
School of Computing Science,
University of Newcastle upon Tyne

Proceedings of the Workshop on
Rigorous Engineering of

Fault-Tolerant Systems (REFT 2005)
Michael Butler, Cliff Jones, Alexander Romanovsky, and

Elena Troubitsyna

Technical Report Series

CS-TR-915

June 2005

Copyright c©2004 University of Newcastle upon Tyne
Published by the University of Newcastle upon Tyne,

School of Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, UK.

Proceedings of the Workshop on Rigorous
Engineering of Fault -Tolerant Systems (REFT

2005)

at the 13th International Symposium of Formal Methods 2005

Newcastle upon Tyne, UK
July 19, 2005

This workshop is organised by the partners of FP6 IST RODIN

Rigorous Open Development Environment for Complex Systems

WORKSHOP ORGANISERS
Michael Butler (University of Southampton)

Cliff Jones (University of Newcastle upon Tyne)
Alexander Romanovsky (University of Newcastle upon Tyne)

Elena Troubitsyna (Aabo Akademi)

http://rodin.cs.ncl.ac.uk/

Preface

This report contains the proceedings of the 2005 workshop on Rigorous Engineering of
Fault Tolerant Systems (REFT 2005) held in conjunction with the Formal Methods 2005
conference in Newcastle upon Tyne, UK. The aim of this one day workshop is to bring
together researchers who are interested in the application of rigorous design techniques to
the development of fault tolerant software based systems. Fault tolerance design techniques
are essential for increasing the dependability of complex systems. It is our belief that such
techniques need to be designed into systems in a rigorous and principled way. It is also our
belief that the use of formal methods is essential for rigorous engineering of any complex
system. Through abstraction, refinement and proof, formal methods provide design
techniques that support clear thinking as well rigorous validation and verification. Good tool
support is also required to support the industrial application of these design techniques.

The nature of scientific research is such that people tend to belong to communities with
common interests and usually there is insufficient dialogue between communities who may
have much to offer each other. In organising this workshop we sought contributions from
the fault tolerance community and the formal methods community. Our hope is that the
formal methods people can learn more about, and perhaps be fired up by, challenging
issues in fault tolerant design. Likewise, we hope that researchers on fault tolerance can
understand better how formal methods could improve the way in which their techniques are
developed and applied.

The REFT 2005 workshop was organised by the partners of FP6 IST RODIN (Rigorous Open
Development Environment for Complex Systems). Rigorous design of fault tolerant systems
is a major theme of the RODIN project. In organising this workshop we are aiming to build
a network of researchers from the wider community to promote integration of the
dependability and formal methods research.

We were delighted with the quality and relevance of the paper submissions that we
received for the workshop. Approximately half the papers are from members of the RODIN
project while the other half are from the wider community.

We have several papers from fault tolerance researchers, several from formal methods
researchers and several that involve researchers in both communities. It is encouraging to
see that many of the papers are addressing software based systems that impact peoples'
everyday lives such as communications systems, mobile services, control systems, medical
devices and business transactions. We hope that you enjoy reading these proceedings and
encourage you to contribute to our aim of closer collaboration between dependability and
formal methods research.

Michael Butler (University of Southampton)
Cliff Jones (University of Newcastle upon Tyne)
Alexander Romanovsky (University of Newcastle upon Tyne)
Elena Troubitsyna (Aabo Akademi)

Workshop papers

Ian Hayes. Using domain models to specify systems (invited talk) 1

Linas Laibinis, Elena Troubitsyna, Sari Leppanen, Johan Lilius, Qaiser Malik. Formal
Service-Oriented Development of Fault Tolerant Communicating Systems

2

Colin Snook, Michael Poppleton, Ian Johnson. Towards a methodology for rigorous
development of generic requirements patterns

12

C. Ponsard, P. Massonet, J.F. Molderez Analyzing Fault-Tolerant Systems with
FAUST (demonstration)

22

Shmuel Katz. Rigorous Fault Tolerance Using Aspects and Formal Methods (invited
presentation)

32

Alfredo Capozucca, Nicolas Guelfi, Patrizio Pelliccione. The Fault-Tolerant Insulin
Pump Therapy

33

Thomas Wilson, Savi Maharaj, Robert Clark. Omnibus: A clean language and
supporting tool for integrating different assertion-based verification techniques (short
presentation)

43

Alexei Iliasov, Linas Laibinis, Alexander Romanovsky, Elena Troubitsyna. Towards
Formal Development of Mobile Location-based Systems

53

Joey Coleman, Cliff Jones. Examples of how to Determine the Specifications of
Control Systems

65

Anatoliy Gorbenko, Vyacheslav Kharchenko, Olga Tarasyuk. FMEA- technique of
Web Services Analysis and Dependability Ensuring

74

Dubravka Ilic, Elena Troubitsyna. Modelling Fault Tolerance of Transient Faults 84

Divakar Yadav, Michael Butler. Application of Event B to Global Causal Ordering
for Fault Tolerant Transactions

93

Patrice Chalin. Are Practitioners Writing Contracts? 103

Fernando Castor Filho, Patrick Henrique da S.Brito, Cecilia Mary F.Rubria.
Modeling and Analysis of Architectural Exceptions

112

Joey Coleman. Examining BPEL's Compensation Construct (short presentation) 122

Alexei Iliasov, Victor Khomenko, Maciej Koutny, Alexander Romanovsky. On
Specification and Verification of Location-based Fault Tolerant Mobile Systems

129

Victor Khomenko. Shortest Violation Traces in Model Checking Based on Petri Net
Unfoldings and SAT (short presentation)

141

Using domain models to specify systems

Invited Talk

Ian Hayes

School of Information Technology and Electrical Engineering
The University of Queensland

Australia

Abstract: In order to specify a control system one needs a model of the domain being
controlled including its interface to the controlling machine. It should be adequate to
formally specify:

• the overall system's required behaviour (1),
• the assumptions the machine can rely on about the domain's (normal)

behaviour (2), and
• the constraints on the way the domain may be controlled via its interface.

To accommodate fault-tolerance one also needs to be able to formally specify:

• hazardous behaviour of the system (to be avoided),
• possible misbehaviour of the domain -- faults or failure modes -- this

weakens the assumptions (2),
• allowable responses to faults -- this weakens (1), and
• healthy behaviour of the domain to allow checks to be made on the domain's

behaviour -- this should imply the assumptions (2).

Choice of an adequate level of abstraction for the domain model is essential (and
difficult). It should allow the specification of the above characteristics without
including extraneous characteristics. For this an engineer with domain experience is
typically required.

This work is conducted in cooperation with Michael Jackson and Cliff Jones.

1

���������
	��������������������������� "!#$���	��&%'��(���)�+*,���&-.	��
/0�
	�����1���324�&�5�5-'�.�����+���6�.78�
9�:;��(��:

<�=?>A@CB�<�@D=FE;=F>A=GB6HDI�JLKNM6>A@+OQPSRUTVE;=FWXBXY�>Z@�HDI\[;@6PS=�<�M^]�];_6>AM^>`H�HDI�a6RUbA@^>�<�=NKc=?TZB^HDI
d @e=GBS@6P�fg@eKN=?h`H

iSj(k�l�m�nCo�pDqsr+tCu�v�t wCqsxzy{t |?}C~e��qS��osxG|�r+qsve|\lD�Z��l�r��D�D|Nqsx`�V��t�qSv���q�~
� qSr�r+t vCnCo�t�y{qSvCnCoS|��'�S��m�~D�C�U�e�C�C~e�Z�Cx�ne��~e�At v��?osvUp

i^i$�+l�nUt?o���q6y{q�osxX�S�
��qSvD|NqsxX~��)l�k�t?�?q$�+q�|���lex�nUy � oSk�l�xXoS|NlexG}C~
�`� ���^� l^�+�C�C�D~C�C�D�D�U�D~e �q���y{t vCnCt?~e�AtFvU�?osv�p

¡`¢$£�¤�¥^¦A§�¨�©«ª\¥�¬§Q¤

fg@X®6RUPS=?W?Y¯R\°�M6>A±�=F>ZMeM6PS=?>\±³²´M6WNbAR�µAB´°XR�P�E\TA=NKcµ\=F>\±0¶eRU².]ZKNM6·¸BzY;B{W¹M6²ºB'=GB�EZ@CBSMeµ»RU>¸BXY;BW�M^²
µ�MD¶eR�²�];R\BS=?W¹=cR�>`¼+½X>¾WcbAM¿BsR�°GWNÀ&@6PSM¸M^>\±�=?>AMeM^P�=?>\±ÁWcbZM¸µ\Me¶DRU².]ZR\Bs=FW¹=NRU>AÂ�EZ@DBsMeµ¾µ�M�Ã\MeKNRU]\²'M^>VW
²´M6WNbAR�µAB�@6PSM&R�°�W�M^>'P�MD°XM^PzPSMeµ.W¹R´@CBLWcbZM�BSM^P{Ã\=N¶eMDÂXR�P�=NM6>VW¹Meµ�²'M^WcbAR\µ\B^¼�OQbAM+>ZRUW¹=cR�>,R�°�@+Ä�Å6Æ�Ç�ÈcÉeÅ
]�PSR�ÃA=cµ\MDB8@Ê¶eR�>�Ã\M6>Z=cM^>VW4²´Me¶^bA@6>Z=NB²Ë°zRUPÌ²´R�µ\MeKNKc=?>\±Í@^>AµÎPSMe@DBsRU>A=?>\±Í@^EZRUT�WÏBXY;BW�M^²
=?>VW�M^P�@D¶6W¹=cR�>ZBL@6>Aµ.°GTV>Z¶6W¹=cR�>A@eKN=FW�YÐ¼
½X>gWcbZM)W¹MeKNMe¶eR�²�².TV>A=N¶e@^W�=?>\±0BzY;B{W¹M6²ºBsI�@ÑBSM^P{Ã\=N¶eM�=NB�T;B{TA@DKcK YgTV>Aµ�M^PSBW�R\R�µg@CB'@3¶DRUbAM^P�M^>VW

]Z=NMe¶DM)R�°
°GTV>Z¶6W¹=cR�>A@eKN=FW�YÑWNbA@^W�WcbAMÒBzY;B{W¹M6²Êµ�MDKc=�Ã\M^PSB&W¹RÑ=?WXB1T;BSM6PsB6¼�[Z=?>A¶eM´W¹MeKNMe¶eR�²�².TV>A=N¶e@^W�=?>\±
BXY;BW�M^²´Bg@6PSMÓµ�=GB{WNP�=?E�T�W�MDµ¾E�Y#WNbAMe=?P�>A@^WcT�P�MCI�@ÁBSM^P{Ã\=N¶eMÁ=NBÔT;B{TA@DKcK YÕ]\P�RVÃ\=Nµ�Meµ4EVYÖBsM^Ã\M^P�@DK
¶eR\KcKN@6E;RUPS@6W¹=F>A±×BSM^P{ÃA=c¶DM�¶eR�²�];RU>AM^>VWXB6¼\Ø1°�W�M^>×¶eR�²�².TV>A=N¶e@^W�=NRU>´E;M6WNÀ1MDM6>)BsM6PÃ\=N¶eM�¶DRU².]ZR�>AM6>VWXB
PSMeKN=cMCBÙRU>Ö@^>ÏTV>VPSMeKN=c@^EZKNM¸²'MDµ�=N@DI'BTA¶6bÖ@CBsI�M�¼ ±;¼ I�PS@eµ�=NR�Â�EZ@CBSMeµÕ²'R�EZ=NKcM0>AM^WcÀ&RUP{h`¼
Ú�M6>Z¶eM
¶eR�²�².TV>A=N¶e@^W�=NRU>Ö°z@e=NKFT�P�MCBÙ@6PSMÓ@6>Ö=?>VWNP�=?>ZBs=c¶¸];@6P{W)R\°�BXY;BW�M^²ÛEZM^bA@^ÃA=cR�TVP�¼�O�bAM6PSMe°zRUPSMDI�WNbAM
¶eR�PzPSMe¶^W#BsM6PÃ\=N¶eM�]\P�RVÃ\=GBS=NRU>Ü=GBÝTV>Z°XMe@CBS=?EZKNM�À&=FWNbAR�TVWÏ=?>VW¹M�±UPS@6W¹=?>\±ÞWNbAMß°z@6TAK?W4W¹R�KNM6PS@6>Z¶eM
²´Me¶6bZ@6>A=GB{²ºB�=?>�WNbAM
BXY;BW�M^²#µ\MDBs=�±U>Ð¼
½X>»WNbA=NB']Z@^]ZM^P.À&M3]�PSRU]ZRABSMÑ@Ô°zRUP{²'@DK
@6]�]\P�R\@e¶^b»W¹R0BSM^P{ÃA=c¶DMeÂXR�P�=NM6>�W�MDµ»µ�M�Ã\MeKNRU]\²'M^>VW&R�°

°X@^TAK?W#W�R\KcM^P�@^>VWÝ¶DRU².²�TV>Z=c¶D@6W¹=F>\±àµ\=NBWcPS=FE\TVW¹MeµáBXY;BW�M^²´B^¼ÓØ�TVPâ@6]\]�PSR�@D¶6bÛ=NB�E;@DBsMeµãRU>
°XR�Pz²´@eKN=cäD@6W¹=NRU>0R�°�WNbAM3BsM6PÃ\=c¶DMeÂzRUPS=cM^>VW�MDµÔ²'M^WcbZR�µ�R\KcR�±DYg<ÐY�P�@³åcæAç&µ\M^Ã\MDKcR�]ZMDµÙ=F>³WNbAM´è�RUhA=N@
é«MDBsMe@^P�¶^b×ê�M6>VW¹M6P6¼\O�bAM�µ\MDBS=c±U>×°zKcR�ÀÏR\°�<ÐY�PS@�=GBLEZ@CBSMDµ´RU>,¶DRU>A¶DM6]�WXB�R\°�µ�MD¶eRU².]ZRABS=?W�=NRU>,@^>Aµ
]�PSMDBsM6PÃ\@6W¹=NRU>ÍR�°ÁWcbZMâM^·VW¹M6P{>A@eKNK YëRUE�BSM6PÃ\@^EZKNM8E;M6bA@�Ã\=NRUTVP6¼³O�bAMìBXY;BW�M^²íEZM6bZ@^Ã\=NRUTVPÖ=GB
²´R�µUTZKc@^P�=GBSMDµî@^>AµîR�P±\@6>A=cäDMDµî=?>VW¹RïbA=NM6PS@6PS¶6bZ=c¶D@eKÕKc@�YZM6PsB8@D¶e¶eR�P�µ\=F>A±ÞW�RïWcbZMßM6·�W�M^Pz>A@DK
¶eR�²�².TV>A=N¶e@^W�=NRU>3@6>Zµ´PSMeKN@6W¹Meµ)=?>VW¹M6PS°X@e¶DMDB
BSRºWNbA@6W�WNbAM�µ�=GB{WNPS=FE\TVW�MDµº>AM6WNÀ1R�PzhÒ@6PS¶6bA=?W¹Me¶6WNTVPSM�¶D@6>
EZMìµ\M6PS=?ÃAMeµï°GPSRU²ðWcbAMì°�TV>A¶^W�=NRU>A@DKÁBXY;BW�M^²íP�MDñUTA=?PSM6²´M6>VWXBÌÃ\=c@�@�>VTV².EZM^PÖR�°Á²´R�µ�MDK
WNP�@^>ZBS°zRUP{²'@^W�=NRU>ZB^¼�O�bA=GB0@^]�]\P�R\@e¶6b8¶eR\=F>Z¶e=Nµ�MDBgÀ&=FWNbÝWcbAMÏBW�M^]�À&=NBsM¿PSMe°z=F>AM^²'M^>VW)]Z@^P�@Dµ�=c±U²
@eµ\RU]\W�MDµ�=?>�WNbAM«ò»fgM6WNbAR�µ,åSó^çs¼
½X>0WNbA=GB'];@6];M6P'À&MÑµ\MDBs¶6PS=FE;MÑR�TVP'À&RUP{h¿R�>0WNbAM³°XR�Pz²´@eKN=�äC=F>A±»<ÐY�PS@Ô=?>0ò�¼Lô¿MÒ]\P�R�]ZRABSM

±�M^>AM6PS@eK`B]ZMD¶e=N°X=N¶e@6W¹=NRU>º@6>Aµ'µ\M^Ã\MDKcR�]�²´M6>VW`]Z@6WNW¹M6P{>ZB�@e¶D¶eRUPSµ�=?>\±�W¹R&À+bA=N¶6b.WcbZM
BsM6PÃ\=N¶eMDB(¶D@6>.EZM
B{];Me¶D=c°z=cMDµÌ@6>ZµÌµ�MD¶eR�²�];R\BSMDµÌ=?>VW¹RÌ¶eR�²�².TV>A=N¶e@^W�=?>\±ÌBsM6PÃ\=c¶DMÓ¶eR�²�];RU>AM^>VWXB6¼�OQbZM¸]Z@^WcW¹M6P{>ZB
±�M^>AM6PS@eKN=NBsM�WcbZM'M6·A=GB{W¹=F>A±º]\P�@D¶6W¹=c¶DM'R�°LWNbAM'¶eR�²�².TV>A=N¶e@^W�=?>\±3BXY;BW�M^²"M6>\±\=F>AMDM6PS=F>A±;¼\Ú�M^>A¶eM�R�TVP
@6]\]�PSR�@D¶6bà]�PSR�ÃA=cµ\MDB"WNbAMÎE;@DBS=GBì°zRUP�@^TVW¹RU²´@6W¹=F>\±ÜWNbAMÎ]\P�R\¶eMCBsB�R�°õµ\M^Ã\MDKcR�]�²´M6>VWöR�°

2

÷eø�ù�ù.úVûAüN÷eý^þ�ü?û\ÿ������þ��^ù��)÷Dø	�
���D÷6þ���Ó÷eø�û��{þ��{úA÷6þ¹ücø�û����¹þ�ü��×ü����Fú��{þ���ý^þ��������Óý³÷eý������{þNú���� �
�!�#"$�%�Nø	&\ù'�^ûVþ`ø!($ý*),+Aü-���/.�6û��0��ý^þ�üNøUû/1$ý0�zþNû��2�3�
+Zü4&516�Sø372�e÷^þ�8:9$.;1�1=<=&;ø$�Sü?þ¹ücø�ûAüFûAÿ/�����þ��^ù>�

?A@,BDCFE�G	C�HIE	JLKNM;O/PFG�Q

)N+��SR=�!�SýT�$���sü�ÿUû,ù'�^þ�+Zø!�×÷eøUû��Sü��{þ���ø!(A(Xø�ú��A&$+Aý��3���«÷eø	�
�����
&;øUû��\üFûAÿ�þ�ø'þ�+���÷%�Ný��U�SüN÷eý��=�$���SücÿUû
&!+Zý������0V�W��2�I"\üN÷%�XW!&��D÷eü�(XüN÷eý6þ¹üNøUû�Y W��2�I"\üc÷��[Z\�D÷eøUù/&Zø��Sü?þ�üNøUû�Y W��2�I"\üN÷%�]Z�ü��{þ��Sü4�\úVþ�üNøUûÊý^û��
W��0�
"\üN÷%�5�Xù/&����6ù��6ûVþ¹ý6þ¹ücø�û��6)N+������T&$+Aý��3���
÷eø^�:�����I&Zø�û��Òý%���Sø,þ¹ø,þ�+��'÷eøUû$"$�6ûVþ¹üNøUûAý��_&!+Aý������
ø!(
�{þ¹ý6û���ý2����ü�`Dý^þ�üNøUûba�c�d3���Xû�þ�+��SW��0�
"\üN÷%�SW!&��e÷Dü�(züc÷Dý6þ¹ücø�ûT&$+Aý��3�feS�g�!��(Xü?û��«þ�+���3�2�I"\üc÷����h&!�Sø^"Aü��$�%�
�^�¾þ�+��i�����þ��^ùj8I�{þ¹ý6û��\ý2����ü�`Dý^þ�üNøUûk1�+Aý��3�ml0<3�n�XûÓþ�+��iW��2�I"\üc÷���Z\�D÷eøUù/&Zø��Sü?þ�üNøUûk&!+Aý����oeS�
�
&��e÷Dü�(��Ùþ�+��p(�úVûA÷^þ�üNøUûAý��«ý0��÷0+AüFþq�e÷^þcú!���3ø$(S�eýD÷2+³þ�+��p�����þ��^ùr���#"$�%�*���2�I"\üN÷%�b8I�{þ¹ý6û��\ý2����ü�`Dý^þ�üNøUû
16+Zý����sc�<3�o�¹ûÊþ�+��XW��0�
"Aüc÷��tZ�ü��{þ���ü-��ú�þ�üNøUûu&!+Aý����v�cø�ÿ�üc÷Dý%�w�6û�þ�ü?þ�ü����Öø!(Óþ�+��s(�úVûA÷^þ�üNøUûAý��
ý2�S÷2+ZüFþq�e÷^þcú�����YAü�� �^�!�3�2�I"\üc÷��1÷eø�ùT&;øUû��^ûVþq�UY�ý0���g�\ü��þ��Sü4�\úVþq�%��ø^"$�0�Lý+ÿ�ü-"��6û.û��6þ�e1ø^�:x´ý2�S÷2+ZüFþq�e÷^þcú����
ý6û��y�SücÿUûAý%���NüFû\ÿu&$��ø�þ�ø\÷eø!���öý2���z�!��(Xü?û��%�{(zø	�Ý÷DøUù.ù�ú�ûAüc÷Dý6þ¹ücø�ûu���6þ�e���6ûÎþ�+��8û��6þ�e1ø^�:x
�%���6ù��6û�þq�|8
�þ�ý^û���ý0���\ü}`Cý6þ¹ücø�û 16+Aý����~9�<U�h�¹ûÙþ�+��~W��0�
"Aüc÷��b�¹ù/&����6ù��6û�þ�ý^þ�üNøUû�&$+Aý��3�>e��ý%�37sú��þ
þ�+��5(GúVûA÷^þ�üNøUûZý%�NüFþ}�×þ¹øºþ�+���þ¹ý2��ÿ!�6þA�^û!"\ü-��ø�ûVù��6ûVþI��),+��\&!�SøVÿ	�Sý6ù"÷Dø!�$�/(zø	�«ý5�
&��D÷eü�(XüN÷&��cý^þ�(zø	�{ù
ü���ÿ!�^û��2�Sý6þq�%�.ý6ú�þ�ø�ù'ý^þ�üN÷eý���� �'(��SøUùÕþ�+��f�����{ú��?þ�ü?û\ÿ.üFù/&����6ù��6ûVþ¹ý6þ¹üNøUû��
� �2��þ�eS�S�!���S÷2�Sü-���+þ�+��1ÿ!�^û��2�Sý%�Ðü��$�eý&ø$($þ�+��+ù��6þ�+Aø!�\ø!�NøVÿ���e&üFþ�+ºý*�zúVû�ûAüFûAÿ5�0�Aý6ù/&����^�^���

ù´ø!�!���$&Zý0�zþÐø$(Ðý;)N+Aü-���T.�^û��2�Sý6þ¹ücø�ûT1Qý2�{þcû��0���I+Aü-&/1���øU7��D÷6þ�8
9!.;1�1_<=&Zø$�süFþ¹üNøUûAü?û\ÿ/�:���{þq�6ùta��$Y}��d��
)N+��]&Zø��Sü?þ�üNøUûZüFû\ÿr�����{þq�6ù�&!�Sø^"Aü��$����&;ø$�Sü?þ¹ücø�ûAüFûAÿ����2�I"\üN÷%���4þ�øß÷eý%�N÷6ú��cý^þ��Ýþ�+���&$+	���SüN÷eý��
�Nø�÷eý^þ�üNøUûgø!(
ý×ÿ�ü}"$�6ûÑú��3�2�\�%��úAü4&\ù'�^ûVþn8��S�A<
ü?û³ý��1ûAü}"$�2�3�Sý��A�Ùø^�Zü����>)������D÷eø�ù�ù.úVûAüN÷eý^þ�üNøUû
W^���þ��^ù]8q�S��)�W�<�û��6þ�e1ø^�:x������S(zø�÷^ú���øUû�1Qø$�süFþ¹ücø�û���ý%�N÷6ú��Ný6þ¹üNøUû'�g&!&��cüN÷eý^þ�üNøUû'1$ý0�zþN8q1N�A�g1_<
�Ýý &Zý2�{þ,ø!(ºþ�+�� &Zø��Sü?þ�üNøUûAü?û\ÿ������þ��^ù ý%���cø^e1ü?û\ÿÕ÷eøUù.ù.úVûAüN÷eý6þ¹üNøUû#üFû¾þ�+�� �«ý���üNøk�&÷D÷%���3�
� �6þ�e&ø	�
x�8���� � <U�n1N�A�1Ìù´ý6ûAýeÿ!���Òþ�+��0÷DøUù.ù�ú�ûAüc÷Dý6þ¹ücø�ûk���6þ�e���6ûÁþ�+�� �«ý%�\ücø � �6þ�e1ø^�:x
��øUû�þ��Sø!�����0�'8�� � ��<�ý6û��Ùþ�+��oW�þ¹ý6û��$�Xý%�NøUû����T�3�sü��þ���� .�Nø	�Zý��f1Qø$�süFþ¹ücø�ûAü?û\ÿiW^���þ��^ùyW��0�
"\ü?û\ÿ
�gø	�;ü����gR�ø�÷Dý6þ¹ücø�û��F�6ûVþ����S8IW$�TW�<�û��^þ�e&ø	�
x��%���6ù��6ûVþ��2�!),+��S(�úVûA÷6þ¹üNøUûAý������%�UúZü4���6ù��6ûVþ��F(zø	��þ�+��
� � �F�
W$�TW´÷eø�ù�ù.úVûAüN÷eý^þ�üNøUûT+Aý0"$�f�����6û��
&��D÷eü�(Xü��%�.üFû�a���Y}�^d3�
)N+��|W��2�I"\üN÷%�|W!&��e÷eü�(XüN÷eý^þ�üNøUû>&!+Zý����5�$�%(Xü?û�����þ�+��'���0�
"Aüc÷��.ü?û×þ��0�zù|�+ø!(�üFþ��+÷eø�ù�ù.úVûAüN÷eý^þ�üNøUû

e&üFþ�+0þ�+������0�
"Aüc÷��Ñ÷DøUû��úVù��2�,ý����I+Aø	e+û¿ü?ûw�Ðü�ÿ6�Sl	��),+������2�I"\üN÷%�³÷eø�û��{ú�ù'�0�'�����Uú����{þ���þ�+��
&Zø��Sü?þ�üNøUûZüFû\ÿ8÷Dý%�N÷6ú��Ný6þ¹üNøUû"ý6û������D÷%�Dü-"$���0þ�+��m�����{ú��FþÙø!(Ñþ�+����3�2�I"\üc÷����2���e÷6ú�þ�üNøUût"\üNý¾þ�+��
&!�Sø^"Aü��$�%�����0�
"Aüc÷��Òýe÷e÷����U�\&Zø�ü?ûVþ;8¹þ�+��,ú�&!e&ý2���³üFû�þ��0��(zýe÷%�%<3�=�
þ�þ�+Zü��/�!�#"$�%�Nø	&\ù'�^ûVþ;�{þ¹ý�ÿ$��eS�
ý2�6�{þ���ýD÷6þ$ý0e1ý��|(���ø�ù#þ�+��g�!�6þ¹ýeü����Lø$(`þ�+��n&;ø$�Sü?þ¹ücø�û'÷DøUù/&�úVþ¹ý6þ¹ücø�û'ý^û���ù'�0����� �ºø	�6���2�I"$�«þ�+Aý6þ;þ�+��
���0�
"Aüc÷����0���e÷^úVþ�üNøUûõ÷eý^û������{ú��Fþ��eü?þ�+��2�»ü?ûÌþ�+���&;ø$�süFþ¹ücø�ûÝ÷eý��c÷^ú��Ný6þq�%��e&ü?þ�+#þ�+��������Uú����{þq�%�
ýe÷D÷6ú��Sýe÷��'ø	��ü?û�ý;(XýDü��?ú����^�

�$ü�ÿbl��^W��2�I"\üc÷��;�I&��D÷eü�(XüN÷eý6þ¹üNøUû

3

�g�*�����b���2 ��\¡
�q¢#£$��¤!¥�����p¦!�#§$�%¨�¤	©$ª'�0���n©$«�¤$¬%��¡U¡Sk®��0«
§�¯�¬���°\�%¬�¤	ª/©�¤$¡3¯4�q¯�¤	��±S�>��¢0²��
¯-����¤b¢�¬%¬�¤	³���������¢0�´¢�¡��0«
§�¯�¬��'¯�¡n©$«�¤�§$¯�¦$�%¦b¯-�b¬�¤!µ:¤	©��0«�¢0��¯�¤	�>±S¯4���p¡3�2«I§$¯�¬%�5¬%¤^ªT©�¤	���0���q¡0¶�·,���
¯-��¯4�q¯�¢%¨�ª'¤$¦!��¨6©$«���¡��0������¦�¯-��¸_¯}£�¶�¹S¯�¡n¢0³$£	ª��2���q�%¦�±S¯4���������g³�¡3�%¦>¡��2«I§$¯�¬%�T¢%¬%¬���¡U¡´©�¤$¯4�!�q¡nº������
¦!¤^±*�!±¢0«�¦t¯-���q�2«�¥�¢�¬%��¡�»�§$¯�¢�±;��¯�¬0�]������¬�¤	ª/ªT³!��¯�¬�¢2�q¯�¤^�]±¯-���s¡3�2«I§$¯�¬���¬%¤^ªT©�¤	���0���q¡w¯�¡
¬%¤^��¦	³�¬2�q�%¦�¶F·N���pª�¤!¦$�%¨¤^¼!�q¢%¯-���%¦i¢�¡�¢b«���¡I³�¨-�S¤$¥������®��2«I§$¯�¬%��°\�%¬�¤	ª/©�¤$¡3¯4�q¯�¤	� ©$��¢�¡3�~¯�¡
©!«���¡3�2���q�%¦/¯-�T¸=¯�£�¶ ½=¶

¸_¯}£\½�¶^®��2«I§$¯�¬��*¦$�%¬�¤	ª/©�¤$¡3¯4�q¯�¤	�

�g��������®��0«
§�¯�¬��5°\�%¬�¤	ª/©�¤$¡3¯4�q¯�¤	�b©!��¢�¡��5±��¢�¨�¡3¤p¦!��¡�¯�£	�b������¥�³!��¬2�q¯�¤^��¢%¨�¢2«�¬2��¯-����¬2��³�«��'¤!¥
�����i¡3�2«I§$¯�¬%��¾\¢�¡D¡
��¤^±*��¯4�k¸_¯}£k¿6¶FÀ/¡
³�¢%¨�¨ Ák����� ¥�³���¬0��¯�¤	��¢�¨T¢0«�¬0��¯-����¬2��³�«��Â¯�¡�¬%¤^��¡
��«:³�¬2�q�%¦
¢%¬�¬%¤^«�¦$¯4�$£[��¤[�����Ã¥�¤$¨�¨�¤	±S¯4��£]©�¢0���q�2«
�=ÄÅ¢Ã¡��0«
§�¯�¬���¦!¯-«��%¬2�q¤	«�¤	«�¬2����¡
��«�¢2�q��¡i������¡3�2«I§$¯�¬%�
�2 ��%¬2³!��¯�¤	�Â¼^Á «��%Æ	³���¡
�q¯-�$£ ¬%�0«:�q¢%¯-�w¡3�2«I§$¯�¬���¡|¥�«�¤	ªÇ¡��2«I§$¯�¬%�~¬%¤	ª/©�¤^���2�!�q¡0¶h¸=¤	«�¯-��¡
�q¢2��¬���¾A�q¤
�2 ��%¬2³!���È�����[©�¤$¡3¯4�q¯�¤^�É¬�¢%¨�¬2³�¨�¢2�q¯�¤^�{¡3�2«I§$¯�¬���¾o�����X¡��0«
§�¯�¬��s¦$¯4«��%¬0��¤^«�¥:¯4«3¡
�w«��%Æ^³���¡I�q¡Ã¢2�
¢2©$©!«�¤	 �¯-ª�¢2�q�\¨�¤!¬%¢0��¯�¤	��¤!¥N�����ÀSÊÂ¥�«�¤	ª������;���2��±S¤	«
²�¦!¢2�q¢2¼�¢�¡3��¾!�����2��¯-��«��%Æ^³���¡I�q¡A�����;ÀSÊo�q¤
¡��0��¦b¢%¦$¦!¯-��¯�¤	��¢%¨_«�¢%¦$¯�¤�ª��%¢�¡
³�«��2ª��2����¡3¾6�����2��¯-�h«��%Æ	³���¡
��¡¡��#§$�2«�¢%¨,¨�¤!¬�¢%¨=ª��%¢�¡
³�«��2ª��2���,³!��¯4��¡
º�Ë,Ì~À\»´�q¤|©!«�¤^§$¯�¦!�'¡3¤	ª��/¨�¤!¬�¢%¨=ª��%¢�¡
³�«��2ª��2����¡3¾=¢2��¦>¥:¯4��¢%¨�¨ Á������/¦!¢0��¢/¬%¤$¨�¨��%¬0����¦�¦^³�«�¯4�$£>¢%¨�¨
������¡3�5¡I��¢%£!��¡;¢0«��5¡��0���N��¤>¢T¨�¤!¬�¢2�q¯�¤^��¢�¨}£!¤^«�¯-����ªs¡��2«I§$�0«´±;��¯�¬2�b¯4�!§�¤	²���¡n¢/¬%�0«:�q¢%¯-��¢�¨}£!¤^«�¯-����ª
¥�¤^«�©�¤$¡�¯-�q¯�¤^�Ã¬%¢%¨�¬2³�¨�¢0��¯�¤	��¶g�\¥����0«D�2 ���¬2³��q¯-�$£�������¢�¨}£$¤	«�¯4����ª|¾������¬�¢%¨�¬2³�¨�¢2�q�%¦�©�¤$¡�¯-�q¯�¤^��¯�¡
«��2��³�«:���%¦|��¤|�����'¡��0«
§$¯�¬%�5¦$¯4«��%¬0��¤^«�¶�Ë��2�,³�¡;¤^¼�¡��0«
§��S����¢0�A¢2�	Á�¤!¥������S«��%Æ^³���¡I����¦�¬�¤	ª/©�¤^���2����¡
¬%¢0�>¥�¢�¯�¨_º
�%¯-�����0«�¼��%¬%¢0³�¡��\¤!¥h¬�¤	ª/ªT³���¯�¬�¢2�q¯�¤^��¤	«F¡3¤	ª��S¤	�����0«�¥�¢�¯�¨-³�«��#»U¶�ÍÂ���2��¢;«��%Æ^³���¡I���q¤�¢
¡��0«
§�¯�¬��/¬�¤	ª/©�¤^���2���A¥:¢%¯�¨�¡U¾������'¡��0«
§�¯�¬��/¦$¯4«��%¬0��¤^«*¦!¯�¢#£	��¤$¡���¡f�����5¥:¢%¯�¨4³�«��5¢2��¦�¦$�%¬%¯�¦!��¡n¤^�|�����
¥�¢0³�¨-���q¤!¨��2«�¢2��¬%�fª'��¢�¡
³!«���¡N�q¤¼��F³!��¦!�0«:�q¢2²��0��¶

¸=¯}£/¿�¶�¸�³���¬0��¯�¤	��¢�¨�¢2«�¬2��¯-����¬2��³�«��

4

Î�Ï�Ð�Ñ2Ò�Ñ#Ó!Ô�Õ�Ï	Ð/Ö�×�Ô2Ø�Ù-Ú-ÛÃÏ!ÜbÕ�Ï	Ð/ÐTÝ!Ò�Ù�Õ�Ñ2ÚqÙ4Ò�Ó�Þ:Û�Þ
ÚqÔ2Ð|Þ3ßTÑ2Ú'Ú�à�Ô�á�Ô2âIã$Ù�Õ%ÔÂä\Ô%Õ�Ï	Ð/Ö�Ï�Þ�Ù-Ú�Ù�Ï	Ò
Ö!à�Ñ�Þ�Ô|Ú�à�Ô�Õ%Ï^ÐTÐ/Ý�Ò�Ù�Õ%Ñ0Ú�Ù�Ï	ÒDå�Ô0Ú�æSÔ%Ô0Ò�Õ�Ï	Ð/Ö�Ï	Ò�Ô2Ò�Ú�Þ5Þ
ÚqÙ�×�×Aâ�Ô0Ð'Ñ�Ù4Ò�ÞTÏ^ÒoÑ|ã$Ù-â:Ú�Ý�Ñ%×�×�Ô0ã$Ô�×,çoÚ�à�Ô
â�Ô%Ñ%×�Ù�Þ
ÚqÙ�Õ>Õ%Ï^ÐTÐ/Ý�Ò�Ù�Õ%Ñ0Ú�Ù�Ï	Ò~Ö!â�Ï	ÚqÏ!Õ%Ï$×�ÞTÑ2â�Ô>Ù4Ò�Ú�â�Ï!è	Ý�Õ%Ô%èpÝ�Ö�Ï	ÒoÕ�Ï	Ð/Ö�×�Ô2ÚqÙ4Ò�ÓbÚ�à�Ô'Ò�Ô2Ø�Úné�á�Ô2âIã$Ù�Õ%Ô
ä\Ù�Þ
Ú�â�Ù-å!Ý�ÚqÙ�Ï	Ò$êSÞ
ÚqÑ#Ó$Ô^ë6ìgÚ�Ú�à�Ô�á�Ô2âIã$Ù�Õ�Ô�ä\Ù�Þ
Ú�â�Ù4å$Ý�Ú�Ù�Ï	Ò~Ö!à�Ñ�Þ�Ô�æÔ�Ð�Ñ2ÖDÚ�à�Ô>Ü�Ý!Ò�Õ2ÚqÙ�Ï^Ò�Ñ%×�Þ�Û�ÞIÚ�Ô0Ð
Ñ2â�Õ2à�Ù4ÚqÔ%Õ0Ú�Ý�â�Ô\Ú�Ï|Ú�à�Ô\Ö�×�Ñ2ÚqÜ�Ï^â:ÐsÑ0â�Õ0à�Ù4ÚqÔ%Õ0Ú�Ý!â�Ô�ë$í=Ï^â*Ù4Ò�Þ
ÚqÑ2Ò�Õ�Ô�ß=Ù4ÒpÏ	Ý�ânÔ0Ø�Ñ2Ð/Ö�×�ÔæSÔ/è!Ô%Õ�Ï	Ð/Ö�Ï�Þ�Ô
Ú�à�ÔbÞ�Û�Þ
ÚqÔ2ÐuÙ-Ò Þ
Ý�Õ0à�Ñ|æSÑUÛDÚ�à�Ñ0Ú*Õ%Ï	Ð/Ð/Ý�Ò�Ù�Õ%Ñ2ÚqÙ�Ï	Ò�æSÙ-Ú�à~Ú�à�Ô�Ò�Ô0Ú�æSÏ	â
îoè$Ñ2ÚqÑ2å�Ñ�Þ�Ô>Ñ2Ò�èpïSðmÙ�Þ
Ö�Ô0â�Ü:Ï	â
Ð'Ô�è/å^Û�Ú�à�Ô\Þ3Ô2âIã$Ù�Õ�ÔSè!Ù-â�Ô%Õ2ÚqÏ	âFÑ%×�×�Ï$Õ%Ñ0Ú�Ô�è�Ï	Ò'ñAò5ófß�æ*à�Ù�×�ÔÕ%Ï^ÐTÐ/Ý�Ò�Ù�Õ%Ñ0Ú�Ù�Ï	Ò5æSÙ4Ú�à'ô,õ~ï
è!Ô#ã$Ù�Õ%Ô�Þ�Ñ2Ò�è�Ú�à�ÔDÑ%×�Ó!Ï	â�Ù4Ú�à�ÐLÞ�Ô0â
ã�Ô2â|Ù�Þ5Ö�Ô0â�Ü:Ï	â
Ð'Ô�èoå^Û Ú�à�ÔDÞ�Ô2âIã$Ù�Õ%Ô~è!Ù-â�Ô�Õ2ÚqÏ	â�Ñ%×�×�Ï$Õ%Ñ2ÚqÔ%èÂÏ	Ò
á!ì/á=ë�ÎNà�ÔgÞ3Ô2âIã$Ù�Õ%Ôgè!Ù-â�Ô�Õ2ÚqÏ	â3Þ´Õ%Ï	Ð/Ð/Ý�Ò�Ù�Õ%Ñ2ÚqÔ*ã$Ù�Ñ;ÑgÕ�Ô2â
Ú�Ñ�Ù4Ò�é�Ö$â�Ô�è!Ô�Ü�Ù-Ò�Ô%è\å^Û'ö_óAìö=ê_Ö$â�Ï^Ú�Ï$Õ%Ï$×që
ÎNà�ÔFâ�Ô�ÞIÝ�×4Ú�Ï$Ü_Þ3Ô2âIã$Ù�Õ�Ô*è$Ù�ÞIÚ�â�Ù-å!Ý�ÚqÙ�Ï^Ò5Ù�ÞAÞIà�Ï	æ;Ò5Ù-ÒTí_Ù}Ó�ë�÷�ë

í=Ù}Ó\÷�ë�ö_×�Ñ2ÚqÜ�Ï	â
Ð�Ñ2â�Õ2à�Ù-ÚqÔ%Õ2Ú�Ý�â�Ô

ø�Ò�Ú�à�Ô Ü�Ù-Ò�Ñ�×\é�á�Ô2âIã$Ù�Õ%Ô�ø�ÐTÖ�×�Ô0Ð'Ô0Ò�ÚqÑ2ÚqÙ�Ï^Ò$ê'Ö$à�Ñ�Þ3ÔDæÔ Ñ%è3ù3Ý�ÞIÚ\Ú�à�ÔDÐ�Ï!è$Ô%×gÚqÏ�Ü:Ù4Ú'Ñ Þ
Ö�Ô%Õ%Ù�Ü�Ù�Õ
Ö�×�Ñ2ÚqÜ�Ï^â:Ð�ë�úwÔ5Ï^Ð'Ù-Ú,Ú�à�Ô/è$Ô2ÚqÑ%Ù�×�Ô�è�è!Ù�Þ�Õ2Ý�Þ3Þ�Ù�Ï	ÒpÏ!Ü�Ú�à�Ù�Þ;ÞIÚ�Ñ%Ó!Ô^ë�ø�Ò|Ú�à�ÔÒ�Ô2Ø�ÚAÞ�Ô�Õ2ÚqÙ�Ï^Ò|æSÔ\Ó$Ù-ã$Ô/Ñ
å!â�Ù�Ô%Ü;Ù4Ò�Ú�â�Ï!è	Ý�Õ2ÚqÙ�Ï^ÒoÙ-Ò�Ú�Ï~Ï	Ý�âSÜ�Ï^â:Ð�Ñ%×´Ü�â�Ñ2Ð�Ô2æSÏ	â
î�çoÚ�à�Ô�û�õ�Ô2Ú�à�Ï!è�ß=æ;à�Ù�Õ0àpæSÔ5æSÙ�×�×,Ý�Þ�Ô5ÚqÏ
Ü�Ï^â:Ð�Ñ%×�Ù�ü�ÔfÚ�à�Ô;è!Ô#ã$Ô%×�Ï	Ö$Ð'Ô0Ò�Ú�Ü�×�Ï	ækè!Ô�Þ�Õ0â�Ù-å�Ô�èTÑ0å�Ï^ã�Ô^ë

ýAþNÿ����������	�
����

ÎNà�Ôkû õ�Ô2Ú�à�Ï!è�������é
Ü�Ý�â
Ú�à�Ô2â�â�Ô%Ü:Ô2â
â�Ô�è�ÚqÏ]Ñ�Þ ûnê�Ù�ÞiÑ2Ò]Ñ0Ö!Ö$â�Ï$Ñ%Õ2à[Ü�Ï^âDÚ�à�ÔmÙ4Ò�è	Ý�ÞIÚ�â�Ù�Ñ�×
è!Ô#ã$Ô%×�Ï	Ö$Ð'Ô0Ò�ÚfÏ!Ü�à�Ù}Ó	à�× ÛDè!Ô0Ö�Ô0Ò�è!Ñ0å�×�Ô|Þ�Ï$Ü�Ú�æÑ0â�Ô�ë�ÎNà�Ô/Ð�Ô2Ú�à�Ï$è>à�Ñ�Þ;å�Ô%Ô0ÒDÞ
Ý�Õ�Õ%Ô�Þ3Þ�Ü�Ý�×�× ÛpÝ�Þ3Ô%è
Ù-ÒÂÚ�à�Ôoè!Ô#ã$Ô%×�Ï	Ö$Ð'Ô0Ò�ÚTÏ!Ü'Þ�Ô#ã$Ô2â�Ñ%×Õ�Ï	Ð/Ö�×�Ô2Øiâ�Ô�Ñ%×���×�Ù�Ü:ÔoÑ2Ö!Ö�×�Ù�Õ%Ñ0Ú�Ù�Ï	Ò�Þ������3ëFÎNà�Ô�ÚqÏ!Ï!×SÞIÝ�Ö!Ö�Ï	â
Ú
Ñ0ã�Ñ%Ù�×�Ñ0å�×�ÔÜ�Ï	âAûÂÖ$â�Ï�ã$Ù�è!Ô�Þ�Ý�Þ,æSÙ-Ú�à/Ú�à�Ô;Ñ�Þ3Þ3Ù�ÞIÚ�Ñ0Ò�Õ%ÔgÜ�Ï^â,Ú�à�Ô;Ô0Ò�ÚqÙ4â�Ôgè!Ô0ã�Ô%×�Ï	Ö!Ð�Ô2Ò!Ú�Ö!â�Ï!Õ%Ô�Þ3Þ0ë�í=Ï^â
Ù-Ò�Þ
ÚqÑ2Ò�Õ�Ô�ßhìgÚ�Ô�×�Ù�Ô2âSû����	�Iß�Ï^Ò�Ô�Ï!ÜnÚ�à�Ô�ÚqÏ!Ï$×�Þ5ÞIÝ�Ö!Ö�Ï	â
Ú�Ù-Ò$Ó�Ú�à�Ô�û�õ�Ô2Ú�à�Ï!è�ßNà�Ñ�Þ/Ü�Ñ%Õ�Ù�×�Ù-Ú�Ù�Ô�Þ/Ü�Ï^â
Ñ2Ý!Ú�Ï^Ð'Ñ0Ú�Ù�Õvã$Ô2â�Ù�Ü�Ù�Õ%Ñ2ÚqÙ�Ï	ÒÇÑ2Ò�è{Õ�Ï!è$ÔXÓ!Ô2Ò�Ô0â�Ñ0Ú�Ù�Ï	ÒÇÑ�Þ�æÔ�×�×�Ñ�Þ]è!Ï$Õ2Ý�Ð�Ô2Ò�ÚqÑ2ÚqÙ�Ï	Ò�ß�Ö!â�Ï3ù2Ô%Õ0Ú
Ð�Ñ2Ò�Ñ%Ó!Ô2Ð�Ô2Ò�Ú,Ñ2Ò�è5Ö!â�Ï	ÚqÏ	Ú}Û!Ö�Ù-Ò$Ó�ë'ÎNà�Ô*à�Ù�Ó	à|è!Ô%Ó	â�Ô%ÔÏ!Ü,Ñ0Ý�ÚqÏ	Ð�Ñ2ÚqÙ�Ï^Ò�Ù-Ò'ã$Ô2â�Ù�Ü�Û�Ù-Ò$Ó'Õ%Ï	â
â�Ô%Õ2Ú�Ò�Ô�Þ3Þ
Ù-ÐTÖ$â�Ï�ã$Ô�ÞÉÞ�Õ�Ñ%×�Ñ2å�Ù�×�Ù4Ú}Û Ï$Üsû;ßÃÞIÖ�Ô�Ô%è$Þ Ý�Ö è$Ô0ã$Ô�×�Ï^Ö!Ð�Ô2Ò�ÚsÑ0Ò�è$ß�Ñ%×�Þ�Ï$ß�â�Ô��	Ý�Ù-â�Ô�Þu×�Ô�Þ3Þ
Ð�Ñ2Ú�à�Ô2Ð�Ñ2ÚqÙ�Õ�Ñ%×!Ú�â�Ñ�Ù4Ò�Ù-Ò$Ó/Ü�â�Ï	Ð�Ú�à�ÔFÝ�Þ3Ô2â3Þ2ë
ÎNà�Ô'è!Ô0ã�Ô%×�Ï	Ö!Ð�Ô2Ò!ÚhÐ'Ô0Ú�à�Ï!è!Ï$×�Ï!Ó�Û~Ñ%è!Ï^Ö!ÚqÔ%è�å�Ûbû�Ù�Þfå�Ñ�Þ�Ô�è�Ï	Ò�Þ
ÚqÔ2Ö!æSÙ�Þ�Ô\â�Ô�Ü�Ù-Ò�Ô2Ð�Ô2Ò!Ú�� �!��ë

úÂà�Ù�×�Ôzè$Ô0ã$Ô�×�Ï^Ö�Ù-Ò$Ó{Ñ Þ�Û�Þ
ÚqÔ2Ð å^Ûrâ�Ô%Ü:Ù4Ò�Ô2Ð�Ô2Ò�Ú�ßoæSÔzÞ
ÚqÑ2â
Ú�Ü�â�Ï	Ð Ñ0Ò{Ñ0å�Þ
Ú�â�Ñ%Õ2Ú�Ü:Ï	â
Ð'Ñ�×
Þ
Ö�Ô%Õ�Ù�Ü:Ù�Õ�Ñ2ÚqÙ�Ï^ÒXÑ2Ò�è[Ú�â�Ñ0Ò�Þ�Ü:Ï	â
Ð Ù-Ú�Ù4Ò�ÚqÏÈÑ0ÒvÙ-ÐTÖ�×�Ô0Ð'Ô0Ò�Ú�Ñ0å�×�Ô�Ö$â�Ï!Ó	â�Ñ0Ð å�ÛXÑ�Ò�Ý!ÐTå�Ô2â�Ï!Ü
Õ%Ï^â:â�Ô%Õ0Ú�Ò�Ô�Þ3ÞvÖ!â�Ô�Þ�Ô0â
ã�Ù4Ò$Ó ÞIÚ�Ô0Ö�Þ3ßmÕ�Ñ%×�×�Ô�è#"
$ %	&(')$�*+$!'-,(.�ëiì Ü:Ï	â
Ð'Ñ�×�Þ
Ö�Ô%Õ�Ù�Ü:Ù�Õ�Ñ2ÚqÙ�Ï^Ò Ù�ÞXÑ

5

/10
2�3)4
/10
26587�0:9;/1<	=-4:9><-?@283A4CB 4�DFE)5(B 4�=HGA4
3A0�I-5�<FE�BJ<-?K0ML6NA0�BO2@<-?6PRQOSTQU264
/WVYX[Z�\]0
QUNT4:7�58?O587�0
2658<^Z_5�Q>B 4�N	B�4�Q�4�Z�264:=`G^SH0aQb4
2c<-?d/1<	=^E)9�4�Qbef7:0�989�4:=`ghGTQi28B�0:7�2kjl0�7
3)5(Z)4mQ
VnghZ
0
GoQU2�B 0�7
2Y/p0�7
3)5(Z)4J4
Z)7�0
NTQiE)9�0
264�Q>Qi2�0�2�4q0�Z)=r<^NA4
B�0
265�<FZAQl<-?Y2�3)4RQUNT4:7�58?O587�0
2658<^ZC0
Z)=r0mQl0
7:<^Z)7:4�N	2s5�QtQb5u/1589�0
Bv26<w0x/1<	=FEA984y<FBz0xNA0:7�{)0!|-4^V

} 0�7
3~/p0�7
3)5(Z)4�5�QzE�Z)5�DFE)4�9 Sf5�=	4
Z	2�5�?[5�4:=wG�S15(26Q�Z)0�/p4�VF��3)4�QU260
264�I)0
B�580�GA9�4�Q�<	?s2�3)4�/p0�7
3)5(Z)4
0
B�4q=-4:7:9�0
B�4:=`5uZ�2�3)4����+��� �+���o�z��7:9�0
EAQb4q0
ZA=r5uZA5u26580�985�Q�4�=r5(Z�283)4a����� ��� �+�o� �z����� �Y�
7:9�0
ETQ�4^V~�v3)4RI-0�B 5�0
GT984mQ�5(ZC\�0
B�4�Qi28B�<FZ-|-9 SC2�S	NA4�=�G�S_7:<^ZAQU2�B�0:5(Z)5uZ)|aN	B�4:=-587�0
264�Q><-?W2�3)4
���z���+��� �+����7:9�0
EAQb4^V:gn9�9	2(S	NT4�Qt5uZ�\�0�B 4�B�4
N	B�4�Qb4
Z�264:=RG�S�Z)<^Z)�[4�/wN-2(SCQ�4
2[Q
V

�v3A4Y<^NA4�B 0�2�5�<FZAQ�<-?x2�3)4�/10:7
3A5uZ)4W0�B 4W=	4�?[5(Z)4:=�5(Zc2�3)4k�Y�����������u�Y���r7�980�EAQ�4�V�X[Z;283)5�Q
NA0�NA4�B��n4dEAQ�4 } I-4
Z	2y\�4���264
ZAQb58<^Z�<	?�283)4d\�j>4
2�3)<	=oVt�v3A4�<FNT4
B�0
2658<^ZAQ15(Z } I)4
Z�2h\�0
B�4
=	4mQ�7�B 5(GA4�=p0�Q�|FE)0�B =-4:=1Qi2�0�2�4�/p4�Z�26Q�<-?�283A4�?[<FBU/M�y���o�z y��¡-¢v£-¤W��¥����J¦)¢o¤A§W����¨�©�ª+4
B�4
¡	¢�£-¤�5�Ql0RQU260
264�N-B 4�=	5�7:0
264�e~0�Z)=«¦-¢s¤A§a5�Ql0K\¬Qi2�0�2�4�/p4�Z�2iVnXU?d¡-¢v£-¤_5�Q>Q�0�2�5�Q�?O584�=-e+2�3)4
GA4�3)0�I)58<^E�BY<	?w2�3)4�|FEA0
B�=	4:=<^NA4�B 0�2�5�<FZAQW7�<FBUB 4mQUNT<FZ)=)Q�2�<@2�3)4�4
�)4�7
E�265�<FZq<	?+283A4:5(BpGA<	=-584mQ
V
ª+<F�n4�I)4
Bbew5�?k¡	¢�£-¤«5�Q�?O0:9�Q�4�en2�3)4
Za2�3)44
�A4:7
E	2�5�<FZ`<	?f2�3)47�<FBUB 4mQUNA<^Z)=	5(Z-|�<FNT4
B�0
2658<^Z�5�Q
QUETQUNA4�Z)=	4�=-e	56V 4�V em2�3)4y<FNT4
B�0
2658<^Z~5�Qz5(Z+�n0:5(2�5(Z-|n/p<-=	4xE�Z�26589A¡	¢�£-¤~GT4:7:<^/p4mQv2�BUE)4^V

\HQU260
264
/14
Z�2[Q+2�3)0
2��n4W0
B�41ETQ�5(Z-|d26<�=	4mQ�7
B�5(GA4W0kQU260
264Y7�3)0
Z)|	4W5uZ><FNT4
B�0
2658<^ZAQn3)0�I-4�2�3)4
?[<-989�<F�n5(Z-|�QOS	Z�2�0���®

�°¯�¯²±d³ ¯d´�µW�8¶�¡	¢v£)¤���¥����#��·_���-�y�¸��¹¸����¨Jµ)��·�º)��¹»µr±d³�³�� µ
��·f¼u¼^��¹�µF�+��½¿¾rÀ«¥������»¡	¢v£)¤���¥����#������¨ µH©�©8©

�v3A4»?[5(BbQU2�283�B�4:4¸7:<^ZAQU2�BOEA7
2[Q`ÁÂ0mQbQb5�|FZ	/p4�Z�26eq7:<FZA=	5(2�5�<FZ)0�9�Qi2�0�2�4�/p4�Z�2a0�Z)=ÃQb4:DFEA4
Z�26580�9
7:<^/wNT<-Qb5u2658<^ZKL6EAQ�4�=@<^Z)9 S5uZ@B 4�?[5(Z)4
/14
Z	26Q�P+3A0�I-4d283A4;Qi2�0�Z)=	0�B =>/p4�0
Z)5(Z-|TV��v3)4kB 4�/p0�5uZ)5(Z-|
7:<^ZAQU2�BUE)7
2[Q�0:9�9�<F�RETQt2�<~/p<-=	4:9TZ)<FZA=	4
264
BU/15uZ)5�QU265�7n<FBtNA0
B�0:9�9�4:9AGT4
3)0!I-5�<FE�B�5uZf0+QiNA4�7:5�?[5�7:0
265�<FZsV
Ä QUEA0:9�9 SC2�3)4ÅS_0
B�4ZA<F2�5u/�NA9�4
/14
Z	2�0�GA9�4�Qb<�2�3)4ÆSM3)0�I-4q26<�GT4B�4:?O5uZ)4�=CL6B�4
NA9�0:7�4:=	P��n5(283
4
�A4:7
E	2�0�GA9�4�7:<FZTQU2�BOE)7�26Q�0�2vQ�<^/p4�NT<	5(Z�2�<	?sN	B�<�|^B 0�/C=	4�I)4:9�<FN	/14
Z	2UV^�v3)4h=-4
260:5�984�=�=-4�Qb7
B�5uN-2�5�<FZ
<	?o2�3)4x\QU260
264
/14
Z�2[Qt7:0
ZwGA4y?[<^E�Z)=�4:9�Q�4
�y3)4�B 4wÇ È!É�V

�v3A4�\/14
2�3)<	=pN	B�<^I-5�=	4mQtEAQt�n5(283p/14:7�3)0
Z)5�QU/�Q�?O<FB�Qi28BUE)7�28E�B�5(Z-|�283A4+Q[STQi2�4�/«0
B�7
3A5u264:7�28E�B�4
G^SH/1<	=^E)9�0
B�5�Qb0
2658<^ZsVpgÊ/p<-=FE)9�4r5�Q=	4mQ�7
B�5(GA4:=H0�Q0�/10:7�3)5(Z)4^V���3)4�/1<	=FEA984mQ7:0�Z_GA4
7:<^/wNT<-Qb4:=ËG�SÌ/p4�0
ZAQÍ<	?#Q�4�I)4
B�0:9�/p4�7
3)0�Z)5�Qi/1Q�N	B�<^I-5�=	5(Z-|Ì=-58?O?[4�B 4�Z�2Î?O<FBU/1QÂ<	?
4
ZA7:0
NoQUE)9�0
265�<FZsV�Ï�<FBf5(ZAQi2�0�Z)7:4me�5�?+283)4�/10:7�3)5uZA4cÐ_X�Ñ~Ð�Ò ÄnÓ�}�Ô 283)4d/10:7
3A5uZ)4 Ó 2�3)4
Z0:9�9
I-0�B 5�0
GT984mQ@0�Z)=«<FNT4
B�0
2658<^ZAQ�<	? Ó 0�B 4JI-5�Q�5(GA9�4a5uZ_ÐyV+ª+<F�n4�I)4
Bbe�26<`|FEA0
B�0
Z�264:4�5uZ	2�4�BOZ)0�9
7:<^ZAQ�5�QU264
ZA7ÆS;LO0�Z)=Y3)4�Z)7:4�5uZ)=-4
NT4
Z)=-4
Z�2�I-4
B�58?O587�0
2658<^Zc0
Z)=WB 4�EAQ�4:P�<	? Ó es283)4w/10:7�3)5(Z)4pÐJ7�0
Z
7
3A0
Z-|	4�2�3)4cI-0
B�5�0
GA9�4�QY<-? Ó <FZ)9 SKI)580�2�3)4�<FNA4�B 0�2�5�<FZTQf<-? Ó V�X[ZK0�=	=	5(2658<^ZAe�2�3)4;5uZ	I)0
B�580�Z�2
N	B�<FNT4
BU2�5�4�Qt<	? Ó 0�B 4y5uZA7:9(E)=	4�=w5(Z�26<�2�3)4y5uZ	I)0
B�580�Z�2s<	?�ÐyV

�z<c589�9(EAQU2�B 0�2�4pGA0mQ�5�7~N	B�5(Z)7:5(NA9�4�Q+<	?�QiNA4�7:5�?8SA5(Z-|d0
Z)=WB 4�?[5(Z)5uZ)|d5uZd\yesZA4
��2t��4�N-B 4mQ�4�Z�2�<^E�B
0
N-N	B�<	0�7
3+26<�?[<FBU/10:9TQ�4�BUI-5�7:4��[<^B 5�4
Z�264:=�=	4!I-4:9�<FN-/p4�Z�2iV

Õ�Ö�×+Ø�Ù)ÚJÛvÜ�Ý�ÞAÙFß�àUáAÞ)âÅã�Ù)àUÞ)ä�å�ÞAæKç;ÞFß�Þ)ÜiØvèxÚJÞ)ä�å

é 4�QU260
BU2k2�<«?[<^BO/10:9�58ê�4R283A4RÒ�S	B�0a=	4!I-4:9�<FN-/p4�Z�2kG^SH7
B�4:0
265(Z-|M0�QiNA4:7�58?O587�0
2658<^Z`NT0
2�2�4�BOZ
/1<	=	4�989�5(Z-|�0�7�<F/�/wE�ZA587�0
265uZ-|K7:<^/wNT<FZ)4�Z�2iV���3)5�Q1NT0
2�2�4�BOZq5�Q1EAQb4:=�2�3�B <^E-|F3)<^E�2�2�3)4�4
Z�265uB�4
=	4!I-4:9�<FN-/p4�Z�2kN	B�<	7�4�QÆQ
Vp�v3)4RNA0�28264
BUZ«5�Q@7:0:9�9�4:=rgyGoQU2�B 0�7
2�Ð�<F/�/�E�Z)5�7:0
265(Z-|CÐ�<^/wNT<FZ)4�Z�2
L6gnÐ�Ð�PÆV�g+Ð�ÐC7�<FZAQb5�Qi26Q~<-?y0Yë
{A4
BUZ)4:98ìmet56V 4^V e�283A41N-B <�I-5�=	4:=�?�E�Z)7
265�<FZ)0�985(2(STet7:0�989�4:=�ghGTQi28B�0:7�2

6

í�î:ï�ð
ñAï8î�ò�ó(ô-õ÷ö>î:ð�ø)óuôAùûú�ü+ítü�ölýiþÿî�ô�� î��:ð������wñ�ôAó8ð�î
ò6ó	�^ô�
��î����Tù����mþ�ó�� ù�� þ�ò�ø)ù
ð�������ñ�ô)ó�ð:î�ò�ó��FôCð�ø)î
ô	ô)ù:ï����-ó�î�
�øAó8ð�ø��-î
ò6îî���ù��Uñ �!�Aï�ó8ù��Jò"��î�ô���ð��^ô#�Uñ��pù��%$��&���Âò�ø)ù
ð������'�Fô)ù�ô�ò[þ�ð:î�ï8ï�ù��nü)('�iò	��î:ð�òoí*������ñ�ô)ó�ð:î�ò�ó(ô-õ+ölî�ð
ø)ó(ô)ùyú�ü+í�ölý+�

, øAù-�.�Tù:ð:ó�$[ó�ð:î�ò�ó��Fô/�!$dî
ôCî0('�iò	��î:ð�òYð�������ñ�ô)ó�ð:î�ò�ó(ô-õ�ð������'�Fô)ù�ô�òYú6üní�í�ýcð��Fô'��ó��Uò��1��$
���Tù���î
ò6ó	�^ô#�2�3�Aù�ð:ó�$	4Aó(ô-õ�ü+í�öÿî�ô���ü+ítü�ö5� , ø)ù)�-î0� ó�î�(Tï8ù6�27 8!9;:=<�> ?�8~î�ô��A@�B�C :D<�>�?#8E�A���	ù�ï
ò�ø)ùcó(ô �-ñ�ò+î
ô��5�Fñ�ò��	ñ	ònð�ø)î
ô	ô)ù:ï���� , ø)ù;ù
ô��)óF�&�Fô �1ù
ô	ò�Tï8î�ð:ù6����ù�GFñAù��Uò��A$H����ò8øAùI��ù0�.�)ó8ð�ùJ(�4
î��+��ó8õFô)ó(ô-õRò"��7 8!9;:=<�> ?�8Jî
ô�����ù:ð:ù�óK�)ù��kò8ø)ùL��ù��UñAïuò��M�!$pò�ø)ùN��ù0�.�-ó�ð:ùO�-ó�î�@#B6C :=<�> ?�8#�2P+î
ò6î
ò�� î�ô#�&$Où��.� ù��nòQ�~î
ô��R$"������üní�í@î���ù2�S�!�	ù:ï�ï�ù��~î�(D�Uò�� î�ð
ò6ï 4T��UùV��ù��bù��3�-ù�ò8øAù�î0('�Uò���î:ð
òsð��Fô#�iò�î�ô�ò
W�XHY òQ�I�S�!�	ù�ï�ò8øAùkî�('�bù
ô)ð�ùZ��$[�-î
ò6î�þ�óQ� ù�� þ�ò�ø)ùkù����	ò\4�ð�ø)î
ô	ô)ù:ï�� , ø)ù]�-î���ó�î�(Aï�ù��S7 8�9�B�C�î�ô��
@�B�C�9�B�C�î0� ùJ�^ô)ù�^"�Aï�î:ð:ùJ�-î
ò6îA(-ñ�$�$Où��_��óuô�ò6ù��Uô)î�ï�òQ�dò8ø)ù1ü+í�í� , ø)ùA�)î���ó8î0(Aï�ùJ7 8�9�B�C`�iò"��� ù6�hò�ø)ù
�	î�ò�î1� ù�î���$"�����a7 8!9;:=<�> ?�8�� X ò~ó��fñ#�bù��qî6�kî;ò6ù����#��� î�ïE�	î�ò�î��UòQ����î!õ	ù>ó(ôJð:î�ï8ð�ñ)ï�î
ò6óuô-õ@ò�ø)ù
��ù�GFñAóF��ù��L�bù��3�-ó8ð�ù�� , øAùb�-î���ó8î0(Aï�ùZ@�B�C�9�B�CV�iò"��� ù6�+ò8øAùb$OóuôAî:ïc��ù��UñAïuòd�!$yð�î:ï�ð
ñ)ï�î
ò6ó��Fô#�e
yø)ó8ð�øló��
ð��^ô#��ù�GFñ)ù�ô�ò6ï 4��-ñ�òsóuô	ò"�nò8øAùd�^ñ�ò	�-ñ�òsð
ø)î�ô�ô)ù�ï�@#B6C :=<�> ?�8E$�����ò�ø)ù)��ù0�.�-ù0�zð��Fô'�Uñ �1ù����

, øAù/���Aù���î
ò6ó��Fô#�gf�8�h�:�i)j"7 C�f�î�ô��kf#86h0:Tj�f�?!lm�A���-ù:ï�ò�ø)ù%(Tù
ø)î;�-ó��Fñ �-��$>ò�ø)ùn�bù��3�-ó�ð:ù
ð��^ô#�Uñ��pù0��od�Aï�î:ð�óuô)õò�ø)ùp��ù�G^ñ)ù��iò~ò"��ù�q)ù�ð
ñ�ò6ù�î5�bù��3�-ó8ð�ù@î�ô���� ù�î��	ó(ô-õqò8ø)ùp� ù6�Uñ)ï(ò��r��$fóuò��
ù�qAù:ð
ñ	ò�ó��Fô=� , ø)ùb���Tù���î
ò6ó	�^ôLj�f!?�lr�S�!�	ù:ï��[� ù�î��	ó(ô-õdò8ø)ùJ��ù0�.�)ó8ð�ùR��ù�GFñAù��Uòs(�4�ü+í�í%$"������ò�ø)ù
ó(ô �	ñ�ò�ð�ø)î
ô	ô)ù:ï�� , ø)ùZ��4����pù�ò	��ó�ðb���Aù0� î�ò�ó��FôMij"7 C	fM
d��ó(ò�ù6��ò�ø)ùt��ù��UñAïuò��E�!$�bù��3�-ó�ð:ùA���&���-ó���ó��Fô
ó(ô�ò"�pò8øAùE�Fñ	ò	�-ñ�ò�ð�ø)î
ô	ô)ù:ï�� , ø)ù6��ùe���Aù0� î�ò�ó��Fô#�2�.�Aù�ð:ó�$	41ò�ø)ù[�:ð������wñ�ôAó8ð�î
ò6ó	�^ôS
d��î��!�Aù����+úUóQ� ù�� þ
ü+í�ölý=�Tî��Uò=��$oüní�í�

X ô�ò8øAùHó(ô)óuò6ó�î:ïN�.�Aù�ð:ó�$[ó�ð:î�ò�ó��FôAþ;ünítü�ö ó��u�A���	ù�ï8ï�ù��¸î�(D�Uò�� î�ð
ò6ï 4v(4 ò�ø)ùw���Aù0� î�ò�ó��Fô
<6?�x <�B�x ?�C	f=y6
�øAó8ð�øpô��Fô�^H�	ù�ò�ù0�H�1óuôAó��iò�ó�ð:î�ï8ï 4Yî��_�bó�õ^ô#�tò�ø)ù)�-î0� ó�î�(Tï8ùe@#B6C�9!B6Coù:ó(ò�ø)ù���ò�ø)ùd��ù��iñ)ïuòz��$�î
�UñAð:ð:ù6�_�_$�ñ)ïZ��ù0�.�)ó8ð�ù{�!��� �-ó��bó	�^ô|���>îu$[î�ó8ï(ñ ��ù�� , ø)ù��1î:ð
øAóuô)ù�}s~`~ÿú"�!� ù6��ù�ô�ò�ù��%(Tù:ï���
�ý
�.�Tù:ð�ó	$Oó8ù6�vò�ø)ù�	ù��bð���óF(Tù��e(Aù�ø)î0�-ó��Fñ���ó(ô#�iò�î�ô�ò�ó�î
ò6ù���$����vò8ø)ùV�#����ó(ò�ó��Fôpð:î�ï8ð�ñ)ï8î�ò�ó��Fôpð:î6��ù)�Uò�ñ���4T�
���z����� ���L�z���
�����z� ���'���!�
� �0�_���������6��� �;�6�����0����� � ���������0���+�\���+�
� �!�����z� �����
� �0�_���������d��� ���'���6�#� �T���¡
� �0�6���!�6� �T�'�#�6�#� �T�6�/
���+� ���;�0���2���!¢�� �#� �T���¡
���+�\���+�����!¢c� �����T�6�
� ��� �D� ���6� � �T�=� ¢*�
� �0�_���������6��� �;�6���!� £E� ���6���z� ���6� �T�6�#��� �2¤ ¤
���+� ���;�0���6�����+�\�6���!� £e�!¢�� ���z� �����!¢�� �#��� �
¢`�'�'���T�D� ¢`�D�
¥ ��¦���§s¨	� � ¥ £�T�'���!�=�R� �0�_���������`£e� ���'���6�#��� �
�'�T�'�
� �;�_� ���0���2� �6� ���'�#�6�����T�6�]©�ª�� ���'�������z� ��«
�'�T�z¬
¨ ¥ �;2£�T�'���!�=�R���0�\®�� �0�_���������`£e� ���6���z� ��¯�

®�� �;�6�+��£E� ���6���z� ��¯
�'�T�'�
� �;�6�+��� � �0�+� �������2� £[� �;�_���;�0���6� � ���6���z� �
�'�T�z¬

����° ����° �0� ¥ £�T�'���!�D�R�0�0�\®�� �;�6�+��£E� ���6���z� ��¯�
®\�����K���+��£[�!¢c� ���z� ��¯

�'���'�
���D¢*� ���
���+�\�6���!� �

�!¢c� �����T�6�]©�ªQ�!¢c� ���z� �6� �!¢�� ��±0�c� ��«
¢`�
���+�\�6���!� £e�!¢�� �#±��c� �
�'�T�b¤ ¤
� �0���+��� £E� �T�6�#��� �
�'����¬

§s¨\� � ¥ £�T�'���!�D�R�0�0�\®K���+�\�6����£e�!¢�� �#��� ��¯!
®K����� � �������s£[�!¢c� ���z� ��¯
�'���'�
����� ���������6� ���+�\���+��� £�����\�6�+��� �!¢�� �#��� �
�'����¬
¥ �+¦&��¨ ¥ ��2£�T�'���!�D�R�0�0�\®K���+� � �������s£e�!¢�� ���z� ��¯
�'���'�
����� ���������d� £e�!¢�� �#��� �
�'���
�'�T�

7

²z³#´Aµ#´�¶ ·*¸!³�¹�º_´�º�»Fµ�·�³�´]¼T½�¾�¹J¿�´;À!´�Á�Â�¸!ÃS´0µ ·d¹�¾&´t·	³#´]Ä"Å µ�Æ�·Q»�Â�µ�¹�Ás¹0µ�¿r·	³�´A¸#Á�¹�·QÄ�Â�¾HÃAÇ�È'¹�º_´�¿
¿�´�Æ�Â�Ã�¸'Â!º&»K·Q»	Â�µ=É�ÊQµtÂ�Å�¾s¹�¸!¸�¾&Â�¹�Æ0³R·	³�´�½tÆ�Â�¾.¾�´6º.¸'Â�µ�¿�·QÂE·	ËeÂRÆ�Â�µ'º&´�Ì�Å�´�µ�·'¾�´�Ä�»Kµ�´�ÃA´�µ ·�º3·"´0¸'ºzÍ
Ä�»K¾_º.·�¾&´�ÄH»Fµ�»Kµ!Î]·�³�´S¹�Á	Î�Â�¾&»K·	³ ÃA»�Æ�¸#¹�¾.·sÂ!ÄcÏeÐ*ÐVÑ�»�É ´�É!ÏEÐcÏ[ÒLÑT¹�µ#¿A·�³�´0µZ»Kµ ·�¾�Â!¿�Å�Æ�»Fµ!Ît·�³�´E¸#´�´0¾
´�µ�·"»K·"»�´�ºL¿�»�º.·�¾�»KÈ�Å ·Q´�¿¡Â�À!´0¾M·�³�´{Î�»\À!´�µÓ¸'Á	¹0·"ÄHÂ�¾.ÃbÉe²z³#´�¾�´6º.Å�ÁK·bÂ�Ä]·�³�´{ÄH»F¾_º.·A¾&´�ÄH»Fµ#´�ÃA´�µ ·b»�º
Î�¾&¹�¸!³�»	Æ�¹�Á�Á ½�¾�´0¸�¾&´�º&´0µ ·Q´�¿�»Fµ�ÔT»\ÎDÉ Õ#É

ÔT»	Î'É Õ#É�Ô'Å µ�Æ0·"»�Â�µ#¹�Á#¿�´�Æ�Â�Ã�¸#Â�º&»K·"»�Â�µSÂ�ÄDÏEÐcÏ)Ò
ÏEÐcÏ[ÒÖ»�ºI¾&´�Ä�»Kµ�´�¿uÈ�½n»Kµ ·	¾&Â�¿�Å�Æ�»Kµ!Îu·�³�´�º&´0¾.À�»	Æ�´{¿�»K¾�´�Æ�·QÂ�¾rÃAÂ�¿!´�Á�Á	´�¿gÈ�½%·	³�´{Â�¸#´0¾�¹0·"»�Â�µ
×�Ø Ù�Ú�Û�Ü	Ý�Ù Ëd³�»�Æ�³{Â�¾&Æ�³�´6º.·�¾�¹0·"´6ºR·�³�´�´�¶�´�Æ�Å ·Q»�Â�µ5Â!Ä)·�³�´JË³�Â�Á�´J¸'Â!º_»F·Q»	Â�µ�»Kµ!Î�º&´0¾.À�»	Æ�´�Ñ*¹0µ�¿1·�³�´
Â�¸'´�¾&¹�·Q»	Â�µ#º ×#Þ#ßdà�Ú=ßdá â�à Ñ)¹0µ�¿�ã á ä ÃSÂ!¿�´�Á	Á�»Fµ�ÎN´0¶�´�Æ0Å ·Q»	Â�µ�Â!Ä�·	³#´pÆ�Â�¾.¾&´�º.¸'Â�µ�¿!»Fµ�Î{º_´�¾3À!»�Æ�´
Æ�Â�Ã�¸'Â�µ�´0µ ·�º�É

åd¹6º&»�Æ�¹�Á�Á ½mËe´�¿!´�Æ�Â�Ã�¸'Â!º_´uÏEÐcÏ)Òæ·QÂnÃSÂ!¿�´�ÁIº.·Q¹;Î!´�º{Â!Ä�·	³#´u¸#Â�º&»K·"»�Â�µ�»Kµ!Îçº_´�¾3À!»	Æ�´�É
ÏE¿�¿!»F·Q»	Â�µ�¹�Á�Á ½'Ñ1Ëe´è»Fµ ·�¾&Â�¿�Å#Æ�´ç·	³#´çÀ�¹�¾&»	¹0È#Á�´�º�·	³#¹�·{ÃAÂ�¿�´�Á�¾�´6º.Å�ÁK·�º/Â�È�·Q¹�»Kµ�´�¿é¹0·5·�³�´6º&´
»Kµ ·"´0¾HÃA´�¿!»	¹0·"´�º.·Q¹;Î�´6ºAÄ"¾�Â�Ãê·�³�´MÆ�Â�¾.¾�´6º.¸'Â�µ�¿!»Fµ!Î5º&´�¾3À!»�Æ�´IÆ�Â�Ã�¸#Â�µ�´�µ�·Qº0É�Ï)·d·�³�»�º�¾&´�Ä�»Kµ�´0ÃS´0µ ·
º.·Q´�¸DÑz·�³�´6º&´]À!¹�¾&»�¹�È#Á�´�º�¹0¾�´tµ�Â�µ�Ç�¿!´�·Q´�¾.ÃS»Kµ�»�º.·Q»	Æ�¹�Á�Á ½1Å ¸#¿!¹�·Q´�¿1»FµI·	³#´]Â�¸#´�¾&¹�·Q»�Â�µ ×#Ø Ù�Ú!Û;Ü	Ý#Ù ÉTë{´
ÃAÂ�¿�´�ÁMµ�Â�·OÂ�µ#Á ½ìº3Å�Æ�Æ�´�º+º&Ä�Å#Á�´0¶�´�Æ0Å ·Q»	Â�µèÂ�ÄL·�³�´/»Kµ ·Q´�¾.ÃS´�¿�»�¹�·Q´nº3·"¹�Î�´�ºNÈ�½ç·�³�´/º_´�¾3À!»�Æ�´
Æ�Â�Ã�¸'Â�µ�´0µ ·�º2È�Å ·s¹�Á�º_Â]¸#Â�º_º&»KÈ#Á�´RÄ�¹�»	ÁKÅ ¾&´�º�É�ÒLÂ�¾&´�Â À!´�¾_Ñ#Ëe´R¹�ÈDº.·�¾�¹�Æ�·QÁ ½JÃSÂ!¿�´�Á�´0¾H¾&Â�¾*¾&´�Æ�Â�À!´0¾Q½
ÍZÅ ¸#Â�µJ¿�´0·"´�Æ�·Q»Fµ�Î]¹�µZ´�¾.¾�Â�¾&Ñ#·	³#´�º_´�¾3À!»	Æ�´E¿!»F¾&´�Æ0·"Â�¾*Æ�¹�µA¾&´�·�¾Q½JíQÅ ¸]·"ÂS·	³�´[¸�¾&´�¿!´�Ä�»Kµ�´�¿Rµ Å Ã�È#´0¾
Â�Äc¹�·�·"´0Ã�¸!·Qº&î�·QÂA´0¶�´�Æ0Å ·"´E¹eÆ�´0¾H·Q¹�»Kµbº.·Q¹;Î�´EÂ�Ä�·�³�´Eº_´�¾3À!»	Æ�´�É�ïEÂ�Ë[´;À!´�¾_Ñ#»	Ä�´�¾.¾�Â�¾�¾&´�Æ�Â À!´�¾�½bÄ�¹�»	Á�º_Ñ
·�³�´Sº&´�¾3À!»�Æ�´R¿�»K¾&´�Æ�·QÂ�¾*·Q´�¾.ÃA»Fµ�¹0·"´6ºV·	³�´Sº_´�¾3À!»	Æ�´R´�¶�´�Æ�Å ·Q»	Â�µZ¹0µ�¿t¾�´0·	Å�¾Hµ#ºV·�³�´R´�¾.¾�Â�¾d¹�º*·	³#´�ÄH»Fµ�¹�Á
¾&´�º.Å#ÁF·3É=²z³�´R¾�´�Ä�»Kµ�´�¿Mº3¸#´�Æ�»�Ä�»�Æ�¹�·Q»�Â�µIÂ�Ä`·	³�´RÏeÐ*Ð{ÍMÏEÐ*ÐEð�»Kµ#º.·Q¹�µ ·Q»�¹�·Q´�¿ZÄ�Â�¾V·�³�´�¸#Â�º&»K·"»�Â�µ�»Kµ!Î
º&´0¾.À�»	Æ�´d»�ºz¸!¾�´6º&´0µ ·"´�¿�»Kµ�Ô�»\Î'É ñ'É

²z³#´5º_´�Æ�Â�µ�¿�¾�´�Ä�»Kµ�´�ÃA´�µ ·R·�³�¹�·RËe´p¸'´�¾&Ä�Â�¾HÃòÃAÂ�¿�´�Á�ºZ·�³�´pÃA¹�¸!¸#»Kµ!ÎgÂ!ÄR·�³�´OÄ"Å µ�Æ0·"»�Â�µ�¹�Á
¿�´�Æ�Â�Ã�¸'Â!º&»K·Q»	Â�µ�»Fµ�·"ÂZ·	³�´tÎ�»\À!´�µr·Q¹�¾�Î�´0·c¸'Á	¹0·"ÄHÂ�¾.ÃbÉ=ë{´A»Kµ ·�¾�Â!¿�Å�Æ�´AÆ�Â�Ã�Ã�Å µ�»�Æ�¹0·"»�Â�µZËe»K·	³Z·�³�´
º&´0¾.À�»	Æ�´çÆ�Â�Ã�¸'Â�µ�´0µ ·�º�»Kµ ·"Âè·	³�´kº.¸#´�Æ�»�Ä�»�Æ�¹0·"»�Â�µêÂ!Ä5·	³#´çº&´0¾.À!»�Æ�´ç¿�»K¾�´�Æ�·QÂ�¾�ÉM²z³�´çº_´�¾3À!»�Æ�´
Æ�Â�Ã�¸'Â�µ�´0µ ·�º�¹�¾&´/º3¸#´�Æ�»�Ä�»�´�¿ç¹�Æ�Æ�Â�¾&¿�»Kµ!În·"Â|·	³�´Ó¸�¾&Â�¸#Â�º&´�¿n¸#¹0·	·Q´�¾.µmÏEÐ*ÐÉt²z³�´¡º_´�¾3À!»�Æ�´
¿�»K¾&´�Æ�·QÂ�¾p¸'Á	¹�½'ºLµ�Â�Ëó¹-¾&Â�Á�´uÂ!ÄM·	³�´%º_´�¾3À!»	Æ�´ÓÆ�Â�µ'º.Å ÃA´�¾OÄ�Â�¾1·	³�´Óº&´0¾.À�»	Æ�´gÆ�Â�Ã�¸#Â�µ#´�µ ·�º�É
ôR¹�ÃA´�Á ½'Ñ�»K·Vº_´�µ�¿�º·�³�´R¾&´�Ì�Å�´�º3·Qº)·"ÂI´�¶�´�Æ�Å ·Q´R·�³�´bº&´�¾3À!»�Æ�´6º¾&´�Ì�Å#»F¾&´�¿IÄ�Â�¾·�³�´tÆ�Â�¾.¾�´6º.¸#Â�µ�¿�»Kµ!Î
º.·Q¹;Î!´�º*¹0µ�¿�¾&´�Æ�´�»KÀ�´�ºc·�³�´eÂ�È�·Q¹�»Kµ�´�¿�¾&´�º3Å�ÁK·Qº0É�¼�´�·=Å'º*Â�ÈDº&´�¾3À!´·�³�¹0·z¹�·=·	³�»�º�¾&´�Ä�»Kµ�´0ÃS´0µ ·zº.·Q´�¸SËe´
¾&´�¸#Á�¹�Æ�´êµ�Â�µ#Ç�¿�´0·"´0¾HÃA»Kµ�»�º3·"»�ÆvÅ ¸#¿!¹�·Q´�ºw·QÂõ·�³�´êÀ!¹0¾�»�¹�È'Á	´6ºöº3·"Â�¾�»Kµ!Î÷·	³#´ì¾&´�º3Å�ÁK·QºöÂ�Ä¡·�³�´
»Kµ ·"´0¾HÃA´�¿!»	¹0·"´Iº.·Q¹;Î�´6º�È�½5¹�º+º&»	Î�µ�»Kµ!Î�·�³�´�Ãê·	³�´ZÀ!¹�ÁKÅ�´�ºRÂ�È�·Q¹�»Kµ�´�¿pÄ"¾�Â�Ãì·�³�´ZÆ�Â�Ã�Ã�Å µ�»�Æ�¹0·"»�Â�µ
Æ�³#¹�µ µ�´�Á�º0É ²z³�´)Î�¾&¹�¸!³�»�Æ�¹�Á#¾�´0¸�¾&´�º&´0µ ·Q¹�·Q»	Â�µAÂ!Ä=·	³�»�º`º.·Q¹;Î�´)ÄHÂ�¾�·�³�´2¸#Â!º_»F·Q»�Â�µ�»Kµ!ÎSº�½'º.·Q´�Ã/»�ºcÎ�»\À!´�µ
»Kµ�ÔT»	Î'É øDÉ

8

ù�ú'û�ü ýTú�þ2ú'ý#ÿ��������
ù�ú'û�ü ýTú��	�����

���ùzü �����ú��
������� ������� ��� ��� ��!�"�#�$ % � #�&���'(% "�&*)))
ü ý�
���ùzü ��ý�ÿ
������� ������� ��� ���*+ �Tú'ù�
�ü ��ú-,
!�".#�$�% � #�&��.'(% "�&*+ ��/�/0�1,)))
ü ý�ü ÿDü ��6ü � �Tÿ=ü /*ý
������� ������� ��� ��� ��!�"�#�$ % � #�&���'(% "�&*+ 2 ��3 � û���4�Tú5 5�6
/07'ú'ù8�TÿDü /`ý9�
��#��:��;1�<� = �>2 6
� �?"�$@2 6
$?AB2�Tú���ú��=ÿ ������� ������� ��� ���@2 3��ÿ�CTú'ý
!4".#�$ % � #�&��.'(% "�&*+ 2 ÿ'ùEDTúú'ý�3�F

���>2 6
% GH�02 6
".% &>2 6
$�� � ���I=KJ.�?2�Tú���ú��=ÿ !�".#�$�% � #�&��.'(% "�&@2 ÿDù�D�úÿ�CTú'ý

ü û ������� ������� ��� ���@2 ��3ÿ�C�ú'ý
�����<� � ��� � ��� ���*+ 2 3E�ú�����ü û �����<� ����� � ��� �I�>2 3E�ÿ�C�ú'ý
$.A4$�"�=K"L+ + 3E� � 38�Tÿ?�EMKNO3�� � ý�ü ��POFü û*3E� � ú �4".% QK$?A�$�"4=K"�R82 /TSÿ�C�ú'ý
������� � ����� ��� ���*+ 2 D�úú�����ü û*3E� � ú �4".% QK$?A4$?"4=K"�R�2 ù�ú���/U
V,

Q(#W��$?A@X@Y�Rÿ�C�ú'ý
#W��$.AH+ 2*#W��$?A MO�ú����Tú
Z�J���$�"�=K"�� ������� ������� ��� ���*+ 27�/� � û��cü � � �[����ú'ýE3

ú�����ü û �����<� ����� � ��� �I�>2 D�úV6
ú�����ü û �����<� ����� � ��� �I�>2 �;þ@D\6
ú�����ü û �����<� ����� � ��� �I�>2 ��4]^6
ú'ý�3_5 5
!�"�#�$�% � #�&���'<% "�&*+ 2 û4����Túú'ýE3EF

��"�% ����% "4=`�@2�Tú���ú��Dÿ Q�������� ������� ��� ����2 �[���� R ,\6
ÿ�C�ú'ý
J.��=KZ.�I=a� � #4Z.�I=�+ 2LZ�J���$�"4=K" � ü ýE7 � ýzü �@5 5
������� ������� ��� ���*+ 2 ��3ú'ýE3EF

;1��� =`�@2 6
��#I�W��� ��"�$@2 6
ú'ý�3

b�c�d9e f�e�gihThkj0lWm�nOcKo�m4pqm4o r

b�c<d�e s9e�t[m4lvu�c(w�mHx8cayvr(lWc`z�{ r|c(}.o

9

~��[�V���[�����v�8�B�a�W�.���(�����W�����`���4�q�4� �0���1�k�T�k�*���(�����W�����`���4�q�4� ������4���K�����k�T�1���a�L�8�������
� ���<�����

��� ¡�¢I£K¤. ?¥
¦�§�¨�§�©«ª�¬�.® ��¯ � ®�°�±.² ¯ �° ¥ ª9³�´E§kµ

¶<¶�¶K¢�·� � ± ¸ ¡� ¹�� ¢�¡@¥iº�»8¼ µV® ¤4£�¶`�.½ ± ¤�·I£ ± ¢ ¬4.® ¥iº�» ±[¾E¿ ¨ ¼�¼8¤� �Ài¼
ª�Á�§�¾
¿ Â ¢�·� < ±�¸ ¡ ¹�� ¢I¡>¥ ¦ º
ª�ÁE§�¾
¢�·� � ±�¸ ¡� ¹�� ¢�¡*Ã ¥iº�»

§�¨4¦E¿ Â ¢�·� � ± ¸ ¡� ¹�� ¢�¡@¥iº�»
ª�ÁE§�¾
�?½4� £ @Ä�Å�Å �?½ ± ¡ � ± ¤�¢ ¬��®�Æ
¿ Â ºE» ±�§ ¹ ¯ ¶K�?½�� £ ¼8¥>ÇTÈ
ª�Á�§�¾
¢�·� < ± ¸ ¡ ¹�� ¢�¡*Ã ¥ ´E§
§�¨�¦E¿ Â º�» ±[§ ¹ ¯ ¶`�.½4� £ ¼8¥ ³�§�© Ç�É µ ¶ ®W± �.½BÊ@Ë�¼
ª�Á�§�¾
®W± �?½LÃ ¥ ®:± �?½ ÅOÌ
§�¨�¦�§
Í ¤ ¸ � £ Î ¢�·� � ±�¸ ¡� ¹�� ¢�¡*Ã ¥iÏ�Ç ¦ ±�Â4Ð�¿ ¨?Î ©�Ð¨4©§�¾ º

§�¨4¦E¿ Â ¢�·� � ± ¸ ¡� ¹�� ¢�¡@¥ ´�§ À
§�¨4¦E¿ Â ¢�·� � ± ¸ ¡� ¹�� ¢�¡@¥ Ð¨�Ñ
ª�ÁE§�¾
Í ¤ ¸ � £ @Ä�Å�Å ¸4�¸:± ¡ � ± ¤�¢ ¬��®�Æ À§�¾ ºÓÒ Ò

¬4.® � ¯ � ®�°�±.² ¯ �° Ã ¥ Â�Ð¨�¦�§
§�¾ º Æ

�L�@�(���Ô���.�[�Õ��Ö.×[��� �B�W�����`�[������� �L�Ø�|�4���k�i�Ó�*�(�(�B�O����×[�����Ù�����v�|�(��×[�<�4���W�4�v���(���Ú���.���[������� �O�
���[ÛÓ�:���O�K���Ü�<�[����Ýv�`�\�(���Ü�i�IÞ�Û8���Õ���W� � ��ÛÚ� � ������ß0× �8�|�(�E�(���qÛ8�?�W�K�:��ÛÚ�<�������à���1�.�:�4� ×��(���W�`��ÞÔ�a�
� � �|���`�[��Û��âá>���������(�	��� �ã���v�����	�Õ���Ø���(�������.���[�������8�ã�ä���W�å�K�æ���<�����?çÙ�i�å�����è�|× �v�<���4�
Û8�������Ü�����W�é�(�����K�ê�v�[�����(�O�(���4�|�(�.�[� � Þë�W�������W���ã�`���ì�(�����K�ÚíHî�ïð����ÛéíHî�í�ïñ�[�4���O����ò�×����
Û8�������Ü�����W�K�ã�<���ó�i�(�<�����<�(�.�ô×[�õ�|�ì���.������� �(�W���ã�-�.�ö�<�[�-���.����× ���(�����ã�(�.�������[�4���O�â�8�Ó�(���
�W���v�����4�|�����	�����Ü���.���4� �ã�Ù�4��Ûö�a× �v�<�[���Ú�W���O�K�����(����� � Þ÷�`� �(�W�8Û.×[���K���øÛ����ã���(�(���8���:��Ö.×��K�W��Û
���������W���ã�H���.����× ���(�����ã�(�.�k���:���|�������(�4�

ùàúUûõü�ý>þ�ÿ������Øü�ý��

�O� �(���a���[�4�[�����*�ø���:���[���Õ��Û ��� �����8�W�8����� �|� �O���������Ó���8Û����(�<�K��� �8�â�����Ü��× ���(���4�|�K���
Û8�a�v�(�W� � × �|��ÛÚ�OÞ��v�ã���V�����-��Û8���W������ÛV�(���q�v�[�����(�O�(���4�|�(�.�Ô����ÛV�W�����`���4�q�4� �U�[�4�<�ã���v�[�B�(����������� � �
×[�Õ��Ûâ�ã���4× �ã�.�����ã�\�(���õÛ��4�����<���8����� �*�8�k�Ø×���� ��Þ��v�ã���V���~��[�_�[�4�<�ã���v�[�qÛ����O�K���_�(���Ô���.�v�q���
�W�4�q�4� �ã�<�?�Ü����	�
�öÛ8�(���.�W���V�i×[�v×[���(� Þâ×[�W��ÛÙ�K�Ù�<���\Û��4�����<���8����� �T���:�������I�����k��������	�
�
���8Û8���<�(�K���Ó����� � �*×��W��Û_���>���OÞ8� �ã���4�|�(���Ø×��8�4�:�K���Ó�����(���k���.�v�q����Û��4�����<���8����� �Ø���>�����4×[�W�Ü�8�
�(���ø�*�(Û8�ì���������8�ã���[���ö�8��	�
�� �K� �K��Û�×[�v�(�ãÞë�.× �ê�4�8���:������� ���4�ä�(���4�:���O�.�W� � �ö���?�W�(� Þ
�K� �|���.�W���ã��Û��`� �ã�������a�v�ã�`���ÜÛ8�������(�.���q�4� �[�8�W���4�|�(��� �

�O�Ô�<�[�(�L�[�������H�*�ÓÛ8�4�q���[�v�(�:�4�|��Û\�����ä�ã�\���8Û����1�O�4×��`��Þ � �4���4���<��× �*�4��Ûõ����×��K��ã�8�(���W���[���
�O�����(× �W���i���@���.���Ü× �[�<�����ã�`���õ��Þ��v�ã���V����	*� �W���(�(� � �(�����.���Ü× �[�<�����ã�<�����(�*�4���`�8�<�W�`���W�(���[�4���T�8�

10

������������� ��!#"$�%�'&)('� *+"-,.�%/0��"21�(3*546*�"217��*78:9;17���<1�!�('(=,.1<*>*.�%�'&�" ?�1�@A!7��B%"C"2�0B 17,.!7����1��D*E*+��1<*F�G�
" ?�1C('1#H'1<B-��I0�F17��"�I',J�'��1<*>*K�D*L!7�M�%��I��=,�"2!7��"��F17,.�G"N�0@O" ?�1PI',J��I���*.1�(�!7I'I0,.�0!<�7?N8

Q ?�1�@5��,A�F!�B �D*.!7"2� �=�3�'@R" ?�1TS�U�VKWD/6!<*E1�()('1#H'1<B-��I0�F17��"��0@�������������� ��!#"$�%�'&)('� *+"-,.�G/'��"21�(
546+"$1#�F*�?�!<*�/�1<17�X����('17,�"$!#Y�17�Z�G�X" ?�1�V[40,J!M!7I'I0,.�0!<�7?N8�V[40,J!M�D*\/�!<*E1�(T�=�X�F�0(01<B]�7?�1<�7Y��%�'&
!7��(:17��!7/�B 1<*�,J1<!<*E�=���%�'&:!#/��=�0"^I',J1�*.17,+H'!#"$� �=�_�'@T" ?�1`1#a�"$1#,A��!�B B 4_�=/O*.1#,�H'!#/�B 13/�1#?�!#H��-����,
" ?�,J���'&=?�����"b" ?�1�(01#H�1�B �=I0�F17�0"bI0,.�0��1�*E*#8L9;��cb1dH'17,Eef" ?�1��F�0(01<Bb�7?�1<�7Y��%�'&)"$1<�7?����-g���1<*X!7,.1
I0,.�=��1"$�h"-?�1i*�"2!7"21j17a�I6B-��*.� �=�kI',J��/�B 17�l*E�G����1"21�B 1��<�=���������-�<!7"2�G�'&m*A46*�"217��*�"$1#��(i"2�i/�1
B !7,J&01C!#��(�(0!7"2!n�G��"217�6*.�oH'1�8=pC��,K!7I0I',J�'!��#?;?�1<BGIO*q"2����H'17,.�����r1\" ?�� *LB �G�F�G"2!7"2� �=�N8

s *�!X@$��" ��,J1�c��=,�Y�e]cb1Fcb� B Bt�<�=��"2�%����1F"$�(01dH'1�B �=I"-?�1rI',J��I��'*E1�(!7I'I0,.�0!��#?�"2�u!<(0(�,J1�*E*
�D*E*���1<*M�0@b�<�=���#��,�,J1#���>4i!7��(H�17,.�-@A�-�<!7"2�-���v�'@\" ?�1�"217��I��=,.!�BLI',J��I�1#,A"2�-1�*��0@R������������� ��!#"$� �=�
I0,.�="2�0�<�0BD*�/617" cb1<17�j��1#"-c��=,�Y31<B-1#�r1#��"2*#8wUj�=,.1���H'17,EeLc�1�!7,.1XI6B-!#�����%�'&"$�)(01#H�1�B �=I3!X"2�0�'B
��0I0I���,A"�"2��!#��"2�=�F!7"21P" ?�1\I0,.�=I���.1<(�!#I0I0,.�0!<�7?N8

x;y�z6{N|�}�~ ���O�'���^��{6�+�
Q ?�1rc��=,�Y�,.17I6�=,�"$1<(u�%�Z" ?�� *RI�!#I�17,��D*�@5�%��!#����� !�B B 4v*+��I0I6�=,�"$1<(T/�4�J� Q WA���0�d�0�0�Z�]S��O,.�E�71��#"
� pn���$�^8

����#�����'�C�����

�d���E� � �t� �f¡<¢5£o¤>¥-��¦=§�¨�©]ªo©w«<«�¬d�d]¤E®�¡�¢5£%¯<°<±]²f³�£ ´�±E¢Aµ�£ ¶%·\¸�¢5± µ+µ�¹�ºE»�»<¼��
½=��¾$¿�²\�D¿[�=�K± À#��¾A� Á�Â;Ã.º>»<»�Á�ÄA��ÅX±.¶oÆ�Ç<¯;È$Çd¢wÀEÆ=¤E¢5¤>À.¶ ±E¢5£GÉ7¤J¶ £oÇd³MÇ�ÈN¶ ± ¥%±>À Ç�®�®�Ê�³�£%À>¤.¶ £%Ç�³Mµ�±E¢$´�£%À ±7µ

µ5Ê<Ë�Ë�Çd¢D¶ ± ¯P¡<·C¤E³C¾AÌ�ÍKÎi¤.³�¯P³�±.¶oÏfÇ�¢$ÐCÀ ¤.Ë�¤E¡=£%¥o£ ¶ £%±7µNÇ<È�¤.³n¾AÌ�ÍKÎb�
Ñ��ÓÒ�� ÒN¤>£G¡=£ ³�£oµ]¤E³�¯nÔq� ¿�¢5ÇdÊ�¡=£ ¶Dµ2·�³=¤#�#ÕqÖ=×�Ø%Ù�¦0«�ØG¨>ÚJÖ<Û�Ü ¨PÝGÛnÖ\ÞOÖ+ß0¨EÚJ¨ àtáwÚJÜ>§�ÝGÙG¨ Ü Ùo×dÚJ¨#â�á�ãL¨ Û<¨>ÚJÖ�Ø

ä+å�¨ Ü7Ý æ�Ý Ü Ö�ÙoÝo«dÛbçqÖ=Ù%ÙG¨>Ú+ÛrÝ Ûb©q��¸'¢5Ç�À ±>± ¯<£G³�°=µLÇ<Èqè�é$êq¾D³<¶ ±.¢$³�¤.¶ £%Ç�³=¤ ¥6]Çd³=È$±.¢5±E³�À>±CÇd³FÌ�Ç<Èo¶-Ïf¤E¢5±
ÔO³=°<£ ³�± ±.¢5£ ³=°T¤.³�¯^ë�Ç�¢$®n¤ ¥]ÅX±.¶oÆ�Ç<¯=µRÃ5Ì�ÔNë0Åìè�Â�Â�í�Ä2¹�îK± £ ïJ£ ³=°<¹]�Æ�£ ³�¤>¹KÌ�±.Ë<¶ ±E®�¡�±.¢\è=Â<Â<í��
¾DÔOÔOÔr¸�¢5±7µ�µ�¹�Ë<Ë0� Á�í=¼��$Á�ð�ð��

í���Ì0� ÒN±EË<Ë�ñE³=±E³=¹`Åò� ¿�Ê�¢$Ê<³�±.³�¹m¤E³�¯ì¾A� óf¥%£G´�±E¢��uá�å�åqØoÝGÜ>Ö=ÙoÝ%«�Ûõô�Ú.Ý ö ¨ Ûõ÷r¨7ÙG§�«dà�«�Ø-«Eø7ßùæ�«dÚ
ôC¨Eö7¨7Øo«$åqúf¨>Û=ÙF«-æ`û]«dúfúP×�Û�Ý Ü Ö�Ù-Ý Û øüä.ß�ýEÙG¨ úKý �Rë0ÍfÒwþ%Â�í=¹bë�Çd¢$Ê�®ÿÇ�³ Ì�Ë�±>À £GÈ$£%À ¤J¶D£%Çd³ ¤.³�¯
Í\± µ�£G°�³�ÒN¤E³�°�Ê=¤>°<±7µJ�7ÒN£o¥%¥%± ¹dë'¢5¤.³�À>± ¹�Ì�±EË�¶ ±E®�¡�±E¢�è=Â�Â�í��

ð=� ÅF�P¿6¾AÌ0Ì=Ô � ¤.³�¯d¡�Ç�ÇdÐ;È$Ç�¢w]Çd¢$¢5± ÀJ¶qÌ�·=µ2¶ ±E®RµL]Çd³�µ2¶o¢$Ê=À.¶ £%Ç�³0��è=Â<Â�Á�� Æ<¶%¶oË�� ���oÏtÏtÏ\� ±7µA£o¥-� Ê<³�£ ´��
®�¢AµJ� È ¢�����µ5Ë�À	�o®R¤J¶D£oµ+µA±
� � ¤E³=¯�¡=Ç�Ç�Ð��

¼���Ì<¶D±.¢5£%¤ ¹��P£ �=�$±E³=� ¸�¢5Çd´=±.³�À ±>¹Cë0¢5¤E³�À>±#�qátÙG¨ Ø-Ý ¨EÚF©���OýJ¨>ÚTÖ<Û�à��q¨ æ#¨>ÚJ¨>Û�Ü>¨T÷rÖ�Û�×<Ö=Ø ýE¹�è=Â<Â�º7�
�f´�¤ £%¥%¤E¡=¥%±L¤J¶ Æ<¶%¶oË�� ���-ÏLÏtÏ\� ¤.¶ ± ¥%£%±E¢$¡�� µ�Ç<À £%±.¶ ±#� À Ç�®�� £ ³�¯�±	��Ê�Ð�� Æ<¶o®n¥

� � Á��w¸�¸O�r¿O±>ÀEÆ�³=£%À ¤ ¥Xµ5Ë�±>À £GÈ$£%À ¤J¶ £oÇd³ è�ð�� Á�Â�ð��FÌ<¶ ¤>°<±hèüÈ Ê�³=À.¶ £%Ç�³=¤ ¥Tµ2Ë�± À>£GÈ$£%À ¤.¶ £%Ç�³:Ç�Èò²fÔ
Ë�Ç�µ�£ ¶ £oÇd³�£ ³=°�£ ³�²P¿��q�KÎb�<Ì�±>± Æ�¶%¶-Ë�� ���oÏLÏtÏ�� Á<°dË�Ë0� Ç�¢2°�� Èo¶-Ë��$Ì=Ë=± À7µ��-Æ�¶o®R¥%�$£ ³=È$Ç��-è�ð<Á<Â=ð�� Æ<¶o®

�=� Á��w¸�¸O��¿O± À.Æ�³�£%À>¤ ¥0µ5Ë�±>À £GÈ$£%À ¤J¶ £oÇd³Rè=ð=� í=ð<Á��#²P¿��q�wÎi¾DÊ�Ë=ÀL£ ³�¶D±.¢2È$¤ À>±wË=Ç=µ�£ ¶ £%Ç�³=£G³�°�À ¤ ¥%À.Ê�¥%¤.¶ £%Ç�³
¤EË<Ë�¥%£%À ¤J¶D£%Çd³ Ë�¤.¢D¶lÃ Ë=À ¤EË�Ä µ�£G°�³=¤ ¥%¥%£G³�°�� Ì�±>± Æ<¶%¶oË�� ���oÏtÏLÏ�� Á�°�Ë<Ë0� Çd¢2°��-È-¶oË��$Ì�Ë�±>À7µ��oÆ<¶o®n¥%�
£ ³=È$Ç��-è�ð�í=ð<Á=� Æ<¶o®

11

Towards a methodology for rigorous development of
generic requirements patterns1

Colin Snook
1
, Michael Poppleton

1
, and Ian Johnson

2

1 School of Electronics and Computer Science,
 University of Southampton,

SO17 1BJ, UK,
cfs,mrp@ecs.soton.ac.uk

2 AT Engine Controls, Portsmouth, UK
ijohnson@atenginecontrols.com

Abstract. We present work in progress on a methodology for the engineering,
validation and verification of generic requirements using domain engineering
and formal methods. The need to develop a generic requirement set for
subsequent system instantiation is complicated by the addition of the high
levels of verification demanded by safety-critical domains such as avionics. We
consider the failure detection and management function for engine control
systems as an application domain where product line engineering is useful. The
methodology produces a generic requirement set in our, UML based, formal
notation, UML-B. The formal verification both of the generic requirement set,
and of a particular application, is achieved via translation to the formal
specification language, B, using our U2B and ProB tools.

Introduction

The notion of software product line (also known as system family) engineering be-
came well established [14], after Parnas’ proposal [18] in the 70’s of information hid-
ing and modularization as techniques that would support the handling of program
families. Product line engineering arises where multiple variants of essentially the
same software system are required, to meet a variety of platform, functional, or other
requirements. This kind of generic systems engineering is well known in the avionics
industry; e.g. [12, 10] describe the reuse of generic sets of requirements in engine
control and flight control systems.

Domain analysis and object oriented frameworks are among numerous solutions
proposed to product line technology. In Domain-Specific Software Architecture [23]
for example, the domain engineering of a set of general, domain-specific requirements
for the product line is followed by its successive refinement, in a series of system en-
gineering cycles, into specific product requirements. On the other hand [11] describes
the Object-Oriented Framework as a “a reusable, semi-complete application that can
be specialized to produce custom applications”. Here the domain engineering pro-

1 This work is part of the EU funded research project: IST 511599 RODIN (Rigorous Open

Development Environment for Complex Systems).

12

duces an object-oriented model that must be instantiated, in some systematic way, for
each specific product required. In this work we combine object-oriented and formal
techniques and tools in domain and product line engineering.

It is widely recognized that formal methods (FM) technology makes a strong con-
tribution to the verification required for safety-critical systems [15]. It is further rec-
ognized that FM will need to be integrated [3] in as “black-box” as possible a manner
in order to achieve serious industry penetration. The B method of J.-R. Abrial [1, 19]
is a formal method with good tool support [2, 8], and a good industrial track record,
e.g. [9]. At Southampton, we have for some years been developing an approach of in-
tegrating formal specification and verification in B, with the UML [7]. The UML-B
[22] is a profile of UML that defines a formal modelling notation combining UML
and B. It is supported by the U2B tool [20], which translates UML-B models into B,
for subsequent formal verification. This verification includes model-checking with the
ProB model-checker [13] for B. These tools have all been developed at Southampton,
and continue to be extended in current work.

Failure detection and management for engine control

A common functionality required of many systems is to detect and manage the failure
of its inputs. This is particularly pertinent in aviation applications where lack of toler-
ance to failed system inputs could have severe consequences. The failure manager
filters inputs from the controlled system, providing the best information possible and
determining whether a transducer or system component has failed or not.

Inputs may be tested for magnitude, rate of change and consistency with other in-
puts. When a failure is detected it is managed in order to maintain a usable set of in-
put values for the control subsystem and provide ‘graceful degradation’. To prevent
over-reaction to isolated transient values, a failed condition must be confirmed as per-
sistent before irreversible action is taken. Failure detection and management (FDM)
in engine control systems is a demanding application area, see e.g. [6], giving rise to
far more than a simple parameterizable product line situation.

Our approach contributes to the failure detection and management domain by pre-
senting a method for the engineering, validation and verification of generic require-
ments for product-line engineering purposes. The approach exploits genericity both
within as well as between target system variants. Although product-line engineering
has been applied in engine and flight control systems [12, 10], we are not aware of
any such work in the FDM domain. We define generic classes of failure-detection test
for sensors and variables in the system environment, such as rate-of-change, limit, and
multiple-redundant-sensor, which are simply instantiated by parameter. Multiple in-
stances of these classes occur in any given system. Failure confirmation is then a ge-
neric abstraction over these test classes: it constitutes a configurable process of execu-
tion of specified tests over a number of system cycles, that will determine whether a
failure of the component under test has occurred. Our approach is focussed on the
genericity of this highly variable process.

13

Fault Tolerance

This application domain (and our approach to it) includes fault tolerant design in two
senses: tolerance to faults in the environment, and in the control system itself. The
FDM application is precisely about maximizing tolerance to faults in the sensed en-
gine and airframe environment. The control system (including the FDM function) - is
supported by a backup control system in a dynamically redundant design. This backup
system - with distinct hardware/software design, with a reduced-functionality sensing
fit - can be switched in by a watchdog mechanism if the main system has failed.

In the narrower (and more usual) sense, we will be examining various schemes for
designing fault tolerance into the FDM software subsystem. Work to date has speci-
fied and validated a generic requirements specification for FDM. As we apply refine-
ment techniques and technology to construct the design, we will consider various
relevant approaches, such as driving the specification of a control system from envi-
ronmental requirements [25], or the use of fault-tolerant patterns for B specifications
[27] and their refinements [26].

Methodology

The process for obtaining a generic model of requirements is illustrated in Fig. 1. The
first stage is an informal domain analysis which is based on prior experience of devel-
oping products for the application domain of failure detection and management in en-
gine control. A taxonomy of the kind of generic requirements found in the application
domain is developed and, from this, a first-cut generic entity-relationship model is
formed by naming and relating the generic requirements.

The identification of a useful generic model is a difficult process warranting further
exploration. This is done in the domain engineering stage where a more rigorous ex-
amination of the first-cut model is undertaken, using UML-B, U2B and ProB. The
model is animated by creating typical instances of its generic requirement entities, to
test when it is and is not consistent. This stage is model validation by animation, using
the ProB and U2B tools, to show that it is capable of holding the kind of information
that is found in the application domain. During this stage the relationships between
the entities are likely to be adjusted as a better understanding of the domain is devel-
oped. This stage results in a validated generic model of requirements that can be in-
stantiated for each new application.

Fig. 1. Process for obtaining the generic model

14

For each new application instance, the requirements are expressed as instances of
the relevant generic requirement entities and their relationships, in an instance model.
The ProB model checker is then used to automatically verify that the application is
consistent with the relationship constraints embodied in the generic model. This stage,
producing a consistent instance model, shows that the requirements are a consistent
set of requirements for the domain. It does not, however, show that they are the right
set of requirements that will give the desired system behaviour.

Our aim in future work, therefore, is to add dynamic features to the instantiated
model in the form of variables and operations that model the behaviour of the entities
in the domain and to animate this behaviour so that the instantiated requirements can
be validated. We would prefer to add this behaviour in the generic model so that it too
can be re-used by the instantiated model.

During the domain analysis phase we found that considering the rationale for re-
quirements revealed key issues, which are properties that an instantiated model should
possess. Key issues are higher level requirements that could be expressed at a more
abstract level from which the generic model is a refinement. The generic model could
then be verified to satisfy the key issue properties by proof or model checking. This
matter is considered in [21] which gives an example of refinement of UML-B models
in the failure management domain.

The final stage is to validate the specific configuration. This would be done by pro-
viding actual values to generic behaviours when the generic mode is instantiated. The
resulting specific model could then be animated to validate its behaviour.

Finally, we recognize the need for tools to support uploading of bulk system in-
stance definition data, as well as the efficient and user-friendly validation/ debugging
of said data. ProB could easily be enhanced to provide, for example, data counterex-
amples explaining invariant violations.

Domain Analysis

To obtain an initial understanding of the requirements domain we used domain analy-
sis in a similar style to Lam [12]. The first step was to define the scope of the domain
in discussion with engine controller experts. An early synthesis of the requirements
and key issues were formed, giving due attention to the rationale for the requirements.
Considering the requirements rationale is useful in reasoning about requirements in
the domain [12]. For example, the rationale for confirming a failure before taking ac-
tion is that the system should not be susceptible to spurious interference on its inputs.
From the consideration of requirements rationale, key issues were identified which
served as higher level properties required of the system. An example of such a prop-
erty would be that the failure management system must not be held in a transient ac-
tion state indefinitely. The rationale from which it has been derived is that a transient
state is temporary and actions associated with this state may only be valid for a lim-
ited time.

A core set of requirements were identified from several representative failure man-
agement engine systems. For example, the identification of magnitude tests with vari-
able limits and associated conditions established several magnitude test types; these

15

types have been further subsumed into a general detection type. This type structure
provided a taxonomy for classification of the requirements.

Domain analysis showed that failure management systems are characterised by a
high degree of fairly simple similar units made complex by a large number of minor
variations and interdependencies. The domain presents opportunities for a high degree
of reuse within a single product as well as between products. For example, a magni-
tude test is usually required in a number of instances in a particular system. This is in
contrast to the engine start domain addressed by Lam [12], where a single instance of
each reusable function exists in a particular product. Our methodology is targeted at
domains such as failure management where a few simple units are reused many times
and a particular configuration depends on the relationships between the instances of
these simple units. A first-cut entity relationship model was constructed from the units
identified during the domain analysis stage. The entities identified during domain
analysis were:
• INP Identification of an input to be tested.
• COND Condition under which a test is performed or an action is taken. (A predi-

cate based on the values and/or failure states of other inputs).
• DET Detection of a failure state. A predicate that compares the value of an expres-

sion to be tested against a limit value.
• CONF Confirmation of a failure state. An iterative algorithm performed for each

invocation of a detection, used to establish whether a detected failure state is genu-
ine or transitory

• ACT Action taken either normally or in response to a failure, possibly subject to a
condition. Assigns the value of an expression, which may involve inputs and/or
other output values, to an output.

• OUT Identification of an output to be used by an action

Domain Engineering

The aim of the domain engineering stage is to explore, develop and validate the first-
cut generic model of the requirements into a validated generic model. At this stage
this is essentially an entity relationship model, omitting any dynamic features (except
temporary ones added for validation purposes).

The first-cut model from the domain analysis stage was converted to the UML-B
notation (Fig.2) by adding stereotypes and UML-B clauses (tagged values) as defined
in the UML-B profile [22]. This allows the model to be converted into the B notation
where validation and verification tools are available. The model contains invariant
properties, which constrain the associations, and ensures that every instance is a mem-
ber of its class. To validate the model we needed to be able to build up the instances it
holds in steps. For this stage a constructor was added to each class so that the model
could be populated with instances. The constructor was defined to set any associations
belonging to that class according to values supplied as parameters.

16

OUT

CONDDET

10..*

+dcond

10..*

ACT

1

1..*

+aOut
1

1..*

1

0..*

+aCond 1

0..*

INP

CONF

1

1..*

1

+dets 1..*

1..*0..* +tAct 1..*0..*

0..*0..*

+pAct

0..*0..*

0..*0..*
+hAct

0..*0..*

1

1

+input
1

1

Fig. 2. Final UML-B version of generic model of failure management requirements

The model was tested by adding example instances using the animation facility of
ProB and examining the values of the B variables representing the classes and asso-
ciations in the model to see that they developed as expected. ProB provides an indica-
tor to show when the invariant is violated. Due to the ‘required’ (i.e. multiplicity
greater than 0) constraints in our model, the only way to populate it without violating
the invariant would be to add instances of several classes simultaneously. However,
we found that observing the invariant violations was a useful part of the feedback dur-
ing validation of the model. Knowing that the model recognises inconsistent states, is
just as important as knowing that it accepts consistent ones. The model was re-
arranged substantially during this phase as the animation revealed problems. Once we
were satisfied that the model was suitable, we removed the constructor operations to
simplify the corresponding B model for the next stage.

The next stage is to add behaviour to the generic model by giving the classes op-
erations. In future work we will investigate the best way to introduce this behaviour
during the process. It may be possible to add the behaviour after the static model has
been validated as described above. Alternatively, perhaps the behaviour will affect the
static structure and should be added earlier. In either case, we aim to formalise the ra-
tionale described in the domain analysis and derive the behaviour as a refinement
from this.

Requirements for a specific application

Having arrived at a useful model we then use it to specify the requirements for a par-
ticular application by populating it with class instances. We use ProB to check the ap-
plication is consistent with the properties expressed in the generic model. This
verification is a similar process to the previous validation but the focus is on possible
errors in the instantiation rather than in the model. The application is first described in

17

tabular form. The generic model provides a template for the construction of the tables.
Each class is represented by a separate table with properties for each entry in the table
representing the associations owned by that class. The tabular form is useful as an ac-
cessible documentation of the application but is not directly useful for verification. To
verify its consistency, the tabular form is translated into class instance enumerations
and association initialisation clauses attached to the UML-B class model. This is done
manually, which is tedious and error prone, but automation via a tool is envisaged.

ProB is then used to check which conjuncts of the invariant are violated. For our
FDM example, several iterations were necessary to eliminate errors in the tables be-
fore the invariant was satisfied. Initially, testing of the instantiation caused an invari-
ant violation. The ProB ‘analyse invariant’ facility provides information about which
conjuncts of the invariant are violated. For example, a few conjuncts from the FDM
example are shown:
(ACT:POW(ACT_SET)) == TRUE
(OUT:POW(OUT_SET)) == TRUE
(aOut:TotalSurjection(ACT,OUT)) == false
(aCond:(ACT-->COND)) == false

We found that the analyse invariant facility provided useful indication of where the
invariant was violated (i.e. which conjunct) but, in a data intensive model such as this,
it is still not easy to see which part of the data is at fault. It would be useful to show a
data counterexample to the conjunct (analogous to an event sequence counterexample
in model checking). This is another area for potential tool support.

Classification of problems

It would be useful to classify the kinds of problems found during animation and veri-
fication in order to better understand the source of problems and improve the re-
quirements engineering process. So far, we have found that problems can be classified
on a methodological stage basis. Possible categories on this basis, some of which we
have experienced, are as follows.

• Verification of generic model – the generic model is inconsistent or incor-
rect

• Validation of generic model – the generic model is correct and consistent
but does not reflect the generic requirements

• Validation of generic requirement – the generic model works as expected
but animation leads expert to review generic requirements

• Verification of instantiation - the instantiation is inconsistent with the ge-
neric model because of an incorrect instantiation

• Verification of instantiation - the instantiation is inconsistent with the ge-
neric model because the generic model is inadequate

• Validation of instantiation - the instantiation is consistent with the generic
model but does not reflect the specific requirements

18

• Validation of specific requirements - the instantiation is consistent with
the generic model but animation leads expert to review specific require-
ments

In the future, when behavioural features are modelled, we expect to find other ways of
classifying problems. For example we may be able to distinguish functional areas that
are prone to incorrect specification.

Conclusion

In this paper we have discussed a product-line approach to the rigorous engineering,
validation and verification of generic requirements for critical systems such as failure
management and detection for engine control. The approach can be generalised to any
relatively complex system component where repetitions of similar units indicate an
opportunity for parameterised reuse but the extent of differences and interrelations be-
tween units makes this non-trivial to achieve. The product-line approach amortises the
effort involved in formal validation and verification over many instance applications.
So far we have considered the static, entity-relationship features of the requirements.
In future work we aim to extend the approach to consider also the detailed meaning
(i.e. dynamic behaviour) of these entities.

Two broad areas of future work are indicated by the case study, both linking to re-
lated work on Product Line Engineering (PLE). The first concerns instance data man-
agement, the second variability vs. commonality in the generic model.

For a product family such as FDM at ATEC as currently envisaged, instance data
management is in principle straightforward. This is because no system in-
stance/variant requirements are defined at the generic level – all structure and behav-
iour is specified in terms of a single generic model. Instance/variant requirements are
captured completely by instance-level data. This means that all instance data struc-
tures are defined in terms of the generic class definitions. Therefore, the data for a
system instance is simply defined as a subset of the database of all required instance
specifications; tooling is thus a straightforward database application.

Instance management becomes more complex when variability is required in the
generic model. This is the usual state of affairs in PLE. The mobile phone scenario of
[16] is typical, where each system instance is defined by a distinct set of functional
features, aimed at a specific market segment and target price. Features are not in gen-
eral simply composable, and the totality of features cannot in general be specified in
one generic model: variability specification is required in the generic model. To date
approaches to this (such as [16]) have been in the obvious syntactic form: in ATEC
for example, variants on the generic model for other engine manufacturers might be
described as extra colour-coded classes, associations, states, events etc. A system
variant (or sub-family) would thus be defined in terms of some colour-combination
submodel. A more sophisticated metamodelling approach to variability specification,
based on the Model-Driven Architecture of the OMG, has recently been proposed
[17].

Future work will investigate developing such variability and tooling issues in the
ATEC context, using the UML-B and refinement approaches already discussed. The

19

application of refinement approaches to PLE to date has been modest, e.g. [5, 24], and
has, in our view, much potential. Retrenchment, a generalizing theory for refinement,
has been investigated in a feature engineering context [4], and may well also be useful
in PLE.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

[2] J.-R. Abrial. http://www.atelierb.societe.com/index uk.html, 1998. Atelier-B.
[3] P. Amey. Dear sir, Yours faithfully: an everyday story of formality. In F. Redmill and T.

Anderson, editors, Proc. 12th Safety-Critical Systems Symposium, pages 3–18, Birmingham,
2004. Springer.

[4] R. Banach, M. Poppleton. Retrenching Partial Requirements into System Definitions: A
Simple Feature Interaction Case Study, 2003, Requirements Engineering Journal Vol. 8 (4)

[5] D. Batory, J.N. Sarvela, and A. Rauschmayer, Scaling Step-Wise Refinement, IEEE Trans-
actions on Software Engineering (IEEE TSE), June 2004

[6] C.M. Belcastro. Application of failure detection, identification, and accomodation methods
for improved aircraft safety. In Proc. American Control Conference, volume 4, pages 2623–
2624. IEEE, June 2001.

[7] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language -a Reference
Manual. Addison-Wesley, 1998.

[8] D. Cansell, J.-R. Abrial, et al. B4free. A set of tools for B development, from
http://www.b4free.com, 2004.

[9] B. Dehbonei and F. Mejia. Formal development of safety-critical software systems in rail-
way signalling. In M.G. Hinchey and J.P. Bowen, editors, Applications of Formal Methods,
chapter 10, pages 227–252. Prentice-Hall, 1995.

[10] S.R. Faulk. Product-line requirements specification (PRS): an approach and case study. In
Proc. Fifth IEEE International Symposium on Requirements Engineering. IEEE Comput.
Soc, Aug. 2000.

[11] M. Fayad and D. Schmidt. Object-oriented application frameworks. Communica-
tions of the ACM, 40(10):32–38, Oct. 1997.

[12] W. Lam. Achieving requirements reuse: a domain-specific approach from avionics. Jour-
nal of Systems and Software, 38(3):197–209, Sept. 1997.

[13] M. Leuschel and M. Butler. ProB: a model checker for B. In K. Araki, S. Gnesi, and
D. Mandrioli, editors, Proc. FME2003: Formal Methods, volume 2805 of LNCS, pages
855–874, Pisa, Italy, September 2003. Springer.

[14] R. Macala, L. Jr. Stuckey, and D. Gross. Managing domain-specific, product-line develop-
ment. IEEE Software, pages 57–67, May 1996.

[15] UK Ministry of Defence. Def Stan 00-55: Requirements for safety related software in de-
fence equipment, issue 2. http://www.dstan.mod.uk/data/00/055/02000200.pdf, 1997.

[16] D. Muthig. GoPhone - A Software Product Line in the Mobile Phone Domain, IESE-
Report No. 025.04/E (Fraunhofer Institut Experimentelles Software Engineering, 2004

[17] D. Muthig and C. Atkinson. Model-Driven Product Line Architectures, In G.J. Chastel
(Ed.): Software Product Lines, Second International Conference, SPLC 2002, Proceedings.
LNCS 2379 Springer 2002, pages 110-129

[18] D. L. Parnas. On the design and development of program families. IEEE Transactions on
Sofkvare Engineering, SE-2, March 1976.

[19] S. Schneider. The B-Method. Palgrave Press, 2001.

20

[20] C. Snook and M. Butler. U2B -a tool for translating UML-B models into B. In J. Mermet,
editor, UML-B Specification for Proven Embedded Systems Design, chapter 5. Springer,
2004.

[21] C. Snook, M. Butler, A. Edmunds, and I. Johnson. Rigorous development of reusable,
domain-specific components, for complex applications. In J. Jurgens and R. France, editors,
Proc. 3rd Intl. Workshop on Critical Systems Development with UML, pages 115–129, Lis-
bon, 2004.

[22] C. Snook, I. Oliver, and M. Butler. The UML-B profile for formal systems modelling in
UML. In J. Mermet, editor, UML-B Specification for Proven Embedded Systems, chapter 5.
Springer, 2004.

[23] W. Tracz. DSSA (Domain-Specific Software Architecture) pedagogical example. ACM
Software Engineering Notes, pages 49–62, July 1995.

[24] A. Wasowski. Automatic generation of Program Families by Model Restrictions, In R.L.
Nord (Ed.): Software Product Lines, Third International Conference, SPLC 2004, Proceed-
ings. LNCS 3154 Springer 2004, pages 73—89

[25] I.J. Hayes, M. A. Jackson, and C. B. Jones, Determining the specification of a control sys-
tem from that of its environment, In K. Araki, S. Gnesi, and
D. Mandrioli, editors, Proc. FME2003: Formal Methods, volume 2805 of LNCS, pages
154–169, Pisa, Italy, September 2003. Springer.

[26] L. Laibinis and E. Troubitsyna, Refinement of fault tolerant control systems in B
 Source: Computer Safety, Reliability, and Security. 23rd International Conference,
SAFECOMP 2004. Proceedings (Lecture Notes in Comput. Sci. Vol.3219), 2004, p 254-68

[27] L. Laibinis and E. Troubitsyna, Fault tolerance in a layered architecture: a general specifi-
cation pattern in B, Proceedings of the Second International Conference on Software Engi-
neering and Formal Methods, 2004, p 346-55

21

Analyzing Fault-Tolerant Systems with FAUST

C. Ponsard, P. Massonet, and J.F. Molderez

CETIC Research Center, Charleroi (Belgium) - {cp,phm,jfm}@cetic.be

Abstract. Producing high quality requirements is the key to the suc-
cessful design and development of the ever more complex systems con-
trolling our present world. The KAOS goal-oriented requirements engi-
neering methodology proved successful for this task, by enabling mixed
semi-formal and formal modeling and reasoning about system proper-
ties at an early stage. This paper demonstrates the use of the FAUST
toolbox to support the design of fault-tolerant systems based on this
methodology.

1 Introduction

Our world is increasingly relying on complex software-based systems. In a grow-
ing number of fields such as transportation, finance, health-care, they now play
a critical role as their failure can lead to catastrophic consequences in term of
loss of company profit or even human lives. Hence they require high assurance
for properties like security, safety, availability, etc.

Achieving assurance requires quality throughout the whole development life-
cycle: from requirements to specification, architecture, code and tests. Among
those, it is widely recognized that cause #1 of project failure still remains the
poor quality of requirements. Our focus is on the requirements problem in re-
lation with the rest of the lifecycle. More precisely, the scope of our work is to
answer the following questions, depicted in figure 1.

– Validation: do we address the ”right” requirements?
– Verification: are those requirements ”right” ? Especially, in the scope of

fault-tolerant systems: are those robust w.r.t. to what can go wrong ?
– Acceptance: is the deliverable right ? Can we test it with a good coverage

w.r.t. to the wished/unwished properties ?

Our approach to address those questions is based on the elaboration of a
goal model which captures the system and environment properties as well as
the agent capabilities/responsibilities. This is well adapted for designing fault-
tolerant systems because those should rely on a minimum set of well identified
assumptions, and should react in a safe and graceful way when those are broken.
The methodology also allows the analyst to reason in a pessimistic way about its
model: starting from a simple and tractable model, the analyst can apply obstacle
analysis to generate a number of obstacles to the wished properties. Based on
risk assessment, those obstacles can then be eliminated/mitigated/tolerated to
produce more robust requirements. This model has also two levels of description:

22

Fig. 1. Scope of the FAUST toolbox

1. a semi-formal level with graphical notation which integrates with standard
UML notations (such as use cases, class, sequence diagrams). It is appro-
priate for acquiring the structure of the model and enough for non-critical
properties.

2. a formal level using a real-time temporal logic which ensures the formal
correctness of the model. It is only used on critical parts and is a natural
extension of the semi-formal level.

The FAUST toolbox [13] supports the process of validation, verification and
test case generation. Within the scope of this paper, we will more specifically
show how it can support activities related to obstacle analysis at those stages. As
concrete running example, we will analyze parts of the the London Ambulance
System [1].

The rest of this paper is structured as follows. Section 2 will give a quick
background on the KAOS requirements language used here with a stronger focus
on how fault-tolerance is managed using obstacle analysis. Section 3 will describe
how it is supported by FAUST. Section 4 will focus on integration issues, both
at tool level and together with other methodologies like B.

2 Modeling Fault-tolerant Systems with KAOS

A KAOS requirements model is composed of four sub-models: (i) the central
model is the goal model which captures and structures the assumed and required
properties; (ii) the object model captures the relevant vocabulary to express the
goals; (iii) the agent model takes care of assigning goal to agent in a realizable
way; (iv) the operation model details, at state transitions level, the work an agent
has to perform to reach the goals he is responsible for.

2.1 The Goal and Object Models

Although the process of building those 4 models is intertwined, the starting point
is usually a number of key properties of the system to-be. Those are expressed
using goals which are statements of intent about some system (existing or to-
be) whose satisfaction in general requires the cooperation of some of the agents
forming that system. Agents are active components, such as humans, devices,

23

legacy software or software-to-be components, that play some role towards goal
satisfaction. Some agents thus define the software whereas the others define its
environment. Goals may refer to services to be provided (functional goals) or to
the quality of service (non-functional goals). Goals are described informally in
natural language (InformalDef) and are optionally formalized in a real-time tem-
poral logic (FormalDef) [4][8][10]. Keywords such as Achieve, Avoid, Maintain
are used to name goals according to the temporal behavior pattern they pre-
scribe.

In our example, the goals relate to the correct processing of incidents by allo-
cating and tracking ambulances. A key goal in the system is to achieve ambulance
mobilization in time. It can be stated as follows:

Goal Achieve[AmbulanceMobilized]
InformalDef: For every responded call about an incident, an ambulance able to
arrive at the incident scene within 11 minutes should be mobilized. The ambulance
mobilization time should be less than 3 minutes.

FormalDef: (∀cl : Call, ic : Incident) Responded(cl) ∧About(cl, inc)
⇒ 3≤3m(∃amb : Ambulance)Mobilized(a, inc) ∧

• [Available(amb) ∧ TimeDist(amb.loc, inc.loc) ≤ 11m]

In the above formulation, we have identified the Call, Incident and Ambu-
lance entities with some of their attributes (such as location and responded) and
relationships (About and Mobilized). Those are incrementally added to the struc-
tural model which captures passive (entities, relationships and events) and active
objects (agents).

Fig. 2. Object Model

Unlike goals, domain properties are descriptive statements about the envi-
ronment, such as physical laws, organizational norms or policies, etc. (eg. a crew
member may forget to perform some required operation under stress).

A key characteristic of goal-oriented requirements engineering is that goals
are structured and that guidance is provided to discover that structure and refine
it until agents can be found to realize those goals in cooperation. In KAOS, goals
are organized in AND/OR refinement-abstraction hierarchies where higher-level
goals are in general strategic, coarse-grained and involve multiple agents whereas
lower-level goals are in general technical, fine-grained and involve fewer agents
[5]. In such structures, AND-refinement links relate a goal to a set of subgoals
(called refinement) possibly conjoined with domain properties; this means that
satisfying all subgoals in the refinement is a sufficient condition in the domain for
satisfying the goal. OR-refinement links may relate a goal to a set of alternative
refinements.

Figure 3 shows the goal structure for our system. It was set up starting from
a few initial goals and by asking respectively ”WHY” and ”HOW” questions to

24

Fig. 3. Portion of the LAS goal graph showing AND-refinements

discover parent goals (such as Achieve[AmbulanceIntervention]) and son goals
(such as Achieve[AmbulanceAllocated]).

2.2 The Agent Model

Goal refinement ends when every subgoal is realizable by some individual agent
assigned to it, that is, expressible in terms of conditions that are monitorable
and controllable by the agent [9]. A requirement is a terminal goal under re-
sponsibility of an agent in the software-to-be; an expectation is a terminal goal
under responsibility of an agent in the environment. Agent are either human or
automated (hardware or software).

The LAS system is a complex system with many interacting agents, both
human (call reporter, call assistants, ambulance crew) and automated (AVLS:
Automated Vehicle Location System, MDT: on board Mobile Data Terminal,
CAD: Computer Aided Dispatch). Each agent can be described by his kind, his
capabilities to monitor/control and the (realizable) goals under his responsibility.
The AVLS can be described as follows:

Agent AVLS
Kind: Automated
ResponsibleOf: Maintain[AccurateAmbulanceLocation]
Monitors: Ambulance.loc
Controls: AmbulanceInfo.loc

The agent interface view displays the flow of monitored/controlled informa-
tion among all agents and is a starting point for further architectural refinement
using downstream methodologies, either traditional (like structured analysis [6])
or correct-by-construction (like B [2]).

Note it is also important to capture any assumption about agent behaviors,
such as the possible deviations of human agents not complying with orders or
the failure modes of hardware agents. Some of those may already be required for
the initial (often overidealistic) goal-model and will be looked at systematically
during the obstacle analysis.

25

Fig. 4. Agent Interface Model

2.3 The Operation Model

Goals are operationalized into specifications of operations to achieve them [4].
An operation is an input-output relation over objects; operation applications
define state transitions along the behaviors prescribed by the goal model. The
specification of an operation is classical with precondition (necessary), postcon-
dition (target state) and trigger condition (sufficient). An important distinction
is also made between (descriptive) domain pre/postconditions and (prescriptive)
pre-, post- and trigger conditions required for achieving some underlying goal(s).
For example, the Mobilize operation may be specified as follows:

Operation Mobilize
Input: inc:Incident
Output: amb:Ambulance, Mobilized
DomPre: ¬(∃amb : Ambulance)Mobilized(amb, inc)
DomPost: Mobilized(amb, inc)
ReqPre: for AmbulanceMobilized

Available(amb) ∧ TimeDist(amb.loc, inc.loc) ≤ 11m
ReqTrig: for AmbulanceMobilized

(∃cl : Call) Responded(cl) ∧About(cl, inc)

A goal operationalization is a set of such specifications.

2.4 Producing Robust Requirements

The correctness of all refinements in a goal model does not ensure that the
specification is consistent: inconsistencies can occur between goals. First-sketch
models also tend to be over-ideal and are likely to be violated from time to
time in the running system due to the unexpected behavior of agents. The lack
of anticipation of such behaviors may lead to unrealistic, unachievable and/or
incomplete requirements. Such exceptional behaviors are captured by formal
assertions called obstacles to goal satisfaction. Performing conflict and obstacles
analysis is thus crucial for achieving high quality requirements[15] [16]. In this
paper, we will only focus on obstacle analysis as conflict are not yet managed
by FAUST.

26

Let G be a goal and Dom a set of domain properties. Following [16], an
assertion O is said to be an obstacle to G in Dom iff the following conditions
hold:

1. obstruction: {O, Dom}| = G
2. domain-consistency: {O,Dom} |= false
3. feasibility: there exists a scenario S producing a behavior H such that H |= O

Obstacles can be seen as the dual of goals. Like goals, obstacles can also
be AND and OR refined with similar semantics to goal-refinement[16]. To dis-
cover obstacles, a systematic regression technique can be used. Starting from the
negation of the goal, the procedure is to systematically regress through domain
properties to look for possible causes (abduction). This process can be guided
by a number of previously identified and classified obstacle refinement patterns.
For example, taking the negation of the following goal:

Goal Achieve[MobilizedAmbulanceIntervention]
UnderResponsibility AmbulanceCrew
Refines AmbulanceIntervention
FormalDef (∀a : Ambulance, inc : Incident)

Mobilized(a, inc)∧TimeDist(a.loc, inc.loc) ≤ 11m ⇒ 3≤11mIntervention(a, inc)

yields the following high level obstacle:

Obstacle MobilizedAmbulanceNotInTimeAtDestination
FormalDef: 3(∃a : Ambulance, inc : Incident) Mobilized(a, inc) ∧

TimeDist(a.loc, inc.loc) ≤ 11m ∧ 2≤11m¬Intervention(a, inc)

Looking at and obstacle refinement matching to the above obstacle, the fol-
lowing OR-refinement can be identified.

Obstacle AmbulanceMobilizationRetracted
FormalDef: 3(∃a : Ambulance, inc : Incident) Mobilized(a, inc) ∧

TimeDist(a.Loc, inc.Loc) ≤ 11m∧(¬Intervention(a, inc) U ≤11m¬Mobilized(a, inc))

Obstacle MobilizedAmbulanceStoppedOrInWrongDirection
FormalDef: 3(∃a : Ambulance, inc : Incident) Mobilized(a, inc) ∧

TimeDist(a.loc, inc.loc) ≤ 11m ∧
(¬Intervention(a, inc) U ≤11mTimeDist(a.loc, inc.loc) ≤ TimeDist(•a.loc, inc.loc))

27

Further refinement of these formal obstacles based on regression, patterns,
and heuristics yield the following obstacle OR-refinement tree:

→ MobilizedAmbulanceNotInT imeAtDestination
→ AmbulanceMobilizationRetracted

→ MobilizedAmbulanceDestinationChanged
→ LocationConfusedByCrew

→ MobilizedAmbulanceDestinationForgotten
→ AmbulanceMobilizationCancelled

→ MobilizedAmbulanceStoppedOrInWrongDirection
→ AmbulanceStopped
→ AmbulanceBreakdownOrAccident
→ AmbulanceStoppedInTraffic

Those obstacles can then be resolved using one of the available strategies.
For example, considering the obstacle MobOrderTakenByOtherAmbulance:

– Obstacle prevention, it could be possible to design the system to make it
unfeasible by implementing the Avoid[AmbulanceMobilizedWithoutOrder]
goal.

– Obstacle mitigation: the obstacle is not avoided but its possible consequences
are mitigated. A way to avoid multiple ambulance mobilization and possible
resource exhaustion is to implement MobilizationByOtherAmbulanceKnown,
possibly using radio communications.

– Obstacle reduction: the obstacle is not prevented but measures are taken to
reduce its occurrence. This could be achieved by a sector design.

3 The FAUST toolbox in action

3.1 Verification using the Refinement Checker

The refinement checker can perform a variety of checks on the model in order
to provide the formal assurance that goals are correctly refined, that operations
enforce requirements, that obstacles are not present, etc. Through the use of
model-checking, the checks are fully automated and produce suggestive counter-
examples when they fail. The model-checker can also generate positive example
of the negation of a goal which is an instance of obstacle. Figure 5 shows the
tool in action on the formal obstacle refinements discussed in section 2.

3.2 Validation using the Requirements Animator

In order to validate the system requirements, the animator can simulate and
display behaviors of the future system[14]. The simulation process relies on finite
state machines (FSM) which are generated from a scoped subset of properties,
enabling incremental validation. The user interface can display FSM in classical

28

Fig. 5. Checking Obstacle Refinements

state chart notations and with specifically designed graphical animations, based
on domain notations familiar to the validating user. The animator can also be
used for model debugging. For this purpose, a monitor automatically checks for
the violation of all properties or occurrence of obstacles in the animation scope.

3.3 The Acceptance Test Generator

The acceptance test generator can produce a set of test cases from a non oper-
ational specification[11]. It is based on a goal coverage criterion which is appro-
priate for checking that a system matches its requirements. For now, only goal
refinements are taken into account and mainly use the milestone and case-based
refinement pattern for generating behavioral equivalence classes. The work is now
being extended for generating dysfunctional test cases based on the information
captured in the obstacle analysis process.

4 Integration issues

4.1 Tool Integration

The FAUST toolbox is centered on the model and each tool can benefit from the
others. For example, counter-examples from the analyzer or tests cases from the
test generator can be played into the animator. Figure 6 shows the interactions
among the various components of the toolbox, those are mainly sub-models (goal
or operational), various kind of traces and FSM. Some results are also interesting
to export outside the toolbox for later use in other stages: test cases, FSM for
code generation, etc.

The toolbox architecture is open and modular. It is currently available as
extension of the Objectiver requirements platform [12] which provides a full
(meta)conceptual repository with queries, checks, support for textual documents
and graphical models, trace management, navigation, and a powerful document
generator with templates for producing standard requirements documents.

29

Fig. 6. Interactions among the FAUST tools

4.2 Method Integration - the B Connector

As the FAUST scope is located early in the development lifecycle, it is vital to
to provide connectors to existing industrial development methods. We believe
our approach is interesting because it provides the often missing link with the
requirements and it enables the move of some parts of the formal reasoning a
step ahead.

The method we are currently investigating is B [2], an industrial-strength
formal method which is more and more focusing on system engineering (B-
System evolution). This evolution is making it closer to our scope and goes in
the direction of bridging the requirements gap [3]. For ”top-down” engineering,
it will help the analyst to identify key properties, detect design problems at an
easy stage and produce B specifications which will be easier to refine and prove.
For ”bottom-up” re-engineering, it helps explaining the design to customers and
managers, especially for showing that all requirements have been covered.

Within B-system, we are more specifically studying the CompoSys approach
developed by ClearSy [7] which focuses on the modeling and integration of com-
ponents in an industrial context (such as automotive and railway transportation
systems). So far, the KAOS agent interface diagram was identified as fitting the
level of description addressed by Composys and some mapping mechanisms are
now being investigated on a practical case study.

5 Conclusions

To sum up, the benefits of the approach are:

– Goal and agent based approach: KAOS allows the analyst to capture,
refine and reason about system properties within its environment, assigning
responsibilities, exploring and comparing alternative designs.

– Model-based approach with automatic derivation of a wide variety of
artefacts like semi-fomal documents and formal specifications (such as B),

30

acceptance test cases etc. It enables the easy integration in any lifecycle
(whether test-based or correct-by-construction)

– Access to the power of formal methods while preserving commu-
nication: because formal notations and underlying tools can be hidden and
explained in natural/graphical languages.

– Reduced costs because problems are detected and addressed earlier and
the model can be used in connection with the rest of the development.

The toolbox is currently used internally on ongoing cases to help assess its
limits and to drive the discovery of missing features. The current priority is to
open the toolbox to further use later in the development steps with a focus on
the B method as used in practice.

Acknowledgement

This work is financially supported by the European Union (ERDF and ESF)
and the Walloon Region (DGTRE).

References

1. Report of the inquiry into the london ambulance service, The Communications
Directorate, South West Thames Regional Authority, 1993.

2. J. R. Abrial, The b-book: Assigning programs to meanings, Cambridge University
Press, 1996.

3. J.-R. Abrial, B: passe, present, futur, 2002.
4. A. Dardenne, A. van Lamsweerde, and Stephen Fickas, Goal-directed requirements

acquisition, Science of Computer Programming 20 (1993), no. 1-2, 3–50.
5. R. Darimont and A. van Lamsweerde, Formal refinement patterns for goal-driven

requirements elaboration, 4th FSE ACM Symposium, San Francisco, 1996.
6. T. Demarco, Structured analysis and system specification, Yourdon Inc, 1979.
7. G.Pouzancre and J.-P. Pitzalis, Modelisation en b evenementiel des fonctions

mecaniques, electriques et informatiques dun vehicule, RSTI-TSI (2003).
8. R. Koymans, Specifying message passing and time-critical systems with temporal

logic, lncs 651, Springer-Verlag, 1992.
9. E. Letier and A. van Lamsweerde, Agent-based tactics for goal-oriented require-

ments elaboration, 2002.
10. Z. Manna and A. Pnueli, The reactive behavior of reactive and concurrent system,

Springer-Verlag, 1992.
11. J.F. Molderez and C. Ponsard, Deriving acceptance tests from goal requirements,

2nd International Mozart/Oz Conference, Charleroi (Belgium), September 2004.
12. The Objectiver Tool, http://www.objectiver.com.
13. The FAUST toolbox, http://faust.cetic.be, 2004.
14. H. Tran Van, A. van Lamsweerde, P. Massonet, and C. Ponsard, Goal-oriented

requirements animation, 12th IEEE Int.Req.Eng.Conf., Kyoto, September 2004.
15. A. van Lamsweerde, R. Darimont, and E. Letier, Managing conflicts in goal-driven

requirements engineering, IEEE Transactions on Software Engineering (1998).
16. A. van Lamsweerde and E. Letier, Handling obstacles in goal-oriented requirements

engineering, IEEE Transactions on Software Engineering, Special Issue on Excep-
tion Handling 26 (2000), no. 10.

31

Rigorous Fault Tolerance Using Aspects and Formal Methods

Shmuel Katz
Computer Science Department

The Technion
Haifa, Israel

Abstract: The use of aspect-oriented software development (AOSD) and formal
verification and analysis of aspects is suggested as a modular approach to adding fault
tolerance to systems, under a variety of fault models. The properties of aspects are shown
appropriate for such a modularization, and several example aspects for fault tolerance are
described. Among these are aspects to treat self-stabilization, aspects to overcome crash
failures, and aspects to overcome faulty communication. Some approaches to verification
of aspects are also described and shown relevant for verifying fault-tolerance after
appropriate aspects are added to a non-fault-tolerant system.

Relevant activities of the EU network of excellence AOSD-Europe are outlined, in the
framework of the four virtual labs of that network. Those labs deal with the areas of
programming languages for aspects, requirements analysis and design, applications of
aspects for middleware, and semantics and verification for systems with aspects. The
intentions of the network to develop joint tools to aid in verification of systems with
aspects are explained, as part of the research plan of the Formal Methods Laboratory of
AOSD-Europe. Potential points for cooperation with RODIN are also suggested.

32

The Fault-Tolerant Insulin Pump Therapy

Alfredo Capozucca, Nicolas Guelfi and Patrizio Pelliccione

Software Engineering Competence Center
University of Luxembourg

6, rue Richard Coudenhove-Kalergi
Luxembourg, L-1359 -Luxembourg

Abstract. In this paper we describe our experience using Coordinated
Atomic Actions (CAAs) to design a control system for a medical treat-
ment, which has high reliability requirements. The “Fault-Tolerant In-
sulin Pump Therapy” is based on the Continuous Subcutaneous Insulin
Injection technique involving different sensors and actuators in order to
enable continued execution of the treatment, as well as detect faults in
it. Precisely that is the challenge raised by this example, to design a con-
trol system that maintains the delivery of insulin even in the presence
of a large number and variety of hardware and software failures. The
implementation of this control system has been made in Java using an
extension of the DRIP framework, that ensures the reliability properties
of systems designed using CAAs.

1 Introduction

Software and hardware systems have become increasingly used in many sectors,
such as manufacturing, aerospace, transportation, communication, energy and
healthcare. Failures due to software or hardware malfunctions and to malicious
intentions can have economic consequences, but can also endanger human life. In
fact, if a health care system breaks down, the effect on the hospital and patients
could be huge. Therefore health care systems must be available 24 hours a day,
seven days a week with no exceptions (availability).

Different approaches have been proposed in the literature to model medical
systems. The Asynchronous Transfer Mode (ATM) network provides a robust
and resilient network that is able to combine high performance with the Qual-
ity of Service (QoS), which are required by advanced and mission-critical tele-
medicine, and clinical applications [4, 6]. Resilience is the ability of systems to
undergo abnormal situations without loss of its essential functions. A resilient
system persists for a long time despite disturbances. More precisely, resilient
systems should be able to ensure their services even when some system parts
have abnormal behaviors due to degradation of the components, unavailability
or attack.

In this paper we focus on Coordinated Atomic Actions (CAAs) as a design
structuring concept to ensure the needed requirements of reliability and avail-
ability [9] and on the framework called Dependable Remote Interacting Processes
(DRIP) [10] that embodies CAAs in terms of a set of Java classes. Although the

33

DRIP framework supports the complete semantics of CAA, we had to change
the implementation to fix some problems. Fundamentally, we have changed the
notification of an exception from a composed CAA to the enclosed context, as
well as the way in that each handler must be defined and linked with its corre-
sponding manager and the internal mechanism to execute the handlers when an
exception has to be handled. The change on the exception handling mechanism
does not allow us to have nested handlers any more, that is a requirement for
DRIP (but not for CAAs). Thus, this new framework only supports CAAs re-
quirements. We refer to this new framework with the name CAA-DRIP and the
full implementation details about it can be found in [2].

The aim of this paper is to show how CAAs and CAA-DRIP can be suc-
cessfully used for medical systems which require resilience and availability. The
case study that we consider concerns a diabetes control system that is aiming
at correctly delivering the insulin on a patient. The doctor suitably sets the
parameters and miniaturized sensors and pumps check the patient status and
administer the insulin. It is of primary importance, for the patient health, that
the whole application works properly 24 hours a day without interruption.

In Section 2 we give an introduction to CAA and CAA-DRIP, and in Section 3
we show the design and the implementation of the considered case study . The
paper closes with conclusions and future works.

2 Background

In this section we introduce CAAs and the requirements of the CAA-DRIP
framework that are used in the following of the paper.

2.1 Coordinated Atomic Actions

Backward error recovery (based on rolling system components back to the pre-
vious correct state) and forward error recovery (which involves transforming the
system components into any correct state) represent the two main approaches for
error recovery. The former uses either diversely-implemented software or simple
retry; the latter is usually application-specific and relies on exception handling
mechanisms. Distributed transactions [3] are a well-known technique that uses
backward error recovery as the main fault tolerance measure in order to satisfy
completely or partially the ACID (atomicity, consistency, isolation, durability)
properties. Atomic actions [1] allow programmers to apply both backward and
forward error recovery.

CAAs have been proposed by Xu et al. [7] in order to combine distributed
transactions and atomic actions assuring consistent access to objects in the pres-
ence of concurrency and potential faults. If an exception is raised into a CAA,
then an exception handler tries to recover them. In the positive case the CAA
terminates normally, on the contrary, it attempts to roll-back the state of ex-
ternal objects. Finally, an unsuccessful roll-back causes a failure. CAAs can be
nested and in this case exceptions raised by a nested CAA are propagated to
the enclosing one.

34

2.2 CAA-DRIP

The CAA Dependable Remote Interacting Processes (CAA-DRIP) framework
comprises a set of Java classes supporting CAAs.

CAA-DRIP relies on the notion of Dependable Multiparty Interaction (DMI)
[8]. The main properties of a multiparty interaction are (i) using a guard to check
the preconditions to execute the interaction, hence (ii) the need for having syn-
chronization upon entry of participants; (iii) using an assertion, after that the
interaction has finished, to check that a set of post-conditions has been satisfied
by the execution of the interaction; (iv) and, finally, atomicity of external data
to ensure that intermediate results are not passed to the outside processes before
that the interaction finishes. These properties make DMIs an excellent vehicle
for implementing reliable applications. Zorzo and Stroud have proposed within
CAA-DRIP a general scheme for designing DMIs in a distributed object-oriented
system [10]. DMIs extend the notion of multiparty interaction to include facilities
for handling exceptions, which allows dealing with failures in one or more par-
ticipants of the multiparty interaction, and in particular concurrent exceptions
and synchronization upon exit.

CAAs can be derived from DMIs by adopting a more restricted form of
exception handling with a stronger exception handling semantics. CAA-DRIP is
designed to support this derivation and thus can be used to implement CAAs.

3 The Diabetes Control System

The Diabetes Control System makes use of different kinds of devices, which com-
bine high performance, lower power consumption, and wireless communication,
increasing the “intelligence” of medical sensors and actuators.

Set
parameters

MonitoringVital
signs

Insulin
amount

Central
processing

device

PatientWearable
sensors

Wearable
actuators

Doctor

ER

Fig. 1. The actors and their relationships.

Figure 1 shows the different actors present in our scenario. The main actor
is the patient who is receiving the treatment and who has put on the wearable
devices (sensors and actuators). The doctor must set the parameters for the
devices to allow them to work according to the specific treatment that the patient
has to receive. This information will be stored in the patient’s personal record
and will be consulted by the application. Moreover, the facilities for the doctor
to change and consult the information about the treatment should be designed
to be fault-tolerant, as well.

The last actor is the emergency room (ER), where caregivers are continually
monitoring the patient’s vital signs. They will be the first to know if there is

35

a problem with the treatment that the patient is receiving. The dotted arrows
represent wireless connection and show how these wearable devices are connected
to the central processing device. In our representation, the doctor and the ER are
connected to the network in the traditional way, but they could also be connected
to the network of the hospital by wireless connection. This paper focusses on the
application that controls insulin delivery to the patient.

3.1 Requirements

The fault-tolerant diabetes control system will be used to implement the tech-
nique called Continuous Subcutaneous Insulin Injection [5]. This technique uses
miniaturized sensors and pumps to check the patient’s status and to administrate
insulin, respectively.

In this scenario, two sensors are used: one to monitor the current blood glucose
level (CBGL) and another one to check the heart rate (HR). There are also two
pumps: one for injecting long acting insulin (LAIP) and another one for injecting
rapid acting insulin (RAIP).

The patient’s vital signs collected by the sensors are wirelessly sent to the
central processing device, which is connected to the network of the hospital.
These values are used to determine the patient’s status and, fundamentally, to
define the basal rate (the amount of insulin to inject) for each pump. This is
calculated by a formula that takes into account the Target Blood Glucose Level
(TBGL), the Duration of Insulin Action (DIA) according to the kind of insulin
used and the patient’s current values measured by the sensors (CBGL and HR).
The TBGL and DIA parameters must be determined by the doctor, as well as the
low limit of the cartridge of each pump and the safe insulin delivery limit. These
values must be defined before the treatment is launched, but if it is necessary,
these values can be changed while the patient is receiving the dose, as well.
More details about elements included into this control process are given in the
Appendix.

The result given by the formulas represents the amount of insulin that each
pump must inject to keep the blood glucose as near as possible from the patient’s
target blood glucose. In this way, the central processing device commands each
actuator to inject the corresponding amount of insulin. The insulin will then
arrive to the patient by a cannula, which is a small soft tube, inserted into the
patient’s body. Each actuator has also a sensor, which provides useful informa-
tion about it. The application, with the help of these sensors gets information
on the current status of each actuator.

When an error occurs, it must be detected and, depending on the seriousness,
the control program either tries to solve it (first attempting the operation or,
in second place, using the values of the previous cycle), or the control system
turns on the alarm and stops the delivery of insulin. The ER personnel detects
the alarm, solves the problem and then turns off the alarm.

3.2 Design

The functional requirements presented in the previous section drive the appli-
cation design through the definition of seven CAAs (Figure 2). These CAAs

36

were designed using nesting and composing. Nesting is defined as a sub-
set of the roles (Params and Controller) of a CAA (CAA Cycle) defining
a new CAA (CAA Checking/CAA Executing) inside the enclosing CAA
(CAA Cycle).

CAA Cycle works like a container for the nested CAA Checking and
CAA Executing CAAs. Its main task is to determine the amount of insulin
that must be injected for each pump. These amounts of insulin are defined by
the InsulinAmount algorithm, which is used by the Calculus role.

CAA Checking and CAA Executing CAAs were defined to isolate the
execution of a group of tasks to determine the insulin amount as well as to deliver
them on the respective pumps. CAA Checking provides the input information
for the algorithm used by Calculus and its output is passed to CAA Executing
which uses this information to deliver the insulin.

The “interactions” between roles are represented in Figure 2 by vertical wide
solid arrows (not to be confuse with roles which are represented by horizontal
thin solid arrows).

CAA Checking has to retrieve the parameters set by the doctor for the
patient and also, it has to get the values of the sensors. CAA Executing sends
commands to each pump and registers in a log the original commanded val-
ues and those that were really injected. Both nested CAAs use Controller and
Params roles to achieve their goals (which have been explained before). The fact
that the roles are embedded in two different nested CAAs, allows to hide the
tasks that the roles do for the first CAA with respect to the second one.

The log is an external object, and the access to it is represented by wide
slashed arrows. The patient, his personal record and the pumps are external
objects, as well.

We defined four more CAAs to perform the activities corresponding to the
sensors and actuators. The first one is CAA Sensors, which is in direct contact
with the wearable devices that have to get the patient’s vital sign. The second
one is CAA Actuators. Both CAAs are composed.

Composed CAAs are different from the nested in the sense that the first one
is an autonomous entity with its own roles and external objects. The internal
structure of a composed CAA (e.g. CAA Sensors), i.e. set of roles (S CT, BGC
and HR), accessed external objects (Patient and Patient’s record) and behavior
of roles, is hidden from the calling CAA (CAA Checking). The Controller role
that calls the composed CAA Sensors synchronously waits for the outcome.
Then, the calling role resumes its execution according to the outcome of the
composed CAA Sensors. If the composed CAA Sensors terminates excep-
tionally, its calling role (which belongs to CAA Checking) raises an internal
exception which is, if possible, locally handled. If local handling is not possi-
ble, the exception is propagated to all the peer roles of CAA Checking for
coordinated error recovery.

CAA Actuators contains the composed CAA RAIP and CAA LAIP
CAAs. Each composed CAA manages both a pump and a sensor. This sensor
allows us to know the state of the pump before and after the insulin injection.

37

CAA Cycle

CAA Checking CAA Executing

Patient RAIP pump

CAA Sensors

BGC

HR

S_CT
CAA Actuators

Patient’s record

Patient’s logs

LAIP pump

A_RAIP

A_LAIP

A_CT

RAIP

SensorRAIP

LAIP
SensorLAIP

E2

E1

E4
E5

E6

References

execution on
Controller machine

calling
execute method

calling
executeAll method

role

interaction
between roles

accessing
to external object

sending/receiving
values as
parameters

CA action

execution on
Sensors machine

execution on
Actuators machine

possible error
signalling point

E

E7

CAA RAIP

CAA LAIP

E3
Calculus

Controller

Params

Fig. 2. The Design by CAAs and the faults that we are handling.

In CAA Sensors and CAA Actuators there is a special role (S CT and
A CT respectively), who is in charge of data exchange among the roles that
compose each CAA. Thus, this role receives/sends all the information from/to
the enclosed/nested context. This data manipulation is done in the same way by
the RAIP and LAIP roles. This way to send or receive information as parameters
is represented by thin dotted arrows. As showed in Figure 2, the Controller
machine receives information from the Sensors machine that commands the
pumps that are running on the Actuators machine.

Failure definitions and analysis Before defining and analysing the different
possible failures that may happen in our example, we have to state the assump-
tions that we have done: (i) The values of the sensors and of the actuator are
always transmitted correctly, without any loss or error. (ii) Each failure on any
sensor or actuator is indicated by a specific value, which shows which kind of
failure happened. (iii) The alarm signalling mechanism is free of faults and does
not fail.

Now, we can define and analyse various failures with respect to some elements
that compose our scenario, as well as the basic requirements for handlers related
to each exception that will be launched when an error is detected.
1. Sensor stops (E1 or E2): a wearable sensor could not send valid values.
This failure is indicated automatically by a special value of the wearable sensor.
The control system will try again getting the value to continue the cycle, but if

38

the problem persists the delivery will stop and the danger alarm will be turned
on.
2. Delivery Limit (E3): there is an amount of insulin that should be delivered
to keep the patient’s target blood glucose which is dropping out of the safe range.
In this case, the delivery is stopped and the danger alarm is turned on.
3. Actuator stops (E4, E6): a sensor that is monitoring an actuator has
detected a problem before trying to inject the insulin. This means that the
actuator is not properly working. In this case, the control program must stop
the delivery of insulin and start to ring the danger alarm.
4. Delivery stops (E5, E7): a sensor that is monitoring an actuator has
detected a problem after the insulin injection. It means that the actuator could
not inject the required amount. The control program will try again to deliver
the insulin, but if the problem goes on, the delivery of insulin will be stopped
and the danger alarm will be turned on.
5. Cartridge very low (E4, E5, E6 or E7): the quantity of insulin in a car-
tridge is less than the low limit set in the cartridge. The basal delivery continues,
but the warning alarm is turned on.
6. Cartridge empty (E4, E5, E6 or E7): a cartridge of a pump does not
have any more insulin, thus the systems will be stopped and the danger alarm
is turned on.

3.3 Implementation

This section describes the most important changes we made on DRIP [10] and
how we used this new framework to implement our design. Due to space limita-
tions, we just show the implementation of CAA Sensors and how it is launched.
Using this example, we give some ideas on the extensions made on DRIP. For
more details, interested reader can refer to [2]. This CAA is composed by three
roles and for each one of them we define a Manager (lines 2-4). Once the in-
stantiation of these objects is done, we are able to define each Role object (lines
7-9) by instantiating a new class, which inherits from the Role class provided by
the framework. We must give the name of the role, its manager and the leader
manager each time that we define a new Role object. In this case, mgrCT is the
leader manager and it is the responsible for the coordination of the each role
when they must be executed, as well as, when an exception is raised.

Definition of CAA Sensors
1 //Managers
2 mgrCT = new ManagerImpl (" mgrCT " , " CAA_Sensors ") ;
3 mgrCBGC = new ManagerImpl (" mgrCBGC " , " CAA_Sensors ") ;
4 mgrHR = new ManagerImpl (" mgrHR " , " CAA_Sensors ") ;
5

6 //Roles
7 roleCT = new CT(" roleCT " ,mgrCT,mgrCT) ;
8 roleCBGC = new CBGC(" roleCBGC " ,mgrCBGC,mgrCT) ;
9 roleHR = new HR(" roleHR " ,mgrHR,mgrCT) ;

10

11 //Handlers for SensorStops except ion
12 hndrSS CT = new SensorStopsCT (" hndrSS_CT " ,mgrCT,mgrCT) ;
13 hndrSS CBGC = new SensorStopsCBGC(" hndrSS_CBGC " ,mgrCBGC,mgrCT) ;
14 hndrSS HR = new SensorStopsHR (" hndrSS_HR " ,mgrHR,mgrCT) ;
15

39

16 //Binding between the Exception and the Handlers
17 Hashtable ehCT = new Hashtable () ;
18 ehCT . put (SensorStops . class , hndrSS CT) ;
19 Hashtable ehCBGC = new Hashtable () ;
20 ehCBGC. put (SensorStops . class , hndrSS CBGC) ;
21 Hashtable ehHR = new Hashtable () ;
22 ehHR . put (SensorStops . class , hndrSS HR) ;
23

24 // Se t t ing the binding on each Manager
25 mgrCT. setExceptionAndHandlerList (ehCT) ;
26 mgrCBGC. setExceptionAndHandlerList (ehCBGC) ;
27 mgrHR. setExceptionAndHandlerList (ehHR) ;

If there is a problem in the normal execution, we have the chance to define an
alternative behaviour. The lines 11-27 show how we can define this exceptional
behavior. If these lines are not present, when an exception is raised, the CAA is
stopped and the problem is forwarded to the enclosed context.

The lines 12-14 correspond to the definition of the handlers that are only
executed when the exception SensorsStops is raised. On Figure 2 the errors E1
and E2 represent the places where this exception could happen. Each handler
object defined is an instance of a new class derived from Handler class, which
belongs to the framework. The class Handler has been introduced in CAA-DRIP
to correctly manage the information context of the CAA where the exception
has been raised [2]. For each exception that we want to handle in the CAA, we
have to define n handlers, where n is the number of roles defined in the CAA.
Each handler must be informed of its name, its manager (which must be one of
the used in the definition of the roles) and the leader manager (not necessary
the same used for the roles).

The next step is the explicit definition of the binding between the considered
exception, and the handlers that have been defined to manage it. Each binding
is represented by a hashtable, which is controlled by a manager (lines 17-22).
Each manager (e.g. mgrCT) coordinates the execution of a role (e.g. roleCT).
The role represents the normal behavior. In the case in which an exception is
launched (SensorStops), each manager stops the execution of its associated role
it starts to execute its associated handler (e.g. hndrSS CT). Finally, we must
set each hashtable on the corresponding handler that is managing each role and
handler (lines 25-27).

The composed CAA Sensors is launched from the Controller role. The
definition of a role implies the Role class extension, which belongs to the frame-
work and reimplement its body method. Inside this method we define the tasks
that must be executed to achieve the requirements of the considered role. The
following Java source code corresponds to the role Controller and shows how
CAA Sensors is called, as well as the interaction with the Params role and
with CAA Sensors CAA is achieved.

Launching CAA Sensors
1

2 public void body (Object l i s t []) throws Exception , RemoteException {
3 try{
4 // launching the Composed CAA Sensors
5 roleCT . executeAl l (l i s t) ;
6

40

7 // ge t t i n g Composed CAA Sensors outcomes
8 RemoteQueue rqOut = (RemoteQueue) l i s t [0] ;
9 I n t eg e r bgcValue = (In t eg e r) rqOut . get () ;

10 I n t eg e r hrValue = (In t eg e r) rqOut . get () ;
11

12 // ge t t i n g va lues from Params ro l e
13 RecordPatient rp = (RecordPatient) paramsPatientQueue . get () ;
14

15 // passing information to CAA Cycle
16 rqOut . put (bgcValue) ;
17 rqOut . put (hrValue) ;
18 rqOut . put (rp) ;
19

20 } catch (Exception e) {
21 //Local handling for Checking . Contro l l er except ion ;
22 throw e ;
23 }

The body method receives a list of objects as parameter (line 2), which is
used to exchange information with its context. The executeAll method is used
for the roleCT object (there is no difference about which CAA role is used) to
launch the composed CAA Sensors (line 5). This method takes an object list
as parameter that is used to get the CAA Sensors outcomes. Lines 8-10 show
how we retrieve these outcomes from the list. Interaction among roles appears in
line 13 and it represents an information flow from Params to Controller. Once
the Controller role has all the patient’s information it must send this information
to the enclosing CAA Checking (lines 16-18). If along the execution of these
tasks an exception is raised, we have the chance to handler it locally inside the
catch block. In this example, if an exception happens, it is directly passed to the
enclosing context (line 22).

4 Conclusions and Future Work

In this experience paper we introduced a control system for a fault-tolerant
insulin pump therapy. In order to ensure the needed requirements of reliability
and availability, the system has been designed using the CAAs mechanism that
offers approaches for error recovery. The implementation of the control system
has been made in Java, using a variant of the DRIP framework, because along
the implementation of this case study we found some problems in the original
DRIP. These problems were fixed in a new framework which just supports CAA
requirements and is called CAA-DRIP. On the future work side we plan to release
CAA-DRIP explaining details on changes made.

Acknowledgments This work has benefited from a funding by the Lux-
embourg Ministry of Higher Education and Research under the project num-
ber MEN/IST/04/04. The authors gratefully acknowledge help from A. Ro-
manovsky, P. Periorellis, R. Razavi and A. Zorzo.

References

1. R. H. Campbell and B. Randell. Error recovery in asynchronous systems. IEEE
Transactions on Software Engineering. IEEE Press, pages pp. 811–826, 1986.

41

2. Correct Web Page. http://se2c.uni.lu/tiki/tiki-index.php?page=correctdoc, 2005.
3. J. Gray and A. Reuter. Transaction processing: Concepts and techniques. The

Morgan Kaufmann series in data management, pages pp. 36–37, 1993.
4. P. Jain, S. Widoff, and D. C. Schmidt. The design and performance of medjava.

IEE/BCS Distributed Systems Engineering Journal, December 1998.
5. National Institute for Clinical Excellence. Guidance on the use of continuous

subcutaneous insulin infusion for diabetes.
http : //www.nice.org.uk/pdf/57 insulin pumps fullguidance.pdf . 2003.

6. G. Weiss. Welcome to the (almost) digital hospital. IEEE Spectrum Online,
http : //www.ieeta.pt/sias/courses/imt/Resources/IEEE AlmostDigitalHospital
Mar2002.pdf , 2002.

7. J. Xu, B. Randell, A. B. Romanovsky, C. M. F. Rubira, R. J. Stroud, and Z. Wu.
Fault tolerance in concurrent object-oriented software through coordinated error
recovery. In Symposium on Fault-Tolerant Computing, pages 499–508, 1995.

8. A. Zorzo. Multiparty interactions in dependable distributed systems. PhD Thesis,
University of Newcastle upon Tyne, Newcastle upon Tyne, UK, 1999.

9. A. Zorzo, A. Romanovsky, B. R. J. Xu, R. Stroud, and I. Welch. Using co-ordinated
atomic actions to design complex safety-critical systems: The production cell case
study. Software-Practice and Experience, pages pp. 667–697, 1999.

10. A. F. Zorzo and R. J. Stroud. A distributed object-oriented framework for de-
pendable multiparty interactions. In OOPSLA ’99: Proceedings of the 14th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 435–446. ACM Press, 1999.

Appendix: “Terminology”

Basal rate: the amount of insulin delivered over 24 hours per day, providing a
background of insulin at all times. The rate programmed is intended to keep the blood
glucose within the user’s Target Range (TR) between meals and overnight. The basal
rate is measured in units per hour (u/hr).

Blood Glucose Level (BGL): the amount of glucose in the blood. BG levels
average 100 mg/dl (5.5 mmol/L) for someone without diabetes. The healthcare provider
help in determining the “target range” for the blood glucose level.

Heart Rate (HR): is the number of contractions of the heart in one minute. It
is measured in beats per minute (bpm). When resting, the adult human heart beats at
about 70 bpm (males) and 75 bpm (females), but this rate varies between people.

Duration of insulin action (DIA): a certain amount of time insulin is active
and available in the body after it has been given by a subcutaneous bolus. Talking
with the healthcare provider helps in determining the duration of the insulin action
through blood glucose testing.

InsulinAmount algorithm: it is used to calculate the needed amount of insulin.
The formula takes into account the Target Blood Glucose Level (TBGL), the Duration
of Insulin Action (DIA) according to the type of insulin used, the current blood glucose
(CBGL) and the current heart rate (HR). The result represents the needed amount of
insulin.

InsulinAmount(TBGL, DIA, CBGL, HR)

42

Omnibus: A clean language and supporting tool for
integrating different assertion-based verification

techniques

Thomas Wilson, Savi Maharaj, Robert G. Clark

Department of Computing Science and Mathematics, University of Stirling,
Stirling, Scotland

{twi,sma,rgc}@cs.stir.ac.uk

Abstract. Omnibus is a new system for the development of reliable Object-
Oriented software. It includes a clean language that is superficially similar to
Java but removes aspects that particularly complicate verification. Integrated
support is provided for run-time assertion checking, extended static checking
and full formal verification. The language is supported by a prototype IDE with
a type checker, Java code generator, HTML documentation generator and a
range of verifiers. This paper presents the case for Omnibus, gives an overview
of the language and tools and discusses its relationship to dependable systems
development.

1. Introduction

There are three distinct assertion-based approaches for the integrated specification,
implementation and verification of Object-Oriented (OO) software: run-time assertion
checking [14], extended static checking [10] and full formal verification [4]. Full
formal verification offers the possibility of producing error-free software whereas
run-time assertion checking and extended static checking have more modest aims,
attempting to catch only a subset of assertion violations. Most existing tools are built
around a single one of these approaches. However, the approaches have complemen-
tary strengths. Full formal verification is ideal for supporting reusable software com-
ponents and verifying critical modules within a system though its cost cannot typi-
cally be justified for systems in their entirety. Run-time assertion checking and ex-
tended static checking offer a better compromise for the majority of application-
specific code. They require more modest additional investments but are inadequate
for writing critical code and reusable components. We propose the use of these ap-
proaches together within different parts of a single system, using full formal verifica-
tion for reusable components and critical modules and a combination of run-time
assertion checking and extended static checking for the remainder of the code.

The starting point for an assertion-based approach is the language, of which there
are two kinds: ones that extend an existing commercial programming language and
ones based on a mathematically cleaner language. The advantages of the former are
familiarity to programmers and compatibility with legacy code. Examples of lan-

43

guages in this category are JML [9] and Spec# [2]. However, it can be extremely
difficult to build a verification approach around such languages. Because they use
reference semantics, they must include complex annotations to deal with subtle rela-
tionships such as object ownership and data abstraction [12,11]. As the need for user
annotations appears to be an important factor inhibiting the adoption of these tech-
niques, it is worth the effort to investigate alternative strategies. The use of mathe-
matically cleaner languages can eliminate many of these complications, simplifying
the semantics of the language and reducing the number of annotations required. Ex-
amples of languages in this category are SPARK [1] and Perfect [4].

Of the existing projects, only JML supports the full range of assertion-based veri-
fication approaches. There is currently no project aiming to support the full range of
approaches for a mathematically clean language. Even in the case of JML, recent case
studies [7] have applied the approaches separately, rather than in an integrated man-
ner.

In this paper we present a new system called Omnibus [18,19] which supports run-
time assertion checking, extended static checking and full formal verification for a
mathematically clean language. The Omnibus language is superficially similar to Java
but removes aspects that particularly complicate verification, in particular the use of
reference semantics by default for objects. References are still needed to support
polymorphism and so are used behind-the-scenes to implement the objects. However,
they are not exposed to the programmer, with the language supporting a single equal-
ity operator that represents deep equality. These alterations simplify verification and
eliminate many of the complications present in JML. For example, the specification
of frame conditions [12] and the checking of invariants in the presence of callbacks
[11] can be greatly simplified. A recent paper [8] highlights some particularly com-
plicated examples that Java verification tools must be able to handle. These examples
do not pose a problem for Omnibus, mainly because Omnibus outlaws the aspects of
Java that are exploited to produce the difficult to verify examples.

The Omnibus language is supported by an IDE with a type checker, Java code gen-
erator, HTML documentation generator, and interactive and automated verifiers.
Integrated support for different verification approaches is provided through a verifi-
cation policy management system. Omnibus has been applied to a number of small
and medium sized case studies.

A number of concepts from dependable systems development have natural defini-
tions within Omnibus and Omnibus provides a range of facilities that can be used to
support existing fault tolerant techniques.

Section 2 develops the case for using a cleaner language. Sections 3 and 4 present
overviews of the Omnibus language and tools, respectively, Section 5 discusses de-
pendable systems development with Omnibus and Section 6 concludes by discussing
future work.

2. The case for using a cleaner language

There is much evidence of the difficulties of working with languages not specifically
designed with verification in mind. An important cause of these difficulties is the use

44

of reference semantics as the default mechanism for working with objects. Sophisti-
cated techniques have had to be devised to control their use requiring extra tool sup-
port and additional programmer annotations. For example, there has been work on
specifying frame conditions [12] and handling callbacks and invariants [11]. Leino
notes in [10], “the reluctance to cope with the burden of annotating programs remains
the major obstacle in the adoption of extended static checking technology into prac-
tice.” As such, it would seem appropriate to attempt to remove any accidental diffi-
culties such as complexities introduced by the language.

It is important to appreciate that the problems encountered in verifying modules
written in these languages are not products of the formalization process itself, but are
practical complexities that programmers have to grapple with when using the lan-
guages. The complexities of reference semantics frequently lead to a range of aliasing
errors that can be difficult to detect.

Functional programming languages offer a cleaner basis for a verification ap-
proach than mainstream languages like Java because of their use of value semantics.
However, functional languages have not been widely embraced by the software de-
velopment industry.

An alternative approach is to take a mainstream language and adjust it to be more
amenable to analysis. For example, SPARK removes aspects of Ada that are error-
prone and complicated to verify. In SPARK, object variables hold values, not refer-
ences hence naturally giving value semantics. However, in order to use inheritance,
object variables must hold references so that dynamic binding can be supported. OO
languages and value semantics are not incompatible but additional support is required
to mask the use of references. Languages based on this approach can be relatively
accessible to everyday programmers and not unnecessarily complicated to verify,
though they might require programmers to adopt slightly different programming
styles. Even JML, which uses reference semantics by default, provides the pure
modifier that allows classes to be defined that obey value semantics.

The use of value semantics involves a trade-off of efficiency and expressiveness as
well as reducing direct compatibility with legacy code. Our claim is that OO lan-
guages built on value semantics occupy an interesting position in the solution space
involving an engineering trade-off worthy of investigation.

3. An overview of the Omnibus language

Omnibus is a new language that is similar to Java with adjustments making it more
amenable to formal analysis. Like Java, it includes the concepts of packages, classes,
methods, expressions, statements etc, but it also incorporates a behavioural interface
specification language and uses value semantics for objects.

Similarly to Java, an Omnibus application consists of a set of class definitions.
Each class contains a range of methods for manipulating instances of the class. There
are three main types of method declaration in Omnibus: constructors, functions and
operations. Constructors allow objects to be created, functions allow objects to be
queried without side-effects and operations allow objects to be updated. The declara-

45

tion of a method starts with a keyword identifying the type of method. Constructors
are class methods whereas functions and operations are object methods.

In Omnibus, all objects are immutable with the system creating new objects be-
hind-the-scenes as needed to preserve value semantics. This is hidden from the pro-
grammer who is allowed to think in terms of updating objects.

Specifications

Omnibus allows heavyweight specifications, which are suitable for full formal verifi-
cation, as well as a lightweight specification style, suitable for run-time assertion
checking or extended static checking.

Behaviour specifications: The behaviour of methods can be described using be-
haviour specifications. These are constructed from requires, changes and en-
sures clauses which give pre-conditions, frame conditions and post-conditions,
respectively. A subset of the functions in the class is taken to represent the abstract
state of the class. These are called model functions, are declared with the model
modifier and do not have post-conditions. The behaviour of the other methods (the
remaining functions along with the constructors and operations) is then defined in
terms of them. When specifying operations, a changes clause is used to describe
what model functions have their values changed and an ensures clause is used to
describe how they are changed.

Requirements specifications: The requirements of a class are specified using
initially, invariant, and constraint assertions. The initially assertions
should hold over all freshly constructed objects, invariant assertions should hold
over objects whenever they are accessible by code in other classes and constraint
assertions should hold across any operation calls. Unlike the code-centric JML lan-
guage, the requirements are not simply conjoined with the post-conditions of con-
structors and object methods and pre-conditions of object methods. Instead, they
should follow from the behaviour specifications. This provides a useful way to verify
the behaviour specifications, independent of an implementation.

spec class BankAccount {
 model function balance():integer
 model function overdraftLimit():integer
 function isOverdrawn():Boolean
 ensures result = (balance() < 0)
 function fundsAvailable():integer
 ensures result = overdraftLimit() + balance()
 constructor open(deposit:integer)
 requires deposit >= 0
 ensures balance() = deposit,
 overdraftLimit() = 500
 operation deposit(amount:integer)
 requires amount >= 0
 changes balance
 ensures balance() = old balance() + amount
 operation withdraw(amount:integer)
 requires amount >= 0,
 amount <= fundsAvailable(),
 amount <= 300
 changes balance

46

 ensures balance() = old balance() – amount
 initially balance() >= 0
 invariant balance() >= -overdraftLimit()
 invariant overdraftLimit() >= 0
 constraint balance() >= old balance - 300
}

Fig 1. Heavyweight specification of a BankAccount class.

Example: Figure 1 presents a heavyweight specification for a simple Omnibus
class modelling a BankAccount. A BankAccount is opened with an initial deposit
and starts with an overdraft limit of 500. Given a BankAccount, you should be able
to ask what the balance is, what the overdraft limit is, whether it is overdrawn and
how much is available to be withdrawn. A BankAccount can be updated by deposit-
ing or withdrawing money. The requirements are that: (1) when an account is initially
created, the balance should be at least zero, (2) the balance should never be more
overdrawn than the overdraft limit permits, (3) the overdraft limit should never be
negative, and (4) at most 300 can be withdrawn at one time. The BankAccount class
is declared with the spec modifier which indicates that it defines only a specification
and no implementation1. The old operator is used in the ensures clauses to refer to
values from the pre-state.

Implementations

The public behaviour specification of a class should be defined in terms of a set of
model functions, without making reference to implementation details. In contrast, the
implementation of the class is solely defined in terms of private attributes. Each of
the model functions must then be implemented at the private level in terms of the
attributes. Method implementations are defined using a Java-style implementation
language containing an assignment statement, operation call statements, a declaration
statement, an assert statement, an if statement, a for loop and a while loop. Loops can
be annotated with loop invariant assertions.

Inheritance

Omnibus supports single behavioural inheritance. A class inherits all the requirements
of its superclass and can choose to either implicitly inherit or explicitly override the
methods in the superclass. The overriding method definitions can give different be-
haviour specifications with weakening of the pre-condition (i.e. the requires
clause) and strengthening of the post-condition (calculated from the changes and
ensures clauses) permitted. Model functions can also be redefined as derived func-
tions but when this is done, methods inherited from the superclass must have their
behaviour redefined in terms of the new model functions.

1 JML uses the model modifier to signify this whereas we use that for a different concept.

47

Libraries

Like JML, Omnibus hides mathematical abstractions like sequences and sets behind a
façade of library classes. Users interact with these classes through methods just like
any other class, and do not need to learn additional mathematical notation to manipu-
late them. This is in contrast with the Perfect language which provides support for
sequences, sets etc in the language itself. I/O is also achieved through the libraries.
This centres around a uniquely typed [16] Environment class which is passed into
the application at the entry point.

Limitations

There are limitations in the current version of the language. Some of these limitations,
such as the removal of static data, have been purposefully introduced to simplify
verification. Support for exceptions and Java-style interfaces is under development.
We do not currently handle arithmetic overflow, concurrency or termination.

4. The Omnibus IDE

The Omnibus IDE incorporates standard facilities for managing files and projects and
uses a jEdit component to support syntax highlighting and bracket matching while
editing source code. In addition to this, it provides a type checker, a Java code gen-
erator incorporating run-time assertion check generation, an HTML documentation
generator, a static verifier supporting extended static checking and full formal verifi-
cation, and, most importantly, a Verification Policy Manager [19], which provides a
flexible means for integrating the use of the different verification approaches within
different parts of a system.

Figure 2 presents an overview of the Omnibus static verifier. It takes as input an
Omnibus project consisting of a collection of source files, referenced jar files and a
verification policy describing what level of verification should be performed on each
file. The files are then parsed and type checked before being passed to the static veri-
fier. The verifier uses two theorem provers: the interactive PVS prover [15] and the
fully automated Simplify prover [5]. The first step in the process is to translate the
classes in the source files and referenced jar files into the logics of the two theorem
provers. The static verifier then uses two generic modules: a specification verifier and
a symbolic executor, to generate VCs over the translated specifications. The specifi-
cation verifier generates VCs to check that the behaviour of heavyweight specifica-
tions satisfies their requirement specifications. The symbolic executor executes im-
plementations using symbolic values to check that implementations satisfy their be-
haviour specification. The VCs are expressed in an extension of the Omnibus asser-
tion language and can then be translated into either PVS or Simplify conjectures de-
pending on the verification strategy specified in its verification policy. Finally, the
generated files are passed to the corresponding provers. In the case of PVS, the user
must manually launch the prover and attempt to verify the conjectures. In contrast,

48

the tool is able to automatically invoke the Simplify prover and process its responses
to give user friendly error messages.

Fig. 2. Diagram of the Omnibus IDE’s static verification process.

We were guided through many of the practical obstacles by the writings of Jacobs
et al. [7], Cok [3] and Leino [13]. We were able to make a number of simplifications
over their approaches due to our use of the simpler Omnibus language. For example,
we do not require any formal modeling of the heap.

5. Dependable systems development

A system is said to have a failure if the service it delivers deviates from the desired
behaviour. Such failures are caused by flaws in a system called faults. These faults
can be present in the hardware, software or non computer-based parts of the system.

It can be difficult to precisely define what is meant by failure, fault and ‘desired
behaviour’. There are natural definitions for each of these within the Omnibus frame-
work. In Omnibus, dynamic assertion violation errors indicate faults and static asser-
tion violation warnings indicate possible faults. If the assertion violations are con-
cerned with the top-level specification of the system then they are failures. This fits
nicely alongside the idea of Heimerdinger [6] of viewing faults as failures in other
systems which interact with the system under consideration. The accepted approach
for defining ‘desired behaviour’ is to use a specification. The Omnibus language
allows specifications to be defined precisely.

The development strategies currently at our disposal are unable to consistently pro-
duce realistic systems without faults. The root cause of these problems is complexity:
of the systems being developed and of the techniques used to develop them. By using
a semantically simpler language, Omnibus aims to reduce the amount of unnecessary

Static
Verifier

Specification
Verifier

Symbolic
Executor

PVS VC
Translator

Simplify VC
Translator

PVS Spec
Translator

Simplify Spec
Translator

Parser

Type Checker

Simplify
Prover

Simplify
Output

Processor
PVS

Prover

VCs

Omnibus Project

PVS
file

Simplify
file

Error
Reporter

IDE

49

complexity, allowing the essential difficulties to be focused on. While it is unavoid-
able that realistic systems will contain some faults, we still want these systems to be
dependable i.e. be trustworthy enough that reliance can be placed on the service they
deliver.

There are different means of attaining dependability of systems; among them are
fault avoidance and fault tolerance. Fault avoidance is concerned with preventing the
introduction of faults as the system is being developed. This is achieved through the
use of quality control techniques during the specification, design and implementation
of a system. Omnibus provides a rigorous framework for performing such quality
control of software development, allowing the consistency of specifications, designs
and implementations to be formally verified. A key strength is that the separation of
behaviour and requirement specifications allows the internal consistency of specifica-
tions to be verified independent of any implementation. Fault removal is a related
approach where verification and testing techniques are used to locate faults in a sys-
tem once it is developed. The traditional choices are testing or full formal verifica-
tion. However, testing techniques do not cope well with the large state spaces of real-
istic systems and heavyweight verification is typically too costly to use for systems in
their entirety, particularly those implemented using semantically complex languages
such as Java and C#. Omnibus helps address this by supporting a range of verification
techniques from the dynamic and static checking of lightweight assertions to full
formal verification relative to heavyweight specifications. Omnibus can also be used
to express test harnesses in terms of symbolic input values and these can be verified
using symbolic execution. Such test scenarios allow for greater error coverage and
can be equivalent to large numbers of concrete test scenarios.

Fault tolerance is concerned with maintaining the correctness of the delivered ser-
vice in the presence of faults. Fault tolerance can be applied at three different levels:
hardware fault tolerance, software fault tolerance and system fault tolerance [6,17].

Hardware fault tolerance is concerned with compensating for faults in the low-
level computing hardware of a system and is beyond the scope of Omnibus.

Software fault tolerance involves the structuring of a computer system to compen-
sate for faults in the software system itself. Omnibus provides a range of facilities that
can be used to support existing fault tolerant techniques. Its key strengths are its ex-
pressive specification language and support for the automatic generation of run-time
checks from assertion annotations. There are two groups of software fault tolerant
techniques, those that aim to tolerate faults in single software modules (single-version
techniques) and those that employ redundant software modules (multi-version tech-
niques).

Single-version techniques include detection and containment techniques. Omnibus
assertion checks greatly aid fault detection. Fault detection is traditionally carried out
through acceptance tests such as reasonableness checks and structural checks. Omni-
bus assertions are a natural way of expressing some of these acceptance tests. For
example, reasonableness checks map nicely to behaviour specifications and structural
checks equate to invariants. Omnibus run-time assertion checks also allow faults in an
executing program to be detected earlier than they would otherwise be. This is be-
cause in Omnibus faults are detected as soon as one of the assertion checks fails
rather than at some later point when a run-time error is triggered or an acceptance

50

check is failed. The advantage of detecting faults earlier is that it reduces the amount
of damage that they can do. Fault containment techniques are also supported by Om-
nibus. The Object-Oriented facilities of the language provide support for modulariza-
tion and specifications allow the situations where actions are permissible to be explic-
itly defined, preventing a faulty component from making an invalid invocation of
another component.

Multi-version techniques employ redundant modules to provide fault tolerance.
Hardware fault tolerance is relatively well understood and utilises redundancy heavily
to cope with low-level production errors. However, these techniques do not map
directly to the software domain. Simply duplicating a software component does not
help address software faults since all copies of the component will have identical
faults. To get around this, different but equivalent implementations of a component
can be created. These implementations must be developed independently so that they
do not share common faults. This process is called design diversity. Just as the entire
system will not typically merit the use of full formal verification, it will not typically
be justifiable to design multiple versions of the complete system. As with the verifica-
tion policy management strategy, the class (or perhaps even the method) is a more
appropriate scale to operate on. It is also important that the diverse designs are
equivalent. Omnibus can be used to demonstrate that the designs satisfy a common
specification, detecting inconsistencies early on.

Finally, system fault tolerance involves the development of facilities to compen-
sate for failures in parts of the system that are not directly computer-based e.g. exter-
nal devices such as sensors. By using suitable specifications for these external de-
vices, Omnibus can be used to statically verify that a computer system copes with
every eventuality e.g. sensors operating correctly and sensors failing. This form of
static verification of a-priori known potential faults is of course possible using other
formal frameworks.

6. Future work

Work on the language is currently focusing on the handling of equality of objects.
There are a number of features that we wish to add to the Omnibus language. These
include support for predicate subtypes, enumeration types and exceptions. The librar-
ies are the area needing most work. In particular, we would like to add support for
GUIs, File I/O and XML. The IDE is largely finished, needing only a number of
refinements. Two key problems we have met are limits of the expressiveness of our
assertion language and the level of repetition between a heavyweight specification
and a corresponding implementation. We are currently working to address these prob-
lems and to develop larger case studies.

51

7. References

1. J. Barnes – “High Integrity Software: The SPARK Approach to Safety and Security”,
Addison-Wesley, 2003.

2. M. Barnett, K.R.M. Leino, W. Schulte – “The Spec# programming system: An overview”,
in the proceedings of CASSIS 2004, Springer LNCS 3362, 2005.

3. D.R. Cok – “Reasoning with specifications containing method calls in JML and first- order
provers”, Formal Techniques for Java-like Programs workshop at ECOOP, 2004.

4. D. Crocker – “Safe Object-Oriented Software: the Verified Design-by-Contract paradigm”,
Procs. of the 12th Safety-Critical Systems Symposium, Springer-Verlag, 2004.

5. D. Detlefs, G. Nelson, J.B. Saxe – “Simplify: A theorem prover for program checking”,
Technical Report HPL-2003-148, HP Labs, 2003.

6. W. Heimerdinger, C. Weinstock – “A Conceptual Framework for System fault Tolerance”,
Technical Report CMU/SEI-92-TR33. ESC-TR-92-033. SEI. October 1992.

7. B. Jacobs et al. – “Formal verification of a commercial smart card applet with multiple
tools”, Proceedings of AMAST 2004, Springer LNCS 3116, 2004.

8. B. Jacobs et al. – “Java Program Verification Challenges”, Proceedings of Formal Methods
for Components and Objects, Springer LNCS 2852, 2003.

9. G.T. Leavens et al. – “Preliminary Design of JML: A Behavioral Interface Specification
Language for Java”, Dept. of Computer Science, Iowa State University, TR #98-06p, 2003.

10. K.R.M. Leino – “Extended Static Checking: A Ten-Year Perspective”, Informatics—10
Years Back, 10 Years Ahead, Springer LNCS 2000, 2001.

11. K.R.M. Leino, P. Muller – “Object invariants in dynamic contexts”, ECOOP 2004 —
Object-Oriented Programming, Springer LNCS 3086, 2004.

12. K.R.M. Leino, G. Nelson – “Data abstraction and information hiding”, ACM Trans-actions
on Programming Languages and Systems, 24(5):491–553, September 2002.

13. K.R.M. Leino, J.B. Saxe, C. Flanagan – “The logic of ESC/Java”,
http://research.compaq.com/SRC/esc/design-notes/escj08a.html

14. B. Meyer – “Eiffel : The Language”, ISBN 0132479257, Prentice Hall, 2000.
15. S. Owre et al. – “PVS: Combining Specification, Proof Checking, and Model Checking”,

Proceedings of CAV 1996, Springer LNCS 1102, 1996.
16. M.J. Plasmeijer – “CLEAN: a programming environment based on Term Graph Rewrit-

ing”, Proceedings of SEGRAGRA'95, ENTCS 2, 1995.
17. W.Torres-Pomales – “Software Fault-Tolerance: A Tutorial”, NASA/TM-2000-210616,

October 2000.
18. T. Wilson – Omnibus home page. Available at http://www.cs.stir.ac.uk/omnibus/
19. T. Wilson, S. Maharaj, R.G. Clark – “Omnibus Verification Policies: A flexible, configur-

able approach to assertion-based software verification”, accepted for publication in SEFM
2005, Koblenz, Germany, September 2005.

52

Towards Formal Development of Mobile Location-Based
Systems

Alexei Iliasov1, Linas Laibinis2, Alexander Romanovsky1,
Elena Troubitsyna2

1Newcastle University, UK. {Alexei.Iliasov, Alexander.Romanovsky}@ncl.ac.uk
2Åbo Akademi, Finland. {Linas.Laibinis, Elena.Troubitsyna}@abo.fi

1. Introduction

1.1 Motivation

Mobile agents have many attractive features to offer and they are often mentioned as
a future mainstream industry-level software technology. The agent technology
naturally solves the problem of decoupling complex software into smaller parts that
are easier to design, code and maintain. It helps to use distributed computing power
effectively while hiding many of the details and complexities of a hosting
environment. Recent advances in mobile computing and wireless networks lead to
introduction of host (physical) mobility that offers totally new opportunities and as
well raises new problems. Though substantial research has been conducted on
developing middleware solutions supporting mobile agents, the mobile agent
technology is still not mature enough to become a practice in industrial software
development. There are several areas in which no general solutions have been found
yet. One of them is ensuring interoperability of independently designed agents and
correctness of the overall mobile system. In this work we will present a background
for building a formal development methodology that addresses this problem.

Agent software is designed to interact with other agents during its lifetime. Most
research in the area discusses only centralized development process, when all the
participating pieces of software (code of the agents) are created at the same site to
solve common problems. In this case agents are mostly useful as a replacement of
conventional client-server scheme with migrating clients or/and servers. However the
application area of the mobile agents is much broader and, to make full use of their
communication and migration capabilities, we need to assume systems are composed
dynamically out of agents developed independently at different sites and for different
purposes. Such configurations are impossible if agents are merely anonymous black
boxes. In our view, to cooperate, agents must be based upon some common
specification of their functionality. This specification should be formally developed
and verified to ensure the desired properties of the application composed of agents.
Developers of individual agents can independently extend the specification (using a
refinement method) to add unique features without losing compatibility with other
agents derived from the same specification.

53

The specification should be minimal in a sense that it does not have to provide many
design details but it should be complete enough to identify what services the agent has
to offer and what services it is looking for. This information should describe how to
communicate with the particular class of agents, what such agents expect as input, and
what output they produce.

1.2 Background

Mobile agent systems are often symmetric in a sense that each system participant
roughly carries the same middleware implementation. Agents can dynamically and
autonomously form new groups and communicate. However in this paper we explore
an asymmetric approach in which different parts of the system carry different basic
functionality. One particular example of such view is a location-based scheme. In this
model locations provide services to the agents, such as connectivity and coordination
space. Agents are not able to communicate with each other without a location support.
The choice of the scheme is supported by the fact that the majority of the mobile
applications assume that agents meet in physical or logical locations providing a set of
designated services to them. Hence, the asymmetric scheme is closer to the traditional
service provision architectures. It can support large-scale mobile agent networks in a
very predictable and reliable manner. It makes better use of the available resources
since most of the operations are executed locally. Moreover, location-based
architecture eliminates the need for employing complex distributed algorithms or any
kind of remote access. This allows us to guarantee atomicity of certain operations
without sacrificing performance and usability. This scheme also provides a natural
way of introducing context-aware computing by defining location as a context. The
main disadvantage of the location-based scheme is that an additional infrastructure is
always required to support mobile agent collaboration.

The coordination paradigm (originated in Linda [4]) has become the dominating
environment in which a number of mobile systems are built (including Lime [7],
Klaim [2], etc.). Linda is a set of language-independent coordination primitives that
can be used for communication and coordination between several independent pieces
of software. First used for parallel programming, it later became a core component of
many mobile software systems because it fits nicely the main characteristics of the
mobile systems: openness, dynamicity, anonymity of agents and their loose
coordination. Linda-based coordination systems specifically designed for mobile
applications supporting both physical mobility, such as a device with running
application travelling along with its user across network boundaries, and logical
mobility, when a software application changes its hosting environment.

The rest of the paper is organized as follows. Section 2 introduces a number of basic
abstractions to be used in development of mobile systems. Sections 3 describes a
rigorous development process supporting these abstractions. Section 4 presents a
formal abstract specification of the middleware. Finally, the last section presents
conclusions and outlines our future work.

54

2. System structure

The CAMA (context-aware mobile agents) system consists of a set of locations.
Active entities of the system are agents. An agent is a piece of software that meets a
number of requirements. Each agent is executed on its own platform. The platform
provides execution environment interface to the location middleware. Agents
communicate only with other agents in the same location. Agents can migrate from
location to location logically (connections and disconnection) or physically (e.g.
movement of a PDA on which the agent is hosted on). They can also logically migrate
from platform to platform using weak code mobility. Compatible agents collaborate
through a scoping mechanism. A scope defines a joint activity of several agents. The
scoping mechanism also isolates non-compatible agents from each other. Below are
the details of the introduced concepts.

A location is a container for scopes. It can be associated with a particular physical
location and can have certain restrictions on the types of supported scopes. It is the
core part of the system as it is provides means of communications and coordination
between agents. Location is a named entity and for simplicity we assume that each
location has a unique name in the given context. This roughly corresponds to IP
addresses of hosts on network which are often unique in some local sense. Location
must keep track of present agents and their properties in order to be able to
automatically create new scopes and restrict access to existing ones. The more
detailed location description is presented in the form of a formal specification (see
Section 4).

Certain locations may prevent agents from entering without an authorization. To be
allowed to enter a location, an agent must have a key issued by it. Keys may be
permanent or have a validity period determined by the issuing location Agent must
have to acquire a key on a different location before entering a protected location.

Locations may provide special services, like access to a service from a variety of
devices connected to the location, making enquires and so on. Each Location may
have its own unique set of services and provided operations. They are made available
to agents via what appears to agents as a normal scope though some roles in these
scopes are implemented by the location system software. As with all scopes, agents
are required to implement specific interfaces in order to connect to a location-
provided scope. An example of such services includes printing on a local printer,
access to Internet, making a backup to a location storage, migration and etc. In
addition to supporting scopes as mean of agent communication, location may also
support logical mobility of agents, hosting of platforms and agent backup. Hosting of
platform on a location allows agent to execute without a PDA. For example, a user
may decide to move an agent from his PDA to a location before leaving the location
with his PDA. In addition to the above, location, by a request from an agent, may play
in certain types of scopes a role of a trusted third party that is neutral to all the
participating agents. This facilitates implementation of various transaction schemes.

A platform provides an execution environment for an agent. It is composed of a
virtual machine for code execution, networking support and middleware for

55

interaction with location. A platform may be supported by PDA, smart-phone, laptop
or a location server. The concept of platform is important to clearly differentiate
between a location providing coordination services to agents and middleware that
only supports agent execution. In other approaches no such distinction is made.

An agent is a piece of software implementing a set of roles which allow it to take
part in certain scopes. All agents must implement the minimal functionality called the
default role, which specifies activities outside scopes.

A scope is a dynamic container for tuples. It provides an isolated coordination space
for compatible agents by restricting visibility of the tuples contained in the scope to
the participants of the scope. Scopes are initiated by an agent and then atomically
created by Location when all the participants are ready. Scopes can be nested and
scope participants can create new contained scopes. Scope is defined by the set of
roles and a set of logical restrictions.

Fig. 1. Scope classification a) according to the availability of scopes for new agents and b)
according to the agent activity in a scope.

A scope becomes activated after some agent creates it with the CreateScope
operation. A scope is open when there are some vacant roles in it, and is closed when
all the roles in it are taken. A scope is pending if some required roles are not taken yet
and expanding if all the required roles are taken but there still some vacant roles.
Closed and expanding states correspond to working scopes, where agents can
communicate. All participants of a pending scope are blocked until the scope state is
changed into closed or expanding.

A role is an abstract description of agent functionality. Each role is associated with
some scope type. An agent may implement a number of roles and can also play
several roles in the same scope or different scopes. There is formal relationship
between a scope and a role of a scope.

Introduction of scopes and roles offers agents an entirely new way to discover each
other and to collaborate with each other. After arrival to a new location, an agent
looking for partners, initiates scope creation or join protocol. They are implemented
as a request to the controlling system (middleware) to find appropriate partners ready
for certain type of activity. In a request agent specifies type of scope it wants to work
in and a role it is going to take. The system then creates a scope or finds an existing
matching scope with available role for the agent. This procedure is executed

Activated scopes

Working Waiting

Pending Expanding Closed

Activated scopes

Closed Open

Pending Expanding

56

atomically. As soon as all the required roles are taken, the system creates a separate
coordination space for the group of agents participating in the scope. Isolation
achieved this way greatly simplifies agent design since while in a scope agent may
safely assume reasonable behaviour of their partners. In a scope agents remain
anonymous as long as they need and procedures of scope joining or creation do not
change this.

The CAMA approach supports the context-awareness of mobile agents. The context
of an agent in CAMA systems consists of is composed of the following parts: a set of
locations the agent is connected to, the state of scopes in which the agent is currently
participating (including tuples contained in these scopes) and role attributes of other
agents in collaborating with the agent.

3. Formal Development Process

Formal development process of the CAMA system consists of several steps. First, we
create abstract specifications of the middleware (location) and the scopes that will be
supported by the system. Then we develop (by the stepwise refinement method)
specifications of different roles participating in scopes. Finally, we compose an agent
specification as a combination of several developed roles (i.e., agent interfaces) and
the default functionality defining the agent behaviour outside scopes.

The agent specification can be further refined adding more details and custom
functionality. Compatibility of different agents is ensured by the fact that all agents
have been developed by the formal refinement method from the same abstract
specifications of different roles and the middleware. Therefore, agents can collaborate
making safe assumptions about the functionality of their peers.

In the next subsection we give a brief introduction into our formal framework – the
B Method, which we will use to formalise the development process described above.

3.1 The B Method

The B Method [1] (further referred to as B) is an approach for the industrial
development of highly dependable software. The method has been successfully used
in the development of several complex real-life applications [6]. The tool support
available for B provides us with the assistance for the entire development process. For
instance, Atelier B [8], one of the tools supporting the B Method, has facilities for
automatic verification and code generation as well as documentation, project
management and prototyping. The high degree of automation in verifying correctness
improves scalability of B, speeds up development and, also, requires less
mathematical training from the users.

The development methodology adopted by B is based on stepwise refinement [3].
While developing a system by refinement, we start from an abstract formal
specification and transform it into an implementable program by a number of
correctness preserving steps, called refinements. A formal specification is a

57

mathematical model of the required behaviour of a (part of) system. In B a
specification is represented by a set of modules, called Abstract Machines. An
abstract machine encapsulates state and operations of the specification and as a
concept is similar to a module or a package.

Each machine is uniquely identified by its name. The state variables of the machine
are declared in the VARIABLES clause and initialized in the INITIALISATION
clause. The variables in B are strongly typed by constraining predicates of the
INVARIANT clause. All types in B are represented by non-empty sets. We can also
define local types as deferred sets. In this case we just introduce a new name for a
type, postponing actual definition until some later development stage.

The operations of the machine are defined in the OPERATIONS clause. In this
paper we use Event B extension of the B Method. The operations in Event B are
described as guarded statements of the form SELECT cond THEN body END.
Here cond is a state predicate, and body is a B statement. If cond is satisfied, the
behaviour of the guarded operations corresponds to the execution of their bodies.
However, if cond is false, then the execution of the corresponding operation is
suspended, i.e., the operation is in waiting mode until cond becomes true.

The generalised version of the guarded operation is ANY operation. The syntax of
ANY operation is ANY vars WHERE cond THEN body END. The operation
corresponds to a family of events or a parameterised event operation. It is triggered by
any acceptable values of the variables vars satisfying the condition cond. The
variables vars are then used as local variables in the operation body.

B statements that we are using to describe a state change in operations have the
following syntax:

S == x := e | IF cond THEN S1 ELSE S2 END | S1 ; S2 | x :: T |

S1 || S2 | ANY z WHERE cond THEN S END | ...

The first three constructs – assignment, conditional statement and sequential

composition (used only in refinements) have the standard meaning. The remaining
constructs allow us to model nondeterministic or parallel behaviour in a specification.
Usually they are not implementable so they have to be refined (replaced) with
executable constructs at some point of program development. The detailed description
of the B statements can be found elsewhere [1].

3.2 Development of Scopes and Roles

The specification of a scope describes general functionality of several collaborating
agents (in particular roles). The task of formal development is to use the specification
as the starting point for the derivation of specifications of the corresponding agent
roles (interfaces). To guarantee correctness of the resulting role specifications, we use
formal refinement and decomposition techniques. For example, Fig.2 shows that the
Lecture scope is decomposed into roles Student and Teacher defining functionality
of the corresponding agents.

58

On the other hand, we have to take into account scope nesting, when scopes have
embedded subscopes providing some extended functionality. Subscope specifications
can be naturally derived from the original scope specification via refinement. After
verifying the correctness of refinement, we can continue the development process by
decomposing the specification into corresponding roles as described above. In Fig.2,
we show how scope Lecture is refined by subscope Group work, which is
consequently decomposed into roles Student' and Teacher'.

Fig. 2. a) Orthogonal decomposition diagram b) its representation as a parallel refinement. SD
is scope decomposition; D – decomposition of a scope into roles; R – refinement.

As a result, we have two orthogonal development processes with the same starting
point – the original specification of a scope. Both developments arrive at role
specifications describing agent functionality in the corresponding scopes. However,
the hierarchy of scopes and subscopes should be reflected in the corresponding
specifications of agent roles. Hence the roles in subscopes must be the extensions of
the corresponding roles in the scopes. In other words, to guarantee the consistency of
developed roles, we have to show that the subscope roles refine the corresponding
scope roles.

In our Lecture scenario, we derived the specifications of agents in roles Student
and Teacher. These specifications describe the functionality of the corresponding
agents after joining scope Lecture. On the other hand, roles Student’ and Teacher’
describe the behaviour of the corresponding agents while they enter scope Group
Work which is a subscope of Lecture. These roles have to satisfy the requirements
specified in Student and Teacher. At the same time, they can provide additional
functionality specific to Group Work. By proving formally that Student’ is a
refinement of Student, and Teacher’ is a refinement of Teacher, we guarantee
consistency of agent behaviour in nested scopes Lecture and Group work. In Fig.2,
this is shown by the arrows connecting roles Student' and Student, and roles
Teacher' and Teacher.

Lecture

Lecture

Lecture

Student

Teacher

Group work
sub-scope

Group work
sub-scope

Lecture
Student’

Teacher
’

D

D

S
D

S
D

R

R

Lecture Scope

Group work
sub-scope

Student’ Teacher’

Student

Teacher

R

R
D

D

S D

59

3.3 Agent Design

Agent design starts with the selection of roles that the agent must implement. It is
permitted to implement any number of roles from different scopes. Initially roles
inside of an agent are totally independent specifications that may well correspond to
several independent processes running in an agent. Agent refinement specifies
additional operations that control agent behaviour during migration, location
selection, scope creation and joining, and other activities not covered by roles.

During agent refinement process, the agent roles can also be refined, possibly by
adding some new functionality. Due to the nature of refinement, the refined roles are
still compatible with the original abstract roles.

 Fig.3. Relations between agents, scope models and roles. D – decomposition of a scope into
roles; E – extension of role specification an agent model; R – refinement of an agent model.

We start building an agent specification by extending one or more roles obtained

formally through the decomposition of abstract scope models (see Fig. 3). The
refinement step introduces a specification of the minimal agent functionality called
the default role. It allows an agent to talk to locations, create/join/leave scopes, and
migrate. The agent may also need some logic that glues independent interfaces and
allows them to talk to each other. This is done via the global agent variables and the
special methods for accessing to them.

After the agent specification is ready, it is used to build the source code for the
actual agent program. The source is linked against the middleware library to get an
executable agent program. The generated agent source may run on PDAs, laptops,

Scope Model
S1

Scope
Model S2

Scope
Model S3

R11 R12 R13 R21 R31 R32

Agent A1 Model Agent A2 Model

R’12 R’13 R’21

Default role

Custom part

R’’13 R’’31

Default role

Custom part

R R

E E E E E

D D D

A1 A2

60

desktop PCs and smart-phones using the platform-specific middleware
implementation as the adaptation layer.

The standard work cycle of an agent looks like this: an agent detects the available
locations and connects to at least one of them, then looks for current activities on the
location(s) or creates its own new scope, and finally joins a scope and plays one of the
implemented roles in it. Only when the agent decides to play a particular role in a
scope, it really starts to cooperate with other agents. The agent is capable of
understanding its peers since the role functionalities of all the scope participants are
based on the same abstract model. As a result, the composition of agent functionalities
in a scope corresponds to the initial abstract model.

Fig. 4. An instantiation of an abstract model

The correctness of a model instantiation, or in other words, the fact that the scope
instantiates the corresponding abstract scope model, can be demonstrated by
analysing the agent design process and assuming that there is a correct transition from
agent model to agent implementation. In Fig.4 we illustrate an instantiation of an
abstract model which is formed when all the roles in the scope are taken by some
agents.

3.4 Fault Tolerance

Ability to operate in a volatile, error prone environment will be an intrinsic feature of
CAMA. Hence CAMA systems should be able to withstand various kinds of faults,
i.e., guarantee fault tolerance. The most typical fault is a temporal connectivity loss
which can cause failures of communication between cooperating agents or between an
agent and the location.

Since in the CAMA approach the agent and location software are developed from
the corresponding B specifications, the fault tolerance mechanisms should be already
integrated into these specifications, so that development of fault tolerance means is
becoming part of the system development. For example, while modelling
collaboration between agents in the specification of a scope, we have to define the
agent behaviour in the presence of message losses, hardware failures etc. Moreover,
while developing agent roles (interfaces) from the corresponding scope specifications,
fault tolerance mechanisms should be distributed between involved parties.

R’1 2 R’1 3 R’2 1

A1

R’’1 3 R’’3 1

A2

R1 2

R1 3

Instantiation of S1

61

Representing fault tolerance in CAMA constitutes an important research topic which
we will further investigate in our future work.

4 B Specification of the Middleware

To ensure correct behaviour of the location-based system, the middleware of the
location should enforce a certain discipline on agents. For instance, the properties of
the scopes defined upon scope creation are preserved in spite of volatile connectivity
and dynamic nature of scopes. Moreover, it should guarantee the integrity of the
information about agents in locations and scopes. These complex interdependencies
should be stated explicitly and verified. We have developed a formal specification of
the location middleware which is the core of the system. It corresponds to the most
complex part of the system and not only defines the operations that the location
provides to support communication between agents but also state the properties of the
data structures in the location. The actual middleware implementation will be based
upon this formal model. An abstract description of the location specification is
presented below. The full B specification can be found in [9].

MACHINE
 Location
VARIABLES
 AgentNames, /* Agents active in the location */
 Scopes, /* Created scopes */
 ScopeRolesTaken, /* A number of agents taken a particular role in a particular scope */
 AgentRoleData, /* Public data disclosed by the agent while taking a certain role */
 AgentScopes, /* For each active agent defines the scopes in which it is active */
 ScopeAttributes, /* Scope descriptions provided by scope creators */
 ScopeAgentRoles /* The roles taken by agents in active scopes */
INVARIANT
 Types of variables & interdependencies between data

INITIALIZATION
 Initially there are no agents and correspondingly no scopes in the location
 …
OPERATIONS

/* Engagement request */
a_id < --Engage =
 ANY Role_and_Data WHERE
 Role_and_Data is the information about the supported roles supplied by the agent
 THEN
 CHOICE
 successful engagement to the location by issuing valid ID to the agent via a_id and
 update of AgentNames and AgentRoles
 OR
 failed engagement to the location by issuing invalid ID to the agent
 END;
 END;

/* Disengagement request */

62

rr <-- Disengage = …

/* Scope creation request from an agent */
scope_id <-- CreateScope =
 ANY a_id, scopeDescr, role WHERE
 a_id is ID of the agent requesting to create a scope
 scopeDescr defines the necessary conditions for joining a scope
 role: the role that the requesting agent a_id will play in the created scope
 THEN
 CHOICE
 successful scope creation by issuing valid scope ID via scope_id,
 updating list of active scopes Scopes and list of
 scope descriptions ScopeAttributes updating AgentScopes,
 ScopeRolesTaken and ScopeAgentRoles
 OR
 unsuccessful scope creation by issuing invalid scope ID via scope_id
 END
 END;

/* Scope remove request */
result <-- DeleteScope = …

/* Scope join request */
result <-- JoinScope =
 ANY a_id, scope_id, role WHERE
 a_id is ID of the agent requesting to join the scope
 scope_id is ID of the scope which the agent is attempting to join
 role is the role which a_id will play in the scope
 THEN
 IF
 the agent a_id is not already participating in scope_id &
 requested role is a valid role for the scope &
 conditions for participating in the scope are not violated
 THEN
 the agent a_id is successfully joined the scope
 the information about the agent is updated
 in AgentScopes, AgentRoles, and ScopeAgentRoles
 the information about the number of agents playing the role is updated for the scope
 ELSE
 the agent a_id is rejected to join the scope
 END
 END;

/* Scope leave request */
result <-- LeaveScope = …

/* Prompt information about the scopes in which an agent can participate */
scopes <-- GetScopes = …
END

63

5 Conclusions

The presented work is tightly linked to the Ambient Campus case study of the
RODIN Project. One of the project goals is to develop the methodology (based on
formal methods) that would allow us to fully model and build the mobile location-
based systems. The requirements document (written for the Ambient Campus case
study) is the first step towards creating the formal model of such systems.

At the same time, we are developing middleware that will support our mobile agent
abstractions. This paper presents the formal B specification of the location, i.e., the
core part of the middleware. The choice of the location-based architecture (discussed
in [5]) has influenced all the parts of our work on the case study, including the
methodology.

It is our plan to investigate more closely the agent design process. We are also
planning to conduct several extensive experiments covering the full cycle of system
development – starting from an abstract system model through all steps until we get
running software.

Acknowledgments. This work is supported by IST FP6 RODIN Project.

References

1. J.-R. Abrial. The B-Book. Cambridge Univ. Press, 1996.

2. R. De Nicola, G. Ferrari, R. Pugliese. Klaim: a Kernel Language for Agents Interaction and
Mobility. IEEE Transactions on Software Engineering, 24(5):315-330, 1998.

3. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

4. D. Gelernter. Generative Communication in Linda. ACM Computing Surveys. 7(1): 80-112,
1985.

5. A. Iliasov, A. Romanovsky. Exception Handling in Coordination-based Mobile
Environments. Proc. of COMPSAC 2005. Edinburgh, (UK), July 2005. IEEE CS.

6. MATISSE Handbook for Correct Systems Construction. 2003.http://www.esil.univ-
mrs.fr/~spc/matisse/Handbook/
7. G. P. Picco, A. L. Murphy, G.-C. Roman. Lime: Linda Meets Mobility. Proc of the 21st Int.
Conference on Software Engineering (ICSE'99), Los Angeles (USA), May 1999.

8. Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 2001. Available at
http://www.atelierb.societe.com/index.html

9. B Specification of Location. Available from http://www.abo.fi/~Linas.Laibinis/Location.mch

64

Examples of how to Determine the
Specifications of Control Systems

Joey W Coleman and Cliff B Jones

School of Computing Science
University of Newcastle upon Tyne

NE1 7RU, UK
email: {j.w.coleman,cliff.jones}@ncl.ac.uk

Abstract. Creating the specification of a system by focusing primarily
on the detailed properties of the digital controller can lead to complex
descriptions that have no coherence. An argument put forward in a re-
cent paper by Hayes, Jackson, and Jones gives reasons to focus first on
the wider environment in which the system will reside. This paper infor-
mally explores two examples so as to illustrate this approach to system
specification.

1 Overview of approach

The general idea of the “Hayes/Jackson/Jones” approach [HJJ03] is simple: for
many technical systems it is easier to derive their specification from one of a wider
system in which physical phenomena are measurable. Even though the computer
cannot affect the physical world directly, it is still worthwhile to start with the
wider system. The message can be stated negatively: don’t jump into specifying
the digital system in isolation. If one starts by recording the requirements of
the wider (physical) system, the specification of the technical components can
then be derived from that of the overall system; assumptions about the physical
components are recorded as rely-conditions for the technical components.

In order to be able to write the necessary specifications, some technical work
derived from earlier publications of Hayes, Jackson and Jones has to be brought
together. The process of deriving the specification of the software system involves
recording assumptions about the non-software components. These assumptions
are recorded as rely conditions because we know how to reason about them
from earlier work on concurrency (e.g. [Jon81,Jon83,Jon96]). In most cases, we
need to reason about the continuous behaviour of physical variables like al-
titude: earlier work by Hayes (and his PhD student Mahony) provides suitable
notation [MH91]. The emphasis on “problem frames” comes from Jackson’s pub-
lications [Jac00].

A trivial example of the HJJ approach is a computer-controlled temperature
system: one should not start by specifying the digital controller; an initial speci-
fication in terms of the actual temperature should be written; in order to derive
the specification of the control system, one needs to record assumptions (rely-
conditions) about the accuracy of sensors; there will also be assumptions about

65

Interface to

the Physical

World

Digital

System

}Rely

Conditions

Fig. 1. Bridging from the physical world to a digital control system

the fact that setting digital switches results in a change in temperature. Once
the specification of the control system has been determined, its design and code
can be created as a separate exercise. At all stages — but particularly before
deployment — someone has to make the decision that the rely conditions are
in accordance with the available equipment. Figure 1 gives an abstract view of
the HJJ approach. The referenced [HJJ03] outlines this procedure for a “sluice
gate” controller. The analysis includes looking at tolerating faults by describing
weaker guarantees in the presence of weaker rely conditions.

Notice that it is not necessary to build a complete model of the physical
components like motors, sensors and relays: only to record assumptions. But
even in the simple sluice gate example of [HJJ03], it becomes clear that choosing
the perimeter of the system is a crucial question: one can consider the physical
phenomena to be controlled as the height of the gate, or the amount of water
flowing; or the humidity of the soil; or even the farm profits. Each such scope
results in different sorts of rely-conditions.

2 Pushing out the boundaries of the system

2.1 The gas-burner

The need to start the specification phase without considering the digital system
can be illustrated by examining the gas-burner example used in [HRR91]. The
(interesting) physical components of the gas-burner system are:

– a processor to run the control software
– a heat request interface
– a flame sensor
– a gas valve
– an ignition transformer

The requirements, taken verbatim from [HRR91], are:

1. In order to ensure safety the gas concentration in the environment must at
all time be kept below a certain threshold

66

2. The gas-burner should burn when heat request is on, provided the gas ignites
and burns without faults

3. The gas-burner should not burn when heat request is off

And three assumptions, also verbatim from [HRR91], are given:

1. When no gas is released, the flame is extinguished after at most 0.1 seconds
2. Gas cannot ignite unless the ignition transformer is operating
3. The gas concentration will stay below the critical threshold if gas never leaks

for more than 4 seconds in any period of at most 30 seconds

These requirements and assumptions, on their own, give a very sparse de-
scription of what the system is supposed to be doing. Moreover, the description
hides a number of assumptions which could, on the one hand, make deployment
dangerous and, on the other hand, make the specification arbitrary. The refer-
enced paper gives the first step in formalising requirements as constructing a
formal model, and defines five state variables in the digital system. They are
Heatreq, Flame, Gas, Ignition, and Conc. The first four are boolean-valued,
and the final one is a real-valued percentage.

Nothing in that specification constrains the use of those variables, and their
relationship to the physical system is left undefined. These relationships are crit-
ical: should those variables be used as sensors, so that their value is relied upon
to reflect the physical world, or are they used as a channel to send commands
to the physical components of the system?

The Heatreq and Flame variables appear to be inputs — Heatreq is the
input that tells the gas-burner to turn on, and Flame appears to be tied to
the flame sensor component in the physical system. The Conc variable, used to
denote the relative gas concentration around the burner, is most likely a “ghost”
variable, as the physical system has no sensor to measure gas concentration.
The Gas and Ignition variables must then be outputs from the system, used to
control the gas valve and ignition transformer respectively.

2.2 Extending the system boundaries

What is the actual purpose of the gas-burner? The specification as developed
gives the impression that the purpose is to burn gas — when the Heatreq signal
is on — given certain time-related constraints.

Moving the boundary outwards from that, one could say that a more accurate
description of the purpose of the gas-burner is to burn gas safely. The adjective
“safely” is used informally here and simply means that no explosions occur and
nobody is asphyxiated or intoxicated from high concentrations of gas in the
environment.

Pushing the boundary of the system out further, the purpose of the gas-
burner is probably to generate heat. Perhaps this is obvious; after all, one of
the signals in the referenced model is called Heatreq. However, that merely
prompts us to ask about the precise relationship between the Heatreq signal
and the operation of the gas-burner. Even at this level we do not know what it
is that we are trying to heat, that is, what the use of the gas-burner is.

67

2.3 Back to the example

One of the first things to do is look at the real requirements of the system. If we
take the purpose of the system as simply to generate heat, we can quickly come
up with some general requirements.

The machine’s behaviour, during “normal” operation, would have require-
ments like:

– If Heatreq signal comes on at some point in time means that the gas-burner
will start to generate heat soon after.

– When the gas-burner is generating heat the Heatreq signal must be on and
must have come on in the relatively recent past.

– When the Heatreq signal turns off then the gas-burner will stop generating
heat soon after.

These requirements would be based on assumptions like:

– A flame in the gas burner generates heat.
– The presence of gas and a spark will cause a flame.
– Gas is present if the gas valve is turned on.
– The ignition transformer generates sparks.
– The gas-burner can sense the state of the Heatreq signal in a timely manner.

The assumptions tend to be very simple, but each can be easily formalized if
necessary. Note that the sample requirements here are not intended to cover
unusual situation — they are intended for a perfect environment.

The requirements for the machine when faced with an imperfect environment
could include:

– The machine does not cause explosions.
– The machine does not cause toxic concentrations of gas in the environment.

This requirement forces us to consider assumptions like:

– A large concentration of gas can cause an explosion.
– Small concentrations of gas can not cause an explosion.
– The environment cannot change in such a way so that the maximum safe

concentration of gas is less than some specific amount.
– The concentration of gas in the environment increases when the gas is on

without a flame.
– The concentration of gas in the environment cannot increase when the gas

is off.
– The environment causes concentrations of gas to dissipate over time.
– The machine will only have to deal with a single type of gas.
– The characteristics of the gas — volatility, ignition temperature, etc. — are

constant during operation.
– The ignition transformer is the only source of sparks.
– There is no other source of gas in the environment other than the gas-burner.

68

– The environment does not actively inhibit gas-burning, but it is possible for
the environment to extinguish the flame even while the gas is on.

– The gas valve cannot fail to close.
– It is also assumed that the rate of flow of gas is constant, or has a constant

maximum. This is dependent on nozzle size, gas pressure and so on.

All of these assumptions are important, though this is not intended to be an
exhaustive list. While many may seem trivial, violating any of them can cause a
situation where the machine cannot meet its guarantee-conditions, and thus —
potentially fatally — fail to meet the requirements.

From all of the requirements and assumptions above we can consider the
behaviour of our machine. The observable behaviour is given through the use of
guarantee-conditions, i.e.:

– The ignition transformer generates a spark after gas is turned on.
– The time between turning the gas on and the ignition transformer gener-

ating a spark is much less than the amount of time it would take for the
concentration of gas in the environment to exceed a certain threshold.

– If the gas fails to ignite then the gas will be turned off, and will not be turned
back on for a period of time.

Among others, there would also be guarantee-conditions that covered the specific
relationship between the Heatreq signal and the actions of the gas-burner.

To put the structure of the overall system into perspective it is useful to create
a problem diagram of the sort described in Jackson’s book [Jac00]. The diagram
then acts as an aid when identifying the assumptions and possible sources of
interference about which the specification needs to be concerned. Figure 2 gives
a possible problem diagram from the gas-burner.

The “Control Machine” domain is the digital system whose specification we
want to determine and the “Gas-Burner” domain is the physical gas-burner. The
“Environment” domain represents the environment in which the gas-burner is
placed. The oval labelled “Requirements” shows the relationship between the
three domains it connects and shows that the behaviour of the gas-burner is
what is being constrained.

The last domain, “Control Signals”, was left aside as its presence while work-
ing on the diagram highlighted an important omission from the original descrip-
tion in [HRR91]: precisely what is controlling the Heatreq signal? Even more
than just that single example, the diagram also makes the possibility of change in
the environment more explicit and shows — by omission — that it is strictly not
possible for the machine to inspect the concentration of gas in the environment.
The combination of rely-conditions and problem diagrams provide a very good
means of identifying the properties — assumed or otherwise — of the overall
system.

The problem diagram has the useful effect of giving a visual representation of
the possible sources of interference that need to be recorded by rely-conditions.
Every variable shared between domains in the diagram will, at the very least,

69

a: Heatreq

b: Ignition

Control

Machine

Control Signals

Gas-Burner

Environment

Requirements

a

b

c c

d

a

d

c: Concentration

d: Gas, Flame

Fig. 2. Problem diagram for the gas-burner

need a rely-condition that describes the behaviour we assume it will have. Fur-
thermore, we will also need a rely-condition for every situation where two (or
more) variables have some relationship in their values.

Assumptions like the characteristics of the gas and nozzle — volatility, rate of
flow, and so on — can be coded as rely-conditions fairly directly. This can even
allow for some of the rely-conditions to be derived more-or-less automatically,
rather than written down without any context.

The rely-conditions and the properties of the overall system are used to justify
the set of guarantee-conditions that fulfill the requirements. The combination
of rely- and guarantee-conditions, matched against the requirements, form the
basis on which the user makes the decision as to whether or not the machine’s
behaviour is suitable.

Despite the linear presentation here, the construction of requirements, rely-
and guarantee-conditions, problem diagrams, and the identification of assump-
tions is not done in a linear fashion. All of these specific tools should be used to
influence the others.

3 Avoiding confusion between assumptions and
requirements

The message of the general method (Section 1) as exemplified by the previous
section applies to all examples: clarify the requirement in the real world before
trying to specify the software which sits within the system. This process naturally
identifies assumptions about the physical components which can be recorded (as
in [HJJ03]) as rely-conditions.

As an indication that there is another danger of focussing too early on the
computer system, we identify some reservations about one of the many specifi-
cations of the “Production Cell” example. This interesting problem is explored
using many different approaches in [LL95]. The specification which we investigate
is [MC94] (which is the journal version the paper by MacDonald and Carrington
in [LL95]).

70

For the purposes of this workshop version of the paper, we assume that the
reader is familiar with the overall problem.1

3.1 Normal operation

– Section 2 of [MC94] contains an argument for the assumption that the Feed
Belt can contain only one metal block at a time (and a discussion of how
changing this assumption would change the model). This is not presented as
an assumption in the description; it becomes hidden in the state abstraction
for Component Loaded.

– There are several places (e.g. Sections 3, 4.1, 4.2, 5.1 of [MC94]) where
assumptions are made on the initial state of the system.

– A specific concern about Z is that it does not specifically identify pre-
conditions of operations; this raises the question whether this decision con-
tributes to the confusions (e.g. Section 3.2 of [MC94])

– It can be concluded from the specifications of Extend and Retract (in Sec-
tion 4.1 of [MC94]) that these operations are not allowed to change load pos
or unload pos but it is unclear whether this is an assumption on the equip-
ment or a requirement on the code.

– Similarly, the specifications of Load and Unload (in Section 4.1 of [MC94])
indicate in their predicates that these operations are only allowed in certain
positions; in this case (unlike the previous one) it might well be a requirement
on the code.

– Section 4.3 of [MC94] has requirements about not rotating the robot if either
arm is extended but it is left to guesswork as to whether this is an assumption
on the equipment or a requirement on the code.

– Section 4.2 of [MC94] makes statements about “the press must be empty”
without clarifying whose responsibility it is to achieve this situation.

– Similarly for unloading requiring that there is something to unload.
– Section 7 of [MC94] states that “the pre-condition2 ensures there is no col-

lision between the loaded robot and the elevating rotary table”!
– usw. usw.

4 Further work

The most obvious immediate objective is to completely formalise the examples
discussed in this paper in Hayes-Mahoney logic [MH91]. Tackling these and simi-
lar further examples will inevitably refine the method described in [HJJ03]. Less
immediately, further work includes creating a library of examples — including
the two given here — to create a body of work that can serve as a guide to
practitioners. These examples would need to be fully formal, and worked out up
to the point where an implementation would be designed.
1 Very briefly, the system has a press unit to which items are transferred from a belt

by a lifting device.
2 of Move ERT to Loading Position 1

71

In the longer term, it should be possible to use such a library of examples
to generate a set of “HJJ patterns”, not unlike the design patterns [GHJV95]
currently used by practitioners of object-oriented development. Even if a set of
pattern-like structures cannot be developed, a full set of guidelines for using this
method is required.

The composition of specifications given with this method, in senses of both
subproblems and whole specifications, is a problem that remains to be fully
explored. The task of creating a specification for a machine’s “normal” operation
seems well understood, and creating the specification with weaker rely-conditions
for the “abnormal” machine behaviour is equally straightforward. However, the
problem of combining such specifications is a problem that demands further
study.

The basic ideas involved in the Jones’ rely-conditions, while good at recording
interference, leave gaps when it comes to notions such as ensuring that the system
can make progress. Work such as Stølen’s on wait-conditions [Stø91] addresses
some of these issues, and should be included in this method.

The notation given in Jackson’s [Jac00] for problem diagrams needs extension
to be able to directly record interference notation. The current notation does not
allow for more than a single domain to control a variable. Figure 2 is less detailed
than it might have been because of this.

Acknowledgments
The authors are both supported in their research by EPSRC (UK) funding for
the “Dependability IRC” (DIRC — see www.dirc.org.uk) and by EU-IST STREP
funding for “RODIN” (see rodin.cs.ncl.ac.uk). The many discussions about this
topic with Michael A. Jackson have been a wonderful source of insight into this
material.

References

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[HJJ03] I. J. Hayes, M. A. Jackson, and C. B. Jones. Determining the specification
of a control system from that of its environment. In Keijiro Araki, Stefani
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science, pages 154–169. Springer Verlag,
2003.

[HRR91] K. M. Hansen, A. P. Ravn, and H. Rischel. Specifying and verifying require-
ments of real-time systems. In SIGSOFT ’91: Proceedings of the conference
on Software for Critical Systems, pages 44–54, New York, NY, USA, 1991.
ACM Press.

[Jac00] M. A. Jackson. Problem Frames: Analyzing and structuring software devel-
opment problems. Addison-Wesley, 2000.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a
Notion of Interference. PhD thesis, Oxford University, June 1981. Printed
as: Programming Research Group, Technical Monograph 25.

72

[Jon83] C. B. Jones. Specification and design of (parallel) programs. In Proceedings
of IFIP’83, pages 321–332. North-Holland, 1983.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design, 8(2):105–122,
March 1996.

[LL95] C. Lewerentz and T. Lindner, editors. Formal Development of Reactive Sys-
tems - Case Study Production Cell, volume 891 of Lecture Notes in Computer
Science. Springer, 1995.

[MC94] A. MacDonald and D. Carrington. Z specification of the production cell.
Technical Report 94-46, University of Queensland, 1994.

[MH91] B. Mahony and I. J. Hayes. Using continuous real functions to model timed
histories. In P. Bailes, editor, Engineering Safe Software, pages 257–270.
Australian Computer Society, 1991.

[Stø91] K. Stølen. An attempt to reason about shared-state concurrency in the style
of VDM. In VDM ’91: Proceedings of the 4th International Symposium of
VDM Europe on Formal Software Development-Volume I, pages 324–342,
London, UK, 1991. Springer-Verlag.

73

FMEA-technique of Web Services Analysis
and Dependability Ensuring

Anatoliy Gorbenko, Vyacheslav Kharchenko, Olga Tarasyuk

Department of Computer Systems and Networks (503)
National Aerospace University

17 Chkalov Str., Kharkiv, 61070 Ukraine
A.Gorbenko@csac.khai.edu, V.Kharchenko@khai.edu,

O.Tarasyuk@csac.khai.edu

Abstract. Dependability analysis of the Web Services (WSs), disclosure of the
possible failures modes and their effects are an actual problem. In the paper the
results of the Web Services dependability analysis by using standardized
FMEA-technique are represented. Obtained results were used for determining
the necessary means of failure effect recovery, failure prevention, fault-
tolerance ensuring and fault removal.

1 Introduction

The Web Service architecture [1] based on SOAP, WSDL and UDDI specifications is
rapidly becoming a de facto standard technology for organization of global
distributed computing and achieving interoperability between different software
applications running on a variety of platforms.

It is now extensively used in developing various critical applications such as
banking, auctions, Internet shopping, hotel/car/flight/train reservation and booking,
e-business, e-science, business account management. This is why analysis and
ensuring dependability in this architecture is an emerging area of research and
development [1–3].

The Web Service dependability consists of several constituents, first of all,
availability, reliability, security, performance/responsiveness, etc. For the
e-commerce, in particular, the serviceability describing the user’s satisfaction and the
availability of the required services are an important characteristics.

Performance and responsiveness undoubtedly are the important characteristics, but
it is easy to provide them by using the parallel computing (web-clusters) and
hardware upgrading (but this is outside of the scope of this report). In this paper we
will focus on ensuring of Web Service reliability and availability.

To improve the Web Services dependability and ensure fault-tolerance it is
necessary to analyse possible failures modes, their causes and influence on system.
For that the standardized FMEA-technique [4] was used.

74

2 Analysis of the Web Services by Using FMEA-Technique

The FMEA (failure modes and effects analysis) is a standard formalized technique for
the reliability analysis of different systems which devoted to the specification of
failure modes, their sources, causes of occurrence and influence on system as a whole
[4]. The use of the FMEA-technique for the Web Services analysis allows to identify
the typical failures and their influence on the Web Services dependability, and also to
determine necessary means for fault-tolerance and failure effect recovery. FMEA-
technique may be an important part of Web Services dependability guaranteeing
program.

Computer system provided some Web Service consists of hardware and specific
software components (web server, application server, DBMS, application software –
servlets, stored procedures and triggers) and may have different architectures (Fig. 1).
These components must be taken into account during failure modes and effects
analysis.

O
pe

ra
tin

g
Sy

st
em

Web Server

Application Server

DBMS

Data Base
Stored procedures

Servlets

Software Environment

Web Server App Server Data Base
Server

Web&App
Server

Data Base
ServerHardware Environment

(1) (2) (3)
Fig. 1. Typical Web Services component architectures: (1) all components in the same
computer; (2) fully separated component architecture; (3) partially separated component
architecture.

The analysis of Web Services failures modes, causes and effects is obtained by
using the FMEA-format (Tables 1, 2). To reduce scale of FMEA-tables we replaced
repeating rows by arrows.

To identify the Web Services failures modes new failure taxonomy was proposed
(Fig. 2) taking into consideration variants described in [5–8]. The proposed taxonomy
classifies possible failures from the points of view of the Web Service publishers and
the end-users and takes into account failure domain, failure evidence and stability of
occurrence, and also its influence on system operability.

We performed analysis of failure effect on data, system components, users and
Web Services as a whole. Several failures modes can lead to the prolonged or short-
term service aborting that affects on users as denial of service. But some failures
result in a non-evident incorrect service. For many applications (e-commerce, critical
automation control, etc.) such effect is more dramatic because will entail serious
consequences, financial loss and, finally, service discrediting.

75

Table 1. Hardware failures modes end effects analisys

Failure Effect
Failure
Domain

Stability of
Occurrence Failure Cause Influence on

Operability
Failure

Evidence on HW on SW on stored
data

on session
data &

calculation

on web
service as
a whole

on user

evident crash crash corruption data loss service
abort

deny of
service 1) HW deterioration;

2) pernicious
external influence

termination
evident crash suspension – data loss service

abort
deny of
service

termination
evident hang crash corruption data loss service

abort
deny of
service

evident hang suspension – data loss service
abort

deny of
service

accidental
failures

non-pernicious
external influence

(interference) interruption

evident rebooting restarting – data loss service
abort

deny of
service

evident – – –
data/

calculation
error

service
exception

deny of
service

H
W

 e
nv

iro
nm

en
t

permanent
failures

design faults –

non-
evident – – –

data/
calculation

error
– incorrect

service

76

Table 2. Software failures modes end effects analisys

Failure Effect

Failure
Domain

Stability of
Occurrence

Failure
Cause

Influence
on

Operability

Failure
evidence on HW on SW on stored

data

on session
data &

calculation

on web
service as
a whole

on user

OS

termination
evident hang crash corruption data loss service

abort
deny of
service

Web
Server

design fault

interruption
evident hang

OS/Servers/
DBMS/App
suspension

– data loss service
abort

deny of
service

App
Server

transient
failures

interruption
evident rebooting restarting – data loss service

abort
deny of
service

SW
 e

nv
iro

nm
en

t

DBMS

malicious
impact

(hacker
attack,

viruses)

–
evident – – –

data/
calculation

error

service
exception

deny of
service

Servlets

A
pp

lic
at

io
n

SW

Stored
procedures
& triggers

permanent
failures

incorrect
input data

–

non-
evident – – –

data/
calculation

error
– incorrect

service

77

Environment-dependent failures Application-specific
failures

Hardware (HW) environment

Operation System (OS)

Web-server App Server DBMS

Application
software
(servlets)

DB stored
procedures

 and
triggers

Transient (Accidental)Permanent

No influence InterruptionTermination

Software(SW) environment

Failure dependence

System services

Failure specification
attributes Failure modes

Non-evidentEvident

Failure domain

Stability of occurrence

Failure evidence

Influence on operability

Fig. 2. Failure taxonomy

As it was inquired, the hardware design faults (faults in processors, chipsets, etc.) still
remain one of the possible causes of the Web Services failures. Furthermore, a
monthly Specification Update for Intel product series can contain up to several tens of
errata, some of which under certain circumstances can lead to unexpected program
behavior, calculation error or processor hang. However, the prevalent sources of Web
Services failures are the different software components.

The reliability (probability of failure-free operation) of separated Web Services
architectures presented on the Fig. 1 (2, 3) is less than reliability of concentrated
architecture (1) because of the increase of a number of HW components that can fail.
Thus, such architectures are expedient for using in cluster systems.

Performed analysis will help in defining the necessary failure recovery and fault-
tolerance means for specific failure modes. Set of the fault-tolerance means depends
on failure modes and causes whereas the required failure recovery means depends on
failure effect on system and its components. Failures severities can be defined by
their evidence and influence on system operability.

3 Ensuring Web Services Dependability and Fault-Tolerance

3.1 Failure effect recovery

Common means of the failure effect recovery for Web Services include: 1) replacement
of crashed hardware components; 2) reinstall of crashed software components; 3) data
recovery; 4) system rebooting or restarting of the particular software services.

78

To achieve better availability system rebooting and restarting of the particular
software services and applications must be performed in automatic mode with the
help of hardware or software implemented watch-dog timer. Besides, it is
preferentially to have secure way for remote system rebooting by administrator.

It is very important to perform regular data backup for success data recovery.

3.2 Failure prevention

Fault prevention is attained first of all by quality control techniques employed during
the design and manufacturing of hardware and software [5]. However, most of the
hardware and software Web Services components are the COTS- (commercial of the
shelf) components developed by third parties.

Hence, service publisher has limited means for failure effect prevention:
− quality control techniques employed during the design of the own developed

application software;
− procedures for input parameter checking;
− rigorous procedures for system maintenance and administration;
− firewalls, security guards and scanners to prevent malicious failures.
Besides, to prevent transient failures and performance reducing caused by software
rejuvenation can be used techniques based on forced restarting/reinitialization of the
software components [9].

3.3 Fault-tolerance

The development of fault tolerant techniques for the Web Services has been an active
area of research over the last couple of years. The backward (based on rolling system
components back to the previous correct state) and forward (which involves
transforming the system components into any correct state) error recovery for the web
on the basis of an application-specific exception handling is discussed in [10].

More generally, high dependability and fault-tolerance of the Web Service is
ensured by using different kinds of redundancy and diversity at the different levels of
the system structure (Fig. 3). HW redundancy may be partial (redundancy of
processors, hard discs – RAID, network adapters, etc.) as well as complete with
replication or diversification of SW. Complete HW and SW redundancy is a
foundation of cluster architectures and provides better performance and
dependability.

Diversity is used usually to tolerate software or hardware failures caused by design
faults. But for tolerating transient failures a simple replication of SW environment
with HW redundancy may be a sufficient means because of the individual behavior
even of two replicated SW environment. To tolerate non-evident failures the voting
scheme must be used.

The 72-87% of the faults in open-source software are independent of the operating
environment (i.e. faults in application software) and are hence permanent [6]. Half of
the remaining faults is environment depended and permanent. And only 5-14% of the
faults are environment depended caused by transient conditions. Hence, diversity is

79

the most efficient method of fault-tolerance provision. It can be used for HW
platform, OS, web and application servers, DBMS and, finally, for application
software both separately and in many various combinations.

However diversity can worse the intrusion-tolerance and Web Service security
(confidentiality and integrity) because it opens new potential ways for malicious
intrusions. At the same time diversity brings additional protection against DoS
attacks.

Permanent

Accidental Evident

Non-
evident

Hardware
environment

Software
environment

Transient

Partial HW
redundancy

Complite HW
redundancy

Evident
HW diversity

SW replication
or diversity

Operation retry

Evident
Replication of
the System SW

Permanent

Diversity of the
System SW

Complite
HW redundancy

or diversity

Non-
evident

Evident

Non-
evident

Failure mode
Failure domain Stability of

Occurrence Failure Evidence

Fault-tolerant means

Application
Software Permanent

Evident

Non-
evident

Application-
specific exceptions

handling

 Diversity of the
Application SW

Fig. 3. Means for Web Services fault-tolerance

3.4 Fault removal

Fault removal of the Web Services based, first of all, on the systematic applying of
the updates and patches for hardware (microcode updates) and software developed by
third parties (OS, drivers, web and app servers, DBMS).

Fault removal from the own developed application software is performed both
during the development phase and the maintenance.

80

4 Dependable Web Services Development and Deployment

4.1 Using FMEA-technique for Dependable Web Services Development

To develop and deploy dependable Web Services the common FMEA-tables (see
Tables 1-2) describing hardware and software failures modes and effects must be
concretized taking into account actual hardware/software architecture of particular
Web Service (Fig. 4).

Servlets,
DB triggers
and stored
procedures

HW/SW Environment
Architecture

HW/SW Environment
Specification

Business
Logic

Failures criticality
(cost) and probability

analisys

Analisys of cost,
efectiveness and
compatibility of
different means

Risk analysis,
optimization and

choice

Updating of
HW/SW architecture,

environment
specification and

business logic

Web Service
Application

Software

Common
FMEA-tables

Detailed
FMEA-tables

Set of means for
fault-tolerance

provision

Fig. 4. Using FMEA-technique for Dependable Web Services Development

The two different development strategies are possible. For Web Services of business-
critical applications (for example, e-commerce) it is necessary as a rule to provide the
required dependability at the minimum costs. For Web Services of commercial
applications it is important to provide the maximum dependability at the limited costs.
These goals can be achieved by solving optimization problem taking into account
failures criticality, probability of occurrence and cost of fault-tolerance means, their
effectiveness and failures coverage. As a result the Web Service must be updated
using chosen fault-tolerance means.

81

4.2 The principles of Dependable and Secure Web Services Deployment

The Web Services fault and intrusion tolerance, security and dependability as a whole
can be improved by using following principles.
1. Defense in depth and diversity (D&D). This principle provides the using of

diversity at the different levels of the Web Service architecture (HW platform, OS,
System SW, etc.) and also joint usage of existed security and fault-tolerance
facilities. Here, the compatibility between different facilities and diversity modes
must be taken into account. To solve this problem the multilevel diversification
graph can be used [11]. The number of graph levels will be equal to the number of
diversified components of the Web Services whereas the number of nodes at the
each level will be equal to the number of existed diverse elements.

2. Adaptability and update (A&U). The essence of this principle is in the dynamic
changing of Web Service architecture and diversity modes according to observed
failures and intrusions. For that the intellectual monitoring means can be used in
the system for the detection of the failures and intrusions, their analysis and the
choice of the better Web Service configuration. These means can include external
alarm services to notify about recent Internet security vulnerabilities, novel viruses
and to distribute security updates and patches.

The D&D and A&U principle are corresponding to the DIT (Dependable Intrusion
Tolerance) architecture described in [12].

5 Conclusions

Publishers of Web Services have a limited possibility for fault prevention and fault
removal of the most components of Web Services, developed by third parties. Thus,
redundancy in combination with diversity is one of the basic means of dependability
ensuring and tolerance provision to the majority failure modes. But using diversity in
Web Service architecture requires detailed researches and addition solutions because
it can lead to the addition security violations.

Cluster architecture improves availability of Web Services. The additional
adaptive reliable algorithms and means of voting and failures diagnosis must be
implemented for the ensuring tolerance to the non-evident failures and prevention of
losses of the processed (in-service) requests.

The FMEA is an effective technique, which can be used for the application of a
specific dependability analysis of Web Services, especially of composite WSs.
Fulfilled analysis can be extended by taking into account the lacks of required
resources or services and service unavailability due to network failures. Besides, the
critical analysis of different failures modes can be performed.

FMEA-tables may be dynamically updated during Web Service operation. It
allows (jointly with implementation of D&D and A&U principles) to increase the
effectiveness of the used means of dependability ensuring.

82

References

1. W3C Working Group.: Web Services Architecture. http://www.w3.org/TR/ws-arch/ (2004)
2. Ferguson, D.F., Storey, T., Lovering, B., Shewchuk, J.: Secure, Reliable, Transacted Web

Services: Architecture and Composition. Microsoft and IBM Technical Report. http://www-
106.ibm.com/developerworks/webservices/library/ws-securtrans (2003)

3. Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N.: Dependability in the Web Service
Architecture. In: Architecting Dependable Systems. Springer-Verlag (2003) 89–108.

4. IEC 812. Analysis Techniques for System Reliability – Procedure for Failure Modes and
Effects Analysis (FMEA). International Electrotechnical Commission, Geneva (1985)

5. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing, Vol. 1(1) (2004) 11–33

6. Chandra, S., Chen, P. M.: Whither Generic Recovery From Application Faults? A Fault
Study using Open-Source Software. Proc. Int. Conf. on Dependable Systems and Networks
(2000) 97–106

7. Deswarte, Y., Kanoun, K., Laprie, J.-C.: Diversity against Accidental and Deliberate Faults.
Proc. of Computer Security, Dependability, and Assurance (SCDA): From Needs to
Solutions, York, England (1998) 171–181

8. Gorbenko, A., Kharchenko, V., Popov, P., Romanovsky, A., Boyarchuk, A.: Development of
Dependable Web Services out of Undependable Web Components. CS-TR 863. School of
Computing Science, University of Newcastle upon Tyne, UK (2004).

9. Vaidyanathan, K., Harper, R. et al.: Analysis and Implementation of Software Rejuvenation
in Cluster Systems. Proc. Joint Intl. Conf. Measurement and Modeling of Computer
Systems, ACM Sigmetrics and IFIP WG 7.3, Cambridge (2001) 62–71

10. Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N.: Coordinated Forward Error
Recovery for Composite Web Services. Proc. 22nd IEEE Symposium on Reliable
Distributed Systems (2003)

11. Kharchenko, V.: Multiversion Systems: Models, Reliability, Design Technologies. Proc.
10th European Conference on Safety and Reliability, Munich, Germany, Vol.1(1999) 73–77

12. Valdes, A., Almgren, M., Cheung, S., Deswarte, Y. et al.: An Architecture for an Adaptive
Intrusion-Tolerant Server. Proc. 10th Int. Workshop on Security Protocols (2002), Lecture
Notes in Computer Science, 2845 ed, Cambridge, UK: Springer (2004) 158–178

83

http://www.w3.org/TR/ws-arch/
http://www-106.ibm.com/developerworks/webservices/library/ws-securtrans/
http://www-106.ibm.com/developerworks/webservices/library/ws-securtrans/

Modelling Fault Tolerance of Transient Faults

Dubravka Ilic and Elena Troubitsyna

Åbo Akademi, TUCS, Department of Computer Science,
Lemminkäisenkatu 14A, FIN-20520 Turku, Finland

{Dubravka.Ilic, Elena.Troubitsyna}@abo.fi

Abstract. In this paper we focus on analysis of transient physical faults and de-
signing mechanisms to tolerate them. Transient faults are temporal faults that
appear for some time and might disappear and reappear later. They are common
in control systems. However transient fault appearing even for a short time
might result in a system error. Hence fault tolerance mechanisms for detecting
and recovering from temporal faults are of great importance in the design of
control systems. Often the system module which detects errors and performs er-
ror recovery is called a Failure Management System. Its purpose is to prevent
the propagation of errors in the system. In this paper we propose a formal ap-
proach to specifying the Failure Management System in the B Method. We fo-
cus on deriving a general specification and development pattern for Failure
Management Systems for tolerating transient faults.

1 Introduction

Nowadays software-intensive control systems are in heart of many safety-critical ap-
plications. Hence dependability of such systems is a great concern. While designing
controlling software for such systems we should ensure that it is able not only to de-
tect errors in system functioning but also to confine the damage and perform error re-
covery. In this paper we focus on designing controllers able to withstand transient
physical faults of the system components [9]. Transient faults are temporal defects
within the system. We focus on analysis and design of a special subsystem of control
systems – a Failure Management System (further referred to as FMS) – which per-
forms error detection, damage confinement and error recovery. The FMS is a subsys-
tem of the embedded control system responsible for providing the controller with the
error free inputs obtained from the environment. Since controller is relying only on
the input from FMS, it is important to ensure its correctness.

Design of the FMS is particularly difficult since often requirements changes are in-
troduced at the late stages of the development cycle. These changes are unavoidable
since many requirements result from empirical performance studies executed under
failure conditions. To overcome this difficulty we propose a formal pattern for speci-
fying fault tolerance mechanism in the FMS. The contribution of our work is in veri-
fying the suggested pattern rather then a particular specification. The proposed pattern
can be reused in the product line development and hence its correctness is crucial.

84

We demonstrate how to develop the FMS by stepwise refinement in the B Method
[3]. Our approach is validated by a realistic case study conducted within EU project
RODIN [7].

2 Fault tolerance mechanism in FMS

Failure Management System (FMS) [2] is a part of the embedded control system re-
sponsible for managing failures of the system inputs as shown on Figure 1.

Sensors

Application

Actuators

Controller

FMS

 Figure 1. Place of the FMS in an embedded control system

The main role of FMS is to supply the controller of the system with the error free in-
puts from the system environment.

All inputs supplied to the FMS are analysed. The analysis of each input results in
invocation of the corresponding remedial action. There are three categories of reme-
dial actions: healthy, temporary or confirmation actions. If an input is considered to
be error free, it is forwarded unchanged to the controller. This is a healthy system ac-
tion. If an error is detected, the input gets suspected and the FMS decides on error re-
covery. The aim of FMS is to give error free output even when input is in error, i.e.,
during recovery phase. Hence, when the input is suspected, the system sends the last
good value of the input as the error free output toward the controller. This is a tempo-
rary system action. In the recovery phase the input can get recovered during certain
number of operating cycles. If the input fails to recover, the confirmation action is
triggered and the system becomes frozen.

In Figure 2 we illustrate the behaviour of FMS over one analogue input.

Normal Recover Freez
Input

Input_Ok Input_Suspected

Input_Confirmed

Input_Ok

Input_Suspected

Figure 2. Specification of the FMS behaviour

A general description of FMS behaviour is as follows: after getting the input from
the environment through the system sensors, the FMS determines whether the input is
in error or error free. If the input is error free, the FMS applies healthy remedial ac-
tion. If it is in error, it is classified as suspected and the system initiates recovery
phase. When the recovery starts, a counting mechanism responsible for ensuring the
recovery termination is triggered. If after recovery the input is still suspected, the con-

85

firmation action is applied, i.e., the input is confirmed failed and the system freezes.
Otherwise, the system considers the input again as error free, applies the healthy ac-
tion and continues the operation without any interruption.

The general description of FMS behaviour lacks, however details about the error
detection.

When an input is received by FMS, FMS performs certain tests on the inputs to de-
termine its status: in error or error free. We differentiate between the individual and
collective tests. Individual tests (e.g., Test1 and Test2 in Figure 3) are obligatory
for each input and they determine the preliminary abnormality in the input. When
triggered, individual tests run solely based on the input reading from the sensor. We
use two kinds of individual tests: the magnitude test and the rate test. In the magni-
tude test the input is compared against some predefined limit (bound) and if exceeds,
it is considered in error. The rate test is detecting erroneous input while comparing the
change of the input readings in consecutive cycles. Namely, the current value of the
input is compared against the previous input value and if some predefined limit is ex-
ceeded, the input is considered in error. It is obvious that both tests have some precon-
figurations expressed through the predefined limits which allow dynamic test changes
as appropriate.

…

InputN

…

…

T

T

F

T

F

T

Test1

Test2

…

Input_ErrorN

Test1 OR
Test2

T

F

F

Redundancy
test

Input_Error

F

Figure 3. Introducing error detection

The error detection for multiple sensors (InputN in Figure 3) implies first the ap-
plication of individual tests and then, when these tests are passed, the collective test is
applied. The collective test is commonly a redundancy test. It is applied on the group
of multiple sensor inputs. As presented on the Figure 3, redundancy test takes the de-
tected multiple inputs (Input_ErrorN) and based on their values (TRUE or FALSE)
votes for the input status (Input_Error). This status becomes TRUE (i.e., the input is
considered in error) if there are more erroneous inputs for the multiple sensor readings
then error free ones. When the input status is finally detected, FMS proceeds with the
corresponding remedial actions.

 Before presenting our formal pattern for handling fault tolerance in FMS, we
give the short introduction to the B Method.

3 Formal system modelling in the B Method

In this paper we have chosen the B Method [3] as our formal modelling framework.
The B Method is an approach for the industrial development of correct software. The

86

method has been successfully used in the development of several complex real-life
applications [6]. The tool support available for B, for instance - Atelier B [1], pro-
vides us with the assistance for the entire development process.

In this paper we adopt event-based approach to system modelling [4]. The events
are specified as the guarded operations SELECT cond THEN body END. Here cond is
a state predicate, and body is a B statement describing how state variables are af-
fected by the operation. If cond is satisfied, the behaviour of the guarded operation
corresponds to the execution of its body. If cond is false at the current state then the
operation is disabled, i.e., cannot be executed. Event-based modelling is especially
suitable for describing reactive systems. Then SELECT operation describes the reac-
tion of the system when particular event occurs.

For describing the computation in operations we used following B statements:

Statement Informal meaning
X := e Assignment
IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise S2
S1 || S2 Parallel execution of S1 and S2

X :: T
Nondeterministic assignment – assigns
variable x arbitrary value from given set T

The last statement allows for abstract modelling and hence, postponing implemen-

tation decisions till later development stages.
The development methodology adopted by B is based on stepwise refinement [8].

While developing a system by refinement, we start from an abstract formal specifica-
tion and transform it gradually into an implementable program by a number of cor-
rectness preserving steps, called refinements. In the refinement process we reduce
non-determinism of the original specification and eventually arrive at deterministic
implementable specification.

The result of a refinement step in B is a machine called REFINEMENT. Its structure
coincides with the structure of the abstract machine. However, refined machine
should contain an additional clause REFINES which defines the machine refined by
the current specification. Besides definitions of variable types, the invariant of the re-
finement machine should contain the refinement relation. This is a predicate which
describes the connection between state spaces of more abstract and refined machines.

 To ensure correctness we should verify that initialization and each operation pre-
serve the invariant. Verification can be completely automatic or user-assisted.

Next we demonstrate how to formally specify failure management system de-
scribed in Section 2.

4 Formal development of FMS

4.1 Specifying the failure management system

Control systems are usually cyclic, i.e., their behaviour is essentially an interleaving
between the environment stimuli and controller reaction on these stimuli. The control-

87

ler reaction depends on whether the FMS has detected error in the obtained input.
Hence, it is natural to consider the behaviour of FMS in the context of the overall sys-
tem.
 The FMS gets certain inputs from the environment, applies specific detection
mechanisms and depending on the detection results produces output to the controller
or freezes the whole system. Inputs that FMS receives from the environment are in-
puts from various sensors. In this paper we consider only analogue sensors. In ab-
sence of errors the output from the FMS is the actual input to the controller. However,
if error is detected the FMS should try to tolerate it and produce the error free output
or to stop the system without producing any output at all.

In our abstract specification given in Figure 5, for modelling fault tolerance on
given input we used different variables. The variable FMS_State defines the phases
of control cycle execution. Its values are as follows: env – obtaining inputs from the
environment, det – detecting erroneous inputs, act – changing the system operating
mode, rcv – recovering of the erroneous input, out – supplying the output of the
FMS to the controller, stop – freezing the system. The variable FMS_State models
the evolution of system behaviour in the operating cycle. At the end of the operating
cycle the system finally reaches either the terminating (freezing) state or produces the
error free output. After the error free output was produced, the operating cycle starts
again. Hence, the behaviour of the FMS can be described as in Figure 4.

Figure 4. Behaviour of the FMS

Since the controller relies only on the input from the FMS, we should guarantee
that it obtains the error free output from the FMS. Hence, our safety invariant ex-
presses this: whenever the input is confirmed failed, the FMS output is not produced
(i.e., Input_Status=confirmed => FMS_State=stop) and, whenever the input
is confirmed ok, the output should have the same value as input or be different if the
input is suspected (i.e., (Input_Status=ok => Output=Input) & (In-

put_Status=suspected => Output/=Input)).
Although the abstract specification of FMS is highly abstract it anyway specifies

the fault tolerance mechanism allowing us to ensure the desired behaviour of the sys-
tem. In this abstract specification the input values produced by the environment are
modelled nondeterministically. After getting the inputs, FMS performs detection on

Confirmation Temporary
action

Getting inputs from sensors

Detecting errors

System action
 upon detection

Next cycle

Healthy action

88

inputs to determine if they are in error or error free. This is modelled in the Detec-
tion operation of the FMS machine as a nondeterministic assignment of some boo-
lean value (TRUE or FALSE) to the variable modelling input state (i.e., Input_Error
:: BOOL). After the input state is detected, FMS triggers the healthy action if the in-
put is error free. If the input is in error, FMS initiates temporary action, i.e., error re-
covery.

MACHINE

FMS
SEES

Global
VARIABLES

Input, Input_Error, FMS_State, cc, num
INVARIANT

Input : T_INPUT & /*actual input to the FMS*/
Input_Error : BOOL & /*variable modelling input
 status*/
FMS_State : STATES & /*variable modelling system
 state*/

 cc : NAT & /*cc and num are counters*/
 num : NAT &

<safety invariant>
INITIALISATION

FMS_State :=env || cc:=0 || num:=0
OPERATIONS

Environment=
SELECT <the system is functioning normally>
THEN
 <nondeterministically choose some input> ||
 FMS_State:=det
END;

Detection=
SELECT <the system is in the detection state>
THEN
 Input_Error :: BOOL || FMS_State:=act
END;

Action=
SELECT <the input is not in error>
THEN
 <healthy action > || FMS_State:=out
WHEN
 <the input is in error and the
 error is just discovered>
THEN
 <input is marked as suspected> ||
 cc:=cc+xx || num:=num+1 || FMS_State:=rcv
WHEN
 <the input is not in error but it is already
 marked suspected>

THEN
 <input stays suspected> ||
 cc:=cc-yy || num:=num+1 || FMS_State:=rcv
WHEN
 <the input is in error and it is already
 marked suspected>
THEN
 <input stays suspected> ||
 cc:=cc+xx || num:=num+1 || FMS_State:=rcv
END;

Return=
SELECT <healthy action>
THEN
 <input is passed to the output> ||
 FMS_State:=env
WHEN
 <temporary action>
THEN
 <output is assigned the last good
 value of the input> || FMS_State:=env
END;

Recovering=
SELECT <input is suspected> & (num>=Limit or cc>=zz)
THEN
 <input confirmed failed> || FMS_State:=stop
WHEN
 <input is suspected> & num<Limit & cc=0
THEN
 <input has recovered> || FMS_State:=out
WHEN
 <input is suspected> & num<Limit & cc/=0 &
 cc<zz
THEN
 FMS_State:=env
END;

Stopping=
SELECT FMS_State=stop
THEN
 skip
END

END

Figure 5. Excerpt from the abstract FMS specification

Error recovery is modelled by introducing the two counters: cc and num. At the
beginning of the operating cycle, both counters are set to zero and their values are
changed only in the recovery phase. The first counter cc counts inputs which are in
error. While the system is in the recovery phase, every time when the obtained input
is found in error, the system sets as the output the last good value of the input and the
counter cc is incremented by some given value xx. However if the input is error free,
the cc is decremented by the given value yy. In each operating cycle system is setting
some values for the counter cc either by decrementing or incrementing it. If at one
point the value of the cc exceeds some predefined limit zz the counting stops and the
system confirms the input failure by terminating the operation and freezing the sys-
tem. Since each erroneous input increments the value of cc and each error free input
decrements it, eventually the counter cc is set to zero. This is possible if eventually
the FMS starts to receive error free inputs. If cc reaches zero the input is considered
to be recovered and the system returns to normal functioning initializing cc to zero
and making it thus ready for the next recovering cycle. The way cc reaches zero or
exceeds the limit zz is determined via setting the parameters xx, yy and zz. These
parameters are set by observing the real performance of the failure. By setting the

89

value of xx higher then the value of yy, the counter cc is going to yield the limit zz
faster. However, such a specification is insufficient for guaranteeing termination of
recovery. Observe that the input may vary in such a way that the counter cc is practi-
cally oscillating between some values but never reaching the limit zz or zero. Hence,
we introduce the second counter num which is counting each recovering cycle. When
some allowed limit for num is exceeded, the recovery terminates and if cc is different
than zero the input is confirmed failed.

Our initial specification completely describes the intended behaviour of the FMS
but leaves the mechanism of detecting errors in input unspecified. Next, we demon-
strate how to obtain the detailed specification of error detection in the refinement
process.

4.2 Refining error detection in FMS

Since we observe multiple sensors the refinement of the FMS starts with replacing the
Input variable with the InputN variable modelling the sequence of input values re-
ceived by the FMS as N sensor readings, instead of only one sensor reading. The non-
deterministic assignment of value to the variable Input_Error in the Detection
operation of the abstract machine is further refined. By introducing new variable In-
put_ErrorN we can set the value for each particular sensor reading. Input_ErrorN
is a sequence with Boolean values TRUE or FALSE. These values are determined for
each multiple sensor input by running two detection tests: the magnitude test and the
rate test. If the input passes the magnitude test, the value of the temporary variable
Input_Error1 is set to FALSE, otherwise is TRUE (i.e., the test on this input failed).
Similarly, if the input passes the rate test, the value of the temporary variable In-
put_Error2 is set to FALSE, otherwise TRUE.
 The input is error free if none of these tests fail. Hence we define the status of the
input as the disjunction of Input_Error1 and Input_Error2 and set the variable
Input_ErrorN accordingly.
 After setting the values of the variable Input_ErrorN in described way, we apply
the redundancy test (as shown in Figure 3). We consider N sensor readings which val-
ues are stored in introduced variable InputN. Moreover, our assumption is that this
number is odd to prevent the situation in which the number of the erroneous and error
free inputs is the same. The status of each one of the N sensor inputs is recorded in the
variable Input_ErrorN. The redundancy test performs majority voting. It means that
if there are more values TRUE in the Input_ErrorN sequence, the whole input is
considered failed, otherwise it is error free. After the status of the input is detected,
FMS makes a decision how to proceed with handling it, i.e., which action it is going
to apply as specified in the abstract specification.

The essence of our refinement step is to introduce modelling of the N sensor inputs
instead of only one and replace the nondeterministic assignment to the variable In-
put_Error with deterministic error detection. The refinement relation for this step is
as follows:

(Input_Error=TRUE =>

(card(Input_ErrorN|>{TRUE}) > card(Input_ErrorN|>{FALSE})))

90

The above refinement relation establishes connection between the abstract variable

Input_Error and the concrete variable Input_ErrorN. Namely, if the value of In-
put_ErrorN is such that the number of error free inputs is smaller then the number
of erroneous inputs then it should correspond to the value TRUE of Input_ErrorN.

 To produce the final output, FMS calculates the median value of all error free in-
puts and passes it as the output from the FMS.

In the Figure 6 we give the excerpt from this refinement step of the FMS with in-
troduced error detection.

REFINEMENT

FMSR1
REFINES

FMS
SEES

Global
VARIABLES

InputN, Input_Error, Input_Error1, Input_Error2,
Input_ErrorN,
FMS_State,
cc,num,
Passed1, Passed2

INVARIANT
InputN : seq(T_INPUT) & /*N sensor input reading*/
Input_Error : BOOL &
Input_Error1 : BOOL & /*test results for 1 input*/
Input_Error2 : BOOL &
Input_ErrorN : seq(BOOL) & /*test results for
 N sensor inputs*/
FMS_State : STATES &
cc : NAT & num : NAT &
Passed1 : BOOL & /*variables for modeling
 test application*/
Passed2 : BOOL &
<safety and gluing invariants>

INITIALISATION
InputN := [] || Input_Error := FALSE ||
Input_Error1 := FALSE || Input_Error2 := FALSE ||
Input_ErrorN := [] ||
FMS_State := env ||
cc := 0 || num:=0 ||
Passed1 := FALSE || Passed2 := FALSE

OPERATIONS

<obtaining the input from the environment>

Detection=
SELECT <magnitude test not passed yet>
THEN
 IF
 <the input is in defined low and high limits>
 THEN
 Input_Error1:=FALSE
 ELSE
 Input_Error1:=TRUE
 END ||
 Passed1:=TRUE ||
 FMS_State:=det

WHEN
 <rate test not passed yet>
THEN
 IF
 <the input change exceeds the limit>
 THEN
 Input_Error2:=TRUE
 ELSE
 Input_Error2:=FALSE
 END ||
 Passed2:=TRUE ||
 FMS_State:=det
WHEN
 <both test are passed>
THEN
 IF
 /*simulate disjunction*/
 Input_Error1=Input_Error2 &
 Input_Error1=TRUE
 THEN
 /*record the input status*/
 Input_ErrorN:=Input_ErrorN <- TRUE
 ELSE
 Input_ErrorN:=Input_ErrorN <- FALSE
 END ||
 /*remove the detected input from further
 observation*/
 InputN:=tail(InputN) ||
 FMS_State:=det
WHEN
 <input sequence InputN is empty>
THEN
 /*apply the redundancy test*/
 IF
 <the number of TRUE values in Input_ErrorN
 greater then the number of FALSE values>
 THEN
 Input_Error:=TRUE
 ELSE
 Input_Error:=FALSE
 END ||
 FMS_State=act
END;

<system action upon detection>

END

Figure 6. Excerpt from refining the error detection in FMS

5 Conclusion

In this paper we proposed a formal pattern for specifying and refining fault tolerant
control systems susceptible to transient faults. We demonstrated how to ensure that
safety requirement – confinement of erroneous inputs – is preserved in the entire de-
velopment process. We focused on the design of subsystem of the control system –
the failure management system, which enables error detection, confinement and re-
covery. Our approach has currently focused on considering multiple analogue sensors.
We derived a general specification of the corresponding error detection mechanism
which defines the appropriate tests run on the obtained inputs. We verified our pattern
on a case study.

91

Laibinis and Troubitsyna [5] proposed a formal approach to model-driven devel-
opment of fault tolerant control systems in B. However, they did not consider tran-
sient faults. Since we consider this type of faults our approach can be seen as an ex-
tension of the pattern they proposed.

More work on specifying FMS has been done by Johnson et. al [2]. However, they
focused on reusability and portability of FMS modelled using UML in combination
with formal methods. The error detection mechanism proposed here is based on the
application of specific tests combined with the counting mechanism. Hence we fo-
cused on specifying the essence of mechanism for tolerating transient faults.

We verified our approach with the automatic tool support – Atelier B. Around 95%
of all proof obligations have been proved automatically by the tool. The rest has been
proved using the interactive prover. We believe that the availability of the tool sup-
porting formal specification and verification can facilitate acceptance of our approach
in industry.

In this paper we addressed a specific subset of transient faults. As a future work we
are planning to enlarge this subset and derive generic patterns for specification and
development of control systems tolerating them. Moreover, it would be interesting to
investigate the possibility of automatic instantiation of specific requirements from
which the general pattern is obtained.

Acknowledgments

This work is supported by EU funded research project IST 511599 RODIN (Rigorous
Open Development Environment for Complex Systems).

6 References

1. CClearSy, Aix-en-Provence, France. Atelier B - User Manual, Version 3.6, 2003.
2. I. Johnson, C. Snook, A. Edmunds and M. Butler. “Rigorous development of reusable, do-

main-specific components, for complex applications”, In Proceedings of 3rd International
Workshop on Critical Systems Development with UML, pages pp. 115-129, Lisbon, 2004.

3. J.-R. Abrial. The B Book: Assigning Programs to Meanings, Cambridge University Press,
1996.

4. J. R. Abrial. Event Driven Sequential Program Construction, 2001.
http://www.atelierb.societe.com/ressources/articles/seq.pdf

5. L. Laibinis and E. Troubitsyna. “Refinement of fault tolerant control systems in B”, In Com-
puter Safety, Reliability, and Security - Proceedings of SAFECOMP 2004 Lecture Notes in
Computer Science, Num: 3219, Page(s): 254-268, Springer-Verlag, Sep, 2004.

6. MATISSE Handbook for Correct Systems Construction. EU-project MATISSE: Methodolo-
gie and Technologies for Industrial Strength Systems Engineering, IST-199-11345, 2003.
http://www.esil.univ-mrs.fr/~spc/matisse/Handbook

7. RODIN - Rigorous Open Development Environment for Complex Systems, Project Number:
IST 2004-511599, http://rodin-b-sharp.sourceforge.net

8. R. J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Springer-
Verlag, 1998.

9. Storey N. Safety-critical computer systems. Addison-Wesley, 1996.

92

�����������
	����������������������� ����� ����!"	#�%$&	#'"()	#�
*,+- � + ���"./�0� +21 	#'��3�245����� + 	#�6�24 + 	#�"(7	8�9������"(

:<;>=@?0A@?0BDCE?GFH?I=KJ#?0LMFON�;QP3RM?0SUTWVYXHZ[T>S�B\J\J

]0^[_G`@`baM`UcedWagf\^\hjik`blGmg^\n9o�lKp6q)`Ur8sutvhkf\iY]v^3mwf3lG^3f
x lumwyIf\iknjmzh|{�`�ce]v`UtGhk_Ko�r8sGhk`Ul
]0`btGhk_uoUr8svhk`bl�]u}�~��8~����6� x�� �
���v���@�b�I���Q�K���G���I�0�I�����b�U�0���W���@�����U�

 #¡�¢3£3¤�¥K¦U£b§]@{Gn�hkf\r¨o�yUoUmwagoU©umwawmzh|{<mwn�mwr8sGik`�yIf�pD©@{Dikf3sGawmg^3o�hkmw`bl�`UcªpGo�h«o¬`b©0�f3^[hkn
mwl®o¯pvmwn�hjikmg©GtGhkf�p°pGo�h«oU©uoUnjf�n�{Gn�hkf\r ��± h�mgn²obpGyUoUl@h«o�³bf3`Utun�hk`´ikf3sGagmw^�o�hkf6pGo�h«o
`U©v|f3^\hkn7µ¬_Gf3l�hji«o�lunkoU^[hkmg`Ul8µ�`Uik¶0aw`IoUp²mwn7svikf�pG`Ur8mgluoUl@hkaz{·ikf�obp²`Uluaz{ �b¸ `�µ�f3yIf[i��
pvtGikmwlu³<tusHpGo�hkf3n3�0hk_ufY^3`br8sGawf\¹vmwhº{8`Uc»¶If3f3sGmglG³<ikf\suawmw^�o�mgpGf\l0hkmw^�o�a�o�ikmwnjf3nEpGtuf¬hk`
cQoUmwawtGikf3n �7¼ l0tur�©ªf[i�`�cDo�susGik`boU^«_uf3n�_Ko�n²©ªf3f3l°sGik`Usª`bnjf�p�hk`´r#oU¶If#n�{vn�hkf3r8n
cQoUtuazhYhk`bawf\i«oUl@hYhk_Gik`btG³b_´f\¹v^«_KoUlG³bf·`Ucer8f3njnko�³bf3n �M½ `b³Umg^3oUaW^3aw`@^[¶0nYsGik`�y0m¾pvf
hk_uf
c¾i«oUr8f\µ)`Uik¶�hk`
ikf�o�agmw¿3fY³baw`b©uoUaª^�o�tunko�aª`Ui«pGf[ikmglG³·`bl8r8f3njnko�³bf3n �vÀ _Gf9o�ag³U`Uikmzhk_ur8n
f3lGnjtGikmwlu³�³baw`b©uoUawaz{6`Ui«pvf\ikf�p6pvf3awmwyIf\ij{�`UcWr8f3njnko�³bf3n¬r#o3{�©ªfD^3`Utusuawf�p�µ¬mwhk_�hk_uf
svik`�y0mwnjmw`blGnEhk`8svik`�y0mgpGfDcQoUtGawh¬hk`Uagf[i«oUlu^\f�mwl6f3ybf3l@h¬`Uc�cÁo�mwagtvikf3n �HÀ _Gf��ÃÂ�f[hk_u`0p
svik`�y0mgpGf\n²n�h«o�hkf�©KoUnjf3p�c>`Uikr#o�alu`Uh«o�hkmw`blun�cQ`Ui8µikmzhkmwlu³¯njsªf3^3mzÄu^�o�hkmw`bl®`UcYnj`Uc¾hjÅ
µ�o�ikf6n�{vn�hkf3r8n � dWyIf3l@h²��sGik`�y0mgpGf3n�o´c>`Uikr#o�a¬oUsusvik`Io�^[_°hk`Opvf3yIf3aw`Usur8f3l@h�`Uc
njtG^[_Æ^3`br8sGagf[¹´n�{Gn�hkf\r �H± l´hk_umwn·sKoUsªf[iDµ�f8svikf3njf3l@h·o�suo�ijh·`Uc)`blG³b`bmwlG³�µ�`�ik¶
mwlÇhk_Gmgn�o�ikf3o �À _Gf´njsªf3^3mzÄK^�o�hkmw`blÈcQ`�i�³Uaw`b©Ko�aD`Ui«pvf\ikmwlu³�`�c·r8f3njnkoU³Uf3n�mwn�sGikf\Å
njf3l@hkf�pÉo�n9�ÊÂ6oU^«_umwlGf �HÀ _uf·³Uag`U©Ko�a»`Ui«pvf\ikmwlu³#`Ucer8f3njnko�³bf3nEr#o3{�©ªf<oU^«_umwf3ybf�p
©@{�mgr8sGawf3r8f3l@hkmwlu³DËef3^\hk`�iq)aw`@^«¶vn �vÀ _Gf¬nkoUr8fEoUsGsGik`Io�^[_8r#o3{�©ªf¬f\¹0hkf3lKpvf�p�hk`
hk_Gf²cQ`Uikr#o�a)pvf3yIf3aw`Usur8f3l@h
`�cEo�cÁo�tuazh�hk`Uawf\i«oUl@h�pGmwn�hjikmw©utvhkf�pOpGo�h«o�ikf3sGawmg^3o�hkmw`bl
n�{vn�hkf3r �

Ì ÍuÎEÏªÐHÑ
Ò�Ó<Ô�ÏHÕkÑEÎ

Ö FH;>×«Z[B\;¾ØMXªZ[SbFÆ×[Ùª×kZ\S�ÚÛ;Q×
?�P�ÜvT>T¾SbP�Z[;>ÜvLÆÜ0Ý7?vXªZ[ÜGLHÜvÚ6ÜGXM×DP�ÜvÚ6ÞHXHZ[S�B
×[Ùª×kZ\S�ÚßZ[Rà?@Z·P�ÜKÜvÞHá
S�B3?@Z[S�â
;¾Z[R"SU?GP3R¯Ü0Z\RHS�BDÝãÜGB
×«XMPUP�Sb×[×«ÝãXHTWP�ÜGÚ6ÞHT¾S�Z[;>ÜvLOÜ0Ý�?�Fª;Q×«Z[B\;¾ØHXHZ[SUF"P�ÜvÚ6ÞHXªZ3?@Z[;>ÜvLeä Ö
Fª;>×«Z[B\;>ØHXªZ[SbF6P�ÜvÚ6ÞHXHZ\?@Z\;¾ÜGL�ÚÉ?IÙ#B\SUåuXH;>B\S9?GP�P�Sb×[×)Z\Ü²B[Sb×«ÜGXHB\P�SU×7T¾ÜªPU?@Z[SbF�?0Z¬ÞM?0B[Z[;QP�;>ÞM?0Z[;>LHæ
×«;¾Z[Sb×�ä Ö ZkÙKÞH;QP�?vTHFH?@Z3?0ØM?G×«SYZ[B3?0Là×[?GP�Z[;>ÜvL6P�ÜGLuZ\?0;>LM×?²×[SUåuXHS�LàP�SDÜ0Ý�FH?@Z3?0ØM?G×«S9ÜvÞ�S�B3?@Z\;¾ÜGLM×Uä
çDRH;>×Y×«SbåuXHS�LMP�S·Ü0ÝWFH?0Z\?vØM?v×[S
ÜvÞ�S�B3?@Z\;¾ÜGLM×�;>×YP�ÜGLM×«;QFªSUB[SbFÉ?v×¬?vL´?@Z[ÜGÚ6;>P
?GP�Z[;>ÜvLeävèjLÉÜvB3FªSUB
Z[Ü6ÚÉ?0;>LGZ3?0;>L¯Z\RHS#P�ÜGLM×[;>×«Z[SULMP�Ù´ÜvÝeZ\RHS#FH?@Z3?0ØM?G×«S�S�;¾Z[RMS�B·?0T>T�Ü0Ý7Z[RHS8ÜGÞàSUB\?0Z[;>ÜvLM×9LHSUSUFOØ�S
FªÜvLHS�ÜvB�LHÜvLMS�?0Z�?0T>T|ä Ö Fª;Q×kZ\B[;>ØHXªZ\SUF°Z[B3?0LM×\?vP�Z[;>ÜvL�ÚÉ?IÙ�×«ÞM?Iâ
L®×«SU=vS�B3?0T)×«;¾Z[Sb×<B\SU?GFª;>LHæ
ÜvB9XHÞ�FM?@Z[;>LHæ�FH?@Z3?#ÜvØHékSUP�Z3×�äKçDRHS�ÞHXHB\ÞàÜu×«S<Ü0ÝeB\S�ÞHT>;QP�?@Z\;¾ÜGLÉÜ0Ý7FM?@Z\?�ÜvØªékSbP�Z3×Y?0Z9Fª;¾ê�SUB[SULuZ
×«;¾Z[Sb×¬;Q×Z[Ü8;>LMP�B[Sb?v×[SDZ[RHS<?I=@?v;¾TQ?0ØH;>T>;gZkÙ�Ü0ÝW×«Ùª×«Z[SUÚ6×¬â
RH;>P3RÉ;>L6Z[XMB[L´×[ÞàSUSUFH×EXHÞ´åuXHS�B\Ù�ÞMB[Üvá
P�SU×\×[;¾LHæàäàë
SUÞHT>;>PU?@Z[;>ÜvLìÜ0ÝYFH?0Z\?É;Q×²?vFª=@?vLGZ3?0æGS�ÜvXà×
â
RHS�L°Z[RHS�Z[B3?0LM×\?vP�Z[;>ÜvL�â9ÜvB\AÆT>ÜG?GF";>×
í·î mwybo�¶bo�i7ï)obpGo�y�mwn�o�q)`br8r8`Ul0µ)f�oUazhk_�]0^[_G`bago�i)njtususª`�ijhkf�p8©@{�hk_GfDq)`Ur8r8`bl@µ�f�o�azhk_�]v^«_u`bazÅ
o�iknj_GmgsÉq)`br8r8mwnjnjmw`bl6mwl�hk_Gf x lGmwhkf3p � mwlu³bpG`br �
í«í Â�mw^[_uoUf3aM�)tvhkagf[i�ð n^\`bl@hjikmw©utGhkmw`Ul�mwnsuo�ijh�`�c�hk_Gf ±] À svik`�|f3^\h ±] Àòñ ~b~ ñ�óbó�ô } î ±|õ÷öÁô mg³U`UijÅ
`btGn9}9sªf\l î f3ybf3aw`bsur8f\l0hdel0y0mzik`blur8f\l0h)cQ`Ui9q)`Ur8suawf\¹�]0{vn�hkf3r8n«ø �

93

ÞHB[SbFªÜvÚ6;>LM?0LuZ\T¾Ù�B[Sb?vFÉÜGLHT>Ùvä��<Ü@âYSU=vSUBE;>LÉZ[RHS²P�?G×«S<Ü0ÝWXHÞ»FH?@Z\SU×��G;¾ZD;>×YLHSUP�SU×\×[?vB[Ù�Z[Ü�AvS�SUÞ
Z[RHS6B\S�ÞHT>;>PU?v×�;>FHS�LuZ[;QP�?vT���Ý�?0;>T>;¾LHæOZ\ÜOFªÜÆZ[Rà?@Z8ÚÉ?IÙOT>SU?GF�Z\RHSÉFH?@Z3?0ØM?G×«S�;¾L®Z[Ü"?0LÇ;¾LàP�ÜvLHá
×«;Q×kZ\S�LuZ�×«Z\?0Z[SGä Ö Fª;>×«Z[B\;>ØHXªZ[SbFÈZ[B3?0Là×[?GP�Z[;>ÜvLÃP�ÜvLM×[;Q×kZ3×#Ü0Ý<P�ÜvÚ6Ú�XMLH;>PU?@Z\;¾LHæ°Z[B3?0LM×\?vP�Z[;>ÜvL
P�ÜvÚ6Þ�ÜvLHSULuZ\×�?@Z�Þà?0B[Z[;QP�;>ÞM?@Z\;¾LHæO×«;¾Z[Sb×�ä Ö P�ÜvÚ6Ú6;¾Z�ÜvB²?0Ø�ÜvB[Z�FªSbP�;Q×«;>ÜvLìÜ0ÝY?ÆFª;>×«Z[B\;>ØHXªZ[SbF
Z[B3?0LM×\?vP�Z[;>ÜvLì;Q×8ØM?G×«SbFìÜGLìZ\RHS´FªSbP�;Q×«;>ÜvLÈÜ0ÝDP�ÜGÚ�Þ�ÜvLMS�LuZ\×²ÜvÝYZ\RHS6Z[B3?0LM×\?vP�Z[;>ÜvL®B[XHLMLH;¾LMæ
?@ZDÞM?0B[Z[;QP�;>ÞM?@Z\;¾LMæ�×[;gZ\SU×Uä Ö P�ÜvÚ6Ú6;gZ
;Q×D?0L¯XMLMP�ÜGLMFª;¾Z[;>ÜvLM?vT�æGXM?0B3?0LuZ\S�S·Z\RM?@ZDXHÞ»FH?@Z\S�Z[Ü6?
FH?@Z3?0ØM?G×«S�?0B\S#ÞàSUB[ÚÉ?vLHS�LuZUä�ç7Ü¯ÚÉ?0;>LuZ\?v;¾LÇP�ÜvLà×«;Q×kZ\S�LMP�ÙÆÜvÝY?¯FM?@Z\?vØM?v×[S�;¾Z²;>×�LHSbP�SU×\×\?0B\Ù
Z[RM?0Z<?�Z\B\?vLM×\?vP�Z\;¾ÜGLÆP�ÜvÚ6Ú6;gZ<?0Z·SU?vP3RÆÞM?0B[Z[;QP�;>ÞM?0Z[;>LHæÉ×«;¾Z[S8ÜGB·?@Z
LHÜvLMS�ÜvÝ�×[;¾Z[SU×Uä
çDRHS�B\S¬S��ª;Q×kZ×[S�=vSUB\?vTv?0ÞMÞHB[Üu?vP3RHSb×»Z[Ü�S�Là×«XHB\S¬æGT¾ÜGØM?0Tu?@Z[ÜGÚ6;>P�;gZkÙGä���B3?IÙ�?GFHFªB\SU×\×«SbF²Z[RMS

;>×\×«XMS�ÜvÝ9SULM×[XHB[;>LHæ"ævT>ÜvØà?0T?@Z\ÜvÚ6;>P�;gZkÙ®FªSU×[ÞH;¾Z[S6Ý�?0;>T>XHB[Sb×²;¾L
	�����|äWçDRHS6Zkâ9Ü"ÞHRM?G×«SÉP�ÜGÚ�á
Ú�;¾ZEÞHB\Ü0Z\ÜªP�ÜvTMÞHB[Ü@=K;QFªSU×)Ý�?vXHT¾Z¬Z[ÜGT¾SUB\?vLMP�SDZ\Ü#Fª;>×«Z[B\;>ØHXªZ[SbF6Z[B3?0Là×[?GP�Z[;>ÜvLà×FªSU×[ÞH;¾Z[S
Ý�?v;¾T>XHB\SU×Uä
çeB3?0LM×\?vP�Z[;>ÜvLÆÝ�?0;>T¾XMB[S��M×«;¾Z[S²Ý�?v;¾T>XHB\S#?0LMFOLHS�ZkâYÜGB[A¯ÞM?0B[Z[;¾Z[;>ÜvL"?0B\S#P�?vXM×«Sb×DÜ0Ý)Ý�?0;>T¾XMB[Sb×�ä Ö L
;¾LMP�B[Sb?v×[;¾LMæÉLuXMÚ�Ø�S�B�Ü0Ý¬P�ÜGÚ�Þ�ÜvLMS�LuZ\×�;¾L®?´Fª;Q×kZ\B[;>ØHXªZ\SUF°×[Ùª×kZ\S�Ú�;¾Ú6ÞHT>Ù�?ÉRH;>ævRHSUB<ÞHB\ÜvØHá
?0ØH;>T¾;¾ZkÙÇÜ0Ý<P�ÜGÚ6ÞàÜGLHS�LuZ#Ý�?v;¾T>XHB\S¯FªXHB\;¾LMæ°S��ªSUP�XªZ[;>ÜvLòÜvÝ·Fª;>×«Z[B\;>ØHXªZ[SbFÈZ[B3?0Là×[?GP�Z[;>ÜvLà×�äeçDRMS
�������������������! " $#%� ÞHB[ÜvZ[ÜªP�ÜGT7SULM×[XHB[Sb×�ævT>ÜvØM?vT)?0Z[ÜvÚ6;QP�;¾ZkÙ"Z[RHB\ÜvXMævR°S��ªP3Rà?0LHæGS�Ü0ÝYÚ�Sb×ká
×[?vævSU×9?0Ú6ÜGLHæ�Z\RHS²ÞM?0B[Z[;QP�;>ÞM?0Z[;>LHæ�×[;gZ\SU×
?vLMF¯P�ÜuÜGB\FH;¾LM?0Z[;>LHæ�×[;¾Z[SväHçDRMS²FHB\?Iâ
ØM?GP3A�ÜvÝeZ\RH;>×
ÞHB[ÜvZ[ÜªP�ÜGTe;Q×·Z\RM?@Z�;gZ²;Q×<ØHT>ÜªP3AK;¾LHæ¯ØàSbP�?0Xà×«S�;¾LìPU?v×[S#Ü0ÝEÝ�?0;>T¾XHB\S#ÜvÝZ[RHS6P�ÜKÜvB3Fª;>LM?@Z\ÜvB<×[;¾Z[S&�
ÞM?0B[Z[;QP�;>ÞM?0LuZ3×8â9?v;gZ8ÝãÜGB�;¾Z\×�B[SbP�Ü@=vSUB[ÙGä�çDRHS´=@?0B\;>?vLuZ\×8ÜvÝYZ\RH;>×�ÞHB\Ü0Z\ÜKP�ÜvTâ9S�B\SÉÞHB\ÜvÞ�ÜG×[SUF
Z[ÜÉ;>Ú�ÞMB[Ü@=GS<Z\RHS#Þ�S�B[ÝãÜvB\Ú6?vLMP�S²ÜvÝeZ[RM;>×<ÞHB[ÜvZ[ÜªP�ÜGT»;¾L'	���(&�|äHçDRHS �*)+����,- .��/0���! " "#%� ÞMB[Üvá
Z[ÜªP�ÜGT;>×²ÜGÞªZ[;>Ú6;�1USUF®Z[Ü"RM?vLMFªT>S�æGS�LHSUB\?vT�XHÞ�FM?@Z[S6Z\B\?vLM×\?vP�Z\;¾ÜGLM×�â
RH;>T¾S �2)3�4�4,- .�3/5�&6��!)4�
ÜvÞªZ\;¾Ú6;71�SU×�Þà?0B[Z[;Q?0TKB[Sb?vFKá�ÜvLMT¾Ù�Z[B3?0Là×[?GP�Z[;>ÜvLà×�ä!8WSU=K;K?vLMF�Ü0Z[RMS�B3×7ÞMB[Sb×«SULGZ\SUF�?0L �3�2�9#% "#:���9#;�
�����<���������>=*�!=*6�?��@��A!#%=CB0���! " $#%� ÞHB[ÜvZ[ÜªP�ÜGTD	��@E!�à;>L¯â
RH;QP3R´T>ÜKP3Aª×Y?vP�åuXH;>B\SUF6ÜvLÆFH?@Z3?#ÜvØHá
ékSUP�Z²?@Z²?´×«;¾Z[S�?0B\S#B[SUT¾Sb?v×[SUFOâ
RHSUL�Z[RHS�×«;¾Z[S�;>×�B[Sb?vFªÙ¯Z[ÜOP�ÜvÚ6Ú6;¾ZUäMèjL®P�?v×[S#ÜvÝ?vØàÜGB«Z�Ü0Ý
Fª;>×«Z[B\;>ØHXªZ[SbFOZ[B3?0LM×\?vP�Z[;>ÜvLM×��ª?ÉP�ÜGÚ�Þ�S�Là×[?0Z[;>LHæ�Z[B3?0LM×\?vP�Z[;>ÜvLO;>×
S��ªSUP�XHZ[SUF"?0Z
Z[RM?0Z<×«;¾Z[S²Z\Ü
XHLMFªÜ6Z\RHS#XHÞ»FH?@Z\SU×Uä Ö �F�C)+���G�����!���.�3�� $ "#%� ÞHB\Ü0Z[ÜªP�ÜvTH	���I!�W;Q×·?6LHÜGLKØHT¾ÜªP3AK;>LHæÉP�ÜvÚ6Ú6;¾Z
ÞHB[ÜvZ[ÜªP�ÜGT�â
RHS�B\S�Ý�?0;>T¾XMB[Sb×
?0B\S�B\SU×«Z[B\;QP�Z[SbFÆZ[ÜÉ×«;¾Z[S²Ý�?v;¾T>XHB\SU×
ÜGLHT>Ùvä Ö T>TeÜvÝ7Z\RHSU×[S²ÞHB\Ü0Z[ÜªP�ÜvTQ×
?v×\×«XHÚ6SEZ[RM?0Z)Ú6SUP3Rà?0LH;Q×«ÚÉ×�×[XMP3R�?v×7ÚÉ?0;>LuZ\?0;>LH;>LHæ�Z[RHSDFH?@Z3?0ØM?G×«SYT¾ÜGæ�?vLMF8T>ÜKPU?0TKB\SUP�Ü@=GS�B\Ù
?0B\S
ÞHB[Sb×«SULuZET¾ÜªPU?0T>T¾Ù6?@ZESb?vP3R´×[;gZ\SväKçDRHS�B\S<?vB[S·?8LKXHÚ�ØàSUBEÜvÝeP�ÜvÚ6Ú�XHLH;QP�?@Z\;¾ÜGL6ÞM?0B3?vFª;>ævÚ
;¾LÊâ
RH;>P3RÊP�ÜvÚ6Ú6;¾Z�ÞHB\Ü0Z\ÜªP�ÜvTQ×�?vB[SÆ;¾Ú6ÞHT>S�Ú6SULGZ\SUF�ä�èjL �3��=��9)+��?J#�K@�3/5�9���L�����!���M���! " $#%�
ÞHB[ÜvZ[ÜªP�ÜGTMLHÜ�Ú6SU×\×[?vævSU×Y?0B\S<S��ªP3Rà?0LHæGSUFÉ?0Ú6ÜGLHæ#ÞM?vB«Z\;>P�;¾ÞM?0Z[;>LHæ�×[;¾Z[SU×9?0LàFÉÚ6SU×\×[?vævSU×Y?0B\S
S��HP3RM?0LMævSUF6ÜGLHT>Ù�Ø�S�Zkâ9S�SUL´ØàS�ZkâYSUS�LÉZ\RHS�P�ÜKÜvB3Fª;¾Là?@Z[ÜGBE×[;gZ\S�?0LàF´P�ÜGRHÜvB[Z\×UävèjLÉZ\RHS =*�4�4�N��/
�����O���������L���! " $#%� ÞMB[ÜvZ[ÜªP�ÜGT7P�ÜGRHÜvB[Z\×DÚÉ?IÙOS��HP3RM?vLHævS8Ú6SU×\×\?0ævSb×
?0Ú6ÜvLMæÉZ[RHSUÚÉ×«SUT¾=GSU×Uä
Ö /!#:�4��)4#;6�,-�N�3/0�9���P���������.���! " $#%� SUT¾;>Ú6;¾LM?0Z[Sb×9Z[RHS�×[SUP�ÜvLMFÆÞHRM?G×«S8?G×DZ[RHS#P�ÜKÜvB3Fª;¾Là?@Z[ÜGB
?0LMFÆP�ÜvRMÜvB[Z\×9S��HP3RM?vLHævS�Ú�Sb×[×\?0æGSU×EZ[RHB\ÜvXMævR´ØHB\ÜG?GFHP�?G×kZ\;¾LMæMäCQ¬=vSUB[ÙÉ×[;gZ\S²Ú6?IÙ6B\SU?GP3R´Z[RMS
FªSUP�;>×[;¾ÜGL¯Z\Ü´?0Ø�ÜvB[Z4R0P�ÜvÚ6Ú6;¾Z9ØKÙ´Ú6SU?vLM×
ÜvÝ7=vÜvZ[S�á�?vØàÜGB«ZDÜvB
=GÜ0Z[S�á�P�ÜvÚ6Ú6;gZDÚ6SU×\×[?vævSGä
èjL®?OFª;>×«Z[B\;>ØHXªZ[SbF®×[Ùª×kZ\S�Ú2LHSU;gZ\RHS�B#?ÆævT>ÜvØà?0T�P�ÜvÚ6Ú6ÜvLÇP�T>ÜªP3A�LHÜvB²×«Rà?0B\SUF°Ú6SUÚ�ÜGB[Ù

S��ª;>×«ZUäKèjLÉZ\RHS²?0ØM×[S�LMP�S<ÜvÝ7?#æGT¾ÜGØM?0T�P�T>ÜKP3AÉ?vLMF¯×[RM?0B\SUF6Ú6SUÚ�ÜGB[Ù��u?vL´XHÞ¯Z[Ü6FH?@Z\S<AKLHÜ@â
T¾á
SUFªæGS´Ü0Ý·?�×[ÙK×«Z[SUÚ�;Q×#LMÜ0Z�AKLHÜ@â
LÇZ[Ü®?0LKÙìÞHB\ÜªP�Sb×[×UäWèjLòZ\RHSU×[S¯×[ÙK×«Z[SUÚÉ×²Z[RHSÆÞHB\ÜKP�SU×\×«Sb×
P�ÜvÚ6Ú�XHLH;QP�?@Z\S<Z\RHB\ÜvXHæGR´S��HP3RM?vLHævS�Ü0ÝeÚ6SU×\×\?0ævSb×�äKçDRHSb×«S�Ú6SU×\×[?vævSU×9?0B\S�FHS�T>;¾=GS�B\SUF´?0ÝÁZ[S�B
?0B\ØH;gZ\B\?vB[ÙìZ[;>Ú6SOFªSUT>?IÙª×Uä)çDRM;>×�?v×[ÙKLMP3RHB\ÜvLHÜGXM×#Fª;Q×kZ\B[;>ØHXªZ\SUFÊ×«Ùª×«Z[S�Ú Ú6ÜªFªS�TDÚÉ?IÙÈ×«ÞM?vL
T>?vB[æGS�ævSUÜvæGB\?vÞHRH;QP�?0T7?0B\SU?v×Uä Ö ×[Ùª×kZ\S�Ú�ÚÉ?IÙ�ØàS6FªSU×[;>ævLHSbFì?v×�?¯Ý�?0XHT¾Z�Z\ÜvT>S�B3?0LuZ�×[Ùª×kZ\S�Ú
S�;¾Z[RHSUB´ØKÙ5ÚÉ?v×[AK;¾LHæ®Ý�?0;>T>XHB[Sb×ÉÜvBÉØKÙ5ÝãÜvT>T¾Ü@â
;>LHæÈ?òFªS�SMLMSUF ×«SbåuXHS�LMP�S�Ü0Ý8×kZ\S�ÞM×6;>L Z[RMS
ÞHB[ÜªP�SU×\×
Ü0Ý�B[SbP�Ü@=GS�B\Ù¯?@ÝÁZ\S�B
Ý�?v;¾T>XHB\SväàçDRMS²Z[B3?0LM×\?vP�Z[;>ÜvL"XHÞ»FH?@Z\SU×<?vB[S8=K;Q×«;>ØHT>S²Z[Ü¯P�ÜvLMP�XHB[á
B[SULGZDZ\B\?vLM×[?GP�Z\;¾ÜGLM×DÜvLHT>Ù´;¾Ý);¾Z�×[XMP�P�SU×\×kÝãXMT¾T>Ù¯P�ÜGÚ6Ú�;¾Z\×UäMçDRHS8XMÞ�FH?0Z[S#PU?0XM×[SUFÆØKÙÆ?�Ý�?0;>T¾SbF
Z[B3?0LM×\?vP�Z[;>ÜvL"?0B\S�LMÜ0Z·ÚÉ?vFªS8=K;Q×«;>ØHT>S8Z[ÜÉÜvZ[RHSUB·P�ÜGLMP�XHB\B\S�LuZDZ[B3?0LM×\?vP�Z[;>ÜvLM×UäHçDRH;Q×
ÚÉ?IÙ¯Ø�S

94

?vP3RH;>S�=GSUFO;gÝZ\RHS�×[Ùª×kZ\S�Ú,ÝãÜvT>T>Ü@â·×
âYSUT¾T)FªS�SàLHSUF°×«Z[SUÞM×�ÜvL�B\SUP�Ü@=GS�B\ÙÉÝãB\ÜvÚ Ý�?0;>T¾XHB\SU×UäàçDRMS
Fª;>×«Z[B\;>ØHXªZ[SbF�ZkâYÜ²ÞHRM?G×«S
P�ÜvÚ6Ú6;gZ¬ÞHB\Ü0Z\ÜªP�ÜvTKB\SUåuXH;>B[Sb×�ØHB\ÜG?vFMP�?v×«Z[;>LHæ�Ü0Ý»Ú�Sb×[×\?0æGSU×�?0Ú6ÜGLHæ
Z[RHS¯×[;¾Z[SU×UäD��T>ÜvØM?vTYPU?0XM×\?0TÜGB\FªSUB[;>LHæ"Ü0ÝDÚ6SU×\×[?vævSb×²;>×�XM×«SbF®Z[Üì?GP3RH;¾SU=vS6S�B\B\ÜvB8B\SUP�Ü@=GS�B\Ù
XM×«;>LHæO=vSbP�Z[ÜGB�P�T¾ÜªP3Aª×�ä Ö ævT>ÜvØM?vTeÜGB\FªSUB[;>LHæÆÜvL°Ú6SU×\×\?0ævSb×·ÚÉ?IÙ�Ø�S�FªS�SMLHSbF°ØKÙ�S�Ú6ÞHT>Ü@Ùuá
;¾LHæ�T¾ÜGæv;QP�?0THP�T¾ÜªP3Aª×UävçDRHS<?vT¾æGÜvB\;gZ\RHÚÉ×S�LM×[XHB\;¾LMæ8ævT>ÜvØM?vT¾T>Ù#ÜvB3FªSUB[SbF�FHS�T>;¾=GS�B\Ù�Ü0Ý�Ú6SU×\×\?0ævSb×
Ú6?IÙÆØàS�P�ÜGXHÞHT>SUF"â
;¾Z[R�ÞHB\Ü@=K;>×[;¾ÜGLM×DÜ0ÝB\SUP�Ü@=vS�B\ÙÉÝãB\ÜvÚ Ý�?0;>T¾XHB\SU×�?0LMFÆÝ�?vXHTgZ�Z[ÜGT¾SUB\?vLMP�S8;>L
Z[RHSOS�=GS�LuZ�ÜvÝ<ÞHB\ÜKP�SU×\×#Ý�?v;¾T>XHB\SU×�ÜvB�LHS�Zkâ9ÜvB\AÈÞM?0B[Z[;¾Z[;>ÜvLM×Uä�çDRH;>×6?vT>×[Ü°RHSUT¾ÞM×6FªSUØHXHæGæv;>LHæ
Fª;>×«Z[B\;>ØHXªZ[SbF"P�ÜvÚ6ÞHXHZ\?@Z\;¾ÜGLM×·×[;¾LàP�S�Z[RHSUÙÆÞMB[Ü@=K;QFªSU×YZ[RMS8Ú�SbP3RM?0LM;>×[Ú Z\ÜÉ;>FªSULuZ[;¾ÝãÙ´Z[RMS8ÜvB[á
FªS�BY;¾L´â
RM;>P3RÉZ\RHS�Ù6ÜªP�P�XHB\B[SbFÉFªSU×[ÞH;¾Z[S·ÞHB\ÜªP�Sb×[×¬Ý�?0;>T¾XHB\SU×EÜvBYLHS�Zkâ9ÜvB\A�ÞM?vB«Z\;gZ\;¾ÜGLWä Ö ævÜKÜªF
FªSU×\P�B\;¾ÞHZ[;>ÜvL´ÜvÝWâYÜGB[A�ÜvLÉT>ÜvæG;>PU?0TàP�T¾ÜªP3Aª×9?0LMFÉ;¾Z\×9?0ÞMÞHT¾;QP�?0Z[;>ÜvLÉ;>LÆ×[ÜvT>=K;¾LHæ�=I?vB[ÙK;>LHæ#ÞHB\ÜvØHá
T¾SUÚ6×·Ü0Ý¬Fª;Q×kZ\B[;>ØHXªZ\SUF�P�ÜGÚ6ÞHXªZ\?0Z[;>ÜvL"ÚÉ?IÙ¯Ø�S8ÝãÜvXMLMFO;¾L'	 E���9� 	 � � � 	����!�|äMçDRMS�B\S8RM?v×
Ø�S�SUL
T¾ÜvZ�ÜvÝ�â9ÜvB\AÇ;>L FªS�=GS�T>ÜvÞHÚ6S�LuZ6Ü0Ý·Ý�?vXHT¾Z�Z\ÜvT>S�B3?0LuZ�ÞMB[ÜvZ[ÜªP�ÜGT>×�ÝãÜvBÉFª;Q×kZ\B[;>ØHXªZ\SUF¨×«Ùª×«Z[SUÚ��
=vS�B\Ù�ÝãS�â÷RM?I=GS
ØàSUS�L¯×[XHØªékSbP�Z[SbF6Z[Ü�ÝãÜvB\ÚÉ?0TM=GS�B\; S�P�?@Z\;¾ÜGLWä0è�Z9;>×YFªSU×[;¾B3?0ØMT¾S
Z\RM?@Z9Ú6ÜKFHS�T�Ü0Ý
Fª;>×«Z[B\;>ØHXªZ[SbF�×«Ùª×«Z[SUÚ Ø�S8ÞHB[SbP�;Q×«S��HB\SU?v×[ÜvLà?0ØHT>Ù´P�ÜGÚ�Þà?vP�Z<?vLMFOÜvLHS8S��ªÞàSbP�Z\×
Z[RM?0Z�?0T>T�Z[RMS
?v×[ÞàSbP�Z\×EÜ0ÝW×[ÙK×«Z[SUÚ Ú�XM×«ZEØàS�P�ÜvLà×«;QFªS�B\SUF6;>LÉÞHB\ÜKÜ0Ý�×Ø�SUPU?0XM×[S·;¾ZET¾Sb?vFH×¬Z[Ü#Ø�S�Z[Z[SUBYFªSb×«;>ævLWä
çDRHSÉV N�S�Z\RHÜªFì;Q×²ÞHB\ÜKÜ0ÝYØà?v×[SUF®Ú�S�Z[RHÜªFìÝãÜvB²Z\RHSÉB[;>ævÜGB[ÜGXM×<FHS�=vSUT¾ÜGÞHÚ6S�LuZ8Ü0ÝD×«Ùª×«á

Z[S�ÚÉ×Uä7èjLÃZ[RH;Q×�Þà?0Þ�S�B�â9S¯ÜGXªZ[T>;>LHS´Z\RHS´ÝãÜGB[ÚÉ?0T9FªS�=GS�T>ÜvÞHÚ6SULGZ�Ü0Ý<?°×[Ùª×kZ\S�Ú ÝãÜvB�ævT>ÜvØM?vT
P�?0Xà×[?vT�ÜGB\FHS�B\;¾LHæ�Ü0Ý)Ú6SU×\×[?vævSU×9XM×[;>LHæ6=vSUP�Z[ÜGBDP�T¾ÜªP3Aª×UäKçDRM;>×
;Q×
?�ÞM?0B[Z
Ü0Ý)ÜvLªá�ævÜG;¾LHæ�âYÜGB[A
ÜvL8Z\RHS¬ÝãÜGB[ÚÉ?0TuFªS�=GS�T>ÜvÞHÚ6SULGZ7Ü0ÝM?DÝ�?vXHTgZ7Z[ÜGT¾SUB\?vLGZ)Fª;>×«Z[B\;>ØHXªZ[SbF#FH?0Z\?
B\S�ÞHT>;QP�?@Z\;¾ÜGL#×«Ùª×«Z[SUÚOä

� �����
	����Ï��·Ñ
Ò��Î<Ò������eÎYÏ�	

�HÜvB\ÚÉ?0T�Ú6S�Z[RMÜKFM×YÞMB[Ü@=K;QFªSU×Y?�×[Ùª×kZ\S�ÚÉ?@Z\;>P�?0ÞHÞHB\ÜG?GP3R6Z[Ü�Z[RHS8FªSU=vS�T>ÜvÞMÚ�SULuZYÜ0ÝeP�ÜvÚ6ÞHT>S��
×«Ùª×«Z[S�ÚÉ×Uä��HÜGB[ÚÉ?0T
Ú6S�Z[RHÜªFH×6XM×[S"ÚÉ?@Z[RMS�ÚÉ?@Z\;>PU?0T
LHÜvZ\?@Z\;¾ÜGLM×�Z[ÜòFªSb×[P�B[;>Ø�S"?vLMF¨B[Sb?v×[ÜvL
?0Ø�ÜvXªZ´×[ÙK×«Z[SUÚÉ×�äVÛN�S�Z[RHÜªF 	 ���·?ìÚ6ÜªFªS�T
ÜGB[;>S�LuZ\SUFòÝãÜGB[ÚÉ?vT9LMÜ0Z\?0Z[;>ÜvL¨FªS�=GS�T>ÜvÞ�SUFÃØKÙ
Ö ØHB\;>?vTºäIçDRHS9VÇN°S�Z[RMÜKF#ÞHB[Ü@=K;QFªSU×7?<×«Z\?0Z[SEØà?v×[SUF�ÝãÜvB\ÚÉ?0TuLHÜ0Z3?@Z\;¾ÜGL8ØM?v×[SUF8ÜGL�×[S�ZeZ\RHS�ÜGB[Ù
ÝãÜvBDâ
B[;¾Z[;>LHæ6?0ØM×«Z[B3?vP�ZYÚ6ÜªFªS�TQ×9Ü0Ý7×[Ùª×kZ\S�ÚÉ×Uä Ö ×[Ùª×kZ\S�ÚÛÚÉ?IÙ6ØàS8FªS�SMLHSUFÆ?v×D?0LO?0ØM×«Z[B3?vP�Z
Ú6?GP3RH;>LHS²ä Ö ØM×«Z[B3?vP�Z¬ÚÉ?vP3RH;>LHS
P�ÜGLGZ3?0;>LM× ��������������)4#;�&6�?������F#%=�����)4#;�!= �;��� #%=�#%�9#;�!?J#�K@����#;��= ?vLMF
?8×«S�Z¬Ü0Ý �3����)3�!�9#;�!=�� FHS�SMLHSbF�ÜvLÉ=@?0B\;>?vØHT>SU×Uä0çDRHS ����� P�TQ?0Xà×«S·P�ÜvLuZ\?v;¾LM×�Xà×«SUBEFªS�SàLHSUF6×[S�Z\×
Z[RM?0ZYP�?vLÉØàS·Xà×«SbF6;¾LÉB\SU×«Z¬Ü0Ý�ÚÉ?vP3RH;>LHSGäGçDRHS·=@?vB[;Q?0ØHT>SU×FHSU×\P�B\;¾Ø�S
Z[RMS<×kZ3?@Z\S·Ü0Ý»ÚÉ?vP3RH;>LHSvä
çDRHS #%=��!�!)4#;��=���� ?vB[S SMB3×«Z¬ÜvB3FªS�B�ÞHB\SUFª;QP�?0Z[Sb×?0LMF�Z[RMSU×[S
;¾LK=@?0B\;>?vLuZ\×�?0B\S9Z[Ü²ØàS<ÞHB[Sb×«SUB[=GSUF
â
RH;¾T>SÉXHÞ»FH?@Z\;¾LMæ"Z[RHSÉ=@?0B\;Q?0ØHT>SU×�Z[RMB[ÜGXHævR®Z[RHSÉÜGÞàSUB\?0Z[;>ÜvLM×Uä�çDRHSÉÜvÞ�S�B3?@Z\;¾ÜGLM×²P�?vL®RM?I=GS
;¾LHÞMXªZ#?0LMFìÜvXªZ\ÞHXªZ8ÞM?0B3?0Ú6S�Z[S�B3×Uä ��Þ�S�B3?@Z[;>ÜvL®Ü0ÝEÚÉ?GP3RH;¾LMSU×�?0B\S�FªS�SMLHSbF�Z[RMB[ÜGXHævR®ævS�LHá
S�B3?0T>;�1USUFì×[XHØM×«Z[;¾Z[XHZ[;>ÜvLWäWçDRHSÉV Ú6S�Z\RHÜªFÈ?0T>T¾Ü@â·×�×«Þ�SUP�; S�P�?@Z\;¾ÜGLM×�Ü0ÝD?0ØM×«Z[B3?vP�Z�Ú6ÜªFªS�T�Z\Ü
ØàS²â
B\;gZ[Z[S�LO?0LMFO×[XHÞHÞ�ÜvB[ZYZ\RHS�×«Z[SUÞKâ
;>×[S�B\S�SàLHS�Ú6S�LuZbä Ö Z
Sb?vP3R¯B\S�SàLHS�Ú6S�LuZ
×kZ\S�ÞÆâYS�ævS�Z
Ú�ÜGB[S�P�ÜvLàP�B\S�Z[S�×«Þ�SUP�; S�P�?@Z\;¾ÜGL°Ü0ÝE×[Ùª×kZ\S�Ú"ä»çDRHS�V N�S�Z[RHÜªF°B\SUåuXH;>B\SU×
Z\RHS6Fª;>×\P3RM?vB[æGS8Ü0Ý
ÞHB[ÜKÜvÝWÜvØHT>;¾æu?@Z\;¾ÜGLM×¬ÝãÜGB9P�ÜvLM×[;Q×kZ\S�LMP�Ù´P3RHSUP3AK;>LHæ�?0LàF´B\S�SMLHSUÚ6S�LuZDP3RMSUP3AK;¾LMæMä�!YÜvLM×[;>×«Z[SULMP�Ù
P3RHSUP3AK;>LHæÉ;¾LK=GÜvT>=vSU×
×[RHÜ@â
;>LHæ6Z[Rà?@Z�?6ÚÉ?GP3RH;¾LMS#ÞHB\SU×[S�B\=vSU×D;>LK=@?0B\;>?vLGZ3×
â
RHSUL�ÜvÞ�S�B3?@Z[;>ÜvLà×
?0B\S¯;>Lu=GÜvAGSUF�ä)ë
S�SMLMS�Ú6S�LuZÉP3RHSUP3AK;>LHæ°;>Lu=GÜvT>=vSb×�×[RHÜ@â
;¾LMæ�Z[RM?0Z6×[Þ�SUP�;�SàPU?@Z[;>ÜvLà×�?0Z�Sb?vP3R
B[S�SMLHS�Ú6SULGZ
×«Z[S�Þ"?0B\S�=I?vT¾;QF�äªçDRHS8V%ç7ÜKÜvTQ×#" Ö Z[S�T>;>S�B·VP��!YT¾;QP3A $ L%$ &EB[Ü@=GS&� VEájç7ÜuÜGT¾AK;¾Z�'�?vT>×[Ü
ÞHB[Ü@=K;QFªSU×�?0Lò?0XªZ\ÜvÚÉ?@Z\;>P¯?0LMFÈ;>LuZ[S�B3?vP�Z[;>=vSÉÞHB\Ü@=vSUBUä�çYÙKÞH;>PU?0T>T¾Ù®Z[RMS´ÚÉ?@ékÜvB\;¾ZkÙìÜ0Ý
ÞHB\ÜKÜ0Ý
ÜvØHT>;¾æu?@Z\;¾ÜGLM×Y?vB[S�ÞHB\Ü@=vSbFÉØKÙ´?0XªZ\ÜvÚÉ?@Z\;>P�ÞHB\Ü@=vS�B@�vRMÜ@âYSU=vS�B9×«ÜGÚ6S�ÜvÝeZ[RMS²P�ÜvÚ6ÞHT>S��´ÞHB\ÜKÜ0Ý
ÜvØHT>;¾æu?@Z\;¾ÜGLM×9LHS�SbFH×DZ[Ü6Ø�S8ÞHB\Ü@=vSUF¯;¾LuZ\S�B3?vP�Z\;¾=GS�T>Ùvä
çDRHÜvXHæGR¯?�×[;>ævLH;�SàP�?vLuZYâ9ÜvB\A�Rà?v×YØàSUS�LÆFHÜvLHS�;¾L¯Z[RHS²?0B\SU?#Ü0ÝeÚ6SU×\×\?0ævS<ÞM?v×\×«;>LHæ�×«Ùª×«á

Z[S�ÚÉ×��UT>ÜvæG;>PU?0TvP�T¾ÜªP3Aª×���B\SUP�Ü@=GS�B\Ù&��P3RMSUP3AKÞàÜG;¾LuZ\;¾LHæ·?vLMF²Ý�?vXHTgZ7Z[ÜGT¾SUB\?vLMP�SÙGS�Z)?vÞHÞHT>;>PU?@Z\;¾ÜGL8Ü0Ý

95

ÞHB[ÜKÜvÝWØM?v×[SUF�ÝãÜGB[ÚÉ?0TàÚ6S�Z[RMÜKF´Z[Ü�Z[RH;Q×Eâ9ÜvB\A�;>×YB\?vB[S·Z[Ü�ÜGXHBEAKLHÜ@â
T>SUFHævSväuV P�?0L¯ØàS�XM×«SbF
Z[Ü<ÞMB[Ü@=K;QFªSÝãÜvB\ÚÉ?0T>;�1b?@Z\;¾ÜGL8Ü0ÝHÞHB\Ü0Z\ÜKP�ÜvTQ×e?vLMF#?0T>ævÜGB[;¾Z[RMÚ6×WÜ0ÝMFª;Q×kZ\B[;>ØHXªZ\SUF�×«Ùª×«Z[S�Ú"ä�Q¬=GS�LuZ
V÷â9?G×D;¾LuZ\B[ÜªFªXMP�SUF¯ÝãÜvB
Ú6ÜªFªS�T>;>LHæ6Ü0Ý)FH;>×«Z[B\;¾ØMXªZ[SbFO×[Ùª×kZ\S�Ú"äªèjL Q¬=GS�LuZDV 	 E!�WÜvÞ�S�B3?@Z[;>ÜvLà×
?0B\S�B\S�ÝãSUB[B\SUF6Z\Ü�?G×9S�=vSULuZ\×9â
RH;QP3R¯ÜªP�P�XHB\×D×[ÞàÜGLuZ\?0LMS�ÜvXà×«T>Ù6B\?0Z[RHSUBYZ\RHS�LOØ�S�;>LHæ�;>LK=vÜGAvSUFWä
çDRHSU×[S#S�=GS�LuZ\×�?0B\S#ævXà?0B3FªSUF"ØKÙOÞHB[SbFª;QP�?@Z\SU×�?0LMFOZ\RHSU×[S�æGXM?0B3FH×
ÚÉ?IÙOØàS�×kZ\B[SULHæ0Z\RHS�LHSbF
?@Z�Sb?vP3RÈB[S�SMLHSUÚ�SULuZ�×kZ\S�ÞM×Uä Ö ÞHÞHT>;>PU?@Z\;¾ÜGLM×#ÜvÝ9Z\RHS¯V Ú6S�Z[RMÜKFòZ[ÜìFª;Q×«Z[B\;¾ØHXHZ[SUFò×[Ùª×kZ\S�Ú
Ú6?IÙ¯ØàS²ÝãÜGXHLMFO;¾L 	 � � � 	 ���9� 	������|ä

� ���kÑ��#�	��
ÃÐMÒ �WÐMÕ[Î�&Ñ�� � ����� �������

Ö Fª;Q×kZ\B[;>ØHXªZ\SUF6ÞHB\ÜvæGB\?vÚ ;>×EP�ÜvÚ6Þ�ÜG×[SUF�Ü0Ý*SMLM;gZ\S<×«S�Z¬Ü0Ý�ÞHB\ÜªP�SU×\×[SU×Uä0çDRHS·ÞHB\ÜªP�SU×\×[SU×P�ÜGÚ�á
Ú�XHLH;QP�?0Z[SÆâ
;gZ\R5SU?GP3RÃÜ0Z\RHS�B�Z[RMB[ÜGXHævRòS��ªP3Rà?0LHæGS´Ü0Ý·Ú6SU×\×\?0ævSb×�ä Ö P�T>?G×[×�Ü0Ý<ÞMB[ÜGØHT¾SUÚÉ×
B[SUT>?0Z[;>LHæ�×[XMP3RÆÚ�Sb×[×\?0æGS<ÞM?G×[×[;>LHæ�×[Ùª×kZ\S�ÚÛÚÉ?IÙÉØàS8×[ÜvT>=vSbF´ØKÙ´FªS�SàLH;¾LMæ�æGT¾ÜGØM?0T»ÜvB3FªSUB[;>LHæ
ÜvL´Z\RHS²Ú6SU×\×[?vævSU×UäGçDRMS�Ú6Sb×[×\?0æGSU×E?vB[S�FªS�T>;>=vS�B\SUF´Z[Ü�B[SbP�;>ÞH;>S�LuZ9ÞMB[ÜªP�Sb×[×EÝãÜvT>T>Ü@â
;¾LHæ�Z[RHSU;¾B
ævT>ÜvØM?vTEÜvB3FªSUBUä�çDRHS¯T>ÜvæG;>PU?0T9P�T>ÜKP3Aª×�×«XàP3R5?v×"8e?vÚ�Þ�ÜvB[Z !YT>ÜªP3A
	 ����� ���SUP�Z[ÜGB !YT>ÜªP3A 	 I!�
ÞHB[Ü@=K;QFªSU×EZ[RMS�Ú6SbP3RM?0LH;Q×[ÚßZ[Ü�S�LM×[XHB\S�æGT¾ÜGØM?0T>T¾ÙÉÜGB\FHS�B\SUF´FªSUT¾;>=vSUB[Ù6ÜvÝ7Ú6SU×\×[?vævSb×�ä Ö P�B[;¾Z«á
;>PU?0T�B\S�=K;¾SUâ�ÜvÝ)T>ÜvæG;>PU?0T�P�T>ÜªP3AK×
PU?0LOØàS²ÝãÜGXHLMFO;>L 	 �!� � 	�� � ��ä
çDRHSÆS��ªSUP�XHZ[;>ÜvL¨Ü0Ý�?®ÞHB\ÜKP�SU×\×�;>×6P3RM?vB\?GP�Z[SUB[;71�SbFòØKÙÃ×«SbåuXHS�LMP�SU×�Ü0Ý�S�=vSULuZ\×Uä�çDRMSU×[S

S�=vSULuZ\×8P�?vL®Ø�S6S�;¾Z[RHSUB #%=��N��)4=2�!?�� �!��= �;� ÜvB .�4������B � � �!��= �;� ä Ö LÈ;>LuZ[S�B\LM?vTS�=vSULuZ²B\S�ÞHá
B[Sb×«SULGZ3×·?ÉP�ÜGÚ6ÞHXªZ\?0Z[;>ÜvL�Ú6;>T¾Sb×kZ\ÜvLHS�?GP3RH;>S�=vSbF¯;>L°?ÉÞHB\ÜªP�Sb×[×��Hâ
RHSUB[Sb?v×DÚ6SU×\×[?vævS8SU=vS�LuZ3×
×«;>ævLH;�SMSb×YS��HP3RM?0LHæGS�ÜvÝ7Ú6SU×\×\?0ævSb×Y?vÚ6ÜvLHæ�Z[RHS²ÞHB\ÜªP�Sb×[×[SU×Uä�� ��������B���� ��= � ?0LàF�� ���3����B��
� ������# �!� ?0B\S9Ú�Sb×[×\?0æGSESU=vS�LuZ3×7B\SU×[Þ�SUP�Z\;¾=GS�T>Ù²ÜKPUP�XHB\B\;¾LHæ�?@Z¬?�ÞHB[ÜªP�SU×\×7×[S�LMFH;¾LHæ²?�Ú�Sb×[×\?0æGS
?0LMFìB[SbP�S�;>=K;¾LMæÆ?ÆÚ�Sb×[×\?0æGSvä»çDRHSÉP�?vXM×[?vT7ÜGB\FHS�B\;¾LHæÆÜ0ÝEÚ6Sb×[×\?0æGSU×�â9?G×<ÞHB\ÜvÞ�ÜG×[SUFì;¾L 	 (&�|ä
&¬B\Ü0Z[ÜªP�ÜvTQ×8ÞHB\ÜvÞ�ÜG×[SUFÈ;>L 	 ��� � 	�� � �YXM×[S¯T>ÜvæG;>PU?0TYP�T¾ÜªP3Aª×�Z[ÜìÚÉ?v;¾LuZ\?v;¾LÃZ[RHSOP�?0Xà×[?vTEÜvB3FªSUB
Ü0ÝWÚ6SU×\×[?vævSb×�ä Ö �����&����=*��/L6�������)+� B[SUT>?0Z[;>ÜvL¯FHS�SMLHSb×¬Z\RHS�PU?0XM×\?0TàB[SUT>?0Z[;>ÜvLM×[RH;>ÞM×¬Ø�S�Zkâ9S�SUL
Z[RHS�S�=GS�LuZ\×"	 ������ä�çDRMS�RM?vÞHÞàSULHSUFìØàS�ÝãÜvB\S�B\S�TQ?@Z\;¾ÜGL "���'·;Q×²FªS�SàLHSUF®?v× � � 6 â
RHS�B\S
S�=vSULuZ � Rà?0ÞHÞ�S�LHSbFOØàS�ÝãÜvB\S 6 äHçDRHS8SU=vSULGZ3× � ?0LMF 6 ?vB[S²S�;¾Z[RMS�B
Ü0Ý)ÝãÜvT>T>Ü@â
;¾LHæ �

� � � 6 ?vB[SD;>LGZ\S�B\LM?0TªSU=vSULGZ3×Ü0Ý�?²×[?vÚ6S
ÞHB[ÜªP�SU×\××«XMP3R�Z[Rà?@Z � � 6 "!	# ?0LMF � Rà?0ÞHÞ�S�LHSbF
ØàS�ÝãÜvB\S 6 ä

� � � 6 ?vB[SDÚ6SU×\×[?vævS9S�=GS�LuZ\×¬?0Z¬Fª;gê»S�B\S�LuZ¬ÞHB\ÜªP�Sb×[×[SU××[XMP3R�Z[RM?0Z �$ "! # � 6% "!'& �Gâ
RHS�B\S
� ;>×(� ���3����B����*��=2/ S�=GS�LuZ�ÜªPUP�XHB\B[;>LHæ"?@Z²ÞHB\ÜKP�SU×\× ! # ?0LMF 6 ;Q×)� ��������B � � �3����# ���
S�=GS�LuZ
ÜKPUP�XHB\B\SUFO?@Z !�& â
RH;¾T>S#×[S�LMFª;>LHæÉ?�Ú6SU×\×[?vævS ÝãB[ÜGÚ ÞHB\ÜªP�SU×\× ! # Z\Ü !�& ä

8e?@Z\S�B6â9S¯T>;gÝÁZÉZ\RHS ���3������=2��/ 6��*���!)+� B[SUT>?0Z[;>ÜvL "+� '�Z\ÜÇFªS�SMLHS�?°æGT¾ÜGØM?0TDÜGB\FªSUB[;>LHæ°ÜGL
Ú�Sb×[×\?0æGSU×UäçDRHS"RM?0ÞHÞ�S�LMSUFÊØàS�ÝãÜvB\SOB\S�TQ?@Z\;¾ÜGLÊ;Q×�Z[B3?0Là×«;¾Z[;>=vSO;ºä SväE;gÝ�S�=vSULuZ � Rà?0ÞHÞ�S�LHSbF
ØàS�ÝãÜvB\S 6 ?0LMF 6 RM?vÞHÞàSULHSUFOØ�S�ÝãÜGB[S � Z\RHS�L � ;Q×
×[?v;>F¯Z[ÜÉRà?0ÞHÞ�S�LHSbFOØàS�ÝãÜvB\S � ä

� � 6-, 6 � �-. � � �
/®S�P�?0L°ÝãXHB«Z\RHS�B²FªS�SMLHS#Z\RHS�PU?0XM×\?0T>T>ÙÆB\S�TQ?@Z\SUF�?0LàF°P�ÜGLMP�XHB\B\S�LuZ<S�=GS�LuZ\×<XM×[;¾LHæ¯Z[RH;Q×�B[S�á
T>?0Z[;>ÜvLWä�çDRHS8Zkâ9ÜÉS�=vSULuZ\× � ?vLMF 6 ?vB[S#PU?0XM×\?0T>T>Ù¯B\S�TQ?@Z[SbFO;gÝS�;¾Z[RMS�B � � 6 ÜGB 6 � � ä
Q¬=vSULuZ � PU?0XM×\?0T>T¾Ù´?0ê�SbP�Z3× 6 ;gÝ � � 6 äHçDRHS�Zkâ9Ü�SU=vSULGZ3× � ?0LMF 6 ?0B\S�P�ÜvLMP�XHB\B[SULGZ " �
0 6 '·;¾Ý �21 6 ?0LMF 631 � ä»çDRMS�B\S�ÝãÜvB\S#ÝãÜGB�?vLKÙ"ZkâYÜÆS�=vSULuZ\× � ?vLMF 6 Z[RMS�B\S�S��K;Q×«Z
Z[RHB\S�S�ÞàÜu×[×[;>ØH;¾T>;¾Z[;>SU×�;ºä Svä»SU;gZ\RHS�B � � 6 ÜGB 6 � � ÜvB � 0 6 äWçDRHS�ævT>ÜvØM?vT7ÜGB\FHS�B\;¾LHæ¯Ü0Ý
Ú�Sb×[×\?0æGSU×¬FHSU?0TQ×Yâ
;gZ\R´Z[RMS<LHÜvZ[;>ÜvL´ÜvÝWÚ6?v;¾LuZ3?0;>LH;¾LMæ8Z[RHS²×\?0Ú6S<P�?vXM×\?0T�B[SUT>?0Z[;>ÜvLM×[RH;>Þ6Z[RM?0Z
RHÜvTQFH×·ÜGL4� ��������B �)�*��=2/ ?0LàF4� ��������B � � ������# �!� B[SUT>?0Z[;>ÜvLM×[RH;>ÞO;>L"Z[RMS�;>B<ÞHB\ÜªP�SU×\×[SU×UäHèjL
?6ØHB[Üu?vFHPU?v×«Z·LHS�Zkâ9ÜvB\A´;¾Z<;Q×·B\SUåuXH;>B[SbF¯Z\RM?@Z�?0LKÙ¯B\SUP�;¾ÞH;>S�LuZ<ÜvÝ�?´Ú�Sb×[×\?0æGS²Ú�XM×«Z<B\SUP�SU;¾=GS

96

E11 E12 E13 E14

E31 E32 E33 E34

E21 E22 E23 E24

m1

m1 m4

m3 m4m2

m2 m3

P1

P3

P2

����� §��u§ Â�f\njnkoU³bf�}Yi«pvf\ikmwlu³

?0T>TZ[RHS¯Ú�Sb×[×\?0æGSU×²â
RH;QP3Rò?0B\S6ÜvB3FªS�B\SUF®ØàS�ÝãÜvB\S6Z[RH;Q×#Ú6Sb×[×\?0æGSvä Ö ×�×«RHÜ@â
LÈ;>L SMævXMB[S �&�
ÞHB[ÜªP�SU×\× !�� SMB\×«Z8ØHB\ÜG?vFMP�?v×«Z\×<Ú6SU×\×[?vævS � � �»Z[RHSUL !�� ØHB\ÜG?vFMP�?v×«Z\×<Z[RMS�Ú6Sb×[×\?0æGS��
	vä
&¬B\ÜKP�SU×\× ! 	ÃØHB\ÜG?GFHP�?G×kZ3×<Ú6SU×\×\?0ævS ���5?0ÝÁZ[S�B8B\SUP�S�;>=K;¾LHæOÚ6SU×\×[?vævS � � ?0LàF �
	òÝãB\ÜvÚ
ÞHB[ÜªP�SU×\× !� ä &EB[ÜªP�SU×\× !� ?0æu?0;>L�ØHB\ÜG?vFMP�?v×«Z\×·Ú�Sb×[×\?0æGS2��� ?@ÝÁZ[SUB�B\SUP�S�;>=K;¾LHæ��
�®ÝãB\ÜvÚ
! 	väªçDRHS·æGT¾ÜGØM?0TàÜvB3FªS�B\;>LHæ#?0Ú6ÜvLMæ²Z[RHS�Ú�Sb×[×\?0æGSU×ÚÉ?IÙ�ØàS�FªS�SàLHSUFÉÜGL´×«S�ZYÜvÝWÚ�Sb×[×\?0æGSU×Uä
çDRHSÆÚ6Sb×[×\?0æGS�� � ;Q×�×\?0;QFÈZ\ÜÇØ�SOÜvB3FªS�B\SUFòØ�S�ÝãÜGB[S �
	%?v×�Z[RMS�;>B�S��ª;>×«Z\×6P�?vXM×\?0T9B[SUT>?0á
Z[;>ÜvLM×[RH;>ÞÆ?0Ú6ÜGLHæ8Z[RMS�P�ÜvB\B[Sb×«Þ�ÜvLMFH;¾LHæ�� ��������B � �*��=2/ S�=vSULuZ\×���� ���3����B�� �*��=2/ SU=vS�LuZ9Ü0Ý
Ú�Sb×[×\?0æGS$� � RM?0ÞMÞàSULHSUF�Ø�S�ÝãÜvB\S � �4������B �-�*��=2/ SU=vS�LuZÜ0Ý»Ú6SU×\×[?vævS$�
	¯;>L6ÞHB[ÜªP�SU×\× !� ä
çDRHS�B\S�ÝãÜGB[S#?vT¾T7B[SbP�;>ÞH;¾SULuZ\×·ÜvÝÚ�Sb×[×\?0æGS � � ?vLMF4�
	ÇÚ�XM×«Z<B[SbP�SU;¾=GS²Z[RHSb×«S#Ú6Sb×[×\?0æGSU×
;>L
Z[RHSÉÜGB\FªSUB�Z[RHSUÙ°âYSUB[S6×[S�LuZ8;ºä SväWÞMB[ÜªP�Sb×[× ! �ÃÚ�XM×«Z#B[SbP�SU;¾=GS � � Ø�S�ÝãÜGB[S6B\SUP�SU;¾=K;>LHæ ��	
?v×#×[RHÜ@â
Lò;>L SMævXHB\Svä7è�ÝDZ[RHSÆÚ�Sb×[×\?0æGS � � ;Q×�FªSUT>?IÙGSUF "�×[RHÜ@â
LÃ?v×�FªÜ0Z[Z[SUFÃT¾;>LHSU×�'8?vLMF
FªS�T>;¾=GS�B\SUFÃ?0ÝÁZ[SUB6FHS�T>;¾=GS�B\ÙÇÜvÝ<Ú6SU×\×[?vævS"�
	��;gZÉB\S�ÞHB\SU×[S�LuZ\×�?ì=K;>ÜvTQ?@Z\;¾ÜGLÃÜ0Ý·Z\RHSOævT>ÜvØM?vT
ÜvB3FªS�B\;¾LMæMä �HÜvB8?vLuÙOZkâ9ÜÆÚ6Sb×[×\?0æGSU×�� # ?vLMF�� & ��Ú6Sb×[×\?0æGS�� # ;Q×�ÜGB\FHS�B\SUF�Ø�S�ÝãÜGB[S�� &
"�� # ��� & '�;¾Ý�Z[RHS3� ��������B �-�*��=2/ S�=GS�LuZ¬Ü0Ý�� # RM?0ÞHÞ�S�LMSUF6Ø�S�ÝãÜvB\S
Z\RHS � �4������B �$� ��=*/
S�=vSULuZ·Ü0Ý�� & ?0LMFÆZ[RMS�×«SULMFªSUB·Ü0ÝØ�Ü0Z[R�Ú6Sb×[×\?0æGSU×D;Q×DZ[RHS�×[?vÚ�SGäHè�Ý�Z[RHS�×«SULMFªS�B<ÞHB[ÜªP�SU×\×
Ü0Ý�Z[RHSb×«S8Ú6Sb×[×\?0æGSU×D;Q×·Fª;¾ê�SUB[SULGZ<Z[RHSUL�Ú�Sb×[×\?0æGS�� # â
;>T¾T7ØàS#ÜGB\FHS�B\SUFÆØàS�ÝãÜvB\S�� & ;gÝ�Z[RMS
� ��������B � � �3����# ��� S�=vSULuZ9ÜvÝ�� # RM?vÞHÞàSULHSUFÆØ�S�ÝãÜvB\S�Z[RHS)� �4������B �3�*��=�� SU=vSULGZDÜ0Ý�� & ;>L
Z[RHS�ÞHB\ÜKP�SU×\×<×[S�LMFH;¾LHæÆÚ6SU×\×[?vævS � & ä»çDRHS�ævT>ÜvØM?vTeÜGB\FªSUB<ÜvÝ¬Ú�Sb×[×\?0æGSU×<Ú6?IÙ"Ø�S�FHS�SMLHSbF
?v×DÝãÜGT¾T>Ü@â·×�ä"!KXHÞHÞ�ÜG×[S8Ú6SU×\×[?vævSU×$� � ?0LMF �
	È?0B\S²×[S�LuZ<ØKÙÆÞHB[ÜªP�SU×\×«Sb× !� ?vLMF ! 	ÇB[S�á
×«Þ�SUP�Z[;>=vS�T>ÙväuN�SU×\×\?0ævS$� � ;>×ÜGB\FHS�B\SUF�ØàS�ÝãÜvB\S �
	�"�� � � �
	 'E;¾êÆS�;¾Z[RMS�B¬ÜvÝ�ÝãÜGT¾T>Ü@â
;>LHæ
RHÜvTQFH×Uä

� �*��=2/$# � �&% � �*��=2/$# ��	 % �@â
RHS�B\S
×«SULMFªSUB�" � � '('�×[S�LàFªS�B " �
	 '?0LMF � � ;Q××«SULuZ�Ø�S�á
ÝãÜvB\S)��	Gä

� � ������# �!�)# � �&% � � ��=*/*# �
	 % �Mâ
RHSUB[S#×[S�LàFªS�B " � � '�+' ×[S�LàFªS�B " �
	 '·?0LàF � � ;>×·B[S�á
P�SU;¾=GSUFÆØuÙO×«SULMFªSUB
Ü0Ý �
	®ØàS�ÝãÜvB\S(�
	®;>×
×[S�LuZUä

�*��=2/*# � % ?vLMF2� ������# �!�,# � % ?vB[SDS�=GS�LuZ\×¬B[SUÞHB[Sb×«SULuZ[;>LHæ�×[S�LàFª;¾LMæ#?0LMF�B\SUP�SU;¾ÞHZ¬Ü0Ý»Ú�Sb×[×\?0æGS
� B[Sb×«Þ�SUP�Z[;>=vSUT¾ÙGäKçDRMS²ZkâYÜ6Ú6SU×\×[?vævSb×� � ?vLMF ��	Ç?0B\S8FªS�SMLMSUF"?v×9ÞM?vB\?vT¾T>S�T�Ú6SU×\×\?0ævSb×
" � � 0 �
	�'<â
RHS�L°LMÜ´ÞM?0B[Z[;Q?0T7ÜvB3FªS�B\;>LHæÉS��ª;Q×kZ²?0Ú6ÜvLHæ´Z[RHSUÚ,;|ä Svä.- " � � � �
	 '0/1-
" �
	-� � � '7RHÜvTQFH×Uä0çDRHSU×[S9Ú�Sb×[×\?0æGSU×7ÚÉ?IÙ8ØàS
FªSUT¾;>=vSUB[SbF8Z[Ü²?�B[SbP�;>ÞH;¾SULuZ)ÞHB\ÜªP�Sb×[×);>L�?vLuÙ
ÜvB3FªS�Bbä Ö ×)×[RHÜ@â
L8;>L SMæGXHB\S<�&� # � � � �
	 % RHÜvTQFH×)?v×�2 �)� �32 � 	 � # �
	$� ��� % RHÜGT>FH×
?v×024	5	��627	5��� # ���2� ��� % RHÜvTQFH×�?v×02 � � �82 � �Mä�:�XHS#Z\ÜÉZ[B3?0Là×«;¾Z[;>=K;gZkÙOP�ÜvLàFª;gZ\;¾ÜGL

97

MACHINE CausalOrder
SETS PROCESS ; MESSAGE
VARIABLES sender, receive, order
INVARIANT
 /* Inv-1 */ sender � MESSAGE � PROCESS
 /* Inv-2 */ � receive � PROCESS � MESSAGE � order � MESSAGE � MESSAGE
 /* Inv-3 */ � dom(order) � dom(sender) � ran(order) � dom(sender)
 � ran(receive) � dom(sender)
 /* Inv-4 */ � � p,m � (p � PROCESS � m � MESSAGE � (p � m) � receive � p 	 sender(m))
 /* Inv-5 */ � � m1,m2,m3 � (m1 � MESSAGE � m2 � MESSAGE � m3 � MESSAGE
 � (m1 � m2) � order � (m2 � m3) � order � (m1 � m3) � order)
 /* Inv-6 */ �
� m1,m2,p � (m1 � MESSAGE � m2 � MESSAGE � p � PROCESS
 � (m1 � m2) � order � (p � m2) � receive � p 	 sender(m1) � (p � m1) � receive)

INITIALISATION
 sender := � || receive := � || order := �
OPERATIONS
 Send(pp,mm) � PRE pp � PROCESS � mm � MESSAGE
 THEN
 SELECT mm dom(sender)
 THEN
 order := order � ((sender~[{pp}] * {mm}) � (receive[{pp}] * {mm}))
 || sender := sender � {mm � pp}
 END
 END;
 Receive(pp,mm) � PRE pp � PROCESS � mm � MESSAGE
 THEN
 SELECT mm � dom(sender) � (pp � mm) receive
 � pp 	 sender(mm)
 � � m.(m � MESSAGE � (m � mm) � order
 � pp 	 sender(m) � (pp � m) � receive)
 THEN
 receive := receive � {pp � mm}
 END
 END
END

����� §��M§ ¼ ©un�hji«oU^[hYÂ�`0pGf3aà`Uceq�o�tunkoUa»}Yi«pGf\i¬mwlÉ�

� � � ��� %�� # � � � ��� % ?0LàF " �
	"� ��� % ?0TQ×[ÜÆRHÜGT>FM×�ä�çDRHSÉ?0Øà×kZ\B\?GP�Z�Ú6ÜªFªSUTÜ0Ý
P�?0Xà×[?vT�ÜvB3FªS�B
ÜvÝ)Ú6SU×\×\?0ævSb×9;>×
ÞMB[Sb×«SULGZ\SUFÆ;¾L SàævXHB\S E6?v×
?ÉV%N�ÜªFªSUTºä��²LHÜ@â
T>SUFªæGS�ÜvÝ�V
×«ÙKLuZ\?��¯;>×
?G×[×[XHÚ6SUFWäHçDRHS8ØHB\;¾S�Ý�FªSb×[P�B[;>ÞªZ\;¾ÜGLÆÜvÝeZ[RM;>×
ÚÉ?GP3RH;¾LMS�;Q×
æG;¾=GS�L¯Ø�S�T>Ü@â8ä

� &Eë�� ! Q ! !6?0LMF´NMQ !$! Ö �>QÊ?0B\S�FªS�SMLHSbF´?v×9×«S�Z\×UäuçDRMS ����=*/&��) ;>×9?#Þà?0B[Z[;Q?0TàÝãXHLMP�á
Z[;>ÜvLÉÝãB\ÜvÚÛN Q4!$! Ö �>QÈZ\Ü &Yë � ! Q4!$!»ävçDRMS)+������# �!� ;Q×Y?�B[SUT>?0Z[;>ÜvLÉØ�S�Zkâ9S�S�L &Yë��<á
! Q !$!Ç?vLMFÈN Q !$! Ö �>Q " "ãÞ���ÃÚ ' B[SbP�S�;>=vS6;>LMFª;QP�?0Z[SU×8Z[RM?0Z#ÞHB[ÜªP�SU×\× � RM?v×#B[S�á
P�SU;¾=GSUFOÚ6SU×\×[?vævS '�äàçDRHS �!)+/���) ;>×�?6B[SUT>?0Z[;>ÜvLOØàS�ZkâYSUS�L°N Q4!$! Ö �>Q÷?vLMF�N Q !Ká
! Ö �>Q·ä "�!KRHÜ@â
L"?v×�� =���� � ?vLMF�� =���� 	8;>L¯Z\RHS8;¾LK=@?0B\;Q?0LuZ·P�TQ?0XM×[S²Ü0ÝeZ\RHS8Ú6ÜªFªS�T '

� Ö ����= � Ú6SU×\×[?vævS²;>×<LHÜ0Z�B[SbP�S�;>=vSbFOØuÙO;¾Z\×<×[S�LàFªS�B<?vLMF�?0T>TeB\SUP�S�;>=vSbF¯Ú6SU×\×\?0ævS8Ú�XM×«Z
ØàSÆÚ6SU×\×[?vævSU×²â
RMÜG×[S"� �4������B � �*��=2/ S�=GS�LuZ�;Q×#B\SUP�ÜvB3FªSUF�ä !K;¾Ú6;>T>?vB[T>Ù&�7ÜvB3FªS�B\;>LHæ"Ü0Ý
Ú6SU×\×[?vævSU×DPU?0L¯Ø�S#FªS�SMLHSUFOÜGLHT¾ÙÉÜGL¯Z\RHÜG×[S²Ú6SU×\×[?vævSU×9â
RHÜu×«S(� �4������B ���*��=2/ S�=GS�LuZ
;>×·B[SbP�ÜvB3FªSbF�ä "�!KRHÜ@â
L"?v×�� =���� � � � =���� � '

� çDRHS²;¾LK=@?0B\;Q?0LuZDP�ÜvLuZ\?v;¾Là×9?�ÞHB\SUFª;QP�?0Z[S�â
RH;QP3RÆB\SUåuXH;>B[Sb×YZ[RM?0Z9Z\B\?vLM×[;gZ\;¾=K;¾ZkÙÉÞHB[ÜGÞàSUB«ZkÙÜvLOÚ6SU×\×[?vævSU×D×[RHÜvXMT>FOØ�S8Ú6?v;¾LuZ3?0;>LHSUF�ä "�!KRHÜ@â
L�?v×�� =������ '

98

� �HÜGB<?0LKÙ¯Ú6Sb×[×\?0æGS8â
RHÜG×[S � �4������B � � ������# �!� S�=vSULuZ<RM?0ÞMÞàSULHSUF�?0Z�?6ÞHB\ÜKP�SU×\×��HZ[RM?0Z
ÞHB\ÜKP�SU×\×<Ú�XM×«Z�RM?I=GS�B\SUP�S�;>=vSUFì?0T>T7Z\RHS�Ú�Sb×[×\?0æGSU× �!)+/���)+��/ 6��*���!)+� Z[RM?0Z�Ú6Sb×[×\?0æGSvä "
!KRHÜ@â
L"?v×�� =���� � '

� �*��=2/ ?0LàF�� ������# �!� ?vB[SDSU=vS�LuZ3×Ü0Ý»Ú6SU×\×[?vævSU×FHS�SMLHSbFÉ?v×�ÜGÞàSUB\?0Z[;>ÜvLM×UävçDRHSb×«S
SU=vS�LuZ3×
?0B\S6ævXM?vB\FªSbFìØKÙ®ÞHB[SbFª;QP�?@Z\SU×Uä�èjLÇZ[RHS´SU=vSULGZ8ÜvÝD×[S�LMFH;¾LHæ°?"Ú6Sb×[×\?0æGS " ØKÙìÞMB[Üvá
P�Sb×[× ��� ��?0T>TWÚ6SU×\×[?vævSU×D×[S�LuZ<?0LàFÆB\SUP�S�;>=vSbF¯ØKÙ¯ÞMB[ÜªP�Sb×[× ��� ?vB[S �!)3/&��)+��/ 6��*���!)+� Z[RMS
Ú6SU×\×[?vævS $ ä

� èjL�Z\RHS9S�=vSULuZ)ÜvÝMB[SbP�SU;¾ÞªZÜvÝà?<Ú6Sb×[×\?0æGS " ØuÙ#?�ÞHB\ÜªP�SU×\× �&� �v;gZ�Ú�XM×«ZS�LM×[XHB\SUF#Z[RM?0Z?0T>T�Ú6SU×\×[?vævSU× ��)+/&��)+��/06��*���!)+�0 $ RM?v×9Ø�S�S�L"B\SUP�S�;>=vSUF¯ØKÙ´ÞHB\ÜKP�SU×\× �&� äàçDRH;>×<P�ÜvLHá
Fª;¾Z[;>ÜvL";>×<×[?0Z[;Q× SMSbF¯ØKÙ¯?�ÞHB\SUFH;>PU?@Z[S²;>LOZ[RHS8æGXM?0B3F´ÜvÝ)ÜGÞàSUB\?0Z[;>ÜvL"� ������# �!�,#������F " % ä

� � �7Ô�ÏKÑEÐ��4�«ÑDÔ�� �

8WÜvæG;>PU?0T»P�T>ÜªP3AK×D?vB[S�=K;>?vØHT¾S8×[ÜvT>XªZ[;>ÜvL¯Z[ÜÉP�?vXM×\?0T>T¾ÙÉÜGB\FªSUBY=@?vB[;>ÜvXM×9SU=vS�LuZ3×9?vLMF¯Z[Ü6S�LM×[XHB\S
ævT>ÜvØM?vT¾T>Ù®ÜGB\FHS�B\SUFÃFªSUT¾;>=vSUB[ÙÇÜ0Ý·Ú6Sb×[×\?0æGSU×8Z\Ü®ÞMB[ÜªP�Sb×[×[SU× 	 �!�9� 	�� � ��ä�!ªP�?vT>?vB�?0LàF �SUP�Z[ÜvB
!YT¾ÜªP3Aª×?0B\SDâ
;>FªSUT¾Ù�B[S�ÝãS�B\B[SbF#Z\Ü#?v×T>ÜvæG;>PU?0THP�T¾ÜªP3Aª×�ä)!HP�?0TQ?0B¬P�T¾ÜªP3Aª×��@;¾LuZ[B\ÜªFªXMP�SUF�ØKÙ$8e?vÚ�á
ÞàÜGB«Z
;>L 	��&���9�ªXM×[SU×D?vLÆ;>LuZ[S�æGS�BD=@?0T>XHS�Z[Ü�Z[;>Ú6SU×«Z\?vÚ�Þ�?vLÆSU=vS�LuZDâ
RHS�B\SU?G×9=vSUP�Z[ÜGBDP�T¾ÜªP3Aª×��
;¾LuZ[B\ÜªFªXMP�SUFÉ;>L5	 I!� � 	 � �!� �GXM×[SU×9?#=GSUP�Z[ÜvB9Ü0ÝW;>LuZ[SUævS�B3×EZ[Ü�Z[;>Ú�Sb×kZ3?0Ú6ÞÆ?vL´S�=GS�LuZUä Ö =vSUP�Z[ÜGB
P�T>ÜKP3AÆÚÉ?IÙ¯Ø�S�FªS�SàLHSUF°?G×·?�ÝãXHLMP�Z[;>ÜvL�â
RH;QP3R°?v×\×[;¾æGL"?6=GSUP�Z[ÜvB<Ü0Ý�;¾LuZ[SUævSUB
Z[Ü¯?vL�S�=GS�LuZ
P�?0T>T>SUFÇZ[;>Ú6SU×«Z\?vÚ�Þeä �HÜGB�SU=vS�B\Ù°ÞHB\ÜªP�Sb×[× ! # �eZ[RHSUB[S´S��ª;>×«Z�?°P�T¾ÜªP3A��
	�� # â
RH;QP3RòÚÉ?0ÞM×
?0L°SU=vS�LuZ�Z[ÜO?¯=GSUP�Z\ÜvB�Ü0ÝE;>LuZ[S�æGS�Bbä !ªXHÞHÞ�ÜG×[S�×[S�Z�2� # FªS�SàLHSU×�Z[RMS�×[SUåuXHSULMP�S�Ü0ÝESU=vS�LuZ3×
ÞHB[ÜªFªXàP�SUF¯ØKÙ´ÞHB\ÜKP�SU×\× ! # äHçDRHS8P�T¾ÜªP3A6ÝãXHLMP�Z[;>ÜvLOÚÉ?IÙÉØàS8FªS�SMLHSUF"?G×��
	�� # � 2� # ���
�àâ
RHSUB[S�� ;>×�?´×[S�Z�Ü0Ý¬=vSbP�Z\ÜvB3×�ä�çDRHS�P�T¾ÜªP3A���	 � # ?v×\×«;>ævLM×�?6Z[;>Ú6S�×«Z\?vÚ6Þ���	 � # " � # & '
Z[ÜÉS�=GS�LuZ � # & â
RHS�B\S � # & 2 # ä
èjL6?8×[Ùª×kZ\S�Ú Ü0Ý»=vSUP�Z[ÜGB�P�T¾ÜªP3Aª×��0S�=GS�B\Ù#ÞHB\ÜKP�SU×\×�ÚÉ?0;>LGZ3?0;>LM×?²=vSbP�Z\ÜvBÜ0Ý�×[;�1US��¨â
RHS�B\S

��;Q×9Z[RMS�Z\Ü0Z3?0T»LKXHÚ�Ø�S�B
ÜvÝ7ÞHB\ÜªP�SU×\×[SU×Y;¾LÆZ[RHS#×[Ùª×kZ\S�Ú"ä &¬B\ÜªP�SU×\× !�# ÚÉ?0;>LuZ\?0;>LM×D?�=vSUP�Z[ÜGB
P�T>ÜKP3A��
	 � # â
RHSUB[S���	 � # "ã; '�;>×�Z\RHSÉT>ÜKPU?0T�T>Üvæv;QP�?vT)Z[;>Ú�S´?0Z !�# â
RH;>T¾S���	 � # "zé '�B\S�ÞMB[S�á
×«SULGZ3×WZ\RHSEÞMB[ÜªP�Sb×[× ! # $ ×7T>?0Z[Sb×kZ)AuLMÜ@â
T¾SbFªævSÜvÝHZ[RHSEZ[;>Ú6S9?0Z7ÞHB\ÜªP�SU×\× !�& ä@N�ÜGB[SEÞHB[SbP�;Q×«SUT¾Ù
��	�� # "zé '#"ã;(+'Eé '¬B\S�ÞHB\SU×[S�LuZ3×Z[RMS<Z\;¾Ú6S�Ü0ÝWÜªP�P�XHB[B\S�LàP�S·ÜvÝe?0L´SU=vS�LuZD?@ZYÞMB[ÜªP�Sb×[× !�& â
RHSUL
Z[RHS�Ú6ÜG×«Z�B\SUP�S�LuZ�Ú6Sb×[×\?0æGS#â9?G×²×«SULGZ�ÝãB[ÜGÚ !�& Z\Ü ! # Fª;>B\SUP�Z\T¾Ù�ÜGB�;>LMFª;>B\SUP�Z\T¾ÙGä»èjLìZ\RH;>×
Ú�ÜªFªSUT��»=GSUP�Z\ÜvB²P�T>ÜªP3AK×�?0B\S�Xà×«SbF�Z[ÜÆZ[;>Ú6SU×«Z\?vÚ�Þ ��������B � ����=*/ ?vLMF .�4������B �)+������# ���
S�=vSULuZ\×�ÜvLHT>Ùvä�çDRHS�ÝãÜvT>T¾Ü@â
;>LHæÆB[XHT>SU×�?0B\S�XM×«SbF"Z[ÜOXHÞ»FH?@Z\S�Z[RHS�=vSbP�Z[ÜGB�P�T¾ÜªP3A"Ü0ÝYÞHB[ÜªP�SU×\×
?0LMF¯Z[;>Ú6SU×«Z\?0Ú6ÞH;>LHæ´?�Ú6SU×\×[?vævS�;¾LOZ\RHS8S�=GS�LuZ
Ü0Ý ��������B�� ����= � ?vLMF ��������B �)+������# ��� ä

� /÷RH;>T¾SÇ×«SULMFª;>LHæÊ?òÚ6Sb×[×\?0æGS � ÝãB[ÜGÚ ÞHB\ÜªP�Sb×[× ! # Z\Ü !�& �D×«SULMFªSUB¯ÞHB\ÜªP�SU×\× ! #
XHÞ»FH?@Z\SU×�;gZ3×<Ü@â
L�Z\;¾Ú6S "���� �ÉSULuZ[B\ÙOÜvÝ¬=vSbP�Z[ÜGB�'
ØuÙOXHÞ»FH?@Z\;¾LMæ!��	�� # "ã; '�?v×"�
	�� # "�; '
� '#�
	�� # "�; '�$ �GävçDRHS·Ú6SU×\×\?0ævS9Z\;¾Ú6S<×«Z\?vÚ�Þ���	&% ÜvÝ�Ú�Sb×[×\?0æGS$�&;Q×¬æGS�LHSUB\?0Z[SUF6?G×
��	&%�"ãA�'�� ''��	�� # "ãA�'4�)(�A " �vä>ä *#'4�bâ
RHSUB[S�*5;>×eLKXHÚ�Ø�S�B7Ü0ÝHÞHB\ÜªP�SU×\×[SU×�;>L#×«Ùª×«Z[SUÚOä
!K;>LMP�SÉ?´ÞMB[ÜªP�Sb×[× ! # ;>LMP�B\S�Ú6S�LuZ3×�;¾Z\×�Ü@â
L®=I?vT¾XMS�ÜGLHT¾Ù°?0Z�Z\RHS�Z[;>Ú6S�ÜvÝ9×[S�LMFª;>LHæO?
Ú6SU×\×[?vævS&�+�
	�� # "�; '9;>LMFª;QP�?0Z[SU×·LuXMÚ�Ø�S�B
Ü0Ý�Ú6SU×\×[?vævSb×9×[S�LuZ
ÜvXHZ·ØuÙ¯ÞHB[ÜªP�SU×\× ! # ä

� çDRHSÉB\SUP�;>ÞH;>S�LuZ8ÞHB\ÜKP�SU×\× ! & FHS�TQ?IÙK×�Z\RHS´FªS�T>;>=vS�B\Ù°ÜvÝYÚ6SU×\×[?vævS ��XHLuZ\;¾TÝãÜGT¾T>Ü@â
;>LHæP�ÜGLMFª;¾Z[;>ÜvLM×
?vB[S8×\?@Z[;Q× SMSUF�ä
, ��	 � & "�; ' '-�
	 % "�; 'Yá �
, ��	�� & "�A�'/.0��	&%�"ãA�'4�1(»A " �vä>ä *#'/ "ãA +' ; '�ä
çDRHS.SMB3×«Z�P�ÜvLàFª;gZ\;¾ÜGLòS�LM×[XHB\SU×�Z\RM?@Z�ÞMB[ÜªP�Sb×[× !'& Rà?v×8B\SUP�S�;>=vSUFÈ?vT¾T¬ØMXªZ�ÜvLMSÉÚ�Sb×ká
×[?vævS�×«SULGZDØKÙÉÞHB\ÜKP�SU×\× ! # äHçDRHS²×[SUP�ÜGLMF¯P�ÜvLMFH;gZ\;¾ÜGL¯S�Là×«XHB\SU×EZ[Rà?@Z
ÞHB\ÜKP�SU×\× !'& RM?G×

99

B[SbP�SU;¾=GSUF"?0T>TWÚ6SU×\×[?vævSb×DB[SbP�S�;>=vSbFOØuÙO×«SULMFªSUB ! # Ø�S�ÝãÜGB[S�×[S�LàFª;¾LMæ6Z[RHS#Ú6Sb×[×\?0æGS(�°ä
çDRHSU×[S8P�ÜGLMFª;¾Z[;>ÜvLM×
SULM×[XHB[Sb×9ævT>ÜvØM?vT�ÜvB3FªS�B\;¾LMæ�ÜGLÆÚ6SU×\×\?0ævSb×�ä

� çDRHS6B[SbP�;>ÞH;>S�LuZ8ÞHB[ÜªP�SU×\× ! � XHÞ»FH?@Z\SU×8;¾Z\×²=GSUP�Z[ÜvB²P�T>ÜªP3A���	�� & ?@Z .�4������B �.)+������# ���
S�=GS�LuZ¯Ü0Ý8Ú6SU×\×\?0ævS � ?v×!��	�� & "ãA�'�� ' ÚÉ?!�
" ��	�� & "ãA�'4� ��	&% "ãA�' '�ä9çDRHSUB[S�ÝãÜvB\S
;¾L¨=vSbP�Z\ÜvB6P�T>ÜKP3AÈÜvÝ�ÞHB\ÜªP�SU×\× !'& � ��	�� & "�; '�;>LMFª;QP�?@Z\SU×�Z[RMSÆLKXHÚ�ØàSUB�ÜvÝ�Ú6SU×\×\?0ævSb×
FªS�T>;>=vS�B\SUF¯Z[Ü6ÞHB\ÜªP�Sb×[× !�& ×[S�LuZ
ØuÙ¯ÞHB[ÜªP�SU×\× ! # ä

&?0B[ZÆÜ0Ý8Z\RHSòV�B[S�SMLHSUÚ�SULuZÆÜ0Ý�Z[RHSò?0Øà×kZ\B\?GP�Z¯Ú6ÜªFªS�T²ÜvÝ�P�?vXM×[?vT�ÜGB\FHS�BOÜ0Ý�Ú6SU×\×\?0ævSb×
Z[RHB\ÜvXHæGRÈ=vSUP�Z[ÜGB�P�T>ÜªP3AK×#;>×#×[RHÜ@â
LÈ;>LÈZ[RHS0SMævXHB\S���?0LàF SMævXHB\S.(Mä �7;>ævXMB[S ��P�ÜvLuZ\?v;¾Là×
;¾LK=@?0B\;>?vLuZ\×��@=I?vB[;Q?0ØMT¾Sb×)?vLMF�;¾LM;gZ\;>?vT¾;71U?0Z[;>ÜvLÉP�TQ?0XM×[Svä0çDRMS·ÜvÞ�S�B3?@Z\;¾ÜGLM×�?0B\SD×[RHÜ@â
L�;¾L SàævXHB\S
(Mä Ö ØHB\;¾S�Ý�FHSU×\P�B\;¾ÞªZ\;¾ÜGLÆÜvÝ7B\S�SMLMS�Ú6S�LuZ<×«Z[S�Þà×
?0B\S�æG;¾=GS�LOØàSUT¾Ü@â8ä

� �SUP�Z[ÜvB�Z[;>Ú6S�ÜvÝE?´ÞHB\ÜªP�Sb×[×<;>×�B[SUÞHB\SU×[S�LuZ[SbF"ØuÙ�?¯=I?vB[;Q?0ØMT¾S �
	 ! ä�çDRHS�Z\;¾Ú6Sb×kZ3?0Ú6Þ
Ü0Ý8?ÇÚ�Sb×[×\?0æGSÆ;Q×6B\S�ÞHB\SU×[S�LuZ[SbF5ØKÙ5?Ç=@?0B\;Q?0ØHT>S+��	 ��ä ��	 ! ?vLMF ��	 � ?vB[S"FªS�á
SMLHSbFì?v×·ÝãXHLMP�Z[;>ÜvLM×²?v×�×«RMÜ@â
L°;¾Lì;¾LK=@?0B\;>?vLuZ � =������ ��?vLMF � =������ ä%�<Z[RHSUB�P�ÜGLMFª;¾Z[;>ÜvLM×
B[SbåuXH;¾B\SUFÃÝãÜvB6=vSbP�Z\ÜvB6P�T>ÜKP3Aò;>Ú6ÞHT>S�Ú6S�LuZ\?0Z[;>ÜvLM×6?vB[S"×«RMÜ@â
LÃ;¾L¨;>Lu=@?vB[;Q?0LuZ\× � =���� ��� ä
�SUP�Z[ÜvB�Z[;>Ú6SU×«Z\?vÚ�ÞìÜ0Ý¬SU?GP3R�ÞHB\ÜKP�SU×\×·;Q×<;>LH;¾Z[;Q?0T>;�1USUF�â
;¾Z[R®=@?0T>XHS $ �$>äMèjLH;¾Z[;Q?0T>;71U?@Z\;¾ÜGL
Ü0Ý�=@?0B\;>?vØHT¾S$��ç &÷?vLMF ��ç
N ;>×<×«RHÜ@â
LÆ;¾LOZ\RHS8;¾LM;gZ\;>?vT¾;71U?0Z[;>ÜvL�P�TQ?0XM×[Svä

� Ö LHS�â =@?0B\;>?vØHT¾S 6�,��<��) ;>×²;>LuZ[B\ÜKFHXMP�SbFì;>L®B\S�SàLHS�Ú6S�LuZbäWçDRHS 6�,��<��) ;Q×8?OB[SUT>?0Z[;>ÜvL
ØàS�ZkâYSUS�L &Eë�� ! Q !$! ?vLMF%N Q4!$! Ö �>Q " � =�����	 '�ä
çDRHSÇÚ6SU×\×[?vævSb×´?0B\B[;>=K;¾LMæ5?@Z"?
ÞHB\ÜKP�SU×\×e?vB[S¬;>LH;¾Z[;Q?0T>T¾Ù²ØHXHê�SUB[SbF�äbçDRMSEØHXªê»S�B\SUF#Ú�Sb×[×\?0æGSU×W?vB[SEB[SbP�S�;>=vSbF²ØKÙ²?·ÞHB[ÜªP�SU×\×
ÜvL"×[?0Z[;Q×kÝãÙK;>LHæ�Z[RHS#P�ÜvLMFH;gZ\;¾ÜGLM×
?v×
FªS�SMLHSbFÆ;>L"=vSbP�Z[ÜGB·P�T>ÜªP3AK×Uä

� çDRHS �*��=2/ ��
)4)4# ��� ?0LMF � �3����# ��� S�=GS�LuZ\×�Ü0Ý
?OÚ6SU×\×[?vævS6?@Z#?OÞHB[ÜªP�SU×\×�?vB[SÉ×[RHÜ@â
L?v×ÉÜGÞàSUB\?0Z[;>ÜvLM×6;>L SMæGXHB[S�á9(àä Ö Z´Z[RMS�Z[;>Ú6S°Ü0Ý8×«SULMFª;>LHæ5?ÈÚ6SU×\×\?0ævS " �EÞHB[ÜªP�SU×\×
�&� ;¾LàP�B\S�Ú6S�LuZ\×<;gZ3×·Ü@â
L°P�T¾ÜªP3AO=I?vT¾XMS3��ç &#"ãÞHÞ�' "ãÞHÞ '·ØKÙOÜvLHSGäàçDRHS(��ç & "�ÞHÞ�' "ãÞHÞ�'
B[SUÞHB\SU×[S�LuZ\×9Z\RHS�LKXHÚ�ØàSUB·Ü0ÝÚ6SU×\×[?vævSb×
×«SULGZ·ØKÙOÞHB\ÜKP�SU×\× �&� äàçDRHS�Ú�ÜªFª;�SMSbF"=vSUP�Z[ÜGB
Z[;>Ú6SU×«Z\?0Ú6Þ´ÜvÝWÞHB\ÜKP�SU×\×¬;Q×Y?G×[×[;>ævLHSbF�Z\Ü�Ú6SU×\×\?0ævS " æv;>=K;¾LHæ�=vSUP�Z[ÜGB¬Z[;>Ú6SU×«Z\?vÚ�Þ¯Ü0Ý
Ú6SU×\×[?vævS $ ä

� çDRHSDÚ6SU×\×[?vævSU×)ÚÉ?IÙ#?0B\B\;¾=GSY?@Z¬?�ÞHB\ÜKP�SU×\×);¾L6?0LKÙ#ÜGB\FªSUB7ØMXªZZ[RHSU;¾B%� ��������B�� � �3����# ���
S�=GS�LuZOÜªPUP�XHB3×Æ?0ZÆZ\RM?@Z"ÞHB\ÜªP�SU×\×ÆÜvLHT>Ù÷;gÝ�;gZ�RM?G×¯B\SUP�S�;>=vSUF�?0T>T�ØMXªZ�ÜvLHS®Ú�Sb×[×\?0æGS

VARIABLES sender, receive, order, buffer, VTP, VTM
INVARIANT
/*Inv-7*/ VTP � PROCESS (PROCESS � �)
/*Inv-8*/ � VTM � MESSAGE � (PROCESS � �)
/*Inv-9*/ � buffer � PROCESS � MESSAGE � ran(buffer) � dom (sender)
/*Inv-10*/ � � m1,m2,p � (m1 � MESSAGE � m2 � MESSAGE � p � PROCESS
 � (m1 � m2) � order � VTM (m1)(p) � VTM(m2)(p))
INITIALISATION

 VTP := PROCESS * { PROCESS * {0}}
||VTM := �
|| sender := � || buffer := � || receive := � || order := �

����� §��M§ ô f[ÄKluf\r8f3l@h�tunjmwlG³²Ë7f\^\hk`UiYq)aw`@^«¶vn�� ± l0ybo�ikmgoUl@hkn

100

OPERATIONS

 Send(pp,mm)

�
 SELECT mm � dom(sender)

 THEN
 LET nVTP
 BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}
 IN VTM(mm) := nVTP || VTP(pp) := nVTP END
 || sender := sender � {mm � pp}
 END ;

Arrive(pp,mm)

�
 SELECT mm � dom(sender) � (pp � mm) � buffer

 � (pp � mm) � receive � pp � sender(mm)
 THEN
 buffer := buffer � {pp � mm}
 END ;

Receive(pp,mm)

�
 SELECT (pp � mm) � buffer � (pp � mm) � receive � pp � sender(mm)

 � � p.(p � PROCESS � p � sender(mm) 	 VTP(pp)(p)
 VTM(mm)(p))
 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
 THEN
 receive := receive � {pp � mm} || buffer := buffer - {pp � mm}
 || VTP(pp) := VTP(pp) � ({q

�
q � PROCESS � VTP(pp)(q) < VTM(mm)(q)} � VTM(mm))

 END
END

����� §�à§ ô f\Äuluf3r8f\l0h�tunjmwlu³²Ëef3^\hk`�iYq)aw`@^[¶0n��ª}9sªf\i«o�hkmw`blun

ÝãB[ÜGÚÛZ[RMS²×[S�LàFªS�B
ÜvÝeZ[Rà?@Z
Ú6SU×\×[?vævSvä��SbP�Z[ÜGBDZ[;>Ú6SU×«Z\?0Ú6ÞOÜ0Ý)B[SbP�;>ÞH;¾SULuZDÞMB[ÜªP�Sb×[×D?vLMF
Ú6SU×\×[?vævS<?vB[S<?vT>×[Ü�P�ÜvÚ6ÞM?0B\SUF�Z\Ü�SULM×«XMB[S<Z[RM?0Z9?0T>T�Ú�Sb×[×\?0æGSU×EB[SbP�S�;>=vSbF6ØKÙ�×[S�LMFHS�B9Ü0Ý
Ú6SU×\×[?vævS#Ø�S�ÝãÜGB[S6×«SULMFª;>LHæ¯;¾Z���?vB[S�?0TQ×«Ü´B\SUP�S�;>=vSbF°?@Z�Z[RHS�B[SbP�;>ÞH;>S�LuZ�ÞMB[ÜªP�Sb×[×UäàçDRMSU×[S
P�ÜGLMFª;¾Z[;>ÜvLM×8?vB[S6;>LMP�T>XMFªSbFÇ?G×²?"ævXM?vB\Fì;¾L � ������# ��� ÜvÞ�S�B3?@Z[;>ÜvLeä�è�Z�PU?0LÇØàSÉLMÜ0Z[;QP�SbF
Z[RM?0Z¬Z[RMS·ævXM?vB\F�;>LK=vÜvT>=K;¾LMæ�Z\RHS·=@?0B\;Q?0ØHT>S �!)+/���) ;>L6Z[RHS�?0ØM×«Z[B3?vP�Z�Ú6ÜªFªSUTM;Q×¬B\S�ÞHTQ?vP�SUF
ØKÙ�?<æGXM?0B3F8;>LK=vÜvT>=K;¾LMæ�P�ÜvÚ6ÞM?0B\;Q×«ÜGL#Ü0ÝM=GSUP�Z[ÜvB)Z\;¾Ú6SU×«Z\?vÚ6Þ�ÜvÝMÚ6SU×\×[?vævSD?0LMF�ÞHB[ÜªP�SU×\×
;¾LOZ\RHS8B[S�SMLHSUÚ�SULuZUä��

� çDRHSEB\S�ÞMT>?GP�S�Ú6SULGZ7Ü0ÝKZ[RHSYævXM?vB\F²;>LK=vÜGT¾=K;>LHæ
=@?0B\;>?vØHT¾S �!)+/���) ;>L�?0ØM×«Z[B3?vP�ZeÚ6ÜªFªS�TGâ
;gZ\RævXM?vB\FM×6;¾LK=vÜGT¾=K;>LHæÈP�ÜvÚ6ÞM?vB[;Q×[ÜvL5ÜvÝ�=GSUP�Z\ÜvB6Z\;¾Ú6SU×«Z\?vÚ6Þ¨;>L B[S�SMLHSUÚ�SULuZ´ævS�LMS�B3?@Z[Sb×
ÞHB\ÜuÜvÝ�ÜGØHT¾;>æG?0Z[;>ÜvLM×Uä¬çDRHSb×«S"ÞHB\ÜKÜ0Ý�ÜGØHT>;¾æu?@Z[;>ÜvLà×ÉP�?0L¨Ø�S°Fª;>×\P3RM?vB[æGSUFÃ;>LuZ[SUB\?GP�Z[;>=vSUT¾Ù
XM×[;¾LHæÉ?ÉV &EB[Ü@=GS�Bbä

� �®ÑYÎ<Ô �«Ó-�KÕkÑEÎ-�

çDRHSÇ?vØM×«Z[B3?vP�ZÆÚ�ÜªFªSUT²;¾L
SàævXHB\S�á EÈÜ0Ý�PU?0XM×\?0T�ÜvB3FªSUB¯ÞHB\Ü@=K;>FªSb×¯?ÊP�T>SU?0BO×«Þ�SUP�; S�P�?@Z\;¾ÜGL
Ü0Ý<P�?vXM×\?0TEÜGB\FHS�B\;¾LHæ�ÞMB[ÜGÞàSUB«ZkÙÇÜvLòÚ6SU×\×\?0ævSb×�ä'/®SO?0B\S¯P�XMB[B\S�LuZ[T>ÙÇâYÜGB[AK;>LHæ�ÜvLòÝãÜGB[ÚÉ?vT
FªS�=GS�T>ÜvÞHÚ6S�LuZÉÜ0Ý�Ý�?0XMTgZÉZ\ÜvT>S�B3?0LuZ´Fª;>×«Z[B\;>ØHXªZ[SbF÷FH?@Z3?ÇB[SUÞHT¾;QP�?0Z[;>ÜvL ×«Ùª×«Z[SUÚ ?0LàF5â9S°?0B\S
SMLMFª;>LHæÆZ[RM?0Z<Z[RMS�?vØM×kZ\B\?GP�Z�Ú�ÜªFªSUT7ÜvÝYP�?vXM×\?0TeÜGB\FHS�B\;¾LHæ¯;>×�Ú�XàP3R°SU?G×«;>S�B<Z[Ü¯â9ÜvB\AOâ
;gZ\R
� ö c����°³Iø�ikf\sGikf3njf3l@hkn�cQtGlu^\hkmw`Ul��»`�ybf\ijikmgpupGf\l²©@{�� �uö n��°c«ø�ikf3svikf3njf3l@hknWcQtulG^\hkmw`bl��²mwn7pG`br#o�mwl
ikf3n�hjikmw^\hkf�p�©@{�� �

101

Z[RM?vL²Z[RHSY=vSUP�Z[ÜGBeP�T>ÜªP3A�Ú6ÜªFªS�TGâ
RHS�L�ÞHB[Ü@=K;>LHæ9Z[RHS9P�ÜGB[B\SUP�Z[LHSb×[×�ÜvÝªB[SbP�Ü@=vSUB[Ù
Ú6SbP3RM?0LH;Q×[ÚOä
èjL Z[RH;Q×¯Þà?0Þ�S�B¯â9S�ÜvXHZ[T>;¾LHSbF÷RHÜ@â Z[RHSÇ?0ØM×«Z[B3?vP�Z¯P�?vXM×[?vT·ÜvB3FªSUB´;>×¯;¾L Z\XHB\L�P�ÜGB[B\SUP�Z[T>Ù
;¾Ú6ÞHT>S�Ú6S�LuZ\SUF´ØKÙ�Z[RHS�=vSbP�Z[ÜGBYP�T¾ÜªP3A6×«Ùª×«Z[S�Ú"ä���XHBES��ªÞàSUB[;>S�LMP�S<×[RHÜ@â·×Z\RM?@ZD?0ØM×«Z[B3?vP�Z[;>ÜvL
?0LMFÉB\S�SàLHS�Ú6S�LuZD?0B\S·=@?0T>XM?0ØHT>S·Z\SUP3RHLM;>åuXHSb×ÝãÜvB9Ú6ÜªFªS�T>;¾LMæ�?0LàFÉ=vSUB[;�SàP�?0Z[;>ÜvL6Ü0ÝeP�ÜvÚ6ÞHT>S��
×«Ùª×«Z[S�ÚÉ×Uä

� �����eÐ��eÎ<Ô �'�

~ � � ô¨¼ ©GikmgoUa �GÀ _uf·�È�7`@`b¶ � ¼ njnjmw³blumwlG³��Wik`U³Ui«o�r8n¬hk`8Â�f�oUlGmglG³G�Kq�oUr�©GikmgpG³Uf x lGmgybf\iknjmzh|{
��ikf3njn3�w~ óUó��0�

� � � ô ¼ ©GikmgoUa � d�¹0hkf3lKpvmglG³¯�%µ¬mzhk_u`UtGh�^[_uoUlu³Umwlu³´mzh �¾ö�� `Ui î mgn�hjikmw©GtGhkf�p°]@{Gn�hkf\r�ø � ��ik`@^ � `�c
~\n�h9q)`blGc � `Ul6�ÃÂ�f\hk_G`0pM� susO~ �bó Å«~ ó ~U�g~ óbó��

	 �
ô ��oUagpv`blumÁ�àÂ ô o3{vlKo�a �
� tulupuo�r8f3l@h«oUaH`Uc î mwn�hjikmw©utvhkf�p´q)`br8sGtGhkmwlu³ � ¼ �Wi«o�^\hkmw^�oUa»hk`UtGi
`�cMË7f3^[hk`Ui¬q)aw`@^«¶�]0{vn�hkf3r8n �b± ded7d î mwn�hjikmw©utvhkf�p�]0{vn�hkf3r%`blGawmglGfb�0Ëe`ba 	 � õ ` � �v]0f3sGh ������� �

G�
� �Æ�)mzikr#o�là� À�¼ �b`Unjf3su_ �bô f3awmgoU©Gagf)^3`br8r�tulumw^�o�hkmw`bl<mgl<hk_uf7sGikf3njf3lG^3f�`�cKcÁo�mgawtvikf3n �@¼ qÂ
À i«oUlunko�^\hkmw`blÉ`UlÉq)`br8sGtGhkf\iY]@{vn�hkf3r6� sus ��Å|� � Ë7`Ua ñ � õ ` � ~U�w~ ó�� � �
ñ0�
� �Ç�)mzikr#oUlà� ¼]0^[_Gmgsªf[i��
�Ç]0hkf3sG_uf3lGnj`bl �u½ mw³U_0µ)f3mw³b_@hY^�oUtGnkoUa»o�lKp6o�hk`br8mw^
³Uik`Utus6r�tuazÅ
hkmw^�o�n�h �K¼ qÂ À i«o�lunkoU^[hkmg`UlÉ`bl´q)`Ur8sutvhkf\iY]0{vn�hkf3r6� Ëe`ba ó � õ ` 	 � sus � � � Å 	 ~ �»~ óbó ~ �

�v� Â �)tGhkawf\i �v¼ l ¼ sGsGik`Io�^[_8hk` î f3njmw³Ul�`�c î mgn�hjikmw©GtGhkf�p�]0{vn�hkf3r8nWµ¬mzhk_�� ¼ Â õ��0À f\^[_Glumw^�oUa
ô f3sª`�ijh�� dWawf3^\hjik`Ulumw^3nYoUlKp�q)`br8sGtGhkf\iY]0^3mwf3lu^3fU� x lumwyIf\ikmzhº{�`�c7]v`UtGhk_Ko�r8sGhk`Ulà�w~ óUó��
� � Âß�7tGhkawf\i��uÂ���o�a¾pvf3l � î mwn�hjikmw©utvhkf�p�]0{vn�hkf3r î f3yIf3aw`bsGr8f3l@h�mwl6� � ��ik`@^ � `Uc ± n�hYq)`blvc � mwl
�ÃÂ�f[hk_u`0pM� õ o�l@hkf3n3� susà~ ñbñ Å«~ ��� �g~ óbó��

�v� q � mgpG³bf �e½ `b³Umw^�oUa À mwr8f�mwl î mwn�hjikmw©utvhkf�p°q)`br8sGtGhkmwlu³Æ]0{vn�hkf3r � q)`br8sGtGhkf\i��»Ë7`Ua � � lG`
� � sus � � � Å 	�	 �w~ óbó ~ �
óv�
¸�� o�ik^\m¾o�Å|Â�`bawmwlKov��� î x awawr#oUl°�à���òmgpGf3r � î o�h«oU©uoUnjf�]0{vn�hkf3r � ¼ ^3`br8sGawf\hkf8�)`@`U¶ �

�»f3o�iknj`bl6d7pvtu^�o�hkmg`Ulà� ������� �
~ � � � õ�� i«o3{ ��õ `Uhkf3n�`�c î o�h«oU©uoUnjf¬}9sªf[i«o�hkmwlu³9]0{vn�hkf3r � mwl�}9sªf\i«o�hkmwlG³D]@{Gn�hkf\r � ¼ l ¼ pGyUoUlu^\f
q)`UtGiknjfb�ª]vsvikmglG³bf\i¬Ëef\ikagoU³v� õ f\µ5{@`Uik¶ª� sus 	 ó 	 Å �� ~b�w~ ó � ó0�

~U~ �·½¯½ o�r8sª`Uijh �vÀ mwr8fb� q)aw`@^[¶0n¬o�lKp�}Yi«pGf\ikmwlu³<`Uc�f3yIf3l@hkn7mgl�o î mgn�hjikmw©GtGhkf�p�]0{0hkf3r � q)`br8r�tvÅ
lGmw^�o�hkmw`bl�`Uc ¼ qÂÆ� Ë7`Ua � ~b� õ ` � �0� sus ñbñ�� Å ñ��� � �btuaz{Æ� �

~ � � d ½ f3y@{@� ¸��O� `Uijhk_M� ¼]vmwaw©ªf\iknj^«_Ko�hk¿ �u¼ l8`bsvhkmgr8mwn�hkmw^9^\`br8r8mzh)svik`Uhk`@^3`UaªcQ`UipGmwn�hjikmw©utGhkf3p
hji«o�lunko�^\hkmw`bl6r#o�lKoU³Uf3r8f3l@h � �Wik`@^\f3f�pGmwlG³bn¬`Uc ¼ qÂ] ±�� ÂÉ} î �w~ óbó ~

~ 	 ��� Â6o�hjhkf\ikl � ËYmzijhktKoUa À mwr8f²o�lKp � aw`b©Ko�a7n�h«o�hkf3n
`Uc î mwn�hjikmw©utGhkf3pO]@{Gn�hkf\r8n � ��o�i«oUawawf3a7oUlup
î mgn�hjikmw©GtGhkf�p ¼ aw³b`�ikmwhk_Gr6�Gdeawnjf3y0mwf\iD]v^3mwf3lG^3fb� õ `�ijhk_ ¸ `Uagago�lKpM� sGs � ~ ñ Å ��� � �w~ ó�� � �

~ G� q�Â�`b_uoUlM�W� ½ mwlKpGnjf[{@� ô }9©ªf\ikr#o�ik¶ �»À i«o�lunko�^\hkmw`bl°r#oUluoU³bf\r8f3l@h�mwl ô�� î mwn�hjikmw©utGhkf3p
î o�h«oU©uoUnjf �u¼ qÂ À } î]H�w~b~ ö� ø � 	 � � Å 	 ó�� �w~ ó����0�

~ ñ0� Â À }9¿3njtM���ìË)o�agpGtGikmwf3¿ � î mwn�hjikmw©Ghkf3p î o�h«o�©Ko�njf<]0{vn�hkf3r8n � �Wikf\l0hkmw^3f ¸ oUawaÁ�w~ óbóUó
~ �v� Â ô o�{vluoUaÁ�ªÂ]vmwlG³b_Ko�a �H½ `U³bmw^�oUa À mgr8f �ªq�oUsGhktvikmwlu³8^�o�njtKoUawmzh|{�mwl î mwn�hjikmg©GtGhkf�p6]0{vn�hkf3r �
± d7dedÈq)`Ur8sutvhkf\i � óvö � ø � bó Å ñ�� � ± ded7d� � f3©�~ óUó��v�

~�� �·¼ ô f3¿3oU¿�oUpGf3_M�´Â �)tGhkawf\i �]0`br8f � tGm¾pvf3awmwluf3n5cQ`Ui5cQ`�ikr#oUa�pvf3yIf3aw`Usªf3r8f3l@hÃ`Uc°µ�f\©
©uoUnjf�p o�susuawmw^�o�hkmg`Ul mwl ��Â�f\hk_G`0p � ��ik`@^ � `Uc hk_ ± l0hka � q)`UlGc � `�c � oUlup��

tGnjf\ikn3� � tumwagpvc>`Ui«pM� ½Mõ q]H�]0sGikmwlu³Uf\i�� sus � � Å Ió ~b� ¼ svikmwa ����� ñ0�
~ �v� î]v¶If\f3l �0õ `bl6�7ag`@^«¶0mwlu³#q)`Ur8r8mwh��Wik`�hk`@^3`ba �ª¼ qÂÛ] ±�� ÂÉ} î � ± l@hka � q)`blvc � `bl6Â6oUlKo�³bf\Å
r8f\l0h�`Uc î o�h«ov� susM~ 	�	 Åk~ � �w~ ó�� ~

~ óv�·¼]0^[_Gmgsªf[i��¬�ÇdW³b³UagmÁ� ¼]GoUlupG`U¿ �E¼ luf\µ o�aw³b`Uikmzhk_Gr hk`®mwl@hjik`0pGtG^3f¯^�oUtGnkoUa·`Ui«pvf\ikmwlu³ �
��ik`@^ �@± l@hka � �"`�ik¶0nj_u`bs8`Ul î mwn�hjikmw©utvhkf�p ¼ aw³b`�ikmzhk_ur8n3�]vsvikmglG³bf\ijÅ�Ëef\ikagoU³v� õ f\µï7`Uik¶ª� sus � ~ ó Å
� 	�� �g~ ó��Uóv�

� � � Â]0mglG³b_uoUaÁ� õ]0_umwy@i«o�hjikm ��¼ pGyUoUlG^3f�p"q)`Ulu^3f\sGh<mwlì}9sªf\i«o�hkmwlu³É]0{vn�hkf3r �àÀ o�h«o´Â�^ � i«o�µ
¸ mwagaW� î f3aw_umÁ� ����� ~

102

Are Practitioners Writing Contracts?

Patrice Chalin

Dept. of Computer Science and Software Engineering,
Dependable Software Research Group, Concordia University

www.cse.concordia.ca/~chalin

Abstract. As the size and complexity of software systems continue to
increase, it becomes essential to have rigorously defined component
interfaces. Design by Contract (DBC) is an increasingly popular method
of interface specification for object-oriented systems. Many researchers
are actively adding support for DBC to various languages such as Ada,
Java and C#. Are these research efforts justified? Does having support for
DBC mean that developers will make use of it? We present the results of a
quantitative survey that measured the proportion of assertion statements
used in Eiffel contracts. The survey results indicate that programmers
using Eiffel (the only active language with integral support for DBC) tend
to write assertions in a proportion that is higher than in other languages.

Keywords: assertions, design by contract, survey, industrial practice, Eiffel.

1 Introduction
One of the effective ways of managing the size and complexity of modern day
software systems is to use a modular design methodology. An appropriate
partitioning of a system into modules (e.g., libraries, classes, etc.) offers an
effective means of managing complexity while providing opportunities for reuse.
But when applied to large industrial applications in general and fault-tolerant
systems in particular, modular design methods can only truly be effective if
module interfaces are rigorously defined.

An increasingly popular approach to interface specification for object-oriented
software is referred to as Design by Contract (DBC) [Meyer97]. Support for
DBC is built in to the Eiffel programming language. Although Eiffel is the only
active language with integrated support for DBC, researchers are currently busy
adding DBC support to other languages. For example,

• Spark for Ada [Barnes03],
• Spec# for C# [Barnett+04],
• Java Modeling Language (JML) [Burdy+04], Jass [BCMW01], Jcontract

[Parasoft05], ESC/Java [Flanagan+02] and ESC/Java2 [ESCJ] for Java,
• JACK for Java (JavaCard) [BRL03]

Are such research efforts justified? For example, does having built-in support for
DBC mean that developers will write contracts? In an attempt to provide initial
answers to these questions we have conducted a survey of the use of contracts in

103

Eiffel projects. More specifically, we have sought to measure the proportion of
source lines of code in Eiffel program that are assertions. Assertions are the basic
ingredients of contracts. Why did we choose Eiffel programs as the subjects of
our survey? Because Eiffel is the only programming language with built in
support for DBC, and this, since its inception two decades ago. Also, Eiffel is
primarily used to develop fault-tolerant systems rather than consumer
applications [Kiniry05].

In the next section we explain the relationship between assertions, DBC and
behavioral interface specifications. A brief review of Eiffel is also given, thus
providing the necessary background for the understanding of metrics used in the
survey. The survey method and metrics are given in Section 3. Section 4
provides the survey results. We conclude in Section 5.

2 Design by Contract and Eiffel

2.1 Assertions, Design by Contract and Behavioral Interface
Specifications

Design by Contract (DBC) refers to a method of developing object-oriented
software that was defined by Bertrand Meyer [Meyer97]. The main concept that
underlies DBC is the notion of a precise and formally specified agreement
between a class and its clients. Such an agreement, named contract in DBC, is
called a behavioral interface specification (BIS) in its most general form.
Contracts, like BISs, are expressed using assertions and take the form of class
invariants and method pre- and post-conditions, among others.

DBC as a programming language feature refers to a limited form of support for
BISs where assertions are restricted to be expressions that are executable. Hence,
for example, in Meyer’s Eiffel programming language an assertion is merely a
boolean expression (that possibly makes use of the special old operator1). Meyer
clearly identifies this as an engineering tradeoff in the language design of Eiffel
[Meyer97]—a tradeoff that we believe is an important stepping stone from the
current use of (plain) assertions in industry to the longer term objective of the
adoption of verifying compilers [Hoare03b]. It is understood that this
engineering tradeoff imposes a limit on the expressiveness of Eiffel assertions
(e.g. absence of quantifiers2) but, at the same time we believe that it is precisely
this tradeoff that has kept them accessible to practitioners.

How are contracts currently used in practice? A principal use for contracts, other
than for documentation, is in run-time assertion checking (RAC). All systems
supporting DBC also support RAC. When RAC is enabled, assertions are
evaluated at run-time and an exception is thrown if an assertion fails. Various
degrees of checking can be enabled—e.g. from the evaluation of preconditions
only, to the evaluation of all assertions. Enabling RAC during testing,

1 “old” operators can only occur in postconditions; “old e” refers to the pre-state value of e.
2 This exclusion is due not to the quantifiers per se, but rather to the possibility of allowing quantified

expressions with bound variables ranging over arbitrarily large or infinite collections.

104

particularly integration testing, is an effective means of detecting bugs in modules
and thus can help contribute to the increase in overall system quality.

Of course, for most applications, particularly fault tolerant systems, it is
preferable to be able to guarantee the absence of assertion failures before a
component is run. Extended Static Checking (ESC) tools can be used for this
purpose. An ESC tool attempts to determine the validity of assertions by static
analysis. ESC tools exist for Modula-3 and Java, and one is currently under
development for Eiffel.

2.2 Eiffel: a brief review
A sample Eiffel class taken from the Gobo Eiffel kernel library is given in Figure
1 (some of the lines were too long to fit on the page and hence their content has
been wrapped, and indented to aid in readability, at those points marked with >>).
Classes optionally begin (and/or end) with an indexing clause that offers
information about the class. In other languages this is often accomplished by
using a comment block. Comments, like in Ada, start with a “--” and run until
the end of the line. An Eiffel class generally declares a collection of features

indexing

 description:

 "Routines that ought to be in class BOOLEAN"

 library: "Gobo Eiffel Kernel Library"
 copyright: "Copyright (c) 2002, Berend de Boer and others"
 license: "Eiffel Forum License v2 (see forum.txt)"
 date: "$Date: 2003/02/07 12:49:18 $"
 revision: "$Revision: 1.2 $"

class KL_BOOLEAN_ROUTINES

feature -- Access

 nxor (a_booleans: ARRAY [BOOLEAN]): BOOLEAN is
 -- N-ary exclusive or
 require
 a_booleans_not_void: a_booleans /= Void
 local
 i, nb: INTEGER
 do
 i := a_booleans.lower
 nb := a_booleans.upper
 from until i > nb loop
 -- Lines 27 … 37 removed
 end
 ensure
 zero: a_booleans.count = 0 implies not Result
 unary: a_booleans.count = 1 implies >>
 Result = a_booleans.item (a_booleans.lower)
 binary: a_booleans.count = 2 implies >>
 Result = (a_booleans.item (a_booleans.lower) xor >>
 a_booleans.item (a_booleans.upper))
 -- more: there exists one and only one `i' in >>
 a_boolean.lower..a_boolean.upper so that >>
 a_boolean.item (i) = True
 end
end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
38
39
40
41
 41
42
 42
 42
43
 43
 43
44
45

Figure 1, Sample Eiffel class (kl_boolean_routines.e)

105

(attributes and methods). Our sample
class declares only one feature, an n-ary
exclusive or, nxor.

Of main concern to us in this paper are
assertions. An assertion in Eiffel is
written as a collection of one or more
optionally tagged assertion clauses. The
meaning of an assertion is the
conjunction3 of its assertion clauses. The
tags can help readability and debugging (since they can be printed when the
clause is violated) [Mitchell+02]. Tags zero, unary and binary adorn lines 40,
41 and 42 of Figure 1, respectively.

An assertion clause is either a

• boolean expression (e.g. line 40) or a
• comment (e.g. line 43).

As will be noted later we will count such comments as informal assertion
clauses, or simply informal assertions. Boolean operators consist of the usual
negation (not), conjunction (and), and disjunction (or). Eiffel also has
conditional, i.e. short-circuited, conjunction (and then) and disjunction (or
else). An implication operator a implies b is an abbreviation for (not a) or
else b. Assertions can contain calls to methods identified as queries. A
particular characteristic of queries is that they are not permitted to have side-
effects [Mitchell+02].

In Eiffel, an assertion can be used to express a

• precondition (introduced by the keyword require),
• postcondition (ensure),
• class invariant (invariant),
• loop invariant (invariant),
• check (check)

A sample precondition is given in lines 19-20 of Figure 1. The sample
postcondition (lines 39-43) illustrates the use of more than one assertion clause.
Assertions in postconditions can contain occurrences of the special operator old.
For example, the postcondition

ensure count = old count + 1

will be true when the pre-state value of count is one less than the post-state value
of count. A check is equivalent to an assert statement in other languages such a
Java and C++.

There is only one looping construct in Eiffel and it has the general form given in
Figure 2. As was previously mentioned, an assertion can be used to express a
loop invariant. Also, of interest is the loop variant: an integer expression that

3 Actually, clauses are jointed by a conditional conjunction named “and then” in Eiffel.

from
 initialization_instructions
invariant
 assertion
variant
 variant
until
 exit_condition
loop
 loop_instructions
end

Figure 2, Eiffel loop instruction

106

must decrease through every iteration of the loop while remaining nonnegative.
That essentially covers the basics of what we need to be able to explain the
metrics.

3 Survey
3.1 Projects
During the initial portion of our study we gathered metrics from free Eiffel
software, consisting of both free commercial software (such as the source
distributed with ISE’s Eiffel compiler) as well as open source projects. This
allowed us to fine-tune our metrics gathering tool and essentially conduct a pilot
study before soliciting the participation of industry.

3.2 Metrics
Our basic metric is a count of Lines of Code (LOC) per class file. Each LOC is
classified as either:

• blank line, containing at most white space, or
• comment line, containing a comment possibly preceded by white space, or
• (physical) Source Line of Code (SLOC) [Park92].

Roughly speaking our goal is to count the number of LOC that are assertions
(AsnLOC) so as to be able to determine their proportion relative to the total
SLOC.

Our overall count of AsnLOC will be computed from the total SLOC that are
assertions as well as the total LOC that are informal assertions (IALOC)—i.e.
assertions given in the form of comments. We count informal assertions because
we believe that they are just as important as formal assertions in documenting
contracts. In measuring the proportion of LOC that are assertions we will use the
following formula:

total(AsnLOC) / total(AdjSLOC)

where

total(AdjSLOC) = total(SLOC) + total(IALOC) – total(IdxSLOC)

IdxSLOC is a SLOC that occurs in an indexing clause. We omit IdxSLOC lines
because these lines merely provide documentation for the class in a manner that
is handled by a comment block in other languages. We will keep separate
AsnLOC counts for preconditions, postconditions, class invariants, checks
clauses and loop variants and invariants. This will allow us to determine the
proportion of assertions used in each of these categories. We will also collect
specialized metrics such as the number of assertions of the form e /= Void.
Their purpose will be explained in the next section.

107

3.3 Methodology
Initially we used the SLOCCount tool [Wheeler05] as our base. This tool can
count physical SLOC for over two dozen languages—though initially not for
Eiffel. Aside from its ability to process many different kinds of languages
SLOCCount also does convenient house-keeping tasks such as determining the
type of a file (by its extension or content), flagging duplicates, and ignoring
generated files.

Since our needs were specific to Eiffel source, we eventually chose to use a
single Perl script to gather all metrics. The creation of the script did pose some
challenges due, e.g., to the various flavors of Eiffel (as supported by different
compilers) and inconsistent line endings (Unix, DOS or Mac) sometimes in the
same file.

4 Results
Overall we surveyed 81 projects totaling 34081 Eiffel class files, 5.4 million lines
of code (LOC) and 4.0 million source lines of code (SLOC). Each project we
developed by a different group or organization. We divided the projects into
three categories:

• proprietary,
• open source and
• library and samples shipped with ISE Eiffel Studio 5.5.

Note that half of the files in the Eiffel 5.5 category consist of open source
samples (or what they call free add-ons) most of which are provided by
GoboSoft—an important contributor of open source Eiffel libraries and tools.
The proportion of SLOC per project category is given in Figure 3. Figure 4
provides the overall distribution of LOC into SLOC, blank lines and comments.
The IdxSLOC is the proportion of SLOC that occur in indexing blocks.

Metrics concerning assertions are given in Figure 5. Overall, there were 89468
lines of assertions (AsnLOC) out of 3.84 million SLOC (AdjSLOC); that is,
4.39% of the LOC are assertions (AsnLOC/AdjSLOC). Of this, over 50% are

Project Category Number
of files

LOC
(106)

SLOC
(106)

% of total
SLOC

Proprietary 18584 2.65 2.03 51%
Open Source 10657 1.76 1.31 33%
Eiffel 5.5 4840 0.95 0.66 17%
Total 34081 5.37 4.00 100%

Figure 3, General metrics by project category

 LOC SLOC blank comment IdxSLOC
Total (106) 5.37 4.00 0.818 0.546 0.171

% LOC 100% 74.6% 15.2% 10.2% 3.18%

Figure 4, General metrics (all categories)

108

used in preconditions, 36% postconditions, and 6.5% class invariants. Few loop
invariants and variants are given, though both of these appear as frequently,
relative to each other. We note that a very small proportion of assertions are
given in the form of comments; i.e. overall, only 3.8% of assertion LOC are
informal assertions (IALOC). The maximum number of assertions per clause
type can be fairly large—e.g. up to 35 LOC for a class invariant. The average
number of assertions per clause type ranges from 1.0 to 2.4.

A noteworthy proportion of assertions include subexpressions of the form e /=
Void asserting that a given reference is not Void (i.e. null). This number is over
50% for class invariants, but 37% overall. Such figures may provide weight to
the choice by some static analysis tools (such as Splint [Evans03]) to assume that
a reference type declaration is non-null by default4.

Finally, in Figure 6 we show how the proportion of LOC that are assertions
(AsnLOC) varies according to the project category. As might be expected, the
Eiffel category has the highest proportion, 6.4%, followed by open source
projects5 and then proprietary code with a little over 5% and 3%, respectively.

4 Our research group is currently examining the possibility of adopting such a default in the Java

Modeling Language (JML). In JML non-null declarations appear even more frequently.
5 Recall that the open source category excludes GoboSoft software (since it is counted in the Eiffel 5.5

project category).

 require ensure inv.
class

inv.
loop

var.
loop

check Total

AsnLOC 89468 61267 10882 332 325 6206 168480
AsnLOC/AdjSLOC 2.33% 1.60% 0.28% 0.01% 0.01% 0.16% 4.39%
LOC/AsnLOC 53.10% 36.36% 6.46% 0.20% 0.19% 3.68% 100.00%
IALOC 1129 3710 996 91 0 502 6428
IALOC/AdjSLOC 0.03% 0.09% 0.02% 0.00% 0.00% 0.01% 0.16%
IALOC/AsnLOC 0.67% 2.20% 0.59% 0.05% 0.00% 0.30% 3.82%
No. of clauses 53677 39550 4614 203 324 5139 103507
Count(e /= Void) 39742 14484 5571 7 0 2177 61981
 Average or max
Max AsnLOC size 30 24 35 7 2 14 35 (max)
Average size 1.7 1.5 2.4 1.6 1.0 1.2 1.6
% (e /= Void) 44.42% 23.64% 51.19% 2.11% 0.00% 35.08% 36.79%

Figure 5, Metrics concerning assertions (all project categories)

Project
Category

SLOC
(106)

AdjSLOC
(106)

AsnLOC
(106) AsnLOC / AdjSLOC

Proprietary 2.03 1.96 0.064 3.27%
Open Source 1.31 1.25 0.064 5.10%
Eiffel 5.5 0.66 0.63 0.040 6.42%
Total 4.00 3.84 0.168 4.39%

Figure 6, Proportion assertion LOCs per project category

109

5 Conclusion
We concede that the Eiffel survey sampling is not very large by industrial
standards (5.4 MLOC), but we are hopeful that it is somewhat representative.
Our survey is still ongoing—both for Eiffel and other languages. On the other
hand, we do anticipate that the use of Eiffel will be significantly less than the use
of, e.g. C or C++. The relatively small size of the Eiffel user community may
also have some bearing on the survey results—e.g. a lesser variability.

Our survey data focuses on the use of assertions in Eiffel, the only active
language supporting the disciplined use of assertions in specifying contracts, i.e.
Design by Contract (DBC). Before conducting the survey we asked: does having
language support for DBC mean that practitioners will make use of it? Overall,
4.4% of the (physical) SLOC of the surveyed projects were assertions. The
results for the category of projects consisting solely of proprietary code was
3.3%. This is almost twice as much, for example, as the percentage of assertions
reportedly used in the Microsoft Office Suite [Hoare00, Hoare03a] as well in a
separate independent study we have conducted [Chalin05]. In our opinion, this is
good news for those researchers currently striving to add DBC support to other
languages.

By design, DBC restricts the expressiveness of assertions by requiring that they
be executable. We believe that this moderation in expressiveness is what will
allow DBC to be more easily adopted by industry. It will then become a smaller
step to reach the full expressiveness of behavioral interface specifications (BISs).
Of course, BISs are not the entire picture either; future generation verification
compilers are likely to include support for model checking as well as BISs.

References
[Barnes03] John Barnes. High Integrity Software: The Spark Approach to

Safety and Security. Addison-Wesley, 2003.
[Barnett+04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The

Spec# programming system: An overview. CASSIS 2004 post-
proceedings.

[BCMW01] D.Bartetzko, F. Clemens, M. Möller, and H. Wehrheim. “Jass –
Java with Assertions.” Electronic Notes in Theoretical Computer
Science 55(2), 2001.

[Bicarregui98] J. Bicarregui, editor. Proof in VDM: Case Studies, Springer-
Verlag, FACIT series, March 1998.

[Burdy+04] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe
Kiniry, Gary T. Leavens, K. Rustan M. Leino and Erik Poll. An
overview of JML tools and applications. In International Journal
on Software Tools for Technology Transfer (STTT), 2004.

[Chalin05] Patrice Chalin Logical Foundations of Program Assertions: What
do Practitioners Want? Proceedings of the Software Engineering
and Formal Method Conference 2005. Koblenz, Germany

 September 5-9, 2005, to appear.

110

[Evans03] David Evans. Splint User Manual. Secure Programming Group,
University of Virginia. June 5, 2003. www.splint.org.

[Flanagan+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static
checking for Java. In Proceedings of Conference on Programming
Language Design and Implementation (PLDI-02), ACM
SIGPLAN 37(5):234–245, June 2002.

[Hoare00] C.A.R. Hoare, Assertions Progress and prospects. Presentation
available from research.microsoft.com/~thoare.

[Hoare03a] C.A.R. Hoare, Assertions: a personal perspective. Annals of the
History of Computing, IEEE 25(2):14-25, April-June 2003.

[Hoare03b] C.A.R. Hoare, The Verifying Compiler: A Grand Challenge for
Computing Research. JACM, 50(1):63-69, 2003.

[Kiniry05] J. Kiniry, Chair of NICE (Non-profit International Consortium for
Eiffel). Personal communication, June 2005.

[Kramer98] Reto Kramer. iContract—the Java Designs by Contract tool. In
Proc. Technology of Object-Oriented Languages and Systems,
TOOLS 26. IEEE Press, 1998.

[Meyer97] Bertrand Meyer. Object-Oriented Software Construction. 2nd
edition. Prentice Hall, 1997.

[Mitchell+02] Richard Mitchell, Jim McKim. Design by Contract, by Example.
Addison-Wesley, 2002.

[Park92] R. Park, “Software Size Measurement: A Framework for Counting
Source Statements.” CMU/SEI-92-TR-20, Software Engineering
Institute, Pittsburgh, PA, 1992.

[Parasoft05] Jcontract product page available at www.parasoft.com.
[Wheeler04] David A. Wheeler, www.dwheeler.com/sloccount.

111

Modeling and Analysis of Architectural Exceptions

Fernando Castor Filho⋆, Patrick Henrique da S. Brito⋆⋆, and
Cećılia Mary F. Rubira⋆ ⋆ ⋆

Institute of Computing - State University of Campinas
P.O. Box 6176. CEP 13083-970, Campinas, SP, Brazil.

{fernando, patrick.silva, cmrubira}@ic.unicamp.br
+55 (19) 3788-5842 (phone/fax)

Abstract. In recent years, many approaches combining software architectures
and exception handling have been proposed for increasing the dependability of
software systems. Some authors argue that addressing exception handling-related
issues since early phases of a software development effort may improve the over-
all dependability of a system. In particular, few works in the literature havead-
dressed the problem of describing how exceptions flow between architectural
components. This is an important issue, since developers tend to focus on the
design of the normal activity of the system’components and address its excep-
tional activities only during the implementation phase. A model for describing
the flow of exceptions between architectural components should be: (i) precise;
and (ii) analyzable, preferably automatically. In this paper, we presenta model for
reasoning about exception flow in software architectures that satisfies these two
requirements. The model is supported by a software infrastructure which lever-
ages existing tools and models and allows developers to describe and analyze
software architectures enriched with information about exceptions and their flow.

1 Introduction

The concept of software architecture [7] was proposed in thelast decade to help soft-
ware developers to cope with the growing complexity of software systems. According
to Clements and Northrop [7], software architecture is the structure of the components
of a program/system, their interrelationships and principles and guidelines governing
their design and evolution over time. The architecture of a software system has a large
impact on the capacity of the system to meet its intended quality requirements, such
as reliability, security, availability, and performance,among others. Software architec-
tures are described formally using architecture description languages, or ADLs [18].
ADLs share the same conceptual basis whose main elements arecomponents (loci of
computation or data stores), connectors (loci of interaction between components), and
configurations (connected graphs of components and connectors that describe architec-
tural structure) [18].

⋆ Supported by FAPESP/Brazil under grant 02/13996-2.
⋆⋆ Supported by the Specialization in Software Engineering course, IC/UNICAMP.

⋆ ⋆ ⋆ Partially supported by CNPq/Brazil under grant 351592/97-0.

112

When a program1 receives a service request and produces a response according to
its specification, the produced response is said to benormal. Conversely, if the program
produces a response that does not conform with its specification, this response is said to
beabnormal, or exceptional. Abnormal responses usually indicate the occurrence of an
error and since these responses are expected to occur only rarely, they are calledexcep-
tions. When exceptions occur, the program must be capable of handling them so that it
can be put in a coherent state. The part of the behavior of a program that is responsible
for handling exceptions is calledabnormal, or exceptional,activity. Conversely, the
part of the behavior of a program that is responsible for its functionality, as defined by
its specification, is callednormal activity.

Exception handling [8] is a mechanism for structuring the exceptional activity of a
program, so that errors can be more easily detected, signalled, and handled. Since ex-
ception handling is an application-specific technique, it complements other techniques
for improving system reliability, such as atomic transactions, and promotes the imple-
mentation of very specialized and sophisticated error recovery measures.

Problem Description. In recent years, many approaches combining software archi-
tectures and exception handling [4][13][20] have been proposed for increasing the de-
pendability of software systems. We say that an exception isarchitecturalif it is raised
within an architectural component but can not be handled by the raising component.
Such exceptions cross the boundaries between architectural components, that is, the
architectural exceptions that flow between two components are part of the interaction
protocol to which the two components adhere. Combining software architectures and
exception handling is a natural trend. The architecture of asoftware system has a large
impact on a system’s quality attributes, such as reliability, and architectural exceptions
indicate that architectural components have failed (and have thus been unreliable).

There are many works proposing notations and techniques fordescribing software
architectures formally [1][11][17] focusing on specific properties of interest. However,
to the best of our knowledge, few have addressed the problem of describing how archi-
tectural exceptions flow between components. As pointed outby Bass et al [2], spec-
ifying how exceptions flow between architectural components is a real problem that
appears in the development of systems with strict dependability requirements, such as
air-traffic control and financial. To be useful and usable, anapproach for describing ar-
chitectural exceptions and their relationship to other architectural elements must satisfy
some requirements:

1. It should make it possible to specify the architectural exceptions that components
and connectors signal and catch, and how these exceptions flow between different
architectural elements. Ideally, the specification of the architectural exceptions of
the system should be orthogonal and traceable to the “normal” architecture descrip-
tion, in order to enhance maintainability.

2. It should have pictorial (boxes-and-lines) representation, in order to be understand-
able by non-specialists and easier to use.

1 In a general sense: a routine, a software component, a whole system,etc.

113

3. It should take into account the notion ofarchitectural styles. An architectural style
defines a vocabulary of types of design elements which are part of a family of
architectures and the rules by which these elements are composed [11].

4. It should be precise, that is, an architecture description devised according to such
approach should be unambiguous.

5. It should be expressive enough to describe rules of existing exception handling
models.

6. It should be analyzable, preferably automatically. In this manner, it is possible to
verify if the architecture presents some desired properties before the system is ac-
tually implemented.

Proposed Approach. In another work [5] we have proposed a framework, called
Aereal, that addresses these requirements. In that work, wefocused on requirements
1, 2, and 3. In this work, we present a model for reasoning about exception flow in
software architectures that addresses requirements 4, 5, and 6. The proposed model is
part of the Aereal framework. It allows developers to specify common rules of excep-
tion handling systems (EHS) of existing programming languages and to verify in an
automated way if an architecture description extended withinformation about architec-
tural exceptions adheres to these rules. As enabling technology, we use the Alloy [14]
specification language and the Alloy Analyzer [15].

This work is organized as follows. Section 2 presents the proposed model in terms
of three aspects: system structure, representation of exceptions, and exception flow.
Section 3 briefly describes how we have materialized the proposed model using Alloy
in the Aereal framework. The last section compares the proposed model with some
related research and presents directions for future works.

2 Proposed Model

The set of exceptions and exception handlers in a program define its exceptional activ-
ity. When an error is detected, an exception is generated, orraised. If the same exception
may be raised in different parts of a program, it is possible that different handlers are
executed. The choice of the handler that is executed dependson the exception handling
context (EHC), or scope, where the exception was raised. An EHC is a region of a
program where the same exceptions are handled in the same manner. Each context has
an associated set of handlers that are executed when the corresponding exceptions are
raised. An exception raised within an EHC may be caught by oneof its handlers. If the
exception ishandled, normal activity of the program is resumed. Otherwise, an excep-
tion is signaledin the enclosing context, andencounteredby that context. We assume
that EHCs only encounter a single exception at a time. Concurrent exceptions [3] are
not addressed by this work.

In this section, we present the proposed model using a mix of informal explanations,
and set theory notation. Due to space constraints, we omit some parts of the description
of the model. A more detailed presentation is available elsewhere [6]

114

2.1 System Structure

We follow the general view of a system configuration as a finiteconnected graph of
components and connectors [18]. We specialize this view, however, so that it can be
used to reason about exception flow. In our model, a componentis a structural element
that encounters and signals exceptions.

Aereal uses special-purpose architectural connectors to model exception flow be-
tween components. These connectors, called exception ducts, are unidirectional point-
to-point links through which only exceptions flow. They are orthogonal to “normal”
architectural connectors and do not constrain the way in which the architecture is orga-
nized [5]. Exception ducts can be refined by developers, depending on the restrictions
each architectural style imposes on exception flow. Like components, exception ducts
can signal and encounter exceptions.

The structure of a system is defined in terms of connections between components
and exception ducts. The relationsCatchesFrom andSignalsTo specify these con-
nections. For a componentC, C.CatchesFrom yields the set of exception ducts that
signal exceptions thatC encounters, where “.” represents relational join. Conversely,
C.SignalsTo yields the set of exception ducts that encounter exceptionsthat C sig-
nals. BothC.SignalsTo andC.CatchesFrom may yield an empty set, in which case
C does not signal and does not encounter exceptions, respectively.

The relationsSignasTo andCatchesFrom are also defined for exception ducts2.
However, since exception ducts are point-to-point connectors that link exactly two
distinct components, for a ductD, D.CatchesFrom and D.Signals result in dis-
junct sets containing exactly one component. Therefore, for any componentC,
D.CatchesFrom = {C} ⇒ D ∈ C.SignalsTo, andD.SignalsTo = {C} ⇒

D ∈ C.CatchesFrom.

2.2 Representation of Exceptions

In our model, exceptions are represented by objects of a certain type. We represent
exceptions as objects, instead of using symbols or global variables, mainly because
objects are more flexible and can be used to encode arbitrary information regarding the
cause of an exception [10]. Moreover, many large and complexsoftware systems are
developed nowadays using object-oriented (OO) languages such as Java, C#, and C++.

The proposed model employs a simple notion of type that is compatible with the
general notion of types adopted by modern OO languages. A typeT is a set of elements
and the subtypesT1, T2...TN of T are disjunct subsets ofT . Only single inheritance is
allowed. An exception is any instance of a type that is a subtype of the typeRootExcep-
tion. We use this name for the supertype of all exceptions, instead of a more usual one,
such asException or Error, to give developers the flexibility to organize exceptions
as required, for instance, based on the adopted programminglanguage. For example,
to mimic the EHS of Java, a developer would define at least fourexception types: (i)
Throwable, subtype ofRootException; (ii) Exception, subtype ofThrowable; (iii)
Error, subtype ofThrowable; and (iv)RuntimeException, subtype ofException.

2 Actually, we use overloaded relation names as a syntactic sugar, since thehomonymous rela-
tions have very similar semantics.

115

2.3 Exception Interfaces and Exception Handling Contexts

As mentioned in previously, we consider a component to be a structural element that
encounters and signals exceptions. Exception ducts are similar, but simpler. A compo-
nent consists of: (i) a collection of exception interfaces,which specify the exceptions
the component signals; and (ii) a collection of EHCs, which define regions where ex-
ceptions are always handled in the same way. In this section and the next, for space
reasons, we focus our attention exclusively on the definition of an exception flow model
for components. Exception ducts are described in a more complete version of this paper,
available as a technical report [6].

Exception interfaces are associated to components by theSignalsTo relation and,
for each exception duct in the setC.SignalsTo, there is a corresponding exception in-
terface. A similar one-to-one relation exists betweenCatchesFrom and EHCs. This
represents the fact that a component may signal/encounter different exceptions to/from
the different exception ducts it is connected to. Models forreasoning about exception
flow at the programming language level usually do not have this separation between
interfaces and contexts. Such separation is not necessary because these models usually
focus on fine-grained programming constructs, like methodsand procedures, where
multiple contexts are associated to a single exception interface. For architectural excep-
tions, however, this separation is very important, since a component can have multiple
access points (ports) and these access points are explicit in the system description.

In our model, exception interfaces and EHCs are related by thePortMap relation.
PortMap maps EHCs to exception interfaces based on the exception ducts to which
these contexts and interfaces are associated. For any componentC and exception duct
D, with D ∈ C.CatchesFrom, D.(C.PortMap) = DS, whereDS is a set of ex-
ception ducts such that∀X : DS • X ∈ C.SignalsTo. DS is a set of exception ducts,
instead of a single duct, to represent the fact that the association between EHCs and
exception interfaces is many-to-many. It makes no sense to define aPortMap relation
for exception ducts, since they have exactly one EHC and one exception interface.

2.4 Exception Flow

The exception interfaces of a component are defined by theSignals relation. This
relation specifies which exceptions a component signals andwhich exception ducts in
C.SignalsTo encounter these exceptions. IfD.(C.Signals) = ES, whereES is a set
of exceptions, we say that componentC signals exceptionsES to ductD. Thesignals

relation is defined in terms of three other relations, as follows:

Signals = Raises

⋃
Propagated

⋃
Unhandled

Intuitively, the set of exceptions that a component signalsdepends on the exceptions
it generates (raises) and on exceptions it encounters that were signaled by other archi-
tectural elements. ThePropagated andUnhandled relations are auxiliary relations
defined in terms of the relations that specify a component’s EHCs (described in the
following paragraphs). TheRaises relation specifies the exceptions that components
generate when erroneous conditions are detected. These conditions are dependent on

116

the semantics of the application and on the assumed failure model. For reasoning about
exception flow, the fault that caused an exception to be raised is not important, just the
fact that the exception was raised. IfD.(C.Raises) = ES, we say that the component
C raises exceptionsES and these exceptions are signaled to exception ductD, where
D ∈ C.SignalsTo andES ⊂ D.(C.Signals). More generally,Raises ⊂ Signals.

Exception handling contexts are defined in terms of three relations:Encounters,
Handles, andPropagates. Encounters specifies, for an arbitrary componentC, the
exceptionsC receives from the exception ducts in the setC.CatchesFrom. That is, if
D.(C.Encounters) = ES, we say that the componentC encounters exceptionsES

that were signaled by exception ductD. In fact, the set of all exceptions encountered by
componentC is equal to the union of the sets of exceptions signaled toC by exception
ducts inC.CatchesFrom. In this sense, the definition ofEncounters used‘in our
model is different from the definitions adopted in other works in the literature [19, 22].

The Handles relation specifies the exceptions that are handled by a component.
By “handled”, we mean that the component is capable of takingsome action that
stops the propagation of the exception and makes it possiblefor the system to re-
sume its normal activity. The action that is taken by the handler is not important in
the context of this work. We are just interested in the effectthe handler has on the
flow of exceptions, not how this effect is achieved3. If D.(C.Handles) = ES, we
say that the componentC handles the exceptionsES signaled by exception duct
D, whereD ∈ C.CatchesFrom andES ⊂ D.(C.Encounters). More generally,
Handles ⊂ Encounters.

In our model, thePropagates relation explicitly specifies a causal relation be-
tween an exception a component encounters and another one itsignals. More pre-
cisely, if E.(D.(C.Propagates)) = E’, where E and E’ are exceptions, we say
that componentC propagates exceptionE

′, signaled by exception ductD as E,
with D ∈ C.CatchesFrom, E ∈ D.(C.Encounters), E /∈ D.(C.Handles),
andE’∈ (D.(C.PortMap)).(C.Signals). The latter constraint states thatC signals
the propagated exception (E’) to the exception ducts related toD in C.PortMap.
If E.(D.(C.Propagates)) = {} and E /∈ D.(C.Handles), it is assumed that
E.(D.(C.Propagates)) = E andE is signaled to all exception ductsD’ such that
D’∈ C.SignalsTo ∧ D’∈ D.(C.PortMap).

Now we can go back to the definition ofSignals and definePropagated and
Unhandled. Propagated specifies the exceptions that a component signals due to ex-
ception propagation (unlikePropagates, which relates two exceptions, one encoun-
tered and one signaled by the component). For a componentC and an exception duct
D and usingDS as a shortcut for(C.PortMap).D), Propagated is defined by the
following expression:

D.(C.Propagated) = (DS.(C.Encounters \ C.Handles)).(DS.(C.Propagates))

Unhandled specifies the set of exceptions that a component encounters but does
not propagate explicitly (as specified byPropagated) or handle. Like in some pro-
gramming languages, such as Java, the exceptions which are not either handled nor ex-

3 We are not stating that the way an exception is handled is not important. Justthat modeling the
actual exception handlers is beyond the scope of this work.

117

plicitly propagated (Propagated) are automaticaly propagated. These exceptions are
signaled by the component (propragated implicitly). For a componentC and a ductD
and using the same shortcut defined in the previous paragraph, Unhandled is defined
as follows:

D.(C.Unhandled) = (DS.(C.Encounters \ C.Handles)) \
((DS.(C.Propagates)).(D.(C.Propagated)))

The last element of our model is theDeclares relation.Declares is used to make
the exception interfaces of components in a system explicit. This relation is part of the
model to allow developers to explicitly state which exceptions each component signals,
for instance, because the programming language that will beused to implement the sys-
tem has a similar feature. IfD.(C.Declares) = E, we say that componentC declares
that exceptionE is signaled to exception ductD or simply E is one of the declared
exceptions of componentC. Explicit exception interfaces are part of several modern
programming languages, for example, Java, C++, and ML. By default, Declares does
not impose any constraints on exception flow. An analysis can, however, take the rela-
tion into account in order to impose some application- or EHS-specific constraints.

3 Materializing the Model

Usually, models like the one described in this paper are usedas the backbone for sta-
tic analysis tools [19][22]. These tools are capable of extracting useful exception flow-
related information from programs and showing that these programs present some prop-
erties of interest, for example, that exceptions are not caught by subsumption4. In this
work, instead of building a new tool with a fixed set of functionalities, we translated the
semantic description presented in Section 2 to Alloy [14]. Alloy is a lightweight mod-
eling language for software design. It is amenable to a fullyautomatic analysis, using
the Alloy Analyzer (AA) [15], and provides a visualizer for making sense of solutions
and counterexamples it finds. The analysis performed by the AA is sound, since it never
returns false positives, but incomplete, since the AA only checks things up to a certain
scope. However, it is complete up to scope; AA never misses a counterexample which
is smaller than the specified scope.

In the proposed approach, systems are modeled by specifyingexception types, com-
ponents and exception ducts (including the relations described in the previous section),
and connections between these architectural elements. Thefollowing snippet shows part
of a trivial model with two components, one exception duct, and one exception type.

sig E extends RootException{}
sig C1,C2 extends Component{} //components extend "Component"
sig D1 extends Duct{} //exception ducts extend "Duct"
fact SystemStructure{
C1.SignalsTo = D1
...

4 An exceptionE is caught by subsumption if it is caught by acatch clause that targets a super-
typeE’ of E.

118

}
fact ExceptionFlow{
C1.Raises = D1 -> E
...

}
fact PortMaps{ (...) }

In Alloy, a signature (sig keyword) specifies a type. We use signatures for mod-
eling both structural elements and exceptions. The relations defined in Section 2 are
explicitly instantiated by means of facts, predicates thatthe AA must assume to be true
when evaluating constraints. For instance, the factSystemStructure in the snippet
above states that componentC1 signals exceptions to exception ductD1. Moreover, the
fact ExceptionFlow states that the componentC1 raises exceptionE to exception
ductD1.

Using Alloy to materialize our model makes it possible to specify features of diverse
EHS without having to extend existing tools or build new oneswhen a new feature is
required. Developers need only to specify new Alloy constraints or modify the exist-
ing ones and the AA can be used to check if such constraints hold. Until the present
moment, we have successfully specified several features available in existing EHS and
static analysis tools, including: (i) explicit exception propagation; (ii) detection of ex-
ception subsumption; (iii) checked and unchecked exceptions; and (iv) checked excep-
tion interfaces. Section 3.1 presents a simple example.

In order for the proposed model to be of practical use, it mustbe integrated with
some notation for describing software architectures. In this work, we have chosen the
ACME [11] ADL as the notation for describing software architectures. The Aereal
framework leverages ACME and its tool support [23] in order to allow developers to ex-
tend architecture descriptions with information about architectural exceptions. Aereal
includes a model-to-model transformation tool that generates Alloy models from these
extended architecture descriptions. The generated modelscan be provided “as-is” to
the AA in order for analyses to be performed. Since we have already specified many of
these analyses, in general developers do not need to know Alloy to use the framework.

3.1 An Example: Explicit Exception Propagation

In this section we show how a rule adopted by several EHS [12, 16], explicit exception
propagation, can be described using the proposed model. At the programming language
level, when a component encounters an exception, if it has a handler for the exception,
this handler may re-raise the exception or raise a new one. Ifthe component does not
have a handler, there are two possible outcomes, depending on the programming lan-
guage: (i) the exception is implicitly re-raised by the underlying runtime system; or (ii)
an error occurs either at compile time [12] or run time [16]. In the former case, ex-
ception propagation is said to beimplicit. In the latter, it is said to beexplicit. Some
languages, like Java, are actually hybrid and allow both implicit and explicit propaga-
tion of exceptions. For simplicity, we do not take hybrid approaches into account.

Informally, we can specify explicit exception propagationas follows: for any com-
ponentcomp in a given model, any exception encountered bycomp and not handled

119

should be explicitly propagated. The following Alloy predicate formally specifies ex-
plicit propagation, according to the proposed exception flow model:

pred explicit_propagation_component() {
all C: Component | let nonHandled = (C.Encounters - C.Handles)
| (all CF : C.CatchesFrom | #(CF <: nonHandled) > 0 =>

((#nonHandled > 0 => #(C.Propagates) > 0) &&
all e: CF.nonHandled | #(e.(CF.(C.Propagates))) > 0))

}

The snippet above defines an Alloy predicate calledexplicit propagation.
Alloy predicates are logic sentences that must be checked bythe AA. When predi-
cates are checked, Alloy facts are used as preconditions. The names of relations that
appear in the example above refer to the relations describedin Section 2. For ex-
ample,Encounters is a ternary relation of the formComponent ⇐⇒ Duct ⇐⇒

Exception, indicating that a component encounters a certain exception signaled by a
certain exception duct. The predicate associates a local variable,nonHandled, to the
set of pairs of the form(CF, E), whereCF is an exception duct andE is an exception,
such thatE is not handled by componentC. It then states that, for all such pairs, the
expressionE.(CF.(C.Propagates)) yields some element. The interested reader
is referred to the Alloy Tutorial [15] in order to understandthe details of the predicate.

Since the exception flow model has been translated to Alloy, it becomes possible
to check rules such as the one above automatically, using theAA. If the model does
not satisfy the specified rule, the AA produces a counterexample showing why that
happened.

4 Related and Future Work

The works of F̈ahndrich et al [9], Robillard and Murphy [19], and Schaefer and
Bundy [22] describe static analyses for computing theencounters relation in programs
written in ML, Java, and Ada, respectively. Our work focuseson defining a model that
is flexible enough for defining characteristics of real EHS used in different languages,
assuming thatencounters was already computed. Furthermore, instead of extending or
constraining the EHS of an existing language, Aereal definesthe whole EHS and makes
it possible for developers to extended it or constrain it according to their needs.

Another important difference is that we use model checking techniques, instead of
static analysis. This reflects the fact that we are dealing with exceptions in the earlier
phases of development, where the implementation of the system is still not available. It
is argued by some authors that designing the exceptional activity of a system since the
early phases of development improves the overall system dependability [21].

Currently we are extending Aereal in order for it to support all the features of the
proposed model. The first version of the framework used a simplerPropagates relation
and was based on a different set of assumptions. More specifically, it assumed that
theSignals andEncounters relations were specified explicitly by framework users.
Since specifying these relations by hand is a cumbersome anderror-prone task, we are
extending Aereal’s transformation tool so that it can compute them automatically in
terms ofPropagates, Handles, andRaises (which are specified by the user).

120

References

1. R. Allen and D. Garlan. A formal basis for architectural connection.ACM TOSEM, 6(3):213–
249, July 1997.

2. L. Bass et al. Air traffic control: A case study in designing for high availability. In Software
Architecture in Practice, chapter 6. Addison-Wesley, 2nd edition, 2003.

3. R. H. Campbell and B. Randell. Error recovery in asynchronous systems. IEEE TSE, SE-
12(8):811–826, 1986.

4. F. Castor Filho et al. An architectural-level exception-handling systemfor component-based
applications. InProceedings of the LADC’2003, LNCS 2847, October 2003.

5. Fernando Castor Filho et al. A framework for analyzing exception flow in software architec-
tures. InProceedings of WADS’2005, May 2005. To appear.

6. Fernando Castor Filho et al. Modeling and analysis of architectural exceptions. Technical
report, Institute of Computing - State University of Computing, 2005. To appear.

7. Paul C. Clements and Linda Northrop. Software architecture: An executive overview. Tech-
nical Report CMU/SEI-96-TR-003, SEI/CMU, February 1996.

8. Flaviu Cristian.Dependability of Resilient Computers, chapter 4- Exception Handling. BSP
Professional Books, 1989.

9. M. Fahndrich et al. Tracking down exceptions in standard ml. Technical Report CSD-98-996,
University of California, Berkeley, 1998.

10. A. Garcia et al. A comparative study of exception handling mechanisms for building depend-
able object-oriented software.Journal of Systems and Software, Elsevier, 59(2):197–222,
2001.

11. David Garlan et al. Acme: Architectural description of component-based systems. InFoun-
dations of Component-Based Systems, chapter 3. 2000.

12. James Gosling et al.The Java Language Specification. Addison-Wesley, 1996.
13. V. Issarny and J. P. Banatre. Architecture-based exception handling. In Proceedings of the

34th HICSS, 2001.
14. D. Jackson. Alloy: A lightweight object modeling notation.ACM TOSEM, 11(2), April

2002.
15. D. Jackson. Alloy home page, 2004. Address:http://sdg.lcs.mit.edu/alloy/.
16. Barbara Liskov and Alan Snyder. Exception handling in clu.IEEE Transactions on Software

Engineering, pages 546–558, 1979.
17. D. Luckham et al. Specification and analysis of system architecture using rapide.IEEE TSE,

21(4):336–355, April 1995.
18. Nenad Medvidovic and Richard N. Taylor. A framework for classifying and comparing

architecture description languages. InProceedings of FSE/ESEC’97, September 1997.
19. M. Robillard and G. Murphy. Static analysis to support the evolution of exception structure

in object-oriented systems.ACM TOSEM, 12(2):191–221, April 2003.
20. A. Romanovsky, P. Periorellis, and A. F. Zorzo. Structuring integrated web applications for

fault tolerance. InProceedings of the 6th IEEE ISADS, pages 99–106, 2003.
21. C. M. F. Rubira et al. Exception handling in the development of dependable component-

based systems.Software – Practice and Experience, 35(5):195–236, March 2005.
22. C. F. Schaefer and G. N. Bundy. Static analysis of exception handling in ada. Software:

Practice and Experience, 23(10):1157–1174, October 1993.
23. B. Schmerl and D. Garlan. Acmestudio: Supporting style-centeredarchitecture development.

In Proceedings of the 26th ICSE, May 2004.

121

Examining BPEL’s Compensation Construct

Joey W Coleman

School of Computing Science
University of Newcastle upon Tyne

NE1 7RU, UK
email: j.w.coleman@ncl.ac.uk

Abstract. This paper gives a short description of some features of long-
running transactions, as well as the language BPEL and its particular
implementation of the compensation concept. Two examples are used
to illustrate the application of BPEL’s compensation construct. These
examples, and reference to a structural operational semantics developed
elsewhere, are used to help support an argument for the need of a more
general implementation of compensation.

1 Introduction

Despite decades of work on ways of modelling long-running activities using trans-
action schemes, the same basic problems exist now as 25 years ago. Many sys-
tems have been designed to address parts of the problem but they tend to be
refinements of the usual recovery mechanisms.

Designers of business process languages, in an attempt to model workflow,
have taken to including a concept called compensation in their work. Compen-
sation, in general, should be capable of addressing both non-reversible errors
and non-erroneous changes in the execution of an activity. Unfortunately, the
implemented design of compensations in languages such as BPEL can only con-
veniently be used to handle a subset of errors.

Possible semantic descriptions of BPEL’s compensation mechanism are given
in [Col04,BFN04] and others. The pragmatics of BPEL’s compensation mecha-
nism, on the other hand, need clarification. This paper aims to demonstrate how
the mechanism’s purpose as described in the BPEL specification [ACD+03] is
left unmet by the constraints given in the same document.

The next section of this paper gives a quick description of properties as-
sociated with the Long-Running Transactions (abbreviated as LRT). Section 3
describes BPEL and its compensation construct. Following that, section 4 gives
an example that shows how BPEL’s compensation model fits with a simple LRT.
Section 5 extends that example into a scenario that does not easily fit BPEL’s
compensation model. The final section concludes this paper with a summary
of the points raised by the examples and the motivation for a more general
implementation of compensation.

122

2 Long-Running Transactions

The notion of long-running transactions [ACD+03] arises out of work done in the
database community on structuring transactions intended to run over long peri-
ods of time — from seconds up through minutes, hours, days and longer. In con-
trast, the well-studied notion of ACID transactions give desirable properties for
transactions that run in short periods of time — nanoseconds, milliseconds, and
up to a few seconds in length. The properties of consistency and durability are
common to both LRTs and ACID transactions, but atomicity and isolation are
very much weakened for LRTs [Gra81]. Synonyms for long-running transaction
are long-lived transaction [Gra81,GMS87] and long-running activity [DHL91].

The properties of consistency and durability apply to LRTs in the same man-
ner as they do with short-lived transactions. A LRT must leave the system in a
consistent state, and more importantly, any changes made during the execution
of the LRT that are visible outside of the LRT must also maintain system con-
sistency. The durability requirement is obvious: having the changes made by a
LRT that disappear except through the actions of another LRT is generally not
a desirable thing.

Isolation can only be applied to those bits of state that are truly local to
the LRT. Any state that does not survive past the end of the LRT should be
isolated from everything outside of the LRT. Changes to the overall system state,
however, cannot be isolated as the usual techniques used to isolate changes to
the system state are unsuitable over long periods of time [GMS87].

Atomicity in the context of a LRT is very much relaxed when contrasted
against its meaning for regular database transactions. For a LRT atomicity sim-
ply means that any changes during its progress maintain system consistency.
The use of the compensation notion implicitly acknowledges the fact that there
are cases where it is not possible to put the system state back to what it was
before the start of the transaction.

As with short-lived transactions, LRTs have well-defined boundaries for their
beginning and completion. They can, and usually should, contain short-lived
transactions and even other LRTs.

3 BPEL’s Compensation Construct

BPEL1 [ACD+03] is a relatively recent language that is still under development.
Its origins lie in the web services community, and the initiators of its development
include BEA Systems, IBM, Microsoft and a number of others. Current activity
on the language is now coordinated by the OASIS Web Services Business Process
Execution Language (WSBPEL) Technical Committee2.

One of the claims made in the BPEL specification is that it provides the
necessary tools and structure to support LRTs that are local to a BPEL process.

1 Business Process Execution Language for Web Services
2 Web address: http://www.oasis-open.org/

123

Central to that claim is BPEL’s provision of a compensation construct, which
was modelled after ideas in previous work on Sagas [GMS87] and others.

The specific implementation of compensation that BPEL uses is essentially
an extension of the usual exception-handling mechanisms seen in languages such
as C++, Java, and so on. Blocks of code — called scopes in BPEL — may have a
compensation handler associated with them. These scopes, and their associated
compensation handlers, can be nested to an arbitrary depth. Upon successful
completion of the scope the compensation handler and the current state of the
process are saved for possible later invocation.

Invocation of a compensation handler can only be done from within one of
BPEL’s fault (exception) handlers, and when actually invoked, the compensation
handler is run on its associated saved state. It is not possible for the compen-
sation handler to access the current state of the process directly, though it is
not difficult to imagine a situation where current state is accessed by means of
another process.

Three things characterize BPEL’s compensation:

– the mechanism is intended to be a form of backward recovery [ACD+03];
– despite saving the state of the process at scope completion, the mechanism

only provides a convenient means to manipulate the process’ control flow
within the bounds of an exception handler;

– compensation handlers are named to facilitate control flow modification.

It is, in fact, possible to give an operational semantics that shows BPEL’s com-
pensation mechanism to be a primitive named procedure call [Col04]. Though
the compensation “procedures” do not directly allow parameters, it could be ar-
gued that the saved state could be used as a parameter passing mechanism. The
use of names to identify specific compensation handlers allows for an arbitrary,
programmer-defined ordering, including parallel execution.

Categorizing BPEL’s compensation feature as intended for backwards recov-
ery comes directly from the BPEL specification [ACD+03] which mentions the
use of compensation to ‘reverse’ and ‘undo’ previous activities. The specifica-
tion also goes so far as to restrict the invocation of a compensation handler to
within a fault handler. Compensation in BPEL has been relegated to the realm
of abnormal behaviour.

The assessment of BPEL’s compensation mechanism as a convenient means
to alter control flow relies on the fact that the language specification explicitly
restricts compensation to only have meaning in a local sense. Saving the process
state at scope completion is only intended to save the contents of the process’
variables, not the underlying state of the BPEL processing engine [ACD+03].
Saving those variables could be done manually and would give the compensation
handler the added ability of being able to access the current state of the process.
This leaves the single bit of control flow modification that BPEL’s implemen-
tation of compensation usefully achieves: a simple mechanism to partition the
actions of a traditional try/catch-style exception handler so that the handler
need not try to figure out which parts of the body have executed.

124

4 The Bookshop

One of the common examples used to illustrate LRTs is that of a buyer-seller-
shipper situation. Here we will consider a bookshop example similar to that used
in [BFN04].

The example starts with the seller accepting an order for books in stock; an
order for books not in stock is rejected immediately. Accepting the order reduces
the seller’s available inventory. The seller then attempts to fulfill the order by
doing the following in parallel: a) arranging for the books to be shipped, b)
packing the order, and c) checking the buyer’s credit.

In this example we are not including the pickup of the books from the seller
by the shipper, the receipt of the books by the buyer, the actual payment of the
seller by the buyer, nor the payment of the shipper by the seller.

Included in the example are compensation actions for accepting the order,
packing the order, and booking the shipper. Since checking the buyer’s credit
was just a ‘read’, there is no compensation required for that action. Of course,
should the buyer’s credit rating be insufficient for the order, then the order will
be canceled.

It is straightforward to cancel this LRT at any point during its execution. If
the seller in the LRT had only just completed accepting the order, canceling it
involves merely throwing the order away, making the books available for sale, and
notifying the buyer that the order was canceled. If the order had been accepted
and the parallel tasks were in progress, then canceling involves unbooking the
shipper and unpacking any packed books, then throwing away the order and
making the books available for sale.

This example translates into a BPEL process in a straightforward manner.
Accepting an order would exist as a BPEL scope object (with its compensation
handler). Unbooking the shipper would also be in its own scope object. However,
to correctly model the required compensation for the parallel tasks, each action
that packs a book would need to be in its own scope, thus allowing only the
compensation handlers for the packed books to run.

5 The Bookshop, Extended

The previous example is fairly straightforward, and perhaps even matches the
most common behaviour that a bookseller might follow. There is, however, a
more complex behaviour that shows the limitations of BPEL’s compensation
model.

For this example, imagine that the seller carries no stock, such that all books
must be pre-ordered. In this case, the seller accepts any order for any collection
of books that it believes it can get. For the sake of simplicity, the seller also
knows the correct final price for any book that it believes to be available.

The seller would then generate, in parallel, an expected delivery time for
the buyer, and charge the buyer for the books. This charge may simply be a
deposit or the full cost of the book, but it would be a charge rather than a credit

125

check. After the buyer has been charged, the seller then places an order with
their supplier for the desired books. When the seller receives the books it would
perform the parallel tasks of arranging for the books to be shipped and packing
all of the books to be shipped to the client.

If the seller’s suppliers were completely reliable, then the mechanism for
canceling this order is a straightforward extension of the previous example. Since
it is unlikely that the suppliers would be completely reliable, we will assume
that suppliers will occasionally be unable to supply certain books, and that the
suppliers will notify the seller of this when the seller places their order from the
supplier.

Assume, instead, at some point between when the seller told the buyer when
to expect the books and when the seller should have received the books, that the
seller receives some notification that one of the books in the order is no longer
available. This requires that things be corrected so that the unavailable book is
no longer a part of the order.

If there was only one book in the order then handling this situation is easy:
just cancel the whole LRT. For cases where there were several books in the order,
especially when the seller has already received some of the books, then the seller
will still need to ship the rest of the books and record things appropriately.

Simply canceling then restarting the whole LRT without the unavailable book
is inappropriate: that would likely cost the seller extra in transaction fees. It is
also an unnecessary repetition of effort. What should happen is that the un-
available book is removed from the order, the buyer is refunded the appropriate
amount, and then the LRT proceeds as though the unavailable book had not
been ordered in the first place.

Having the supplier’s notification about the unavailability of a book forces
the seller to perform compensatory actions so as to avoid having to cancel the
entire LRT. It would seem appropriate to use a compensation mechanism to
allow the LRT to proceed, but the actual implementation in BPEL would be
absurdly complex.

Despite BPEL’s restriction that compensation may only be called from within
fault handlers, it is possible to model this behaviour using compensation. The
design would have each book ordered in its own thread — as with the process
given above — but after the individual book order is complete, a busy-wait loop
would prevent the thread and associated compensation scopes from exiting. If
one of the book orders needs to be compensated, then a flag would be set and
the busy-wait loop would throw a fault which in turn would cause a handler to
invoke the compensators.

The problem with this solution — aside from its inelegance — is that it seems
to run against the pragmatics of a compensation construct to use nested scopes
just to isolate fault handlers whose only purpose is to invoke a compensator for
the innermost scope.

So why don’t we just use the fault handler to directly correct the problem?
Leaving aside the convenience of a mechanism that automatically only corrects
the actions that have completed, this solution is not much better. The busy-wait

126

loops are still required, leaving a collection of live threads that are doing nothing.
Compare this against a compensation mechanism where, when the compensator
is installed, the individual threads are finished and cleaned up normally.

6 Conclusions

From the standpoint of the structural operational semantics mentioned above
and developed in [Col04], BPEL’s compensation mechanism is only a primitive
procedure call. Indeed, the compensation mechanism doesn’t even require the
full structure of a procedure call, but just that of a block-structure language. The
only restriction in the semantic model that prevents the compensation mecha-
nism from from being used outside of a fault handler is a well-formedness condi-
tion on the abstract syntax of the language. In light of this it is unfortunate that
the BPEL specification states this condition as it needlessly precludes a more
general use of compensation.

The initial example does show that the compensation model used in BPEL is
applicable to some situations. The use of named compensators has advantages,
allowing programmer-defined compensation ordering. Also, in general, the usual
implementations of compensation are extremely useful to simplify the program-
mer’s task of only reversing those actions that have completed successfully.

The use of compensation as implemented in BPEL to handle changes to the
LRT during its execution is inconvenient at best. An argument can be raised that
any changes to the LRT should be kept well defined and incorporated into the
main flow of the process. This argument has the same problems as arguing that
fault handling should be done inline with the main code rather than separated
out into fault handlers.

Some models of compensation have posited a fairly strong property: if an
action and its compensation are independent of all of the actions between the
original action and the compensation, then the action and its compensation is
equivalent to a null action [BHF04]. While this is certainly true, it has been
pointed out that the likelihood of independence is rather low [GFJK03]. First,
there is the difficulty of designing your process so that the interleaving of local
actions maintains this independence. Second, due to the long-running nature of
LRTs, and the requisite lack of lock-based synchronization, it is extremely likely
that another executing LRT will do something that is not completely indepen-
dent. One might observe that part of the point of grouping actions together in
a transaction is because those actions are not independent.

The extended example gives an argument that the particular compensation
model used in BPEL is not applicable to the full range of situations where
compensation would seem to be an ideal tool to structure a long-running trans-
action’s fault tolerance. If BPEL’s compensation mechanism could be invoked
outside of a fault handler then the extended bookshop example would no longer
be an issue.

Acknowledgments
The author would like to acknowledge the support of the RODIN (Rigorous

127

Open Development Environment for Complex Systems) Project funded by the
European IST and the DIRC (Dependability Interdisciplinary Research Collab-
oration) project funded by EPSRC/UK.

References

[ACD+03] Tony Andrews, Franciso Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,
Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Busi-
ness Process Execution Language for Web Services, version 1.1.
http://www.ibm.com/developerworks/webservices/library/ws-bpel/, May
2003.

[BFN04] Michael Butler, Carla Ferreira, and Muan Yong Ng. Precise modelling of
compensating business transactions and its application to BPEL. Technical
report, University of Southampton, Electronics and Computer Science, 2004.

[BHF04] Michael Butler, Tony Hoare, and Carla Ferreira. A trace semantics for long-
running transactions. In A. Abdallah and J. Sanders, editors, Proceedings
of 25 Years of CSP (in press), London, 2004.

[Col04] Joseph W Coleman. Features of BPEL modelled via structural operational
semantics. MPhil thesis, University of Newcastle Upon Tyne, November
2004.

[DHL91] Umeshwar Dayal, Meichun Hsu, and Rivka Ladin. A transactional model for
long-running activities. In Proceedings of the 17th International Conference
on Very Large Data Bases, pages 113–122. Morgan Kaufmann Publishers
Inc., 1991.

[GFJK03] Paul Greenfield, Alan Fekete, Julian Jang, and Dean Kuo. Compensation is
not enough. In EDOC ’03: Proceedings of the 7th International Conference
on Enterprise Distributed Object Computing, page 232. IEEE Computer So-
ciety, 2003.

[GMS87] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD ’87: Proceed-
ings of the 1987 ACM SIGMOD international conference on Management
of data, pages 249–259. ACM Press, 1987.

[Gra81] Jim Gray. The transaction concept: Virtues and limitations. In VLDB,
pages 144–154. IEEE Computer Society, September 1981.

128

On Specification and Verification of

Location-based Fault Tolerant Mobile Systems

Alexei Iliasov, Victor Khomenko, Maciej Koutny and Alexander Romanovsky

School of Computing Science, University of Newcastle
Newcastle upon Tyne, NE1 7RU, United Kingdom

Abstract. In this paper, we investigate context aware location-based
mobile systems. In particular, we are interested how their behaviour, in-
cluding fault tolerant aspects, could be captured using a formal semantics
amenable to rigorous analysis and verification. We propose a new formal-
ism and middleware called Cama, which provides a rich environment to
test our approach. The approach itself aims at giving Cama a concur-
rency semantics in terms of a suitable process algebra, and then applying
efficient model checking techniques to the resulting process expressions
in a way which alleviates the state space explosion. The model checking
technique adopted in our work is partial order model checking based on
Petri net unfoldings, and we use a semantics preserving translation from
the process terms used in the modelling of Cama to a suitable class of
high-level Petri nets.

1 Introduction

Mobile agent systems are increasingly attracting attention of software engineers.
However, issues related to fault tolerance and exception handling in such systems
have not received yet the level of attention they deserve. In particular, formal
support for validating the correctness and robustness of fault tolerance properties
is still under-developed. In this paper, we will outline the initial steps of our
approach to dealing with such issues in the context of a concrete system for
dealing with mobility of agents (Cama), and a concrete technique for verifying
their properties (partial order model checking). Our aim in this paper is to
present a formal model for the specification, analysis and model checking of
Cama designs. In doing so, we will use process algebras and Petri nets.

In concrete terms, our approach is first to give a formal semantics (including a
compositional translation) of a suitably expressive subset of Cama in terms of an
appropriate process algebra and its associated operational semantics. The reason
why we chose a process algebra semantics is twofold: (i) process algebras, due to
their compositional and textual nature, are very close to the actual notations and
languages used in real implementations; and (ii) there exists a significant body
of research on the analysis and verification of process algebras. In our particular
case, there are two process algebras which are directly relevant to Cama, viz.
Klaim [2] and π-calculus [9], and our intention is to use the former as a starting
point for the development of the formal semantics.

129

2 Location-based fault tolerant mobile systems

The design of our system has been strongly influenced by Linda [6], which is a
set of language-independent coordination primitives that can be used for com-
munication and coordination between several independent pieces of software.
Thanks to its language independence, Linda has become quite popular, and
many programming languages have one or more implementations of its coordi-
nation primitives. Coordination primitives presented in Linda allow processes
to put, get and test for tuples in a tuple space shared by the running processes.
A tuple is a vector of typed data values some of which can be empty (in which
case they match any value of a given type). Certain operations, such as get and
test, can be blocking. This provides effective inter-process coordination; other
kinds of coordination primitives, such as semaphores, can be readily simulated.

We will use an asymmetric communication scheme which is closer to the
traditional service provision architectures. It is based on the concept of a fairly
reliable infrastructure-provided wireless connectivity. (The alternative symmet-
ric scheme can also operate in ad-hoc networks and all the coordination func-
tionality is implemented by the agents.) In the asymmetric scheme, the larger
part of the coordination logic is moved to a location server. This approach is
able to support large-scale mobile agent networks in a predictable and reliable
manner. It makes better use of the available resources since most of the opera-
tions are executed locally. Moreover, the asymmetric architecture eliminates the
need for employing complex distributed algorithms or any kind of remote access.
This allows us to guarantee atomicity of certain operations without sacrificing
performance and usability. Another advantage is that it provides a natural way
of introducing context-aware computing by defining location as a context. The
main disadvantage of the location-based scheme is that an additional infrastruc-
ture is always required to support mobile agent collaboration.

A Cama (context-aware mobile agents) system consists of a set of locations,
and active entities of the system, called agents. An agent is a piece of software
which is executed on its own platform, providing execution environment interface
to the location middleware. Agents can only communicate with other agents in
the same location. Agents can migrate logically (connection and disconnection)
or physically (e.g., movement of a PDA on which the agent is hosted on) from
a location to a location. Agents can also migrate logically from platform to
platform using weak code mobility (transfer of application code or its parts from
one host to another without retaining the execution state). Compatible agents
(i.e., agents capable of cooperation in certain conditions in order to achieve
individual agent goals and in accordance to the abstract specification of the
whole system) collaborate through a scoping mechanism, where a scope defines
a joint activity of several agents. Scoping mechanism also isolates non-compatible
agents from each other. More details about the introduced concepts are provided
below.
Scope is a dynamic container for tuples. It provides an isolated coordination
space for compatible agents, by restricting the visibility of tuples contained
within the scope to the participants of the scope. A scope is initiated by an agent

130

and then atomically created by a location when all the participating agents are
ready. It is defined by the set of roles, a minimal required number of active roles,
and a maximal allowed number of active roles. Scopes can be nested as scope
participants can create new contained scopes.

Role is an abstract description of agent functionality. Each role is associated
with some abstract scope model. Agent may implement a number of roles and
can also play several roles within the same scope or different scopes. There is a
formal relationship between a scope and its role. The latter is formally derived
from an abstract model through decomposition process, while the former is a
run-time instantiation of such an abstract model as it is formed via a composition
of agent roles (for more discussion see [7]).

Location is a container for scopes. It can be associated with a particular physical
location and can have certain restrictions on the types of supported scopes.
It is the core part of the system as it provides means of communication and
coordination between agents. We may assume that each location has a unique
name. This roughly corresponds to IP addresses of hosts in a network which
are often unique in some local sense. A location must keep track of the agents
present and their properties in order to be able to automatically create new
scopes and restrict access to the existing ones. Locations may provide additional
services that can vary from location to location. These are made available to
agents via what appears as a normal scope though some roles are implemented
by the location system software. As with all the scopes, agents are required
to implement specific roles in order to connect to a location-provided scope.
Examples of such services include printing on a local printer, Internet access,
making a backup to a location storage, and migration. In addition to supporting
scopes as means of agent communication, locations may also support logical
mobility of agents, hosting of platforms and agent backup. Hosting of platform
on a location allows an agent to run without a support from, say, a PDA. For
example, a user may decide to move an agent from the PDA to a location
before leaving the location. When requested by an agent, a location may play
in certain types of scopes the role of a trusted third party that is neutral to all
the participating agents. This facilitates implementation of various transaction
schemes.

Platform provides an execution environment for an agent. It is composed of
a virtual machine for code execution, networking support, and middleware for
interacting with a location. A platform may be supported by a PDA, smartphone,
laptop or a location server. The notion of a platform is important to clearly
differentiate between the concept of a location providing coordination services
to agents, and the middleware that only supports agent execution. In other
approaches no such distinction is usually made [10, 3, 11].

Agent is a piece of software implementing a set of roles which allow it to take
part in certain scopes. All agents must implement some minimal functionality,
called the default role, which specifies their activities outside of all the scopes.

131

3 A process algebra for CAMA systems

The semantical model of Cama will be captured using a process algebra based
on Klaim [2] and also the π-calculus [9]. We now briefly outline some key aspects
of this development (see [5] for details).

We assume that L is a set of localities ranged over by l, l′, l1, . . . and a disjoint
set U of locality variables ranged over by u, v, w, u′, v′, w′, u1, v1, w1, (We also
assume that a special locality self belongs to L.) Their union forms the set of
names ranged over by `, `′, `1, In addition, A = {A1, . . . , Am} is a finite set
of process identifiers, each identifier A ∈ A having a finite arity nA.

The syntax comes in four parts: networks, actions, processes and templates.

N ::= l :: P p l :: 〈l〉 p N ‖N (networks)

a ::= out(`)@` p in(T)@` p eval(A(`1, . . . , `nA
))@` (actions)

P ::= nil p A(`1, . . . , `nA
) p a . P p P + P p P |P (processes)

T ::= ` p !z (templates)

Moreover, for each A ∈ A, there is exactly one definition A(u1, . . . , unA
)

df

= PA,
which is available across the whole network.

Networks are finite collections of computational nodes, where data and pro-
cesses can be located. Each node consists of a locality l identifying it and a
process or a datum (itself a locality in this simple presentation). There can be
several nodes with the same locality part. Effectively, one may think of a net-
work as a collection of uniquely named nodes, each node comprising its own data
space and a possibly concurrent process which runs there (for simplicity, we as-
sume that only singleton tuples are stored). This view is embodied in the rules
for structural equivalence on nodes and networks, such as N1 ‖N2 ≡ N1 ‖N2,
(N1 ‖N2) ‖N3 ≡ N1 ‖ (N2 ‖N3) and l :: (P1|P2) ≡ l :: P1 ‖ l :: P2.

Actions are the basic (atomic) operations which can be executed by processes,
as follows: out(`′)@` deposits a fresh copy of `′ inside the locality addressed by `;
in(T)@` retrieves an item matching the template T from the locality addressed
by `; and eval(A(`1, . . . , `nA

))@` instantiates a new copy of the process identified
by A in the locality addressed by `.

Processes act upon the data stored at various nodes and spawn new pro-
cesses. The algebra of processes is built upon the (terminated) process nil and
three composition operators: prefixing by an action (a . P); choice (P1 +P2); and
parallel composition (P1|P2).

The action prefix in(!z)@` . P binds the locality variable z within P , and we
denote by fn(P) the free names of P (and similarly for networks). For the process
definition, we assume that fn(PA) ⊆ {u1, . . . , unA

}. Processes are defined up to
the alpha-conversion, and {`/`′, . . .}P will denote the agent obtained from P by
replacing all free occurrences of `′ by `, etc, possibly after alpha-converting P
in order to avoid name clashes. We assume that a network is well-formed, i.e.,
no name across the network and process definitions is both free and bound, it
never generates more than one binding, and there are no free locality variables.

132

The operational semantics of networks and processes is based on the struc-
tural equivalence ≡ and labelled transition rules providing the record of an ex-
ecution, e.g., output and input involve the following SOS rules:

if ` = self then l′′ = l else l′′ = `

l :: out(`)@l′ .P
o(l,l′′,l′)
−−−−−−−−→ l :: P ‖ l′ :: 〈l′′〉

l :: in(!z)@l′ .P ‖ l′ :: 〈l′′〉
i(l,l′′,l′)
−−−−−−−−→ l :: {l′′/z}P ‖ l′ :: nil

The semantics of Cama operations is given using a straightforward extension of
the process algebra outlined above.

3.1 Process algebra semantics of CAMA

The basic parts of the Cama system are locations, scopes, agents and middle-
ware. Locations provide scopes which, in turn, provide a private coordination
space to communicating agents. Middleware is an active entity that controls
the state of a location and provides certain services, such as scope creation.
Agents can synchronise using Linda-style operations on scopes. Scopes can con-
tain sub-scopes thus providing a hierarchy of nested agent activities. The subset
of the Cama operations chosen for model-checking comprises a number of loca-
tion/scope operations:

EngageLocation DisengageLocation CreateScope GetScopes
DeleteScope JoinScope LeaveScope

and a number of synchronisation operations: in, rd, inp, rdp, out, ina, rda,
inpa and rdpa. All these operations require locality variable argument which
is a reference to a location. In Cama, locations are static and hence they never
appear or disappear during an agent’s lifetime (dynamic locations creation and
destruction can be simulated by other means). Operations occurring within a
locality l are denoted as, e.g., eval()@l. Synchronisation primitives take a scope
name instead of a location, and we assume that location names are contained
within the scope names. For brevity, the locality l may be omitted if its value is
clear from the context. To model nested scopes, we use the notion of a location
tuple prefix, corresponds to one or more fields of a tuple. The syntax of tuple
prefixes p is based on that of tuple/template:

t ::= ? p !z p t, t

where ‘?’ is a wildcard matching any field value, and ‘t1, t2’ is field concatenation.
We than define p = 〈t〉 as well as use ‘∗’ for prefix concatenation, pn for prefix
repetition, and p∗ for an open prefix. We also use the following operations:

– [p](n) is the value of the n-th field of a tuple with the prefix p where field
count starts after the prefix part. For example, [a](2) applied to a tuple space
containing a ∗ 〈a1, a2〉 can give a2 (note that matching is non-deterministic
if p is a prefix of more then one tuple).

133

– [p]′(n) is the same as [p](n) but it also removes the matched tuple.

– [p(n)] is the bag of values of the n-th fields of all p-matching tuples.

All these operations assume that there is at least one tuple matching p and
the length of any tuple that can be matched is at least equal to the length of
p plus n, otherwise operation’s behaviour is undefined. Note that it is possible
to express the above operations via standard Linda constructs; for example,
assigning [p](n) to a variable v is equivalent to rd(p ∗ 〈?〉n ∗ 〈!v〉). Finally, the
open prefix matches all the tuples starting with a given prefix, and so tuples of
different length and structure may be matched.

To model scopes and the location middleware behaviour, we need a structur-
ing of tuple space through special prefixes, as given in the table below:

Prefix name Description
m∗ Requests to the middleware
i∗ Possible agent names
a∗ Issued agent names
s∗ Scopes
s ∗ s∗ Description structures of scope s
s ∗ s ∗ r∗ Roles of a scope
s ∗ s ∗ n∗ Number of roles in a scope
s ∗ s ∗ r ∗ r ∗ 〈min,max〉 Restrictions on individual role r
s ∗ s ∗ d∗ Dynamic state of a scope instance
s ∗ s ∗ c ∗ Contents of scope s

We need two auxiliary operations, lock(p) and unlock(p), which grant and
release exclusive access to all the tuples beginning with a prefix p:

lock(p)
df

= in(X ∗ p ∗ 〈1〉) .out(X ∗ p ∗ 〈0〉)

unlock(p)
df

= in(X ∗ p ∗ 〈0〉) .out(X ∗ p ∗ 〈1〉)

Many operations are carried out by the location middleware, which is mod-
elled as a set of looped event handlers waiting for certain tuples with prefix
m to appear. A middleware process Pmid@l is defined as parallel composition
of the event handling processes: PEngageLocation, PDisenageLocation, PCreateScope,
PDeleteScope, PJoinScope, PLeaveScope, PScopeActivate and PScopeDeactivate. In each
case, there is an agent side code that sends a request and collects any re-
turned data, using some additional operations, such as AEngageLocation@l
and ADisengageLocation@l.

Engage location operation registers an agent in a given location and issues a
new name that is guaranteed to be location-wide unique; it allows the agent to
execute other operations in the location. This operation is always the first one

134

executed by an agent when it connects to a new location.

AEngageLocation@l
df

= lock(m) .out(m ∗ 〈engage〉) .

in(e ∗ 〈!a〉) .unlock(m)

PEngageLocation

df

= in(m ∗ 〈engage〉) . in(i ∗ 〈!a〉) .

out(a ∗ 〈a〉) .out(e ∗ 〈a〉) .

PEngageLocation(N)

Disengage location removes the registered agent name from the internal reg-
istry of the agent names.

ADisengageLocation@l
df

= out(m ∗ 〈disengage, a〉)

PDisenageLocation

df

= in(m ∗ 〈disengage, !a〉) .

in(a ∗ 〈a〉) . PDisenageLocation

Create scope adds a new scope defined by a name and a special record d that
describes the scope structure and the role that the creating agent will assume.
The record d has the following fields: rolesn - the number of roles, roles - the
vector of role names, min - the minimal required participants number, and max
- the maximum allowed participants number.

ACreateScope(a, s, d, r)@l
df

= out(m ∗ 〈create scope, a, s, d, r〉)

PCreateScope

df

= in(m ∗ 〈create scope, !a, !s, !d, !r〉) . lock(s) .

if(a ∈ [a(1)] ∧ s ∈ [s(1)] ∧ r ∈ d.roles)
then

out(s ∗ s ∗ n ∗ 〈d.rolesn〉) .outa(s ∗ s ∗ r ∗ 〈d.roles〉) .

outa(s ∗ s ∗ r ∗ 〈d.roles, d.min, d.max〉) .

outa(s ∗ s ∗ d ∗ 〈d.roles, 0〉)
endif . in(s ∗ s ∗ d ∗ 〈r, 0〉) .out(s ∗ s ∗ d ∗ 〈r, 1〉) .

out(s ∗ s ∗ c ∗ 〈a〉) .out(m ∗ 〈activator, s〉) .

out(e ∗ 〈join, s〉) .unlock(s) . PCreateScope

Activated

Closed Open

Pending Expanding

Fig. 1. Hierarchy of scope states.

135

A scope becomes activated after some agent creates it with the CreateScope
operation. Scope is open when there are some vacant roles in it. Scope is closed
when all the roles are taken. Scope is pending if some required roles are not
taken yet and expanding if all the required roles are taken but there still some
vacant roles (see figure 1).
Delete scope destroys a scope which must be owned by the calling agent. Any
contained scopes are also destroyed.

ADeleteScope(a, s)@l
df

= out(m ∗ 〈delete scope, a, s〉)

The middleware process simply removes all the tuples associated with the scope
and any of its sub-scopes.

PDeleteScope

df

= lock(m) . in(m ∗ 〈delete scope, !a, !s〉) . inpa(s ∗ s∗) .

inpa(d ∗ s∗) .unlock(m) . PDeleteScope

Join scope puts an agent into an existing scope if there is appropriate vacant
role in the scope.

AJoinScope(a, s, r)@l
df

= out(m ∗ 〈join scope, a, s, r〉)

This operation may trigger scope activation or change of the state from open to
closed. The middleware process adds new participant to the scope and announces
the event.

PJoinScope

df

= in(m ∗ 〈join scope, !a, !s, !r〉) .

lock(s) .

if (a ∈ [a(1)] ∧ s ∈ [s(1)] ∧ r ∈ [s ∗ s ∗ r(1)] ∧
[s ∗ s ∗ d ∗ r ∗ r](1) < [s ∗ s ∗ r ∗ r](2))

then

out(s ∗ s ∗ c ∗ 〈a〉) .

out(s ∗ s ∗ d ∗ r ∗ 〈r, [s ∗ s ∗ d ∗ r ∗ r]′(1) + 1〉) .

out(e ∗ 〈join, s〉)
endif .unlock(s) . PJoinScope

Leave scope removes the calling agent from a given scope and role.

ALeaveScope(a, s, r)@l
df

= out(m ∗ 〈leave scope, a, s, r〉)

The middleware process removes record about the agent and issues an event that
may trigger scope state update.

PLeaveScope

df

= in(m ∗ 〈leave scope, !a, !s, !r〉) . lock(s) .

if a ∈ [s ∗ s ∗ c(1)]
then

out(s ∗ s ∗ d ∗ r ∗ 〈r, [s ∗ s ∗ d ∗ r ∗ r]′(1) − 1〉)
in(s ∗ s ∗ c ∗ 〈a〉) .out(e ∗ 〈leave, s〉)

endif .unlock(s) . PLeaveScope

Linda operations that we are using also sugared with additional checks for
a scope’s state:

136

– in(t)@s
df

= rd(s∗s∗〈ready〉) . in(s∗s∗c∗t) removes and returns a tuple that
matches the supplied tuple template. First it checks if the specified scope
exists and that it is ready. If it not so the operation blocks until conditions
change. When there is no tuple available immediately it also blocks until
one appears. In case of multiple matching tuples the result is chosen non-
deterministically.

– out(t)@s
df

= rd(s∗s∗〈ready〉) .out(s∗s∗ c∗ t) outputs a tuple into a scope.
First it checks if the target scope is available and ready.

Other operations are defined in a similar manner. Each operation is prefixed
by rd(s ∗ s ∗ 〈ready〉) and a tuple or template argument is prefixed with the
prefix corresponding to the scope. Operations acting on vector of tuples can be
expressed via other operation using prefix locking function.

Whenever a join event occurs (meaning a joining of an agent to a scope),
the scope activate process checks if the state of the scope in question need to be
updated. There are two possible situations. The first one is when all the required
roles are fulfilled and the scope changes its state from pending to ready. As a
result, the process issues a tuple that triggers execution of possibly suspended
earlier Linda operations. Another situation is when all the possible roles are
taken and no more agents should be able to connect to this scope. In this case
the scope becomes closed and this prevents any other agents from entering it.

PScopeActivate

df

= in(e ∗ 〈Join, !s〉) .

if (s ∈ [s(1)] ∧
∀ρ ∈ [s ∗ s ∗ r(1)] : [s ∗ s ∗ d ∗ ρ](1) ≥ [s ∗ s ∗ r ∗ ρ](1))

then in(s ∗ s ∗ 〈!state〉) .out(s ∗ s ∗ 〈ready〉) .

if (s ∈ [s(1)] ∧
∀ρ ∈ [s ∗ s ∗ r(1)] : [s ∗ s ∗ d ∗ ρ](1) = [s ∗ s ∗ r ∗ ρ](2))

then in(s ∗ s ∗ 〈!state〉) .out(s ∗ s ∗ 〈closed〉) .

PScopeActivate

Moreover, PScopeDeactivate updates the state of a scope whenever some agent
leaves it.

4 Model checking CAMA systems

Mobile systems are highly concurrent causing a state space explosion when ap-
plying model checking techniques. We therefore use approach which copes well
with such a problem based on partial order semantics of concurrency and the
corresponding Petri net unfoldings.

A finite and complete unfolding prefix of a Petri net PN is a finite acyclic net
which implicitly represents all the reachable states of PN together with transi-
tions enabled at those states. Intuitively, it can be obtained through unfolding
PN , by successive firings of transition, under the following assumptions: (i) for
each new firing a fresh transition (called an event) is generated; (ii) for each
newly produced token a fresh place (called a condition) is generated. If PN has

137

finitely many reachable states then the unfolding eventually starts to repeat it-
self and can be truncated (by identifying a set of cut-off events) without loss of
information, yielding a finite and complete prefix.

Efficient algorithms exist for building such prefixes [8], and complete prefixes
are often exponentially smaller than the corresponding state graphs, especially
for highly concurrent Petri nets, because they represent concurrency directly
rather than by multidimensional ‘diamonds’ as it is done in state graphs. For
example, if the original Petri net consists of 100 transitions which can fire once
in parallel, then the state graph will be a 100-dimensional hypercube with 2100

vertices, whereas the complete prefix will be isomorphic to the net itself. Since
mobile systems usually exhibit a lot of concurrency, their unfolding prefixes are
often much more compact than the corresponding state graphs. Therefore, un-
folding prefixes are well-suited for alleviating the state space explosion problem.
To apply net unfoldings, we need to translate process algebra terms correspond-
ing to Cama systems into Petri nets.

4.1 From process algebra to Petri nets

The development of Petri net model corresponding to expressions of the process
algebra for Cama systems has been inspired by the box algebra [1] and by the
rp-net algebra used in [4] to model π-calculus. It uses coloured tokens and read-
arcs (allowing any number of transitions to simultaneously check for the presence
of a resource stored in a place). Transitions can have different labels, such as o

to specify outputting of data to tuple spaces, i to specify retrieving of data from
tuple spaces, and e to specify process creation.

A key idea behind the translation is to view a system as consisting of a main
program together with a number of procedure declarations. We then represent
the control structure of the main program and the procedures using disjoint
unmarked nets, one for the main program and one for each of the procedure
declarations. The program is executed once, while each procedure can be invoked
several times (even concurrently), each such invocation being uniquely identified
by structured tokens which correspond to the sequence of recursive calls along
the execution path leading to that invocation. With this in mind, we use the
notion of a trail σ to denote a finite (possibly empty) sequence of e-labelled
transitions. And the places of the nets which are responsible for control flow will
carry tokens which are simply trails. (The empty trail will be treated as the usual
‘black’ token.) Procedure invocation is then possible if each of the input places
of a transition t labelled with e contains the same trail token σ, and it results in
removing these tokens and inserting a new token σt in each initial (entry) place
of the net corresponding to the definition of A(. . .), together with other tokens
representing the corresponding actual parameters. Places are labelled in ways
reflecting their intended role, as explained below.

– Control flow places: These will be used to model control flow and be labelled
by their status symbols (internal places by i, and interface places by e and
x, for entry and exit, respectively).

138

– Locality places (or loc-places): These will be labelled by localities in L and
carry structured tokens representing localities known and used by the main
program and different procedure invocations. Each such token, called a
trailed locality, is of the form ω.l where σ is a trail and l is a locality in
L other than self. Intuitively, its first part, σ, identifies the invocation in
which the token is available, while the second part, l, provides its value.
Loc-places labelled by self indicate where processes are being executed.

– Tuple-place: This is a distinguished place, labelled by TS, used to represent
data stored at various tuple spaces. It will store a multiset of structured
tokens of the form l.l′, each such token corresponding to the expression
l :: 〈l′〉 in the process algebra.

e

i

xz

` TS

self

ω

ω

u.vω.u

ω.v ω.w

K(in(!z)@`)

e

o

x`′

` TS

self

ω

ω

u.vω.u

ω.v ω.w

K(out(`′)@`)

Fig. 2. Translations for two basic actions.

Two example translations for the basic actions are given in figure 2. The first
one, K(in(!z)@`), can match any tuple in the space identified by `. We do not
assume that `′, ` and self are distinct, and if that is the case, we collapse the
corresponding loc-places, and gather together the annotations of the read arcs.
When executed under a binding [, the translation generates the visible label
i([(w), [(v), [(u)). In the second translation, K(out(`′)@`), it may well happen
that ` = `′ in which case the two loc-places collapse into a single one, and we
have two annotations for the only read-arc linking it with the only transition, ω.u
and ω.v. When executed under a binding [each of the translations generates the
visible label o([(w), [(v), [(u)). The translation then proceeds in the following
four phases (see [5] for details):

Phase I Each process Pi is translated compositionally into K(Pi) and during
this process all non-control places with the same label are being merged.

Phase II For each process definition A(u1, . . . , ur)
df

= PA, we first translate
compositionally PA into K(PA) and during this process all non-control places
with the same label are being merged into a single one. After that we add loc-
place labelled ui for each i ≤ r, unless such a place is already present, and
suitably deal with the loc-places. The result is denoted K(A).

Phase III For each network node li :: Pi, we first translate compositionally Pi

into K(Pi) and during this translation all non-control places with the same label

139

are being merged. After that, we add loc-place labelled selfi identifying it with
the only self-labelled place (if present) and give the result label selfi.
Phase IV We take the parallel composition of the K(A)’s and K(li :: Pi)’s,
identifying all non-control places with the same label, and then suitably connect
the nets to mimic process instantiation. After that we set the initial marking;
in particular, and for each l′

j
:: 〈l′′

j
〉, we insert a single l′

j
.l′′

j
-token into the TS-

labelled place.
It can be shown that the labelled transition system of the original process

algebraic expression is strongly bisimilar to that of the resulting net, and so the
latter can be used for model checking instead of the former.

5 Conclusion

In this paper, we outlined an approach to context aware location-based mobile
systems based on Cama and sketched how to provide it with a formal concur-
rency semantics in terms of a suitable process algebra. The resulting description
can be analysed using efficient model checking techniques in a way which alle-
viates the state space explosion. The model checking technique adopted in our
work is partial order model checking based on Petri net unfoldings, and we briefly
described a semantics preserving translation from the process terms used in the
modelling of Cama to a suitable class of high-level Petri nets.

This research was supported by the EC IST grant 511599 (Rodin).

References

1. E.Best, R.Devillers and M.Koutny: Petri Net Algebra. EATCS Monographs on
TCS, Springer (2001)

2. L. Bettini et al.: The KLAIM Project: Theory and Practice. Proc. of Global Com-
puting, Springer, LNCS 2874 (2003) 88–150

3. C.Bryce, C.Razafimahefa and M.Pawlak: Lana: An Approach to Programming Au-

tonomous Systems. Proc. of ECOOP’02 (2002) 281–308
4. R.Devillers, H.Klaudel and M.Koutny: Petri Net Semantics of the Finite π-

Calculus. Proc. of FORTE 2004, Springer, LNCS 3235 (2004) 309–325
5. R.Devillers, H.Klaudel and M.Koutny: A Petri Net Semantics of a Simple Process

Algebra for Mobility. Technical Report, CS-TR-912, School of Computing Science,
University of Newcastle upon Tyne (2005)

6. D.Gelernter: Generative Communication in Linda. ACM Computing Surveys 7
(1985) 80–112

7. A.Iliasov, L.Laibinis, A.Romanovsky and E.Troubitsyna: Towards Formal Devel-

opment of Mobile Location-Based Systems. To appear in REFT (2005)
8. V.Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD

Thesis, School of Computing Science, University of Newcastle upon Tyne (2003)
9. R.Milner, J.Parrow and D.Walker: A Calculus of Mobile Processes. Information

and Computation 100 (1992) 1–77
10. G.P.Picco, A.L.Murphy, G.-C.Roman: Lime: Linda Meets Mobility. Proc. of

ICSE’99 (1999)
11. The Mobile Agent List. http://reinsburgstrasse.dyndns.org//mal/preview

140

Shortest Violation Traes in Model ChekingBased on Petri Net Unfoldings and SAT?Vitor KhomenkoShool of Computing Siene, University of NewastleNewastle upon Tyne NE1 7RU, U.K.e-mail: Vitor.Khomenko�nl.a.ukAbstrat. Model heking based on the ausal partial order semantisof Petri nets is an approah widely applied to ope with the state spaeexplosion problem. One of the possibilities for the veri�ation proess isto build a �nite and omplete pre�x and use it for onstruting a Booleanformula suh that any satisfying assignment to its variables yields a traeviolating the property being heked. (And if there are no satisfyingassignments then the property holds.)In this paper a method for omputing the shortest violation traes (whihan greatly failitate debugging) is proposed. Experimental results de-monstrate that it an ahieve signi�ant redutions in the size of theBoolean formula as well as in the time required to ompute a shortestviolation trae, when ompared with a na��ve approah.Keywords: Shortest trae, model heking, Petri net unfolding, SAT,Boolean iruit.1 Introdution and basi notionsA distintive harateristi of reative onurrent systems is that their sets ofloal states have desriptions whih are both short and manageable, and theomplexity of their behaviour omes from highly ompliated interations withthe external environment rather than from ompliated data strutures and ma-nipulations thereon. One way of oping with this omplexity problem is to useformal methods and, espeially, omputer aided veri�ation tools implementingmodel heking | a tehnique in whih the veri�ation of a system is arriedout using a �nite representation of its state spae.The main drawbak of model heking is that it su�ers from the state spaeexplosion problem. That is, even a relatively small system spei�ation an (andoften does) yield a very large state spae. To ope with this, several tehniqueshave been developed, whih usually aim either at a ompat representation ofthe full state spae of the system, or at the generation of its redued (thoughsuÆient for a given veri�ation task) state spae. Among them, a prominenttehnique is MMillan's (�nite pre�xes of) Petri Net unfoldings (see, e.g., [5, 7℄).They rely on the partial order view of onurrent omputation, and representsystem states impliitly, using an ayli net, alled a pre�x.Most of `interesting' problems for safe Petri nets are PSPACE-omplete [2℄,but the same problems for pre�xes are often in NP or even P . Though the size? The full version of this paper [6℄ is available on-line.
141

of a �nite and omplete unfolding pre�x an be exponential in the size of theoriginal Petri net, in pratie it is often relatively small.A model heking problem formulated for a pre�x an usually be translatedinto some anonial problem, e.g., Boolean satis�ability (SAT). Then an o�-the-shelf SAT solver an be used for eÆiently solving it. Suh a ombination`unfolder & solver' turns out to be quite powerful in pratie.Petri nets A net is a triple N df= (P; T; F) suh that P and T are disjoint sets ofrespetively plaes and transitions, and F � (P �T)[(T �P) is a ow relation.A marking of N is a multiset M of plaes, i.e., M : P ! N df= f0; 1; 2; : : :g.The standard rules about drawing nets are adopted in this paper, viz. plaesare represented as irles, transitions as boxes, the ow relation by ars, and themarking is shown by plaing tokens within irles. As usual, �z df= fy j (y; z) 2 Fgand z� df= fy j (z; y) 2 Fg denote the pre- and postset of z 2 P [T , and�Z df= Sz2Z �z and Z� df= Sz2Z z�, for all Z � P [T . In this paper, the presetsof transitions are restrited to be non-empty, i.e., �t 6= ; for every t 2 T . A netsystem is a pair � df= (N;M0) omprising a �nite net N and an initial markingM0. It is assumed that the reader is familiar with the standard notions of thePetri nets theory, suh as the enabledness and �ring of a transition, markingreahability and deadlok.Unfolding pre�x A �nite and omplete unfolding pre�x � of a Petri net � is a�nite ayli net whih impliitly represents all the reahable states of � togetherwith transitions enabled at those states. Intuitively, it an be obtained throughunfolding � , by suessive �rings of transition, under the following assumptions:(a) for eah new �ring a fresh transition (alled an event) is generated; (b) foreah newly produed token a fresh plae (alled a ondition) is generated. Theunfolding is in�nite whenever � has an in�nite run; however, if � has �nitelymany reahable states then the unfolding eventually starts to repeat itself andan be trunated (by identifying a set of ut-o� events) without loss of infor-mation, yielding a �nite and omplete pre�x. The sets of onditions, events andut-o� events of the pre�x are denoted by B, E and Eut , respetively. (Notethat Eut � E).EÆient algorithms exist for building suh pre�xes [5℄, whih ensure that thenumber of non-ut-o� events jE n Eut j in a omplete pre�x an never exeedthe number of reahable states of � . Moreover, omplete pre�xes are often ex-ponentially smaller than the orresponding state graphs, espeially for highlyonurrent Petri nets, beause they represent onurreny diretly rather thanby multidimensional `diamonds' as it is done in state graphs. For example, if theoriginal Petri net onsists of 100 transitions whih an �re one in parallel, thestate graph will be a 100-dimensional hyperube with 2100 verties, whereas theomplete pre�x will oinide with the net itself. Another example, viz. a Petrinet modelling two dining philosophers, and a �nite and omplete pre�x of itsunfolding, are shown in Fig. 1. One an observe that if this example is saled up,the size of the pre�x is linear in the number of dining philosophers, even thoughthe number of reahable states grows exponentially.
142

p1p2p3
p4
p5p6t1 t2

t3 t4t5 p7
p8 p9p10p11

p12
p13p14 t6t7

t8t9 t10
(a)1p1 2p7 3p8 4p9

5p2
6p3 7p10
8p11

9p410p511p1212p13
13p6
14p14

15 p116 p717 p818 p719 p820 p9
e1t1
e2t6

e3t2e4t3e5t7e6t8
e7t4
e8t9

e9t5ut-o�
e10t10ut-o�(b)Fig. 1. A Petri net modelling two dining philosophers (a) and a �nite and ompletepre�x of its unfolding (b).Sine � is ayli, the transitive losure of its ow relation is a partial order< on B [E, alled the ausality relation. (The reexive order orrespondingto < will be denoted by �.) Intuitively, all the events whih are smaller thanan event e 2 E w.r.t. < must preede e in any valid exeution ontaining e.Two nodes x; y 2 B [E are in onit, denoted x#y, if there are distintevents e; f 2 E suh that �e \ �f 6= ; and e � x and f � y. Intuitively, novalid exeution an ontain two events in onit. Two nodes x; y 2 B [E areonurrent, denoted x o y, if neither y#y0 nor y � y0 nor y0 � y. Intuitively,two onurrent events an be enabled simultaneously, and exeuted in any order,or even onurrently. For example, in the pre�x shown in Fig. 1(b) the followingrelationships hold: e1 < e7, e7#e8 (due to the hoies at 2 and 3) and e3 o e4.The reahable markings of � an be represented using on�gurations of �. Aon�guration is a set of events C � E nEut suh that for all e; f 2 C, :(e#f)and, for every e 2 C, f < e implies f 2 C. For example, in the net shown inFig. 1(b), fe1; e3; e4g is a on�guration, whereas fe1; e2; e3; e5g and fe1; e3; e7g

143

x1x2
x3x4 _̂ �g1g2 g3 [g1 $ (:x1 _ x2 _ x3 _ x4)℄^[g2 $ (x1 ^ x2 ^ x3 ^ x4)℄^[g3 $ (g1 � g2)℄�[(:g1 _ :x1 _ x2 _ x3 _ x4)^(g1 _ x1) ^ (g1 _ :x2)^(g1 _ :x3) ^ (g1 _ :x4)℄^[(g2 _ :x1 _ :x2 _ :x3 _ :x4)^(:g2 _ x1) ^ (:g2 _ x2)^(:g2 _ x3) ^ (:g2 _ x4)℄^[(:g1 _ :g2 _ :g3) ^ (:g1 _ g2 _ g3)^(g1 _ :g2 _ g3) ^ (g1 _ g2 _ :g3)℄Fig. 2. Conversion of a Boolean iruit into a Boolean expression in the CNF.are not (the former inludes events in onit, e3#e5, while the latter does notinlude e4 < e7). Intuitively, a on�guration is a partial-order exeution, i.e., anexeution where the order of �ring of some of its events (viz. onurrent ones) isnot important; e.g., the on�guration fe1; e3; e4; e7g orresponds to two totallyordered exeutions: e1e3e4e7 and e1e4e3e7. Sine a on�guration an orrespondto multiple exeutions, it is often muh more eÆient in model heking toexplore on�gurations rather than exeutions.After starting � from the impliit initial marking (whereby one puts a singletoken in eah ondition whih does not have an inoming ar) and exeuting allthe events in C, one reahes the marking denoted by Cut(C). Mark (C) denotesthe orresponding marking of � , reahed by �ring a transition sequene orre-sponding to the events in C. It is remarkable that eah reahable marking of� is Mark (C) for some on�guration C of �, and, onversely, eah on�gura-tion C of � generates a reahable marking Mark (C). Thus various behaviouralproperties of � an be re-stated as the orresponding properties of �, and thenheked, often muh more eÆiently.Boolean satis�ability The Boolean satis�ability problem (SAT) onsists in�nding a satisfying assignment, i.e., a mapping A : Var' ! f0; 1g de�ned onthe set of variables Var' ourring in a given Boolean expression ' suh that 'evaluates to 1. This expression is often assumed to be given in the onjuntivenormal form (CNF) ' = Vni=1Wl2Li l, i.e., it is represented as a onjuntion oflauses, whih are disjuntions of literals, eah literal l being either a variable orthe negation of a variable. It is assumed that no two literals in the same lauseorrespond to the same variable.In order to solve a Boolean satis�ability problem, SAT solvers perform ex-haustive searh assigning the values 0 or 1 to the variables, using heuristis toredue the searh spae [10℄. Some of the leading SAT solvers, e.g., zChaff [8℄,an be used in the inremental mode, i.e., after solving a partiular SAT instanethe user an slightly hange it (e.g., by adding and/or removing a small num-ber of lauses) and exeute the solver again. This is often muh more eÆientthan solving these related instanes as independent problems, beause on thesubsequent runs the solver an use some of the useful information (e.g., learntlauses [10℄) olleted so far.Boolean iruits A Boolean iruit (see, e.g., [9℄) omputes a multiple-outputBoolean funtion of Boolean input variables x1; : : : ; xn. It onsists of a �nite

144

number k of gates G1; : : : ; Gk . Eah gate Gi is labelled by a Boolean funtion fihosen from some �xed set of Boolean funtions F . (In this paper, F omprisesall the unary and binary Boolean funtions and onjuntions and disjuntionsof arbitrary arity with arbitrary input inversions.) A Boolean iruit an berepresented by an ayli direted graph, where the input variables and theonstants 0 and 1 are its soures, and the vertex representing the gate Gi hasarity(fi) numbered inoming edges from its predeessors in the graph. (If fi isommutative, the numbering of edges does not have to be spei�ed.) In pitures,eah gate is represented as a irle with the funtion shown within it, and inputinversions are shown as `bubbles'. Note that F is losed w.r.t. input inversions,and so they an be inorporated into the orresponding gate funtion.The Boolean funtion fv omputed at a vertex v of this ayli graph is de-�ned indutively as follows. If v is an input variable xj then fv(x1; : : : ; xn) df= xj ,and if it is a onstant 2 f0; 1g then fv(x1; : : : ; xn) df= . Otherwise, the vertex issome gate Gi, and fv(x1; : : : ; xn) df= fi(p1; : : : ; parity(fi)), where p1; : : : ; parity(fi)are the funtions omputed at the predeessors of this vertex in the graph. Theoutput vetor (v1; : : : ; vm), where vi is some vertex of the graph, desribes whatthe iruit omputes, viz. the multiple-output Boolean funtion (fv1 ; : : : ; fvm).In partiular, any Boolean formula over the signature F an be represented asa iruit.It turns out that a Boolean iruit an be eÆiently enoded by a Booleanexpression ' in the CNF depending on the variables Var' orresponding to theverties of the graph representing the iruit (exept 0 and 1) suh that for anyassignment A : Var' ! f0; 1g, A is a satisfying assignment of ' i� for everyv 2 Var', fv(A(x1); : : : ; A(xn)) = A(v) (where the variables are denoted bythe same symbol as the orresponding verties of the graph) and A(0) df= 0 andA(1) df= 1.The expression ' is onstruted as follows. For eah gate Gi, a new Booleanvariable gi representing its output is reated, a Boolean equation relating gi tothe inputs of Gi is written down, and these equations are onverted into theCNF. This proess is illustrated in Fig. 2. Note that for a gate labelled with aBoolean funtion of bounded arity, the size of the orresponding equation (andits CNF) is bounded by a onstant; moreover, for a gate labelled with a multiple-input onjuntion or disjuntion, the size of the equation (and its CNF) is linearin the number of gate inputs. Thus the size of the resulting Boolean expressionin the CNF is linear in the size of the iruit.Model heking based on Petri net unfoldings This paper onentrateson the following approah to model heking. First, a �nite and omplete pre�xof the Petri net unfolding is built, and it is then used for onstruting a Booleanformula enoding the model heking problem at hand. (It is assumed that theproperty being heked is the unreahability of some `bad' states, e.g., dead-loks.) This formula is unsatis�able i� the property holds, and suh that anysatisfying assignment to its variables yields a trae violating the property beingheked.
145

Typially suh a formula would have for eah non-ut-o� event e of the pre�xa variable onfe (the formula might also ontain other variables), and for everysatisfying assignment A, the set of events C df= fe j onfe = 1g is a on�gurationsuh that Mark (C) violates the property being heked. The formula often hasthe form CONF ^ VIOL. The role of the on�guration onstraint, CONF , isto ensure that C is a on�guration of the pre�x (not just an arbitrary set ofevents). CONF an be de�ned as the onjuntion of the formulae^e2EnEut ^f2�(�e)(onfe ! onff) and ^e2EnEut ^f2((�e)�nfeg)nEut:(onfe ^ onff) :The former formula ensures that if e 2 C then its immediate predeessors arealso in C, i.e., C is downward losed w.r.t. <. The latter one ensures that Contains no onits. CONF an be transformed into the CNF by applying therules x ! y � :x _ y and :(x ^ y) � :x _ :y. For example, the on�gurationonstraint for the pre�x shown in Fig. 1(b) is(onfe3!onfe1)^(onfe4!onfe1)^(onfe5!onfe2)^(onfe6!onfe2)^(onfe7!onfe3)^(onfe7!onfe4)^(onfe8!onfe5)^(onfe8!onfe6)^:(onfe3^onfe5)^:(onfe4^onfe6) :The role of the violation onstraint, VIOL, is to express the property viola-tion ondition for a on�guration C, so that if a on�guration C satisfying thisonstraint is found then the property does not hold, and any ordering of eventsin C onsistent with < is a violation trae. For example, for deadlok hekingVIOL an be de�ned aŝe2E � _f2�(�e):onff _ _f2(�e)�nEutonff� :This formula requires for eah event e (inluding ut-o� events) that some of thediret ausal predeessors of e has not �red or some of the non-ut-o� events(inluding e unless it is ut-o�) onsuming tokens from �e has �red, and thus eis not enabled. This formula is already in the CNF. For example, the violationonstraint for the deadlok heking problem formulated for the pre�x shown inFig. 1(b) isonfe1^onfe2^(:onfe1_onfe3)^(:onfe1_onfe4)^(:onfe2_onfe5)^(:onfe2_onfe6)^(:onfe3_:onfe4_onfe7)^(:onfe5_:onfe6_onfe8)^:onfe7^:onfe8 :Shortest violation traes Note that in general the omputed violation traean be quite long, whih might make it diÆult to loate the error, as the designerhas to inspet this trae in order to �nd and eliminate the soure of the problem.(And parts of suh long traes often desribe inidental system ativity whihis unrelated to the problem.) Thus omputing shortest possible violation traesan greatly failitate the debugging proess.A quite obvious algorithm for omputing the shortest violation trae is shownin Fig. 3, where SAT Assignment(') is a funtion omputing a satisfying as-signment for a Boolean formula ' and returning UNSAT in ase ' is unsat-is�able (it is usually implemented by a all to some o�-the-shelf SAT solver,
146

input : ' | a Boolean formulaoutput : T | the shortest violation trae or UNSATA SAT Assignment (')if A = UNSATthenT UNSATstopT Extrat Trae(A)r jT jl 0while l < r dot d(l+ r)=2eA SAT Assignment(' ^ Threshold t)if A = UNSATthenl = t+ 1elseT Extrat Trae(A)r jT jFig. 3. An algorithm for omputing shortest violation traes.e.g., zChaff [8℄), Extrat Trae(A) is a funtion extrating the violation traefrom a satisfying Boolean assignment A, and Threshold t is the threshold on-straint jfe j onfe = 1gj � t. This algorithm uses a binary searh to omputethe length of the shortest trae still exhibiting the violation. If the propertyholds (i.e., if ' is unsatis�able) then this algorithm does not have any additionaloverhead ompared with the original model heking algorithm, but in the aseof errors the SAT solver is alled several times with larger formulae, and so theoverhead might be quite signi�ant. This situation is somewhat alleviated bythe fat that SAT instanes are very similar to eah other (in fat, even the for-mulae of the form Threshold t, desribed in detail further in this paper, hangevery little when t hanges) and thus an be eÆiently solved in the inrementalmode. Moreover, the user always an terminate the exeution of the algorithmand get the shortest violation trae omputed so far.What still needs desribing is the onstrution of the formula Threshold t for agiven t. It turns out that one an exploit some problem-spei� optimisations inorder to signi�antly redue the size of this formula as well as the omputatione�ort required for solving the orresponding SAT instanes. This is the maintopi of this paper.2 Basi translation of a threshold onstraintThreshold t an be expressed as a pseudo-Boolean onstraintPe2EnEut onfe � t,where arithmetial operations are used instead of logial ones. The other on-straints an also be onverted into a similar form, and the problem an be solvedby a 0{1 integer linear programming solver. However, SAT solvers tend to be
147

x1 � � � xnCounter�tz
(a) y1 y2 y3 � � � yk1 f1 f2 f3 � � � fk zfi df= �^ if ti = 0_ otherwise

(b)

x1 x2�1 x3 x4�1 x5 x6�1 x7 x8�1�2 �2
z�3

()
x1 y1

z1h/a x2 y2
z2f/a � � �� � � xk yk

zkf/a zk+1
(d)

x y� _z o(e) x yh/ai zh/a _ o(f)Fig. 4. Implementations of a threshold onstraint (a); a omparator (b), where theinputs y1; : : : ; yk are interpreted as the binary representation of a non-negative integer(least signi�ant digit �rst) and t1; : : : ; tk is the binary representation of t; a ounter asa balaned tree of adders (); a k-bit adder �k omprising a half-adder ell and k � 1full-adder ells (d); and half-adder and full-adder ells (e,f).
148

more eÆient in pratie, and so in many ases it would be advantageous toexpress Threshold t as a purely Boolean onstraint.A possible implementation of Threshold t as a Boolean iruit is shown inFig. 4(a). It onsists of two parts: the ounter and the omparator. The ounteriruit has n inputs and dlog2 ne + 1 outputs, and its purpose is to ount thenumber of ones among its inputs and return the result as a binary number. Thepurpose of the omparator is to ompare this number with a given onstant t.Note that the ounter iruit does not depend on t and so the orrespond-ing part of the formula does not have to be hanged between the alls to theSAT solver in the algorithm shown in Fig. 3. A possible implementation of theomparator is shown in Fig. 4(b). Note that it does depend on t, and so theorresponding part of the formula has to be amended from all to all. How-ever, the size of the omparator is just O(log n). Thus this implementation ofthe threshold onstraint is bene�ial if the SAT solver is used in the inrementalmode. The rest of this setion is devoted to the ounter iruit.Fig. 4() illustrates an implementation of the ounter as a tree of adders,where eah adder is built of half-adder and full-adder ells, as shown in Fig. 4(d).A half-adder ell adds up two one-bit numbers, produing a one-bit result anda arry bit. A full-adder ell adds up two one-bit numbers and a arry from theprevious ell of the adder, produing a one-bit result and a arry bit. Fig. 4(e,f)shows possible implementations of these ells.The desribed iruit an be onverted to a linear-size formula in the CNF,as desribed in Setion 1. However, somewhat shorter formulae an be obtainedusing Boolean minimisation when translating half-adder and full-adder ells. Ityields the formulae(:x_:y_:z)^(x_:y_z)^(x_y_:z)^(y_:o)^(:x_o_z)^(:o_:z)with 2 new variables, 6 lauses and 16 literals for a half-adder ell, and(i_:x_y_z)^(i_x_:y_z)^(:i_:x_y_:z)^(:i_x_:y_:z)^(:i_o_z)^(i_:o_:z)^(:x_:y_o)^(x_y_:o)^(:i_:x_:y_z)^(i_x_y_:z)with 2 new variables, 10 lauses and 36 literals for a full-adder ell.It is shown in [6℄ that if n is a power of 2 then the resulting CNF formula forthe ounter ontains 4n� 2 log2 n� 4 auxiliary variables (orresponding to gateoutputs), 16n� 10 log2 n� 16 lauses and 52n� 36 log2 n� 52 literals, i.e., eventhough the size of the formula is linear in the number of the iruit's inputs, themultipliative onstants hidden in this O(n) translation are quite large. Nextsetion tries to remedy this situation by exploiting the struture of the pre�x toimprove the desribed translation.3 Exploiting the struture of the pre�xThe ontent of this setion is the main ontribution of this paper. It turns outthat the struture of the pre�x an be exploited to redue the size of the ounteriruit. Below, two heuristis are desribed, one utilising the onits betweenthe events in the pre�x, and the other making use of the ausality relation.
149

Exploiting the onits One an observe that if E0 � E n Eut is a set ofevents whih are in onit with eah other (i.e., E0 is a lique in the graphorresponding to the relation #) then no two events from E0 an belong to thesame on�guration. The on�guration onstraint ensures that at most one ofthe variables onfe orresponding to the events in E0 is assigned the value 1,i.e., 1 � jfe 2 E0 j onfe = 1gj = We2E0 onfe, and so a single _-gate is suÆientto ount the number of variables assigned the value 1.De�nition 1 (#-luster). A set of events E0 � E nEut is a #-luster if forall distint events e; f 2 E0, e#f .Thus the non-ut-o� events of the pre�x are partitioned into #-lusters, then_-gates are used to ount in eah #-luster the number of variables orrespondingto its events and assigned the value 1, and a ounter (hopefully, of a muhsmaller size) is used to ount the number of outputs of these _-gates having thevalue 1. Sine the translation of an _-gate into a Boolean expression is muhsmaller than the translation of a ounter, one an expet redutions in the sizeof the resulting formula. For example, ffe1g; fe2g; fe3; e5g; fe4; e6g; fe7; e8gg isa possible partition into #-lusters of the non-ut-o� events of the pre�x shownin Fig. 1(b).When partitioning the non-ut-o� events of the pre�x into #-lusters, it isadvantageous to make the number of suh #-lusters as small as possible. (Whenthe number of #-lusters is large, the size of the ounter grows; in partiular, forthe trivial partition with eah event forming its own #-luster the translationdegrades to the one desribed in the previous setion.) Thus one an formulatean optimisation problem of partitioning the non-ut-o� events of a pre�x into thesmallest number of #-lusters. Unfortunately, a deision version of this problemturns out to be NP-omplete.Proposition 1 (NP-ompleteness of the Partition into #-lusters prob-lem). Given an unfolding pre�x � and a k 2 N, the problem of deiding whetherthe set of non-ut-o� events of � an be partitioned into at most k #-lusters isNP-omplete.The proof is by redution from the Partition into Cliques problem, whih isknown to be NP-omplete [3, Problem GT15℄, and an be found in [6℄.When omputing the shortest violation trae, one does not want to spend toomuh e�ort on building the threshold onstraints, as the proess of building theman easily beome more time onsuming then model heking itself. Therefore,in the atual implementation, a fast `greedy' algorithm for partitioning the set ofevents into #-lusters was adopted, whih is justi�able in the view of the aboveresult. This algorithm is desribed in [6℄.Exploiting the ausality relation The method desribed above allowed forsimpli�ation of the threshold onstraint by exploiting the onit relation be-tween the events in the pre�x. It turns out that the ausality relation an alsobe exploited to redue the size of the translation even further.
150

y1 y2 y3 y4 y5 y6 y7 y8
z4z3z2z1

^^ ^_ ^^ ^ ^_ zi df=� k�2i�12i �_j=0 y2i(j+ 12)^:y2i(j+1)i 2 f1; : : : ; dlog2 ke+ 1gyk0 df= 0 if k0 > k
Fig. 5. An implementation of an eight-input ounter with the values of inputs on-strained to be in a non-inreasing order.De�nition 2. Let Cl and Cl 0 be two #-lusters. Cl � Cl 0 if for eah evente0 2 Cl 0 there exists an event e 2 Cl suh that e < e0. A sequene of #-lustersCl1 � Cl2 � � � � � Clk is alled a �-hain.For example, fe4; e6g � fe7; e8g is a �-hain of the pre�x shown in Fig. 1(b).It follows from this de�nition that if Cl � Cl 0 and an event e0 2 Cl 0 be-longs to a on�guration C then some event e 2 Cl also belongs to C. SupposeCl1 � Cl2 � � � � � Clk is a �-hain and y1; : : : ; yk are the outputs of the_-gates orresponding to these #-lusters. The on�guration onstraint ensuresthat in any satisfying assignment the sequene of values of y1; : : : ; yk is non-inreasing. This allows one to ount the number of ones among these valuesmuh more eÆiently than by a ounter desribed in the previous setion. In-deed, the enoding of the inputs is very similar to the 1-hot enoding, whihan be obtained from y1; : : : ; yk as :y1; y1 ^ :y2; y2 ^ :y3; : : : ; yk�1 ^ :yk; ykand subsequently onverted into the binary ode using an enoder. A somewhatsmaller iruit is shown in Fig. 5.Thus one an partition the ayli direted graphG� orresponding to the�relation on the #-lusters into �-hains, then build for eah �-hain a iruitsimilar to the one shown in Fig. 5, and �nally onstrut an adder tree similarto that in Fig. 4(), but with the bottom layer omprised of the built oun-ters rather than half-adders. The algorithm shown in Fig. 6 does this tryingto balane the resulting adder tree. ExtratMin(Q) extrats and returns a pair(;m) 2 Q (where is a iruit and m 2 N is the maximum value this iruitan output) with the minimum value of m, and Add(1; 2) onstruts a iruitwhih omputes the sum of values omputed by 1 and 2 (i.e., an adder is put`on top' of 1 and 2). Note that Q is a priority queue and an be eÆientlyimplemented as either a binary heap or by keeping a list of iruits for eah m.When partitioning G� into�-hains, it is advantageous to make the numberof suh�-hains as small as possible, in order to redue the number of adders inthe adder tree. Thus one an formulate an optimisation problem of partitioning

151

input : Q | a non-empty set of pairs (;m), where is a iruit and m 2 Noutput : | a iruitwhile jQj > 1 do(1;m1) ExtratMin(Q)(2;m2) ExtratMin(Q)Q Q [f(Add(1; 2);m1 +m2)g/* now jQj=1 */(;m) ExtratMin(Q)return Fig. 6. An algorithm for building a tree of adders.G� into the smallest number of �-hains. This is essentially the well-knownminimum vertex-disjoint path over problem (zero-length paths omprising asingle vertex are admissible).This problem is NP-omplete for general graphs, sine heking the existeneof a Hamiltonian path is equivalent to heking whether it is possible to over theverties of a given graph by a single vertex-disjoint path. Nevertheless, for ayligraphs (note that G� is ayli) it an be redued to the maximum mathingproblem on a bipartite graph, and solved in polynomial time [4℄. However, oneshould bear in mind that G� is given impliitly, and an be very large. (It isnot unommon to have an unfolding pre�x with hundreds thousands events.)Therefore, using an exat algorithm for solving this problem might be either toomemory demanding (if G� is built expliitly), or too slow due to the need ofworking with an impliitly represented graph (heking whether there is an arbetween two verties of G� is quite expensive in suh a ase, as one might haveto traverse the whole pre�x). Thus a fast `greedy' algorithm for partitioning theset of #-lusters into �-hains has been designed. It is desribed in [6℄.4 Experimental resultsThe proposed method has been tested with the zChaff SAT solver [8℄, andthe popular set of deadlok heking benhmarks olleted by J.C. Corbett [1℄has been attempted. (For obvious reasons, only examples with deadloks fromthis olletion were used.) All the experiments were onduted on a PC with aPentiumTM IV/2.8GHz proessor and 512M RAM.The experimental results are shown in Table 1, where the meaning of theolumns is as follows (from left to right): the name of the problem; the num-ber of non-ut-o� events in the pre�x; the lengths of the �rst omputed and ashortest violation traes; the number of #-lusters and �-hains omputed bythe heuristi algorithms desribed in [6℄; the size (the number of new variables,lauses and literals) of the translation of the ounter iruit for the basi trans-lation desribed in Setion 2 and for the improved one desribed in Setion 3;and the time taken by the SAT solver to ompute the �rst violation trae andthe time taken by the algorithm in Fig. 3 to ompute a shortest violation traeusing the basi and the improved translations of the ounter.
152

Problem Pre�x Trae Partitions Translation of ounter TimeBasi ImprovedjEnEut j 1st shtst #-l �-h vars ls lits vars ls lits 1st Bas. Imp.Q 7229 75 21 179 25 28881 115479 375221 520 8781 26031 <1 3 1Speed 1663 24 4 30 9 6620 26436 85832 98 1952 5806 <1 1 <1Da(6) 53 6 6 23 11 195 761 2437 72 279 833 <1 <1 <1Da(9) 95 9 9 35 17 359 1409 4527 116 460 1372 <1 <1 <1Da(12) 146 12 12 47 23 564 2236 7230 160 662 2000 <1 <1 <1Da(15) 206 43 15 59 29 802 3182 10292 205 864 2600 <1 <1 <1Dp(6) 66 6 6 18 6 247 973 3135 55 222 628 <1 <1 <1Dp(8) 120 8 8 24 8 461 1823 5885 75 341 987 <1 <1 <1Dp(10) 190 10 10 30 10 737 2919 9431 96 475 1381 <1 <1 <1Dp(12) 276 12 12 36 12 1082 4306 13954 119 635 1861 <1 <1 <1Elev(1) 98 9 9 16 5 374 1478 4770 43 222 640 <1 <1 <1Elev(2) 496 22 12 24 7 1960 7812 25336 65 685 2017 <1 <1 <1Elev(3) 2266 30 15 32 9 9033 36095 117239 94 2549 7607 <1 <1 <1Elev(4) 9598 23 18 40 11 38354 153366 498344 117 9950 29798 2 27 3Hart(25) 101 26 26 76 26 385 1519 4897 218 826 2528 <1 <1 <1Hart(50) 201 51 51 151 51 783 3109 10061 440 1684 5188 <1 <1 <1Hart(75) 301 76 76 226 76 1180 4692 15196 666 2566 7942 <1 <1 <1Hart(100) 401 101 101 301 101 1581 6299 20425 888 3424 10602 <1 <1 <1Key(2) 454 52 42 103 18 1792 7140 23152 285 1309 3761 <1 <1 <1Key(3) 4057 53 43 223 41 16194 64730 210284 680 6123 18051 <1 20 2Key(4) 35905 65 44 407 82 143582 574286 1866352 1269 39797 118855 <1 548 224Mmgt(1) 38 6 6 11 2 136 528 1686 25 98 250 <1 <1 <1Mmgt(2) 385 8 8 26 7 1518 6050 19622 80 618 1806 <1 <1 <1Mmgt(3) 3312 10 10 36 6 13217 52831 171631 98 3584 10658 <1 <1 <1Mmgt(4) 25945 12 12 44 7 103741 414915 1348381 119 26273 78693 77 86 80Sent(25) 176 34 3 40 3 684 2716 8790 69 370 1028 <1 <1 <1Sent(50) 201 59 3 65 3 783 3109 10061 98 480 1302 <1 <1 <1Sent(75) 226 84 3 90 3 883 3509 11361 123 579 1549 <1 <1 <1Sent(100) 251 109 3 115 3 980 3888 12574 149 681 1803 <1 <1 <1Table 1. Experimental results for deadlok heking.The experiments show that in many ases the �rst omputed violation traewas muh longer than a shortest one, with the results for the Sent benhmarksbeing partiularly impressive. This on�rms that in pratie omputing shortestviolation traes an indeed greatly failitate the debugging proess.One an see that the number of #-lusters and �-hains is usually quitesmall ompared to the number of non-ut-o� events in the pre�x, and thus theredution in the size of the formula is quite signi�ant. It is possible to evaluatethe maximum redution whih an be ahieved by the improved translation overthe basi one as follows. In the ideal ase, all the events in the pre�x would bein onit with eah other, and so the ounter iruit an be implemented as asingle _-gate. Suh an implementation results in one new variable (for the gate'soutput), n + 1 lauses and 3n + 1 literals in the orresponding CNF formula,where n = jE n Eut j. The orresponding parameters for the basi translationare given in Setion 2, and the improvement ratios for new variables, lausesand literals are (4n� 2 log2 n� 4)=1 � 4n, (16n� 10 log2 n� 16)=(n+ 1) � 16and (52n�36 log2 n�52)=(3n+1) � 17 13 , respetively. Thus the redution ratiofor variables an grow unboundedly with n, whereas for lauses and literals it isbounded by 16 and 17 13 , respetively.The improvement ratios for the benhmarks in Table 1 are plotted in Fig. 7.One an see that for the number of new variables, the redution ratio indeedgrows with the size of the pre�x (though not as fast as in the ideal ase), and is
153

Fig. 7. Improvement ratios.between two and three orders of magnitude for large benhmarks. For lauses andliterals, the improvement rate also grows with the size of the pre�x, and omessurprisingly lose to the best possible ratio for large benhmarks. Moreover, itshould be noted that sine the improved translation uses a lot of multiple-input_-gates, the orresponding CNF formula has many lauses of length two, whihmakes the SAT instane easier for the solver.The omparison of the running times of the algorithms shows that, exeptone test ase, it was not too time-onsuming to ompute a shortest violationtrae. (This is probably due to the fat that only a few benhmarks are large.)Moreover, the improved approah has a lear advantage over the basi one interms of time. The only benhmark where omputing the shortest violation traeby the improved method took signi�antly more time than just solving the orig-inal model heking problem was Key(4). (Note that for Mmgt(4) the inreasein time was quite modest, whih an be explained by the fat that the �rst om-puted violation trae was already optimal and very short.) In general, however,one an expet a signi�ant inrease in time when omputing the shortest viola-tion traes, due to the following phenomenon, related to phase transition. Let t�be the length of the shortest violation trae. If t is signi�antly larger than t�,adding the onstraint Threshold t to the formula will exlude only a few satisfy-ing assignments, and the resulting formula will not be muh harder for the solverthan the original one. On the other hand, if t is signi�antly smaller than t�,adding Threshold t to the formula will yield an overonstrained SAT instanewhih usually an be quikly proven unsatis�able. A hard situation an ourwhen t is lose to t�. In suh a ase, if the SAT instane is satis�able, it oftenhas only a small number of satisfying assignments (and thus suh an assignmentmight be diÆult to �nd), and if it is unsatis�able, it might be hard to show
154

this. The last part of Setion 1 disusses how the impat of this phenomenonan be alleviated in pratie.5 Conlusions and future workAlthough performed testing was limited in sope, one an draw some onlusionsabout the eÆieny of the proposed approah. Computing shortest violationtraes an failitate the debugging proess and save a lot of designer's time,sine in many ases the �rst omputed violation trae is muh longer than ashortest one. Aording to the experimental results, for large problem instanesit an redue the number of new variables in the formula by two{three ordersof magnitude, and ahieve almost optimal redution in the number of lausesand literals, i.e., the length of the CNF formula orresponding to the thresholdonstraint was surprisingly lose to that for a single multiple-input _-gate!The possible diretions for future researh inlude using a Boolean minimiserto derive short formulae not only for half-adder and full-adder ells but also foradders with a small number of inputs, and exploiting the struture of the pre�xto redue the size of other pseudo-Boolean onstraints enountered when dealingwith various model heking problems.Aknowledgements The author would like to thank Keijo Heljanko for fruitfuldisussions. This researh was supported by an EC IST grant 511599 (Rodin).Referenes1. J. C. Corbett: Evaluating Deadlok Detetion Methods for Conurrent Software.IEEE Transations on Software Engineering 22(3) (1996) 161{180.2. J. Esparza: Deidability and Complexity of Petri Net Problems | an Introdution.Letures on Petri Nets I: Basi Models. LNCS 1491 (1998) 374{428.3. M.Garey and D. Johnson: Computers and Intratability | A Guide to the Theoryof NP-ompleteness. Freeman (1979).4. J. E. Hoproft and R.M.Karp: An n5=2 Algorithm for Maximum Mathing in Bi-partite Graphs. SIAM Journal on Computing 2(4) (1973) 225{231.5. V.Khomenko: Model Cheking Based on Pre�xes of Petri Net Unfoldings. Shoolof Comp. Si., Univ. of Newastle (2003).6. V.Khomenko: Computing Shortest Violation Traes in Model Cheking Based onPetri Net Unfoldings and SAT. TRep. CS-TR-841, Shool of Comp. Si., Univ.of Newastle (2004). URL: http://homepages.s.nl.a.uk/vitor.khomenko/home.formal/papers/papers.html7. K. L.MMillan: Using Unfoldings to Avoid State Explosion Problem in the Veri�-ation of Asynhronous Ciruits. Pro. of CAV'1992, LNCS 663 (1992) 164{174.8. S.Moskewiz, C.Madigan, Y. Zhao, L. Zhang and S.Malik: Chaff: Engineering anEÆient SAT Solver. Pro. of DAC'2001, ASME Tehn. Publ. (2001) 530{535.9. I.Wegener: The Complexity of Boolean Funtions. Wiley-Teubner Series in Com-puter Siene (1987).10. L. Zhang and S.Malik: The Quest for EÆient Boolean Satis�ability Solvers. Pro.of CAV'2002, E. Brinksma and K.G. Larsen (Eds.). LNCS 2404 (2002) 582{595.

155

