

University of Newcastle upon Tyne

COMPUTING
SCIENCE

Comments on several years of teaching of modelling programming
language concepts

J W Coleman, N P Jefferson, and C B Jones

TECHNICAL REPORT SERIES

No. CS-TR-978 July, 2006

NEWCASTLE

UN IVERS ITY OF

TECHNICAL REPORT SERIES

No. CS-TR-978 July, 2006

Comments on several years of teaching of modelling programming language concepts

J W Coleman, N P Jefferson, and C B Jones

Abstract

This paper describes an undergraduate course taught at the University of Newcastle
upon Tyne titled Understanding Programming Languages. The main thrust of the
course is to understand how language concepts can be modelled and explored using
semantics. Specifically, structural operational semantics (SOS) is taught as a
convenient and light-weight way of recording and experimenting with features of
procedural programming languages. We outline the content, discuss the contentious
issue of tool support and relate experiences.

© 2006 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

COLEMAN, J. W., JEFFERSON, N. P., JONES, C. B..

Comments on several years of teaching of modelling programming language concepts
[By] J. W. Coleman, N. P. Jefferson, C. B. Jones.

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2006.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-978)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-978

Abstract

This paper describes an undergraduate course taught at the University of Newcastle upon Tyne titled
Understanding Programming Languages. The main thrust of the course is to understand how language concepts
can be modelled and explored using semantics. Specifically, structural operational semantics (SOS) is taught as a
convenient and light-weight way of recording and experimenting with features of procedural programming
languages. We outline the content, discuss the contentious issue of tool support and relate experiences.

About the author

Joey earned a BSc (2001) in Applied Computer Science at Ryerson University in Toronto, Ontario. With that in
hand he stayed on as a systems analyst in Ryerson's network services group. Following that he took a position at a
post-dot.com startup as a software engineer and systems administrator. Having decided that research was likely
more interesting than what he had been doing, Joey moved to Newcastle and earned a MPhil (2005) in Computing
Science, and is currently working part-time on his PhD. He is involved primarily with the EPSRC "Splitting
(Software) Atoms Safely" project, working on atomicity in software development methods. He is also involved in
the RODIN project, working on methodology. Other associations include the DIRC project. His main interests lie
in language design and semantics.

Nigel is currently studying for a PhD at the CSR, attached to the DOTS project under the supervision of Dr. Steve
Riddle and funded by an EPSRC studentship. His area of research targets the reuse of black-box software COTS
(commercial off the shelf) components and focuses on the formal semantics of component based languages.
Before undertaking his PhD, he joined CSR in June 2002 as a General Duties Assistant after completing his BSc
(Hons) in Computer Science at the University of Newcastle upon Tyne.

Cliff Jones is currently Professor of Computing Science and Project of the IRC on “Dependability of Computer-
Based Systems”. He has spent more of his career in industry than academia. Fifteen years in IBM saw among
other things the creation with colleagues in Vienna of VDM. Cliff is a fellow of the BCS, IEE and ACM. He
Received a (late) Doctorate under Tony Hoare in Oxford in 1981 and immediately moved to a chair at Manchester
University where he built a strong Formal Methods group which among other projects was the academic partner in
the largest Alvey Software Engineering project (IPSE 2.5 created the "mural" theorem proving assistant). During
his time at Manchester, Cliff had an SRC 5-year Senior Fellowship and spent a sabbatical at Cambridge with the
Newton Institute event on "Semantics". Much of his research at this time focused on formal (compositional)
development methods for concurrent systems. In 1996 he moved to Harlequin directing some 50 developers on
Information Management projects and finally became overall Technical Director before leaving to re-join
academia in 1999. Cliff's interests in formal methods have now broadened to reflect wider issues of
dependability.

Suggested keywords

STRUCTURAL OPERATIONAL SEMANTICS,
FORMAL METHODS,
EDUCATION

Comments on several years of teaching of modelling
programming language concepts?

J W Coleman, N P Jefferson, and C B Jones

School of Computing Science
Newcastle University

NE1 7RU, UK
e-mail: {j.w.coleman,n.p.jefferson,cliff.jones}@ncl.ac.uk

Abstract. This paper describes an undergraduate course taught at the Univer-
sity of Newcastle upon Tyne titled Understanding Programming Languages. The
main thrust of the course is to understand how language concepts can be mod-
elled and explored using semantics. Specifically, structural operational seman-
tics (SOS) is taught as a convenient and light-weight way of recording and ex-
perimenting with features of procedural programming languages. We outline the
content, discuss the contentious issue of tool support and relate experiences.

1 Introduction

The course discussed in this paper1 is entitled “Understanding Programming Languages”.2

(For brevity, the course is referred to below by its number “CSC334”.) It teaches the
modelling of concepts from programming languages. Formally, it covers operational
semantics using parts of VDM for the formal notation (including an unconventional
emphasis on “abstract syntax” (see Section 3)) but tries not to labour the formalism
itself. The teaching objectives are about the student being able to read a formal (opera-
tional) semantics and to experiment with language ideas by sketching a model.

The School of Computing Science at University of Newcastle Upon Tyne offers
several undergraduate “degree programmes” each of which includes CSC334 as an op-
tional final year course. The course is taught to a wide variety of students with varying
degrees of experience with formal methods.

There are no prerequisite courses for the CSC334 course, but students from most
degree programmes take compulsory 2nd year courses that teach VDM as an introduc-
tion to formal methods (the textbook used for this is [2]). Interestingly, the School of
Computing Science does not offer a course on compilers and this has to be taken into
account in the delivery of CSC334.

2 Instructor’s Motivation

There are several reasons for teaching formal semantics at undergraduate level. Prob-
ably the strongest can be motivated from the “half life of knowledge” that can be im-
? This paper is published in the proceedings of the Formal Methods in the Teaching Lab work-

shop that happened at the Formal Methods 2006 conference in Hamilton, Ontario. Please cite
that version instead of this technical report.

1 A longer version of this paper can be found in [1].
2 A book with the same title is being written.

parted: programming languages come and go — over previous ten year periods, there
have been complete changes in the fortunes of one or another language (e.g. Pascal,
Modula-n, Ada, C, C++ and Java just within main line procedural languages). Any lan-
guage that we teach in a university course today might be added to the list of faintly
remembered languages in a decade’s time. It therefore behoves academics to try to
teach something which will last longer and give students a way to look at future lan-
guages. There are of course very good books on comparative languages (a recent ex-
ample is [3]). The fact that so many of the programming languages –even those which
are widely used– exhibit really bad design decisions is also worrying and indicates that
there is a need to give future computer scientists ways to explore ideas more economi-
cally than by building a compiler.

The idea of teaching students a way to model concepts in programming languages
is attractive in itself but it also provides an opportunity to say things about the fun-
damental nature of Informatics. Computing science is not a natural science in which
one is stuck with modelling the universe as it exists; neither is it usefully viewed as
a branch of mathematics as one cannot ignore what can be realized in an engineering
sense. This tension is nowhere more clearly seen than in the design of programming
languages. Language designers must find a compromise between clarity of expression
of programs written in the language and reasonable performance of implementations of
the language. Of course, this list could be extended to include all sorts of issues like the
ability to diagnose programmers’ errors but the essential tension is that indicated above.

To actually model these concepts we use operational semantics. The essence of
operational semantics is that it provides what John McCarthy called an “abstract inter-
preter” for the language under study. Both words are important. An interpreter makes
clear how programs are executed; for an imperative language, it shows how statements
cause changes to the state of the computation. The importance of this being described
“abstractly” cannot be overemphasized: the interpretation can be understood and rea-
soned about because it is presented in terms of abstract objects.

This interpretative framework allows the students to reason about the language in
terms of the overall system. This includes the intermediate configurations generated
during a system’s operations, and is in sharp contrast to semantic definitions that are
defined only in terms of a mapping from inputs to outputs.

The course then explores language definition questions. Concerns about the separa-
tion of syntactic and semantic issues, and the problems inherent in extending a language
with new features are handled; practical coursework is used to illustrate how interac-
tions between language features can have deep structural implications for the language.
The nature of procedural languages is covered followed later in the course by object-
oriented languages, and the two styles are contrasted by examining the roles procedures
and objects play. Typing of values and variables in a language is handled mostly at the
“static-checker” level, unfortunately the scope of the course does not permit a thorough
coverage of the error-handling techniques required for dynamic typing. The topic has,
however, come up during the practical sessions with some frequency. Lastly, the link
between programs and data in the overall system has been covered as time permitted.3

3 Though we do not go into the LISP-like notions of programs as data, some students have made
the connection independently.

2

3 Technical material covered

Because the interest is in modelling rather than the meta-theory of semantics, the course
teaches by example. A series of three language definitions are tackled: Base, Blocks,
and COOL.

– Base introduces the basic idea of states and abstract interpretation; after beginning
with a simple deterministic language, concurrency is used to explain the need to
cope with non-determinism; a trivial (and rather dangerous) form of threads with
sequences of unguarded assignments is modeled using “Plotkin rules” (see Section
4)

– Blocks includes Algol-like blocks and procedures; it is used to show how the key
idea of an “environment” can be employed to model sharing and the normal range
of parameter passing mechanisms are discussed

– COOL is a concurrent object-based language; this is where the rule form of de-
scription really pays off. The language is rich enough to explore many alternatives.

The natural division of discussing syntax and semantics (and the difficult to place
issue of context dependencies) is used. Before addressing the semantics of a language,
it is necessary to delimit the language to be described. A traditional concrete syntax
defines the strings of a language and suggests a parsing of any valid string. The publica-
tion of ALGOL-60 [4] solved the problem of documenting the syntax of programming
languages: “(E)BNF” offers an adequate notation for defining the set of strings of a lan-
guage. Most texts on semantics are content to write semantic rules in terms of concrete
syntax. Although this is convenient for small definitions, it really does not scale up to
larger languages. We therefore base everything on Abstract Syntax descriptions, and in
particular, we use VDM-style records to define the structure of the language.

Using abstract syntax has the advantage of immediately getting the students to think
about the information content of a program rather than bothering about the marks in-
serted just as parsing aids. There is an additional bonus that pattern matching with
abstract objects gives a nice way of defining functions and rules by separating the defi-
nitions into cases.

The class of Programs defined by any context free syntax (concrete or abstract) is
too large in the sense that things like type constraints are not required to hold. There
are many ways of describing Context Conditions but we prefer to write straightforward
recursive predicates over abstract programs and static environments rather than, for
example, use type theory as in [5].

So, given a class of “well formed” abstract programs, how do we give the semantics?
McCarthy’s formal description of “micro-ALGOL” [6] defines an “abstract interpreter”
which takes a Program and a starting state and delivers the final state. This “abstract
interpreter” is defined in terms of recursive functions over statements and expressions.

We have taught both recursive functions and Plotkin rules in the course as means of
defining the semantics of the language. However, as of this past year we have dropped
them in favour of focusing solely on Plotkin rules.

4 Plotkin rules

Non-determinism arises in many ways in programming languages. Certainly the most
interesting cause is concurrency but it is also possible to illustrate via non-deterministic

3

constructs like Dijkstra’s “guarded commands”. Unfortunately, McCarthy’s idea to present
an abstract interpreter by recursive functions does not easily cope with non-determinacy.
Defining the recursive functions so that they produce a set of states is not convenient
because of the bookkeeping requirements.

In 1981, Gordon Plotkin produced the technical report on “Structural Operational
Semantics”4 [9]. This widely photo-copied contribution revived interest in operational
semantics.

The advantage of the move to such a rule presentation is the natural way of pre-
senting non-determinacy. Many features of programming languages give rise to non-
determinacy in the sense that more than one state can result from a given (program and)
starting state. This natural expression extends well to concurrent languages. The advan-
tage of the rule format appears to be that the non-determinacy has been factored out to
a “meta-level” at which the choice of order of rule application has been separated from
the link between text and states. For this reason, the complications of writing a function
which directly defines the set of possible final states are avoided. Here is a case where
the notation used to express the concept of relations (on states) is crucial.

5 Tool support

A key question for teaching CSC334 has been the use of tool support. Tool support has
only been used in the teaching of CSC334 during some of the years it has been offered,
and is actually an addition of the second author. The inclusion of tool support has both
deepened the understanding of some students, as well as increased the confusion for
others. There is the extra burden of learning to use the tool as well as the differences
between the tool’s ASCII syntax and the classroom syntax. Because of this, the tool
has been an optional but fully supported part of the course, and the choice of use was
entirely left to the student.

The tool used is the CSK VDMTools R© [10, 11] which many of the CSC334 students
have experience of from other courses. It provides an environment in which a VDM
specification may be syntax- and type-checked and explicit functions may be executed
via an interpreter. The students are provided with language specifications translated into
ASCII VDM-SL, notably with the semantic rules translated into functions so that they
can be executed in the Toolbox interpreter. This translation, in some cases, produces
functions that are significantly different than the original semantic rules that are taught
in class.

Beyond the syntactic differences between the original semantic rules and their en-
coding in the tool, there are often cases where the two versions of a semantic rule or
function are wildly different. This is most evident when translating an implicit defini-
tion: the tool cannot directly encode implicit definitions, so an explicit equivalent must
be created. Unfortunately, the process of doing this often results in a large, ugly and
confusing specification. It is of no practical benefit for the students to study and com-
prehend these explicit definitions; it is important that they focus on the meaning of the
semantics and not the implementation issues. Because of this the students are shielded
from much of the underlying explicit implementation by separating it from the main
language specification through the use of mechanisms made available by the tool.

4 This material, together with a companion note on its origins [7], has finally been published in
a journal [8].

4

It is our belief that for some students at least, the benefits of using the tool outweigh
the negatives. Through use of the tool, the students can easily identify bugs in their
VDM syntax; quickly spot type errors in their specifications; and execute test programs
to test and improve their understanding.

The vast majority of mistakes made are errors in the semantic definitions and therein
lies the major benefit of using the tool. The execution of test programs highlights such
semantic slips and allows greater understanding by directly showing students the con-
sequences of their design decisions.

6 Pedagogic experience

This course is evaluated positively by the students who take it. As an optional course,
they obviously tend to self-select and about one quarter of the potential cohort choose
to pursue it. The limited number (approximately 20–40 students) makes it possible to
adopt a reactive learning environment experimenting with ideas from the students.

The practical work of CSC334 is based heavily on problem solving. Threading
through the semester is a large project to make non-trivial extensions to the provided
language definitions, and the lecturer tries to keep things timed so that he is introducing
concepts just before they are needed. The format of the course’s final exam stresses
problem solving: it is an open-book exam, and is based on a language specification
included from the lectures.

One of the course’s final events has evolved over the past few years. As initially run,
a few of the students were chosen to study one of the language specifications used in
the lectures5, and they would have the chance to grill the lecturer on the choices made
in the design of that language. Their role included gathering comments and questions
from their classmates, though the unchosen students also had the opportunity to ask
questions through the session. This walkthrough of the language had the side-effect of
debugging the language design; the design errors found by the were very instructive.

This exercise transformed first into the lecturer redeveloping a portion of one of
the specifications during the lectures, then in the following year, a larger portion of the
specification was redeveloped. These lectures had several aims: eliciting direct student
participation in the writing of the specification6; showing how errors are made during
specification and how to both discover and correct them; and to give a real demonstra-
tion of the kind of thinking that is needed to do this kind of development — teaching
directly by example. While the lecturer did have the language specification to hand, its
use was kept to a minimum: mainly to keep the names of the variables synchronized
with their notes.

There is, of course, much related material that could usefully be taught on seman-
tics. Textbooks such as [12] and [13] provide excellent introductions to the basic notions
of semantics, but –to our taste– do so without a practical context. Their concern with
meta-properties of the language would motivate our students less well than experiments
with modelling a range of programming language issues.

A preliminary analysis of the feedback from the students suggests that they consider
the practical portion of the course to be the most effective in gaining an understanding

5 The same specification that would be used in that year’s exam.
6 Mainly by continually asking the class what else was needed for a given rule.

5

of the core course ideas. We would conjecture that this arises from the problem-oriented
nature of the course: the students are warned at the start of the course that the exam is a
problem-based, and to pass the exam they will have to apply the course material.

From both the feedback as well as from discussions with the small groups during
practical sessions it appears that the students agree with the notion that the course con-
tent has a longer “half-life” than language-specific details. Part of this, we believe, is the
realization that design decisions made in languages can be quite arbitrary when there
are several ways to model a given feature.

Tool support for this course is explored in greater depth in [1]; analysis of the related
effects was omitted from this version as the last run of the course did not use the tool.

Acknowledgments All of the authors acknowledge the support of the EPSRC DIRC
project. The first and third authors also acknowledge support from the EU IST-6 pro-
gramme project RODIN, and the ESPRC project “Splitting (Software) Atoms Safely”.
In addition the second author is grateful to the EPSRC funded Diversity with Off-The-
Shelf (DOTS) project for providing his studentship.

References

1. Coleman, J.W., Jefferson, N.P., Jones, C.B.: Black tie optional: Modelling programming
language concepts. Technical Report Series CS-TR-844, School of Computing Science,
University of Newcastle Upon Tyne (2004)

2. Fitzgerald, J., Larsen, P.G.: Modelling systems: practical tools and techniques in software
development. Cambridge University Press (1998)

3. Watt, D.A.: Programming Language Design Concepts. John Wiley (2004)
4. Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis, A.J.,

Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaarden, A., Woodger,
M.: Revised report on the algorithmic language Algol 60. Communications of the ACM 6(1)
(1963) 1–17

5. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
6. McCarthy, J.: A formal description of a subset of ALGOL. In: [14]. (1966) 1–12
7. Plotkin, G.D.: The origins of structural operational semantics. Journal of Logic and Alge-

braic Programming 60–61 (2004) 3–15
8. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Alge-

braic Programming 60–61 (2004) 17–139
9. Plotkin, G.D.: A structural approach to operational semantics. Technical report, Aarhus

University (1981)
10. CSK: VDMTools R©: VDM-SL Toolbox Manual, www.vdmbook.com/tools.php. (2006)
11. CSK: VDMTools R©: The CSK VDM-SL Language, www.vdmbook.com/tools.php. (2006)
12. Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Introduction. Wiley

(1992) Available at http://www.daimi.au.dk/∼bra8130/Wiley book/wiley.html.
13. Winskel, G.: The Formal Semantics of Programming Languages. The MIT Press (1993)

ISBN 0-262-23169-7.
14. Steel, T.B.: Formal Language Description Languages for Computer Programming. North-

Holland (1966)

6

