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Abstract

Well understood methods exist for developing programs from formal specifi-
cations. Such methods offer a precise check that certain sorts of deviations from
their specifications are absent from programs. This leaves (among other issues)
the task of obtaining a specification. For tasks that are fully described in terms
of the symbolic values within a machine, this might not be too difficult but there
is an increasing demand for systems in which programs interact with an external
physical world. Typical of such applications are control programs that attempt to
bring about changes in the physical world via actuators and measure things in that
world via sensors. Here, the task of fixing the specification can be more challeng-
ing than the task of deriving a program from that specification. Furthermore, most
systems of this class must tolerate failures in the physical components outside the
computer: it then becomes still harder to achieve confidence that the specification
is appropriate. This paper gives a systematic way to derive the specification of a
control program, based on explicit assumptions about the physical world. It also
discusses an approach to separating the detection and management of faults from
system operation in the absence of faults.

1 Introduction

As computers become cheaper and smaller, they are increasingly connected to devices
that sense and affect the physical world. Typical of such applications of general purpose



digital computers are control programs. We do not restrict what we have to say to
control programsin the narrow sense; but they furnish an important —and convenient—
example of systems connected to the physical world. In fact, we hope to extend (see
Section 5.1) our area of application to systems where humans play a significant part.
We have, for example, studied advisory systems, which are in some respects similar to
the control systemswe discuss here, but whose purposeis to provide advice to ahuman
operator who makes final decisions. The broad class of “open systems’, which receive
input from the physical world via sensors and influence it via actuators, is both large
and important. Such open systems are often deployed in safety-critical environments. *

It is often difficult to develop the specification of an open system because the de-
vices to which it is connected are themselves complex. The task of developing an
appropriate specification is further complicated by the fact that the physical devices are
subject to failure. This paper outlines an approach to deriving aformal specification of
control systems and argues that it extends to more general open systems.

Notice that the observations above affect any specification whether it is formal or
informal. It is expected that —as with other formal methods- the ideas will inspire less
formal approaches as well.

This paper develops the ideas presented in the earlier conference paper [HJJO03].
Our ideas are presented using the example of a controller for an irrigation sluice gate.
Section 3 begins with the overall requirement for an ideally reliable sluice gate and
developsaspecification for its controller. In Section 4 we consider faultsin the problem
world and the succeeding section outlines one important way of handling different
modes of a system.

2 Outline of our method

Our method is conceptually simple: we ground our view of adesired computer system
in the externa physical world. This is the problem world whose phenomena are to
be measured and influenced. Having agreed with the customer the desired behaviour
in the problem world, we record —and again obtain conformation of acceptability—
assumptions about the physical components outside the computer itself. Only then
do we derive the specification of the software to run in the computer.

To some devel opersit may seem surprising to begin by discussing external physical
phenomena, most of which the program can influence only indirectly. (Programs can
only receive and send signals: they do not directly experience or control any other phe-
nomena of the problem world.) So our message can be stated negatively: the method
discourages designers from jumping too early into writing a specification of the control
software.

To realise the conceptual simplicity of our method a number of technical issues
have had to be settled. How these are resolved is discussed in Section 2.3.

1The most common argument used for replacing custom designed control hardware with software running
in a general purpose processor is that flexibility for change is offered; it is not the intention here to argue
whether or not the claims justify the use of software-controlled systems.
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Figure 1: The overall method

2.1 Overview

The approach proposed is first to specify the requirements of the overall system in the
physica (problem) world; then to determine —and record as rely conditions— neces-
sary assumptions about components of that physical world; and only then to derive a
specification of the computational part of the control system (the symbolic world). See
Figure 1.

Most open systems must be designed to tolerate failuresin the physical components
— both in the sensors and actuators, and in other components not directly interfaced
to the computer. This requirement for fault-tolerance complicates the problem of de-
riving a specification by introducing conflicting needs into the development process.
On the one hand, it is necessary to understand and capture enough of the complexity
of the possible problem world behaviours to accommodate a sufficient class of faults
to achieve the desired degree of fault-tolerance. On the other hand, it is important to
maintain clarity in the set of assumptionsthat underpin the specification of control pro-
gram behaviour in normal fault-free operation. This conflict cannot be conveniently
resolved in a unitary top down devel opment process in which a single specification of
problem propertiesis elaborated to accommodate both faulty and fault-free operation.
Our approach is to treat faulty and fault-free operation as distinct subproblems, to be
solved separately and subsequently combined. We address a number of issues relating
to the treatment of faults in Section 4. This is one area where our thinking has pro-
gressed substantially beyond the ideasin [HJJO3] but aswe explainin Section 5.3 there
is morework required in this area

Therearetwo key advantagesin starting with a specification that describes problem
world phenomena more generally, rather than restricting it to those phenomenawhich
cross the interface to the computer asinput or output signals:

o the problem world requirements are meaningful to the customer, and so arelikely
to be better understood;

o the processforcesthe developer to articulate and record clear assumptions about
the problem world properties, which must be checked before any deployment of



the control software.

Of course, we make no claim that systems can be made perfectly safe; we aim
only to offer a method that will make it easier to identify the assumptions about the
physical components of the system and to ensure that they are formally documented.
However, there is a problem with this wider view: it would be unreasonable to ask
system developers to build models of all of the physical components of a system. In
particul ar, componentswhich have extremely complex behaviour —for example, airflow
over awing— might defy adequate formal description. Our approach hereis to record
only the assumptions (which we record as rely conditions) on which the development
is based. These assumptions will often hold for arange of possible devices, enlarging
the range of environmentsin which the devel oped control software can be deployed.

2.2 A microexample

A simpleillustration of the envisaged method can be built around a room heating sys-
tem. Here we argue, one should not jump at once into a specification of the control
program — stating what corrective action should follow when the value read from the
temperature sensor indicates that some limit value has been exceeded. Instead one
should first specify the desired relationship between the actual room temperature and
the target temperature set on the control knob: this is the requirement in the problem
world. A control program cannot of course detect the actual temperature so arealisable
specification must record, in rely conditions, the properties of those componentswhich
link the control system to the physical world: that is, the assumptions made about the
accuracy of the sensors and about the causal chain connection between sending signals
to the heating equipment and to changes in the actual room temperature. Proceeding
in thisway islikely to pinpoint assumptions about the extremes and rate of change of
external temperature. Once these assumptions have been recorded and authorised, it is
possible to derive the specification of the control program.

Perhaps most importantly, the assumptions are recorded for anyone who is consid-
ering deploying the control system.

It is worth emphasising the difference in nature between rely and guarantee con-
ditions. Guarantee conditions are obligations on the code that is to be created: the
program is obliged to behave in a certain way. Rely conditions give permission to the
developer to ignore possible uses: the programis under no obligationif itisusedin an
environment in which the rely condition is not true. Thereis of course an exact cor-
respondence here with preconditions and postconditions. the precondition on a square
root function tells the developer that —since the input can be assumed to be positive—
imaginary number results are outside the scope; but for positive numbers, the bounds
on the accuracy of the result must be respected.

2.3 Sometechnical tools

In clarifying our thoughts about the problem to be solved, an essential tool has been the
use of problem diagrams [Jac00]. A problem diagram shows the customer’s require-
ment, the problem world, the computer (which we refer to as the machine), and the



interfaces among them. It represents these elements explicitly, and so helps to provide
afirm basis both for exploring the problem scope and for identifying the parts of the
problem world that must be specified and the phenomenathat must be related by those
specifications. A simple example of a problem diagram is given in Figure 3.

Properties of a control system must, in general, be specified over time intervals: in
particular, the time interval, and its subintervals, over which the system operates. In
addition, properties may relate behaviour in one subinterval to behaviour in an adjoin-
ing interval. We take the simple approach of explicitly quantifying over such inter-
vals[MH91, MH92]. The notation is similar to the Duration Calculus [CHR91].

A number of methods exist for developing sequential programs from formal spec-
ifications (e.g. [Jon90, Abr96]). A formal method identifies proof obligations to be
discharged at each development step: if all such proof obligations are satisfied, one
class of error has been excluded from the final program. Although such methods are
not universally practised, their existence shows that a class of errors can be eliminated
from program design. Methods which use a posit and prove approach are particularly
useful because they combine the predisposition of an engineer to introduce decisions
one at atime with the possibility to verify one design decision before moving on to base
further work on that decision. Such approaches use the essential ideas of redundancy
and diversity (see [HIR04]) and thus minimise the amount of scrap and rework.

A development method that can scale up to deal with redlistic problems must be
compositional in the sense that the specification of a subsystem is a complete statement
of its required properties. For sequential programs, various forms of precondition and
postcondition specifications satisfy this requirement. For concurrent programs, the task
of finding tractable compositional methods has proved more challenging (see [Jon0Q]);
but even here, techniques like rely and guarantee specifications (see [Jon81, Jon83,
MH92, Jon96, BS01]) offer compositional methods.

Since, in general, a program cannot directly monitor or control all the phenomena
of interest in the problem world, satisfaction of the customer’s requirement must be
achieved indirectly, relying on causal properties of the problem world. We therefore
use rely and guarantee conditionsin the following way. The machine and the problem
world are related by mutual rely and guarantee conditions. each one guarantees to
satisfy certain conditions provided that it can rely on the guarantees of its partner. On
this basis we can prove that the parallel composition of the machine with the problem
world satisfies the specification of the whole system. Therely and guarantee conditions
remain explicit in the specification documents as a reminder and awarning: they must
be checked for safe deployment.

3 The Sluice Gate example

The example considered in detail in this paper concerns a sluice gate [ Jac00] designed
to control the flow of water in a farm irrigation channel. The gate is represented in
Figure 2. The gate consists of abarrier sliding in vertical guides and positioned across
the flow of water in the irrigation channel. The barrier is raised and lowered by a
reversible motor which drives a rack-and-pinion mechanism engaging with the guide at
each side. Whenthebarrier isfully raisedit is open and the flow of water is unimpeded;
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Figure 2: A representation of asluice gate

when the barrier is fully down it is closed and the flow of water is blocked. The guides
are equipped with stops that prevent the barrier from moving beyond the guide limits.
There are top and bottom sensors which are set on when the barrier is fully raised or
fully down respectively.

Essentially the idea sketched in Section 2 is to write an initial specification based
on awide view of a system, including both the machine and the problemworld. The
machineis the computer, executing the control program to be developed. The problem
world is that part of physical reality in which the problem resides and in which the
effects of the system, onceinstalled and set in operation, will be evaluated.

Drawing the boundaries of the problem world demands a judgement based on the
responsibilities and the scope of authority of the customer for the system (we return
to this topic in Section 5.1). The customer’s responsibilities bound the effects to be
evaluated in the problem world, while the scope of authority bounds the freedom of the
developersin aiming to achieve those effects.

The customer’s requirement is that the gate should be open or closed according to
a certain regime intended to ensure appropriate irrigation of the fields. The problem
isto develop the controller that will impose this regime. The problem is shown in the
problemdiagramin Figure 3. Thetwo rectangles represent the two physical domains of
this problem. Oneisthe Control Machine, which is the computer executing the control
program that we are to develop. It is marked with a double stripe; this indicates that
it is the machine domain in the problem. The other is the Sluice Gate with its sensors
and drive motor, the plain rectangleindicating that it is a problem domain, which in the
software development we regard as given.?

Inthisdiagram thereis only one problem domain; it isfrequently the case that there
are two or more, interacting with each other and with the machine domain. We refer
to the problem domains collectively as the problem world, distinguishing them from
the machine. The requirement is represented by the dashed ellipse; the requirement
is to impose the desired regime on the gate. The requirement phenomena —that is the
phenomena in terms of which the requirement is expressed— are represented by the
arrow marked a, and listed in the text below the diagram. The specification phenomena

2|t isimportant that we are concerned with software development, and that we regard the problem domain
as given: that is, we are not free to replace the sluice gate equipment with different equipment better suited
to our needs. We must develop a control program for the sluice gate with which our customer presents us.
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Figure 3: The machine, the problem world and the requirement

—that is, the shared phenomenaof the interaction between the machine and the problem
world — arerepresented by the line marked b, and listed in the text below the diagram.
The notations “CM!” and “SG!” indicate that the Control Machine and Sluice Gate
respectively control the annotated phenomena: the machine can switch the motor on
and off and set its direction, while the top and bottom sensors are controlled by the
sluice gate. The requirement phenomenon is the position of the gate, pos, in terms of
which the requirement is expressed.

By drawing the problem diagram as we have done we have identified the scope
of the problem: it is restricted to operation of the sluice gate. We might instead have
broadened the scope to include the irrigation channel. The diagram would then have
shown the Irrigation Channel as an additional domain of the problem world, interacting
with the Sluice Gate; and the requirement would have been expressed in terms of a
required flow of water in the channel. Any broadening or narrowing of the problem
world will, of course, be reflected in a change in the requirement phenomena, and vice
versa. A further broadening would include the fields and their crops as a part of the
problem world. Drawing the boundaries of the problem world in this way demands an
inescapablejudgement: thewhole universe cannot be encompassed in asingle problem.
This judgement must be based on an understanding of the responsibilities and scope
of authority of the customer for the system. The customer’s responsibilities place an
upper bound on the requirement, while the scope of authority boundsthe freedom of the
developersin aiming to satisfy that requirement. Here we will limit our consideration
to the sluice gate and its operation, as shown in the problem diagram.

For the chosen scope, Section 3.4 indicates a set of assumptionswhich are made on
the environment. For each of the alternative scopes discussed here, one would end up
making different assumptions on the environment.

3.1 Formalising the problem requirement

The requirement is that —over the whole time of system operation— the time when
the gate is fully closed should be in a certain ratio to the time when it is fully open.
Specifically, the ratio between the time the gate is in its closed : open states should
approximate 5 : 1 over any substantial period of time. Evidently we must make this
requirement more formal and more precise. To formalise the requirement we begin
by recognising that the gate is not always open or closed: it can sometimes be in
intermediate positions. We introduce a variable pos denoting the position of the gate.



Thisvariableis of type Height:
pos : Height
where Height is defined as®
Height = closed | neither | open.

The position is determined by the Sluice Gate, interacting with the Control Machine.
We are interested in the trace of posvalues over time. Hence, in predicates, poswill be
treated as a function of time: that is, pos(t) gives the position of the gate at time t. A
timed predicate of the form P over | states that the predicate P holds for every instant
of timeintheinterval |. For example,

(pos = open) over |

iseguivalent to (Vt : | e pos(t) = open). The operator over binds more tightly than
binary logical operators. The operator ‘ #' givesthe size of an interval. Theintegral of

apredicate over aninterval |, such as [ (pos = open), treatsthe predicate, pos = open,
as afunction of time (because posis afunction of time); it treats atrue value as 1 and
afalse value as O (as in the Duration Calculus [CHR91]). In short, the two integrals
in the formalisation SuiceGateRequirement below give the total time in the interval |

for which the variable pos is equal to closed and open respectively. In the definition
of SuiceGateRequirement given below, the notation Interval(T) stands for the set of
all contiguous finite intervals that are subsets of the time interval T. The parameter T
should be thought of as the time interval over which the system is operating.

SuiceGateRequirement =
AT :Interval (Time) o
V1 :Interval(T) e
((pos = open) over | = #1 < 15min) A
((pos = closed) over | = #I < 120min) A

: J; (pos = closed) > 270min A
<#I 2 360min = < f:(pos: open) > 54min

This requirement will suffice for the discussion which follows but it is clear that some
issuesmay ariseat this point, demanding early resolution. In particular, the requirement
describes a behaviour over time of the sluice gate, but the sluice gate may perhaps not
be capable of this behaviour. For example, if the duice gate position cannot change
between open and closed without dwelling for 200 minutes in the neither position,
then the requirement will not be satisfiable. Thisissue clearly depends on the physical
properties of the sluice gate, and we return to this topic shortly.

31t is worth observing here that this definition —with only three distinct positions of the gate- may prove
to be too abstract. We will return to this point later, when we discuss the physical properties of the sluice
gate.



3.2 Initial combined system specification

The specification of thewhole system, consisting of the Control Machine and the Sluice
Gate connected together and operatingin parallel, isthat it must satisfy the requirement
above:

CMSGSystem =

system

output pos : Height

rely true

guar uiceGateRequirement

We regard the subject of each specification of this kind as a system. (Below we
present such a specification for the Control Machine, another for the Sluice Gate, and
so on.) The system CMSGSystem specifies the requirement on the combined system.
A system specification explicitly lists the system’s inputs and outputs, any assumptions
about its environment on which it relies, and the conditions it guarantees to establish.
In this case there are no assumptions and there are no inputs. the overall specification
is concerned only with the gate position, which is an output.

Evidently, the combined system can satisfy its specification only if the Sluice Gate
and the Control Machine satisfy appropriate specifications. In the case of the Control
Machine, which is the machinein the problem diagram shown in Figure 3, our specifi-
cation will describe the properties with which the machine must be endowed by virtue
of the software it will be executing. In the case of the Sluice Gate, by contrast, our
specification will describe the propertieswith which the dluice gateis already endowed
by virtue of its physical construction. The description will not however attempt to de-
scribe everything that could be known about the gate in question; we will attempt to
determineaminimal set of assumptions (in Section 3.4).

The assumptions on the Sluice Gate specification must be devel oped first; the spec-
ification of the Control Machine, which is to be built will be derived fromiit.*

3.3 The shape of the specification of the control system

The next objective is to arrive at a specification of the control system. It would ob-
vioudly be possible to jump straight to an outline algorithm which indicated, say, that
each hour the control system should open the sluice gate; pause 9 minutes; then move
the gate down; pause for about 45 minutes; etc. Any temptation to specify the con-
trol system in this way should be resisted. One argument is that many other patterns
(e.0. a 5/23 minute pattern each half hour) would satisfy the user’s requirements as
documented.

The aim here is to derive an implicit specification of the control system from an
understanding of the components. This identifies the assumptions clearly and ensures
that they are recorded.

4Even here there can be a degree of iteration in the development. The problem world may offer arich set
of properties from which the developer may be able to select different subsets as sufficient assumptions for
developing the machine. In making this selection it may be reasonable to pay some attention to considerations
of program specification and design.



Our approach is to look at the consequences of putting the onus for meeting the
system specification on the control system. We could specify the Control Machine as
asystem:

Controller =

system

external pos : Height

input top, bot : Boolean

output motor : on | off , dir : up | down
rely??

guar SuiceGateRequirement

It is of course clear that the Controller cannot achieve this guarantee condition unless
its developer can make assumptions. to give just one example, the Controller itself
cannot directly cause pos to change becauseit isin the physical world.

The next section explores assumptions which need to be made to ensure that the
above outline can be completed to a realisable specification.

3.4 Assumptionsabout the problem world

The Control machine'sinputs are the states of the sensors, its outputs are signalsto the
motor controls. To achieve the overall specification, the control program relies on the
sensors and the motor working correctly (the question of which sorts of faults can be
tolerated is considered in Section 4). The first set of assumptions will need to relate
pos being closed or open with the inputs to the Controller (sensor values top and bot).

At theinterface b in Figure 3, the Sluice Gate controls the states of the sensors top
and bot, while the Control Machine can set the motor direction control, dir, to either
up or down, and can switch the motor by setting motor to either on or off. We describe
the phenomena of the interface more precisely as follows:

Control Machine! {dir : up | down; motor : on | off }
Suice Gate! {top, bot : Boolean}

The states of the two sensors, top and bot, can be formalised as Boolean functions
of time. The sensors detect when the gate is open (top) or closed (bot). We formalise
this property in the following definition SensorProp. In the definition, T is the whole
time interval over which the system operates.

SensorProp =
AT : Interval(Time) o
(((pos = open) < top) A ((pos = closed) < bot)) over T

Asshownin Figure 2, the sluice gate is driven by amotor that raises or lowers the gate
through a pair of mechanisms. At the interface b, the Control Machine (see Figure 3)
can send signals which are intended to switch the motor on or off, and can set the dir
signal. To achieve our specification we need to make assumptions about what changes
arise in the problem world when these signals are sent.

10



To capture these assumptions about the motor’s effect on the gate, we begin by in-
troducing some derived propertiesthat indicate when the gateis being lifted or lowered
by the motor and when the gate is moved. These derived properties will form our
vocabulary for discussing motor properties. They can be used throughout the speci-
fication to simplify its presentation. The property that the gate is moved includes the
time motor _decel over which it is decelerated when the motor is turned off.

lifted = At : Time e motor(t) = on A dir(t) = up
lowered = At : Time e motor (t) = on A dir(t) = down
moved =
At:Timee (3J: Interval(Time) o
sup(J) =t A #J < motor_decel A (motor = on) in J)

The supremum, sup(J), of a set of times J is the least upper bound of J, and the infi-
mum, inf (J), isthe greatest lower bound. A predicate, P, holds within a set of times J,
written P in J, if there exists atime within J at which P holds. We also introduce an
ordering, lower, on the gate position and its reflexive transitive closure, lower *. This
alows us to express the property that the gate is either rising (monotonically upwards)
or falling (monotonically downwards).

lower = {closed — neither, neither — open}
monotonic_up = A1 : Interval(Time) e

Vit : | oty <ty = lower*(pos(ty), pos(tz))
monotonic_down = A1 : Interval(Time) e

Vi, ta: | oty <ty = lower*(pos(tz), pos(ty))

If the motor has been onin the direction up for at least some constant uptime, the gate
will have reached the open position. A similar condition appliesfor downward travel. ®
The gate remains stationary after the motor has been turned off for time motor _decel.
After the motor has been turned off the gate can only continueitstravel in thedirection
in which it was going (for at most motor _decel). In the definition, aninterval | adjoins
an interval J, written | adjoins J, if the supremum of | is equa to the infimum of J,
i.e. sup(l) = inf(J). Infix relations, such as adjoins, bind more tightly than binary
logical operators.

MotorOperation = AT : Interval(Time) o
V1 :Interval(T) e
((lifted A pos # open) over | = #1 < uptime) A
((lowered A pos # closed) over | = #I < downtime) A
(((— moved) over |) = (3p: Height e (pos= p) over |))
A
v1,J: Interval(T) e | adjoinsJ =
(lifted over | A (motor = off ) over J = monotonic_up(l U J))
(lowered over | A (motor = off ) over J = monotonic_down(l U J))

5Because we chose to describe pos as having only three values, rather than giving it a numeric value, we
now naturally describe the gate's speed of movement only in terms of the travel time between the extreme
positions.

11



At this point we can fill in the rely condition in the specification outlined in Sec-
tion 3.3.

Controller =

system

external pos : Height

input top, bot : Boolean

output motor : on | off , dir : up | down
rely SensorProp A MotorOperation
guar SuiceGateRequirement

Both Sensor Prop and Motor Operation are predicates parameterised by thetimeinterval
over which the system operates; in SensorProp A Motor Operation the operator “A” is
alifted conjunction, that is, it means

AT : Interval(Time) e SensorProp(T) A MotorOperation(T)

However, this specificationis still not complete because we need to review agenera
concern (that of assumptions on equipment to avoid breakage) and have used this to
illustrate the symmetric way in which assumptions are made.

3.5 Avoiding breakage

The propertiesthat areimportant in the problem world are not yet complete. The sluice
gate does exhibit the properties we have described here, but only if certain restrictions
are observed on its operation. In a control problem such as we are discussing here,
it is necessary to ensure that the machine itself does not cause failure of any part of
the problem domain by ignoring known restrictions on its use. This is the breakage
concern of [Jac00]. For example, checking the motor equipment manua we might
learn that the motor will be damaged if it is switched between directions without being
brought to rest in between: for any period over which the gate is moved, the direction
must be constant. Recall that the definition of moved above includes periods when the
motor is on as well as periods when it has been on recently (within motor _dece!).

MotorDirectionSable = AT : Interval(Time) o
VI :Interval(T) e
(moved over | = ((dir = up) over | v (dir = down) over |))

Note that, because this condition involves only the variables motor and dir, the con-
troller can satisfy this requirement without relying on any properties of the sluice gate.
Hence the rely condition associated with this condition is just true. By requiring that
the controller always maintain this property, even if the sluice gate is not working cor-
rectly, we ensure the controller won’'t break the motor by switching direction while the
motor isturned on or shortly after a period whereit has been on. Of courseif the sluice
gate is broken in a manner that means the the motor is actually running even when
turned off by the controller, the change of direction can still damage the motor/gears.
A second restriction applies when the motor has driven the gate to the open or
closed position. It must then be switched off soon enough to avoid straining the motor
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and mechanism when the gate reaches the end of its vertical travel and further move-
ment is impossible. motor _limit is the maximum time the motor can be on with the
direction up (down) when the gate has reached the open (closed) position.

Motor OffAtLimit = AT : Interval(Time) o

V1 :Interval(T) e
((pos = open) over | = [, (motor = on A dir = up) < motor_limit) A
((pos = closed) over | = [ (motor = on A dir = down) < motor_limit)

As this condition refers to the gate position (pos), the controller needs to assume that
the sensors are operating correctly in order to satisfy this requirement. Hence the rely
condition associated with this condition is Sensor Prop.

Only if it respects both Motor DirectionStabl e and Motor OffAtLimit can the Control
machine rely on the behaviour described in Motor Operation.

3.6 Derived specification of the control machine

As we made clear in Section 3.3, it is the purpose of the Control Machine to satisfy
SuiceGateRequirement; and this is, essentially, its specification. The previous two
sections have recorded enough about the problem world to enable us to write aredlis-
able specification.

We can specify the Control Machine as a system:

Controller =

system

external pos : Height

input top, bot : Boolean

output motor : on | off, dir : up | down
rely SensorProp A MotorOperation
guar SuiceGateRequirement
relytrue

guar MotorDirectionStable

rely SensorProp

guar Motor OffAtLimit

An implementation of Controller is required to simultaneously satisfy all three
rely/guarantee pairs. If the sluice gate satisfies both SensorProp and MotorOperation
then the controller must ensure SuicegateRequirement but, even if the sluice gate does
not satisfy these properties, the controller must always ensure MotorDirectionSable,
and it must ensure Motor OffAtLimit while SensorProp holds, even if MotorOperation
doesn’t hold.

The use separate pairs of rely/guarantee conditions is a change from our earlier
conference paper [HJJO3] in which there was a single rely/guarantee pair with the
rely and guarantee consisting of the conjunction of the above relies and the conjunc-
tion of the above guarantees, respectively. This is a subtle but significant difference
in approach, especially when specifying safety-critical systems. Wherever possible,
the controller should avoid unsafe modes of operating the equipment, regardless of
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whether the equipment isworking correctly. In some cases (e.g. Motor DirectionSable)
this is possible irrespective of the behaviour of the equipment, while in other cases
(e.g. Motor OffAtLimit) the rely condition to ensure safe operation may be weaker than
that required for normal operation. Overall the new approach leads to a stronger and
safer specification of the controller.

3.7 Some stepstowards refinement

Although pos is not a direct input or output of the controller (see Figure 3 and the
accompanying descriptions of a and b), we have alowed the controller specification
to reference pos as an ‘external’ variable. This addition allows the specification to
incorporate the original requirement directly. Because pos is not in the interface b of
phenomena shared by the Control Machine and the Sluice Gate problem domain, a
program implementing the controller may not refer to it. Any reference to pos must
therefore be eliminated from the program text by a form of refinement in the problem
world.

Thisrefinement in the problem world isthefirst stagein the derivation of the control
program from our specification Controller. The second stage will be a conventional
program refinement from a formal specification. The first stage exploits the problem
world properties to reduce the specification of the control program to one which does
not refer to any phenomenathat are not in the interface between the machine and the
world. The problem world properties to be exploited are, of course, those on which
Controller is explicitly entitled to rely — namely, SensorProp and Motor Operation.

An example of such reduction is the elimination of referencesto pos. Recall that
SuiceGateRequirement as given in Section 3.1is:

SuiceGateRequirement = A T : Interval (Time) o
VI :Interval(T) e
((pos = open) over | = #1 < 15min) A
((pos = closed) over | = #I < 120min) A

. J: (pos = closed) > 270min A
(#I = 360min = ( f:(pos: open) > 54min

Referencesto pos can be eliminated by expl oiting the problem world property Sensor Prop,
which is a pair of equivalences between top and (pos = open) and bot and (pos =
closed) respectively. To obtain the partially refined specification of Controller1 we can
therefore replace SuiceGateRequirement by a new version

SuiceGateRequirementl = AT : Interval (Time) o
VI :Interval(T) o
(top over | = #1 < 15min) A
(bot over | = #1 < 120min

) A
. (bot) > 270min A
<#| > 360min = < {,:(top) S 54mir; >)

in which pos does not appear.
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Motor OffAtLimit and MotorOperation can be revised in the same manner to give
Motor OffAtLimit1 and Motor Operationl respectively. Because the controller specifi-
cation can rely on SensorProp, rewriting it to use the revised predicates gives a speci-
fication Controller1 that is formally equivaent to Controller:

Controller1 =

system

input top, bot : Boolean

output motor : on | off , dir : up | down

rely MotorOperationl

guar JuiceGateRequirement1

relytrue

guar MotorDirectionStable A Motor OffAtLimit1

Because the external output pos, has been eliminated in the refinement, its declara-
tion has been removed from the specification. SensorProp, having played its full part
in the refinement, is no longer needed. ®

3.8 Taking stock

Our specification Controller 1, although refined to remove al references to phenomena
not in the interface a between the machine and the problem world, is still an implicit
specification. It does not give an explicit algorithm to be executed by the Control
Machine, but leaves the programmer to devise an algorithm that will satisfy the speci-
fication. We consider this an important characteristic of the specification, retaining al
the well-known advantages of implicit over explicit specification. In MotorOperationl
and MotorRestrictionsl the specification embodies just those problem domain proper-
ties on which we expect the programmer to rely in the further refinement to a program
text of the Control Machine. A control program derived from this specification could
be used with a different sluice gate, provided only that this different sluice gate of-
fered the same interface to the Control Machine and exhibited the physical properties
specified in MotorOperation1 and Motor Restrictionsl.

To make the observation clear, there is nothing above which prevents connecting
the signals going out from the control to a human operator who achieves the gate ad-
justments by manually moving the gate; the operator would finally push the top button
when the alloted task was complete. Perhapsless fancifully, the control program could
be connected to asimulator which fully exercised its function in aworld without sluice
gates (in this case pos has to be reinterpreted as the simulated position).

In devel oping our specification we have made and exploited more assumptionsthan
areembodiedinitsfinal form Controller 1. We know more, so to speak, about the prob-
lem world than we have chosen to convey to the programmer. One obvious example
is the SensorProp assumption which we exploited and removed in refining Controller
to Controller1. Another example, less obvious, is the whole set of assumptions on

6That is, it is no longer needed in the refined formal specification. However, it must be retained in the
documentation describing the history of the development in general and the refinement in particular.
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which we based our original problem domain specification MotorOperation. In ef-
fect, we have assumed that the sluice gate mechanism is sufficiently reliable (subject
to MotorRestrictions) to satisfy SensorProp and MotorOperation, and hence to allow
SuiceGateRequirement to be satisfied by the Control Machine we have finally speci-
fied. Because the sluice gateis a physical device, this assumptionisfragile.

4 Coping with component failures

In our treatment of the sluice gate example so far, we have focused on the situation
where al of the (physical) components operate faultlessly. In acritical system —or any
system in which it is important to limit the possible damage to the equipment— this
assumption must be questioned. Potential faults must be identified and the software
must deal with them appropriately. We now consider what sorts of issues arise when
trying to cope with component failure. It will become clear that it is more difficult here
to maintain our isolation from details of the physical world but we will examine ways
in which such considerations can be brought in gradually.

In the sluice gate problem, components like sensors can fail; for example, they can
become stuck false or they can become stuck true. Moreover, the motor could burn out
and no longer be able to move the gate when power is applied to it. Such component
failures are faults in the larger system and a useful control program will limit their
impact even if it cannot meet the origina requirements.

In [Jac00] this obligation is called the reliability concern. If a faulty component
is detected, the Control Machine should, perhaps, switch off the motor and turn on an
alarm to indicate that the system needs attention from the maintenance engineer and
that the irrigation requirement is no longer being satisfied.

It would be possibleto follow the method described above with weaker assumptions
about the physical components (and additional requirements with respect to alarms)
but the resulting specification might become opague because it would lack structure.
One would like to achieve a structure which preserved the distinction between normal
and abnormal operation in the specification. Sections 4.1-4.5 explore various forms
of fault-tolerant behaviour and how it might be specified; we discuss the problems
of structuring in Section 4.6 but concede that further research is required here; the
guestion of implementation is touched on in Section 5.3.

4.1 New equipment/requirements

In many cases, fault spotting and warning will be associated with extra equipment.
Such new equipment clearly changes the problem and requires a new problem dia-
gram and new requirements. In the sluice gate system, one could for example consider
adding a temperature sensor to the motor. This would require a revision of the prob-
lem diagram in Figure 3 and a description of what would constitute “ overheat” and the
action required;’ this would probably involve signalling an alarm.

For the purposes of this paper, we stick to our resolve that no such new sensors are
available and confine the discussion to what can be done with the existing equipment.

"But see a'so the discussion of transience in Section 4.5.
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4.2 Making the system more robust

It is clear that one needs to understand more about the external equipment in order to
discuss fault tolerance than to describe healthy behaviour; but it is also advantageous
to identify any general tactics which come from a formal analysis rather than specific
instances. This section and the next indicate two ideas which appear to work in general.

It is known from work on the (formal) specification of sequential (closed) pro-
gramsthat a system can be made more “robust” by widening its precondition; the same
holds, mutatis mutandis, for the weakening of rely conditions. Just as with widened
preconditions, the process of making a program more robust might result in different
obligations.

Returning our attention to the duice gate example, the case of not getting an ex-
pected signal that a sensor has become true after the expected traversal time fits the
category of something suggested by looking at the rely condition of Controller1 (in
Section 3.5). But there are several physical problems that might give rise to this rely
condition not being satisfied:

e the sensor in question becomes stuck false and fails to signa the arrival of the
gate at its extremity;

the gate becomes jammed (perhaps —in the downward direction— because a log
has become wedged under it); or

e the motor has burned out and is not driving the gate; or
e ablown fuseis preventing power getting to the motor;

e efc.

Given the paucity of the equipment envisaged in the sluice gate system of Section 3,
these different physical problems cannot be distinguished. Thisis precisely why one
might wish to add equipment as suggested in the preceding subsection.

For brevity we do not present the full formalisation of Faulty GSM. Given suitable
declarations of duration constants for the criteria of fault-free operation in the domain
we obtain a definition of the faulty state. Recognition of the state is triggered by an
interval J in which afault condition is detected.

Faulty GSM = A J : Interval (Time) o

31 : Interval(Time) o | adjoinsJ A
(motor = on) over | A (dir = up) over (I UJ) A
#| > healthy_rise_time A (— top) over J
(motor = on) over | A (dir = down) over (1 UJ) A
#1 > healthy_fall_time A (- bot) over J )

V

The general point here is that one class of potential enhancements toward a fault-
tolerant system can be motivated by a formal analysis of the idealised specification.
Systematically looking at rely conditions to see what behaviour might be achieved
when clauses fail looks like a useful heuristic for developing specifications of fault-
tolerant systems.
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4.3 Lookingfor “drift”

Theideaof finding “patterns’ for extensionsto the specification for a system by formal
means without having to delve into details of the external equipment is attractive be-
cause it can lead to heuristics which apply to a class of problems. Another idea which
works on the sluice gate example and appearsto be general isto look for “drift” toward
unacceptable behaviour.

For the sluice gate, for example, if the time to raise the gate is getting longer on
each use, this might suggest that the moment is approaching (but has not yet arrived)
when the rely condition will not be satisfied. Physically, some malfunction is getting
closer in time and a warning could be issued. Care should however be exercised in
distinguishing cyclic patterns (e.g. the grease getting more viscous in lower night-time
temperatures) from long-term decay. We do not present the formulae for this example.

4.4 Looking at the external equipment

If one drivesthe analysisthe other way around (i.e. by looking at the equipment), other
problems can be seen which are (sadly) not locatable just by a formal analysis of the
specification. Examples are:

e it is clear from understanding its function that the state of the bottom sensor
should become false after the motor has been set to drive the gate upward for
some (short) period of time;

e againfromthe physical components, one can seethat the state of thetarget sensor
should not become true too quickly after starting a traversal in the direction of
the target sensor from the opposite extreme;

e it should be impossible for both top and bot sensors to be true at the same time
(but this could happen if a short circuit occursin one or both sensors); this could
happen even in a period when the gate is not being moved;

e eic.

In each such case, one would be adding a specification (which is self contained
without that clause). One would want to ask what reaction is expected (and this would
likely involve extra larms — see Section 4.1). It would also be necessary to think
about how far one would go: different answers are likely in the sluice gate system and
anuclear reactor protection system (cf. [SW89] 8). The objective of this section is just
to make the point that some forms of fault tolerance can only be sorted out by looking
at the physical environment.

To give one examplein formulae, consider raising awarning if gateis slow leaving
the closed position or the closed sensor is faulty.

Sow_Leaving_Closed = A1 : Interval (Time) o
(lifted A bot) over | A #1 > rise_depart_time

8]t was precisely the worry about abstraction levels that discouraged one of the authors from publishing
earlier work on rely conditions for | SAT.
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45 Transient errors

There is another generic question which has come up in our study of fault-tolerant be-
haviour and that istransience. Sincethereisauseful specification model for presenting
such issues, it is worth describing it here.

We take as a representative example, from the sluice gate system, the issue of
checking that “both sensors should not be on simultaneously”.® If this situation oc-
curred for an extremely short period of time (and then rectified itself), a control pro-
gram might sense it and be in a position to set whatever alarm was required to be
triggered. Such transient errors do occur within physical systems and, if the period of
timeis extremely short, the execution cycle for checking is unlikely to detect the event.
Therewill, however, beanotion (in any particular case) of aproblem becominga*“hard
fault” if it has persisted for at least some stated period of time. In this case, one would
presumably require that the control program detect the situation. Thus we might say

(Vlong : Interval(T) e
#long > response A Faulty_GSM(long) =
(V1 : Interval(T) e sup(long) < inf(l) = Errorindicated(l)))

but prevent this being met by always turning on the error indication by adding

V1 :Interval(T) e
Errorindicated(l) =
(3 short : Interval (Time) e sup(short) < inf(l) A Faulty_GSM(short))

4.6 Combining specifications

In[Jac0Q], thereliability concernis normally handled by introducing new subproblems.
The way in which such subproblems can be specified is indicated in Sections 4.1-4.5
and, if one takes an engineering view of the combination of machines, the notation
described in Section 3 suffices. But one would also wish to draw conclusions about
combinations of machine descriptions. In the same spirit, there are issues concerning
“phases’ of operation (one example of which is the special problems which arise dur-
ing system initialisation) which prompt us to want to reason about combinations of
machine descriptions.

Thus the desire to specify a fault-tolerant system in a structured way necessitates
a semantics for combinators over machine specifications. This applies even if we con-
sider the problem of detecting faults as a separate issue from the “healthy” behaviour.
Consider a single machine description and recall the comment in Section 2.2 about
the conceptual distinction between rely and guarantee conditions. The former are to
be viewed as permissions to the designer to ignore certain potential deployments; the
latter are obligations on the code created by the designer. We should not therefore ex-
pect to find code in the program developed from this specification that will check on
the truth of the rely condition. Instead, the created program must not be deployed in
contexts where the rely condition is not satisfied. We are then obliged either to use

9Strictly, the same reasoning that causes us to recognise transience as an issue means that “ simultaneous”
actually means “within a small time interval”.
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Controller1 only in situations where its inputs satisfy the rely condition or, perhaps, to
ignoreits outputs where they do not.

It is however clear that, if we wish to detect faults, there might have be code in
another subproblem which monitorsthe rely condition. The argument in Section 4.2 is
that the closer the rely condition of an overall system can be made to true the morero-
bust a system will be. Furthermore, the extra code that is required is more complicated
than the case with a simple precondition where one only needs check a parameter; the
truth of arely condition can only be determined over a period of time. It is the need
to combine machines developed to ssimplifying rely condition with machines which
monitor for a healthy environment that points to the need to be able to reason about
combinations of machine descriptions and this introduces some technical issues which
require further research (the authors are working on a further paper on this topic).

5 Conclusions

This section looks at what remains to be done and compares our approach to related
publications.

5.1 How general isour approach?

One way to look at the generality of the idea of starting with a description of the re-
quired phenomena and then deriving the specification of the inner system is to recon-
sider the scope of the sluice gate system.

Sections 3 and 4 above focus on a reguirement restricted to the gate position. This
view could be broadened:

e |f thereguirement wereto deliver acertain flow of water, we would have to make
assumptions about the available water flow (cf. [Jac06]). 1°

e A yet wider system might be concerned with the humidity of the soil in thefields
being irrigated, leading to assumptions about the weather, plant physiology and
the effects of irrigation.

e A requirement to maximise farm profits would lead to assumptions about a wide
range of factorsincluding prices and even (in Europe) the Common Agricultural
Policy.

Our customer’s responsibilities and authority were both assumed to be bounded by
the sluice gate itself and its stipulated operation. The effects of the irrigation schedule
on the crops and and the farm profits were firmly outside our scope.** But the ability
to force attention on the assumptions being made appears to be a major advantage of
our method.

10Thiswould, furthermore, force usto record assumptions about the flow of water whilethe gateis moving.
There is also a technical argument for narrowing, rather than widening, the scope of the system to be
considered: one might question any set of assumptions which referred to widely disparate phenomena.
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The Sluice Gate problem has proved to be stimulating and we have tried to expose
the issues it has thrown up rather than modify the problem to fit our evolving method.
For example, the second author has on occasions played the role of our customer and
has aways refused requests to acquire new sensors to simplify the task of specifying
and implementing the system.

There are, of course, many other dependability issues which could be considered.
Examples include: the power supply to the motor; the maximum load of the motor;
and the running state revolutions per minute. While we believe that such points do not
bring in fundamentally different technical requirements, they should be categorised as
an indication that nothing has been hidden.

Outside the sluice gate system we (and others) have already experimented with
this technique on other examples (e.g. [CJO5]). The “Dependability IRC" project (see
www.dirc.org.uk) considers computer-based systems whose dependability relies criti-
cally on human (as well as the mechanical) components. A first indication of exten-
sionsin this direction was given by one of the current authorsin an invited talk to the
DSVIS-05 event in July 2005.

One of the referees of [HJJO3] raised the interesting point of the “evolvability” of
asystem. The authors agree that this is an important issue; evolution is in fact amajor
strand of work within the Dependability IRC (see [BGJ06, Chapter 3]). In this paper,
the reliance on rely conditions about equipment, rather than a detailed description of
the particular equipment’s characteristics allows for the replacement of the equipment,
provided the new equipment meets the rely conditions. On the other hand, monitoring
of the healthiness of the equipment may well (and probably should) be dependent on
the detailed characteristics of the particular equipment. By factoring out this aspect in
the specification, the specification can be more easily revised. A study of the contribu-
tion of other research on “evolvability” to the issues of this paper will be undertaken
in the future. We wonder if there might be a way of using layers of rely conditions
where one set expresses things whose change would be disastrous while another level
is“anticipated evolutions”.

5.2 Related research

Fred Schneider and colleagues[M SB91, FS94a, FS94b] have considered systemswhich
are similar to those that we hope to encompass. We find their approach interesting
and somewhat different from ours. One point of difference is that they place vari-
ables corresponding to physical phenomenain the program state so that they can use a
(combined) state invariant where we use rely conditions. Our task has been to look at
ways of “deriving” specification of control systems. Their operations need to discuss
how “reality” changes; our rely conditions might provide a more natural description.
Similar comments on the overall direction could be applied to Parnas’'s “ Four Variable
model” [PM95].

5.3 Further developments

Our research contributes to the creation of specifications but it is informative to look
at how such specifications might be implemented. We know from sequential programs
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that combining clauses of postconditionswith and and not logical operatorsprovidesa
valuable way of recording “what” is required without saying “how” it should be done.
For example, the postcondition for a Sort routine can be elegantly expressed as a con-
junction of InputPermutation and Sorted. From the discussion in Section 4.6 above, it
looks as though one needs the full power of a conventional programming languagein
order to “ combine the machines’ from the various subproblems. One wonders whether
new programming paradigms could offer more natural “combinators’ for such situa-
tions. (Another issue is whether conventional programming languageslike Adaor Java
areideal for combining the sort of monitoringimplied by thediscussionin Section4.5.)

The research on “time bands” in [BB06, BHBF05] is extremely interesting and we
arealready looking at waysin which time bands might help to achieve a better structure
for our specifications. Another major avenue which we hope to pursue with our DIRC
collaborators Bloomfield, Littlewood and Strigini is handling stochastic assumptions
and requirements.
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