formally a reference is defined by:

is-ref = (<s-type:is-type>,
<s-value-sel:is-value-sel>)

where: is-value-sel (X) =
(∃ n)(X = s-value∘n & is-n(n)) v
(∃ i,X-l) (X= (elem(i)) ∘X-1 & is-intg-val (i) & is-value-sel (X-l))

The result of the evaluation of an expression is called an operand and consists of
a type component and a value component (which latter is always a simple value in ALGOL 60).
The formal definition of the predicate characterizing operands is:

is-op = (<s-type:is-type>,
< s-value:is-simple-val>)

The type information becomes essential in the conversion of values to the type
specified by a reference by means of which the value is to be assigned to a variable.

IBM LAB VIENNA 4-23 TR 25.088

(4.54) int-assign-st (t) =

convert-assign-list(ref-list,op);
op:eval-expr(s-rp(t),E);

ref-list:eval-lp-list(s-lp(t))

for : is-assign-st(t)
Ref.: eval-expr 4-25(66)

(4.55) eval-lp-list(lp-list) =

is-<>(lp-list) → PASS:<>

T →

mk-list(ref,ref-list);
ref-list:eval-lp-list (tail (lp-list));

ref:eval-lp(head(lp-list),E)

for : is-var-list(lp-list)
Ref.: tail 2-20/2/, head 2-20/2/
Note: The elements of the left part list are evaluated from left to right.

(4.56) mk-list(elem,list) =

PASS:<elem> ∩ list

(4.57) eval-lp(lp,env) =

is-subscr-var(lp) & is-var-den(final-denlp) →

eval-lp-l (s-da(final-denlp),s-value∘flnal-nlp,s-subscr-list(lp),env)

 lis-id (lp) → error

is-var-den (denlp) →

eval-lp-l (s-da (denlp) ,s-value∘nlp,<>,Ω)

is-proc-den(denlp) →

eval-lp-1 (s-da(nlp (env) (DN)), s-value∘ (nlp(env)) , <> ,Ω)

is-name-par-den (denlp) & is-var ∘s-text (denlp) →

eval-lp(s-text(denlp),s-e(denlp))

T → error

for : is-var(lp)

where: nlp = lp(env), denlp = nlp(DN)

final-nlp = final-n(s-id(lp)(env),DN)

final-denlp = final-nlp (DN)

Note : First error if a left part is a switch designator or a label. The second
type of error occurs if the identifier is a formal parameter but the text
of the corresponding actual parameter is not a variable.

IBM LAB VIENNA 4-24 TR 25.088

(4.58) eval-lp-l(eda,sel,subscr-list,env) =

is-type(eda) & is-<>(subscr-list) →

PASS :μ0 (<s-type:eda>,
<s-value-sel:sel>)

is-type(eda) v is-<>(subscr-list) → error

T →

eval-lp-l (s-elem(eda),sel-l,tail(subscr-list),env);
sel-l:pass-value-sel(i,sel);

 i:test-subscript(j,s-lbd(eda),s-ubd(eda));
j:eval-intg-expr(head(subscr-list),env)

for : is-expr-list(subscr-list)
Ref.: head 2-20/2/, tail 2-20/2/
Note: Error: if the subscript list of the left part and the number of dimensions

of the array do not coincide.

(4.59) eval-intg-expr(expr,env) =

convert(INTG,op);
op:eval-expr(expr,env)

Ref.: eval-expr 4-25(66)

(4.60) test-subscript(i,lbd,ubd) =

lbd<=i<=ubd →--- PASS:i

T → error

(4.61) value-sel(i,sel) =

(elem(i))∘sel

(4.62) convert-assign-list(ref-list,op) =

(∀ i)(1<=i<=length(ref-list)⊃
s-type∘elem(i,ref-list) = s-type∘head(ref-list)) →

null;
{ convert-assign(elem(i,ref-list),op) | 1<=i<=length(ref-list)}

T → error

Ref.: null 4-7(8), length 2-20/2/
Note: Error: if the types of the left parts are not identical.

(4.63) convert-assign(ref,op) =

assign (s-value-sel(ref),v);
v :convert(s-type(ref),op)

IBM LAB VIENNA 4-25 TR 25.088

(4.64) assign(sel,v) =

s-dn:μ(DN;<sel:v>)

(4.65) convert(type,op) =

type = s-type(op) → PASS:s-value(op)

is-REAL(type) & is-INTG∘s-type(op) →

PASS:s-value(op)

is-INTG (type) & is-REAL∘s-type (op) →

PASS:(ιi)(is-intg-val(i) & i-l/2<=s-value(op)<i 1/2)

T → error

Note: Error: if the conversion is attempted between incompatible types.

4.6.2 Evaluation of expressions

Expressions are evaluated by the instruction eval-expr having as arguments some
text, which may be an expression or a string (in the case of an actual parameter passed to
a procedure), and an environment env, which is the environment to be used for the evalua
tion. If the evaluation is successful the result is an operand. The evaluation of the two
operands of an infix-expression proceeds in arbitrary order.

(4.66) eval-expr(t,env) =

is-cond-expr(t) →

eval-cond-expr(truth,s-then-expr(t),s-else-expr(t),env);
truth:eval-truth(s-decision(t),env)

is-infix-expr(t) →

infix-op(op-1,op-2,s-opr(t));
op-1:eval-expr(s-op-1(t),env),
op-2:eval-expr(s-op-2(t),env)

is-prefix-expr(t) →

prefix-op(op,s-opr(t));
op:eval-expr(s-op(t),env)

is-funct-des (t) → eval-funct-des(t,env)
is-subscr-var(t) → eval-var(t,env)
is-id(t) → eval-id(t,env)
is-const(t) → PASS:t

T → error

for : (is-expr v is-string)(t)
Ref.: eval-truth 4-15(34)

cont'd

IBM LAB VIENNA 4-26 TR 25.088

Note: Error: if the instruction has been used for installing the arguments of a
procedure statement and one of these arguments was a string.

(4.67) eval-cond-expr(truth,then-expr,else-expr,env) =

truth → eval-expr(then-expr,env)

T → eval-expr(else-expr,env)

for: is-expr(then-expr) & is-expr(else-expr)

(4.68) eval-funct-des(expr,env) =

get-op(ref);
ref: eval-lp-l (s-da∘n(DN), s-value∘n,<>, Ω) ;

int-proc-st(expr,env,n);
n:un-name

Ref.: eval-lp-l 4-24(58), int-proc-st 4-9(17), un-name 3-6(11)

Note: The core of this instruction is the instruction corresponding to a procedure
statement and the additional instructions that are invoked serve the purpose
of saving the value of the function designator after the interpretation of
the procedure statement. Therefore, a new unique name is generated with
which a reference is constructed and used to temporarily store and access
a simple value in the denotation directory.

(4.69) eval-var(var,env) =

get-op(ref);
ref:eval-lp (var, env)

for : is-var(var)
Ref.: eval-lp 4-23(57)

(4.70) get-op(ref) =

is-simple-val(s-value-sel(ref) (DN)) →

PASS:mk-op(s-type(ref),s-value-sel(ref) (DN))

T → error

Note: Error: if the reference does not yield a value, e.g., there is an exit
by means of a goto before the assignment of a value.

(4.71) mk-op(type,v) =

μ 0 (<s-type: type> ,
<s-value:v>)

IBM LAB VIENNA 4-27 TR 25.088

(4.72) eval-id(id,env) =

is-var-den (denid) → eval-var (varid, env)
is-proc-den (denid) → eval-funct-des (funct-desid,env)
is-name-par-den (denid) → eval-expr (s-text (denid) , s-e (denid))

T → error

where: denid = id (env) (DN)

varid = μ 0 (<s-id: id> ,
<s-subscr-list:<>>)

funct-desid = μ 0 (<s-id: id> ,
<s-subscr-list:<>>)

Note : varid and funct-desid are used to permit the use of uniform instructions for
interpreting simple variables, subscripted variables and identifiers denoting
function designators. Error: if the identifier denotes a label or a switch.

(4.73) prefix-op(op,opr) =

is-BOOL(typel) & is-NOT(opr) → PASS:mk-op(BOOL, vl)
is-INTG(typel) & is-PLUS(opr) → PASS:op
is-INTG(typel) & is-MINUS(opr) → PASS:mk-op(INTG,-vl)
is-REAL(typel) & (is-PLUS(opr) v is-MINUS(opr)) →

PASS:mk-op(REAL,real-prefix-value(vl,opr))

T → error

where: vl = s-value(op)

typel = s-type(op)

Note : Error: if the types of the operand and the operator are incompatible, e.g.,
is-BOOL(typel) & is-PLUS(opr).

(4.74) real-prefix-value(v,opr) =

Note: This function is implementation defined and yields a result satisfying the
predicate is-real-val.

(4.75) infix-op(op-1,op-2,opr) =

is-BOOL(typel) & is-BOOL(type2) & is-bool-infix-opr(opr) →
PASS:mk-op(BOOL,bool-infix-value(vl,v2,opr))

is-INTG(typel) & is-INTG(type2) & is-relat-opr(opr) →
PASS:mk-op(BOOL,intg-relat-value(vl ,opr))

is-arithm(typel) & is-arithm(type2) & is-relat-opr(opr) →
PASS:mk-op(BOOL,real-relat-value(vl ,opr))

is-arithm(typel) & is-INTG(type2) & is-POWER(opr) →
intg-power-op(op-1,v2)

cont'd

IBM LAB VIENNA 4-28 TR 25.088

is-arithm(typel) & is-REAL(type2) & is-POWER(opr) →
PASS:mk-op(REAL,real-power-value(vl,v2))

is-INTG(typel) & is-INTG(type2) & is-arithm-infix-opr(opr) & is-DIV(opr) →
PASS:mk-op(INTG,intg-arithm-infix-value(vl,v2,opr))

is-arithm(typel) & is-arithm(type2) &
is-arithm-infix-opr (opr) & is-INTGDIV (opr) --- →
PASS:mk-op(REAL,real-arithm-infix-value(vl,v2,opr))

T → error

for : is-infix-opr(opr)

where: v1 = s-value(op-1)

v2 = s-value(op-2)

type1 = s-type(op-1)

type2 = s-type(op-2)

Note : Error: if the types of the operands and the operator of an infix expression
are incompatible.

(4.76) bool-infix-value(v-1,v-2,opr) =

i s - A N D (o p r) → v-1 & v-2
is-OR(opr) → v-1 v v-2
is-IMPL(opr) → v-1 ⊃ v-2
is-EQUIV (opr) → v-1 ≡ v-2

for: is-bool-infix-opr(opr) & is-bool-val(vl) & is-bool-val(v2)

(4.77) intg-relat-value(v-1,v-2,opr) =

is-GT (opr) → v-1 > v-2
is-GE(opr) → v-1 >= v-2
is-EQ (opr) → v-1 = v-2
is-LE(opr) → v-1 <= v-2
is-LT(opr) → v-1 < v-2
is-NE(opr) → v-1 ≠ v-2

for: is-relat-opr(opr) & is-intg-val(v-1) & is-intg-val(v-2)

(4.78) real-relat-value(v-1,v-2,opr) =

for : is-relat-opr(opr) & is-real-val(v-1) & is-real-val(v-2)
Note: This function is implementation defined and yields a result satisfying the

predicate is-bool-val.

IBM LAB VIENNA 4-29 TR 25.088

(4.79) intg-arithm-infix-value(v-1,v-2,opr) =

is-ADD(opr) → v-1 + v-2
is-SUBTR(opr) → v-1 - v-2
is-MULT(opr) → v-1 * v-2
is-INTGDIV(opr) → sign(v-l/v-2) * entier∘abs(v-l/v-2)

for: (is-ADD v is-SUBTR v is-MULT v is-INTGDIV)(opr) &
is-intg-val(v-1) & is-intg-val(v-2)

(4.80) real-arithm-infix-value(v-1,v-2,opr) =

Note: This function is implementation defined and yields a result satisfying the
predicate is-real-val.

(4.81) intg-power-op(op,i) =

i > i →

infix-op(op-1,op,MULT);
op-1:intg-power-op(op,i-1)

i = 1 → PASS:op

vl = 0 → error

i = 0 → PASS:mk-op(s-type(op) ,1)

i < 0 →

infix-op(mk-op(REAL,1),op-1,DIV);
op-1:intg-power-op(op,-i)

where: vl = s-value(op)

for : is-intg-val(i)

(4.82) real-power-value(v-1,v-2) =

v-1 > 0 → real-arithm-infix-value(v-1,v-2,POWER)
v-1 = 0 & v - 2 > 0 → 0

T → error

IBM LAB VIENNA 5-1 TR 25.088

5. THE DEFINITION OF A CONCRETE REPRESENTATION OF ABSTRACT PROGRAMS

To define a concrete representation for the programs as specified by the abstract
syntax in chapter 2 means to associate with each program character strings (possibly none,
see p. 1-1, second paragraph) of finite length.

In this chapter the association of abstract programs with their concrete represen
tations is accomplished by means of a representation system of the type described and de
fined in section 3.2.1 of /2/. This representation system is said to define the set of
concrete ALGOL 60 programs.

5.1____ The Generalized Representation System

The central part of the system is a set of conditional replacement schemata which
permit the specification of replacement processes leading from abstract programs
to their possible concrete representation (cf. 3.2.1 of /2/). The notion of con
ditional replacement schemata defined in /2/ must, however, be extended to include some
additional schemata. In /2/ a conditional replacement schema had the following general
form:

p(xl,...,xm ,tl,...,tn):NONTERM[tl,...,t n] = = > γ(xl,...,xm ,tl,...,tn)

where t1,,...,tn are the parameters and x1,...,xm are the auxiliary variables of the rule,
p is a meta-expression, called the condition of the rule, and denotes a truth-value de
pending on the free variables xl,...,xm ,tl,...,tn . γ denotes a string consisting of non
terminal expressions and terminal expressions in the free variables xl,...,xm ,tl,...,tn .

In this chapter the conditional replacement schema will be generalized to have the
following general form:

p(x1,...,xm,t1,...,tn):γ(t1,...,tn)= = >γ1(x1,...,xm,t1,...,tm)|...|

 γk(x1,...,xm,t1,...,tn)

where the left hand side between ':' and '= = > ' may now be a string consisting of at least
one non-terminal expression and terminal expressions in the free variables
x1,...,xm,t1,...,tn.

A schema of the above type is to be understood in the following sense: For each as
signment of specific objects x1o,...,xmo,t1o,...,tno as values of the variables
x1,...,xm,t1,...,tn, if the condition p is satisfied, then the string γ (t1o,...,tn∘) may be
replaced at any of its occurrences in a given string by either one of the strings

γ1 (x1o,...,xmo,t1o,...,tno) or ••• or γk(x1o,...,xmo,t1o,...,tno).

IBM LAB VIENNA 5-2 TR 25.088

Non-terminal names can now be words consisting of capital letters optionally fol
lowed by a hyphon followed by a digit.

A replacement process is a sequence γ 0 , γ1,...,γ k , where γ 0 is the non-terminal
H[to] and γ i + 1 obtained from γi (for 0<=i<=k) by the application of one of the condi
tional replacement schemata of R . The last string γk of the sequence consists solely
of terminal symbols and constitutes a concrete representation of t∘ .

5.2____ The Representation System for Abstract Programs

The representation system for ALGOL 60 is defined as the quintuple

<A,T,N,H,R>

where A is the abstract syntax of chapter 2 (cf. definitions (2.1) to (2.52)), T is
the set of basic symbols of ALGOL 60 (cf. /l/, section 2) , N is the set of non-terminal
names, H is the unique non-terminal name called the head of the system and R. is the set
of conditional replacement schemata.

The set of non-terminal names N is defined by means of a tabular listing of its
elements. Each member of the set is accompanied by a suggested reading. The first non
terminal name is the head of the system, hence:

IBM LAB VIENNA 5-3 TR 25.088

H = PROGRAM

(Nl) APAR actual parameter
(N2) APARL actual parameter list
(N3) BEGIN begin or comment
(N4) BLOCK block
(N5) BODY body of a procedure
(N6) BPL bound pair list
(N7) COMTSTR comment string
(N8) COMTSYM comment symbol
(N9) CONDST conditional statement
(N10) CONST constant
(N1l) DECL declaration part
(N12) END end or comment
(Nl3) EXPR expression
(Nl4) EXPRL expression list
(Nl5) FOREL for list element
(N16) FORL for list element list
(Nl7) FPARL formal parameter list
(N18) IDL identifier list
(N19) INFL left hand expression of an infix expression
(N20) INFR right hand expression of an infix expression
(N21) INTGVAL integer value
(N22) LAB label
(N23) LABSET label set
(N24) LETSTR letterstring
(N25) LETSYM lettersymbol
(N26) LPL left part list
(N27) LST labeled statement
(N28) PARDEL parameter delimiter
(N29) PROCST procedure statement
(N30) PROGRAM program
(N31) REALVAL real value
(N32) SCOPE scope
(N33) SEMIC semicolon or comment
(N34) SPEC specification
(N35) SPECPT specification part
(N36) ST statement
(N37) STL statement list
(N38) TYPE type
(N39) VALUE value

The set of conditional replacement schemata (R is listed in section 5.2.2

IBM LAB VIENNA 5-4 TR 25.088

5.2.1 Auxiliary functions and predicates applying to arguments of the
_______ conditional replacement schemata_________________________________

The conditions and strings occurring in conditional replacement schemata may contain
in their argument positions arbitrary meta expressions involving functions and predicates
applicable to objects and their components. These are either general functions and predi
cates defined for objects (in /2/ or in the present report) or predicates defined by the
abstract syntax of text or one of the predicates and functions defined in this section.

(5.1) is-progr-block(t) =

is-block(t) &
(∀ name) (is-name (name) & (name(dpt) = Ω & name(DPo) = Ω) ⊃

is-label-decl ∘name (dpt) v name(dpt) = name(DPo)) &
length(st-listt) = l &
(is-block∘head(st-listt) v is-comp-st∘head(st-listt))

for : is-program(t)

where: dpt = s-decl-pt(t)

st-listt = s-st-list(t)

Note : DPq is the constant object called the standard declaration part. It satis
fies the predicate is-decl-pt and, in addition, it satisfies the condition
that all identifiers declared in it are identifiers of standard functions
and that their corresponding declarations are of the appropriate (implemen
tation defined) kind, as specified in the ALGOL 60 Revised Report (cf. /1/,
3.2.4).

(5.2) place-labels(t) =

μ (t; {<s-lab∘(comp-elem(indl,s-st-list(t))):labs> | is-index-list(indl) &
labs = { lab | is-name(lab) & indl = lab∘s-decl-pt(t)} &
labs ≠ {}])

for : is-block(t)

Note: This function places all labels, declared in the declaration part of t,
before the statements indicated by the index list associated with the label
in the declaration part.

(5.3) comp-elem(indl,t) =

length(indl) = 1 → sell
length(indl) > 1 → (comp-elem(tail(indl) ,sell (t)))∘ s ell

for : (is-block v is-comp-st)(t) & is-index-list(indl)

where: sell = mk-sel(head(indl),t)

IBM LAB VIENNA 5-5 TR 25.088

(5.4) mk-sel(ind,t) =

is-Ω ∘ sell(t) → error
T → 'sell

for : is-index(ind) & is-st(t)
where: sell = mk-sel-l (ind)

(5.5) mk-sel-l (index) =

is-T(index) → s-then-st
is-F(index) → s-else-st
is-FOR(index) → s-st
is-intg-val(index) & index > 0 → elem(index)

T → error

for: is-index(index)

(5.6) is-l-[pred](lt) =

(∃ t ,K) (is-[pred](t) &
lt = μ (t;{ <s-lab∘ x : s-lab∘x(lt)> | x ∈ x }) &
(∀ x) (x ∈ K ⊃ is-name-set∘s-lab∘x (lt)))

Note: This definition schema defines predicates for abstract text, as modified
by the insertion of labels,from the predicates of the abstract syntax of
chapter 2.

(5.7) mk-list(id) =

μ o (<elem(l):id>)

for: is-id(id)

(5.8) delete-val-par(spec-pt,par-list) =

{id | id(spec-pt) = Ω & (∃ i)(elem(i)(par-list) = id)}

for : is-spec-pt(spec-pt) & is-id-list(par-list)
Note: This function yields the set of by name parameters from the parameter

list of a procedure declaration.

(5.9) is-fictitious-block (t) =

is-block(t) & s-decl-pt(t) ≠ Ω & length∘s-st-list (t) = l &
s-decl-pt∘erase-label-decls(t) = Ω

for : is-block(t)
Note: This predicate characterizes bodies of procedures that are blocks whose

declaration parts contain only label declarations.

IBM LAB VIENNA 5-6 TR 25.088

(5.10) erase-label-decls(t) =

δ (t;{lab | is-name(lab) & is-label-decl∘lab∘s-decl-pt(t)})

for : is-block(t)
Note: This function erases all label declarations local to a given labeled block.

(5.11) prior(opr) =

(is-PLUS

(is-LT v

v is-MINUS v is-ADD v is-SUBTR(opr) → 1 7
(is-MULT v is-INDIV v is-DIV)(opr) → 2 8

is-POWER(opr) → 3 9
is—EQUIV(opr) → 4 1
is-IMPL(opr) → 5 2

is-OR(opr) → 6 3
is-AND(opr) → 7 4

is-NOT(opr) → 8
5

is-LE v is-EQ v is-GE v is-GT v is-NE) (opr) — ► 9 6

for : (is-prefix-opr v is-infix-opr)(opr)

Note: This function defines a depth of priority of operators. This depth
of priority is utilized in going from abstract expressions to their
concrete representations.

(5.12) rep-id(id) =

Note: The domain of this one-to-one function is the infinite set of abstract
identifiers characterized by is-id and its range is the corresponding
set of concrete ALGOL 60 identifiers as defined by /l/.

(5.13) rep-code(t) =

for : is-code(t)
Note: This function is implementation defined.

(5.14) rep-bas-symb(t) =

for : is-basic-symbol(t)
Note: The domain of this one-to-one function is the set of abstract objects

characterized by is-basic-symbol and its range is the corresponding set
of concrete ALGOL 60 basic symbols as specified in /1/, section 2.

IBM LAB VIENNA 5-7 TR 25.088

(5.15) rep-opr(opr) =

(is-PLUS v is-ADD) (opr) → +
(is-MINUS v is-SUBTR) (opr) → -

is-MULT(opr) → *
is-INTDIV(opr) → ÷

is-POWER(opr) → ↑
is-DIV(opr) → /
is-OR(opr) → v
is-AND(opr) → ⋀
is-IMPL(opr) → ⊃

is-EQUIV(opr) → ≡
is-NOT(opr) →
is-LT(opr) → <

is-LE(opr) → < =

is-EQ(opr) → =
is-GE(opr) → >=

ls-GT(opr) → >

is-NE(opr) → ≠

for: (is-infix-opr v is-prefix-opr) (opr)

(5.16) is-proper-expr =

is-arithm-expr v is-bool-expr v is-des-expr

(5.17) is-arithm-expr(t) =

(is-bool-expr∘s-declsion(t) & is-arithm-expr∘s-then-expr(t) &
is-arithm-expr∘s-else-expr(t)) v
(is-arithm-infix-opr∘s-opr(t) & is-arithm-expr∘s-op-1 (t) &
is-arithm-expr∘s-op-2(t)) v
(is-prefix-expr(t) & is-NOT∘s-opr(t) & is-arithm-expr∘s-op(t)) v
(is-funct-ref v is-var v (is-const & is-bool-const)) (t)

(5.18) is-des-expr(t) =

(is-bool-expr∘s-decision(t) & is-des-expr∘s-then-expr(t) &
is-des-expr∘s-else-expr(t)) v
(is-subscr-var(t) & length∘s-subscr-list(t) = 1) v
(is-intg-const(t) & s-value(t) >= 0) v is-id(t)

IBM LAB VIENNA 5-8 TR 25.088

(5.19) is-bool-expr(t) =

(is-bool-expr∘s-decision(t) & is-bool-expr∘s-then-expr(t) &
is-bool-expr∘s-else-expr(t)) v
((is-bool-infix-opr∘s-opr(t) & is-bool-expr∘s-op-1 (t) &
is-bool-expr∘s-op-2(t)) v (is-relat-infix-opr∘s-opr(t) &
is-arithm-expr∘s-op-1(t) &
is-arithm-expr∘s-op-2(t))) v
(is-NOT ∘s-opr(t) & is-bool-expr∘s-op(t)) v
(is-funct-ref v is-var v is-bool-const)(t)

5.2.2 The conditional replacement schemata of the representation system

In this section the definition of the representation system is completed by
listing the elements of the set R. of conditional replacement schemata. The parentheses,
comma, semicolon, colon and colon-equal sign are written especially heavy to indicate that
they are terminal symbols standing for themselves.

(5.20) is-progr-block (t) :PROGRAM[t] = >

LST[head∘s-st-list∘place-labels(t)]

(5.21) LST[t] = > LABSET[s-lab(t)]ST[δ (t;s-lab)]

(5.22) t = Ω v t = {} : LABSET[t] = > λ

x ∈ t : LABSET[t] = > LAB[x] : LABSET[t - {x}]

Note: λ denotes the empty string.

(5.23) is-id(t):LAB[t] = > rep-id(t)

t = elem(i):LAB[t] = > INTGVAL[i]

(5.24) is-block(t):ST[t] => BLOCK[erase-label-decls∘place-labels(t)]
is-l-comp-st(t):ST[t] =>

BEGIN STL[t]END
is-proc-st(t):ST[t] => PROCST[t]
is-l-for-st (t) : ST[t] = >

for EXPR[s-contr-var(t)] := FORL[s-for-list(t)] do LST[s-st(t)]
is-dummy-st(t):ST[t] ==> λ
is-l-cond-st(t) & is-bool-expr∘s-decision(t):ST[t] => CONDST[t]
is-goto-st(t) & is-des-expr∘s-label(t):ST[t] => goto EXPR[s-label(t)]
is-assign-st(t) & s-lp(t) ≠ <>:ST[t] = > LPL[s-lp (t)]EXPR[s-rp (t)]

IBM LAB VIENNA 5-9 TR 25.088

(5.25) s-decl-pt(t) ≠ Ω:BLOCK[t] =>
BEGIN DECL[S-decl-pt(t)]STL[s-st-list(t)] END

Note: An empty declaration part is forbidden, since it would lead to the same
concrete program as the compound statement corresponding to t.

(5.26) t = Ω:DECL[t] => λ

is-var-decl∘id (t) & is-type∘s-da∘id (t) :DECL[t] = > λ
SCOPE[s-scope∘id(t)]TYPE[s-da∘id(t)]IDL[mk-list(Id)]SEMIC DECL[δ(t;id)]

is-var-decl∘id(t) & is-array∘s-da∘id(t) :DECL[t] =>
SCOPE[s-scope∘id(t)] TYPE[get-type∘s-da∘id(t)] array
IDL[mk-list(id)] [BPL[s-da∘id(t)]]SEMIC DECL[δ (t;id)]

is-proc-decl∘id(t):DECL[t]= >
TYPE[typeid] procedure rep-id(id)FPARL[par-listid] SEMIC
VALUE[spec-ptid]SPECPT[spec-ptid,delete-val-par(spec-ptid ,par-listid)]
BODY[bodyid] SEMIC DECL[<δ(t; id)]

is-switch-decl∘id(t) & (∀ i) (1<=i<=length (id(t)) ⊃
is-des-expr∘elem(i,id(t))):DECL[t] = >

switch rep-id(id):= EXPRL[id(t)]SEMIC DECL[δ (t;id)]

where: typeid = s-type∘id(t)

par-listid = s-par-list∘id(t)

spec-ptid = s-spec-pt∘id(t)

bodyid = s-body∘id(t)

Ref. : delete-val-par 5-5(8)

(5.27) t = Ω :SCOPE[t] => λ
t = OWN:SCOPE[t] = > own

(5.28) t =Ω:TYPE[t] = > λ
t = INTG:TYPE[t] => integer
t = REAL:TYPE[t] = > real
t = BOOL: TYPE [t] = > Boolean

(5.29) length(t) = 1:IDL[t] = > rep-id∘head(t)
length(t) > 1:IDL[t] = > rep-id∘head(t), IDL[tail(t)]

(5.30) length (t) = 0:FPARL[t] => λ
length (t) > 0 :FPARL[t] = > (FPARL-1[t])

(5.31) length(t) = 1:FPARL-1[t] = > rep-id∘head(t)
length(t) > 1:FPARL-1[t] => rep-id∘head(t) PARDEL FPARL-1[tail(t)]

IBM LAB VIENNA 5-10 TR 25.088

(5.32) PARDEL = > ,) LETSTR : (

(5.33) LETSTR = > LETSYM | LETSYM LETSTR

(5.34) LETSYM => a | b | c | d | e | f | g | h | i | j | k | l | m
n | o | p | q | r | s | t | u | v | w | x | y | z
A | B | C | D | E | F | G | H | I | J | K | L | M
N |O | P | Q | R | s | T | U | V | W | X | Y | z

(5.35) is-type∘s-elem(t) &
is-arithm-expr ∘s-lbd (t) & is-arithm-expr ∘ s-ubd (t) : BPL[t]
EXPR[s-lbd(t)]:EXPR[s-ubd(t)]

 is-type∘s-elem(t) &
is-arithm-expr∘s-lbd(t) & is-arithm-expr∘s-ubd(t):BPL[t] =>
EXPR[s-lbd(t)] : EXPR[s-ubd(t)], BPL[s-elem(t)]

(5.36) t = Ω :VALUE[t] = > λ
t ≠ Ω :VALUE[t] = > value VALUE-1[t] SEMIC

(5.37)t = Ω :VALUE-1 [t] => λ
id(t) ≠ Ω :VALUE-1[t] => rep-id (id) VALUE-2 [δ(t;id)]

(5.38) t = Ω :VALUE-2[t] = > λ
id (t) ≠ Ω :VALUE-2[t] =>, VALUE-1 [t]

(5.39) t3 ⊆ t2 : SPECPT[tl,t2] = > SPECPT-1[tl,t3]

(5.40) tl = Ω & t2 = { }: SPECPT-1 [tl ,t2] = > λ

id(tl) ≠ Ω :SPECPT-1[tl,t2] = >
SPEC[id (tl),mk-list (id)]SPECPT-2 [δ(tl;id),t2]

i d ∈ t 2 : SPECPT-1 [tl,t2] =>
SPEC-1 [mk-list (id)] SPECPT-2 [t1,t2 -{id}]

(5.41) tl = Ω & t2 = { }: SPECPT-2[tl ,t2] => SEMIC

tl ≠ Ω v t2 ≠ { }:SPECPT-2[tl,t2] => , SPECPT-l[t1,t2]

(5.42) is-type (tl) : SPEC[tl,t2] = > TYPE [tl] IDL[t2]

is-LABEL(tl) : SPEC[tl,t2] = > label IDL[t2]

is-type-array(tl) : SPEC[tl,t2] = >
TYPE[s-array-type(tl)] array IDL[t2]

IBM LAB VIENNA 5-11 TR 25.088

(5.43) SPEC-1[t] => string IDL[t] | integer IDL[tl | real IDL[t] |
Boolean IDL[tl | array IDL[tl | integer array IDL[t] |
real array IDL[t] | Boolean array IDL[t] | label IDL[t] |
switch IDL[t] | procedure IDL[t] |
real procedure IDL[t] | integer procedure IDL[t] |
Boolean procedure IDL[t]

(5.44) is-code(t) :BODY[t] → rep-code(t)

is-fictitious-block(t):BODY[t] =>
LST[head∘s-st-list∘place-labels(t)]

is-st & is-fictitious-block (t) :BODY[t] => ST[t]

(5.45) SCOPE[tl]TYPE[t2]array IDL[t3] [BPL[t4]] SEMIC
SCOPE[tl]TYPE[t2]array IDL[t5] [BPL[tg]] =>
SCOPE[t1]TYPE[t2]array IDL[t3] [BPL[t4]] ,

IDL[t5] [BPL[t6]]

Note: This and the next six rules permit the different types of combinations of
identifiers declared with identical attributes which are permitted in /1/.

(5.46) IDL[tl] [bPL[t2]] , IDL[t3] [BPL[t2]] =>

IDL[tl ∩ t3] [BPL[t2]]

(5.47) SCOPE [t1]TYPE[t2] IDL [t3] SEMIC SCOPE [tl]TYPE [t2] IDL[t4]

SCOPE[t1]TYPE[t2]IDL[t3 ∩ t4]

(5.48) SPEC[tl,t2] , SPEC[tl,t3] = > SPEC[t1,t2 ∩ t3]

(5.49) spec-1 [t1], spec-1 [t2] => SPEC-1[tl ∩ t2]

(5.50) SPEC[t1,t2], SPEC-l[t3] => SPEC[tl,t2∩t3]

(5.51) SPEC-l[t1], SPEC[t2 ,t3] => SPEC[t2 ,tl ∩ t3]

(5.52) is-REAL(t):TYPE[t]array IDL[tl] => array IDL[tl]

Note: This is the default schema for real declared arrays.

(5.53) length(t) = 1: STL[t] => LST[head (t)]
length(t) > 1:STL[t] = > LST[head(t)] SEMIC STL[tail(t)]

IBM LAB VIENNA 5-12 TR 25.088

(5.54) is-<> ∘s-arg-list(t) :PROCST[t] = > rep-id∘s-id(t)
 is-<> ∘s-arg-list (t) :PROCST[t] = = >

rep-id∘s-id(t) (APARL[s-arg-list(t)])

(5.55) length(t) = 1:APARL[t] = > APAR[head(t)]
length(t) > 1:APARL[t] ===> APAR[head(t)]PARDEL APARL[tail(t)]

(5.56) is-string(t) :APAR[t] =>'STRING[t]'
is-expr (t) :APAR[t] =>EXPR[t]

(5.57) length (t) = 1:STRING[t] = > STRING-ELEM[head (t)]
length(t) > 1:STRING[tl = > STRING-ELEM[head(t)]STRING[tail(t)]

(5.58) is-basic-symbol(t) :STRING-ELEM[t] = > rep-bas-symb(t)
is-string(t):STRING-ELEM[t] => 'STRING[t]'

(5.59) length(t) = 1:FORL[t] = > FOREL[head(t)]
length(t) > 1:FORL[t] => FOREL[head(t)], FORL[tail(t)]

(5.60) is-arithm-expr(t):FOREL[t] = > EXPR[t]

is-step-until-elem(t) & is-arithm-expr∘s-init-expr(t) &
is-arithm-expr ∘ s-step-expr (t) & is-arithm-expr ∘ s-until-expr (t) :FOREL[t]

EXPR[s-init-expr(t)]step EXPR[s-step-expr(t)]until EXPR[s-until-expr(t)]

is-while-elem(t) & is-arithm-expr∘s-init-expr(t) &
is-bool-expr∘s-while-expr(t):FOREL[t] ==>

EXPR[s-init-expr(t)]while EXPR[s-while-expr(t)]

(5.61) is-l-dummy-st∘s-else-st(t) & (is-l-cond-st v is-l-for-st)∘s-then-st(t) :
 CONDST [t] = >

 if EXPR[s-decision(t)]then LST[s-then-st(t)]else LST[s-else-st (t)]

is-l-dummy-st∘s-else-st(t) & is-l-cond-st∘s-then-st(t) :CONDST[t] = >
if EXPR[s-decision(t)]then LST[s-then-st(t)]

(is-l-cond-st v is-l-for-st)∘s-then-st(t) & is-l-cond-st∘s-else-st(t);
CONDST [t] = >

if EXPR[s-decision(t)]then LST[s-then-st(t)]
else BEGIN LST[s-else-st(t)]END

(is-l-cond-st v is-l-for-st)∘s-then-st(t) & is-l-cond-st∘s-else-st(t) :
CONDST [t] = >

if EXPR[s-decision(t)]then LST[s-then-st(t)]
else LST[s-else-st(t)]

IBM LAB VIENNA 5-13 TR 25.088

(5.62) t = < > : LPL [t] => λ

t ≠ <> & (is-subscr-var∘head(t) v is-id∘head(t)):LPL[t] =>
EXPR[head(t)] : = LPL[tail(t)]

(5.63) length(t) = 1:EXPRL[t] = > EXPR[head(t)]
length(t) > 1:EXPRL[t] => EXPR[head(t)], EXPRL[tail(t)]

(5.64) (is-cond-expr & is-proper-expr) (t) & is-cond-expr∘s-then-expr(t):EXPR[t] = >
if EXPR[s-decision(t)]then (EXPR[s-then-expr(t)])

else EXPR[s-else-expr(t)]

(is-cond-expr & is-proper-expr) (t) & is-cond-expr∘s-then-expr(t) :EXPR[t]
if EXPR[s-decision(t)]then EXPR[s-then-expr(t)]

else EXPR[s-else-expr(t)]

(is-infix-expr & (is-arithm-expr v is-bool-expr)) (t):EXPR[t] =>
INFL[s-op-1 (t),prior∘s-opr(t)]rep-opr∘s-opr(t)INFR[s-op-2(t),prior∘s-opr(t)]

(is-prefix-expr & (is-arithm-expr v is-bool-expr)) (t):EXPR[t]
rep-opr∘s-opr(t)INFR[s-op(t),prior∘s-opr(t)]

is-funct-ref(t) & s-arg-list(t) ≠ <>:EXPR[t]
PROCST[t]

 is-subscr-var (t) & s-subscr-list (t) ≠ <> & (∀i)(1 <i<length∘s-subscr-list (t) ⊃)
is-arithm-expr∘elem(i,s-subscr-list(t)):EXPR[t] = >
rep-id∘s-id(t) [EXPRL[s-subscr-list(t)]]

is-id(t):EXPR[t] = > rep-id(t)

is-const(t):EXPR[t] => CONST[t]

(5.65) is-cond-expr(t) v (s-opr(t) ≠ Ω & prior∘s-opr(t)<i):
INFL[t, i] = > (EXPR[t])

 is-cond-expr(t) & (s-opr(t) = Ω v prior∘s-opr(t)>=i) :
INFL [t , i] = > EXPR[t]

(5.66) is-cond-expr(t) v (s-opr(t) ≠ Ω & prior∘s-opr(t)<=i):
INFR[t,i] => (EXPR[t])

 is-cond-expr(t) & (s-opr(t) = Ω v prior∘s-opr(t)>i):
INFR[t,i] = > (EXPR[t])

(5.67) s-value(t) = T:CONST[t] => true
s-value(t) = F :CONST[t] => false
is-intg-const (t) :CONST[t] = > INTGVAL[s-value (t)]
is-real-const(t):CONST[t] => REALVAL[s-value(t)]

IBM LAB VIENNA 5-14 TR 25.088

(5.68) v>=0: INTGVAL[v] =>

Note: This non-terminal can be replaced by any elements of the set of possible
representations of the integer value v as specified in /l/.

(5.69) v>=0:REALVAL[vl =>

Note: This non-terminal can be replaced by any elements of the set of possible
representations of the real value v as specified in /l/.

(5.70) EXPR[t]= > (EXPR[t])

Note: This schema is the formal analogue of the statement in /l/ that any ex
pression can be enclosed in additional parentheses.

(5.71) SEMIC = > ; | SEMIC comment COMTSTR ;

Note: This and the following six schemas permit the insertion of comments
in the program text as specified by /l/.

(5.72) BEGIN => begin | BEGIN comment COMTSTR ;

(5.73) END = > end | end COMTSTR-1

(5.74) COMTSTR = > COMTSYM | COMTSYM COMTSTR

(5.75) COMTSYM = >

Note: Any basic symbol (as defined by /l/) not equal to ; .

(5.76) COMTSTR-1 = > COMTSYM-1 | COMTSYM-1 COMTSTR-1

(5.77) COMTSYM-1 = >

Note: Any basic symbol not equal to end or ; or else.

	Formal Definition of ALGOL 60
	Preface, Acknowledgement, References
	Introduction
	Notation and Conventions
	Selectors
	Arithmetic Functions

	The Syntax of Abstract Programs
	The Structure of Programs
	Declarations
	Data Attributes
	Statements
	Expressions

	State Components and Computation of the ALGOL 60 Machine
	The Computation of the Machine
	The Control C
	The Language Function of the Machine

	Flow of Control
	The Dump D
	The Control Information CI

	Associating Identifiers with Meaning
	Creation of Unique Names
	The Environment E
	The Denotation Directory DN

	The Interpretation of Abstract Programs
	The Treatment of Program Errors
	The Initial Actions of the Interpreting Machine
	Metavariables and Abbreviations
	Interpretation of Blocks and Procedure Statements
	Blocks
	Procedure Statements

	Interpretation of Statements Influencing the Flow of Control
	Statement Lists and Single Statements
	Conditional Statements
	For Statements
	Goto Statements

	The Manipulation and Modification of Data
	The Assignment Statement
	Evaluation of Expressions

	The Definition of a Concrete Representation of Abstract Programs
	The Generalized Representation System
	The Representation System for Abstract Programs
	Auxiliary Functions and Predicates Applying to Arguments of the conditional Replacement Schemata
	The conditional Replacement Schemata of the Representation System

