

University of Newcastle upon Tyne

COMPUTING
SCIENCE

Guaranteeing the soundness of rely/guarantee rules

J. W. Coleman and C. B. Jones.

TECHNICAL REPORT SERIES

No. CS-TR-955 March, 2006

NEWCASTLE

UN IVERS ITY OF

TECHNICAL REPORT SERIES

No. CS-TR-955 March, 2006

Guaranteeing the soundness of rely/guarantee rules

Joey W. Coleman and Cliff B. Jones

Abstract

The challenges of finding compositional ways of (formally) developing concurrent
programs are considerable. One way of tackling such design tasks is to deploy rely
and guarantee conditions to record and reason about interference. This paper presents
a new approach to justifying the soundness of rely/guarantee inference rules. The
approach followed is to view a “structural operational semantics” as defining an
inference system and to show that the proof rules used are valid proof tactics within
that inference system. This leaves aside worries about completeness of the
rely/guarantee rule set because one is always in a position to add new rules in the
same way.

© 2006 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

COLEMAN, J. W., JONES, C. B..

Guaranteeing the soundness of rely/guarantee rules
[By] J. W. Coleman, C. B. Jones.

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2006.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-955)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-955

Abstract

The challenges of finding compositional ways of (formally) developing concurrent programs are considerable.
One way of tackling such design tasks is to deploy rely and guarantee conditions to record and reason about
interference. This paper presents a new approach to justifying the soundness of rely/guarantee inference rules. The
approach followed is to view a “structural operational semantics” as defining an inference system and to show that
the proof rules used are valid proof tactics within that inference system. This leaves aside worries about
completeness of the rely/guarantee rule set because one is always in a position to add new rules in the same way.

About the author

Joey Coleman earned a BSc (2001) in Applied Computer Science at Ryerson University in Toronto, Ontario. With
that in hand he stayed on as a systems analyst in Ryerson's network services group. Following that he took a
position at a post-dot.com startup as a software engineer and systems administrator. Having decided that research
was likely more interesting than what he had been doing, Joey moved to Newcastle and earned a MPhil (2005) in
Computing Science, and is currently working part-time on his PhD.while working as a Research Associate.

He is involved primarily with the RODIN project, working on methodology. Other associations include the DIRC
project. His main interests lie in language design and semantics.

Cliff Jones is one of the Professors of Computing Science at Newcastle. Within the School of Computing Science
he acts as Research Director.Currently his own major research project is the five university IRC on
"Dependability of Computer-Based Systems" of which he is overall Project Director.

Cliff has actually spent more of his career in industry than academia. Fifteen years in IBM saw among other
things the creation with colleagues in Vienna of VDM which is one of the better known "formal methods". After
that time he received a (late) Doctorate under Tony Hoare in Oxford in 1981 and immediately moved to a chair at
Manchester University where he built a strong Formal Methods group which -among other projects- was the
academic partner in the largest Alvey Software Engineering project (IPSE 2.5 created the "mural" theorem
proving assistant). During his time at Manchester, Cliff had a 5-year "Senior Fellowship" and spent a sabbatical at
Cambridge with the Newton Institute event on "Semantics". Much of his research at this time focused on formal
(compositional) development methods for concurrent systems.

In 1996 he moved to Harlequin, directing some 50 developers on Information Management projects and finally
became overall Technical Director before leaving to re-join academia in 1999. Cliff's interests in formal methods
have now broadened to reflect wider issues of dependability. Cliff is a Fellow of the Royal Academy of
Engineering (FREng), ACM, BCS,
and IEE.

Suggested keywords

CONCURRENCY,
CONSISTENCY WITH RESPECT TO SOS,
FLOYD/HOARE RULES,
RELY/GUARANTEE CONDITIONS,
STRUCTURAL OPERATIONAL SEMANTICS

Guaranteeing the soundness of rely/guarantee rules?

Joey W. Coleman
Cliff B. Jones

School of Computing Science
University of Newcastle upon Tyne

NE1 7RU, UK
e-mail: {j.w.coleman,cliff.jones}@ncl.ac.uk

Abstract. The challenges of finding compositional ways of (formally) develop-
ing concurrent programs are considerable. One way of tackling such design tasks
is to deploy rely and guarantee conditions to record and reason about interference.
This paper presents a new approach to justifying the soundness of rely/guarantee
inference rules. The approach followed is to view a “structural operational se-
mantics” as defining an inference system and to show that the proof rules used are
valid proof tactics within that inference system. This leaves aside worries about
completeness of the rely/guarantee rule set because one is always in a position to
add new rules in the same way.

? A cut-down version of this paper was submitted to FM’06; please cite the conference version
rather than this Technical Report.

1 Introduction

Floyd/Hoare rules provide a way of reasoning about non-interfering programs. For se-
quential programs, such rules are now well known; their soundness can be proved; and
one can even obtain (relatively) complete [Apt81] “axiomatic semantics” for simple
languages. One distinction from the standard literature is that VDM has always insisted
on using post-conditions of two states but the initial set of inference rules [Jon80] were
“unmemorable”. Usable rules were proposed by Peter Aczel [Acz82] and are used in
later VDM books such as [Jon90].

Finding compositional proof rules for concurrent programs proved more challeng-
ing (see below) but rely/guarantee conditions offer a way of documenting and reasoning
about “interference”. Various forms of such rules are in the literature and their sound-
ness proved (see particularly [Pre03]).

The current paper provides an example of a set of such rely/guarantee rules; an
underlying operational semantics; and a justification of the former with respect to the
latter. The view taken here is that (following Tom Melham [CM92] and Tobias Nip-
kow [KNvO+02]) the rules of an operational semantics can be taken to provide an
inductive definition of a relation between pairs of pairs of program texts and states.
Non-determinacy –including that from concurrency– forces one to think in terms of re-
lations rather than functions. Results about programs could be proved directly in terms
of this inference system. We view the rules for reasoning about rely/guarantee condi-
tions as extra inference rules which have to be shown to be consistent with (longer)
proofs directly in terms of the operational semantics. This view absolves us from con-
cerns about completeness because one can just prove more rules as required. This is
fortunate because rely/guarantee rules have to fit many different styles of concurrent
programming and it is difficult to envisage a single canonical set.

There is a lot written about rely/guarantee conditions,1 but there is no convenient
short summary (the excellent [dR01] is neither short nor easy reading). It would seem
useful to provide a reference point for the rules and methods we use. This is particularly
timely because we are looking at new forms of “interference reasoning” in connection
with “deriving specifications” (see for example [HJJ03]).

Thus this paper presents one version of a collection of rely/guarantee rules for rea-
soning about interference; a semantic model of a simplified, concurrent, shared-variable
language; and outlines an approach by which one could give a justification of the formal
rules with respect to the language model. To aid the reader’s understanding we offer an
example of a small concurrent program whose design can be explicated in terms of the
aforementioned rules.

For the benefit of those less familiar with rely/guarantee concepts we have provided
a brief explanation of their use. Program development using the Floyd/Hoare pre- and
post-conditions can be visualised as shown in Figure 1a. The horizontal line represents
the system state over time; P and Q are pre- and post-condition predicates, respectively;
and the program’s execution is represented in the box along the top of the diagram. This

1 An annotated list of publications on rely/guarantee concepts can be found at
http://homepages.cs.ncl.ac.uk/cliff.jones/home.formal/

2

Program

P Q P

Program

Environment

Q

G

RRRR

GG

(a) (b)

Fig. 1. (a) Pre-/Post-conditions and (b) Rely-/Guarantee-conditions

model is fine for isolated, sequential systems, but it assumes atomicity with respect to
the program’s environment, making it unsuitable for concurrent development.

The rely-/guarantee-conditions can be visualised as shown in Figure 1b. As with
Figure 1a, the horizontal line represents the system state over time, and P represents
the system’s pre-condition. Unlike Figure 1a, however, Q is a relation over two states
— the initial and final system states. The program’s execution is displayed above the
state line, and actions taken by the environment are represented below it. Every change
to the system state made by the program must conform the the restrictions given by
the specification’s guarantee-condition, G. The program specification assumes that all
actions taken by the environment will conform to the rely-condition, R.

Note the asymmetry between R and G: while the latter is a hard restriction on the
system, the former does not constrain anything. It is the responsibility of the user of
the system to ensure that it is run within an environment that conforms to R. However,
for the purposes of reasoning about interference in proofs, both R and G are required in
proofs, and when dealing with concurrency we find that one thread’s guarantee becomes
part of the other threads’ rely-conditions.

With Figure 1b in mind, then, the thrust of a R/G development lies in formalising
assumptions about the behaviour of both the program and of its intended environment.
Once the intended environment has been characterized in the rely-condition, that condi-
tion can then be used both in the proofs regarding the program, and also by a potential
user of the program to determine its suitability to the actual environment at hand. The
guarantee-condition serves not only to indicate the potential behaviour of the program,
but it becomes critical when reasoning about different branches of a program, or about
the behavioural interaction of the two separately developed parallel programs.

2 An example development

We will use a problem which originated in [Owi75] and was tackled by rely/guarantee
reasoning in [Jon81] as an example for this paper. This example, FINDP, is actually a
little too simple to show the advantage (over Owicki/Gries) of compositional reasoning
— the “prime sieve” [Jon96] is a more convincing example — but this is sufficient. We
are assuming throughout that both rely and guarantee conditions are reflexive (we can
stutter) and transitive (they can cover multiple steps should the other stutter).

3

2.1 The specification

We assume that we have a predicate, pred :X → B that is expensive to evaluate. For
reasons that anticipate concurrent version of the program, pred must be free of side-
effects and it must be re-entrant/thread-safe. The mechanisms to ensure this are left
unspecified for this paper. The task is to find the least index i (to the vector v) such that
pred(v(i)).

FINDP
rd v :X ∗

wr r : N
pre true
rely v = ↼−v ∧ r = ↼−r
guar true
post (r ∈ inds v ∧ pred(v(r)) ∧ ∀i ∈ {1..r − 1} · ¬ pred(v(i))) ∨

(r = len v + 1 ∧ ∀i ∈ inds v · ¬ pred(v(i)))

As a brief explanation of FINDP ’s specification, this program requires access to
two variables: v and r . The former will only be read by FINDP , and the latter will
be written to as well as read from. The precondition of this program allows for any
starting state, and we are not constraining the visible behaviour of this program with the
guarantee-condition. The rely-condition requires that the environment never changes v
or r . Finally, the postcondition asserts that if r is a valid index into v , then pred will
hold on v(i); alternately, if there are no values in v for with pred holds, then r will be
precisely one greater than the length of v .

2.2 Sequential aside

Apart from the rely/guarantee stuff itself, there are aspects of VDM which did not fol-
low the “main stream” (although in some cases, others have moved towards the VDM
position). VDM uses post conditions of two states (relations) and this means that stan-
dard Floyd/Hoare rules don’t work; the form of the proof rules used here is as in the
(first) 1986 edition of [Jon90]. The rule used for while in VDM ensures termination by
requiring that the relation on the body is well-founded; this appears more natural than
Dijkstra’s additional “variant function” [DS90]. VDM also deploys a “logic of partial
functions” [BCJ84] (cf. P ⇒ δl(b) in sim-While-I ensures that the expressions of the
logic (LPF) will be defined in the implementation language).

We are really interested in a parallel implementation but we could prove (using the
rules justified in [Jon87]) a sequential implementation like:

r ← 1;
while r ≤ len v ∧ ¬ pred(v(r)) do r ← r + 1 od

This would use sim-While-I in Appendix B.1; which goes through with W :
↼−r < r

and P :

r ∈ {1..len v + 1} ∧ ∀i ∈ {1..r − 1} · ¬ pred(v(i))

4

2.3 Introducing parallelism

We actually have in mind a development (from the specification in Section 2.1) like:

t ← len v + 1;
(SEARCH ({i ∈ inds v | is-odd(i)}) ‖ SEARCH ({i ∈ inds v | ¬ is-odd(i)}));
r ← t

where the specification for SEARCH is

SEARCH (ms: N-set)
rd v :X ∗

wr t : N
pre true
rely ms � v = ms � ↼−v ∧ t ≤↼−t
guar t 6= ↼−t ⇒ t <

↼−t ∧ pred(v(t))
post ∀i ∈ ms · i < t ⇒ ¬ pred(v(i))

We use the key Par-I rule (with an “invariant” of t ∈ inds v ⇒ pred(v(t))) to
show that the parallel statement satisfies

SEARCHES
rd v :X ∗

wr t : N
pre true
rely v = ↼−v ∧ t = ↼−t
guar t 6= ↼−t ⇒ t <

↼−t ∧ pred(v(t))
post ∀i ∈ {1..t − 1} · ¬ pred(v(i))

and then Seq-I and weaken to show that

t ← len v + 1;
SEARCHES
r ← t

satisfies the specification of FINDP in Section 2.1.

2.4 Decomposing SEARCH and reifying t

We now firmly specialize the ms argument by allocating the even indices (of v) to
one instance of SEARCH and the odd ones to the other instance.2 Doing this exposes
the problem of updating the variable t which is shared between the two instances of
SEARCH . An assignment like < t ← min(t , · · ·) > would need to be flagged as
“atomic” since the language of Appendix A permits interference during expression
evaluation. As explained in [Jon05], it is a common strategy to avoid such problems
by choosing suitable reifications of abstract variables. We choose to implement t as
min(ot , et). The code would look like:

2 Up to now, we could have followed [Jon81] and generalise the previous step to allow an arbi-
trary number of instances of SEARCH .

5

ot ← len v + 1;
et ← len v + 1;
par
‖ (oc ← 1;

while oc < min(ot , et)
do if pred(v(oc)) then ot ← oc fi; oc ← oc + 2 od)

‖ (ec ← 2;
while ec < min(ot , et)

do if pred(v(ec)) then et ← ec fi; ec ← ec + 2 od)
rap ;
r ← min(ot , et)

To see that this satisfies the specification in Section 2.3, note that there is still a
reference to a shared (changing) value in the test expression of the while but that the
choice of the representation of t ensures the first conjunct of the guarantee condition; the
argument for the second conjunct is similar. The post condition of SEARCH follows
by While-I.

Although the specification does not forbid us from checking every element of v even
after we have found the minimum index that satisfies pred , we are trying to avoid doing
so if possible. Given that the evaluation of pred is expensive, one of the considerations
in this design is how often we will end up evaluating it — that is, how often we have to
execute the loop body of either SEARCH . Because of the representational choice for
t , the worst case only ends up with one extra evaluation of pred for each SEARCH
block that doesn’t find the minimum index. Most of the time it will not happen, but it
can if the ot and et variables in the min expression are read just before being updated
by the other parallel branch.

3 Semantics

In order to show that the inference rules used for (concurrent) program constructs are
sound, an independent semantics is needed. It is straightforward for a sequential (non-
concurrent) language to write such a consistency proof (see [Lau71,Don76]); there are
even brave souls [Bro05] who try this with a denotational semantics (but without “power
domains”) for concurrency.

We take here an operational underpinning given in the form of a Structural Op-
erational Semantics [Plo81,Plo04b,Plo04a,Jon03]. In particular, we view the rules of
the semantics as (inductively) defining a relation over program texts and states3. For a
sequential language, this is only one Lambda abstraction away from denotational se-
mantics; the only failure of the “homomorphic rule” is for the While statement (which
would need a least fixed point in a denotational description). It is necessary to take the
usual function over (texts and) states to subsequent states and change it into a relation
so that we can model non-determinism in general and concurrency in particular.

3 We do, of course, avoid the Baroque excesses caused by using a “Grand State”.

6

The base language that we are using is defined in Appendix A4 and has been kept
deliberately simple. It has six main statement constructs and nil to represent a com-
pleted statement, as well as a subsidiary expression construct. Variable assignment is
represented by the Assign construct and is the only means to alter the state. Assignment
in this language is only atomic for the actual mutation of the state object. Expression
evaluation is non-atomic and allows situations where (x + x) 6= 2x . This is a deliberate
design decision as it allows parallel statements to directly interfere with each other in
a way which would permit efficient implementations. Conditional execution of state-
ments is provided by the If construct, and is a pure conditional rather than a choice
between two statements (which is not required by our example in Section 2) so the
usual “else” branch has been omitted from the language.

Looping is afforded by the While construct, but our language description gives the
behaviour for this construct indirectly. The SOS rule that specifically deals with this
construct rewrites the program text in terms of an If that contains a sequence with the
loop body and the original While .

The Seq construct handles sequential execution, and its structure mimics that of a
LISP-style cons-cell. The SOS rules step through the sl field first, and when it is reduced
to nil, the sr is unwrapped by the SOS rules5.

The Par construct represents interleaved parallel execution of two statements. The
SOS rules have no inherent notion of fairness — the choice of which branch to follow
is unspecified. The parallel execution of more than two statements can be achieved by
nesting Par constructs.

It is important to understand how the fine-grained interleaving of steps is achieved in
the SOS of Appendix A. Essentially, the whole of the unexecuted program is available
(as an abstract syntax tree). To perform one (small) step of the s−→ transition at the level
of the whole text requires making non-deterministic choices all the way down to a leaf
statement (even –see below– to a leaf operand of an expression).

We have included a construct named DecStmt which does nothing relative to the
operational semantics of the language. This construct is, however, critical to the form
of our proofs because of the assertions in its r and g fields. These fields provide an-
notations about the rely- and guarantee-conditions for the contained statement. This
construct effectively provides modularity for the proofs — anything that runs in paral-
lel with a DecStmt can safely remain ignorant of the actual content of that DecStmt .

The subsidiary type, Expr , is used by the Assign , If , and While constructs. It has
its own relation, e−→, which models the process of expression evaluation. Expression
evaluation cannot cause side effects as there is no mechanism to mutate the state.

The base language contains no means to create fresh variables nor to restrict access
to any variable. A program in this language has all of its variables contained within a
single global scope: the state object, σ. All of the variables that the program requires
must be present and initialised in the state object at the start of execution.

4 This description follows the “VDM tradition” of basing the semantics on an abstract syntax
and restricting the class further using “context conditions”.

5 This behaviour means that any structure composed of Seq objects will be still evaluated from
left to right.

7

As presented, the base language contains no reference to any external environment
— it has been given as a closed system. As such, the final configuration of a system
in this language is of the form (nil, σ). Some of the initial designs of this language
included a rule that explicitly modelled environmental actions that conformed to the
rely of a given program. This was removed to simplify the proofs and partially due to
the observation that it is simpler to model the environment as a program-like object
running in parallel with the actual program (i.e. mk -Par(Program, Environment)).

4 Soundness

The overall approach to the proof can, however, be seen without the complications of
concurrency and these simpler proofs are sketched here for ease of understanding; com-
ments are provided on the extra issues that have had to be resolved for the concurrent
language.6

The overall soundness result is that, under the assumption that we have a proof
using inference rules in Appendix B (i.e. ` S sat (P ,Q)), if S is executed in a state for
which [[P]](σ), then (the program cannot fail to terminate, and) any state σ′ which can
be reached by s∗−→ will be such that [[Q]](σ, σ′). Both of these proofs can be done by
structural induction over the abstract syntax for Stmt (see Stmt-Indn in Appendix B.3).
Interestingly, the termination proofs need the correctness lemmas; so we do correctness
first. The choice of order is safe: for correctness we only need to consider those final
states that the model can reach; for a divergent computation there is no final state to
consider.

It is important to realise the role of rely/guarantee conditions in these proofs. To
achieve separation of arguments about different “threads” is a program, there has to
be a way of reasoning about a thread in isolation even though its execution can be
interrupted (at a very fine grain) by other threads. Rely/guarantee conditions provide
exactly this separation but introduce (in the full concurrency proofs) the need to show
that the execution of a DecStmt respects the rely condition (see Section 4.3).

4.1 Correctness

We first need to establish a link between the meaning of an expression (respectively,
predicate) and its evaluation in the SOS.7

Lemma 1 Under suitable conditions (e, σ) e−→ v iff [[e]](σ) = v . We will also cite
this lemma when e is embedded in a (Assign , If , or While) statement.

Proof The issue here is really the “conditions”: because of the potential presence of
undefined terms, [[e]] might be defined in LPF [BCJ84] while an implementation would
fail to deliver a value. We simply ensure that no such expressions are left at the end of
development (cf. use of δ(e) in the rules for sim-If-I and sim-While-I). The other issue

6 To carry over as much as possible of the argument to the concurrent case, we use here a “small
step” semantics although “large step” would be possible for a non-interfering language.

7 This is one issue which is not tackled in [Pre03] — see Section 5.

8

from mk -If (b, th) sat (P ,Q); [[P]](σ); (mk -If (b, th), σ)
s∗−→ (nil, σ′)

1 [[b]](σ) ∈ B h, wf-Stmt

2 from ¬ [[b]](σ)

2.1 (mk -If (b, th), σ)
s∗−→ (mk -If (false, th), σ) h, h2, L1, If-Eval

2.2 σ′ = σ h, h2, 2.1, IF-E-F

infer [[Q]](σ, σ′) h, h2, 2.2, sim-If-I
3 from [[b]](σ)

3.1 from th sat (Pth ,Qth); [[Pth]](σth); (th, σth)
s∗−→ (nil, σ′

th)
infer [[Qth]](σth , σ′

th) IH
3.2 th sat (P ∧ b,Q) h, sim-If-I
3.3 [[P ∧ b]](σ) h, h3
3.4 (mk -If (b, th), σ)

s∗−→ (mk -If (true, th), σ) h, h3, L1, If-Eval

3.5 (mk -If (true, th), σ)
s∗−→ (th, σ) If-E-T

3.6 (th, σ)
s∗−→ (nil, σ′) h, SOS model

infer [[Q]](σ, σ′) h, h3, 3.1, 3.2, 3.3, 3.6
infer [[Q]](σ, σ′) 1, ∨-E (2, 3)

Fig. 2. Proof of correctness of If

is interference during expression evaluation: with the level of granularity that we are
allowing here, it is frequently invalid to think about a single state for such expression
evaluation. This requires care in formulation of the inference rules in Appendix B.2.

One base case for the induction over Stmt –that for nil– is trivial and embedded in
Theorem 1; the base case for assignments might look like:

Lemma 2 Given mk -Assign(id , expr) sat (P ,Q), for any σ ∈ Σ such that [[P]](σ),
if (mk -Assign(id , expr), σ) s−→ (nil, σ′) then [[Q]](σ, σ′).

In fact, there is no proof rule for assignments offered in Appendix B as they tend to
be very specialised.

We’ll look at one example of induction and chose If because it shows the need to
use Lemma 1; however, we pass over the next lemma without proof.

Lemma 3 Given mk -Seq(sl , sr) sat (P ,Q), for any σ ∈ Σ such that [[P]](σ), if
(mk -Seq(sl , sr), σ) s−→ (nil, σ′) then [[Q]](σ, σ′) providing sl and sr behave accord-
ing to their specifications.

A non-interfering conditional rule (recall that we have no else clause) would be sim-
If-I as in Appendix B.1.

Lemma 4 Given mk -If (b, th) sat (P ,Q), for any σ ∈ Σ such that [[P]](σ), if
(mk -If (b, th), σ) s−→ (nil, σ′) then [[Q]](σ, σ′) providing th behaves according to its
specification.

Proof in Figure 2.8

8 Notice that the induction hypothesis has to be given as a from/infer box because it is not a
simple implication.

9

This is one place where interference has a significant impact on the form of the
rely/guarantee rule in Appendix B.2: at first sight, it comes as a shock that one can no
longer (in general) assume that b is true for the th proof but this is a direct consequence
of interference and it should be noted that the development in Section 2 uses a statement
where such interference occurs. (It is of course possible to justify other rules which
cover the situation where b is stable under R.)

The rule sim-While-I in Appendix B.2 is similar to that for If .

Lemma 5 Given mk -While(b, body) sat (P ,Q), for any σ ∈ Σ such that [[P]](σ) if
(mk -While(b, body) s−→ (nil, σ′) then [[Q]](σ, σ′) providing body behaves according
to its specification.

The proof of this lemma is elided from the conference version of the paper but the
essential interest (in complete induction) is explored in the proof of L12 in Figure 3.

Moving now to the concurrent part of the language, we show the lemmas regarding
concurrency9.

Lemma 6 Given mk -DecStmt(r , body , g) sat (P ,Q), for any σ ∈ Σ such that [[P]](σ)
if (mk -DecStmt(r , body , g), σ) s−→ (nil, σ′) then [[Q]](σ, σ′) providing body behaves
according to its specification.

Lemma 7 Given mk -Par(sl , sr) sat (P ,Q), for any σ ∈ Σ such that [[P]](σ) if
(mk -Par(sl , sr), σ) s−→ (nil, σ′) then [[Q]](σ, σ′) providing sl , sr behave according
to their specifications.

The final theorem just uses the lemmas on the constructs (tying all of the loose ends
on appeals to induction hypotheses).

Theorem 1 For any st ∈ Stmt for which st sat (P ,Q), for any σ ∈ Σ such that
[[P]](σ) if (st , σ) s−→ (nil, σ′) then [[Q]](σ, σ′).

4.2 Termination

The issue here is that it has to be shown that divergence is impossible on any non-
deterministic evaluation (not just that the evaluation can terminate).10 The predicate
terminates indicates that there can be no infinite sequence of s−→ (respectively e−→)
reductions. Proving results about statements which contain expressions needs the fol-
lowing lemma.

Lemma 8 For any e ∈ Expr and suitable σ ∈ Σ, terminates(e, σ,
e−→) with v ∈

Value. We will also cite this lemma when e is embedded in a (Assign , If , or While)
statement.

Proof This follows by structural induction over the abstract syntax of Expr (using
Expr-Indn of Appendix B.3): by inspection of Appendix A every step of e−→ reduces

9 Please note that the sim-* rules are actually insufficient to prove these lemmas; an upcoming
journal version of this paper will have full proofs.

10 These termination proofs are interesting but are omitted in [Pre03] which only tackles “partial
correctness” — see Section 5.

10

from S = mk -While(b, body); S sat (P ,P ∧ ¬ b ∧ (W ∨ IΣ)); [[P]](σ)
1 [[b]](σ) ∈ B h, wf-Stmt

2 S ′ = mk -Seq(body ,S) definition
3 (S , σ)

s−→ (mk -If (b,S ′), σ) 2, While

4 from ¬ [[b]](σ)

4.1 (mk -If (b,S ′), σ)
s∗−→ (mk -If (false,S ′), σ) h4, L1

4.2 (mk -If (false,S ′), σ)
s−→ (nil, σ) If-E-F

infer terminates(S , σ,
s−→) 3, 4.1, 4.2

5 from [[b]](σ)

5.1 (mk -If (b,S ′), σ)
s∗−→ (mk -If (true,S ′), σ) h5, L1

5.2 (mk -If (true,S ′), σ)
s−→ (S ′, σ) If-E-T

5.3 from body sat (Pb ,Qb); [[Pb]](σb)

infer terminates(body , σb ,
s−→) h5, IH

5.4 body sat (P ∧ b,P ∧W) sim-While-I
5.5 terminates(body , σ,

s−→) h, h5, 5.4, 5.3
5.6 (S ′, σ)

s∗−→ (mk -Seq(nil,S), σ′) 5.5, Seq-Step

5.7 [[W]](σ, σ′) ∧ [[P]](σ′) 5.4, 5.6, L5
5.8 (mk -Seq(nil,S), σ′)

s−→ (S , σ′) Seq-E

5.9 from [[P]](σw); [[W]](σ, σw)

infer terminates(S , σw ,
s−→) h, h5.9, W-Indn

5.10 terminates(S , σ′,
s−→) 5.7, 5.9

infer terminates(S , σ,
s−→) 3, 5.1, 5.2, 5.6, 5.8, 5.10

infer terminates(S , σ,
s−→) 3, ∨-E (1, 4, 5)

Fig. 3. Proof of termination of While

either the tree itself or substitutes a Value for an identifier; this provides a well-founded
order and guarantees termination.

Turning now to statements: one of the key points of our language is that most of its
SOS rules are reductive. The only rule that is not a reduction is While.

The base case for nil is trivial and embedded in Theorem 2; that for assignments is

Lemma 9 For any s ∈ Assign and suitable σ ∈ Σ, terminates(s, σ,
s−→).

Lemma 10 For any mk -Seq(sl , sr) and suitable σ ∈ Σ, providing sl and sr terminate,
terminates(mk -Seq(sl , sr ,

s−→).

The proof for conditional is similar (but uses Lemma 8).

Lemma 11 For any mk -If (b, th) and suitable σ ∈ Σ, providing th terminates, then
terminates(mk -If (b, th), σ,

s−→).

The interesting termination proof is of course for the while statement.

Lemma 12 For any mk -While(b, body) and suitable σ ∈ Σ, providing body termi-
nates, terminates(mk -While(b, body), σ,

s−→).

11

Proof See Figure 3. This is exactly where we need “complete induction” 11 over the
(well founded) loop relation. For some transitive well-founded relation W ∈ P (Σ× Σ)12

W -Indn
(∀σ ∈ {σ | (σ, σ′) ∈W } ·H (σ)) ⇒ H (σ′)
∀σ ∈ Σ ·H (σ)

This ensures that the loop will always terminate (which is what we need to prove:
that the sematics cannot make endless s−→ transitions, so long as the proof rule has
been used and the pre-condion is true).

In the interfering case, one needs to show that R still respects W . There is a more
subtle issue on fairness which is not addressed here.

Moving now to the concurrent part of the language.

Lemma 13 For any mk -DecStmt(r , body , g) and suitable σ ∈ Σ, providing body
terminates, terminates(mk -DecStmt(r , body , g), σ,

s−→).
The important issue with rely and guarantee conditions is addressed in Section 4.3

below

Lemma 14 For any mk -Par(sl , sr) and suitable σ ∈ Σ, providing sl , sr terminate,
terminates(mk -Par(sl , sr), σ,

s−→).
The final theorem just appeals to the lemmas on the constructs (tying all of the loose

ends on appeals to IH).

Theorem 2 For any S ∈ Stmt and suitable σ ∈ Σ, terminates(S , σ,
s−→).

4.3 Interference

As can be seen, the issue of interference affects relatively few places in the above ar-
gument; where it does impinge, the effect is delicate and requires careful thought. The
inability to carry the information about the tested expression b in both If and While
statements has been touched on in Section 4.1. This is a consequence of our decision
to permit rather fine grained interference; we feel this is necessary to facilitate realistic
implementation.

Turning now to the place where one has to reason with respect to interference itself,
the behavioural proofs only need to demonstrate that all of the changes to σ that the
program makes will conform to the guarantee. This becomes interesting as it is much
easier to do than it is to verify correctness. In our particular language, this means that
the only construct which is directly affected is Assign . There are no other constructs
that mutate σ.

The process of verifying an Assign against its guarantee is less simple than we
might like. The initial phase of the Assign — that of expression evaluation — trivially
satisfies the guarantee as it is only reading from the state. While it is doing so, however,

11 The complete induction equivalent of induction over the integers is:

N-Indn
(∀i < n · P(i)) ⇒ H (n)

∀n ∈ N ·H (n)

12 Here the equivalent of a “zero case” is e /∈ dom W .

12

it is possible for the environment to mutate the state, meaning that (e, σ) e∗−→ [[e]](σ)
does not hold. Once the first phase has finished there is a set of possible evaluations of
the expression; that set, and the state at the completion of evaluation, are what must be
used to check if the Assign conforms to its guarantee.

One side-effect that interference has on the proofs is fairly profound; where in the
sequential version we need to prove correctness before termination, when we consider
interference, we find that we cannot prove either of those without having proved the
behavioural correctness first. To give an example, if we need to ensure that, for a While
loop, R respects W (as was pointed out earlier), we also need to know that the guarantees
of any part of the program running parallel to that while also respect W.

5 Conclusions

Of the related work, the most relevant comparison is certainly with [Pre03] which pro-
vides an Isabelle/HOL proof of a related result. The differences are interesting and we
hope to explore to what extent they come about because of the constraints of a complete
machine-checked proof. (We are the first to confess that there are points in our proofs
which would have to be written more pedantically to achieve machine checking: for
example, step 4.1 of Figure 3 should strictly observe that non-termination is impossi-
ble which requires a “continuation-like” implication.) The most striking difference in
our choice of language is that we allow a much finer level of interference (indeed, to a
non-HOL user, the embedding of whole statements as functions in the program and the
way predicates are tested is counter-intuitive). This is not an arbitrary decision — we
have argued elsewhere [Jon05] that many attempts to simplify proofs by assuming large
atomic steps make languages very expensive to implement. Other differences include
the fact that we allow nested parallel statements; and [Pre03] uses “await” statements.

The above decisions obviously affect the proof rules used. One surprise in [Pre03]
is the decision to use post conditions which are predicates of the final state only (rather
than relations between initial and final states). Another major difference with what is
presented here is the fact that [Pre03] does not tackle termination (only addresses so-
called “partial correctness”). That having been said, there is we believe that both ap-
proaches could benefit from the other and we are in the process of following up on
this.

It is worth comparing what is presented here with the soundness proofs in [Jon87]
(or in detail with the Technical Report version thereof [Jon86]): there we gave a (rela-
tional) denotational semantics.

We have draft proofs of the lemmas/theorems in this paper and expect to publish
them in a journal version of this paper once all of the details of the R/G extensions
are captured. Various optional excursions into rules for assignments etc. could be con-
sidered. The first author expects then to consider predicates over continuously varying
quantities used in [HJJ03]. As indicated, we are also interested in considering the re-
quirements of machine checked proofs.

Acknowledgments The authors gratefully acknowledge funding for their research from
EPSRC (DIRC project and “Splitting (Software) Atoms Safely”) and the EU IST-6 pro-

13

gramme (for RODIN). The technical content of this paper has benefited from discus-
sions with Jon Burton; its creation was inspired by Tony Hoare’s complaint that there
was no convenient paper on rely/guarantee rules (we hope that the fuller version of this
compressed conference submission will fit the bill).

References

[Acz82] P. Aczel. A note on program verification. (private communication) Manuscript,
Manchester, January 1982.

[Apt81] K. R. Apt. Ten years of Hoare’s logic: A survey – part I. ACM Transactions on
Programming Languages and Systems, 3:431–483, 1981.

[BCJ84] H. Barringer, J.H. Cheng, and C. B. Jones. A logic covering undefinedness in pro-
gram proofs. Acta Informatica, 21:251–269, 1984.

[Bro05] Stephen Brookes. Retracing the semantics of CSP. In Ali E. Abdallah, Cliff B.
Jones, and Jeff W. Sanders, editors, Communicating Sequential Processes: theFirst
25 Years, volume 3525 of LNCS. Springer-Verlag, 2005.

[CM92] J. Camilleri and T. Melham. Reasoning with inductively defined relations in the
HOL theorem prover. Technical Report 265, Computer Laboratory, University of
Cambridge, August 1992.

[Don76] J. E. Donahue. Complementary Definitions of Programming Language Semantics,
volume 42 of Lecture Notes in Computer Science. Springer-Verlag, 1976.

[dR01] W. P. de Roever. Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Cambridge University Press, 2001.

[DS90] Edsger W Dijkstra and Carel S Scholten. Predicate Calculus and Program Seman-
tics. Springer-Verlag, 1990. ISBN 0-387-96957-8, 3-540-96957-8.

[HJJ03] Ian Hayes, Michael Jackson, and Cliff Jones. Determining the specification of a
control system from that of its environment. In Keijiro Araki, Stefani Gnesi, and
Dino Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of Lecture Notes
in Computer Science, pages 154–169. Springer Verlag, 2003.

[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall Interna-
tional, 1980. ISBN 0-13-821884-6.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, June 1981. Printed as: Programming
Research Group, Technical Monograph 25.

[Jon86] C. B. Jones. Program specification and verification in VDM. Technical Report
UMCS 86-10-5, University of Manchester, 1986. extended version of [Jon87] (in-
cludes the full proofs).

[Jon87] C. B. Jones. Program specification and verification in VDM. In M. Broy, editor,
Logic of Programming and Calculi of Discrete Design, volume 36 of NATO ASI
Series F: Computer and Systems Sciences, pages 149–184. Springer-Verlag, 1987.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall Interna-
tional, second edition, 1990. ISBN 0-13-880733-7.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concurrent object-
based programs. Formal Methods in System Design, 8(2):105–122, March 1996.

[Jon03] Cliff B. Jones. Operational semantics: concepts and their expression. Information
Processing Letters, 88(1-2):27–32, 2003.

[Jon05] C. B. Jones. An approach to splitting atoms safely. Electronic Notes in Theoretical
Computer Science, MFPS XXI, 21st Annual Conference of Mathematical Founda-
tions of Programming Semantics, pages 35–52, 2005.

14

[KNvO+02] Gerwin Klein, Tobias Nipkow, David von Oheimb, Leonor Prensa Nieto, Norbert
Schirmer, and Martin Strecker. Java source and bytecode formalisations in Isabelle:
Bali, 2002.

[Lau71] P. E. Lauer. Consistent Formal Theories of the Semantics of Programming Lan-
guages. PhD thesis, Queen’s University of Belfast, 1971. Printed as TR 25.121,
IBM Lab. Vienna.

[Owi75] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Depart-
ment of Computer Science, Cornell University, 1975. 75-251.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical report,
Aarhus University, 1981.

[Plo04a] Gordon D. Plotkin. The origins of structural operational semantics. Journal of Logic
and Algebraic Programming, 60–61:3–15, July–December 2004.

[Plo04b] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60–61:17–139, July–December 2004.

[Pre03] Leonor Prensa Nieto. The rely-guarantee method in Isabelle/HOL. In Proceedings
of ESOP 2003, volume 2618 of LNCS. Springer-Verlag, 2003.

15

A Base Language

A.1 Abstract Syntax

Stmt = nil | Assign | Seq | If | While | DecStmt | Par

Assign :: v : Id
e : Expr

Seq :: sl : Stmt
sr : Stmt

If :: b : Expr
s : Stmt

While :: b : Expr
s : Stmt

DecStmt :: r : Σ× Σ → B
s : Stmt
g : Σ× Σ → B

Par :: dl : [DecStmt]
dr : [DecStmt]

Expr = B | Z | Id | Dyad

Dyad :: op : + | − | < | = | > | min
a : Expr
b : Expr

A.2 Context Conditions

Auxiliary functions
typeof : (Expr × Id-set) → {INT, BOOL}
typeof (e, ids)4

cases e of
e ∈ B: BOOL

e ∈ Z: INT

e ∈ ids: INT

mk -Dyad(+, ,): INT

mk -Dyad(−, ,): INT

mk -Dyad(min, ,): INT

mk -Dyad(max, ,): INT

mk -Dyad(<, ,): BOOL

mk -Dyad(=, ,): BOOL

mk -Dyad(>, ,): BOOL

end

Expressions
wf -Expr : (Expr × Id-set) → B
wf -Expr(e, ids)4 e ∈ (ids ∪ B ∪ Z)

wf -Expr(mk -Dyad(op, a, b), ids)4
typeof (a, ids) = INT ∧ typeof (b, ids) = INT ∧ wf -Expr(a, ids) ∧ wf -Expr(b, ids)

16

Statements
wf -Stmt : (Stmt × Id-set) → B
wf -Stmt(nil, ids)4 true
wf -Stmt(mk -Assign(v , e), ids)4 v ∈ ids ∧ typeof (e, ids) = INT ∧ wf -Expr(e, ids)

wf -Stmt(mk -Seq(sl , sr), ids)4 wf -Stmt(sl , ids) ∧ wf -Stmt(sr , ids)

wf -Stmt(mk -If (b, s), ids)4
typeof (b, ids) = BOOL ∧ wf -Expr(b, ids) ∧ wf -Stmt(s, ids)

wf -Stmt(mk -While(b, s), ids)4
typeof (b, ids) = BOOL ∧ wf -Expr(b, ids) ∧ wf -Stmt(s, ids)

wf -Stmt(mk -DecStmt(r , s, g), ids)4 wf -Stmt(s, ids)

wf -Stmt(mk -Par(dl , dr), ids)4 wf -Stmt(dl , ids) ∧ wf -Stmt(dr , ids)

wf -Stmt(Env, ids)4 true

A.3 Semantic Objects

Σ = Id
m−→ Value

e−→:P ((Expr × Σ)× Expr)
s−→:P ((Stmt × Σ)× (Stmt × Σ))

A.4 Semantic Rules

Expressions

Identifiers

Id-E
(id , σ)

e−→ σ(id)

Dyads

Dyad-L
(a, σ)

e−→ a ′

(mk -Dyad(op, a, b), σ)
e−→ mk -Dyad(op, a ′, b)

Dyad-R
(b, σ)

e−→ b′

(mk -Dyad(op, a, b), σ)
e−→ mk -Dyad(op, a, b′)

Dyad-E
a ∈ Z ∧ b ∈ Z
(mk -Dyad(op, a, b), σ)

e−→ [[op]](a, b)

Statements

Assign

Assign-Eval
(e, σ)

e−→ e ′

(mk -Assign(v , e), σ)
s−→ (mk -Assign(v , e ′), σ)

Assign-E
n ∈ Z
(mk -Assign(v ,n), σ)

s−→ (nil, σ † {v 7→ n})

17

Sequence

Seq-Step
(sl , σ)

s−→ (sl ′, σ′)

(mk -Seq(sl , sr), σ)
s−→ (mk -Seq(sl ′, sr), σ′)

Seq-E
(mk -Seq(nil, sr), σ)

s−→ (sr , σ)

If

If-Eval
(b, σ)

e−→ b′

(mk -If (b,S), σ)
s−→ (mk -If (b′,S), σ)

If-E-T
(mk -If (true,S), σ)

s−→ (S , σ)

If-E-F
(mk -If (false,S), σ)

s−→ (nil, σ)

While

While
(mk -While(b,S), σ)

s−→ (mk -If (b,mk -Seq(S ,mk -While(b,S))), σ)

DecStmt

DecStmt-Step
(s, σ)

s−→ (s ′, σ′)

(mk -DecStmt(r , s, g), σ)
s−→ (mk -DecStmt(r , s ′, g), σ′)

DecStmt-E
(mk -DecStmt(r , nil, g), σ)

s−→ (nil, σ)

Parallel

Par-L
(dl , σ)

s−→ (dl ′, σ′)

(mk -Par(dl , dr), σ)
s−→ (mk -Par(dl ′, dr), σ′)

Par-R
(dr , σ)

s−→ (dr ′, σ′)

(mk -Par(dl , dr), σ)
s−→ (mk -Par(dl , dr ′), σ′)

Par-E
(mk -Par(nil, nil), σ)

s−→ (nil, σ)

18

B Compositional Inference Rules

We have not presented a rule for the assignment in either subsection as we prefer to
reason about it directly in terms of the SOS rules.

B.1 Sequential (simple) Rules

sim-Seq-I

sl sat (P ,Qsl ∧ Psr)
sr sat (Psr ,Qsr)
Qsl |Qsr ⇒ Q
mk -Seq(sl , sr) sat (P ,Q)

sim-If-I

th sat (P ∧ b,Q)
P ⇒ δl(b)
P ∧ ¬ b ∧ IΣ ⇒ Q
mk -If (b, th) sat (P ,Q)

sim-While-I

body sat (P ∧ b,P ∧W)
P ⇒ δl(b)
mk -While(b, body) sat (P ,P ∧ ¬ b ∧ (W ∨ IΣ))

sim-DecStmt-I
body sat (P ,Q)
mk -DecStmt(r , body , g) sat (P ,Q)

sim-Par-I

dl sat (Pdl ,Qdl)
dr sat (Pdr ,Qdr)
P ⇒ Pdl ∧ Pdr

Qdl ∧Qdr ⇒ Q
mk -Par(dl , dr) sat (P ,Q)

B.2 Concurrent Rules

Seq-I

sl sat (P ,R,G ,Qsl ∧ Psr)
sr sat (Psr ,R,G ,Qsr)
(Qsl |Qsr) ⇒ Q
mk -Seq(sl , sr) sat (P ,R,G ,Q)

If-I

th sat (P ,R,G ,Q)
(P |R) ⇒ Q
mk -If (b, th) sat (P ,R,G ,Q)

While-I

body sat (P ′ ∧ b,R,G ,Q ′ ∧W ∧ (¬ b ∨ P))
P ⇒ P ′

(R − I) ⊆W
(¬ b) |R ⇒ ¬ b
mk -While(b, body) sat (P ,R,G ,Q ∧ ¬ b ∧ (W ∨ R))

19

Note that W in the While-I rule is both transitive and well-founded over states.

DecStmt-I

body sat (P , r , g ,Q)
R ⇒ r
g ⇒ G
mk -DecStmt(r , body , g) sat (P ,R,G ,Q)

Par-I

sl sat (P ,R ∨ Gsr ,Gsl ,Qsl)
sr sat (P ,R ∨ Gsl ,Gsr ,Qsr)
Gsl ∨ Gsr ⇒ G
P ∧Qsl ∧Qsr ∧ (R ∨ Gsl ∨ Gsr)∗ ⇒ Q
mk -Par(sl , sr) sat (P ,R,G ,Q)

weaken

S sat (P ,R,G ,Q)
P ′ ⇒ P
R′ ⇒ R
G ⇒ G ′

Q ⇒ Q ′

S sat (P ′,R′,G ′,Q ′)

B.3 Induction rules

Expr-Indn

n ∈ (Z | B) ` H (n)
id ∈ σ ⇒ H (id)
H (a) ∧H (b) ⇒ H (mk -Dyad(op, a, b))
∀e ∈ Expr ·H (e)

Stmt-Indn

H (nil)
S ∈ Assign ` H (S)
H (sl) ∧H (sr) ⇒ H (mk -Seq(sl , sr))
H (S) ⇒ H (mk -If (b,S))
H (S) ⇒ H (mk -While(b,S))
H (S) ⇒ H (mk -DecStmt(r ,S , g))
H (dl) ∧H (dr) ⇒ H (mk -Par(dl , dr))
∀S ∈ Stmt ·H (S)

W-Indn
(∀σ ∈ {σ | (σ, σ′) ∈W } ·H (σ)) ⇒ H (σ′)
∀σ ∈ Σ ·H (σ)

20

C Termination Proofs

Proof of L9 (Assign)

from S = mk -Assign(id , e); S sat (P ,Q); [[P]](σ)

1 (e, σ)
e∗−→ v h, L8

2 (S , σ)
s∗−→ (mk -Assign(id , v), σ) h, 1, Assign-Eval

3 (mk -Assign(id , v), σ)
s−→ (nil, σ′) Assign-E

infer |= terminates(S , σ,
s−→) 2, 3

Proof of L10 (Sequence)

from S = mk -Seq(sl , sr); S sat (P ,Q); [[P]](σ)
1 from sl sat (Psl ,Qsl); [[Psl]](σsl)

infer terminates(sl , σsl ,
s−→) IH

2 sl sat (P ,Ql ∧ Pr) h, sim-Seq-I
3 terminates(sl , σ,

s−→) h, 1, 2
4 (S , σ)

s∗−→ (mk -Seq(nil, sr), σ′) h, 3, Seq-Step

5 [[Pr]](σ
′) L3, 4, sim-Seq-I

6 (mk -Seq(nil, sr), σ′)
s−→ (sr , σ′) Seq-E

7 from sr sat (Psr ,Qsr); [[Psr]](σsr)

infer terminates(sr , σsr ,
s−→) IH

8 sr sat (Pr ,Qr) h, sim-Seq-I
9 terminates(sr , σ′,

s−→) 5, 7, 8
infer |= terminates(S , σ,

s−→) 4, 6, 9

Proof of L11 (If)

from S = mk -If (b, th); S sat (P ,Q); [[P]](σ)
1 from ¬[[b]](σ)

1.1 (S , σ)
s∗−→ (mk -If (false, th), σ) h1, L1

1.2 (mk -If (false, th), σ)
s−→ (nil, σ) If-E-F

infer terminates(S , σ,
s−→) 1.1, 1.2

2 from [[b]](σ)

2.1 (S , σ)
s∗−→ (mk -If (true, th), σ) h2, L1

2.2 (mk -If (true, th), σ)
s−→ (th, σ) If-E-T

2.3 from th ∈ Stmt ; th sat (Pth ,Qth); [[Pth]](σth)

infer terminates(th, σth ,
s−→) IH

2.4 th sat (P ∧ b,Q) sim-If-I
2.5 [[P ∧ b]](σ) h,h2
2.6 terminates(th, σ,

s−→) 2.3, 2.4, 2.5
infer terminates(S , σ,

s−→) 2.1, 2.2, 2.6
infer terminates(S , σ,

s−→) ∨-E , 1, 2

21

Proof of L12 (While)

from S = mk -While(b, body); S sat (P ,P ∧ ¬ b ∧ (W ∨ IΣ)); [[P]](σ)
1 [[b]](σ) ∈ B h, wf-Stmt

2 S ′ = mk -Seq(body ,S) definition
3 (S , σ)

s−→ (mk -If (b,S ′), σ) 2, While

4 from ¬ [[b]](σ)

4.1 (mk -If (b,S ′), σ)
s∗−→ (mk -If (false,S ′), σ) h4, L1

4.2 (mk -If (false,S ′), σ)
s−→ (nil, σ) If-E-F

infer terminates(S , σ,
s−→) 3, 4.1, 4.2

5 from [[b]](σ)

5.1 (mk -If (b,S ′), σ)
s∗−→ (mk -If (true,S ′), σ) h5, L1

5.2 (mk -If (true,S ′), σ)
s−→ (S ′, σ) If-E-T

5.3 from body sat (Pb ,Qb); [[Pb]](σb)

infer terminates(body , σb ,
s−→) h5, IH

5.4 body sat (P ∧ b,P ∧W) sim-While-I
5.5 terminates(body , σ,

s−→) h, h5, 5.4, 5.3
5.6 (S ′, σ)

s∗−→ (mk -Seq(nil,S), σ′) 5.5, Seq-Step

5.7 [[W]](σ, σ′) ∧ [[P]](σ′) 5.4, 5.6, L5
5.8 (mk -Seq(nil,S), σ′)

s−→ (S , σ′) Seq-E

5.9 from [[P]](σw); [[W]](σ, σw)

infer terminates(S , σw ,
s−→) h, h5.9, W-Indn

5.10 terminates(S , σ′,
s−→) 5.7, 5.9

infer terminates(S , σ,
s−→) 3, 5.1, 5.2, 5.6, 5.8, 5.10

infer terminates(S , σ,
s−→) 3, ∨-E (1, 4, 5)

Proof of L13 (DecStmt)

from S = mk -DecStmt(r , body , g); S sat (P ,Q); [[P]](σ)
1 from body sat (Pb ,Qb); [[Pb]](σb)

infer terminates(body , σb ,
s−→) IH

2 body sat (P ,Q) h, sim-DecStmt-I
3 terminates(body , σ,

s−→) h, 1, 2
4 (S , σ)

s∗−→ (mk -DecStmt(r , nil, g), σ′) 3, DecStmt-Step

5 (mk -DecStmt(r , nil, g), σ′)
s−→ (nil, σ′) DecStmt-E

infer terminates(A, σ,
s−→) 4, 5

22

Proof of L14 (Parallel)

from S = mk -Par(dl , dr); S sat (P ,Q); [[P]](σ)
1 from dl sat (Pdl ,Qdl); [[Pdl]](σdl)

infer terminates(dl , σdl ,
s−→) IH

2 dl sat (Pl ,Ql) h, sim-Par-I
3 terminates(sl , σ,

s−→) h, 1, 2
4 from dr sat (Pdr ,Qdr); [[Pdr]](σdr)

infer terminates(dr , σdr ,
s−→) IH

5 dr sat (Pr ,Qr) h, sim-Par-I
6 terminates(dr , σ,

s−→) h, 4, 5
7 (S , σ)

s∗−→ (mk -Par(nil, nil), σ′) Par-Step-*, 3, 6
8 (mk -Par(nil, nil), σ′)

s−→ (nil, σ′) Par-E

infer terminates(S , σ,
s−→) 7, 8

Proof of Theorem T2 (Termination)

from S ∈ Stmt ; S sat (P ,R,G,Q); [[P]](σ)
1 from S = nil
1.1 (nil, σ) 6∈ dom s−→ def’n s−→

infer terminates(S , σ,
s−→) h, h1, 1.1

2 from S ∈ Assign

infer terminates(S , σ,
s−→) h, h2, L9

3 from S ∈ Seq

infer terminates(S , σ,
s−→) h, h3, L10

4 from S ∈ If

infer terminates(S , σ,
s−→) h, h4, L11

5 from S ∈ While

infer terminates(S , σ,
s−→) h, h5, L12

6 from S ∈ DecStmt

infer terminates(S , σ,
s−→) h, h6, L13

7 from S ∈ Par

infer terminates(S , σ,
s−→) h, h7, L14

infer terminates(S , σ,
s−→) h, Stmt-Indn(1. . . 7)

23

