

University of Newcastle upon Tyne

COMPUTING
SCIENCE

Dimensions of Dynamic Coalitions

J. W. Bryans, J. S. Fitzgerald, C. B. Jones and I. Mozolevsky

TECHNICAL REPORT SERIES

No. CS-TR-963 May, 2006

NEWCASTLE

UN IVERS ITY OF

TECHNICAL REPORT SERIES

No. CS-TR-963 May, 2006

Dimensions of Dynamic Coalitions

Jeremy W. Bryans, John S. Fitzgerald, Cliff B. Jones and Igor Mozolevsky

Abstract

Developments in network technology are enabling organisations to form temporary
alliances to achieve specific goals. Such alliances are often referred to as "dynamic
coalitions", emphasising the fluid character of their memberships. Dynamic coalitions
vary widely in architecture, scale and complexity, ranging from ad hoc groupings of
organisations created in order to perform a very brief transaction to long-running
collaborations between allies. In many cases, there is significant sharing of
information between the participants.

The term "dynamic coalitions" is often used without definition, giving rise to
potential confusion and unfulfilled expectations. This paper attempts to map out a
space of dynamic coalitions, using a systematic approach supported by a formal
(mathematically-based) modelling language. Seven "dimensions" are identified and
explored, with an emphasis on the flow of information through coalitions. A case
study examines software being developed to support dynamic coalitions within the
chemical engineering industry. The forms of dynamic coalitions that this software
supports are positioned within the space defined by the seven dimensions.

Anticipated future work includes the development of validation techniques that
exploit the formality of the models and development of more detailed
knowledge/guidance about the design of dynamic coalitions. We will also use our
approach to represent the Domain Based Security approach, and show how that
approach interacts with dynamic coalitions.

© 2006 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

BRYANS, J.W., FITZGERALD, J. S., JONES, C. B., MOZOLEVSKY, I..

Dimensions of Dynamic Coalitions
[By] J. W. Bryans, J. S. Fitzgerald, C. B. Jones and I. Mozolevsky.

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2006.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-963)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-963

Abstract

Developments in network technology are enabling organisations to form temporary alliances to achieve specific
goals. Such alliances are often referred to as "dynamic coalitions", emphasising the fluid character of their
memberships. Dynamic coalitions vary widely in architecture, scale and complexity, ranging from ad hoc
groupings of organisations created in order to perform a very brief transaction to long-running collaborations
between allies. In many cases, there is significant sharing of information between the participants.

The term "dynamic coalitions" is often used without definition, giving rise to potential confusion and unfulfilled
expectations. This paper attempts to map out a space of dynamic coalitions, using a systematic approach
supported by a formal (mathematically-based) modelling language. Seven "dimensions" are identified and
explored, with an emphasis on the flow of information through coalitions. A case study examines software being
developed to support dynamic coalitions within the chemical engineering industry. The forms of dynamic
coalitions that this software supports are positioned within the space defined by the seven dimensions.

Anticipated future work includes the development of validation techniques that exploit the formality of the models
and development of more detailed knowledge/guidance about the design of dynamic coalitions. We will also use
our approach to represent the Domain Based Security approach, and show how that approach interacts with
dynamic coalitions.

About the author

Jeremy has been a post doctoral research fellow at the School of Computing Science in Newcastle since
December 2002. His background is in Theoretical Computer Science, and he has held posts in Stirling and
Canterbury. His work in Newcastle is involved with the security of computer-based systems, and he is employed
on the DIRC and GOLD projects.

John Fitzgerald is a specialist in the engineering of dependable computing systems, particularly in rigorous
analysis and design tools. He returned to the University in 2003, having established design and validation
activities at Transitive, a successful new SME in the embedded processor market.

Cliff Jones is currently Professor of Computing Science and Project of the IRC on “Dependability of Computer-
Based Systems”. He has spent more of his career in industry than academia. Fifteen years in IBM saw among
other things the creation with colleagues in Vienna of VDM. Cliff is a fellow of the BCS, IEE and ACM. He
Received a (late) Doctorate under Tony Hoare in Oxford in 1981 and immediately moved to a chair at Manchester
University where he built a strong Formal Methods group which among other projects was the academic partner in
the largest Alvey Software Engineering project (IPSE 2.5 created the "mural" theorem proving assistant). During
his time at Manchester, Cliff had an SRC 5-year Senior Fellowship and spent a sabbatical at Cambridge with the
Newton Institute event on "Semantics". Much of his research at this time focused on formal (compositional)
development methods for concurrent systems. In 1996 he moved to Harlequin directing some 50 developers on
Information Management projects and finally became overall Technical Director before leaving to re-join
academia in 1999. Cliff's interests in formal methods have now broadened to reflect wider issues of
dependability.

Igor Mozolevsky is a PhD student at the School of Computing Science at the University of Newcastle. He is a
member of the Dependability research group.

Suggested keywords
DYNAMIC COALITIONS,
MODEL-BASED SPECIFICATION
INFORMATION FLOW

Dimensions of Dynamic Coalitions

Jeremy W. Bryans, John S. Fitzgerald,

Cliff B. Jones, Igor Mozolevsky

May 10, 2006

Abstract

Developments in network technology are enabling organisations to
form temporary alliances to achieve specific goals. Such alliances are of-
ten referred to as “dynamic coalitions”, emphasising the fluid character of
their memberships. Dynamic coalitions vary widely in architecture, scale
and complexity, ranging from ad hoc groupings of organisations created in
order to perform a very brief transaction to long-running collaborations
between allies. In many cases, there is significant sharing of information
between the participants.

The term “dynamic coalitions” is often used without definition, giv-
ing rise to potential confusion and unfulfilled expectations. This paper
attempts to map out a space of dynamic coalitions, using a systematic
approach supported by a formal (mathematically-based) modelling lan-
guage. Seven “dimensions” are identified and explored, with an emphasis
on the flow of information through coalitions. A case study examines soft-
ware being developed to support dynamic coalitions within the chemical
engineering industry. The forms of dynamic coalitions that this software
supports are positioned within the space defined by the seven dimensions.

Anticipated future work includes the development of validation tech-
niques that exploit the formality of the models and development of more
detailed knowledge/guidance about the design of dynamic coalitions. We
will also use our approach to represent the Domain Based Security ap-
proach, and show how that approach interacts with dynamic coalitions.

1

Contents

1 Introduction 4

1.1 The Space of Dynamic Coalitions 4
1.2 The Model-based Approach . 5
1.3 A Basic Model . 6
1.4 Dimensions of Dynamic Coalitions 7

2 Coalition membership 8

2.1 Membership as a Coalition Responsibility 8
2.2 Membership as a Global Responsibility 9
2.3 Membership as an Agent Responsibility 10
2.4 Membership Authorisation Schemes 11
2.5 The Dimension of Dynamic Coalition Membership 11

3 Information 12

3.1 Representing and Identifying Information 12
3.2 Locating Information in the Model 13
3.3 Creating and Sharing Information 13
3.4 The Dimension of Information . 15

4 Information Transfer 16

4.1 Näıve Information Transfer . 16
4.2 Agent Clearance of Information 16
4.3 Coalition-based Clearance of Information 17
4.4 The Dimension of Information Transfer 18

5 Authorisation Structure 19

5.1 Representing the Authorisation Structure 19
5.2 Adding Authorisation to a DC Model 20
5.3 Changing the Authorisation Structure: Delegation 21
5.4 Extensions to the Authorisation Structure 22
5.5 The Dimension of Authorisation Structure 22

6 Provenance 23

6.1 Modelling Provenance . 23
6.2 The Dimension of Provenance . 24

7 Time 25

7.1 Time-valued Information . 26
7.1.1 Expiry Times . 26
7.1.2 Degrading the Value of Information Over Time 27

7.2 Time and Provenance . 27
7.3 The Dimension of Time . 28

8 Trust 28

8.1 Trust-related Meta-information 28
8.2 The Dimension of Trust . 29

2

9 Case Study: The GOLD VO Architecture 29

9.1 Coalition Membership . 30
9.2 Information . 31
9.3 Information Transfer . 32
9.4 Authorisation Structure . 33
9.5 Provenance . 33
9.6 Trust and Perception . 34

10 Conclusions, Related and Future Work 34

10.1 Future Work . 34
10.2 Related Work . 36

A Operations for Model Σm 39

B Model Σauth 39

3

1 Introduction

Recent improvements in the capabilities of networking, ambient computing and
wireless communication enable individuals and organisations to form collabo-
rations, driven by a desire to cooperate over a long term, or to respond to an
acute need. Although each such collaboration is unique, they do have features
in common such as the dynamic nature of the collaboration’s membership, and
the exchange of information between members.

1.1 The Space of Dynamic Coalitions

This paper concerns these forms of collaboration, which are termed “dynamic
coalitions”. Other terms which are used for similar concepts include “virtual
organisations”, “virtual enterprises” and “business alliances”. Our purpose is
not to present a taxonomy which prises these terms apart, but rather to explore
the structural concepts that underly them. We will therefore use the term
“dynamic coalitions” in its most general possible sense to cover all possible
shades of meaning implied by any of its synonyms.

In the literature on management there is a notion of the virtual breeding
environment [SZGM05] within which companies may create, join and dissolve
temporary alliances (virtual organisations or dynamic coalitions). This can be
observed in quite diverse domains, for example:

• Dynamic business environments, where companies may form an alliance in
order to capitalise on a market opportunity, and terminate the alliance as
soon as the opportunity is no longer viable. Here each partner company
is motivated to contribute to the alliance by the potential reward they
themselves will accrue through the success of the alliance.

• Disaster response scenarios, where groups as diverse as emergency ser-
vices, military units (possibly from many countries), non-governmental
organisations and civil organisations must work together to mitigate the
effects of a crisis. Each partner may suspend the pursuit of its own aims,
and dedicate all its energies to the immediate problem for a limited period
of time.

• Health care, where a range of machines may be reporting on the condition
of a patient and medical staff with many different skills must make deci-
sions based on these reports. Here individual coalitions will form around
the needs of a patient, and the environment will have been designed pre-
cisely to deal best with the kind of emergencies that can arise.

Our particular motivation in exploring this area is to provide a basis for
discussing information flow, information security, privacy and trust in dynamic
coalitions. Faced with the wide variety of structures that qualify as dynamic
coalitions, it is necessary to chart the space of possibilities, to understand better
what the character of coalitions might be. The aim of the study presented in
this paper is not to provide a prescriptive definition of one notion of dynamic
coalition but rather to map out and explore the space of options systematically.
Our approach follows that of our colleagues who wrote about the “many mean-
ings” of the oft-used term “open source software” [GA04]. We hope to make a

4

modest contribution by encouraging people who wish to discuss dynamic coali-
tions to explain where their use of the term sits in the multi-dimensional space
that we describe.

1.2 The Model-based Approach

The tool we choose to help map out the space of dynamic coalitions is a model-
based specification technique based on the Vienna Development Method (VDM)
[Jon90, FL98]. Such techniques have been used extensively to model computer-
based systems. Their mathematical rigour allows a significant level of machine-
assisted analysis to be conducted on models, guiding and helping to verify design
steps. Here, however, the modelling technique is not being used for the speci-
fication of one selected system. Rather, it is employed as a tool for systematic
discussion. One of the key benefits of such modelling is abstraction: the choices
can be understood without the detail of an implementation. Particularly reveal-
ing are data type invariants and preconditions. Showing what cannot happen
is sometimes more revealing than describing events that can occur.

VDM models emphasise the structure and persistent data (called the state)
within a computer-based system. For example, the group of members of a
coalition forms part of the coalition’s state. Changes to the state, such as the
act of joining new members to a coalition, are described as operations. Similarly,
the information held by coalition members forms part of the state and operations
describe the transfer of information between members. Although the paper does
not describe the modelling language in depth, its major features will become
apparent from examples.

Although VDM has been used here, the task might have been equally un-
dertaken with one of the other model-based specification languages such as
Z [Hay93] or B [Abr96]. Indeed, model-based specifications are not the only
tool that could be used to explore aspects of dynamic coalitions. However, the
emphasis that such techniques place on data modelling and structure makes
them suitable for describing the functionality involved in forming and operating
dynamic coalitions. Other formalisms have other emphases. For example, prob-
lems of communication might be better studied using a process algebra such as
the π-calculus [MPW92, SW01].

The approach taken in this paper is to propose as basic as possible a model
of the state and dynamic operations of a dynamic coalition and then to identify
a range of elaborations that can be made to this model, considering the range
of coalition types that would result. This gives the “dimensions” along which
coalitions may vary.

The state and operations describe structural changes in a coalition, such as
coalition formation, adding and removing coalition members, as well as the key
operations modelling the dynamic flow of information between members and
between members and non-members. We will avoid deep issues such as the dis-
tinctions between “data”, “information” and “knowledge”. Our interest is not
in epistemology but rather in the way that abstract (as opposed to physical)
objects are shared. The distinguishing characteristic of information in our mod-
els is that it may, unlike physical objects, be reproduced an arbitrary number
of times.

5

1.3 A Basic Model

Our most basic model is of a system or global state composed of Agents which
may join and leave collections of agents known as Coalitions. This tripartite
structure (Figure 1) is present in all our models. Within the global state, re-
ferred to as Σ, coalitions are identified by means of coalition identifiers (Cids)
and agents are identified by means of agent identifiers (Aids). Note that agents
do not have to be members of coalitions to exist within the global state. When
we consider each aspect of a coalition (membership, information transfer, prove-
nance, trust etc.) we have to consider where relevant data lies in the system:
does membership information reside at the global level, or is it just held within
coalitions, or just within agents? Similarly, the responsibility for performing
operations may lie at the system level, within coalitions, or with individual
agents.

Figure 1: Components of a dynamic coalition

Formalising this structure in our modelling notation requires that we intro-
duce some important data types. The names Aid and Cid represent the types of
possible agent identifiers and coalition identifiers respectively. Elements of both
types are defined as tokens, meaning that the details of their representations
are immaterial1. We will introduce a type Agent to represent agents. At this
stage, we need say nothing more about the interiors of agents, so they are left
for definition later. Our basic state is defined as follows in the formal VDM
notation2:

1Throughout the paper, the types that we introduce will be tokens unless explicitly defined
otherwise.

2The notation used is a derivative of the mathematical notation for ISO Standard VDM-
SL [And96]. Some simplifications have been made to ease the presentation.

6

Σ :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

rng coals ⊆ dom agents

The definition indicates that the state consists of two components. The first,
coals , records an association (in VDM, a mapping) between coalition identifiers
and the sets of (identifiers of) agents that are members of the coalition. The
second component, agents , relates agent identifiers to agents. The invariant is
a predicate ensuring that the agent identifiers in coalitions are all genuine, i.e.
they are known in the agents component.

The state Σ is a useful starting point: it assumes the separation of agents
as distinct entities, data being stored with agents, and potentially overlapping
coalitions of agents. Why have we chosen to model these aspects specifically, and
not others? The purpose of the model governs the choice of abstractions made.
At one level, we could simply model a collection of agents passing information
around: coalition membership, information provenance, communication policies
and trust levels are all ‘just’ pieces of information. Such a model would be
simple, flat and nearly useless. As soon as we articulate a model’s purpose, we
begin to separate out those pieces of information that are particularly relevant
to the analysis we wish to perform.

In choosing abstractions for models of dynamic coalitions, we distinguish
information from meta-information. Information is the stock-in-trade of the
dynamic coalition: it is the material traded between agents. Meta-information
is information about the agents, coalitions or information itself. Generally, each
of the dimensions we explore corresponds to a form of meta-information and
the models that we develop make the relevant meta-information explicit. In our
basic model, Σ separates coalition membership out because this is what makes
a coalition dynamic. Later in the paper, we will separate out other aspects such
as those mentioned above, in order to explore their interactions.

1.4 Dimensions of Dynamic Coalitions

In the body of this paper, we consider seven aspects or dimensions of dynamic
coalitions that all relate to the flow of information through coalitions. In each
case, we consider the alternative ways in which Σ might be extended to ac-
commodate the relevant data and functionality. This in turn suggests ways in
which to position particular dynamic coalition architectures. Each discussion of
a dimension concludes with a short list of important considerations relating to
that dimension, intended to be useful to system architects developing dynamic
coalition environments.

We view a coalition’s membership as the most fundamental aspect of its
character. This is explored in Section 2. Since our goal is to be able to un-
derstand better the flow of information between coalition participants, we then
explore the possible models of information storage in coalitions (Section 3) and
hence the communication of information between agents (Section 4).

Having reviewed the possible mechanisms for basic membership and infor-
mation flow, we examine the structures built on top of these to govern and
exploit information flow. The authority structure within a coalition (Section 5)
governs information transfer since it affects the rights to access information.

7

Given that information may be transferred, a key factor in exploiting the in-
formation itself is its provenance (Section 6). It is important to note that the
value of information itself changes over time and so we examine this as a sepa-
rate dimension in Section 7. Together, the decisions made about membership,
information transfer, authority, provenance and time all affect the trust that is
placed in information transferred (Section 8). As a case study Section 9 consid-
ers software developed for supporting dynamic coalitions within the chemical
industry. We describe the range of dynamic coalitions supported by this soft-
ware as a subspace within our dimensions. The VDM models for this work may
be found at [Mod].

2 Coalition membership

This section aims to define basic concepts relating to the membership of dynamic
coalitions. The intention is that these models should form a basis for further
exploration.

In Section 1 we identified three levels of potential responsibility in our mod-
els, associated with the three main entities: agents, coalitions and the global
state. Membership meta-information is a relation between agents and coalitions.
It is already present in the Σ model of Figure 1.3, so this model is used as a
starting point. Almost as soon as one considers modelling coalition membership,
one is faced with the key question: where does responsibility lie for performing
the operations that join agents to coalitions, or remove them?

In this section, we illustrate the exploratory approach based on formal mod-
elling rather than give a “finished” set of formal definitions. We begin by exam-
ining the join/leave functionality as an extension of the Σ model. This attempt
at formalisation raises further issues. In particular, it leads to an examination
of alternative models in which membership responsibility is held at the system
level (Section 2.2), and even at the agent level (Section 2.3). It also raises the
question of membership authorisation (Section 2.4).

2.1 Membership as a Coalition Responsibility

The basic Σ model in Section 1.3 already expresses membership meta-information,
so it is possible to define the joining and leaving operations over this model. It
is worth noting that, at this stage, the model is neutral about who is authorised
to perform membership operations.

This model takes a coalition-oriented view of membership in the sense that
the agent identifiers are associated with their individual coalitions. In order
to describe the act of joining an agent to a coalition, we give an operation
specification:

Join (a:Aid , c:Cid)

ext wr coals : Cid
m
−→ Aid -set

rd agents : Aid
m
−→ Agent

pre a ∈ dom agents ∧ c ∈ dom coals ∧ a /∈ coals(c)

post coals =
↼−−
coals † {c 7→

↼−−
coals(c) ∪ {a}}

8

This is an implicit operation definition in the sense that a postcondition is used
to characterise the global state after the operation. This is in contrast to an
explicit style in which an algorithm is given for performing the computation.
Since we are concerned primarily with the effects of operations rather than the
algorithms used to accomplish them, we will use this style throughout the paper.

The precondition in the Join operation is required to ensure that the agent
and coalition are both known, and that the agent is not already a member of
the coalition. The Remove operation performs the inverse:

Remove (a:Aid , c:Cid)

ext wr coals : Cid
m
−→ Aid -set

pre c ∈ dom coals ∧ a ∈ coals(c)

post coals =
↼−−
coals † {c 7→

↼−−
coals(c) \ {a}}

Both of these operations require that the coalition already exists prior to the
addition or removal of a member. When the model is extended to encompass
information (Section 3.2), it becomes possible to model alternative decisions
about what happens to information within a coalition when an agent leaves.

The Remove operation in particular opens the possibility that the agent is
the last one left in a coalition. Does a coalition continue to exist after it has
lost all its members? The basic model Σ allows for the possibility of creating
initially empty coalitions. An operation to do this could be modelled as follows:

CreateEmptyCoal (c:Cid)

ext wr coals : Cid
m
−→ Aid -set

pre c /∈ dom coals

post coals =
↼−−
coals ∪ {c 7→ { }}

This allows coalitions to have a separate existence from their members. Al-
ternatively, if coalitions only have an existence in their members, it would be
appropriate to exclude empty coalitions, leading to model Σm :

Σm :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

rng coals ⊆ dom agents ∧ { } /∈ rng coals

In this case, coalition creation would require at least one member. Removing
a member from a coalition could also entail taking the coalition out of exis-
tence. The operation specifications that such a change leads to are given in
Appendix A. In model Σm coalitions can be destroyed by (individually) remov-
ing all the members and an operation is also included to explicitly dissolve a
coalition.

2.2 Membership as a Global Responsibility

The following model Σmg demonstrates the effect of pulling membership meta-
information out into a separate component of the global state. This reflects
a decision to make joining and leaving coalitions a system-level responsibility.
The additional state component membs is a relation between agent and coalition
identifiers.

9

Σmg :: coals : Cid -set

agents : Aid
m
−→ Agent

membs : (Aid × Cid)-set

inv (coals , agents ,membs) 4 membs ⊆ {(a, c) | a ∈ dom agents , c ∈ coals}

In such a model, the Join and Remove operations might appear as follows.3

Join (a:Aid , c:Cid)

ext rd coals : Cid -set

rd agents : Aid
m
−→ Agent

wr membs : (Aid × Cid)-set

pre a ∈ dom agents ∧ c ∈ coals ∧ (a, c) /∈ membs

post membs =
↼−−−−
membs ∪ {(a, c)}

Remove (a:Aid , c:Cid)

ext rd coals : Cid -set
wr membs : (Aid × Cid)-set

pre (a, c) ∈ membs

post membs =
↼−−−−
membs \ {(a, c)}

2.3 Membership as an Agent Responsibility

For completeness, we also consider the possibility of coalition membership be-
ing a property of the agents themselves. The corresponding model pushes the
membership information into the agents:

Σma :: coals : Cid -set

agents : Aid
m
−→ Cid -set

inv (coals , agents) 4
⋃

rng agents ⊆ coals

In this model, agents can be seen as “voting themselves” into membership by
simply declaring themselves members of coalitions. The corresponding joining
and removal operations are as follows:

Join (a:Aid , c:Cid)

ext wr coals : Cid -set

rd agents : Aid
m
−→ Cid -set

pre a ∈ dom agents ∧ c ∈ dom coals ∧ c /∈ coals(a)

post agents =
↼−−−−
agents † {a 7→

↼−−−−
agents(a) ∪ {c}}

Remove (a:Aid , c:Cid)

ext rd coals : Cid -set

wr agents : Aid
m
−→ Cid -set

pre c ∈ dom coals ∧ a ∈ coals(c)

post agents =
↼−−−−
agents † {a 7→

↼−−−−
agents(a) \ {c}}

3For this model, we retain the view that coalitions have an existence even when they have
no members.

10

This model, and the two previous ones, permit agents to disagree about the
membership of coalitions. If an agent is not able to access the coals component
in the global state, then all it can know about who else is in a coalition is what
is communicated to it from other agents.

2.4 Membership Authorisation Schemes

We have considered membership responsibility at different levels in the agent-
coalition-system structure. However, more sophisticated models are possible.
For example, support for joining and leaving decisions may have to be gathered
from more than a certain threshold of existing coalition members. This threshold
value must be recorded within the coalition structure, leading to model Σauth :

Coalition :: members : Aid -set
threshold : R

inv (-, threshold) 4 0 ≤ threshold ∧ threshold ≤ 1

Σauth :: coals : Cid
m
−→ Coalition

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

{c.members | c ∈ rng coals} ⊆ dom agents

The full model, including operations to create coalitions, and join and remove
agents is provided in Appendix B.

Yet more elaborate membership authorisation schemes could be envisaged
and modelled. For example, the model could itself be generic with a set of
parameters governing membership determination. Many schemes for joining
and leaving groups are to be found in the literature on group membership in
distributed systems, particularly dealing with limitations on the decidability of
membership [Cri91, CHTCB96].

A different view of coalition formation would be to allow agents to have
initial knowledge of the existence of all the other agents in the environment.
This could be done by assuming an inclusive coalition in which the only shared
information is the identities of all the agents. Agents can then evolve more
intimate coalitions by forming subsets of this set.

2.5 The Dimension of Dynamic Coalition Membership

Through the modelling work discussed in this section, we have identified several
issues relevant to positioning a dynamic coalition architecture in the membership
dimension. We might expect the architect of a system of dynamic coalitions to
ask the following important questions:

• Does the existence of a coalition depend on there being one or more mem-
bers?

• Should membership (joining and leaving) be an agent-level responsibility,
so that agents can vote themselves in to coalitions?

• Should membership be a coalition responsibility so that a coalition records
in some place the current membership roll and admits or ejects members?

• Should membership be a system-level responsibility, with agents effectively
being placed in coalitions by force majeure?

11

• Are there preconditions on the membership joining and leaving opera-
tions?

We do not intend to imply any exclusiveness between the answers to these
questions. Indeed, membership management capabilities may reside at more
than one level in the agent-coalition-system hierarchy.

3 Information

In order to model the flow of information in dynamic coalitions, it is necessary
to decide on a representation for information, its storage and creation within
the model. This section explores these dimensions, while Section 4 deals with
information flow itself.

Several significant abstraction decisions have to be made regarding informa-
tion. It has already been noted that we use the term information in a general
sense to describe the data traded between agents in a coalition, and between
coalitions and their environment. Given that the purpose of the model to anal-
yse information flow, rather than accuracy of information with respect to some
external “real world”, we will also refrain from attempting to model this seman-
tic relationship.

The choice of a representation for information is addressed in Section 3.1.
The location of information at various levels in our agent-coalition-system hi-
erarchy is then presented (Section 3.2). The model must necessarily address
the ways in which information may be created within the model (Section 3.3).
One semantic issue, namely that of information consistency, is also dealt with
at this level.

3.1 Representing and Identifying Information

There are numerous ways of representing information. A näıve representation
might be a string of bits. This captures no context and allows almost no seman-
tic comparisons between two pieces of information (apart from string equality
and subsetting). A more structured way of representing information is to con-
sider it as a series of n-tuples. Such tuples can impose structure on information.
For example, the RDF framework can be represented as a simple (subject, ob-
ject, predicate) triple which can encode a statement such as ‘car speed is 30
mph’ as (car , speed , 30mph). The use of triples as the basis for information
storage is well established as an underpinning for knowledge base technology4.
A VDM development of a 3-tuple database is described by Welsh [Wel84]. Epis-
temic logic [FHMV95] represents information as Boolean predicates, and pro-
vides powerful operators for reasoning about these predicates in a distributed
context.

Models of specific coalitions may choose common information representation
frameworks. However, for the purposes of modelling information flow, the mod-
els we develop here are neutral about the particular representation chosen. We
will use the data type Information to stand for the chosen representation, and
treat this as a collection of unstructured tokens. The only semantic operator on
these tokens is the test for equality.

4See, for example, http://threestore.sourceforge.net.

12

Information is an unusual kind of resource in that it may be copied arbi-
trarily, as well as transfered. If an information item is copied, and we wish
to distinguish the copy from the original, it is necessary to identify each item
by means of a key. In this case, where individual items have unique keys as
identifiers, it is necessary to maintain a mapping from the keys to the informa-
tion values (formally, InfoKey

m
−→ Information). An alternative is simply to

regard Information items as unkeyed values and so to regard the collection of
information as Information-set. There are advantages for the mapping model
because one can discuss, for example, the visibility of information in terms of
the sets of InfoKey . However, this approach makes the discussion of copying
more difficult. Another reason for preferring the set structure in what follows is
that is is always possible to embed a “key” within Information, although this
has to be done with an awareness of “normal forms” and any requirements for
uniqueness. The decision about whether to use a mapping-based or set-based
model is likely to vary between applications. Indeed, in Section 9, we discuss a
specific coalition architecture in which the mapping approach is preferred.

3.2 Locating Information in the Model

Where should information reside? Taking the basic model Σ as a starting point
again, we can envisage information being held at agent, coalition and global
levels, as was the case for membership. At the agent level, the Agent data type
can be augmented with an information store. In keeping with the discussion
in Section 3.1, this would be a set of Information tokens (or a mapping from
information identifiers to tokens if appropriate). The resulting definition of
Agent would be:

Agent :: info : Information-set

Shared information, common to members of a coalition, would reside at the
coalition level. The coalition model is therefore more than just the set of member
identifiers, and has its own information set. We introduce the type Coalition to
model this:

Coalition :: info : Information-set
· · · : · · ·

Global common knowledge, shared across the space of all coalitions, is at the
outermost level, leading to a new version of Σ:

Σloc :: info : Information-set

coals : Cid
m
−→ Coalition

agents : Aid
m
−→ Agent

We have opted for what is intended to be an intuitive model here. It is worth
noting that other models are possible. For example, we might have a single
place for storing information at the coalition level. Agent-specific information
would be modelled by artificially constructing single member coalitions each
with their own information store; global information would be modelled by an
artificial universal coalition.

3.3 Creating and Sharing Information

The layered model Σloc, with information repositories at agent, coalition and
global levels, supports analysis of the ways in which information can be ini-

13

tially created, moved between layers, and even lost. For example, one model
allows for information to be created by individual agents and then shared by
moving it to the coalition-level store and even to the global level. At the bot-
tom of the hierarchy, information is “created” through direct acquisition from
empirical observation, for example through sensors, by deduction from existing
information, or by transfer between agents. Section 4 addresses the wide range
of models for (authorised) information transfer. In this section, we consider the
basic operations of information creation and sharing “up the hierarchy” that
can be described over the Σloc model.

Acquiring Information

Information can be acquired directly from sensors or by interaction with agents
in the environment. If we choose not to model the source of information explic-
itly, we must include within agents an operation such as discover, which adds
new set of Information tokens to the agent’s knowledge base5:

Discover (a:Aid , is : Information-set)

ext wr agents : Aid
m
−→ Agent

pre a ∈ dom agents

post agents =
↼−−−−
agents † {a 7→ µ(

↼−−−−
agents(a), info 7→

↼−−−−
agents(a).info ∪ is)}

Since the model is intended for the analysis of information transfer and is
not concerned with modelling the external environment, this operation is almost
trivial, simply allowing information to appear in the model. The operation
is defined at the agent level (it works on the information store of a specific
agent). One might envisage a similar operation being available at the coalition
level, if the coalition has its own ability to acquire information independent of
the participating agents. It is somewhat harder to motivate a version of the
operation at the global level.

Inferring Information

Agents can have the ability to perform some basic inference on their own in-
formation sets. As with information acquisition, so far as the present model
is concerned, this is just another source of new information tokens. A single
inference step may be modelled as a function that generates a set of additional
tokens:

Infer (infoin : Information-set) infoout : Information-set

post infoin ⊆ infoout

The transitive closure of the function represents the process of inferring all
the possible facts that can be deduced from an existing Information-set.

5The µ operator used in the postcondition describes a change to a single component of a
record structure. In the postcondition of this operation, it refers to the info component of the
agent a.

14

Sharing Information

The layered model permits the definition of operations describing the movement
of information from the agent level to coalition level, a form of sharing:

Share (a:Aid , c:Cid , is : Information-set)

ext wr coals : Cid
m
−→ Coalition

rd agents : Aid
m
−→ Agent

pre a ∈ dom agents ∧ is ⊆ agents(a).info ∧ c ∈ dom coals

post coals =
↼−−
coals † {c 7→ µ(

↼−−
coals(c), info 7→

↼−−
coals(c).info ∪ is)}

A similar operation could promote information from coalition to global level,
placing it in the info field of Σloc. In both of these cases, there is a question
of granting authorisation to perform these kinds of operation. These topics are
explored in Section 4.

Losing Information

The layered model of information storage represented in Σloc leads us to consider
the fate of information when agents leave coalitions or coalitions are themselves
dissolved. When an agent leaves a coalition, the information held within the
agent may be lost to the coalition. A protocol might be employed which requires
the sharing of certain information (placing at the coalition level) before permis-
sion for departure is granted. In the opposite direction, the agent may be able
to copy coalition-level information into its individual store prior to departure
from the coalition. At coalition dissolution, information stored at the coalition
level could be deleted or migrated up to the global level, or copied or distributed
among the agents in the former coalition.

If the information stores are shared repositories, it is possible to model agents
losing access to information but this raises questions about which part of the
store the departing agent had accessed and when. These questions would be
particularly pertinent if the departing agent may have hostile intent. Coun-
termeasures here include changing information so that the knowledge itself is
altered so that the departing agent’s knowledge is no longer meaningful? This
is practiced regularly with such secrets as group keys. In general, this brings up
the question of validity of information over time which is discussed in Section 7.

3.4 The Dimension of Information

The layered model of information storage has allowed us to identify issues relat-
ing to the representation and storage of information, the creation, acquisition
and loss. The developer of a dynamic coalition scheme might wish to consider
the following questions:

• At what level of detail is information represented?

• Are units of information identified by unique keys?

• Can information be stored at the agent, coalition and/or global levels?

• How is information acquired and added to information stores?

15

• Can information be moved between agent, coalition and global levels? In
either direction?

• What happens to information when an agent leaves a coalition, or a coali-
tion is dissolved?

4 Information Transfer

An underlying purpose of our modelling activity is to be able to analyse the
flow of information through a coalition. In Section 3.3 we identified the options
for moving information between levels in the agent-coalition-global structure.
In this section, we consider the options for movement of information between
agents. The models developed in this section describe the functionality of in-
formation transfer on the basis of the meta-information about membership and
information discussed in previous sections. At this level, the model is not con-
cerned with mechanisms of transmission, so much as the preconditions: who
can participate in an information transfer, and what can be transmitted?

As a starting point, consider the original base model Σ. We will treat the
information stored in each agent as a set of Information tokens.

Σsimp :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

rng coals ⊆ dom agents

Agent = Information-set

4.1 Näıve Information Transfer

The most basic operation is copying a set of Information from one agent to
another:

InfoTransfer (from, to:Aid , is : Information-set)

ext wr agents : Aid
m
−→ Agent

pre {from, to} ⊆ dom agents ∧ is ⊆ agents(from)

post agents =
↼−−−−
agents † {to 7→

↼−−−−
agents(to) ∪ is}

The second conjunct of the precondition requires that the information to be
transferred is known by the “from” agent.

4.2 Agent Clearance of Information

It is likely that individual agents will operate policies regarding the clearing
of information for transfer. One would wish to incorporate within an agent
a decision-making procedure for granting clearance. At a simple level, this
could be a function mapping each piece of Information to the set of potential
recipients. Holding such a function complicates the Agent type:

Agent :: info : Information-set

clearance : Information
m
−→ Aid -set

inv (info, clearance) 4 ∀i ∈ dom clearance · i ∈ info

16

Σa-tr :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

rng coals ⊆ dom agents ∧
⋃

{
⋃

rng ags .clearance | ags ∈ rng agents} ⊆ dom agents ∧
. . .

The extra invariant clause on the type Agent asserts that all the information
which may be revealed by an agent is known by that agent. The second conjunct
of the invariant on Σa-tr asserts that all the agents to whom information may
be revealed are known.

The clearance component of the agent state is not very practical — it needs
to be updated every time a new piece of information is added — but serves to
illustrate the basic point. The new component can be used to govern information
transfer:

InfoTransfer (from, to:Aid , is : Information-set)

ext wr agents : Aid
m
−→ Agent

pre {from, to} ⊆ dom agents ∧
∀i ∈ is · to ∈ agents(from).clearance(i) ∧
is ⊆ agents(from)

post agents =
↼−−−−
agents †{to 7→ µ(

↼−−−−
agents(to), info 7→

↼−−−−
agents(to).info ∪ is)}

Alternative policies may be pursued, for example returning an explicit error if
the clearance precondition is not satisfied, or transferring the cleared subset of

is : is \ {i ∈ is | to /∈
↼−−−−
agents(from).clearance(i)}.

4.3 Coalition-based Clearance of Information

While individual agents may pursue their own information clearance policies,
coalitions are likely to have their own rules. For the present, ignore the agent
clearance notion introduced in Section 4.2 and revert to the basic model Σsimp

introduced at the beginning of this section.
If it is required that a transfer is conditional on the “to” agent being in

a common coalition with the “from” agent, the relevant precondition can be
written:

InfoTransfer (from, to:Aid , is : Information-set)

ext rd coals : Cid
m
−→ Aid -set

wr agents : Aid
m
−→ Agent

pre {from, to} ⊆ dom agents ∧
∃c ∈ dom coals · {from, to} ⊆ coals(c) ∧
is ⊆ agents(from)

post agents =
↼−−−−
agents † {to 7→

↼−−−−
agents(to) ∪ is}

The precondition of this function is rather weak, merely requiring that there
exists a coalition containing the two agents. In practice, membership of different
coalitions is likely to confer different privileges, so it is more appropriate that a
specific coalition is identified as the one under which the transfer is taking place.
This would be supplied as an input to the information transfer operation:

17

InfoTransfer (from, to:Aid , is : Information-set, c:Cid)

ext rd coals : Cid
m
−→ Aid -set

wr agents : Aid
m
−→ Agent

pre {from, to} ⊆ dom agents ∧
c ∈ dom coals ∧ {from, to} ⊆ coals(c) ∧
is ⊆ agents(from)

post agents =
↼−−−−
agents † {to 7→

↼−−−−
agents(to) ∪ is}

This allows the information to be tagged with the coalition under which it was
transferred (see Section 6). It is reasonable to suppose that coalition member-
ship should play a role in the clearance decision. There should be a place for
coalition-level policies to be expressed under which an information transfer takes
place. As with agent-level clearance, in that it is necessary to define a place for
recording the policy, this time at the coalition level. A type to represent the
coalition state might be introduced:

Coalition :: members : Aid -set

clearance : Information
m
−→ {MembsOnly | Everyone}

This involves a mapping of individual atoms to enumerated values indicating
who may receive the information: in this case either to members of the coalition
or to anyone. More sophisticated policies are possible. Again, the abstraction
in the model means that it is necessary to update the coalition every time a
new unit Information comes into existence.

With this model of a coalition, the overall state needs to be revised:

Σc-tr :: coals : Cid
m
−→ Coalition

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

{cs .members | cs ∈ rng coals} ⊆ dom agents∧. . .

and the information transfer operation becomes:

InfoTransfer (from, to:Aid , is : Information-set, c:Cid)

ext rd coals : Cid
m
−→ Coalition

wr agents : Aid
m
−→ Agent

pre {from, to} ⊆ dom agents ∧
c ∈ dom coals ∧ from ∈ coals(c).members ∧
(to /∈ coals(c).members
⇒ ∀i ∈ is · coals(c).clearance(i) = Everyone) ∧
is ⊆ agents(from)

post agents =
↼−−−−
agents † {to 7→

↼−−−−
agents(to) ∪ is}

Again, various policies could be described if the precondition is unfulfilled: re-
turning an error message or transferring a subset of is .

4.4 The Dimension of Information Transfer

The modelling activity in this section allows us to identify more questions that
the developer of a coalition scheme may wish to ask regarding the flow of infor-
mation through the coalition structure:

• Who can participate in a transfer of information?

18

• Who may initiate a transfer of information?

• What information may be transfered?

• Where in the structure does control of the clearance mechanisms reside?

More subtle problems may be brought to light as well. For example, if the two
information transfer models above are combined, we have the basis of a layered
model for information transfer. Setting aside the question of how policies are
to be described (the richness of the policy language), there are issues relating
to the potential for conflict between policies at different levels.

5 Authorisation Structure

Various “structures” of dynamic coalitions have been proposed in the literature,
mostly limited to information transfer (e.g. [Let01]). For example, a star struc-
ture requires that a single agent acts as the nexus for all communications in the
coalition. A tree structure has a collection of local star structures with com-
munications passing up from centres to the next level. A peer to peer structure
may prescribe no communication routes at all. One may imagine a range of
hybrid structures combining these options such as a peer-to-peer collection of
agents, each of which is at the centre of its own local star structure.

Our modelling work suggests that information transfer structures describe
just part of a coalition’s character. To us, a key aspect of a coalition’s structure
is its governance: which agents may authorise specific acts such as information
transfer or membership operations. In particular, our use of pre/postcondition
specifications for operations governing membership and information transfer
emphasises that these operations may require permission. For example, in Sec-
tion 2.4, we considered the possibility that coalition members might have to
vote on the acceptance of a new member, and in Section 4 we considered several
levels at which clearance might be given for information transfer. In both cases,
some form of authorisation structure was built into the model, rather implicitly,
to cater for this possibility. This is rather like coalitions as they are imple-
mented today, with authorisation structures existing only as a consequence of
rights, obligations and privileges which are agreed, known and held within the
coalition. The explicit, early consideration of these structures is likely to have
a significant effect on the design of a robust coalition.

In this section, we consider authorisation structure more explicitly and in
a more general setting, independent of the operations being authorised. The
meta-information expressed in the models developed in this section explicitly
concerns the authorisation structures which may be added to any of the models
developed so far, allowing forms such as star and tree structures to be repre-
sented for authorisation as well as communication (Section 5.1). We show how
this structure is linked to membership management and information transfer op-
erations (Section 5.2) and finally consider the effect of making the authorisation
structure dynamic (Section 5.3).

5.1 Representing the Authorisation Structure

In constructing a formal model, we are forced to consider exactly what is meant
by authorisation structure. For the moment, consider a single operation or

19

group of operations, such as those performing information transfer, which share
a common authorisation structure. Each operation may require authorisation
from one or more specific agents. We thus consider an authorisation structure
as a relation between agents. Formally, we could define a data type representing
such a relation:

AuthRel = (Aid × Aid)-set

Given a specific authorisation relation auth, we will write a1 auth a2 to indicate
that (a1, a2) is in the relation, so a1 is capable of authorizing an operation by
a2 from the group of operations under consideration.

The definition of such a data type in a modelling language naturally leads
one to ask about the structure’s properties: could it be reflexive, symmetric,
transitive? Should it be acyclic? If any of these properties are required, they
could be described in an invariant. For example, we may require an authorisa-
tion relation to be acyclic6:

AuthRel = (Aid × Aid)-set

inv- auth (a) 4

∀as ⊆ dom auth · as 6= { } ⇒ ∃a ∈ as · ¬(∃a ′ ∈ as · a auth a ′)

where dom auth denotes the domain of a relation7.
Given such a general model, it is possible to describe common structures

by means of combinations of conditions on the relation. For example, a star
authorisation structure is one in which a single agent permits or denies actions.
A tree-based authorisation structure is characterised by a constraint that every
agent that is subject to authorisation is subject to only one authoriser.

5.2 Adding Authorisation to a DC Model

If authorisation is to be treated explicitly in coalition development, the authori-
sation structure should be represented in the system state. It is then referenced
by operation preconditions. For the moment, we continue to consider a single
authorisation structure for a single group of operations, bearing in mind that one
could potentially have several such (orthogonal) structures for different kinds of
operation.

As an example, we will consider the addition of an authorisation structure
to a model derived from the model for information storage, Σloc, defined in
Section 3.2. The basic model is:

Σauth :: coals : Cid
m
−→ Coalition

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

{c.members | c ∈ rng coals} ⊆ agents

Coalition :: members : Aid -set
info : Information-set

6This is just an example of a possible invariant. Other invariants may be required for
other forms of authorisation relation. For example, this invariant does not permit an agent
to authorise itself to perform a specific act.

7The domain (dom) and range(rng) operators in VDM-SL are normally confined to map-
pings, but here we extend them to general relations.

20

Agent = Information-set

The first question to address is whether the authorisation structure is to be
defined globally, as a single relation at the outermost level of the state, or on a
per-coalition basis as a component of a coalition, or even on a per-agent basis.
Here, we illustrate the issues based on an authorisation structure defined at the
coalition level, as this seems to be a likely scenario. The Coalition data type
would be extended with the extra component as follows:

Coalition :: members : Aid -set
info : Information-set

auth : AuthRel

inv (members , -, auth) 4 dom auth ∪ rng auth ⊆ members

The invariant contains two clauses to ensure consistency with the existing
components of the coalition. Other conditions, such as acyclicity of the autho-
risation relation within the coalition, are inherited from the AuthRel type. It
would be possible to enforce other properties such as transitivity as required.

The link from the authorisation structure to operations is made via their
preconditions. For example, consider an information transfer operation such as
that given in Section 4.1, operating on the Σauth state. It is important to know
which coalition this transfer falls under. This is significant, as the two members
may be included in a number of coalitions, which would lead to an ambiguity
in selecting the correct authorisation relationship.

InfoTransferAuth (from, to:Aid , cid :Cid , is : Information-set)

ext wr agents : Aid
m
−→ Agent

rd coals : Cid
m
−→ Coalition

pre {from, to} ⊆ coals(cid).members ∧ is ⊆ agents(from) ∧
let ar = coals(cid).auth in

∃a ∈ dom agents · a ar from ∧ authorises(a, from, to, is)

post agents =
↼−−−−
agents † {to 7→

↼−−−−
agents(to) ∪ is}

where authorises is a predicate describing the criteria used to decide if the
transfer of the particular information set is may proceed. In general, this ex-
pression may have to refer to additional state components to check, for example,
clearance of the recipient to.

5.3 Changing the Authorisation Structure: Delegation

Including the authorisation structure in the coalition state opens up the pos-
sibility of modelling dynamic changes in the structure. The operations that
permit this change might be performed (at least) every time a member joins or
leaves a coalition, and perhaps at other times in response to changes of policy.

As an example, consider the delegation of authority by one agent to another.
Let agent a1 delegate its authority over agent a3 to an agent a2. This can be
described by a function over the authorisation relation auth . The core part of
the function definition is the change to auth by adding the new authority:

Delegate (auth :AuthRel , a1, a2, a3:Aid) auth:AuthRel

pre a1 auth a2 ∧ a1 auth a3

post auth = auth ∪ {(a2, a3)}

21

In this particular example, a1 retains his authority over a3, but this need not
always be the case. In modelling the function, we naturally think of its pre-
condition and in this case we require the necessary initial authorities to be in
place.

In defining functions and operations, we always have an eye to any relevant
data type invariants. In VDM, there is an obligation on the writer of a function
or operation to ensure that any invariants are respected. In this case, the risk
is that the function may cause the invariant on AuthRel to be broken, e.g. by
introducing a cycle where the AuthRel invariant forbids it. Discharging such a
proof obligation is a core part of design using formal modelling.

The function as defined above works on a single authorisation relation. In
our model in which these relations are defined on a per-coalition basis, the
function would be “promoted” to work on the system state:

DelegateInCoal (c:Cid , a1, a2, a3:Aid)

ext wr coals : Cid
m
−→ Coalition

pre {a1, a2, a3} ⊆ coals(c).members ∧
pre-Delegate(coals(c). auth , a1, a2, a3)

post let oc =
↼−−
coals(c) in

coals =
↼−−
coals † {c 7→ µ(oc, auth 7→ Delegate(oc. auth , a1, a2, a3))}

Here the precondition is extended with additional consistency conditions that
hold at the coalition level and the postcondition raises the results of the dele-
gation function to the global state.

5.4 Extensions to the Authorisation Structure

It may be that an agent is permitted to give different authorisations to different
agents, depending on their various skill sets, for example. In this case several
authorisation structures would co-exist. The construction of a formal model
such as that illustrated above provides an opportunity to explore the interactions
of several such authorisation structures. A further refinement of this model
explicitly records agents who are entitled to alter the authorisation structure.

We have presented in this section a straightforward way of representing au-
thority to conduct operations within a coalition. This could be extended to
authority over resources, and a similar set of relations could describe the roles
that agents hold within a coalition.

5.5 The Dimension of Authorisation Structure

Unless security is an important factor in the coalition, the authority relation is
unlikely to be implemented directly. It will most likely be an emergent relation,
coming from, for example, the decision making and communications mechanisms
within the coalition. We would argue that this relation, although it is emergent,
is important to many understandings of virtual organisations. For example, it
forms an important part of the basis of the taxonomies in [Let01] and [SZGM05].
An explicit description such as the one outlined above will allow him to check
that any proposed specifications do in fact represent this relation.

Questions to consider include:

22

• Is authorisation a significant part of the dynamic coalition?

• Which (types of) actions will require authorisation?

• Will the authorisation structure vary across types of actions?

• Will the authorisation structure vary over time?

• Can the right to authorise actions be delegated?

6 Provenance

6.1 Modelling Provenance

In a dynamic coalition, it will often be important for an agent to know the source
of the information it holds, as well as the information itself. In this section we
consider some basic models of provenance (i.e. what meta-information is here
teased out to record provenance — we could of course say that this is also “just”
information). The simplest of these is for each agent to associate with each item
of information the agent from whom it was received.

To simplify the presentation, we again assume that the knowledge base (info)
within each agent is a set of information. The information record is altered, to
associate a single providing agent with each information token.

This model would require some changes to the definitions in Section 4.
Agents need only transfer the token part of an information record, and the
receiving agent will add his own provenance component.

Σp :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

Agent :: agentinfo : TrackedInformation-set

TrackedInformation :: item : Information
prov : Aid

If, when information is transferred, the provenance information is passed
with it, then agents could build up a list of agents, representing the path that
the information has taken to them. This immediately raises the possibility of
an agent lying about the provenance information it passes on, but leaving that
aside, the resulting model will be:

Σp∗ :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

Agent :: agentinfo : TrackedInformation-set

TrackedInformation :: item : Information
prov : Aid∗

We could include an invariant to stipulate that provenance information is
passed on accurately and in full, if this was appropriate to the coalition. This
would ensure that each agent’s view of provenance was consistent. We would
also have to take account of the situation where an agent receives a piece of in-
formation that it has previously passed on: whether or not the loop was removed
from the provenance list would depend on whether the agent was interested in

23

recording the origin and path of the information, or in knowing as accurately
as possible those agents that also know the information.

As well as recording the provenance of a piece of information, an agent might
be interested in recording which other agents know the information. A suitable
model for information would then be

TrackedInformation :: item : Information
known-by : Aid -set

If information is received, an agent can modify the ‘known-by’ field by recording
the source of the message.

Coalitions may vary in the forms of communication by which information
is transferred. Examples are agents disseminating information by unicast, mul-
ticast or broadcast. Agents can also take this into account. If something was
received by broadcast, the recipient may then only assume that this is known by
every member of the coalition. If by multicast (and the recipient set is known),
the recipient set may be assumed to have received the information. These are
really only weak conclusions as they refer to a single act of information transfer,
and not to previous transfers.

It is not always appropriate or possible for individual agents to retain this
kind of information. Some dynamic coalitions provide an archival service (see
for example the extended case study in Section 9.) This could be modelled as
an agent whose role is to record this kind of information for every transaction
within the dynamic coalition. This can be used, for example, if non-repudiation
of messages is important.

If we allow coalitions to communicate with each other as coalitions, then we
need to include a similar provenance recording mechanism at the coalition level.

An analogy here is with briefings given under different terms by politicians.
An “on the record” briefing will typically contain less sensitive information
than an “off the record” one. Note that, in this example, terms also govern
provenance meta-data. Information gathered at an “on the record” briefing is
passed on with its provenance attached, while “off the record” briefings contain
wild card provenances, e.g. “sources close to the Minister”.

6.2 The Dimension of Provenance

When thinking about provenance, a coalition designer might ask

• What provenance information will be recorded?

• How will it be acquired?

• How detailed will the information be?

• Will agents record their own provenance information?

• Will provenance information be recorded centrally?

• If there are differing records of provenance, what efforts will be made to
keep them consistent?

24

7 Time

Within different forms of dynamic coalitions, significant events may take place
at vastly differing rates. For example, a commercial virtual enterprise may
operate in terms of years, months, weeks and days. In a hospital the seconds or
minutes taken to get hold of the right doctor may be of significance, and in an
automated intensive care ward the milliseconds taken to communicate between
different machines may be crucial.

Consistent with this view of timed behaviour is the notion of time bands, ini-
tially developed by Newell within the context of human cognition work [New90].
This approach has been applied to complex socio-technical systems in [BHBF05],
on which we base much of the following presentation. Time is not seen as a single
flat dimension, but is represented as a series of time bands. These are charac-
terised by their granularity and precision. System activities are placed within
a particular time band if they engage in significant events within the time scale
represented by the time band. For example, one band may capture operating
system level activity, and another may capture social activity (phone calls, etc.)
related to the same system.

The specification of a system requires the definition of these bands (usually
separated by approximately a factor of 10). Within a band, activities have
duration while events are instantaneous. Instantaneous events in one band
may map into durational activities in a lower one. A description of the timely
behaviour of a dynamic coalition will therefore (we suggest) need to specify the
time bands relevant to the dynamic coalition, and identify all the significant
events and activities at each time band, as well as their relation to linked events
and activities in other bands.

Time bands can also be used to provide a way of recording the history of
the behaviour of a coalition. This record would be external to the model.

In the example specifications below, we assume that a single agent operates
in a single time band, but may communicate with agents in any other time
band.

As in previous dimensions, we have three possible distinct choices for enrich-
ing our model with meta-information about time — we can place knowledge of
time at the global, coalition or agent level.

The first choice is shown in the Σtime-g model, and in the Σtime-a model
each agent has its own clock. We do not present the model of a coalition with a
common clock. In each model we put no constraints on the type Time. (Later,
the operations we define assume a ≥ operator.)

Σtime-g :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

current-time : Time

In the Σtime-a model, each agent has its own clock.

Σtime-a :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

Agent :: current-time : Time
. . . : . . .

It is possible to include awareness of time at different levels in the same model.
This would allow some agents to have access to the global clock and others to

25

be restricted to their own clock.
The dimensions we have described so far (membership, knowledge, etc.) are

orthogonal to each other. Each may exist and describe meaningful situations
without the presence of the others. This is not true for the time dimension. In
isolation, it describes little of worth or relevance, but in combination with the
other dimensions it enriches them and provides valuable new insights.

We have already introduced the possibility of meta-information. In the next
two sections we allow this meta-information to record time-values. We demon-
strate this in the rest of this section by combining time with two example do-
mains: information in Section 3 and provenance in Section 6.

7.1 Time-valued Information

The simplest way to introduce a time component to meta-information is to
associate a single time value with each information token. This value would
record a significant instant for that information. For example, it could record
the time at which an agent learned a piece of information.

7.1.1 Expiry Times

In this section, we consider the case where information expires at a certain point
in time. In the simple agent model below, a single time is associated with each
piece of information. At the recorded time, the value of the information changes
in some quantifiable way: for example, a document may move from “classified”
to “unclassified”, or meteorological data may change from “current” to “out-of-
date”.

Agent :: agentinfo : Information-set
current-time : Time

Information :: item : token
expire : [Time]

In this model, information items may have a single “expiry date”. If this is not
present, we assume that information is valid indefinitely. Using expire, an agent
can check if a piece of information is still valid at a particular point in time.

still -valid : Information × Time → B

still -valid (info, time) 4 info.expire = nil ∨ info.expire ≥ time

It is possible that a set of information may remain valuable for longer than any
of its elements. This could happen if two pieces of information were about the
same external thing – for example location and strength of armed forces. To
allow for this, we must allow the agent to group the information that he has.

Agent :: agentinfo : TimedInfo-set
current-time : Time

TimedInfo :: info : Information-set
set-expire :

[

Time
]

inv (info, set-expire) 4

set-expire 6= nil ⇔ ∀i ∈ info · i .expire 6= nil∧ i .expire ≤ set-expire

26

The invariant states that the expiry of a set of information must be later than
the expiry of any of its elements.

It is straightforward to define an operation to determine the expiry of a set
info not explicitly grouped into a TimedInfo, simply by taking the maximum
expiry time of its elements.

7.1.2 Degrading the Value of Information Over Time

Rather than information being either “expired” or “not expired” with respect
to a certain time, we could model information degrading more slowly over time.
For example, if the security classification of information was relevant, agents
could categorise all their information according to some security-type, as in the
model below. Here, agents record the first time at which a certain security level
applies, and the assumption (captured by the invariant) is that the security level
decreases monotonically with time. For ease of presentation, we will assume a
single KnowledgeBase for each agent.

Agent :: security-level : High | Medium | Low | None

KnowledgeBase : TimedInformation-set
current-time : Time

TimedInformation :: item : Information

security : security-level
m
−→ Time

7.2 Time and Provenance

In Section 6, we presented two models of information provenance, Σp and Σp∗ .
Here we enrich both of these models by adding time. In the first model the
extension is straightforward: an agent merely records the time at which each
item of information was received, as well as the provider.

Σp-time :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

Agent :: KnowledgeBase : TimedInformation-set
current-time : Time

TimedInformation :: item : Information
prov : Aid
time :

[

Time
]

In this model, an agent records the source of a item in prov (here just the name
of the communicating agent), and the time it was communicated. This would
be enough to establish some measure of the trustworthiness of the item, but no
attempt is made to keep a full audit trail.

In the second model, where an agent passes on its own provenance informa-
tion with a item, the information component in the model becomes:

TimedInformation :: item : Information
prov : (Aid × Time)∗

inv (–, prov) 4

∀i < len(prov) · snd(prov(i + 1)) ≥ snd(prov(i))

27

The invariant says that time is non-decreasing as we move towards the head of
any prov sequence8.

7.3 The Dimension of Time

Time is a dimension which enriches and sheds new light on other dimensions,
rather than one that is valuable of itself. A coalition designer may ask

• What other dimensions have some time component?

• How do they use time?

• Which components may vary with time?

• What access do agents and coalitions have to clocks?

8 Trust

8.1 Trust-related Meta-information

The problem of how to infer trust from meta-information is still open, and
solutions are necessarily context dependent. After trust has been computed
the question of how to use it has many answers, again context dependent. We
therefore do not consider these questions, and begin by assuming that trust
values have been obtained. These trust values may represent an agent’s trust
in other agents, or an agent’s trust in information.

An agent’s trust in other agents can be represented as

Σtrust-a :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

rng coals ⊆ dom agents

Agent :: aTrust : Aid
m
−→ trustvalue

where

trustvalue = R

Over time, the aTrust mapping will be updated, according to some set of
rules that an agent has. For example, if an agent a applies a “Friend-of-a-friend”
rule, and agent b (whom a trusts) itself trusts agent c, then agent a may be
inclined to trust agent c as well.

Coalition members might be expected to trust the other members of the
coalition to some degree. If this were the case, it could be mandated by a
suitable invariant:

Σtrust-c :: coals : Cid
m
−→ Coalition

agents : Aid
m
−→ Agent

inv (coals , -) 4

∀c ∈ dom coals ·
∀m,m ′ ∈ coals(c).members · m.aTrust(m ′) ≥ coals(c).cTrust

8The snd operator gets the second element of a pair.

28

Coalition :: members : Aid -set
cTrust : trustvalue

Trust in information is most simply recorded as a meta-information compo-
nent within Information.

Σtrust-info :: coals : Cid
m
−→ Aid -set

agents : Aid
m
−→ Agent

Agent :: KnowledgeBase : Information-set

Information :: item : token
iTrust : trustvalue

8.2 The Dimension of Trust

Many models for deciding trust values and acting on them may be found in the
literature. We have not attempted to characterise these, but rather considered
how agents may record trust values, and what these values might relate to.

Following on from this, some questions to consider are:

• Which elements of will agents need to have trust in?

• How will they record these values?

• How will trust values influence an agents behaviour?

• How will trust values vary with the behaviour of agents?

9 Case Study: The GOLD VO Architecture

In this section we will use as an example the Virtual Organisation architecture
under development within the GOLD project [GOL, CCH+05]. We show how
the architectural choices made in [CCH+05] can be positioned within the space
of dynamic coalitions outlined in the paper.

The GOLD project is seeking to build a software architecture that will sup-
port the formation, operation and termination of a number of business coali-
tions, within the high-value chemicals industry. The production of a chemical
involves a number of stages, including initial laboratory experiments, building
and running of industrial scale plant, safety analysis of any by-products. A coali-
tion of companies often forms around the production of a particular chemical,
since very few companies have the resources to see one chemical right through
from inception to marketing. These coalitions are loosely bound together with
members joining as necessary and leaving when their part of the process is
complete.

In [CCH+05], an environment is described where a number of overlapping
Virtual Organisations can be formed. We will call this environment the VO
breeding ground. In a sense, this breeding ground forms a single global coalition,
whose purpose is to form smaller and more constrained VOs around particular
development processes. A single company may be in many such coalitions.

The GOLD architecture is service-based, and allows companies to commu-
nicate information, transfer documents and access each others resources. The
intention is that each company in the VO breeding ground will offer a standard

29

set of services in a uniform way which will allow companies to form and operate
these coalitions at a much greater rate than is currently possible.

We take each relevant dimension in turn and show where the VOs to be
supported by the GOLD architecture fit along these dimensions.

Our purpose is not to provide a full VDM specification of the architecture,
but rather to demonstrate that early use of formality in VO design (as in any
design) can help identify important decisions quickly.

9.1 Coalition Membership

In [CCH+05], coalition membership is realised by a membership management
function (MMF) which contains a list of the members of each VO in the VO
breeding ground, and mechanisms for joining and leaving coalitions.

The MMF also contains role descriptions for individuals and organisations
within each VO. A possible way of organising this is shown below. The Agents
are the companies involved. The Uid are individual users of GOLD within
companies. The mappings aroles and uroles map agents and users to agent
(aRole) and user (uRole) roles.

aRole = leader | token

uRole = chemist | token

Σgold :: coals : Cid
m
−→ Coalition

agents : Aid
m
−→ Agent

users : Uid
m
−→ User

Coalition :: members : Aid -set

aroles : Aid
m
−→ aRole-set

uroles : Uid
m
−→ uRole-set

inv (-, aroles , -) 4 ∃! aid ∈ dom aroles · leader ∈ aroles(aid)

Agent :: employees : Uid -set

A distinction is made here between the companies (Agents) and the company
employees (Users). As an aside, it would be possible to model companies as
coalitions of users. However our task here is to tailor a model to describe the
functionality provided by the GOLD platform, which explicitly recognises both
companies and agents as first class objects. It is clearly necessary that the
information about a user include the company for which he or she works. We
must also ask here ask the question “Must a user in a coalition be an employee of
a member company?” This is not stipulated by [CCH+05], but if in a particular
VO the answer is yes, it can be enforced by an invariant.

Every GOLD coalition will be initiated by a single leader, and this is enforced
by the invariant. Membership of the coalition will be at the discretion of this
leader, but companies will be able to leave unilaterally. The Join operation will
therefore be (where b is authorising a to join:)

30

Join (a, b:Aid , c:Cid)

ext wr coals : Cid
m
−→ Coalition

rd agents : Aid
m
−→ Agent

pre a ∈ dom agents ∧ c ∈ dom coals ∧ a /∈ coals(c).members ∧
leader ∈ coals(c).aroles(b) ∧ authorise-join(b, a, c)

post coals(c).members =
↼−−
coals(c).members ∪ {a}

Join does not update the aroles or uroles components of the Coalition. We
envisage separate operations to do this, but do not present them here.

Remove (a:Aid , c:Cid)

ext wr coals : Cid
m
−→ Coalition

rd agents : Aid
m
−→ Agent

pre c ∈ dom coals ∧ a ∈ coals(c).members

post coals =
↼−−
coals†{c 7→ µ(

↼−−
coals(c),

members 7→
↼−−
coals(c).members \ {a},

aroles 7→ {a} −C
↼−−
coals(c).aroles ,

uroles 7→ {u | u ∈ agents(a).employees} −C
↼−−
coals(c).uroles)}

With Remove we explicitly remove a departing agent from the aroles map,
and remove all their employees from the uroles map. This is a basic security
precaution. However, it raises the question “Can an employee be a member of
two companies (perhaps through a consultancy arrangement?)” If this is the
case, we must be careful not to remove him just because one of his employers
leaves.

9.2 Information

Within GOLD, a document “is the fundamental unit of information exchanged
between VO members” [CCH+05]. The VO breeding ground contains certain
service discovery functions as architectural elements, which are external to any
VO or company. These include a Document Type Registry (DTR), which defines
a common understanding of the classes of document which may be exchanged
between companies.

This is very close to our basic centralised database Σig in Section 3, with
a pre-defined set of document types. To model the DTR we would include the
following in the global state component of the model.

Σgold :: ... : ...
doc-type : Expr-rep | Mngt-rep | Safety-rep | Memo | token

Describing the different document types as tokens will be sufficient for us here.
In a more advanced stage of the specification process this would justify a more
detailed description.

The GOLD architecture allows for both central and local storage of infor-
mation in Document Repositories (dr) within a single VO. A VO may have a
number of central storage facilities. Information placed in these storage facilities

31

may be retrieved using an index or identifier. Each repository, whether local to
a company or local to a VO, will be a map from document identifiers to ele-
ments of type doc-type. We will assume that each agent has a single document
repository. It also maintains a mapping from the coalitions to which it belongs
to the documents that may be shared with that coalition. There is a single
repository at the coalition level for each VO. Thus

Coalition :: ... : ...

dr : Did
m
−→ Document

Agent :: ... : ...

dr : Did
m
−→ Document

coalinfo : Cid
m
−→ Did -set

These repositories will have the ability to pro-actively update users of rel-
evant changes to documents in their repository as well as allow them to inter-
rogate their contents. A collection of simple (omitted) operations will allow
agents to update and interrogate these repositories and allow the repositories
to update users of changes.

9.3 Information Transfer

An assumption in [CCH+05] is that information (documents) should only be
transmitted within VOs and not across VO boundaries. All transfers are subject
to a unified security infrastructure. Of course, there is nothing to stop two
companies in separate VOs communicating using means other than the GOLD
architecture.

The operation below transfers a set of documents from one agent to another.
The behaviour of the security architecture is again captured as a predicate
authorises. A transfer is allowed only if it is authorised by an appropriate
member of the coalition.

It is important that we identify the particular coalition within which the
transfer is taking place. This is because many coalitions may exist at any one
time and confidential information relevant to one coalition may easily be passed
under the auspices of another.

InfoTransfer (from, to:Aid , d :Document , did :Did , c:Cid)

ext wr agents : Aid
m
−→ Agent

pre {from, to} ⊂ dom agents ∧ d ∈ rng agents(from).dr ∧
did 6∈ dom coals(c).dr ∧
c ∈ dom coals ∧ {from, to} ⊂ coals(c).members ∧
∃a ∈ {dom agents} · authorises(a, from, to, {d}, c)

post agents =
↼−−−−
agents†{to 7→ µ(

↼−−−−
agents(to), dr 7→

↼−−−−
agents(to).dr ∪ {did 7→ d})}

Note that the predicate authorises need not require the intervention of an autho-
rising agent for every information transfer: permission to distribute documents
may be granted in advance and stored until referenced by the authorises predi-
cate.

If an agent is a member of a coalition, it can add to the coalition level
repository and read documents in this repository provided that the coalition-
specific access control rules are satisfied.

32

The operation below adds a single document to a coalition document repos-
itory.

AddToVO (from:Aid , d :Document , did :Did , c:Cid)

ext wr coals : Cid
m
−→ Coalition

pre from ∈ dom agents ∧ from ∈ coals(c).members ∧
d ∈ rng agents(from).dr ∧
did 6∈ dom coals(c).dr ∧
c ∈ dom coals ∧
∃a ∈ dom agents · a ∈ coals(c).members ∧ permits(a, from, {d}, c)

post coals =
↼−−
coals † {c 7→ µ(

↼−−
coals(c), dr 7→

↼−−
coals(c).dr ∪ {did 7→ d})}

9.4 Authorisation Structure

In [CCH+05], it is assumed that there will be a single instigator of a virtual
organisation who will subcontract part of the work to others. Thus the autho-
risation structure of a GOLD coalition will naturally be a star formation. We
model this as

AuthRel = (Aid × Aid)-set

where

inv(auth) 4

∀as ⊆ dom auth · as 6= { } ⇒ ∃a ∈ as · ¬(∃a ′ ∈ as · a auth a ′)

and

card dom auth = 1

A subcontractor may choose to further subcontract their work. This would
be modelled as a separate VO.

9.5 Provenance

The GOLD architecture will provide a secure archival service for future audit,
available only to authorised members. This will need to provide a full record of
the workings of the VO, including business agreements, contracts, service level
agreements, and creation and communication of documents. In the example
in Section 6, we explored the case where each coalition member recorded the
provenance of the information that they store. The GOLD architecture requires
separate archival services for individual VOs. Little is said in detail about these.
To model them, we could simply create a document repository at the coalition
level.

Archive :: doc : Did
m
−→ DocInfo

DocInfo :: document : doc-type
author : Uid | Aid

predecessor : [Did]
successor : [Did]

date-of -creation : Time
transfers : (Aid × Aid × Aid × Time)-set

33

We allow the author to be an individual user or a company. Changes to a
document are managed by recording all published versions, together with the
predecessor and successor of a document (both optionally null). Under the
transfers field, we record the transfer from the first Aid to the second Aid,
authorised by the third Aid, as well as the time at which it was authorised.

The InfoTransfer operation definition would need to be expanded to include
the automatic updating of the archive facility, but we do not do that here.

9.6 Trust and Perception

Agents may have no relevant information, history or context available when
they begin to work together. GOLD attempts to provide a trustworthy medium
for running VOs thus making trust an architectural issue [Per05].

The GOLD architecture provides mechanisms (authorisation, authentica-
tion, non-repudiation, etc.) which are seen as valuable in promoting trust be-
tween companies and trust in the integrity of the interactions between compa-
nies. As such, the GOLD architecture does not impose a particular model of
trust. Companies will be free to trust (or mis-trust) information, communica-
tions and other companies as they choose.

It is possible that the information in different Document Repositories will
conflict, and that different companies will therefore have different perceptions of
this information. However these would probably be resolved by communication
with the other companies (since this is obviously a co-operative environment),
rather than by running an inference function.

10 Conclusions, Related and Future Work

We have used a formal model-oriented specification language as the basis for a
systematic exploration of the space of dynamic coalitions. The modelling lan-
guage’s emphasis on abstractions of data, state and operations has encouraged
a focus on the “meta-information” that characterises the structure and infor-
mation flows of a coalition. As a result, several dimensions have been identified
along which dynamic coalition structures may vary. We have attempted to place
one real virtual organisation scheme, that of the GOLD project, in the space
spanned by the dimensions that we have identified.

10.1 Future Work

Future work can be envisaged in a number of areas. Two of these areas overlap:
development of validation techniques for dynamic coalitions exploiting the for-
mality of the models and development of knowledge/guidance about the design
of dynamic coalitions based on the dimensions mapped out in the modelling
work done so far. We also anticipate modelling the Domain Based Security ap-
proach and examining how this combines with dynamically forming coalitions.
The question of responsibility for coalition membership has already been ex-
plored in Section 2. We anticipate broadening this exploration to consider the
area of responsibility for actions within coalitions.

34

Validation of Dynamic Coalition Models: The validation of a model of a
dynamic coalition involves checking internal consistency and assessing emergent
properties of the model. The consistency checks are described in VDM as proof
obligations – logical conjectures that must be discharged in order for a model
to be regarded as internally consistent. They include basic properties such as
ensuring that preconditions are total as well as more sophisticated constraints
such as ensuring that operations respect invariants on the state. Under certain
conditions, proof obligations can be discharged automatically. However, in gen-
eral, they may require human-guided proof. Analysis of emergent behaviour is
often done by proposing validation conjectures. These are, again, formal state-
ments of desired properties of a model and may require human-guided proof. A
validation conjecture, might, for example, state that no more than two agents
in a coalition know a particular high-value fact at a particular time. Experi-
ence suggests that formulation of relevant validation conjectures requires some
thought.

Discharging proof obligations and assessing validation conjectures can be
done at various levels of confidence. An executable formal model can, for ex-
ample, be tested. At the other extreme, a human-guided but machine-assisted
proof can be constructed. For modes of dynamic coalitions, one may envisage
several useful validation activities:

• An executable model linked to a suitable interface through an application
programmer interface (this is a well-established technique for basic vali-
dation of models in VDM [AS99, FL98, FLM+05]). The interface permits
ad hoc exploration of the model by a user. With features such as invariant
and precondition checking, this permits a systematic analysis of normative
as well as some failure behaviours.

• Building on an executable model, scenarios can be defined and executed. A
scenario is a script involving invocations of the model’s operations (adding
or removing members, transferring specific information etc.).

• Scripts represent paths through state transition models. Is it possible to
generate a state-transition machine (Kripke structure) for an abstraction
of a given DC model? If so then it may be possible to search systematically
for states having specific properties.

Designing Dynamic Coalitions: Are dynamic coalitions designed or do
they emerge? The challenge in building systems to support dynamic coali-
tions lies in providing just sufficient structure to permit validation of emergent
properties without over-constraining heterogeneity and flexibility. The dimen-
sions identified in the modelling work described here may be useful in guiding
those building systems that support dynamic coalitions. Possible directions for
further work include:

• Exploring/validating the dimensions by applying them to a wider range
of known DC structures. Can we identify new structures not considered
before? Can we describe the result of two coalitions merging together?

• Developing proof obligations for DCs, or (weaker but more practical), a
checklist for DC developers.

35

• Investigating the description of structures that are superimposed on the
DC itself, such as access control, and investigate policy languages for de-
scribing access control on the basis of metadata.

Domain Based Security: Domain Based Security [Hug02, HW05, War03]
is an approach to information security that focuses on the way information is
shared. Developing the domain based security model for an organisation in-
volves two parts, an Infosec business model and an Infosec architecture model.
The business model is built first by identifying domains within the organisation,
where a domain represents a group of people and the information they use. In-
formation is assumed to flow freely within a domain, and domain based security
is concerned with the information flow between domains. The Infosec business
model also describes the physical places where people work, and a connection
between a place and a domain exists when people in that physical space are able
to work in the domain. The types of communication channels between domains
(email, web, etc.) are also explicitly represented.

Infrastructure constraints are modelled using the Infosec Infrastructure model.
This involves drawing infrastructure islands, each of which may be geographi-
cally distributed, and are only connected using clearly identified points of con-
nection. The challenging and illuminating task will be to integrate this model
with our existing models of dynamic coalitions, in order to examine and predict
how dynamic coalitions might function in a Domain Based Security environ-
ment. We anticipate that this strand of work will benefit greatly from further
progress on designing and validating dynamic coalitions.

Responsibility: Section 2 explores the question: where does responsibility lie
for coalition membership? We want to broaden this question to include all
coalition actions. We want as well to have some way of “keeping records” of
coalition behaviour, so that these questions can be asked retrospectively. It
may be sufficient to extend meta-information to include an “authorised-by”
component, or we may need to keep records external to the operation of the
VO.

10.2 Related Work

The VO literature contains some attempts at taxonomies of the subject, many
from the view of management science. One example is [Let01], in which Virtual
Organisations are categorised according to the informational flow between each
other and to customers. Thus, for example, a virtual face organisation (one
which presents a single front to a customer) is distinguished from a co-alliance
(one where each organisation may deal directly with the customer.) Considering
the information flows within the VO, a star alliance consists of subordinates
each talking only to a lead partner, and a value-alliance consists of members
organised in a ring, each adding value to the product. This taxonomy is from
the point of view of management science, and therefore excludes consideration
of the full range of dynamic coalitions that we have tried to capture in this
paper.

36

Acknowledgments

We are grateful to Tom McCutcheon and Ramsay Taylor of the UK Defence
Science and Technology Laboratory for their encouragement to examine infor-
mation flow in dynamic coalition structures. We acknowledge much helpful
input from colleagues in the Interdisciplinary Collaboration on Dependability
of Computer-based Systems (DIRC), especially Peter Ryan, Michael Harrison
and Fred Schneider. This research was supported by DSTL and the EPSRC
project GOLD.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings.
Cambridge University Press, 1996.

[And96] D.J. Andrews, editor. Information technology – Programming
languages, their environments and system software interfaces –
Vienna Development Method – Specification Language – Part 1:
Base language. International Organization for Standardization,
December 1996. International Standard ISO/IEC 13817-1.

[AS99] Sten Agerholm and Wendy Schafer. Analyzing SAFER using
UML and VDM++. In John Fitzgerald and Peter Gorm Larsen,
editors, VDM in Practice, pages 139–141, September 1999.

[BHBF05] A Burns, I.J. Hayes, G. Baxter, and C.J. Fidge. Modelling
temporal behaviour in complex socio-technical systems. Technical
Report 390, University of York, 2005.

[CCH+05] Adrian Conlin, Nick Cook, Hugo Hilden, Panos Periorellis, and
Rob Smith. GOLD Architecture Document. Technical Report
CS-TR-923, University of Newcastle, 2005.

[CHTCB96] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and
Bernadette Charron-Bost. On the impossibility of group
membership. Technical Report 2782, INRIA Rocquencourt,
January 1996.

[Cri91] F. Cristian. Reaching agreement on processor group membership
in synchronous distributed systems. Distributed Systems,
4(4):175–187, 1991.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
about knowledge. MIT press, 1995.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling systems:
practical tools and techniques in software development.
Cambridge University Press, 1998.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat,
and Marcel Verhoef. Validated Designs for Object-oriented
Systems. Springer Verlag, London, 2005. ISBN 1-85233-881-4.

37

[GA04] C. Gacek and B. Arief. The many meanings of open source.
IEEE Software, 21(1):34–40, January/February 2004.

[GOL] The GOLD Project. http://www.goldproject.ac.uk/.

[Hay93] Ian Hayes, editor. Specification Case Studies. Prentice Hall
International, second edition, 1993.

[Hug02] K. J. Hughes. Domain Based Security: enabling security at the
level of applications and business processes. White paper,
QinetiQ, 2002.

[HW05] Kay Hughes and Simon Wiseman. Analysis of information
security risks: Policy for protection through to implementation.
In 4th European Conference on Information Warfare and
Security, July 2005.

[Jon90] C. B. Jones. Systematic Software Development using VDM.
Prentice Hall International, second edition, 1990. ISBN
0-13-880733-7.

[Let01] N. Lethbridge. An I-based Taxonomy of Virtual Organisations
and the Implications for Effective Management. Informing
Science, 4(1):17–24, 2001.

[Mod] The VDM Dynamic Coalition Models.
http://www.dirc.org.uk/resources/dc.html.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes. Information and Computation, 100:1–77, 1992.

[New90] A. Newell. Unified Theories of Cognition. Harvard, 1990.

[Per05] Panos Periorellis. Trust Position - GOLD. Technical Report
CS-TR-908, University of Newcastle, 2005.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

[SZGM05] N. Sanchez, D. Zubiaga, J. González, and A Molina. Virtual
Breeding Environment: A First Approach to Understanding
Working and Sharing Principles. In Proceedings of
InterOp-ESA’05, 2005.

[War03] Karl Warrener. Facilitating Risk Balance - An Architectural
Approach. In 15th Annual Canadian Infomration Technology
Security Symposium, May 2003.

[Wel84] Ann Welsh. A Database Programming Language: Definition,
Implementation and Correctness Proofs. PhD thesis, University
of Manchester, 1984.

38

A Operations for Model Σm

NewCoal (c:Cid , a:Aid)

ext wr coals : Cid
m
−→ Aid -set

pre c /∈ dom coals

post coals =
↼−−
coals ∪ {c 7→ {a}}

Join (a:Aid , c:Cid)

ext wr coals : Cid
m
−→ Aid -set

rd agents : Aid
m
−→ Agent

pre a ∈ dom agents ∧ c ∈ dom coals(∧a /∈ coals(c))

post coals =
↼−−
coals † {c 7→

↼−−
coals(c) ∪ {a}}

Remove (a:Aid , c:Cid)

ext wr coals : Cid
m
−→ Aid -set

pre c ∈ dom coals ∧ a ∈ coals(c)

post if coals(c) = {a}

then coals = {c} −C
↼−−
coals

else
↼−−
coals † {c 7→

↼−−
coals(c) \ {a}}

It may be possible to dissolve a coalition:

DissolveCoal (c:Cid)

ext wr coals : Cid
m
−→ Aid -set

pre c ∈ dom coals

post coals = {c} −C
↼−−
coals

B Model Σauth

Coalition :: members : Aid -set
threshold : R

inv (-, threshold) 4 0 ≤ threshold ∧ threshold ≤ 1

Σauth :: coals : Cid
m
−→ Coalition

agents : Aid
m
−→ Agent

inv (coals , agents) 4
⋃

{c.members | c ∈ rng coals} ⊆ dom agents

NewCoal (c:Cid , a:Aid , t : R)

ext wr coals : Cid
m
−→ Coalition

pre c /∈ dom coals ∧ 0 ≤ threshold ∧ threshold ≤ 1

post coals =
↼−−
coals ∪ {c 7→ mk -Coalition(a, t)}

39

Join (a:Aid , c:Cid , supp:Aid -set)

ext wr coals : Cid
m
−→ Coalition

rd agents : Aid
m
−→ Agent

pre a ∈ dom agents ∧ c ∈ dom coals ∧ a /∈ coals(c) ∧
mandated(coals(c), supp)

post coals =
↼−−
coals†{c 7→ µ(

↼−−
coals(c),members 7→

↼−−
coals(c).members∪{a})}

Remove (a:Aid , c:Cid , supp:Aid -set)

ext wr coals : Cid
m
−→ Coalition

pre c ∈ dom coals ∧ a ∈ coals(c) ∧
mandated(coals(c), supp)

post if coals(c) = {a}

then coals = {c} −C
↼−−
coals

else
↼−−
coals †{c 7→ µ(

↼−−
coals(c),members 7→

↼−−
coals(c).members−{a})}

mandated :Coalition × Aid -set → B

mandated(mk -Coalition(membs , thr), supp) 4

supp ⊆ membs ∧ card supp/card membs ≥ thr

40

