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Preface 
 

This report contains the proceedings of the 2005 workshop on Rigorous Engineering of 
Fault Tolerant Systems (REFT 2005) held in conjunction with the Formal Methods 2005 
conference in Newcastle upon Tyne, UK.  The aim of this one day workshop is to bring 
together researchers who are interested in the application of rigorous design techniques to 
the development of fault tolerant software based systems.  Fault tolerance design techniques 
are essential for increasing the dependability of complex systems.  It is our belief that such 
techniques need to be designed into systems in a rigorous and principled way.  It is also our 
belief that the use of formal methods is essential for rigorous engineering of any complex 
system.  Through abstraction, refinement and proof, formal methods provide design 
techniques that support clear thinking as well rigorous validation and verification. Good tool 
support is also required to support the industrial application of these design techniques. 

The nature of scientific research is such that people tend to belong to communities with 
common interests and usually there is insufficient dialogue between communities who may 
have much to offer each other.  In organising this workshop we sought contributions from 
the fault tolerance community and the formal methods community.  Our hope is that the 
formal methods people can learn more about, and perhaps be fired up by, challenging 
issues in fault tolerant design.  Likewise, we hope that researchers on fault tolerance can 
understand better how formal methods could improve the way in which their techniques are 
developed and applied. 

The REFT 2005 workshop was organised by the partners of FP6 IST RODIN (Rigorous Open 
Development Environment for Complex Systems).  Rigorous design of fault tolerant systems 
is a major theme of the RODIN project.  In organising this workshop we are aiming to build 
a network of researchers from the wider community to promote integration of the 
dependability and formal methods research. 

We were delighted with the quality and relevance of the paper submissions that we 
received for the workshop.  Approximately half the papers are from members of the RODIN 
project while the other half are from the wider community. 

We have several papers from fault tolerance researchers, several from formal methods 
researchers and several that involve researchers in both communities. It is encouraging to 
see that many of the papers are addressing software based systems that impact peoples' 
everyday lives such as communications systems, mobile services, control systems, medical 
devices and business transactions.  We hope that you enjoy reading these proceedings and 
encourage you to contribute to our aim of closer collaboration between dependability and 
formal methods research. 
 
 
Michael Butler   (University of Southampton) 
Cliff Jones   (University of Newcastle upon Tyne) 
Alexander Romanovsky  (University of Newcastle upon Tyne) 
Elena Troubitsyna  (Aabo Akademi) 
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Using domain models to specify systems 

Invited Talk 

Ian Hayes 

School of Information Technology and Electrical Engineering 
The University of Queensland 

Australia 
 

Abstract: In order to specify a control system one needs a model of the domain being 
controlled including its interface to the controlling machine. It should be adequate to 
formally specify:  

• the overall system's required behaviour (1),  
• the assumptions the machine can rely on about the domain's (normal) 

behaviour (2), and  
• the constraints on the way the domain may be controlled via its interface.  

To accommodate fault-tolerance one also needs to be able to formally specify:  

• hazardous behaviour of the system (to be avoided),  
• possible misbehaviour of the domain -- faults or failure modes -- this 

weakens the assumptions (2),  
• allowable responses to faults -- this weakens (1), and  
• healthy behaviour of the domain to allow checks to be made on the domain's 

behaviour -- this should imply the assumptions (2).  

Choice of an adequate level of abstraction for the domain model is essential (and 
difficult). It should allow the specification of the above characteristics without 
including extraneous characteristics. For this an engineer with domain experience is 
typically required. 
 
This work is conducted in cooperation with Michael Jackson and Cliff Jones. 
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Abstract. We present work in progress on a methodology for the engineering, 
validation and verification of generic requirements using domain engineering 
and formal methods. The need to develop a generic requirement set for 
subsequent system instantiation is complicated by the addition of the high 
levels of verification demanded by safety-critical domains such as avionics. We 
consider the failure detection and management function for engine control 
systems as an application domain where product line engineering is useful. The 
methodology produces a generic requirement set in our, UML based, formal 
notation, UML-B. The formal verification both of the generic requirement set, 
and of a particular application, is achieved via translation to the formal 
specification language, B, using our U2B and ProB tools. 

Introduction  

The notion of software product line (also known as system family) engineering be-
came well established [14], after Parnas’ proposal [18] in the 70’s of information hid-
ing and modularization as techniques that would support the handling of program 
families. Product line engineering arises where multiple variants of essentially the 
same software system are required, to meet a variety of platform, functional, or other 
requirements. This kind of generic systems engineering is well known in the avionics 
industry; e.g. [12, 10] describe the reuse of generic sets of requirements in engine 
control and flight control systems. 

Domain analysis and object oriented frameworks are among numerous solutions 
proposed to product line technology. In Domain-Specific Software Architecture [23] 
for example, the domain engineering of a set of general, domain-specific requirements 
for the product line is followed by its successive refinement, in a series of system en-
gineering cycles, into specific product requirements. On the other hand [11] describes 
the Object-Oriented Framework as a “a reusable, semi-complete application that can 
be specialized to produce custom applications”. Here the domain engineering pro-

                                                           
1 This work is part of the EU funded research project: IST 511599 RODIN (Rigorous Open 

Development Environment for Complex Systems). 
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duces an object-oriented model that must be instantiated, in some systematic way, for 
each specific product required. In this work we combine object-oriented and formal 
techniques and tools in domain and product line engineering.  

It is widely recognized that formal methods (FM) technology makes a strong con-
tribution to the verification required for safety-critical systems [15]. It is further rec-
ognized that FM will need to be integrated [3] in as “black-box” as possible a manner 
in order to achieve serious industry penetration. The B method of J.-R. Abrial [1, 19] 
is a formal method with good tool support [2, 8], and a good industrial track record, 
e.g. [9]. At Southampton, we have for some years been developing an approach of in-
tegrating formal specification and verification in B, with the UML [7]. The UML-B 
[22] is a profile of UML that defines a formal modelling notation combining UML 
and B. It is supported by the U2B tool [20], which translates UML-B models into B, 
for subsequent formal verification. This verification includes model-checking with the 
ProB model-checker [13] for B. These tools have all been developed at Southampton, 
and continue to be extended in current work.  

Failure detection and management for engine control  

A common functionality required of many systems is to detect and manage the failure 
of its inputs. This is particularly pertinent in aviation applications where lack of toler-
ance to failed system inputs could have severe consequences. The failure manager 
filters inputs from the controlled system, providing the best information possible and 
determining whether a transducer or system component has failed or not. 

Inputs may be tested for magnitude, rate of change and consistency with other in-
puts. When a failure is detected it is managed in order to maintain a usable set of in-
put values for the control subsystem and provide ‘graceful degradation’. To prevent 
over-reaction to isolated transient values, a failed condition must be confirmed as per-
sistent before irreversible action is taken. Failure detection and management (FDM) 
in engine control systems is a demanding application area, see e.g. [6], giving rise to 
far more than a simple parameterizable product line situation. 

Our approach contributes to the failure detection and management domain by pre-
senting a method for the engineering, validation and verification of generic require-
ments for product-line engineering purposes. The approach exploits genericity both 
within as well as between target system variants. Although product-line engineering 
has been applied in engine and flight control systems [12, 10], we are not aware of 
any such work in the FDM domain. We define generic classes of failure-detection test 
for sensors and variables in the system environment, such as rate-of-change, limit, and 
multiple-redundant-sensor, which are simply instantiated by parameter. Multiple in-
stances of these classes occur in any given system. Failure confirmation is then a ge-
neric abstraction over these test classes: it constitutes a configurable process of execu-
tion of specified tests over a number of system cycles, that will determine whether a 
failure of the component under test has occurred. Our approach is focussed on the 
genericity of this highly variable process.  
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Fault Tolerance 

This application domain (and our approach to it) includes fault tolerant design in two 
senses: tolerance to faults in the environment, and in the control system itself. The 
FDM application is precisely about maximizing tolerance to faults in the sensed en-
gine and airframe environment. The control system (including the FDM function) - is 
supported by a backup control system in a dynamically redundant design. This backup 
system - with distinct hardware/software design, with a reduced-functionality sensing 
fit - can be switched in by a watchdog mechanism if the main system has failed. 

In the narrower (and more usual) sense, we will be examining various schemes for 
designing fault tolerance into the FDM software subsystem. Work to date has speci-
fied and validated a generic requirements specification for FDM. As we apply refine-
ment techniques and technology to construct the design, we will consider various 
relevant approaches, such as driving the specification of a control system from envi-
ronmental requirements [25], or the use of fault-tolerant patterns for B specifications 
[27] and their refinements [26]. 

Methodology  

The process for obtaining a generic model of requirements is illustrated in Fig. 1. The 
first stage is an informal domain analysis which is based on prior experience of devel-
oping products for the application domain of failure detection and management in en-
gine control. A taxonomy of the kind of generic requirements found in the application 
domain is developed and, from this, a first-cut generic entity-relationship model is 
formed by naming and relating the generic requirements.  

The identification of a useful generic model is a difficult process warranting further 
exploration. This is done in the domain engineering stage where a more rigorous ex-
amination of the first-cut model is undertaken, using UML-B, U2B and ProB. The 
model is animated by creating typical instances of its generic requirement entities, to 
test when it is and is not consistent. This stage is model validation by animation, using 
the ProB and U2B tools, to show that it is capable of holding the kind of information 
that is found in the application domain. During this stage the relationships between 
the entities are likely to be adjusted as a better understanding of the domain is devel-
oped. This stage results in a validated generic model of requirements that can be in-
stantiated for each new application.  

 

 
Fig. 1. Process for obtaining the generic model 
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For each new application instance, the requirements are expressed as instances of 
the relevant generic requirement entities and their relationships, in an instance model. 
The ProB model checker is then used to automatically verify that the application is 
consistent with the relationship constraints embodied in the generic model. This stage, 
producing a consistent instance model, shows that the requirements are a consistent 
set of requirements for the domain. It does not, however, show that they are the right 
set of requirements that will give the desired system behaviour. 

Our aim in future work, therefore, is to add dynamic features to the instantiated 
model in the form of variables and operations that model the behaviour of the entities 
in the domain and to animate this behaviour so that the instantiated requirements can 
be validated. We would prefer to add this behaviour in the generic model so that it too 
can be re-used by the instantiated model. 

During the domain analysis phase we found that considering the rationale for re-
quirements revealed key issues, which are properties that an instantiated model should 
possess. Key issues are higher level requirements that could be expressed at a more 
abstract level from which the generic model is a refinement. The generic model could 
then be verified to satisfy the key issue properties by proof or model checking. This 
matter is considered in [21] which gives an example of refinement of UML-B models 
in the failure management domain. 

The final stage is to validate the specific configuration. This would be done by pro-
viding actual values to generic behaviours when the generic mode is instantiated. The 
resulting specific model could then be animated to validate its behaviour. 

Finally, we recognize the need for tools to support uploading of bulk system in-
stance definition data, as well as the efficient and user-friendly validation/ debugging 
of said data. ProB could easily be enhanced to provide, for example, data counterex-
amples explaining invariant violations. 

Domain Analysis 

To obtain an initial understanding of the requirements domain we used domain analy-
sis in a similar style to Lam [12]. The first step was to define the scope of the domain 
in discussion with engine controller experts. An early synthesis of the requirements 
and key issues were formed, giving due attention to the rationale for the requirements. 
Considering the requirements rationale is useful in reasoning about requirements in 
the domain [12]. For example, the rationale for confirming a failure before taking ac-
tion is that the system should not be susceptible to spurious interference on its inputs. 
From the consideration of requirements rationale, key issues were identified which 
served as higher level properties required of the system. An example of such a prop-
erty would be that the failure management system must not be held in a transient ac-
tion state indefinitely. The rationale from which it has been derived is that a transient 
state is temporary and actions associated with this state may only be valid for a lim-
ited time. 

A core set of requirements were identified from several representative failure man-
agement engine systems. For example, the identification of magnitude tests with vari-
able limits and associated conditions established several magnitude test types; these 
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types have been further subsumed into a general detection type. This type structure 
provided a taxonomy for classification of the requirements.  

Domain analysis showed that failure management systems are characterised by a 
high degree of fairly simple similar units made complex by a large number of minor 
variations and interdependencies. The domain presents opportunities for a high degree 
of reuse within a single product as well as between products. For example, a magni-
tude test is usually required in a number of instances in a particular system. This is in 
contrast to the engine start domain addressed by Lam [12], where a single instance of 
each reusable function exists in a particular product. Our methodology is targeted at 
domains such as failure management where a few simple units are reused many times 
and a particular configuration depends on the relationships between the instances of 
these simple units. A first-cut entity relationship model was constructed from the units 
identified during the domain analysis stage. The entities identified during domain 
analysis were: 
• INP Identification of an input to be tested. 
• COND Condition under which a test is performed or an action is taken. (A predi-

cate based on the values and/or failure states of other inputs). 
• DET Detection of a failure state. A predicate that compares the value of an expres-

sion to be tested against a limit value. 
• CONF Confirmation of a failure state. An iterative algorithm performed for each 

invocation of a detection, used to establish whether a detected failure state is genu-
ine or transitory 

• ACT Action taken either normally or in response to a failure, possibly subject to a 
condition. Assigns the value of an expression, which may involve inputs and/or 
other output values, to an output. 

• OUT Identification of an output to be used by an action 

Domain Engineering  

The aim of the domain engineering stage is to explore, develop and validate the first-
cut generic model of the requirements into a validated generic model. At this stage 
this is essentially an entity relationship model, omitting any dynamic features (except 
temporary ones added for validation purposes).  

The first-cut model from the domain analysis stage was converted to the UML-B 
notation (Fig.2) by adding stereotypes and UML-B clauses (tagged values) as defined 
in the UML-B profile [22]. This allows the model to be converted into the B notation 
where validation and verification tools are available. The model contains invariant 
properties, which constrain the associations, and ensures that every instance is a mem-
ber of its class. To validate the model we needed to be able to build up the instances it 
holds in steps. For this stage a constructor was added to each class so that the model 
could be populated with instances. The constructor was defined to set any associations 
belonging to that class according to values supplied as parameters. 
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Fig. 2. Final UML-B version of generic model of failure management requirements  

The model was tested by adding example instances using the animation facility of 
ProB and examining the values of the B variables representing the classes and asso-
ciations in the model to see that they developed as expected. ProB provides an indica-
tor to show when the invariant is violated. Due to the ‘required’ (i.e. multiplicity 
greater than 0) constraints in our model, the only way to populate it without violating 
the invariant would be to add instances of several classes simultaneously. However, 
we found that observing the invariant violations was a useful part of the feedback dur-
ing validation of the model. Knowing that the model recognises inconsistent states, is 
just as important as knowing that it accepts consistent ones. The model was re-
arranged substantially during this phase as the animation revealed problems. Once we 
were satisfied that the model was suitable, we removed the constructor operations to 
simplify the corresponding B model for the next stage. 

The next stage is to add behaviour to the generic model by giving the classes op-
erations. In future work we will investigate the best way to introduce this behaviour 
during the process. It may be possible to add the behaviour after the static model has 
been validated as described above. Alternatively, perhaps the behaviour will affect the 
static structure and should be added earlier. In either case, we aim to formalise the ra-
tionale described in the domain analysis and derive the behaviour as a refinement 
from this. 

Requirements for a specific application 

Having arrived at a useful model we then use it to specify the requirements for a par-
ticular application by populating it with class instances. We use ProB to check the ap-
plication is consistent with the properties expressed in the generic model. This 
verification is a similar process to the previous validation but the focus is on possible 
errors in the instantiation rather than in the model. The application is first described in 
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tabular form. The generic model provides a template for the construction of the tables. 
Each class is represented by a separate table with properties for each entry in the table 
representing the associations owned by that class. The tabular form is useful as an ac-
cessible documentation of the application but is not directly useful for verification. To 
verify its consistency, the tabular form is translated into class instance enumerations 
and association initialisation clauses attached to the UML-B class model. This is done 
manually, which is tedious and error prone, but automation via a tool is envisaged.  

ProB is then used to check which conjuncts of the invariant are violated. For our 
FDM example, several iterations were necessary to eliminate errors in the tables be-
fore the invariant was satisfied. Initially, testing of the instantiation caused an invari-
ant violation. The ProB ‘analyse invariant’ facility provides information about which 
conjuncts of the invariant are violated. For example, a few conjuncts from the FDM 
example are shown: 
(ACT:POW(ACT_SET)) == TRUE  
(OUT:POW(OUT_SET)) == TRUE  
(aOut:TotalSurjection(ACT,OUT)) == false  
(aCond:(ACT-->COND)) == false 

We found that the analyse invariant facility provided useful indication of where the 
invariant was violated (i.e. which conjunct) but, in a data intensive model such as this, 
it is still not easy to see which part of the data is at fault. It would be useful to show a 
data counterexample to the conjunct (analogous to an event sequence counterexample 
in model checking). This is another area for potential tool support. 

Classification of problems 

It would be useful to classify the kinds of problems found during animation and veri-
fication in order to better understand the source of problems and improve the re-
quirements engineering process. So far, we have found that problems can be classified 
on a methodological stage basis.  Possible categories on this basis, some of which we 
have experienced, are as follows. 

• Verification of generic model – the generic model is inconsistent or incor-
rect 

• Validation of generic model – the generic model is correct and consistent 
but does not reflect the generic requirements 

• Validation of generic requirement – the generic model works as expected 
but animation leads expert to review generic requirements 

• Verification of instantiation - the instantiation is inconsistent with the ge-
neric model because of an incorrect instantiation 

• Verification of instantiation - the instantiation is inconsistent with the ge-
neric model because the generic model is inadequate 

• Validation of instantiation - the instantiation is consistent with the generic 
model but does not reflect the specific requirements 
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• Validation of specific requirements - the instantiation is consistent with 
the generic model but animation leads expert to review specific require-
ments 

In the future, when behavioural features are modelled, we expect to find other ways of 
classifying problems. For example we may be able to distinguish functional areas that 
are prone to incorrect specification. 

Conclusion  

In this paper we have discussed a product-line approach to the rigorous engineering, 
validation and verification of generic requirements for critical systems such as failure 
management and detection for engine control. The approach can be generalised to any 
relatively complex system component where repetitions of similar units indicate an 
opportunity for parameterised reuse but the extent of differences and interrelations be-
tween units makes this non-trivial to achieve. The product-line approach amortises the 
effort involved in formal validation and verification over many instance applications. 
So far we have considered the static, entity-relationship features of the requirements. 
In future work we aim to extend the approach to consider also the detailed meaning 
(i.e. dynamic behaviour) of these entities. 

Two broad areas of future work are indicated by the case study, both linking to re-
lated work on Product Line Engineering (PLE). The first concerns instance data man-
agement, the second variability vs. commonality in the generic model.  

For a product family such as FDM at ATEC as currently envisaged, instance data 
management is in principle straightforward. This is because no system in-
stance/variant requirements are defined at the generic level – all structure and behav-
iour is specified in terms of a single generic model. Instance/variant requirements are 
captured completely by instance-level data. This means that all instance data struc-
tures are defined in terms of the generic class definitions. Therefore, the data for a 
system instance is simply defined as a subset of the database of all required instance 
specifications; tooling is thus a straightforward database application.  

Instance management becomes more complex when variability is required in the 
generic model. This is the usual state of affairs in PLE. The mobile phone scenario of  
[16] is typical, where each system instance is defined by a distinct set of functional 
features, aimed at a specific market segment and target price. Features are not in gen-
eral simply composable, and the totality of features cannot in general be specified in 
one generic model: variability specification is required in the generic model. To date 
approaches to this (such as [16]) have been in the obvious syntactic form: in ATEC 
for example, variants on the generic model for other engine manufacturers might be 
described as extra colour-coded classes, associations, states, events etc. A system 
variant (or sub-family) would thus be defined in terms of some colour-combination 
submodel. A more sophisticated metamodelling approach to variability specification, 
based on the Model-Driven Architecture of the OMG, has recently been proposed 
[17]. 

Future work will investigate developing such variability and tooling issues in the 
ATEC context, using the UML-B and refinement approaches already discussed. The 
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application of refinement approaches to PLE to date has been modest, e.g. [5, 24], and 
has, in our view, much potential. Retrenchment, a generalizing theory for refinement, 
has been investigated in a feature engineering context [4], and may well also be useful 
in PLE. 
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Analyzing Fault-Tolerant Systems with FAUST
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Abstract. Producing high quality requirements is the key to the suc-
cessful design and development of the ever more complex systems con-
trolling our present world. The KAOS goal-oriented requirements engi-
neering methodology proved successful for this task, by enabling mixed
semi-formal and formal modeling and reasoning about system proper-
ties at an early stage. This paper demonstrates the use of the FAUST
toolbox to support the design of fault-tolerant systems based on this
methodology.

1 Introduction

Our world is increasingly relying on complex software-based systems. In a grow-
ing number of fields such as transportation, finance, health-care, they now play
a critical role as their failure can lead to catastrophic consequences in term of
loss of company profit or even human lives. Hence they require high assurance
for properties like security, safety, availability, etc.

Achieving assurance requires quality throughout the whole development life-
cycle: from requirements to specification, architecture, code and tests. Among
those, it is widely recognized that cause #1 of project failure still remains the
poor quality of requirements. Our focus is on the requirements problem in re-
lation with the rest of the lifecycle. More precisely, the scope of our work is to
answer the following questions, depicted in figure 1.

– Validation: do we address the ”right” requirements?
– Verification: are those requirements ”right” ? Especially, in the scope of

fault-tolerant systems: are those robust w.r.t. to what can go wrong ?
– Acceptance: is the deliverable right ? Can we test it with a good coverage

w.r.t. to the wished/unwished properties ?

Our approach to address those questions is based on the elaboration of a
goal model which captures the system and environment properties as well as
the agent capabilities/responsibilities. This is well adapted for designing fault-
tolerant systems because those should rely on a minimum set of well identified
assumptions, and should react in a safe and graceful way when those are broken.
The methodology also allows the analyst to reason in a pessimistic way about its
model: starting from a simple and tractable model, the analyst can apply obstacle
analysis to generate a number of obstacles to the wished properties. Based on
risk assessment, those obstacles can then be eliminated/mitigated/tolerated to
produce more robust requirements. This model has also two levels of description:
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Fig. 1. Scope of the FAUST toolbox

1. a semi-formal level with graphical notation which integrates with standard
UML notations (such as use cases, class, sequence diagrams). It is appro-
priate for acquiring the structure of the model and enough for non-critical
properties.

2. a formal level using a real-time temporal logic which ensures the formal
correctness of the model. It is only used on critical parts and is a natural
extension of the semi-formal level.

The FAUST toolbox [13] supports the process of validation, verification and
test case generation. Within the scope of this paper, we will more specifically
show how it can support activities related to obstacle analysis at those stages. As
concrete running example, we will analyze parts of the the London Ambulance
System [1].

The rest of this paper is structured as follows. Section 2 will give a quick
background on the KAOS requirements language used here with a stronger focus
on how fault-tolerance is managed using obstacle analysis. Section 3 will describe
how it is supported by FAUST. Section 4 will focus on integration issues, both
at tool level and together with other methodologies like B.

2 Modeling Fault-tolerant Systems with KAOS

A KAOS requirements model is composed of four sub-models: (i) the central
model is the goal model which captures and structures the assumed and required
properties; (ii) the object model captures the relevant vocabulary to express the
goals; (iii) the agent model takes care of assigning goal to agent in a realizable
way; (iv) the operation model details, at state transitions level, the work an agent
has to perform to reach the goals he is responsible for.

2.1 The Goal and Object Models

Although the process of building those 4 models is intertwined, the starting point
is usually a number of key properties of the system to-be. Those are expressed
using goals which are statements of intent about some system (existing or to-
be) whose satisfaction in general requires the cooperation of some of the agents
forming that system. Agents are active components, such as humans, devices,
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legacy software or software-to-be components, that play some role towards goal
satisfaction. Some agents thus define the software whereas the others define its
environment. Goals may refer to services to be provided (functional goals) or to
the quality of service (non-functional goals). Goals are described informally in
natural language (InformalDef) and are optionally formalized in a real-time tem-
poral logic (FormalDef) [4][8][10]. Keywords such as Achieve, Avoid, Maintain
are used to name goals according to the temporal behavior pattern they pre-
scribe.

In our example, the goals relate to the correct processing of incidents by allo-
cating and tracking ambulances. A key goal in the system is to achieve ambulance
mobilization in time. It can be stated as follows:

Goal Achieve[AmbulanceMobilized]
InformalDef: For every responded call about an incident, an ambulance able to
arrive at the incident scene within 11 minutes should be mobilized. The ambulance
mobilization time should be less than 3 minutes.

FormalDef: (∀cl : Call, ic : Incident) Responded(cl) ∧About(cl, inc)
⇒ 3≤3m(∃amb : Ambulance)Mobilized(a, inc) ∧

• [Available(amb) ∧ TimeDist(amb.loc, inc.loc) ≤ 11m]

In the above formulation, we have identified the Call, Incident and Ambu-
lance entities with some of their attributes (such as location and responded) and
relationships (About and Mobilized). Those are incrementally added to the struc-
tural model which captures passive (entities, relationships and events) and active
objects (agents).

Fig. 2. Object Model

Unlike goals, domain properties are descriptive statements about the envi-
ronment, such as physical laws, organizational norms or policies, etc. (eg. a crew
member may forget to perform some required operation under stress).

A key characteristic of goal-oriented requirements engineering is that goals
are structured and that guidance is provided to discover that structure and refine
it until agents can be found to realize those goals in cooperation. In KAOS, goals
are organized in AND/OR refinement-abstraction hierarchies where higher-level
goals are in general strategic, coarse-grained and involve multiple agents whereas
lower-level goals are in general technical, fine-grained and involve fewer agents
[5]. In such structures, AND-refinement links relate a goal to a set of subgoals
(called refinement) possibly conjoined with domain properties; this means that
satisfying all subgoals in the refinement is a sufficient condition in the domain for
satisfying the goal. OR-refinement links may relate a goal to a set of alternative
refinements.

Figure 3 shows the goal structure for our system. It was set up starting from
a few initial goals and by asking respectively ”WHY” and ”HOW” questions to
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Fig. 3. Portion of the LAS goal graph showing AND-refinements

discover parent goals (such as Achieve[AmbulanceIntervention]) and son goals
(such as Achieve[AmbulanceAllocated]).

2.2 The Agent Model

Goal refinement ends when every subgoal is realizable by some individual agent
assigned to it, that is, expressible in terms of conditions that are monitorable
and controllable by the agent [9]. A requirement is a terminal goal under re-
sponsibility of an agent in the software-to-be; an expectation is a terminal goal
under responsibility of an agent in the environment. Agent are either human or
automated (hardware or software).

The LAS system is a complex system with many interacting agents, both
human (call reporter, call assistants, ambulance crew) and automated (AVLS:
Automated Vehicle Location System, MDT: on board Mobile Data Terminal,
CAD: Computer Aided Dispatch). Each agent can be described by his kind, his
capabilities to monitor/control and the (realizable) goals under his responsibility.
The AVLS can be described as follows:

Agent AVLS
Kind: Automated
ResponsibleOf: Maintain[AccurateAmbulanceLocation]
Monitors: Ambulance.loc
Controls: AmbulanceInfo.loc

The agent interface view displays the flow of monitored/controlled informa-
tion among all agents and is a starting point for further architectural refinement
using downstream methodologies, either traditional (like structured analysis [6])
or correct-by-construction (like B [2]).

Note it is also important to capture any assumption about agent behaviors,
such as the possible deviations of human agents not complying with orders or
the failure modes of hardware agents. Some of those may already be required for
the initial (often overidealistic) goal-model and will be looked at systematically
during the obstacle analysis.
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Fig. 4. Agent Interface Model

2.3 The Operation Model

Goals are operationalized into specifications of operations to achieve them [4].
An operation is an input-output relation over objects; operation applications
define state transitions along the behaviors prescribed by the goal model. The
specification of an operation is classical with precondition (necessary), postcon-
dition (target state) and trigger condition (sufficient). An important distinction
is also made between (descriptive) domain pre/postconditions and (prescriptive)
pre-, post- and trigger conditions required for achieving some underlying goal(s).
For example, the Mobilize operation may be specified as follows:

Operation Mobilize
Input: inc:Incident
Output: amb:Ambulance, Mobilized
DomPre: ¬(∃amb : Ambulance)Mobilized(amb, inc)
DomPost: Mobilized(amb, inc)
ReqPre: for AmbulanceMobilized

Available(amb) ∧ TimeDist(amb.loc, inc.loc) ≤ 11m
ReqTrig: for AmbulanceMobilized

(∃cl : Call) Responded(cl) ∧About(cl, inc)

A goal operationalization is a set of such specifications.

2.4 Producing Robust Requirements

The correctness of all refinements in a goal model does not ensure that the
specification is consistent: inconsistencies can occur between goals. First-sketch
models also tend to be over-ideal and are likely to be violated from time to
time in the running system due to the unexpected behavior of agents. The lack
of anticipation of such behaviors may lead to unrealistic, unachievable and/or
incomplete requirements. Such exceptional behaviors are captured by formal
assertions called obstacles to goal satisfaction. Performing conflict and obstacles
analysis is thus crucial for achieving high quality requirements[15] [16]. In this
paper, we will only focus on obstacle analysis as conflict are not yet managed
by FAUST.
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Let G be a goal and Dom a set of domain properties. Following [16], an
assertion O is said to be an obstacle to G in Dom iff the following conditions
hold:

1. obstruction: {O, Dom}| = G
2. domain-consistency: {O,Dom} |= false
3. feasibility: there exists a scenario S producing a behavior H such that H |= O

Obstacles can be seen as the dual of goals. Like goals, obstacles can also
be AND and OR refined with similar semantics to goal-refinement[16]. To dis-
cover obstacles, a systematic regression technique can be used. Starting from the
negation of the goal, the procedure is to systematically regress through domain
properties to look for possible causes (abduction). This process can be guided
by a number of previously identified and classified obstacle refinement patterns.
For example, taking the negation of the following goal:

Goal Achieve[MobilizedAmbulanceIntervention]
UnderResponsibility AmbulanceCrew
Refines AmbulanceIntervention
FormalDef (∀a : Ambulance, inc : Incident)

Mobilized(a, inc)∧TimeDist(a.loc, inc.loc) ≤ 11m ⇒ 3≤11mIntervention(a, inc)

yields the following high level obstacle:

Obstacle MobilizedAmbulanceNotInTimeAtDestination
FormalDef: 3(∃a : Ambulance, inc : Incident) Mobilized(a, inc) ∧

TimeDist(a.loc, inc.loc) ≤ 11m ∧ 2≤11m¬Intervention(a, inc)

Looking at and obstacle refinement matching to the above obstacle, the fol-
lowing OR-refinement can be identified.

Obstacle AmbulanceMobilizationRetracted
FormalDef: 3(∃a : Ambulance, inc : Incident) Mobilized(a, inc) ∧

TimeDist(a.Loc, inc.Loc) ≤ 11m∧(¬Intervention(a, inc) U ≤11m¬Mobilized(a, inc))

Obstacle MobilizedAmbulanceStoppedOrInWrongDirection
FormalDef: 3(∃a : Ambulance, inc : Incident) Mobilized(a, inc) ∧

TimeDist(a.loc, inc.loc) ≤ 11m ∧
(¬Intervention(a, inc) U ≤11mTimeDist(a.loc, inc.loc) ≤ TimeDist(•a.loc, inc.loc))
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Further refinement of these formal obstacles based on regression, patterns,
and heuristics yield the following obstacle OR-refinement tree:

→ MobilizedAmbulanceNotInT imeAtDestination
→ AmbulanceMobilizationRetracted

→ MobilizedAmbulanceDestinationChanged
→ LocationConfusedByCrew

→ MobilizedAmbulanceDestinationForgotten
→ AmbulanceMobilizationCancelled

→ MobilizedAmbulanceStoppedOrInWrongDirection
→ AmbulanceStopped
→ AmbulanceBreakdownOrAccident
→ AmbulanceStoppedInTraffic

Those obstacles can then be resolved using one of the available strategies.
For example, considering the obstacle MobOrderTakenByOtherAmbulance:

– Obstacle prevention, it could be possible to design the system to make it
unfeasible by implementing the Avoid[AmbulanceMobilizedWithoutOrder]
goal.

– Obstacle mitigation: the obstacle is not avoided but its possible consequences
are mitigated. A way to avoid multiple ambulance mobilization and possible
resource exhaustion is to implement MobilizationByOtherAmbulanceKnown,
possibly using radio communications.

– Obstacle reduction: the obstacle is not prevented but measures are taken to
reduce its occurrence. This could be achieved by a sector design.

3 The FAUST toolbox in action

3.1 Verification using the Refinement Checker

The refinement checker can perform a variety of checks on the model in order
to provide the formal assurance that goals are correctly refined, that operations
enforce requirements, that obstacles are not present, etc. Through the use of
model-checking, the checks are fully automated and produce suggestive counter-
examples when they fail. The model-checker can also generate positive example
of the negation of a goal which is an instance of obstacle. Figure 5 shows the
tool in action on the formal obstacle refinements discussed in section 2.

3.2 Validation using the Requirements Animator

In order to validate the system requirements, the animator can simulate and
display behaviors of the future system[14]. The simulation process relies on finite
state machines (FSM) which are generated from a scoped subset of properties,
enabling incremental validation. The user interface can display FSM in classical

28



Fig. 5. Checking Obstacle Refinements

state chart notations and with specifically designed graphical animations, based
on domain notations familiar to the validating user. The animator can also be
used for model debugging. For this purpose, a monitor automatically checks for
the violation of all properties or occurrence of obstacles in the animation scope.

3.3 The Acceptance Test Generator

The acceptance test generator can produce a set of test cases from a non oper-
ational specification[11]. It is based on a goal coverage criterion which is appro-
priate for checking that a system matches its requirements. For now, only goal
refinements are taken into account and mainly use the milestone and case-based
refinement pattern for generating behavioral equivalence classes. The work is now
being extended for generating dysfunctional test cases based on the information
captured in the obstacle analysis process.

4 Integration issues

4.1 Tool Integration

The FAUST toolbox is centered on the model and each tool can benefit from the
others. For example, counter-examples from the analyzer or tests cases from the
test generator can be played into the animator. Figure 6 shows the interactions
among the various components of the toolbox, those are mainly sub-models (goal
or operational), various kind of traces and FSM. Some results are also interesting
to export outside the toolbox for later use in other stages: test cases, FSM for
code generation, etc.

The toolbox architecture is open and modular. It is currently available as
extension of the Objectiver requirements platform [12] which provides a full
(meta)conceptual repository with queries, checks, support for textual documents
and graphical models, trace management, navigation, and a powerful document
generator with templates for producing standard requirements documents.
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Fig. 6. Interactions among the FAUST tools

4.2 Method Integration - the B Connector

As the FAUST scope is located early in the development lifecycle, it is vital to
to provide connectors to existing industrial development methods. We believe
our approach is interesting because it provides the often missing link with the
requirements and it enables the move of some parts of the formal reasoning a
step ahead.

The method we are currently investigating is B [2], an industrial-strength
formal method which is more and more focusing on system engineering (B-
System evolution). This evolution is making it closer to our scope and goes in
the direction of bridging the requirements gap [3]. For ”top-down” engineering,
it will help the analyst to identify key properties, detect design problems at an
easy stage and produce B specifications which will be easier to refine and prove.
For ”bottom-up” re-engineering, it helps explaining the design to customers and
managers, especially for showing that all requirements have been covered.

Within B-system, we are more specifically studying the CompoSys approach
developed by ClearSy [7] which focuses on the modeling and integration of com-
ponents in an industrial context (such as automotive and railway transportation
systems). So far, the KAOS agent interface diagram was identified as fitting the
level of description addressed by Composys and some mapping mechanisms are
now being investigated on a practical case study.

5 Conclusions

To sum up, the benefits of the approach are:

– Goal and agent based approach: KAOS allows the analyst to capture,
refine and reason about system properties within its environment, assigning
responsibilities, exploring and comparing alternative designs.

– Model-based approach with automatic derivation of a wide variety of
artefacts like semi-fomal documents and formal specifications (such as B),
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acceptance test cases etc. It enables the easy integration in any lifecycle
(whether test-based or correct-by-construction)

– Access to the power of formal methods while preserving commu-
nication: because formal notations and underlying tools can be hidden and
explained in natural/graphical languages.

– Reduced costs because problems are detected and addressed earlier and
the model can be used in connection with the rest of the development.

The toolbox is currently used internally on ongoing cases to help assess its
limits and to drive the discovery of missing features. The current priority is to
open the toolbox to further use later in the development steps with a focus on
the B method as used in practice.
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Abstract: The use of aspect-oriented software development (AOSD) and formal 
verification and analysis of aspects is suggested as a modular approach to adding fault 
tolerance to systems, under a variety of fault models. The properties of aspects are shown 
appropriate for such a modularization, and several example aspects for fault tolerance are 
described. Among these are aspects to treat self-stabilization, aspects to overcome crash 
failures, and aspects to overcome faulty communication. Some approaches to verification 
of aspects are also described and shown relevant for verifying fault-tolerance after 
appropriate aspects are added to a non-fault-tolerant system. 
 
Relevant activities of the EU network of excellence AOSD-Europe are outlined, in the 
framework of the four virtual labs of that network. Those labs deal with the areas of 
programming languages for aspects, requirements analysis and design, applications of 
aspects for middleware, and semantics and verification for systems with aspects. The 
intentions of the network to develop joint tools to aid in verification of systems with 
aspects are explained, as part of the research plan of the Formal Methods Laboratory of 
AOSD-Europe. Potential points for cooperation with RODIN are also suggested. 
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Abstract. In this paper we describe our experience using Coordinated
Atomic Actions (CAAs) to design a control system for a medical treat-
ment, which has high reliability requirements. The “Fault-Tolerant In-
sulin Pump Therapy” is based on the Continuous Subcutaneous Insulin
Injection technique involving different sensors and actuators in order to
enable continued execution of the treatment, as well as detect faults in
it. Precisely that is the challenge raised by this example, to design a con-
trol system that maintains the delivery of insulin even in the presence
of a large number and variety of hardware and software failures. The
implementation of this control system has been made in Java using an
extension of the DRIP framework, that ensures the reliability properties
of systems designed using CAAs.

1 Introduction

Software and hardware systems have become increasingly used in many sectors,
such as manufacturing, aerospace, transportation, communication, energy and
healthcare. Failures due to software or hardware malfunctions and to malicious
intentions can have economic consequences, but can also endanger human life. In
fact, if a health care system breaks down, the effect on the hospital and patients
could be huge. Therefore health care systems must be available 24 hours a day,
seven days a week with no exceptions (availability).

Different approaches have been proposed in the literature to model medical
systems. The Asynchronous Transfer Mode (ATM) network provides a robust
and resilient network that is able to combine high performance with the Qual-
ity of Service (QoS), which are required by advanced and mission-critical tele-
medicine, and clinical applications [4, 6]. Resilience is the ability of systems to
undergo abnormal situations without loss of its essential functions. A resilient
system persists for a long time despite disturbances. More precisely, resilient
systems should be able to ensure their services even when some system parts
have abnormal behaviors due to degradation of the components, unavailability
or attack.

In this paper we focus on Coordinated Atomic Actions (CAAs) as a design
structuring concept to ensure the needed requirements of reliability and avail-
ability [9] and on the framework called Dependable Remote Interacting Processes
(DRIP) [10] that embodies CAAs in terms of a set of Java classes. Although the
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DRIP framework supports the complete semantics of CAA, we had to change
the implementation to fix some problems. Fundamentally, we have changed the
notification of an exception from a composed CAA to the enclosed context, as
well as the way in that each handler must be defined and linked with its corre-
sponding manager and the internal mechanism to execute the handlers when an
exception has to be handled. The change on the exception handling mechanism
does not allow us to have nested handlers any more, that is a requirement for
DRIP (but not for CAAs). Thus, this new framework only supports CAAs re-
quirements. We refer to this new framework with the name CAA-DRIP and the
full implementation details about it can be found in [2].

The aim of this paper is to show how CAAs and CAA-DRIP can be suc-
cessfully used for medical systems which require resilience and availability. The
case study that we consider concerns a diabetes control system that is aiming
at correctly delivering the insulin on a patient. The doctor suitably sets the
parameters and miniaturized sensors and pumps check the patient status and
administer the insulin. It is of primary importance, for the patient health, that
the whole application works properly 24 hours a day without interruption.

In Section 2 we give an introduction to CAA and CAA-DRIP, and in Section 3
we show the design and the implementation of the considered case study . The
paper closes with conclusions and future works.

2 Background

In this section we introduce CAAs and the requirements of the CAA-DRIP
framework that are used in the following of the paper.

2.1 Coordinated Atomic Actions

Backward error recovery (based on rolling system components back to the pre-
vious correct state) and forward error recovery (which involves transforming the
system components into any correct state) represent the two main approaches for
error recovery. The former uses either diversely-implemented software or simple
retry; the latter is usually application-specific and relies on exception handling
mechanisms. Distributed transactions [3] are a well-known technique that uses
backward error recovery as the main fault tolerance measure in order to satisfy
completely or partially the ACID (atomicity, consistency, isolation, durability)
properties. Atomic actions [1] allow programmers to apply both backward and
forward error recovery.

CAAs have been proposed by Xu et al. [7] in order to combine distributed
transactions and atomic actions assuring consistent access to objects in the pres-
ence of concurrency and potential faults. If an exception is raised into a CAA,
then an exception handler tries to recover them. In the positive case the CAA
terminates normally, on the contrary, it attempts to roll-back the state of ex-
ternal objects. Finally, an unsuccessful roll-back causes a failure. CAAs can be
nested and in this case exceptions raised by a nested CAA are propagated to
the enclosing one.
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2.2 CAA-DRIP

The CAA Dependable Remote Interacting Processes (CAA-DRIP) framework
comprises a set of Java classes supporting CAAs.

CAA-DRIP relies on the notion of Dependable Multiparty Interaction (DMI)
[8]. The main properties of a multiparty interaction are (i) using a guard to check
the preconditions to execute the interaction, hence (ii) the need for having syn-
chronization upon entry of participants; (iii) using an assertion, after that the
interaction has finished, to check that a set of post-conditions has been satisfied
by the execution of the interaction; (iv) and, finally, atomicity of external data
to ensure that intermediate results are not passed to the outside processes before
that the interaction finishes. These properties make DMIs an excellent vehicle
for implementing reliable applications. Zorzo and Stroud have proposed within
CAA-DRIP a general scheme for designing DMIs in a distributed object-oriented
system [10]. DMIs extend the notion of multiparty interaction to include facilities
for handling exceptions, which allows dealing with failures in one or more par-
ticipants of the multiparty interaction, and in particular concurrent exceptions
and synchronization upon exit.

CAAs can be derived from DMIs by adopting a more restricted form of
exception handling with a stronger exception handling semantics. CAA-DRIP is
designed to support this derivation and thus can be used to implement CAAs.

3 The Diabetes Control System

The Diabetes Control System makes use of different kinds of devices, which com-
bine high performance, lower power consumption, and wireless communication,
increasing the “intelligence” of medical sensors and actuators.

Set 
parameters

MonitoringVital 
signs

Insulin
amount

Central 
processing 

device

PatientWearable 
sensors

Wearable 
actuators

Doctor

ER

Fig. 1. The actors and their relationships.

Figure 1 shows the different actors present in our scenario. The main actor
is the patient who is receiving the treatment and who has put on the wearable
devices (sensors and actuators). The doctor must set the parameters for the
devices to allow them to work according to the specific treatment that the patient
has to receive. This information will be stored in the patient’s personal record
and will be consulted by the application. Moreover, the facilities for the doctor
to change and consult the information about the treatment should be designed
to be fault-tolerant, as well.

The last actor is the emergency room (ER), where caregivers are continually
monitoring the patient’s vital signs. They will be the first to know if there is
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a problem with the treatment that the patient is receiving. The dotted arrows
represent wireless connection and show how these wearable devices are connected
to the central processing device. In our representation, the doctor and the ER are
connected to the network in the traditional way, but they could also be connected
to the network of the hospital by wireless connection. This paper focusses on the
application that controls insulin delivery to the patient.

3.1 Requirements

The fault-tolerant diabetes control system will be used to implement the tech-
nique called Continuous Subcutaneous Insulin Injection [5]. This technique uses
miniaturized sensors and pumps to check the patient’s status and to administrate
insulin, respectively.

In this scenario, two sensors are used: one to monitor the current blood glucose
level (CBGL) and another one to check the heart rate (HR). There are also two
pumps: one for injecting long acting insulin (LAIP) and another one for injecting
rapid acting insulin (RAIP).

The patient’s vital signs collected by the sensors are wirelessly sent to the
central processing device, which is connected to the network of the hospital.
These values are used to determine the patient’s status and, fundamentally, to
define the basal rate (the amount of insulin to inject) for each pump. This is
calculated by a formula that takes into account the Target Blood Glucose Level
(TBGL), the Duration of Insulin Action (DIA) according to the kind of insulin
used and the patient’s current values measured by the sensors (CBGL and HR).
The TBGL and DIA parameters must be determined by the doctor, as well as the
low limit of the cartridge of each pump and the safe insulin delivery limit. These
values must be defined before the treatment is launched, but if it is necessary,
these values can be changed while the patient is receiving the dose, as well.
More details about elements included into this control process are given in the
Appendix.

The result given by the formulas represents the amount of insulin that each
pump must inject to keep the blood glucose as near as possible from the patient’s
target blood glucose. In this way, the central processing device commands each
actuator to inject the corresponding amount of insulin. The insulin will then
arrive to the patient by a cannula, which is a small soft tube, inserted into the
patient’s body. Each actuator has also a sensor, which provides useful informa-
tion about it. The application, with the help of these sensors gets information
on the current status of each actuator.

When an error occurs, it must be detected and, depending on the seriousness,
the control program either tries to solve it (first attempting the operation or,
in second place, using the values of the previous cycle), or the control system
turns on the alarm and stops the delivery of insulin. The ER personnel detects
the alarm, solves the problem and then turns off the alarm.

3.2 Design

The functional requirements presented in the previous section drive the appli-
cation design through the definition of seven CAAs (Figure 2). These CAAs
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were designed using nesting and composing. Nesting is defined as a sub-
set of the roles (Params and Controller) of a CAA (CAA Cycle) defining
a new CAA (CAA Checking/CAA Executing) inside the enclosing CAA
(CAA Cycle).

CAA Cycle works like a container for the nested CAA Checking and
CAA Executing CAAs. Its main task is to determine the amount of insulin
that must be injected for each pump. These amounts of insulin are defined by
the InsulinAmount algorithm, which is used by the Calculus role.

CAA Checking and CAA Executing CAAs were defined to isolate the
execution of a group of tasks to determine the insulin amount as well as to deliver
them on the respective pumps. CAA Checking provides the input information
for the algorithm used by Calculus and its output is passed to CAA Executing
which uses this information to deliver the insulin.

The “interactions” between roles are represented in Figure 2 by vertical wide
solid arrows (not to be confuse with roles which are represented by horizontal
thin solid arrows).

CAA Checking has to retrieve the parameters set by the doctor for the
patient and also, it has to get the values of the sensors. CAA Executing sends
commands to each pump and registers in a log the original commanded val-
ues and those that were really injected. Both nested CAAs use Controller and
Params roles to achieve their goals (which have been explained before). The fact
that the roles are embedded in two different nested CAAs, allows to hide the
tasks that the roles do for the first CAA with respect to the second one.

The log is an external object, and the access to it is represented by wide
slashed arrows. The patient, his personal record and the pumps are external
objects, as well.

We defined four more CAAs to perform the activities corresponding to the
sensors and actuators. The first one is CAA Sensors, which is in direct contact
with the wearable devices that have to get the patient’s vital sign. The second
one is CAA Actuators. Both CAAs are composed.

Composed CAAs are different from the nested in the sense that the first one
is an autonomous entity with its own roles and external objects. The internal
structure of a composed CAA (e.g. CAA Sensors), i.e. set of roles (S CT, BGC
and HR), accessed external objects (Patient and Patient’s record) and behavior
of roles, is hidden from the calling CAA (CAA Checking). The Controller role
that calls the composed CAA Sensors synchronously waits for the outcome.
Then, the calling role resumes its execution according to the outcome of the
composed CAA Sensors. If the composed CAA Sensors terminates excep-
tionally, its calling role (which belongs to CAA Checking) raises an internal
exception which is, if possible, locally handled. If local handling is not possi-
ble, the exception is propagated to all the peer roles of CAA Checking for
coordinated error recovery.

CAA Actuators contains the composed CAA RAIP and CAA LAIP
CAAs. Each composed CAA manages both a pump and a sensor. This sensor
allows us to know the state of the pump before and after the insulin injection.
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Fig. 2. The Design by CAAs and the faults that we are handling.

In CAA Sensors and CAA Actuators there is a special role (S CT and
A CT respectively), who is in charge of data exchange among the roles that
compose each CAA. Thus, this role receives/sends all the information from/to
the enclosed/nested context. This data manipulation is done in the same way by
the RAIP and LAIP roles. This way to send or receive information as parameters
is represented by thin dotted arrows. As showed in Figure 2, the Controller
machine receives information from the Sensors machine that commands the
pumps that are running on the Actuators machine.

Failure definitions and analysis Before defining and analysing the different
possible failures that may happen in our example, we have to state the assump-
tions that we have done: (i) The values of the sensors and of the actuator are
always transmitted correctly, without any loss or error. (ii) Each failure on any
sensor or actuator is indicated by a specific value, which shows which kind of
failure happened. (iii) The alarm signalling mechanism is free of faults and does
not fail.

Now, we can define and analyse various failures with respect to some elements
that compose our scenario, as well as the basic requirements for handlers related
to each exception that will be launched when an error is detected.
1. Sensor stops (E1 or E2): a wearable sensor could not send valid values.
This failure is indicated automatically by a special value of the wearable sensor.
The control system will try again getting the value to continue the cycle, but if
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the problem persists the delivery will stop and the danger alarm will be turned
on.
2. Delivery Limit (E3): there is an amount of insulin that should be delivered
to keep the patient’s target blood glucose which is dropping out of the safe range.
In this case, the delivery is stopped and the danger alarm is turned on.
3. Actuator stops (E4, E6): a sensor that is monitoring an actuator has
detected a problem before trying to inject the insulin. This means that the
actuator is not properly working. In this case, the control program must stop
the delivery of insulin and start to ring the danger alarm.
4. Delivery stops (E5, E7): a sensor that is monitoring an actuator has
detected a problem after the insulin injection. It means that the actuator could
not inject the required amount. The control program will try again to deliver
the insulin, but if the problem goes on, the delivery of insulin will be stopped
and the danger alarm will be turned on.
5. Cartridge very low (E4, E5, E6 or E7): the quantity of insulin in a car-
tridge is less than the low limit set in the cartridge. The basal delivery continues,
but the warning alarm is turned on.
6. Cartridge empty (E4, E5, E6 or E7): a cartridge of a pump does not
have any more insulin, thus the systems will be stopped and the danger alarm
is turned on.

3.3 Implementation

This section describes the most important changes we made on DRIP [10] and
how we used this new framework to implement our design. Due to space limita-
tions, we just show the implementation of CAA Sensors and how it is launched.
Using this example, we give some ideas on the extensions made on DRIP. For
more details, interested reader can refer to [2]. This CAA is composed by three
roles and for each one of them we define a Manager (lines 2-4). Once the in-
stantiation of these objects is done, we are able to define each Role object (lines
7-9) by instantiating a new class, which inherits from the Role class provided by
the framework. We must give the name of the role, its manager and the leader
manager each time that we define a new Role object. In this case, mgrCT is the
leader manager and it is the responsible for the coordination of the each role
when they must be executed, as well as, when an exception is raised.

Definition of CAA Sensors
1 //Managers
2 mgrCT = new ManagerImpl ( " mgrCT " , " CAA_Sensors " ) ;
3 mgrCBGC = new ManagerImpl ( " mgrCBGC " , " CAA_Sensors " ) ;
4 mgrHR = new ManagerImpl ( " mgrHR " , " CAA_Sensors " ) ;
5

6 //Roles
7 roleCT = new CT( " roleCT " ,mgrCT,mgrCT) ;
8 roleCBGC = new CBGC( " roleCBGC " ,mgrCBGC,mgrCT) ;
9 roleHR = new HR( " roleHR " ,mgrHR,mgrCT) ;

10

11 //Handlers for SensorStops except ion
12 hndrSS CT = new SensorStopsCT ( " hndrSS_CT " ,mgrCT,mgrCT) ;
13 hndrSS CBGC = new SensorStopsCBGC( " hndrSS_CBGC " ,mgrCBGC,mgrCT) ;
14 hndrSS HR = new SensorStopsHR ( " hndrSS_HR " ,mgrHR,mgrCT) ;
15
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16 //Binding between the Exception and the Handlers
17 Hashtable ehCT = new Hashtable ( ) ;
18 ehCT . put ( SensorStops . class , hndrSS CT ) ;
19 Hashtable ehCBGC = new Hashtable ( ) ;
20 ehCBGC. put ( SensorStops . class , hndrSS CBGC ) ;
21 Hashtable ehHR = new Hashtable ( ) ;
22 ehHR . put ( SensorStops . class , hndrSS HR ) ;
23

24 // Se t t ing the binding on each Manager
25 mgrCT. setExceptionAndHandlerList (ehCT ) ;
26 mgrCBGC. setExceptionAndHandlerList (ehCBGC) ;
27 mgrHR. setExceptionAndHandlerList (ehHR ) ;

If there is a problem in the normal execution, we have the chance to define an
alternative behaviour. The lines 11-27 show how we can define this exceptional
behavior. If these lines are not present, when an exception is raised, the CAA is
stopped and the problem is forwarded to the enclosed context.

The lines 12-14 correspond to the definition of the handlers that are only
executed when the exception SensorsStops is raised. On Figure 2 the errors E1
and E2 represent the places where this exception could happen. Each handler
object defined is an instance of a new class derived from Handler class, which
belongs to the framework. The class Handler has been introduced in CAA-DRIP
to correctly manage the information context of the CAA where the exception
has been raised [2]. For each exception that we want to handle in the CAA, we
have to define n handlers, where n is the number of roles defined in the CAA.
Each handler must be informed of its name, its manager (which must be one of
the used in the definition of the roles) and the leader manager (not necessary
the same used for the roles).

The next step is the explicit definition of the binding between the considered
exception, and the handlers that have been defined to manage it. Each binding
is represented by a hashtable, which is controlled by a manager (lines 17-22).
Each manager (e.g. mgrCT ) coordinates the execution of a role (e.g. roleCT ).
The role represents the normal behavior. In the case in which an exception is
launched (SensorStops), each manager stops the execution of its associated role
it starts to execute its associated handler (e.g. hndrSS CT ). Finally, we must
set each hashtable on the corresponding handler that is managing each role and
handler (lines 25-27).

The composed CAA Sensors is launched from the Controller role. The
definition of a role implies the Role class extension, which belongs to the frame-
work and reimplement its body method. Inside this method we define the tasks
that must be executed to achieve the requirements of the considered role. The
following Java source code corresponds to the role Controller and shows how
CAA Sensors is called, as well as the interaction with the Params role and
with CAA Sensors CAA is achieved.

Launching CAA Sensors
1

2 public void body ( Object l i s t [ ] ) throws Exception , RemoteException {
3 try{
4 // launching the Composed CAA Sensors
5 roleCT . executeAl l ( l i s t ) ;
6

40



7 // ge t t i n g Composed CAA Sensors outcomes
8 RemoteQueue rqOut = (RemoteQueue ) l i s t [ 0 ] ;
9 I n t eg e r bgcValue = ( In t eg e r ) rqOut . get ( ) ;

10 I n t eg e r hrValue = ( In t eg e r ) rqOut . get ( ) ;
11

12 // ge t t i n g va lues from Params ro l e
13 RecordPatient rp = ( RecordPatient ) paramsPatientQueue . get ( ) ;
14

15 // passing information to CAA Cycle
16 rqOut . put ( bgcValue ) ;
17 rqOut . put ( hrValue ) ;
18 rqOut . put ( rp ) ;
19

20 } catch ( Exception e ) {
21 //Local handling for Checking . Contro l l er except ion ;
22 throw e ;
23 }

The body method receives a list of objects as parameter (line 2), which is
used to exchange information with its context. The executeAll method is used
for the roleCT object (there is no difference about which CAA role is used) to
launch the composed CAA Sensors (line 5). This method takes an object list
as parameter that is used to get the CAA Sensors outcomes. Lines 8-10 show
how we retrieve these outcomes from the list. Interaction among roles appears in
line 13 and it represents an information flow from Params to Controller. Once
the Controller role has all the patient’s information it must send this information
to the enclosing CAA Checking (lines 16-18). If along the execution of these
tasks an exception is raised, we have the chance to handler it locally inside the
catch block. In this example, if an exception happens, it is directly passed to the
enclosing context (line 22).

4 Conclusions and Future Work

In this experience paper we introduced a control system for a fault-tolerant
insulin pump therapy. In order to ensure the needed requirements of reliability
and availability, the system has been designed using the CAAs mechanism that
offers approaches for error recovery. The implementation of the control system
has been made in Java, using a variant of the DRIP framework, because along
the implementation of this case study we found some problems in the original
DRIP. These problems were fixed in a new framework which just supports CAA
requirements and is called CAA-DRIP. On the future work side we plan to release
CAA-DRIP explaining details on changes made.
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Appendix: “Terminology”

Basal rate: the amount of insulin delivered over 24 hours per day, providing a
background of insulin at all times. The rate programmed is intended to keep the blood
glucose within the user’s Target Range (TR) between meals and overnight. The basal
rate is measured in units per hour (u/hr).

Blood Glucose Level (BGL): the amount of glucose in the blood. BG levels
average 100 mg/dl (5.5 mmol/L) for someone without diabetes. The healthcare provider
help in determining the “target range” for the blood glucose level.

Heart Rate (HR): is the number of contractions of the heart in one minute. It
is measured in beats per minute (bpm). When resting, the adult human heart beats at
about 70 bpm (males) and 75 bpm (females), but this rate varies between people.

Duration of insulin action (DIA): a certain amount of time insulin is active
and available in the body after it has been given by a subcutaneous bolus. Talking
with the healthcare provider helps in determining the duration of the insulin action
through blood glucose testing.

InsulinAmount algorithm: it is used to calculate the needed amount of insulin.
The formula takes into account the Target Blood Glucose Level (TBGL), the Duration
of Insulin Action (DIA) according to the type of insulin used, the current blood glucose
(CBGL) and the current heart rate (HR). The result represents the needed amount of
insulin.

InsulinAmount(TBGL, DIA, CBGL, HR)
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Abstract. Omnibus is a new system for the development of reliable Object-
Oriented software.  It includes a clean language that is superficially similar to 
Java but removes aspects that particularly complicate verification.  Integrated 
support is provided for run-time assertion checking, extended static checking 
and full formal verification. The language is supported by a prototype IDE with 
a type checker, Java code generator, HTML documentation generator and a 
range of verifiers. This paper presents the case for Omnibus, gives an overview 
of the language and tools and discusses its relationship to dependable systems 
development. 

1. Introduction 

There are three distinct assertion-based approaches for the integrated specification, 
implementation and verification of Object-Oriented (OO) software: run-time assertion 
checking [14], extended static checking [10] and full formal verification [4]. Full 
formal verification offers the possibility of producing error-free software whereas 
run-time assertion checking and extended static checking have more modest aims, 
attempting to catch only a subset of assertion violations. Most existing tools are built 
around a single one of these approaches. However, the approaches have complemen-
tary strengths. Full formal verification is ideal for supporting reusable software com-
ponents and verifying critical modules within a system though its cost cannot typi-
cally be justified for systems in their entirety. Run-time assertion checking and ex-
tended static checking offer a better compromise for the majority of application-
specific code. They require more modest additional investments but are inadequate 
for writing critical code and reusable components. We propose the use of these ap-
proaches together within different parts of a single system, using full formal verifica-
tion for reusable components and critical modules and a combination of run-time 
assertion checking and extended static checking for the remainder of the code. 

The starting point for an assertion-based approach is the language, of which there 
are two kinds: ones that extend an existing commercial programming language and 
ones based on a mathematically cleaner language. The advantages of the former are 
familiarity to programmers and compatibility with legacy code. Examples of lan-
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guages in this category are JML [9] and Spec# [2]. However, it can be extremely 
difficult to build a verification approach around such languages. Because they use 
reference semantics, they must include complex annotations to deal with subtle rela-
tionships such as object ownership and data abstraction [12,11]. As the need for user 
annotations appears to be an important factor inhibiting the adoption of these tech-
niques, it is worth the effort to investigate alternative strategies. The use of mathe-
matically cleaner languages can eliminate many of these complications, simplifying 
the semantics of the language and reducing the number of annotations required. Ex-
amples of languages in this category are SPARK [1] and Perfect [4]. 

Of the existing projects, only JML supports the full range of assertion-based veri-
fication approaches. There is currently no project aiming to support the full range of 
approaches for a mathematically clean language. Even in the case of JML, recent case 
studies [7] have applied the approaches separately, rather than in an integrated man-
ner. 

In this paper we present a new system called Omnibus [18,19] which supports run-
time assertion checking, extended static checking and full formal verification for a 
mathematically clean language. The Omnibus language is superficially similar to Java 
but removes aspects that particularly complicate verification, in particular the use of 
reference semantics by default for objects. References are still needed to support 
polymorphism and so are used behind-the-scenes to implement the objects. However, 
they are not exposed to the programmer, with the language supporting a single equal-
ity operator that represents deep equality. These alterations simplify verification and 
eliminate many of the complications present in JML. For example, the specification 
of frame conditions [12] and the checking of invariants in the presence of callbacks 
[11] can be greatly simplified. A recent paper [8] highlights some particularly com-
plicated examples that Java verification tools must be able to handle. These examples 
do not pose a problem for Omnibus, mainly because Omnibus outlaws the aspects of 
Java that are exploited to produce the difficult to verify examples. 

The Omnibus language is supported by an IDE with a type checker, Java code gen-
erator, HTML documentation generator, and interactive and automated verifiers. 
Integrated support for different verification approaches is provided through a verifi-
cation policy management system. Omnibus has been applied to a number of small 
and medium sized case studies. 

A number of concepts from dependable systems development have natural defini-
tions within Omnibus and Omnibus provides a range of facilities that can be used to 
support existing fault tolerant techniques.  

Section 2 develops the case for using a cleaner language. Sections 3 and 4 present 
overviews of the Omnibus language and tools, respectively, Section 5 discusses de-
pendable systems development with Omnibus and Section 6 concludes by discussing 
future work. 

2. The case for using a cleaner language 

There is much evidence of the difficulties of working with languages not specifically 
designed with verification in mind. An important cause of these difficulties is the use 
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of reference semantics as the default mechanism for working with objects. Sophisti-
cated techniques have had to be devised to control their use requiring extra tool sup-
port and additional programmer annotations. For example, there has been work on 
specifying frame conditions [12] and handling callbacks and invariants [11]. Leino 
notes in [10], “the reluctance to cope with the burden of annotating programs remains 
the major obstacle in the adoption of extended static checking technology into prac-
tice.” As such, it would seem appropriate to attempt to remove any accidental diffi-
culties such as complexities introduced by the language.  

It is important to appreciate that the problems encountered in verifying modules 
written in these languages are not products of the formalization process itself, but are 
practical complexities that programmers have to grapple with when using the lan-
guages. The complexities of reference semantics frequently lead to a range of aliasing 
errors that can be difficult to detect. 

Functional programming languages offer a cleaner basis for a verification ap-
proach than mainstream languages like Java because of their use of value semantics. 
However, functional languages have not been widely embraced by the software de-
velopment industry. 

An alternative approach is to take a mainstream language and adjust it to be more 
amenable to analysis. For example, SPARK removes aspects of Ada that are error-
prone and complicated to verify. In SPARK, object variables hold values, not refer-
ences hence naturally giving value semantics. However, in order to use inheritance, 
object variables must hold references so that dynamic binding can be supported. OO 
languages and value semantics are not incompatible but additional support is required 
to mask the use of references. Languages based on this approach can be relatively 
accessible to everyday programmers and not unnecessarily complicated to verify, 
though they might require programmers to adopt slightly different programming 
styles. Even JML, which uses reference semantics by default, provides the pure 
modifier that allows classes to be defined that obey value semantics. 

The use of value semantics involves a trade-off of efficiency and expressiveness as 
well as reducing direct compatibility with legacy code. Our claim is that OO lan-
guages built on value semantics occupy an interesting position in the solution space 
involving an engineering trade-off worthy of investigation. 

3. An overview of the Omnibus language 

Omnibus is a new language that is similar to Java with adjustments making it more 
amenable to formal analysis. Like Java, it includes the concepts of packages, classes, 
methods, expressions, statements etc, but it also incorporates a behavioural interface 
specification language and uses value semantics for objects. 

Similarly to Java, an Omnibus application consists of a set of class definitions. 
Each class contains a range of methods for manipulating instances of the class. There 
are three main types of method declaration in Omnibus: constructors, functions and 
operations. Constructors allow objects to be created, functions allow objects to be 
queried without side-effects and operations allow objects to be updated. The declara-
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tion of a method starts with a keyword identifying the type of method. Constructors 
are class methods whereas functions and operations are object methods. 

In Omnibus, all objects are immutable with the system creating new objects be-
hind-the-scenes as needed to preserve value semantics. This is hidden from the pro-
grammer who is allowed to think in terms of updating objects. 

Specifications 

Omnibus allows heavyweight specifications, which are suitable for full formal verifi-
cation, as well as a lightweight specification style, suitable for run-time assertion 
checking or extended static checking. 

Behaviour specifications: The behaviour of methods can be described using be-
haviour specifications. These are constructed from requires, changes and en-
sures clauses which give pre-conditions, frame conditions and post-conditions, 
respectively. A subset of the functions in the class is taken to represent the abstract 
state of the class. These are called model functions, are declared with the model 
modifier and do not have post-conditions. The behaviour of the other methods (the 
remaining functions along with the constructors and operations) is then defined in 
terms of them. When specifying operations, a changes clause is used to describe 
what model functions have their values changed and an ensures clause is used to 
describe how they are changed. 

Requirements specifications: The requirements of a class are specified using 
initially, invariant, and constraint assertions. The initially assertions 
should hold over all freshly constructed objects, invariant assertions should hold 
over objects whenever they are accessible by code in other classes and constraint 
assertions should hold across any operation calls. Unlike the code-centric JML lan-
guage, the requirements are not simply conjoined with the post-conditions of con-
structors and object methods and pre-conditions of object methods. Instead, they 
should follow from the behaviour specifications. This provides a useful way to verify 
the behaviour specifications, independent of an implementation. 

spec class BankAccount { 
 model function balance():integer 
 model function overdraftLimit():integer 
 function isOverdrawn():Boolean 
  ensures result = (balance() < 0) 
 function fundsAvailable():integer 
  ensures result = overdraftLimit() + balance() 
 constructor open(deposit:integer) 
  requires deposit >= 0 
  ensures balance() = deposit,  
    overdraftLimit() = 500 
 operation deposit(amount:integer) 
  requires amount >= 0 
  changes balance 
  ensures balance() = old balance() + amount 
 operation withdraw(amount:integer) 
  requires amount >= 0,  
    amount <= fundsAvailable(), 
    amount <= 300 
  changes balance 
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  ensures balance() = old balance() – amount 
 initially balance() >= 0 
 invariant balance() >= -overdraftLimit() 
 invariant overdraftLimit() >= 0 
 constraint balance() >= old balance - 300 
} 

Fig 1. Heavyweight specification of a BankAccount class. 

Example: Figure 1 presents a heavyweight specification for a simple Omnibus 
class modelling a BankAccount. A BankAccount is opened with an initial deposit 
and starts with an overdraft limit of 500. Given a BankAccount, you should be able 
to ask what the balance is, what the overdraft limit is, whether it is overdrawn and 
how much is available to be withdrawn. A BankAccount can be updated by deposit-
ing or withdrawing money. The requirements are that: (1) when an account is initially 
created, the balance should be at least zero, (2) the balance should never be more 
overdrawn than the overdraft limit permits, (3) the overdraft limit should never be 
negative, and (4) at most 300 can be withdrawn at one time. The BankAccount class 
is declared with the spec modifier which indicates that it defines only a specification 
and no implementation1. The old operator is used in the ensures clauses to refer to 
values from the pre-state. 

Implementations 

The public behaviour specification of a class should be defined in terms of a set of 
model functions, without making reference to implementation details. In contrast, the 
implementation of the class is solely defined in terms of private attributes. Each of 
the model functions must then be implemented at the private level in terms of the 
attributes. Method implementations are defined using a Java-style implementation 
language containing an assignment statement, operation call statements, a declaration 
statement, an assert statement, an if statement, a for loop and a while loop. Loops can 
be annotated with loop invariant assertions.  

Inheritance 

Omnibus supports single behavioural inheritance. A class inherits all the requirements 
of its superclass and can choose to either implicitly inherit or explicitly override the 
methods in the superclass. The overriding method definitions can give different be-
haviour specifications with weakening of the pre-condition (i.e. the requires 
clause) and strengthening of the post-condition (calculated from the changes and 
ensures clauses) permitted. Model functions can also be redefined as derived func-
tions but when this is done, methods inherited from the superclass must have their 
behaviour redefined in terms of the new model functions. 

                                                           
1 JML uses the model modifier to signify this whereas we use that for a different concept. 
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Libraries 

Like JML, Omnibus hides mathematical abstractions like sequences and sets behind a 
façade of library classes. Users interact with these classes through methods just like 
any other class, and do not need to learn additional mathematical notation to manipu-
late them. This is in contrast with the Perfect language which provides support for 
sequences, sets etc in the language itself. I/O is also achieved through the libraries. 
This centres around a uniquely typed [16] Environment class which is passed into 
the application at the entry point. 

Limitations 

There are limitations in the current version of the language. Some of these limitations, 
such as the removal of static data, have been purposefully introduced to simplify 
verification. Support for exceptions and Java-style interfaces is under development. 
We do not currently handle arithmetic overflow, concurrency or termination. 

4. The Omnibus IDE 

The Omnibus IDE incorporates standard facilities for managing files and projects and 
uses a jEdit component to support syntax highlighting and bracket matching while 
editing source code. In addition to this, it provides a type checker, a Java code gen-
erator incorporating run-time assertion check generation, an HTML documentation 
generator, a static verifier supporting extended static checking and full formal verifi-
cation, and, most importantly, a Verification Policy Manager [19], which provides a 
flexible means for integrating the use of the different verification approaches within 
different parts of a system. 

Figure 2 presents an overview of the Omnibus static verifier. It takes as input an 
Omnibus project consisting of a collection of source files, referenced jar files and a 
verification policy describing what level of verification should be performed on each 
file. The files are then parsed and type checked before being passed to the static veri-
fier. The verifier uses two theorem provers: the interactive PVS prover [15] and the 
fully automated Simplify prover [5]. The first step in the process is to translate the 
classes in the source files and referenced jar files into the logics of the two theorem 
provers. The static verifier then uses two generic modules: a specification verifier and 
a symbolic executor, to generate VCs over the translated specifications. The specifi-
cation verifier generates VCs to check that the behaviour of heavyweight specifica-
tions satisfies their requirement specifications. The symbolic executor executes im-
plementations using symbolic values to check that implementations satisfy their be-
haviour specification. The VCs are expressed in an extension of the Omnibus asser-
tion language and can then be translated into either PVS or Simplify conjectures de-
pending on the verification strategy specified in its verification policy. Finally, the 
generated files are passed to the corresponding provers. In the case of PVS, the user 
must manually launch the prover and attempt to verify the conjectures. In contrast, 
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the tool is able to automatically invoke the Simplify prover and process its responses 
to give user friendly error messages. 

 
Fig. 2. Diagram of the Omnibus IDE’s static verification process. 

We were guided through many of the practical obstacles by the writings of Jacobs 
et al. [7], Cok [3] and Leino [13]. We were able to make a number of simplifications 
over their approaches due to our use of the simpler Omnibus language. For example, 
we do not require any formal modeling of the heap. 

5. Dependable systems development 

A system is said to have a failure if the service it delivers deviates from the desired 
behaviour. Such failures are caused by flaws in a system called faults. These faults 
can be present in the hardware, software or non computer-based parts of the system. 

It can be difficult to precisely define what is meant by failure, fault and ‘desired 
behaviour’. There are natural definitions for each of these within the Omnibus frame-
work. In Omnibus, dynamic assertion violation errors indicate faults and static asser-
tion violation warnings indicate possible faults. If the assertion violations are con-
cerned with the top-level specification of the system then they are failures. This fits 
nicely alongside the idea of Heimerdinger [6] of viewing faults as failures in other 
systems which interact with the system under consideration. The accepted approach 
for defining ‘desired behaviour’ is to use a specification. The Omnibus language 
allows specifications to be defined precisely. 

The development strategies currently at our disposal are unable to consistently pro-
duce realistic systems without faults. The root cause of these problems is complexity: 
of the systems being developed and of the techniques used to develop them. By using 
a semantically simpler language, Omnibus aims to reduce the amount of unnecessary 
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complexity, allowing the essential difficulties to be focused on. While it is unavoid-
able that realistic systems will contain some faults, we still want these systems to be 
dependable i.e. be trustworthy enough that reliance can be placed on the service they 
deliver. 

There are different means of attaining dependability of systems; among them are 
fault avoidance and fault tolerance. Fault avoidance is concerned with preventing the 
introduction of faults as the system is being developed. This is achieved through the 
use of quality control techniques during the specification, design and implementation 
of a system. Omnibus provides a rigorous framework for performing such quality 
control of software development, allowing the consistency of specifications, designs 
and implementations to be formally verified. A key strength is that the separation of 
behaviour and requirement specifications allows the internal consistency of specifica-
tions to be verified independent of any implementation. Fault removal is a related 
approach where verification and testing techniques are used to locate faults in a sys-
tem once it is developed. The traditional choices are testing or full formal verifica-
tion. However, testing techniques do not cope well with the large state spaces of real-
istic systems and heavyweight verification is typically too costly to use for systems in 
their entirety, particularly those implemented using semantically complex languages 
such as Java and C#. Omnibus helps address this by supporting a range of verification 
techniques from the dynamic and static checking of lightweight assertions to full 
formal verification relative to heavyweight specifications. Omnibus can also be used 
to express test harnesses in terms of symbolic input values and these can be verified 
using symbolic execution. Such test scenarios allow for greater error coverage and 
can be equivalent to large numbers of concrete test scenarios. 

Fault tolerance is concerned with maintaining the correctness of the delivered ser-
vice in the presence of faults. Fault tolerance can be applied at three different levels: 
hardware fault tolerance, software fault tolerance and system fault tolerance [6,17]. 

Hardware fault tolerance is concerned with compensating for faults in the low-
level computing hardware of a system and is beyond the scope of Omnibus. 

Software fault tolerance involves the structuring of a computer system to compen-
sate for faults in the software system itself. Omnibus provides a range of facilities that 
can be used to support existing fault tolerant techniques. Its key strengths are its ex-
pressive specification language and support for the automatic generation of run-time 
checks from assertion annotations. There are two groups of software fault tolerant 
techniques, those that aim to tolerate faults in single software modules (single-version 
techniques) and those that employ redundant software modules (multi-version tech-
niques). 

Single-version techniques include detection and containment techniques. Omnibus 
assertion checks greatly aid fault detection. Fault detection is traditionally carried out 
through acceptance tests such as reasonableness checks and structural checks. Omni-
bus assertions are a natural way of expressing some of these acceptance tests. For 
example, reasonableness checks map nicely to behaviour specifications and structural 
checks equate to invariants. Omnibus run-time assertion checks also allow faults in an 
executing program to be detected earlier than they would otherwise be. This is be-
cause in Omnibus faults are detected as soon as one of the assertion checks fails 
rather than at some later point when a run-time error is triggered or an acceptance 
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check is failed. The advantage of detecting faults earlier is that it reduces the amount 
of damage that they can do. Fault containment techniques are also supported by Om-
nibus. The Object-Oriented facilities of the language provide support for modulariza-
tion and specifications allow the situations where actions are permissible to be explic-
itly defined, preventing a faulty component from making an invalid invocation of 
another component. 

Multi-version techniques employ redundant modules to provide fault tolerance. 
Hardware fault tolerance is relatively well understood and utilises redundancy heavily 
to cope with low-level production errors. However, these techniques do not map 
directly to the software domain. Simply duplicating a software component does not 
help address software faults since all copies of the component will have identical 
faults. To get around this, different but equivalent implementations of a component 
can be created. These implementations must be developed independently so that they 
do not share common faults. This process is called design diversity. Just as the entire 
system will not typically merit the use of full formal verification, it will not typically 
be justifiable to design multiple versions of the complete system. As with the verifica-
tion policy management strategy, the class (or perhaps even the method) is a more 
appropriate scale to operate on. It is also important that the diverse designs are 
equivalent. Omnibus can be used to demonstrate that the designs satisfy a common 
specification, detecting inconsistencies early on. 

Finally, system fault tolerance involves the development of facilities to compen-
sate for failures in parts of the system that are not directly computer-based e.g. exter-
nal devices such as sensors. By using suitable specifications for these external de-
vices, Omnibus can be used to statically verify that a computer system copes with 
every eventuality e.g. sensors operating correctly and sensors failing. This form of 
static verification of a-priori known potential faults is of course possible using other 
formal frameworks. 

6. Future work 

Work on the language is currently focusing on the handling of equality of objects. 
There are a number of features that we wish to add to the Omnibus language. These 
include support for predicate subtypes, enumeration types and exceptions. The librar-
ies are the area needing most work. In particular, we would like to add support for 
GUIs, File I/O and XML. The IDE is largely finished, needing only a number of 
refinements. Two key problems we have met are limits of the expressiveness of our 
assertion language and the level of repetition between a heavyweight specification 
and a corresponding implementation. We are currently working to address these prob-
lems and to develop larger case studies. 
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1. Introduction  

1.1 Motivation 

Mobile agents have many attractive features to offer and they are often mentioned as 
a future mainstream industry-level software technology. The agent technology 
naturally solves the problem of decoupling complex software into smaller parts that 
are easier to design, code and maintain. It helps to use distributed computing power 
effectively while hiding many of the details and complexities of a hosting 
environment. Recent advances in mobile computing and wireless networks lead to 
introduction of host (physical) mobility that offers totally new opportunities and as 
well raises new problems. Though substantial research has been conducted on 
developing middleware solutions supporting mobile agents, the mobile agent 
technology is still not mature enough to become a practice in industrial software 
development. There are several areas in which no general solutions have been found 
yet. One of them is ensuring interoperability of independently designed agents and 
correctness of the overall mobile system. In this work we will present a background 
for building a formal development methodology that addresses this problem.  

Agent software is designed to interact with other agents during its lifetime. Most 
research in the area discusses only centralized development process, when all the 
participating pieces of software (code of the agents) are created at the same site to 
solve common problems. In this case agents are mostly useful as a replacement of 
conventional client-server scheme with migrating clients or/and servers. However the 
application area of the mobile agents is much broader and, to make full use of their 
communication and migration capabilities, we need to assume systems are composed 
dynamically out of agents developed independently at different sites and for different 
purposes. Such configurations are impossible if agents are merely anonymous black 
boxes. In our view, to cooperate, agents must be based upon some common 
specification of their functionality. This specification should be formally developed 
and verified to ensure the desired properties of the application composed of agents. 
Developers of individual agents can independently extend the specification (using a 
refinement method) to add unique features without losing compatibility with other 
agents derived from the same specification.  
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The specification should be minimal in a sense that it does not have to provide many 
design details but it should be complete enough to identify what services the agent has 
to offer and what services it is looking for. This information should describe how to 
communicate with the particular class of agents, what such agents expect as input, and 
what output they produce. 

1.2 Background 

Mobile agent systems are often symmetric in a sense that each system participant 
roughly carries the same middleware implementation. Agents can dynamically and 
autonomously form new groups and communicate.  However in this paper we explore 
an asymmetric approach in which different parts of the system carry different basic 
functionality. One particular example of such view is a location-based scheme. In this 
model locations provide services to the agents, such as connectivity and coordination 
space. Agents are not able to communicate with each other without a location support. 
The choice of the scheme is supported by the fact that the majority of the mobile 
applications assume that agents meet in physical or logical locations providing a set of 
designated services to them. Hence, the asymmetric scheme is closer to the traditional 
service provision architectures. It can support large-scale mobile agent networks in a 
very predictable and reliable manner. It makes better use of the available resources 
since most of the operations are executed locally. Moreover, location-based 
architecture eliminates the need for employing complex distributed algorithms or any 
kind of remote access. This allows us to guarantee atomicity of certain operations 
without sacrificing performance and usability. This scheme also provides a natural 
way of introducing context-aware computing by defining location as a context. The 
main disadvantage of the location-based scheme is that an additional infrastructure is 
always required to support mobile agent collaboration. 

The coordination paradigm (originated in Linda [4]) has become the dominating 
environment in which a number of mobile systems are built (including Lime [7], 
Klaim [2], etc.). Linda is a set of language-independent coordination primitives that 
can be used for communication and coordination between several independent pieces 
of software. First used for parallel programming, it later became a core component of 
many mobile software systems because it fits nicely the main characteristics of the 
mobile systems: openness, dynamicity, anonymity of agents and their loose 
coordination. Linda-based coordination systems specifically designed for mobile 
applications supporting both physical mobility, such as a device with running 
application travelling along with its user across network boundaries, and logical 
mobility, when a software application changes its hosting environment. 

The rest of the paper is organized as follows. Section 2 introduces a number of basic 
abstractions to be used in development of mobile systems. Sections 3 describes a 
rigorous development process supporting these abstractions. Section 4 presents a 
formal abstract specification of the middleware. Finally, the last section presents 
conclusions and outlines our future work. 
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2. System structure  

The CAMA (context-aware mobile agents) system consists of a set of locations. 
Active entities of the system are agents. An agent is a piece of software that meets a 
number of requirements. Each agent is executed on its own platform. The platform 
provides execution environment interface to the location middleware. Agents 
communicate only with other agents in the same location. Agents can migrate from 
location to location logically (connections and disconnection) or physically (e.g. 
movement of a PDA on which the agent is hosted on). They can also logically migrate 
from platform to platform using weak code mobility. Compatible agents collaborate 
through a scoping mechanism. A scope defines a joint activity of several agents. The 
scoping mechanism also isolates non-compatible agents from each other. Below are 
the details of the introduced concepts. 

A location is a container for scopes. It can be associated with a particular physical 
location and can have certain restrictions on the types of supported scopes. It is the 
core part of the system as it is provides means of communications and coordination 
between agents. Location is a named entity and for simplicity we assume that each 
location has a unique name in the given context. This roughly corresponds to IP 
addresses of hosts on network which are often unique in some local sense. Location 
must keep track of present agents and their properties in order to be able to 
automatically create new scopes and restrict access to existing ones. The more 
detailed location description is presented in the form of a formal specification (see 
Section 4).   

Certain locations may prevent agents from entering without an authorization. To be 
allowed to enter a location, an agent must have a key issued by it. Keys may be 
permanent or have a validity period determined by the issuing location Agent must 
have to acquire a key on a different location before entering a protected location. 

Locations may provide special services, like access to a service from a variety of 
devices connected to the location, making enquires and so on. Each Location may 
have its own unique set of services and provided operations. They are made available 
to agents via what appears to agents as a normal scope though some roles in these 
scopes are implemented by the location system software. As with all scopes, agents 
are required to implement specific interfaces in order to connect to a location-
provided scope. An example of such services includes printing on a local printer, 
access to Internet, making a backup to a location storage, migration and etc. In 
addition to supporting scopes as mean of agent communication, location may also 
support logical mobility of agents, hosting of platforms and agent backup. Hosting of 
platform on a location allows agent to execute without a PDA. For example, a user 
may decide to move an agent from his PDA to a location before leaving the location 
with his PDA. In addition to the above, location, by a request from an agent, may play 
in certain types of scopes a role of a trusted third party that is neutral to all the 
participating agents. This facilitates implementation of various transaction schemes. 

A platform provides an execution environment for an agent. It is composed of a 
virtual machine for code execution, networking support and middleware for 
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interaction with location. A platform may be supported by PDA, smart-phone, laptop 
or a location server. The concept of platform is important to clearly differentiate 
between a location providing coordination services to agents and middleware that 
only supports agent execution. In other approaches no such distinction is made. 

An agent is a piece of software implementing a set of roles which allow it to take 
part in certain scopes. All agents must implement the minimal functionality called the 
default role, which specifies activities outside scopes.  

A scope is a dynamic container for tuples. It provides an isolated coordination space 
for compatible agents by restricting visibility of the tuples contained in the scope to 
the participants of the scope. Scopes are initiated by an agent and then atomically 
created by Location when all the participants are ready. Scopes can be nested and 
scope participants can create new contained scopes. Scope is defined by the set of 
roles and a set of logical restrictions. 
 

          
 

Fig. 1.  Scope classification a) according to the availability of scopes for new agents and b) 
according to the agent activity in a scope. 

A scope becomes activated after some agent creates it with the CreateScope 
operation. A scope is open when there are some vacant roles in it, and is closed when 
all the roles in it are taken. A scope is pending if some required roles are not taken yet 
and expanding if all the required roles are taken but there still some vacant roles. 
Closed and expanding states correspond to working scopes, where agents can 
communicate. All participants of a pending scope are blocked until the scope state is 
changed into closed or expanding. 

A role is an abstract description of agent functionality. Each role is associated with 
some scope type. An agent may implement a number of roles and can also play 
several roles in the same scope or different scopes. There is formal relationship 
between a scope and a role of a scope. 

Introduction of scopes and roles offers agents an entirely new way to discover each 
other and to collaborate with each other. After arrival to a new location, an agent 
looking for partners, initiates scope creation or join protocol. They are implemented 
as a request to the controlling system (middleware) to find appropriate partners ready 
for certain type of activity. In a request agent specifies type of scope it wants to work 
in and a role it is going to take. The system then creates a scope or finds an existing 
matching scope with available role for the agent. This procedure is executed 

Activated scopes 

Working Waiting 

Pending Expanding Closed 

Activated scopes 

Closed Open 

Pending Expanding 

56



atomically. As soon as all the required roles are taken, the system creates a separate 
coordination space for the group of agents participating in the scope. Isolation 
achieved this way greatly simplifies agent design since while in a scope agent may 
safely assume reasonable behaviour of their partners. In a scope agents remain 
anonymous as long as they need and procedures of scope joining or creation do not 
change this. 

The CAMA approach supports the context-awareness of mobile agents. The context 
of an agent in CAMA systems consists of is composed of the following parts: a set of 
locations the agent is connected to, the state of scopes in which the agent is currently 
participating (including tuples contained in these scopes) and role attributes of other 
agents in collaborating with the agent. 

3. Formal Development Process 

Formal development process of the CAMA system consists of several steps. First, we 
create abstract specifications of the middleware (location) and the scopes that will be 
supported by the system. Then we develop (by the stepwise refinement method) 
specifications of different roles participating in scopes. Finally, we compose an agent 
specification as a combination of several developed roles (i.e., agent interfaces) and 
the default functionality defining the agent behaviour outside scopes. 

The agent specification can be further refined adding more details and custom 
functionality. Compatibility of different agents is ensured by the fact that all agents 
have been developed by the formal refinement method from the same abstract 
specifications of different roles and the middleware. Therefore, agents can collaborate 
making safe assumptions about the functionality of their peers.  

In the next subsection we give a brief introduction into our formal framework – the 
B Method, which we will use to formalise the development process described above. 

3.1 The B Method 

The B Method [1] (further referred to as B) is an approach for the industrial 
development of highly dependable software. The method has been successfully used 
in the development of several complex real-life applications [6]. The tool support 
available for B provides us with the assistance for the entire development process. For 
instance, Atelier B [8], one of the tools supporting the B Method, has facilities for 
automatic verification and code generation as well as documentation, project 
management and prototyping.  The high degree of automation in verifying correctness 
improves scalability of B, speeds up development and, also, requires less 
mathematical training from the users.  

The development methodology adopted by B is based on stepwise refinement [3]. 
While developing a system by refinement, we start from an abstract formal 
specification and transform it into an implementable program by a number of 
correctness preserving steps, called refinements. A formal specification is a 
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mathematical model of the required behaviour of a (part of) system. In B a 
specification is represented by a set of modules, called Abstract Machines. An 
abstract machine encapsulates state and operations of the specification and as a 
concept is similar to a module or a package. 

Each machine is uniquely identified by its name. The state variables of the machine 
are declared in the VARIABLES clause and initialized in the INITIALISATION 
clause. The variables in B are strongly typed by constraining predicates of the 
INVARIANT clause. All types in B are represented by non-empty sets. We can also 
define local types as deferred sets. In this case we just introduce a new name for a 
type, postponing actual definition until some later development stage. 

The operations of the machine are defined in the OPERATIONS clause. In this 
paper we use Event B extension of the B Method. The operations in Event B are 
described as guarded statements of the form SELECT cond THEN body END. 
Here cond is a state predicate, and body is a B statement. If cond is satisfied, the 
behaviour of the guarded operations corresponds to the execution of their bodies. 
However, if cond is false, then the execution of the corresponding operation is 
suspended, i.e., the operation is in waiting mode until cond becomes true.  

The generalised version of the guarded operation is ANY operation. The syntax of  
ANY operation is  ANY  vars WHERE cond THEN body END.  The operation 
corresponds to a family of events or a parameterised event operation. It is triggered by 
any acceptable values of the variables vars satisfying the condition cond. The 
variables vars are then used as local variables in the operation body.   

B statements that we are using to describe a state change in operations have the 
following syntax: 

 
S   ==  x := e  |  IF  cond  THEN  S1  ELSE  S2  END | S1 ; S2  |   x :: T   | 

S1 || S2 | ANY  z  WHERE  cond  THEN  S  END   |   ... 
 
The first three constructs – assignment, conditional statement and sequential 

composition (used only in refinements) have the standard meaning. The remaining 
constructs allow us to model nondeterministic or parallel behaviour in a specification. 
Usually they are not implementable so they have to be refined (replaced) with 
executable constructs at some point of program development. The detailed description 
of the B statements can be found elsewhere [1]. 

3.2 Development of Scopes and Roles 

The specification of a scope describes general functionality of several collaborating 
agents (in particular roles). The task of formal development is to use the specification 
as the starting point for the derivation of specifications of the corresponding agent 
roles (interfaces). To guarantee correctness of the resulting role specifications, we use 
formal refinement and decomposition techniques. For example, Fig.2 shows that the 
Lecture scope is decomposed into roles Student and Teacher defining functionality 
of the corresponding agents. 
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On the other hand, we have to take into account scope nesting, when scopes have 
embedded subscopes providing some extended functionality. Subscope specifications 
can be naturally derived from the original scope specification via refinement. After 
verifying the correctness of refinement, we can continue the development process by 
decomposing the specification into corresponding roles as described above. In Fig.2, 
we show how scope Lecture is refined by subscope Group work, which is 
consequently decomposed into roles Student' and Teacher'. 
 

       
 

Fig. 2. a) Orthogonal decomposition diagram b) its representation as a parallel refinement. SD 
is scope decomposition; D – decomposition of a  scope into roles; R – refinement. 

As a result, we have two orthogonal development processes with the same starting 
point – the original specification of a scope. Both developments arrive at role 
specifications describing agent functionality in the corresponding scopes. However, 
the hierarchy of scopes and subscopes should be reflected in the corresponding 
specifications of agent roles. Hence the roles in subscopes must be the extensions of 
the corresponding roles in the scopes. In other words, to guarantee the consistency of 
developed roles, we have to show that the subscope roles refine the corresponding 
scope roles. 

In our Lecture scenario, we derived the specifications of agents in roles Student 
and Teacher. These specifications describe the functionality of the corresponding 
agents after joining scope Lecture. On the other hand, roles Student’ and Teacher’ 
describe the behaviour of the corresponding agents while they enter scope Group 
Work which is a subscope of Lecture. These roles have to satisfy the requirements 
specified in Student and Teacher. At the same time, they can provide additional 
functionality specific to Group Work. By proving formally that Student’ is a 
refinement of Student, and Teacher’ is a refinement of Teacher, we guarantee 
consistency of agent behaviour in nested scopes Lecture and Group work. In Fig.2, 
this is shown by the arrows connecting roles Student' and Student, and roles 
Teacher' and Teacher.  
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3.3 Agent Design 

Agent design starts with the selection of roles that the agent must implement. It is 
permitted to implement any number of roles from different scopes. Initially roles 
inside of an agent are totally independent specifications that may well correspond to 
several independent processes running in an agent. Agent refinement specifies 
additional operations that control agent behaviour during migration, location 
selection, scope creation and joining, and other activities not covered by roles.  

During agent refinement process, the agent roles can also be refined, possibly by 
adding some new functionality. Due to the nature of refinement, the refined roles are 
still compatible with the original abstract roles.  
 

 
 Fig.3. Relations between agents, scope models and roles. D – decomposition of a scope into 
roles; E – extension of role specification an agent model; R – refinement of an agent model. 
 
We start building an agent specification by extending one or more roles obtained 

formally through the decomposition of abstract scope models (see Fig. 3). The 
refinement step introduces a specification of the minimal agent functionality called 
the default role. It allows an agent to talk to locations, create/join/leave scopes, and 
migrate. The agent may also need some logic that glues independent interfaces and 
allows them to talk to each other. This is done via the global agent variables and the 
special methods for accessing to them.  

After the agent specification is ready, it is used to build the source code for the 
actual agent program. The source is linked against the middleware library to get an 
executable agent program. The generated agent source may run on PDAs, laptops, 
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desktop PCs and smart-phones using the platform-specific middleware 
implementation as the adaptation layer. 

The standard work cycle of an agent looks like this: an agent detects the available 
locations and connects to at least one of them, then looks for current activities on the 
location(s) or creates its own new scope, and finally joins a scope and plays one of the 
implemented roles in it. Only when the agent decides to play a particular role in a 
scope, it really starts to cooperate with other agents. The agent is capable of 
understanding its peers since the role functionalities of all the scope participants are 
based on the same abstract model. As a result, the composition of agent functionalities 
in a scope corresponds to the initial abstract model.  
 

 
Fig. 4. An instantiation of an abstract model  

The correctness of a model instantiation, or in other words, the fact that the scope 
instantiates the corresponding abstract scope model, can be demonstrated by 
analysing the agent design process and assuming that there is a correct transition from 
agent model to agent implementation. In Fig.4 we illustrate an instantiation of an 
abstract model which is formed when all the roles in the scope are taken by some 
agents. 

3.4 Fault Tolerance 

Ability to operate in a volatile, error prone environment will be an intrinsic feature of 
CAMA. Hence CAMA systems should be able to withstand various kinds of faults, 
i.e., guarantee fault tolerance. The most typical fault is a temporal connectivity loss 
which can cause failures of communication between cooperating agents or between an 
agent and the location. 

Since in the CAMA approach the agent and location software are developed from 
the corresponding B specifications, the fault tolerance mechanisms should be already 
integrated into these specifications, so that development of fault tolerance means is 
becoming part of the system development. For example, while modelling 
collaboration between agents in the specification of a scope, we have to define the 
agent behaviour in the presence of message losses, hardware failures etc. Moreover, 
while developing agent roles (interfaces) from the corresponding scope specifications, 
fault tolerance mechanisms should be distributed between involved parties. 
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Representing fault tolerance in CAMA constitutes an important research topic which 
we will further investigate in our future work. 

4 B Specification of the Middleware 

To ensure correct behaviour of the location-based system, the middleware of the 
location should enforce a certain discipline on agents. For instance, the properties of 
the scopes defined upon scope creation are preserved in spite of volatile connectivity 
and dynamic nature of scopes. Moreover, it should guarantee the integrity of the 
information about agents in locations and scopes. These complex interdependencies 
should be stated explicitly and verified. We have developed a formal specification of 
the location middleware which is the core of the system. It corresponds to the most 
complex part of the system and not only defines the operations that the location 
provides to support communication between agents but also state the properties of the 
data structures in the location. The actual middleware implementation will be based 
upon this formal model. An abstract description of the location specification is 
presented below. The full B specification can be found in [9].  
 
MACHINE  
   Location 
VARIABLES 
   AgentNames,          /* Agents active in the location */ 
   Scopes,                  /* Created scopes */ 
   ScopeRolesTaken,   /* A number of agents taken a particular role in a particular scope */ 
   AgentRoleData,       /* Public data disclosed by the agent while taking a certain role */   
   AgentScopes,          /* For each active agent defines the scopes in which it is active */ 
   ScopeAttributes,      /* Scope descriptions provided by scope creators */ 
   ScopeAgentRoles     /* The roles taken by agents in active scopes */ 
INVARIANT 
   Types of variables & interdependencies between data 
    
INITIALIZATION 
  Initially there are no agents and correspondingly no scopes in the location 
 … 
OPERATIONS 
 
/* Engagement request */ 
a_id < --Engage =   
  ANY Role_and_Data WHERE  
     Role_and_Data is the information about the supported roles supplied by the agent 
  THEN  
    CHOICE  
       successful engagement to the location by issuing valid ID to the agent via a_id and  
       update of AgentNames and AgentRoles  
    OR  
       failed engagement to the location by issuing invalid ID to the agent 
    END; 
  END; 
 
/* Disengagement request */ 
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rr <-- Disengage = … 
 
/* Scope creation request from an agent */ 
scope_id <-- CreateScope = 
   ANY a_id, scopeDescr, role WHERE 
       a_id is ID of the agent requesting to create a scope 
       scopeDescr defines the necessary conditions for joining a scope 
       role: the role that the requesting agent a_id will play in the created scope 
   THEN 
      CHOICE 
          successful scope creation by issuing valid scope ID via scope_id,  
          updating list of active scopes Scopes and list of  
            scope descriptions ScopeAttributes updating AgentScopes,  
          ScopeRolesTaken and ScopeAgentRoles 
      OR 
         unsuccessful scope creation by issuing invalid scope ID via scope_id     
      END   
  END;  
 
/* Scope remove request */ 
result <-- DeleteScope = … 
 
/* Scope join request */ 
result <-- JoinScope = 
  ANY a_id, scope_id, role WHERE 
      a_id is ID of the agent requesting to join the scope 
      scope_id is ID of the scope which the agent is attempting to join 
      role is the role which a_id will play in the scope 
  THEN 
     IF 
        the agent a_id is not already participating in scope_id & 
        requested role is a valid role for the scope &  
        conditions for participating in the scope are not violated     
     THEN 
        the agent a_id is successfully joined the scope 
        the information about the agent is updated 
          in AgentScopes, AgentRoles, and ScopeAgentRoles 
        the information about the number of agents playing the role is updated for the scope  
     ELSE 
        the agent a_id is rejected to join the scope 
     END 
  END; 
 
/* Scope leave request */ 
result <-- LeaveScope = … 
 
/* Prompt information about the scopes in which an agent can participate */ 
scopes <-- GetScopes = … 
END 
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5 Conclusions 

The presented work is tightly linked to the Ambient Campus case study of the 
RODIN Project. One of the project goals is to develop the methodology (based on 
formal methods) that would allow us to fully model and build the mobile location-
based systems. The requirements document (written for the Ambient Campus case 
study) is the first step towards creating the formal model of such systems.  

At the same time, we are developing middleware that will support our mobile agent 
abstractions. This paper presents the formal B specification of the location, i.e., the 
core part of the middleware. The choice of the location-based architecture (discussed 
in [5]) has influenced all the parts of our work on the case study, including the 
methodology.  

It is our plan to investigate more closely the agent design process. We are also 
planning to conduct several extensive experiments covering the full cycle of system 
development – starting from an abstract system model through all steps until we get 
running software.  
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Abstract. Creating the specification of a system by focusing primarily
on the detailed properties of the digital controller can lead to complex
descriptions that have no coherence. An argument put forward in a re-
cent paper by Hayes, Jackson, and Jones gives reasons to focus first on
the wider environment in which the system will reside. This paper infor-
mally explores two examples so as to illustrate this approach to system
specification.

1 Overview of approach

The general idea of the “Hayes/Jackson/Jones” approach [HJJ03] is simple: for
many technical systems it is easier to derive their specification from one of a wider
system in which physical phenomena are measurable. Even though the computer
cannot affect the physical world directly, it is still worthwhile to start with the
wider system. The message can be stated negatively: don’t jump into specifying
the digital system in isolation. If one starts by recording the requirements of
the wider (physical) system, the specification of the technical components can
then be derived from that of the overall system; assumptions about the physical
components are recorded as rely-conditions for the technical components.

In order to be able to write the necessary specifications, some technical work
derived from earlier publications of Hayes, Jackson and Jones has to be brought
together. The process of deriving the specification of the software system involves
recording assumptions about the non-software components. These assumptions
are recorded as rely conditions because we know how to reason about them
from earlier work on concurrency (e.g. [Jon81,Jon83,Jon96]). In most cases, we
need to reason about the continuous behaviour of physical variables like al-
titude: earlier work by Hayes (and his PhD student Mahony) provides suitable
notation [MH91]. The emphasis on “problem frames” comes from Jackson’s pub-
lications [Jac00].

A trivial example of the HJJ approach is a computer-controlled temperature
system: one should not start by specifying the digital controller; an initial speci-
fication in terms of the actual temperature should be written; in order to derive
the specification of the control system, one needs to record assumptions (rely-
conditions) about the accuracy of sensors; there will also be assumptions about
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Fig. 1. Bridging from the physical world to a digital control system

the fact that setting digital switches results in a change in temperature. Once
the specification of the control system has been determined, its design and code
can be created as a separate exercise. At all stages — but particularly before
deployment — someone has to make the decision that the rely conditions are
in accordance with the available equipment. Figure 1 gives an abstract view of
the HJJ approach. The referenced [HJJ03] outlines this procedure for a “sluice
gate” controller. The analysis includes looking at tolerating faults by describing
weaker guarantees in the presence of weaker rely conditions.

Notice that it is not necessary to build a complete model of the physical
components like motors, sensors and relays: only to record assumptions. But
even in the simple sluice gate example of [HJJ03], it becomes clear that choosing
the perimeter of the system is a crucial question: one can consider the physical
phenomena to be controlled as the height of the gate, or the amount of water
flowing; or the humidity of the soil; or even the farm profits. Each such scope
results in different sorts of rely-conditions.

2 Pushing out the boundaries of the system

2.1 The gas-burner

The need to start the specification phase without considering the digital system
can be illustrated by examining the gas-burner example used in [HRR91]. The
(interesting) physical components of the gas-burner system are:

– a processor to run the control software
– a heat request interface
– a flame sensor
– a gas valve
– an ignition transformer

The requirements, taken verbatim from [HRR91], are:

1. In order to ensure safety the gas concentration in the environment must at
all time be kept below a certain threshold
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2. The gas-burner should burn when heat request is on, provided the gas ignites
and burns without faults

3. The gas-burner should not burn when heat request is off

And three assumptions, also verbatim from [HRR91], are given:

1. When no gas is released, the flame is extinguished after at most 0.1 seconds
2. Gas cannot ignite unless the ignition transformer is operating
3. The gas concentration will stay below the critical threshold if gas never leaks

for more than 4 seconds in any period of at most 30 seconds

These requirements and assumptions, on their own, give a very sparse de-
scription of what the system is supposed to be doing. Moreover, the description
hides a number of assumptions which could, on the one hand, make deployment
dangerous and, on the other hand, make the specification arbitrary. The refer-
enced paper gives the first step in formalising requirements as constructing a
formal model, and defines five state variables in the digital system. They are
Heatreq, Flame, Gas, Ignition, and Conc. The first four are boolean-valued,
and the final one is a real-valued percentage.

Nothing in that specification constrains the use of those variables, and their
relationship to the physical system is left undefined. These relationships are crit-
ical: should those variables be used as sensors, so that their value is relied upon
to reflect the physical world, or are they used as a channel to send commands
to the physical components of the system?

The Heatreq and Flame variables appear to be inputs — Heatreq is the
input that tells the gas-burner to turn on, and Flame appears to be tied to
the flame sensor component in the physical system. The Conc variable, used to
denote the relative gas concentration around the burner, is most likely a “ghost”
variable, as the physical system has no sensor to measure gas concentration.
The Gas and Ignition variables must then be outputs from the system, used to
control the gas valve and ignition transformer respectively.

2.2 Extending the system boundaries

What is the actual purpose of the gas-burner? The specification as developed
gives the impression that the purpose is to burn gas — when the Heatreq signal
is on — given certain time-related constraints.

Moving the boundary outwards from that, one could say that a more accurate
description of the purpose of the gas-burner is to burn gas safely. The adjective
“safely” is used informally here and simply means that no explosions occur and
nobody is asphyxiated or intoxicated from high concentrations of gas in the
environment.

Pushing the boundary of the system out further, the purpose of the gas-
burner is probably to generate heat. Perhaps this is obvious; after all, one of
the signals in the referenced model is called Heatreq. However, that merely
prompts us to ask about the precise relationship between the Heatreq signal
and the operation of the gas-burner. Even at this level we do not know what it
is that we are trying to heat, that is, what the use of the gas-burner is.
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2.3 Back to the example

One of the first things to do is look at the real requirements of the system. If we
take the purpose of the system as simply to generate heat, we can quickly come
up with some general requirements.

The machine’s behaviour, during “normal” operation, would have require-
ments like:

– If Heatreq signal comes on at some point in time means that the gas-burner
will start to generate heat soon after.

– When the gas-burner is generating heat the Heatreq signal must be on and
must have come on in the relatively recent past.

– When the Heatreq signal turns off then the gas-burner will stop generating
heat soon after.

These requirements would be based on assumptions like:

– A flame in the gas burner generates heat.
– The presence of gas and a spark will cause a flame.
– Gas is present if the gas valve is turned on.
– The ignition transformer generates sparks.
– The gas-burner can sense the state of the Heatreq signal in a timely manner.

The assumptions tend to be very simple, but each can be easily formalized if
necessary. Note that the sample requirements here are not intended to cover
unusual situation — they are intended for a perfect environment.

The requirements for the machine when faced with an imperfect environment
could include:

– The machine does not cause explosions.
– The machine does not cause toxic concentrations of gas in the environment.

This requirement forces us to consider assumptions like:

– A large concentration of gas can cause an explosion.
– Small concentrations of gas can not cause an explosion.
– The environment cannot change in such a way so that the maximum safe

concentration of gas is less than some specific amount.
– The concentration of gas in the environment increases when the gas is on

without a flame.
– The concentration of gas in the environment cannot increase when the gas

is off.
– The environment causes concentrations of gas to dissipate over time.
– The machine will only have to deal with a single type of gas.
– The characteristics of the gas — volatility, ignition temperature, etc. — are

constant during operation.
– The ignition transformer is the only source of sparks.
– There is no other source of gas in the environment other than the gas-burner.
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– The environment does not actively inhibit gas-burning, but it is possible for
the environment to extinguish the flame even while the gas is on.

– The gas valve cannot fail to close.
– It is also assumed that the rate of flow of gas is constant, or has a constant

maximum. This is dependent on nozzle size, gas pressure and so on.

All of these assumptions are important, though this is not intended to be an
exhaustive list. While many may seem trivial, violating any of them can cause a
situation where the machine cannot meet its guarantee-conditions, and thus —
potentially fatally — fail to meet the requirements.

From all of the requirements and assumptions above we can consider the
behaviour of our machine. The observable behaviour is given through the use of
guarantee-conditions, i.e.:

– The ignition transformer generates a spark after gas is turned on.
– The time between turning the gas on and the ignition transformer gener-

ating a spark is much less than the amount of time it would take for the
concentration of gas in the environment to exceed a certain threshold.

– If the gas fails to ignite then the gas will be turned off, and will not be turned
back on for a period of time.

Among others, there would also be guarantee-conditions that covered the specific
relationship between the Heatreq signal and the actions of the gas-burner.

To put the structure of the overall system into perspective it is useful to create
a problem diagram of the sort described in Jackson’s book [Jac00]. The diagram
then acts as an aid when identifying the assumptions and possible sources of
interference about which the specification needs to be concerned. Figure 2 gives
a possible problem diagram from the gas-burner.

The “Control Machine” domain is the digital system whose specification we
want to determine and the “Gas-Burner” domain is the physical gas-burner. The
“Environment” domain represents the environment in which the gas-burner is
placed. The oval labelled “Requirements” shows the relationship between the
three domains it connects and shows that the behaviour of the gas-burner is
what is being constrained.

The last domain, “Control Signals”, was left aside as its presence while work-
ing on the diagram highlighted an important omission from the original descrip-
tion in [HRR91]: precisely what is controlling the Heatreq signal? Even more
than just that single example, the diagram also makes the possibility of change in
the environment more explicit and shows — by omission — that it is strictly not
possible for the machine to inspect the concentration of gas in the environment.
The combination of rely-conditions and problem diagrams provide a very good
means of identifying the properties — assumed or otherwise — of the overall
system.

The problem diagram has the useful effect of giving a visual representation of
the possible sources of interference that need to be recorded by rely-conditions.
Every variable shared between domains in the diagram will, at the very least,
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Fig. 2. Problem diagram for the gas-burner

need a rely-condition that describes the behaviour we assume it will have. Fur-
thermore, we will also need a rely-condition for every situation where two (or
more) variables have some relationship in their values.

Assumptions like the characteristics of the gas and nozzle — volatility, rate of
flow, and so on — can be coded as rely-conditions fairly directly. This can even
allow for some of the rely-conditions to be derived more-or-less automatically,
rather than written down without any context.

The rely-conditions and the properties of the overall system are used to justify
the set of guarantee-conditions that fulfill the requirements. The combination
of rely- and guarantee-conditions, matched against the requirements, form the
basis on which the user makes the decision as to whether or not the machine’s
behaviour is suitable.

Despite the linear presentation here, the construction of requirements, rely-
and guarantee-conditions, problem diagrams, and the identification of assump-
tions is not done in a linear fashion. All of these specific tools should be used to
influence the others.

3 Avoiding confusion between assumptions and
requirements

The message of the general method (Section 1) as exemplified by the previous
section applies to all examples: clarify the requirement in the real world before
trying to specify the software which sits within the system. This process naturally
identifies assumptions about the physical components which can be recorded (as
in [HJJ03]) as rely-conditions.

As an indication that there is another danger of focussing too early on the
computer system, we identify some reservations about one of the many specifi-
cations of the “Production Cell” example. This interesting problem is explored
using many different approaches in [LL95]. The specification which we investigate
is [MC94] (which is the journal version the paper by MacDonald and Carrington
in [LL95]).
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For the purposes of this workshop version of the paper, we assume that the
reader is familiar with the overall problem.1

3.1 Normal operation

– Section 2 of [MC94] contains an argument for the assumption that the Feed
Belt can contain only one metal block at a time (and a discussion of how
changing this assumption would change the model). This is not presented as
an assumption in the description; it becomes hidden in the state abstraction
for Component Loaded.

– There are several places (e.g. Sections 3, 4.1, 4.2, 5.1 of [MC94]) where
assumptions are made on the initial state of the system.

– A specific concern about Z is that it does not specifically identify pre-
conditions of operations; this raises the question whether this decision con-
tributes to the confusions (e.g. Section 3.2 of [MC94])

– It can be concluded from the specifications of Extend and Retract (in Sec-
tion 4.1 of [MC94]) that these operations are not allowed to change load pos
or unload pos but it is unclear whether this is an assumption on the equip-
ment or a requirement on the code.

– Similarly, the specifications of Load and Unload (in Section 4.1 of [MC94])
indicate in their predicates that these operations are only allowed in certain
positions; in this case (unlike the previous one) it might well be a requirement
on the code.

– Section 4.3 of [MC94] has requirements about not rotating the robot if either
arm is extended but it is left to guesswork as to whether this is an assumption
on the equipment or a requirement on the code.

– Section 4.2 of [MC94] makes statements about “the press must be empty”
without clarifying whose responsibility it is to achieve this situation.

– Similarly for unloading requiring that there is something to unload.
– Section 7 of [MC94] states that “the pre-condition2 ensures there is no col-

lision between the loaded robot and the elevating rotary table”!
– usw. usw.

4 Further work

The most obvious immediate objective is to completely formalise the examples
discussed in this paper in Hayes-Mahoney logic [MH91]. Tackling these and simi-
lar further examples will inevitably refine the method described in [HJJ03]. Less
immediately, further work includes creating a library of examples — including
the two given here — to create a body of work that can serve as a guide to
practitioners. These examples would need to be fully formal, and worked out up
to the point where an implementation would be designed.
1 Very briefly, the system has a press unit to which items are transferred from a belt

by a lifting device.
2 of Move ERT to Loading Position 1
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In the longer term, it should be possible to use such a library of examples
to generate a set of “HJJ patterns”, not unlike the design patterns [GHJV95]
currently used by practitioners of object-oriented development. Even if a set of
pattern-like structures cannot be developed, a full set of guidelines for using this
method is required.

The composition of specifications given with this method, in senses of both
subproblems and whole specifications, is a problem that remains to be fully
explored. The task of creating a specification for a machine’s “normal” operation
seems well understood, and creating the specification with weaker rely-conditions
for the “abnormal” machine behaviour is equally straightforward. However, the
problem of combining such specifications is a problem that demands further
study.

The basic ideas involved in the Jones’ rely-conditions, while good at recording
interference, leave gaps when it comes to notions such as ensuring that the system
can make progress. Work such as Stølen’s on wait-conditions [Stø91] addresses
some of these issues, and should be included in this method.

The notation given in Jackson’s [Jac00] for problem diagrams needs extension
to be able to directly record interference notation. The current notation does not
allow for more than a single domain to control a variable. Figure 2 is less detailed
than it might have been because of this.
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Abstract. Dependability analysis of the Web Services (WSs), disclosure of the 
possible failures modes and their effects are an actual problem. In the paper the 
results of the Web Services dependability analysis by using standardized 
FMEA-technique are represented. Obtained results were used for determining 
the necessary means of failure effect recovery, failure prevention, fault-
tolerance ensuring and fault removal. 

1   Introduction 

The Web Service architecture [1] based on SOAP, WSDL and UDDI specifications is 
rapidly becoming a de facto standard technology for organization of global 
distributed computing and achieving interoperability between different software 
applications running on a variety of platforms.  

It is now extensively used in developing various critical applications such as 
banking, auctions, Internet shopping, hotel/car/flight/train reservation and booking,   
e-business, e-science, business account management. This is why analysis and 
ensuring dependability in this architecture is an emerging area of research and 
development [1–3].  

The Web Service dependability consists of several constituents, first of all, 
availability, reliability, security, performance/responsiveness, etc. For the 
e-commerce, in particular, the serviceability describing the user’s satisfaction and the 
availability of the required services are an important characteristics.  

Performance and responsiveness undoubtedly are the important characteristics, but 
it is easy to provide them by using the parallel computing (web-clusters) and 
hardware upgrading (but this is outside of the scope of this report). In this paper we 
will focus on ensuring of Web Service reliability and availability.  

To improve the Web Services dependability and ensure fault-tolerance it is 
necessary to analyse possible failures modes, their causes and influence on system. 
For that the standardized FMEA-technique [4] was used. 
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2   Analysis of the Web Services by Using FMEA-Technique 

The FMEA (failure modes and effects analysis) is a standard formalized technique for 
the reliability analysis of different systems which devoted to the specification of 
failure modes, their sources, causes of occurrence and influence on system as a whole 
[4]. The use of the FMEA-technique for the Web Services analysis allows to identify 
the typical failures and their influence on the Web Services dependability, and also to 
determine necessary means for fault-tolerance and failure effect recovery. FMEA-
technique may be an important part of Web Services dependability guaranteeing 
program.  

Computer system provided some Web Service consists of hardware and specific 
software components (web server, application server, DBMS, application software – 
servlets, stored procedures and triggers) and may have different architectures (Fig. 1). 
These components must be taken into account during failure modes and effects 
analysis.  
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em

Web Server

Application Server

DBMS

Data Base
Stored procedures

Servlets

Software Environment

Web Server App Server Data Base
Server

Web&App
Server

Data Base
ServerHardware Environment

(1) (2) (3)  
Fig. 1. Typical Web Services component architectures: (1) all components in the same 
computer; (2) fully separated component architecture; (3) partially separated component 
architecture. 

The analysis of Web Services failures modes, causes and effects is obtained by 
using the FMEA-format (Tables 1, 2). To reduce scale of FMEA-tables we replaced 
repeating rows by arrows. 

To identify the Web Services failures modes new failure taxonomy was proposed 
(Fig. 2) taking into consideration variants described in [5–8]. The proposed taxonomy 
classifies possible failures from the points of view of the Web Service publishers and 
the end-users and takes into account failure domain, failure evidence and stability of 
occurrence, and also its influence on system operability.  

We performed analysis of failure effect on data, system components, users and 
Web Services as a whole. Several failures modes can lead to the prolonged or short-
term service aborting that affects on users as denial of service. But some failures 
result in a non-evident incorrect service. For many applications (e-commerce, critical 
automation control, etc.) such effect is more dramatic because will entail serious 
consequences, financial loss and, finally, service discrediting. 
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Table 1. Hardware failures modes end effects analisys  
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Table 2. Software failures modes end effects analisys  
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Fig. 2. Failure taxonomy 

As it was inquired, the hardware design faults (faults in processors, chipsets, etc.) still 
remain one of the possible causes of the Web Services failures. Furthermore, a 
monthly Specification Update for Intel product series can contain up to several tens of 
errata, some of which under certain circumstances can lead to unexpected program 
behavior, calculation error or processor hang. However, the prevalent sources of Web 
Services failures are the different software components. 

The reliability (probability of failure-free operation) of separated Web Services 
architectures presented on the Fig. 1 (2, 3) is less than reliability of concentrated 
architecture (1) because of the increase of a number of HW components that can fail. 
Thus, such architectures are expedient for using in cluster systems.  

Performed analysis will help in defining the necessary failure recovery and fault-
tolerance means for specific failure modes. Set of the fault-tolerance means depends 
on failure modes and causes whereas the required failure recovery means depends on 
failure effect on system and its components. Failures severities can be defined by 
their evidence and influence on system operability. 

3   Ensuring Web Services Dependability and Fault-Tolerance 

3.1   Failure effect recovery 

Common means of the failure effect recovery for Web Services include: 1) replacement 
of crashed hardware components; 2) reinstall of crashed software components; 3) data 
recovery; 4) system rebooting or restarting of the particular software services. 
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To achieve better availability system rebooting and restarting of the particular 
software services and applications must be performed in automatic mode with the 
help of hardware or software implemented watch-dog timer. Besides, it is 
preferentially to have secure way for remote system rebooting by administrator.  

It is very important to perform regular data backup for success data recovery. 

3.2   Failure prevention 

Fault prevention is attained first of all by quality control techniques employed during 
the design and manufacturing of hardware and software [5]. However, most of the 
hardware and software Web Services components are the COTS- (commercial of the 
shelf) components developed by third parties. 

Hence, service publisher has limited means for failure effect prevention: 
− quality control techniques employed during the design of the own developed 

application software; 
− procedures for input parameter checking; 
− rigorous procedures for system maintenance and administration; 
− firewalls, security guards and scanners to prevent malicious failures. 
Besides, to prevent transient failures and performance reducing caused by software 
rejuvenation can be used techniques based on forced restarting/reinitialization of the 
software components [9]. 

3.3   Fault-tolerance 

The development of fault tolerant techniques for the Web Services has been an active 
area of research over the last couple of years. The backward (based on rolling system 
components back to the previous correct state) and forward (which involves 
transforming the system components into any correct state) error recovery for the web 
on the basis of an application-specific exception handling is discussed in [10].  

More generally, high dependability and fault-tolerance of the Web Service is 
ensured by using different kinds of redundancy and diversity at the different levels of 
the system structure (Fig. 3). HW redundancy may be partial (redundancy of 
processors, hard discs – RAID, network adapters, etc.) as well as complete with 
replication or diversification of SW. Complete HW and SW redundancy is a 
foundation of cluster architectures and provides better performance and 
dependability. 

Diversity is used usually to tolerate software or hardware failures caused by design 
faults. But for tolerating transient failures a simple replication of SW environment 
with HW redundancy may be a sufficient means because of the individual behavior 
even of two replicated SW environment. To tolerate non-evident failures the voting 
scheme must be used.  

The 72-87% of the faults in open-source software are independent of the operating 
environment (i.e. faults in application software) and are hence permanent [6]. Half of 
the remaining faults is environment depended and permanent. And only 5-14% of the 
faults are environment depended caused by transient conditions. Hence, diversity is 
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the most efficient method of fault-tolerance provision. It can be used for HW 
platform, OS, web and application servers, DBMS and, finally, for application 
software both separately and in many various combinations.  

However diversity can worse the intrusion-tolerance and Web Service security 
(confidentiality and integrity) because it opens new potential ways for malicious 
intrusions. At the same time diversity brings additional protection against DoS 
attacks.  
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Fig. 3. Means for Web Services fault-tolerance 

3.4   Fault removal 

Fault removal of the Web Services based, first of all, on the systematic applying of 
the updates and patches for hardware (microcode updates) and software developed by 
third parties (OS, drivers, web and app servers, DBMS).  

Fault removal from the own developed application software is performed both 
during the development phase and the maintenance.  
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4   Dependable Web Services Development and Deployment  

4.1   Using FMEA-technique for Dependable Web Services Development 

To develop and deploy dependable Web Services the common FMEA-tables (see 
Tables 1-2) describing hardware and software failures modes and effects must be 
concretized taking into account actual hardware/software architecture of particular 
Web Service (Fig. 4). 
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Fig. 4. Using FMEA-technique for Dependable Web Services Development 

The two different development strategies are possible. For Web Services of business-
critical applications (for example, e-commerce) it is necessary as a rule to provide the 
required dependability at the minimum costs. For Web Services of commercial 
applications it is important to provide the maximum dependability at the limited costs. 
These goals can be achieved by solving optimization problem taking into account 
failures criticality, probability of occurrence and cost of fault-tolerance means, their 
effectiveness and failures coverage. As a result the Web Service must be updated 
using chosen fault-tolerance means. 

81



4.2   The principles of Dependable and Secure Web Services Deployment 

The Web Services fault and intrusion tolerance, security and dependability as a whole 
can be improved by using following principles. 
1. Defense in depth and diversity (D&D). This principle provides the using of 

diversity at the different levels of the Web Service architecture (HW platform, OS, 
System SW, etc.) and also joint usage of existed security and fault-tolerance 
facilities. Here, the compatibility between different facilities and diversity modes 
must be taken into account. To solve this problem the multilevel diversification 
graph can be used [11]. The number of graph levels will be equal to the number of 
diversified components of the Web Services whereas the number of nodes at the 
each level will be equal to the number of existed diverse elements.  

2. Adaptability and update (A&U). The essence of this principle is in the dynamic 
changing of Web Service architecture and diversity modes according to observed 
failures and intrusions. For that the intellectual monitoring means can be used in 
the system for the detection of the failures and intrusions, their analysis and the 
choice of the better Web Service configuration. These means can include external 
alarm services to notify about recent Internet security vulnerabilities, novel viruses 
and to distribute security updates and patches.  

The D&D and A&U principle are corresponding to the DIT (Dependable Intrusion 
Tolerance) architecture described in [12]. 

5   Conclusions 

Publishers of Web Services have a limited possibility for fault prevention and fault 
removal of the most components of Web Services, developed by third parties. Thus, 
redundancy in combination with diversity is one of the basic means of dependability 
ensuring and tolerance provision to the majority failure modes. But using diversity in 
Web Service architecture requires detailed researches and addition solutions because 
it can lead to the addition security violations. 

Cluster architecture improves availability of Web Services. The additional 
adaptive reliable algorithms and means of voting and failures diagnosis must be 
implemented for the ensuring tolerance to the non-evident failures and prevention of 
losses of the processed (in-service) requests.  

The FMEA is an effective technique, which can be used for the application of a 
specific dependability analysis of Web Services, especially of composite WSs. 
Fulfilled analysis can be extended by taking into account the lacks of required 
resources or services and service unavailability due to network failures. Besides, the 
critical analysis of different failures modes can be performed. 

FMEA-tables may be dynamically updated during Web Service operation. It 
allows (jointly with implementation of D&D and A&U principles) to increase the 
effectiveness of the used means of dependability ensuring. 
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Abstract. In this paper we focus on analysis of transient physical faults and de-
signing mechanisms to tolerate them. Transient faults are temporal faults that 
appear for some time and might disappear and reappear later. They are common 
in control systems. However transient fault appearing even for a short time 
might result in a system error. Hence fault tolerance mechanisms for detecting 
and recovering from temporal faults are of great importance in the design of 
control systems. Often the system module which detects errors and performs er-
ror recovery is called a Failure Management System. Its purpose is to prevent 
the propagation of errors in the system. In this paper we propose a formal ap-
proach to specifying the Failure Management System in the B Method. We fo-
cus on deriving a general specification and development pattern for Failure 
Management Systems for tolerating transient faults.  

1   Introduction 

Nowadays software-intensive control systems are in heart of many safety-critical ap-
plications. Hence dependability of such systems is a great concern. While designing 
controlling software for such systems we should ensure that it is able not only to de-
tect errors in system functioning but also to confine the damage and perform error re-
covery. In this paper we focus on designing controllers able to withstand transient 
physical faults of the system components [9]. Transient faults are temporal defects 
within the system. We focus on analysis and design of a special subsystem of control 
systems – a Failure Management System (further referred to as FMS) – which per-
forms error detection, damage confinement and error recovery. The FMS is a subsys-
tem of the embedded control system responsible for providing the controller with the 
error free inputs obtained from the environment. Since controller is relying only on 
the input from FMS, it is important to ensure its correctness. 

Design of the FMS is particularly difficult since often requirements changes are in-
troduced at the late stages of the development cycle. These changes are unavoidable 
since many requirements result from empirical performance studies executed under 
failure conditions. To overcome this difficulty we propose a formal pattern for speci-
fying fault tolerance mechanism in the FMS. The contribution of our work is in veri-
fying the suggested pattern rather then a particular specification. The proposed pattern 
can be reused in the product line development and hence its correctness is crucial.  
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We demonstrate how to develop the FMS by stepwise refinement in the B Method 
[3]. Our approach is validated by a realistic case study conducted within EU project 
RODIN [7].  

2   Fault tolerance mechanism in FMS 

Failure Management System (FMS) [2] is a part of the embedded control system re-
sponsible for managing failures of the system inputs as shown on Figure 1.  

 

 
Sensors 

Application 

Actuators 

Controller 

FMS 

 
 

   Figure 1. Place of the FMS in an embedded control system 
 
The main role of FMS is to supply the controller of the system with the error free in-
puts from the system environment.  

All inputs supplied to the FMS are analysed. The analysis of each input results in 
invocation of the corresponding remedial action. There are three categories of reme-
dial actions: healthy, temporary or confirmation actions. If an input is considered to 
be error free, it is forwarded unchanged to the controller. This is a healthy system ac-
tion. If an error is detected, the input gets suspected and the FMS decides on error re-
covery. The aim of FMS is to give error free output even when input is in error, i.e., 
during recovery phase. Hence, when the input is suspected, the system sends the last 
good value of the input as the error free output toward the controller. This is a tempo-
rary system action. In the recovery phase the input can get recovered during certain 
number of operating cycles. If the input fails to recover, the confirmation action is 
triggered and the system becomes frozen.  

In Figure 2 we illustrate the behaviour of FMS over one analogue input. 
 

 

Normal Recover Freez 
Input 

Input_Ok Input_Suspected 

Input_Confirmed 

Input_Ok 

Input_Suspected 

 

Figure 2. Specification of the FMS behaviour 

A general description of FMS behaviour is as follows: after getting the input from 
the environment through the system sensors, the FMS determines whether the input is 
in error or error free. If the input is error free, the FMS applies healthy remedial ac-
tion. If it is in error, it is classified as suspected and the system initiates recovery 
phase. When the recovery starts, a counting mechanism responsible for ensuring the 
recovery termination is triggered. If after recovery the input is still suspected, the con-
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firmation action is applied, i.e., the input is confirmed failed and the system freezes. 
Otherwise, the system considers the input again as error free, applies the healthy ac-
tion and continues the operation without any interruption.  

The general description of FMS behaviour lacks, however details about the error 
detection.  

When an input is received by FMS, FMS performs certain tests on the inputs to de-
termine its status: in error or error free. We differentiate between the individual and 
collective tests. Individual tests (e.g., Test1 and Test2 in Figure 3) are obligatory 
for each input and they determine the preliminary abnormality in the input. When 
triggered, individual tests run solely based on the input reading from the sensor. We 
use two kinds of individual tests: the magnitude test and the rate test. In the magni-
tude test the input is compared against some predefined limit (bound) and if exceeds, 
it is considered in error. The rate test is detecting erroneous input while comparing the 
change of the input readings in consecutive cycles. Namely, the current value of the 
input is compared against the previous input value and if some predefined limit is ex-
ceeded, the input is considered in error. It is obvious that both tests have some precon-
figurations expressed through the predefined limits which allow dynamic test changes 
as appropriate. 
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Figure 3. Introducing error detection 

The error detection for multiple sensors (InputN in Figure 3) implies first the ap-
plication of individual tests and then, when these tests are passed, the collective test is 
applied. The collective test is commonly a redundancy test. It is applied on the group 
of multiple sensor inputs. As presented on the Figure 3, redundancy test takes the de-
tected multiple inputs (Input_ErrorN) and based on their values (TRUE or FALSE) 
votes for the input status (Input_Error). This status becomes TRUE (i.e., the input is 
considered in error) if there are more erroneous inputs for the multiple sensor readings 
then error free ones. When the input status is finally detected, FMS proceeds with the 
corresponding remedial actions.  

  Before presenting our formal pattern for handling fault tolerance in FMS, we 
give the short introduction to the B Method.  

3   Formal system modelling in the B Method 

In this paper we have chosen the B Method [3] as our formal modelling framework. 
The B Method is an approach for the industrial development of correct software. The 
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method has been successfully used in the development of several complex real-life 
applications [6]. The tool support available for B, for instance - Atelier B [1], pro-
vides us with the assistance for the entire development process.  

In this paper we adopt event-based approach to system modelling [4]. The events 
are specified as the guarded operations SELECT cond THEN body END. Here cond is 
a state predicate, and body is a B statement describing how state variables are af-
fected by the operation. If cond is satisfied, the behaviour of the guarded operation 
corresponds to the execution of its body. If cond is false at the current state then the 
operation is disabled, i.e., cannot be executed.  Event-based modelling is especially 
suitable for describing reactive systems. Then SELECT operation describes the reac-
tion of the system when particular event occurs. 

For describing the computation in operations we used following B statements: 
 
Statement Informal meaning 
X := e Assignment 
IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise S2 
S1 || S2 Parallel execution of S1 and S2 

X :: T 
Nondeterministic assignment – assigns 
variable x arbitrary value from given set T 

 
The last statement allows for abstract modelling and hence, postponing implemen-

tation decisions till later development stages.  
The development methodology adopted by B is based on stepwise refinement [8]. 

While developing a system by refinement, we start from an abstract formal specifica-
tion and transform it gradually into an implementable program by a number of cor-
rectness preserving steps, called refinements. In the refinement process we reduce 
non-determinism of the original specification and eventually arrive at deterministic 
implementable specification.  

The result of a refinement step in B is a machine called REFINEMENT. Its structure 
coincides with the structure of the abstract machine. However, refined machine 
should contain an additional clause REFINES which defines the machine refined by 
the current specification. Besides definitions of variable types, the invariant of the re-
finement machine should contain the refinement relation. This is a predicate which 
describes the connection between state spaces of more abstract and refined machines. 

 To ensure correctness we should verify that initialization and each operation pre-
serve the invariant. Verification can be completely automatic or user-assisted.  

Next we demonstrate how to formally specify failure management system de-
scribed in Section 2. 

4   Formal development of FMS 

4.1   Specifying the failure management system 

Control systems are usually cyclic, i.e., their behaviour is essentially an interleaving 
between the environment stimuli and controller reaction on these stimuli. The control-
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ler reaction depends on whether the FMS has detected error in the obtained input. 
Hence, it is natural to consider the behaviour of FMS in the context of the overall sys-
tem.  
 The FMS gets certain inputs from the environment, applies specific detection 
mechanisms and depending on the detection results produces output to the controller 
or freezes the whole system. Inputs that FMS receives from the environment are in-
puts from various sensors. In this paper we consider only analogue sensors. In ab-
sence of errors the output from the FMS is the actual input to the controller. However, 
if error is detected the FMS should try to tolerate it and produce the error free output 
or to stop the system without producing any output at all. 

In our abstract specification given in Figure 5, for modelling fault tolerance on 
given input we used different variables. The variable FMS_State defines the phases 
of control cycle execution. Its values are as follows: env – obtaining inputs from the 
environment, det – detecting erroneous inputs, act – changing the system operating 
mode, rcv – recovering of the erroneous input, out – supplying the output of the 
FMS to the controller, stop – freezing the system. The variable FMS_State models 
the evolution of system behaviour in the operating cycle. At the end of the operating 
cycle the system finally reaches either the terminating (freezing) state or produces the 
error free output. After the error free output was produced, the operating cycle starts 
again. Hence, the behaviour of the FMS can be described as in Figure 4. 

 

 

Figure 4. Behaviour of the FMS 

Since the controller relies only on the input from the FMS, we should guarantee 
that it obtains the error free output from the FMS. Hence, our safety invariant ex-
presses this: whenever the input is confirmed failed, the FMS output is not produced 
(i.e., Input_Status=confirmed => FMS_State=stop) and, whenever the input 
is confirmed ok, the output should have the same value as input or be different if the 
input is suspected (i.e., (Input_Status=ok => Output=Input) & (In-

put_Status=suspected => Output/=Input)).  
Although the abstract specification of FMS is highly abstract it anyway specifies 

the fault tolerance mechanism allowing us to ensure the desired behaviour of the sys-
tem. In this abstract specification the input values produced by the environment are 
modelled nondeterministically. After getting the inputs, FMS performs detection on 
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inputs to determine if they are in error or error free. This is modelled in the Detec-
tion operation of the FMS machine as a nondeterministic assignment of some boo-
lean value (TRUE or FALSE) to the variable modelling input state (i.e., Input_Error 
:: BOOL). After the input state is detected, FMS triggers the healthy action if the in-
put is error free. If the input is in error, FMS initiates temporary action, i.e., error re-
covery.  
 
MACHINE 

FMS 
SEES 

Global 
VARIABLES   

Input, Input_Error, FMS_State, cc, num 
INVARIANT 

Input : T_INPUT &     /*actual input to the FMS*/ 
Input_Error : BOOL &  /*variable modelling input  
                        status*/ 
FMS_State : STATES &  /*variable modelling system  
                        state*/ 

    cc : NAT &            /*cc and num are counters*/ 
    num : NAT &                

<safety invariant> 
INITIALISATION  

FMS_State :=env || cc:=0 || num:=0  
OPERATIONS 

 
Environment= 
SELECT <the system is functioning normally> 
THEN 
       <nondeterministically choose some input> || 
       FMS_State:=det 
END; 
 
Detection= 
SELECT <the system is in the detection state> 
THEN 
       Input_Error :: BOOL || FMS_State:=act 
END; 
 
Action= 
SELECT <the input is not in error> 
THEN 
       <healthy action > || FMS_State:=out  
WHEN 
       <the input is in error and the  
        error is just discovered> 
THEN 
       <input is marked as suspected> || 
       cc:=cc+xx || num:=num+1 || FMS_State:=rcv 
WHEN 
       <the input is not in error but it is already  
        marked suspected> 

THEN 
       <input stays suspected> ||      
       cc:=cc-yy || num:=num+1 || FMS_State:=rcv 
WHEN 
       <the input is in error and it is already  
        marked suspected> 
THEN 
       <input stays suspected> || 
       cc:=cc+xx || num:=num+1 || FMS_State:=rcv 
END; 
 
Return= 
SELECT <healthy action> 
THEN 
       <input is passed to the output> || 
       FMS_State:=env 
WHEN 
       <temporary action>  
THEN 
       <output is assigned the last good  
        value of the input> || FMS_State:=env 
END; 
 
Recovering= 
SELECT <input is suspected> & (num>=Limit or cc>=zz) 
THEN 
       <input confirmed failed> || FMS_State:=stop 
WHEN 
       <input is suspected> & num<Limit & cc=0 
THEN 
       <input has recovered> || FMS_State:=out 
WHEN 
       <input is suspected> & num<Limit & cc/=0 &  
       cc<zz  
THEN 
       FMS_State:=env 
END; 
 
Stopping= 
SELECT FMS_State=stop 
THEN 
       skip 
END 

END 

 

Figure 5. Excerpt from the abstract FMS specification

Error recovery is modelled by introducing the two counters: cc and num. At the 
beginning of the operating cycle, both counters are set to zero and their values are 
changed only in the recovery phase. The first counter cc counts inputs which are in 
error. While the system is in the recovery phase, every time when the obtained input 
is found in error, the system sets as the output the last good value of the input and the 
counter cc is incremented by some given value xx. However if the input is error free, 
the cc is decremented by the given value yy. In each operating cycle system is setting 
some values for the counter cc either by decrementing or incrementing it. If at one 
point the value of the cc exceeds some predefined limit zz the counting stops and the 
system confirms the input failure by terminating the operation and freezing the sys-
tem. Since each erroneous input increments the value of cc and each error free input 
decrements it, eventually the counter cc is set to zero. This is possible if eventually 
the FMS starts to receive error free inputs. If cc reaches zero the input is considered 
to be recovered and the system returns to normal functioning initializing cc to zero 
and making it thus ready for the next recovering cycle. The way cc reaches zero or 
exceeds the limit zz is determined via setting the parameters xx, yy and zz. These 
parameters are set by observing the real performance of the failure. By setting the 
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value of xx higher then the value of yy, the counter cc is going to yield the limit zz 
faster. However, such a specification is insufficient for guaranteeing termination of 
recovery. Observe that the input may vary in such a way that the counter cc is practi-
cally oscillating between some values but never reaching the limit zz or zero. Hence, 
we introduce the second counter num which is counting each recovering cycle. When 
some allowed limit for num is exceeded, the recovery terminates and if cc is different 
than zero the input is confirmed failed. 

Our initial specification completely describes the intended behaviour of the FMS 
but leaves the mechanism of detecting errors in input unspecified. Next, we demon-
strate how to obtain the detailed specification of error detection in the refinement 
process.  

4.2   Refining error detection in FMS 

Since we observe multiple sensors the refinement of the FMS starts with replacing the 
Input variable with the InputN variable modelling the sequence of input values re-
ceived by the FMS as N sensor readings, instead of only one sensor reading. The non-
deterministic assignment of value to the variable Input_Error in the Detection 
operation of the abstract machine is further refined. By introducing new variable In-
put_ErrorN we can set the value for each particular sensor reading. Input_ErrorN 
is a sequence with Boolean values TRUE or FALSE. These values are determined for 
each multiple sensor input by running two detection tests: the magnitude test and the 
rate test. If the input passes the magnitude test, the value of the temporary variable 
Input_Error1 is set to FALSE, otherwise is TRUE (i.e., the test on this input failed). 
Similarly, if the input passes the rate test, the value of the temporary variable In-
put_Error2 is set to FALSE, otherwise TRUE.  
 The input is error free if none of these tests fail. Hence we define the status of the 
input as the disjunction of Input_Error1 and Input_Error2 and set the variable 
Input_ErrorN accordingly. 
 After setting the values of the variable Input_ErrorN in described way, we apply 
the redundancy test (as shown in Figure 3). We consider N sensor readings which val-
ues are stored in introduced variable InputN. Moreover, our assumption is that this 
number is odd to prevent the situation in which the number of the erroneous and error 
free inputs is the same. The status of each one of the N sensor inputs is recorded in the 
variable Input_ErrorN. The redundancy test performs majority voting. It means that 
if there are more values TRUE in the Input_ErrorN sequence, the whole input is 
considered failed, otherwise it is error free. After the status of the input is detected, 
FMS makes a decision how to proceed with handling it, i.e., which action it is going 
to apply as specified in the abstract specification. 

The essence of our refinement step is to introduce modelling of the N sensor inputs 
instead of only one and replace the nondeterministic assignment to the variable In-
put_Error with deterministic error detection. The refinement relation for this step is 
as follows: 

 
(Input_Error=TRUE =>  

(card(Input_ErrorN|>{TRUE}) > card(Input_ErrorN|>{FALSE}))) 
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The above refinement relation establishes connection between the abstract variable 

Input_Error and the concrete variable Input_ErrorN. Namely, if the value of In-
put_ErrorN is such that the number of error free inputs is smaller then the number 
of erroneous inputs then it should correspond to the value TRUE of Input_ErrorN. 

 To produce the final output, FMS calculates the median value of all error free in-
puts and passes it as the output from the FMS. 

In the Figure 6 we give the excerpt from this refinement step of the FMS with in-
troduced error detection.  
 
REFINEMENT  

FMSR1 
REFINES  

FMS 
SEES  

Global 
VARIABLES   

InputN, Input_Error, Input_Error1, Input_Error2,       
Input_ErrorN,  
FMS_State, 
cc,num, 
Passed1, Passed2 

INVARIANT 
InputN : seq(T_INPUT) & /*N sensor input reading*/ 
Input_Error : BOOL &   
Input_Error1 : BOOL &   /*test results for 1 input*/ 
Input_Error2 : BOOL &  
Input_ErrorN : seq(BOOL) & /*test results for  
                             N sensor inputs*/ 
FMS_State : STATES & 
cc : NAT & num : NAT & 
Passed1 : BOOL &           /*variables for modeling 
                             test application*/ 
Passed2 : BOOL &    
<safety and gluing invariants> 

INITIALISATION  
InputN := [] || Input_Error := FALSE ||  
Input_Error1 := FALSE || Input_Error2 := FALSE ||  
Input_ErrorN := [] || 
FMS_State := env || 
cc := 0 || num:=0 || 
Passed1 := FALSE || Passed2 := FALSE 
 

OPERATIONS 
 
<obtaining the input from the environment> 
 
Detection= 
SELECT <magnitude test not passed yet> 
THEN 
    IF  
       <the input is in defined low and high limits> 
    THEN 
       Input_Error1:=FALSE 
    ELSE 
       Input_Error1:=TRUE 
    END || 
    Passed1:=TRUE || 
    FMS_State:=det 

WHEN 
    <rate test not passed yet> 
THEN 
    IF 
       <the input change exceeds the limit> 
    THEN  
       Input_Error2:=TRUE 
    ELSE 
       Input_Error2:=FALSE 
    END || 
    Passed2:=TRUE || 
    FMS_State:=det 
WHEN 
    <both test are passed> 
THEN 
    IF  
       /*simulate disjunction*/ 
       Input_Error1=Input_Error2 &  
       Input_Error1=TRUE 
    THEN 
       /*record the input status*/ 
       Input_ErrorN:=Input_ErrorN <- TRUE 
    ELSE 
       Input_ErrorN:=Input_ErrorN <- FALSE 
    END || 
    /*remove the detected input from further  
      observation*/ 
    InputN:=tail(InputN) ||  
    FMS_State:=det 
WHEN 
    <input sequence InputN is empty> 
THEN 
    /*apply the redundancy test*/ 
    IF  
       <the number of TRUE values in Input_ErrorN  
        greater then the number of FALSE values> 
    THEN 
        Input_Error:=TRUE 
    ELSE 
        Input_Error:=FALSE 
    END || 
    FMS_State=act 
END; 
 
<system action upon detection> 

 
END 
 
 

Figure 6. Excerpt from refining the error detection in FMS

5   Conclusion 

In this paper we proposed a formal pattern for specifying and refining fault tolerant 
control systems susceptible to transient faults. We demonstrated how to ensure that 
safety requirement – confinement of erroneous inputs – is preserved in the entire de-
velopment process. We focused on the design of subsystem of the control system – 
the failure management system, which enables error detection, confinement and re-
covery. Our approach has currently focused on considering multiple analogue sensors. 
We derived a general specification of the corresponding error detection mechanism 
which defines the appropriate tests run on the obtained inputs. We verified our pattern 
on a case study. 
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Laibinis and Troubitsyna [5] proposed a formal approach to model-driven devel-
opment of fault tolerant control systems in B. However, they did not consider tran-
sient faults. Since we consider this type of faults our approach can be seen as an ex-
tension of the pattern they proposed. 

More work on specifying FMS has been done by Johnson et. al [2]. However, they 
focused on reusability and portability of FMS modelled using UML in combination 
with formal methods. The error detection mechanism proposed here is based on the 
application of specific tests combined with the counting mechanism. Hence we fo-
cused on specifying the essence of mechanism for tolerating transient faults. 

We verified our approach with the automatic tool support – Atelier B. Around 95% 
of all proof obligations have been proved automatically by the tool. The rest has been 
proved using the interactive prover. We believe that the availability of the tool sup-
porting formal specification and verification can facilitate acceptance of our approach 
in industry. 

In this paper we addressed a specific subset of transient faults. As a future work we 
are planning to enlarge this subset and derive generic patterns for specification and 
development of control systems tolerating them. Moreover, it would be interesting to 
investigate the possibility of automatic instantiation of specific requirements from 
which the general pattern is obtained.  
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×«;¾Z[Sb×�ä Ö ZkÙKÞH;QP�?vTHFH?@Z3?0ØM?G×«SYZ[B3?0Là×[?GP�Z[;>ÜvL6P�ÜGLuZ\?0;>LM×
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MACHINE              CausalOrder 
SETS                      PROCESS ; MESSAGE  
VARIABLES         sender, receive, order 
INVARIANT       
 /* Inv-1 */          sender �   MESSAGE �  PROCESS    
 /* Inv-2 */       �  receive �  PROCESS �  MESSAGE �  order �  MESSAGE �  MESSAGE 
 /* Inv-3 */       �   dom(order) �  dom(sender)  �    ran(order) �  dom(sender)  
                         �  ran(receive) �  dom(sender) 
 /* Inv-4 */       �   � p,m � (p � PROCESS �  m �  MESSAGE �  (p � m) �  receive  �  p 	  sender(m)) 
 /* Inv-5 */       �  � m1,m2,m3 � (m1 � MESSAGE �  m2 � MESSAGE �  m3 �  MESSAGE 
                                   �  (m1 �  m2) �  order �  (m2 � m3) �  order  �  (m1 �  m3) �  order) 
 /* Inv-6 */       �
� m1,m2,p � (m1 �  MESSAGE �  m2 �  MESSAGE �  p �  PROCESS  
                                   �  (m1 � m2) � order �  (p � m2) � receive �  p 	 sender(m1)  �  (p � m1) �  receive ) 
 
INITIALISATION 
                                      sender := �    || receive := �  || order := �  
OPERATIONS 
   Send(pp,mm) �   PRE  pp �  PROCESS �  mm �  MESSAGE 
                             THEN  
                                      SELECT mm 
  dom(sender) 
                                      THEN 
                                               order := order  � ( (sender~[{pp}] * {mm})  �  ( receive[{pp}] * {mm})) 
                                            || sender := sender �  {mm �  pp} 
                                       END 
                                    END; 
 Receive(pp,mm) �  PRE  pp �  PROCESS �  mm �  MESSAGE 
                                THEN  
                                      SELECT mm �  dom(sender)  �  (pp �  mm) 
  receive   
                                                     �  pp 	 sender(mm) 
                                                     �  � m.( m �  MESSAGE �  (m � mm) �  order  
                                                                                            �  pp 	  sender(m)  �  (pp �  m) �  receive) 
                                       THEN 
                                                            receive := receive �  {pp �  mm} 
                                       END 
                                 END 
END 
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VARIABLES        sender, receive, order, buffer, VTP, VTM 
INVARIANT 
/*Inv-7*/                 VTP �  PROCESS 
  (PROCESS �  � )  
/*Inv-8*/              �  VTM �  MESSAGE � ( PROCESS �  � ) 
/*Inv-9*/              �  buffer �  PROCESS �  MESSAGE   �  ran(buffer)  �  dom (sender) 
/*Inv-10*/            �  � m1,m2,p � (m1 �  MESSAGE �  m2 �  MESSAGE �  p �  PROCESS   
                                               �  (m1 �  m2) �  order   �  VTM (m1)(p) �  VTM(m2)(p) ) 
INITIALISATION 
 
 VTP :=  PROCESS * { PROCESS * {0}} 
||VTM := �   
|| sender := �  || buffer := �  || receive := �  || order := �  
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OPERATIONS 
 
 Send(pp,mm) 

�
    SELECT mm � dom(sender) 

                              THEN 
                                                  LET nVTP    
                                                  BE   nVTP = VTP(pp) �  { pp �  VTP(pp)(pp)+1}   
                                                  IN     VTM(mm) := nVTP   || VTP(pp) := nVTP   END 
                                              || sender := sender �  {mm �  pp} 
                               END ; 
 
Arrive(pp,mm) 

�
    SELECT       mm �  dom(sender) �  (pp �  mm) �  buffer  

                                                 �  (pp �  mm ) �  receive   �  pp �  sender(mm) 
                               THEN 
                                                 buffer := buffer �  {pp �  mm} 
                               END ; 
 
Receive(pp,mm) 

�
  SELECT    (pp �  mm) �  buffer   �  (pp �  mm) �  receive  �  pp �  sender(mm)    

                                          �  � p.( p �  PROCESS �  p �  sender(mm)    	  VTP(pp)(p) 
  VTM(mm)(p)) 
                                          �   VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1 
                                THEN 
                                               receive := receive �  {pp �  mm}   || buffer := buffer - {pp � mm} 
                 ||  VTP(pp) := VTP(pp) �  ({q

�
q �  PROCESS � VTP(pp)(q) < VTM(mm)(q)} �  VTM(mm))   

                                 END                    
END 
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Abstract.  As the size and complexity of software systems continue to 
increase, it becomes essential to have rigorously defined component 
interfaces.  Design by Contract (DBC) is an increasingly popular method 
of interface specification for object-oriented systems.  Many researchers 
are actively adding support for DBC to various languages such as Ada, 
Java and C#.  Are these research efforts justified?  Does having support for 
DBC mean that developers will make use of it?  We present the results of a 
quantitative survey that measured the proportion of assertion statements 
used in Eiffel contracts.  The survey results indicate that programmers 
using Eiffel (the only active language with integral support for DBC) tend 
to write assertions in a proportion that is higher than in other languages. 

Keywords: assertions, design by contract, survey, industrial practice, Eiffel. 

1 Introduction 
One of the effective ways of managing the size and complexity of modern day 
software systems is to use a modular design methodology.  An appropriate 
partitioning of a system into modules (e.g., libraries, classes, etc.) offers an 
effective means of managing complexity while providing opportunities for reuse.  
But when applied to large industrial applications in general and fault-tolerant 
systems in particular, modular design methods can only truly be effective if 
module interfaces are rigorously defined. 

An increasingly popular approach to interface specification for object-oriented 
software is referred to as Design by Contract (DBC) [Meyer97].  Support for 
DBC is built in to the Eiffel programming language.  Although Eiffel is the only 
active language with integrated support for DBC, researchers are currently busy 
adding DBC support to other languages.  For example, 

• Spark for Ada [Barnes03], 
• Spec# for C# [Barnett+04], 
• Java Modeling Language (JML) [Burdy+04], Jass [BCMW01], Jcontract 

[Parasoft05], ESC/Java [Flanagan+02] and ESC/Java2 [ESCJ] for Java, 
• JACK for Java (JavaCard) [BRL03] 

Are such research efforts justified?  For example, does having built-in support for 
DBC mean that developers will write contracts?  In an attempt to provide initial 
answers to these questions we have conducted a survey of the use of contracts in 
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Eiffel projects.  More specifically, we have sought to measure the proportion of 
source lines of code in Eiffel program that are assertions.  Assertions are the basic 
ingredients of contracts.  Why did we choose Eiffel programs as the subjects of 
our survey?  Because Eiffel is the only programming language with built in 
support for DBC, and this, since its inception two decades ago.  Also, Eiffel is 
primarily used to develop fault-tolerant systems rather than consumer 
applications [Kiniry05]. 

In the next section we explain the relationship between assertions, DBC and 
behavioral interface specifications.  A brief review of Eiffel is also given, thus 
providing the necessary background for the understanding of metrics used in the 
survey.  The survey method and metrics are given in Section 3.  Section 4 
provides the survey results.  We conclude in Section 5. 

2 Design by Contract and Eiffel 

2.1 Assertions, Design by Contract and Behavioral Interface 
Specifications 

Design by Contract (DBC) refers to a method of developing object-oriented 
software that was defined by Bertrand Meyer [Meyer97].  The main concept that 
underlies DBC is the notion of a precise and formally specified agreement 
between a class and its clients.  Such an agreement, named contract in DBC, is 
called a behavioral interface specification (BIS) in its most general form.  
Contracts, like BISs, are expressed using assertions and take the form of class 
invariants and method pre- and post-conditions, among others. 

DBC as a programming language feature refers to a limited form of support for 
BISs where assertions are restricted to be expressions that are executable.  Hence, 
for example, in Meyer’s Eiffel programming language an assertion is merely a 
boolean expression (that possibly makes use of the special old operator1).  Meyer 
clearly identifies this as an engineering tradeoff in the language design of Eiffel 
[Meyer97]—a tradeoff that we believe is an important stepping stone from the 
current use of (plain) assertions in industry to the longer term objective of the 
adoption of verifying compilers [Hoare03b].  It is understood that this 
engineering tradeoff imposes a limit on the expressiveness of Eiffel assertions 
(e.g. absence of quantifiers2) but, at the same time we believe that it is precisely 
this tradeoff that has kept them accessible to practitioners. 

How are contracts currently used in practice?  A principal use for contracts, other 
than for documentation, is in run-time assertion checking (RAC).  All systems 
supporting DBC also support RAC.  When RAC is enabled, assertions are 
evaluated at run-time and an exception is thrown if an assertion fails.  Various 
degrees of checking can be enabled—e.g. from the evaluation of preconditions 
only, to the evaluation of all assertions.  Enabling RAC during testing, 

                                                           
1  “old” operators can only occur in postconditions; “old e” refers to the pre-state value of e. 
2  This exclusion is due not to the quantifiers per se, but rather to the possibility of allowing quantified 

expressions with bound variables ranging over arbitrarily large or infinite collections. 
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particularly integration testing, is an effective means of detecting bugs in modules 
and thus can help contribute to the increase in overall system quality. 

Of course, for most applications, particularly fault tolerant systems, it is 
preferable to be able to guarantee the absence of assertion failures before a 
component is run.  Extended Static Checking (ESC) tools can be used for this 
purpose.  An ESC tool attempts to determine the validity of assertions by static 
analysis.  ESC tools exist for Modula-3 and Java, and one is currently under 
development for Eiffel. 

2.2 Eiffel: a brief review 
A sample Eiffel class taken from the Gobo Eiffel kernel library is given in Figure 
1 (some of the lines were too long to fit on the page and hence their content has 
been wrapped, and indented to aid in readability, at those points marked with >>).  
Classes optionally begin (and/or end) with an indexing clause that offers 
information about the class.  In other languages this is often accomplished by 
using a comment block. Comments, like in Ada, start with a “--” and run until 
the end of the line. An Eiffel class generally declares a collection of features 

indexing 
 
 description: 
 
  "Routines that ought to be in class BOOLEAN" 
 
 library: "Gobo Eiffel Kernel Library" 
 copyright: "Copyright (c) 2002, Berend de Boer and others" 
 license: "Eiffel Forum License v2 (see forum.txt)" 
 date: "$Date: 2003/02/07 12:49:18 $" 
 revision: "$Revision: 1.2 $" 
 
class KL_BOOLEAN_ROUTINES 
 
feature -- Access 
 
 nxor (a_booleans: ARRAY [BOOLEAN]): BOOLEAN is 
   -- N-ary exclusive or 
  require 
   a_booleans_not_void: a_booleans /= Void 
  local 
   i, nb: INTEGER 
  do 
   i := a_booleans.lower 
   nb := a_booleans.upper 
   from until i > nb loop 
    -- Lines 27 … 37 removed 
   end 
  ensure 
   zero: a_booleans.count = 0 implies not Result 
   unary: a_booleans.count = 1 implies                    >> 
    Result = a_booleans.item (a_booleans.lower) 
   binary: a_booleans.count = 2 implies                   >> 
    Result = (a_booleans.item (a_booleans.lower) xor    >> 
     a_booleans.item (a_booleans.upper)) 
   -- more: there exists one and only one `i' in          >> 
    a_boolean.lower..a_boolean.upper so that            >> 
     a_boolean.item (i) = True 
  end 
end 
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Figure 1, Sample Eiffel class (kl_boolean_routines.e) 
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(attributes and methods).  Our sample 
class declares only one feature, an n-ary 
exclusive or, nxor. 

Of main concern to us in this paper are 
assertions.  An assertion in Eiffel is 
written as a collection of one or more 
optionally tagged assertion clauses.  The 
meaning of an assertion is the 
conjunction3 of its assertion clauses.  The 
tags can help readability and debugging (since they can be printed when the 
clause is violated) [Mitchell+02]. Tags zero, unary and binary adorn lines 40, 
41 and 42 of Figure 1, respectively. 

An assertion clause is either a 

• boolean expression (e.g. line 40) or a 
• comment (e.g. line 43). 

As will be noted later we will count such comments as informal assertion 
clauses, or simply informal assertions.  Boolean operators consist of the usual 
negation (not), conjunction (and), and disjunction (or).  Eiffel also has 
conditional, i.e. short-circuited, conjunction (and then) and disjunction (or 
else).  An implication operator a implies b is an abbreviation for (not a) or 
else b.  Assertions can contain calls to methods identified as queries.  A 
particular characteristic of queries is that they are not permitted to have side-
effects [Mitchell+02]. 

In Eiffel, an assertion can be used to express a 

• precondition (introduced by the keyword require), 
• postcondition (ensure), 
• class invariant (invariant), 
• loop invariant (invariant), 
• check (check) 

A sample precondition is given in lines 19-20 of Figure 1. The sample 
postcondition (lines 39-43) illustrates the use of more than one assertion clause.  
Assertions in postconditions can contain occurrences of the special operator old.  
For example, the postcondition 

ensure  count = old count + 1 

will be true when the pre-state value of count is one less than the post-state value 
of count.  A check is equivalent to an assert statement in other languages such a 
Java and C++. 

There is only one looping construct in Eiffel and it has the general form given in 
Figure 2.  As was previously mentioned, an assertion can be used to express a 
loop invariant.  Also, of interest is the loop variant: an integer expression that 

                                                           
3 Actually, clauses are jointed by a conditional conjunction named “and then” in Eiffel. 

from 
  initialization_instructions 
invariant 
  assertion 
variant 
  variant 
until 
  exit_condition 
loop 
  loop_instructions 
end 

Figure 2, Eiffel loop instruction 
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must decrease through every iteration of the loop while remaining nonnegative.  
That essentially covers the basics of what we need to be able to explain the 
metrics. 

3 Survey 
3.1 Projects 
During the initial portion of our study we gathered metrics from free Eiffel 
software, consisting of both free commercial software (such as the source 
distributed with ISE’s Eiffel compiler) as well as open source projects.  This 
allowed us to fine-tune our metrics gathering tool and essentially conduct a pilot 
study before soliciting the participation of industry. 

3.2 Metrics 
Our basic metric is a count of Lines of Code (LOC) per class file.  Each LOC is 
classified as either: 

• blank line, containing at most white space, or 
• comment line, containing a comment possibly preceded by white space, or 
• (physical) Source Line of Code (SLOC) [Park92]. 

Roughly speaking our goal is to count the number of LOC that are assertions 
(AsnLOC) so as to be able to determine their proportion relative to the total 
SLOC.   

Our overall count of AsnLOC will be computed from the total SLOC that are 
assertions as well as the total LOC that are informal assertions (IALOC)—i.e. 
assertions given in the form of comments.  We count informal assertions because 
we believe that they are just as important as formal assertions in documenting 
contracts.  In measuring the proportion of LOC that are assertions we will use the 
following formula:  

total(AsnLOC) / total(AdjSLOC) 

where 

total(AdjSLOC)  =  total(SLOC) + total(IALOC) – total(IdxSLOC) 

IdxSLOC is a SLOC that occurs in an indexing clause.  We omit IdxSLOC lines 
because these lines merely provide documentation for the class in a manner that 
is handled by a comment block in other languages.  We will keep separate 
AsnLOC counts for preconditions, postconditions, class invariants, checks 
clauses and loop variants and invariants.  This will allow us to determine the 
proportion of assertions used in each of these categories.  We will also collect 
specialized metrics such as the number of assertions of the form e /= Void.  
Their purpose will be explained in the next section. 
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3.3 Methodology 
Initially we used the SLOCCount tool [Wheeler05] as our base.  This tool can 
count physical SLOC for over two dozen languages—though initially not for 
Eiffel.  Aside from its ability to process many different kinds of languages 
SLOCCount also does convenient house-keeping tasks such as determining the 
type of a file (by its extension or content), flagging duplicates, and ignoring 
generated files. 

Since our needs were specific to Eiffel source, we eventually chose to use a 
single Perl script to gather all metrics.  The creation of the script did pose some 
challenges due, e.g., to the various flavors of Eiffel (as supported by different 
compilers) and inconsistent line endings (Unix, DOS or Mac) sometimes in the 
same file. 

4 Results 
Overall we surveyed 81 projects totaling 34081 Eiffel class files, 5.4 million lines 
of code (LOC) and 4.0 million source lines of code (SLOC). Each project we 
developed by a different group or organization.  We divided the projects into 
three categories: 

• proprietary,  
• open source and  
• library and samples shipped with ISE Eiffel Studio 5.5. 

Note that half of the files in the Eiffel 5.5 category consist of open source 
samples (or what they call free add-ons) most of which are provided by 
GoboSoft—an important contributor of open source Eiffel libraries and tools.  
The proportion of SLOC per project category is given in Figure 3.  Figure 4 
provides the overall distribution of LOC into SLOC, blank lines and comments.  
The IdxSLOC is the proportion of SLOC that occur in indexing blocks. 

Metrics concerning assertions are given in Figure 5.  Overall, there were 89468 
lines of assertions (AsnLOC) out of 3.84 million SLOC (AdjSLOC); that is, 
4.39% of the LOC are assertions (AsnLOC/AdjSLOC).  Of this, over 50% are 

Project Category Number 
of files 

LOC 
(106) 

SLOC 
(106) 

% of total 
SLOC 

Proprietary 18584 2.65 2.03 51%
Open Source 10657 1.76 1.31 33%
Eiffel 5.5 4840 0.95 0.66 17%
Total 34081 5.37 4.00 100% 

Figure 3, General metrics by project category 
 

 LOC SLOC blank comment IdxSLOC 
Total (106) 5.37 4.00 0.818 0.546 0.171 

% LOC 100% 74.6% 15.2% 10.2% 3.18% 

Figure 4, General metrics (all categories) 
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used in preconditions, 36% postconditions, and 6.5% class invariants.  Few loop 
invariants and variants are given, though both of these appear as frequently, 
relative to each other.  We note that a very small proportion of assertions are 
given in the form of comments; i.e. overall, only 3.8% of assertion LOC are 
informal assertions (IALOC).  The maximum number of assertions per clause 
type can be fairly large—e.g. up to 35 LOC for a class invariant.  The average 
number of assertions per clause type ranges from 1.0 to 2.4. 

A noteworthy proportion of assertions include subexpressions of the form e /= 
Void asserting that a given reference is not Void (i.e. null).  This number is over 
50% for class invariants, but 37% overall.  Such figures may provide weight to 
the choice by some static analysis tools (such as Splint [Evans03]) to assume that 
a reference type declaration is non-null by default4. 

Finally, in Figure 6 we show how the proportion of LOC that are assertions 
(AsnLOC) varies according to the project category.  As might be expected, the 
Eiffel category has the highest proportion, 6.4%, followed by open source 
projects5 and then proprietary code with a little over 5% and 3%, respectively. 

                                                           
4 Our research group is currently examining the possibility of adopting such a default in the Java 

Modeling Language (JML).  In JML non-null declarations appear even more frequently. 
5 Recall that the open source category excludes GoboSoft software (since it is counted in the Eiffel 5.5 

project category). 

 require ensure inv. 
class 

inv. 
loop 

var. 
loop 

check Total 

AsnLOC          89468 61267 10882 332 325 6206 168480 
AsnLOC/AdjSLOC  2.33% 1.60% 0.28% 0.01% 0.01% 0.16% 4.39% 
LOC/AsnLOC     53.10% 36.36% 6.46% 0.20% 0.19% 3.68% 100.00% 
IALOC           1129 3710 996 91 0 502 6428 
IALOC/AdjSLOC   0.03% 0.09% 0.02% 0.00% 0.00% 0.01% 0.16% 
IALOC/AsnLOC   0.67% 2.20% 0.59% 0.05% 0.00% 0.30% 3.82% 
No. of clauses  53677 39550 4614 203 324 5139 103507 
Count(e /= Void)     39742 14484 5571 7 0 2177 61981 
       Average or max
Max AsnLOC size 30 24 35 7 2 14 35 (max) 
Average size 1.7 1.5 2.4 1.6 1.0 1.2 1.6 
% (e /= Void)      44.42% 23.64% 51.19% 2.11% 0.00% 35.08% 36.79%  

Figure 5, Metrics concerning assertions (all project categories) 

Project 
Category 

SLOC 
(106) 

AdjSLOC
(106) 

AsnLOC
(106) AsnLOC / AdjSLOC 

Proprietary 2.03 1.96 0.064 3.27% 
Open Source 1.31 1.25 0.064 5.10% 
Eiffel 5.5 0.66 0.63 0.040 6.42% 
Total 4.00 3.84 0.168 4.39%  

Figure 6, Proportion assertion LOCs per project category 
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5 Conclusion 
We concede that the Eiffel survey sampling is not very large by industrial 
standards (5.4 MLOC), but we are hopeful that it is somewhat representative.  
Our survey is still ongoing—both for Eiffel and other languages.  On the other 
hand, we do anticipate that the use of Eiffel will be significantly less than the use 
of, e.g. C or C++.  The relatively small size of the Eiffel user community may 
also have some bearing on the survey results—e.g. a lesser variability. 

Our survey data focuses on the use of assertions in Eiffel, the only active 
language supporting the disciplined use of assertions in specifying contracts, i.e. 
Design by Contract (DBC).  Before conducting the survey we asked: does having 
language support for DBC mean that practitioners will make use of it?  Overall, 
4.4% of the (physical) SLOC of the surveyed projects were assertions.  The 
results for the category of projects consisting solely of proprietary code was 
3.3%.  This is almost twice as much, for example, as the percentage of assertions 
reportedly used in the Microsoft Office Suite [Hoare00, Hoare03a] as well in a 
separate independent study we have conducted [Chalin05].  In our opinion, this is 
good news for those researchers currently striving to add DBC support to other 
languages. 

By design, DBC restricts the expressiveness of assertions by requiring that they 
be executable.  We believe that this moderation in expressiveness is what will 
allow DBC to be more easily adopted by industry.  It will then become a smaller 
step to reach the full expressiveness of behavioral interface specifications (BISs).  
Of course, BISs are not the entire picture either; future generation verification 
compilers are likely to include support for model checking as well as BISs. 
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Abstract. In recent years, many approaches combining software architectures
and exception handling have been proposed for increasing the dependability of
software systems. Some authors argue that addressing exception handling-related
issues since early phases of a software development effort may improve the over-
all dependability of a system. In particular, few works in the literature havead-
dressed the problem of describing how exceptions flow between architectural
components. This is an important issue, since developers tend to focus on the
design of the normal activity of the system’components and address its excep-
tional activities only during the implementation phase. A model for describing
the flow of exceptions between architectural components should be: (i) precise;
and (ii) analyzable, preferably automatically. In this paper, we presenta model for
reasoning about exception flow in software architectures that satisfies these two
requirements. The model is supported by a software infrastructure which lever-
ages existing tools and models and allows developers to describe and analyze
software architectures enriched with information about exceptions and their flow.

1 Introduction

The concept of software architecture [7] was proposed in thelast decade to help soft-
ware developers to cope with the growing complexity of software systems. According
to Clements and Northrop [7], software architecture is the structure of the components
of a program/system, their interrelationships and principles and guidelines governing
their design and evolution over time. The architecture of a software system has a large
impact on the capacity of the system to meet its intended quality requirements, such
as reliability, security, availability, and performance,among others. Software architec-
tures are described formally using architecture description languages, or ADLs [18].
ADLs share the same conceptual basis whose main elements arecomponents (loci of
computation or data stores), connectors (loci of interaction between components), and
configurations (connected graphs of components and connectors that describe architec-
tural structure) [18].

⋆ Supported by FAPESP/Brazil under grant 02/13996-2.
⋆⋆ Supported by the Specialization in Software Engineering course, IC/UNICAMP.

⋆ ⋆ ⋆ Partially supported by CNPq/Brazil under grant 351592/97-0.
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When a program1 receives a service request and produces a response according to
its specification, the produced response is said to benormal. Conversely, if the program
produces a response that does not conform with its specification, this response is said to
beabnormal, or exceptional. Abnormal responses usually indicate the occurrence of an
error and since these responses are expected to occur only rarely, they are calledexcep-
tions. When exceptions occur, the program must be capable of handling them so that it
can be put in a coherent state. The part of the behavior of a program that is responsible
for handling exceptions is calledabnormal, or exceptional,activity. Conversely, the
part of the behavior of a program that is responsible for its functionality, as defined by
its specification, is callednormal activity.

Exception handling [8] is a mechanism for structuring the exceptional activity of a
program, so that errors can be more easily detected, signalled, and handled. Since ex-
ception handling is an application-specific technique, it complements other techniques
for improving system reliability, such as atomic transactions, and promotes the imple-
mentation of very specialized and sophisticated error recovery measures.

Problem Description. In recent years, many approaches combining software archi-
tectures and exception handling [4][13][20] have been proposed for increasing the de-
pendability of software systems. We say that an exception isarchitecturalif it is raised
within an architectural component but can not be handled by the raising component.
Such exceptions cross the boundaries between architectural components, that is, the
architectural exceptions that flow between two components are part of the interaction
protocol to which the two components adhere. Combining software architectures and
exception handling is a natural trend. The architecture of asoftware system has a large
impact on a system’s quality attributes, such as reliability, and architectural exceptions
indicate that architectural components have failed (and have thus been unreliable).

There are many works proposing notations and techniques fordescribing software
architectures formally [1][11][17] focusing on specific properties of interest. However,
to the best of our knowledge, few have addressed the problem of describing how archi-
tectural exceptions flow between components. As pointed outby Bass et al [2], spec-
ifying how exceptions flow between architectural components is a real problem that
appears in the development of systems with strict dependability requirements, such as
air-traffic control and financial. To be useful and usable, anapproach for describing ar-
chitectural exceptions and their relationship to other architectural elements must satisfy
some requirements:

1. It should make it possible to specify the architectural exceptions that components
and connectors signal and catch, and how these exceptions flow between different
architectural elements. Ideally, the specification of the architectural exceptions of
the system should be orthogonal and traceable to the “normal” architecture descrip-
tion, in order to enhance maintainability.

2. It should have pictorial (boxes-and-lines) representation, in order to be understand-
able by non-specialists and easier to use.

1 In a general sense: a routine, a software component, a whole system,etc.
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3. It should take into account the notion ofarchitectural styles. An architectural style
defines a vocabulary of types of design elements which are part of a family of
architectures and the rules by which these elements are composed [11].

4. It should be precise, that is, an architecture description devised according to such
approach should be unambiguous.

5. It should be expressive enough to describe rules of existing exception handling
models.

6. It should be analyzable, preferably automatically. In this manner, it is possible to
verify if the architecture presents some desired properties before the system is ac-
tually implemented.

Proposed Approach. In another work [5] we have proposed a framework, called
Aereal, that addresses these requirements. In that work, wefocused on requirements
1, 2, and 3. In this work, we present a model for reasoning about exception flow in
software architectures that addresses requirements 4, 5, and 6. The proposed model is
part of the Aereal framework. It allows developers to specify common rules of excep-
tion handling systems (EHS) of existing programming languages and to verify in an
automated way if an architecture description extended withinformation about architec-
tural exceptions adheres to these rules. As enabling technology, we use the Alloy [14]
specification language and the Alloy Analyzer [15].

This work is organized as follows. Section 2 presents the proposed model in terms
of three aspects: system structure, representation of exceptions, and exception flow.
Section 3 briefly describes how we have materialized the proposed model using Alloy
in the Aereal framework. The last section compares the proposed model with some
related research and presents directions for future works.

2 Proposed Model

The set of exceptions and exception handlers in a program define its exceptional activ-
ity. When an error is detected, an exception is generated, orraised. If the same exception
may be raised in different parts of a program, it is possible that different handlers are
executed. The choice of the handler that is executed dependson the exception handling
context (EHC), or scope, where the exception was raised. An EHC is a region of a
program where the same exceptions are handled in the same manner. Each context has
an associated set of handlers that are executed when the corresponding exceptions are
raised. An exception raised within an EHC may be caught by oneof its handlers. If the
exception ishandled, normal activity of the program is resumed. Otherwise, an excep-
tion is signaledin the enclosing context, andencounteredby that context. We assume
that EHCs only encounter a single exception at a time. Concurrent exceptions [3] are
not addressed by this work.

In this section, we present the proposed model using a mix of informal explanations,
and set theory notation. Due to space constraints, we omit some parts of the description
of the model. A more detailed presentation is available elsewhere [6]
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2.1 System Structure

We follow the general view of a system configuration as a finiteconnected graph of
components and connectors [18]. We specialize this view, however, so that it can be
used to reason about exception flow. In our model, a componentis a structural element
that encounters and signals exceptions.

Aereal uses special-purpose architectural connectors to model exception flow be-
tween components. These connectors, called exception ducts, are unidirectional point-
to-point links through which only exceptions flow. They are orthogonal to “normal”
architectural connectors and do not constrain the way in which the architecture is orga-
nized [5]. Exception ducts can be refined by developers, depending on the restrictions
each architectural style imposes on exception flow. Like components, exception ducts
can signal and encounter exceptions.

The structure of a system is defined in terms of connections between components
and exception ducts. The relationsCatchesFrom andSignalsTo specify these con-
nections. For a componentC, C.CatchesFrom yields the set of exception ducts that
signal exceptions thatC encounters, where “.” represents relational join. Conversely,
C.SignalsTo yields the set of exception ducts that encounter exceptionsthat C sig-
nals. BothC.SignalsTo andC.CatchesFrom may yield an empty set, in which case
C does not signal and does not encounter exceptions, respectively.

The relationsSignasTo andCatchesFrom are also defined for exception ducts2.
However, since exception ducts are point-to-point connectors that link exactly two
distinct components, for a ductD, D.CatchesFrom and D.Signals result in dis-
junct sets containing exactly one component. Therefore, for any componentC,
D.CatchesFrom = {C} ⇒ D ∈ C.SignalsTo, andD.SignalsTo = {C} ⇒

D ∈ C.CatchesFrom.

2.2 Representation of Exceptions

In our model, exceptions are represented by objects of a certain type. We represent
exceptions as objects, instead of using symbols or global variables, mainly because
objects are more flexible and can be used to encode arbitrary information regarding the
cause of an exception [10]. Moreover, many large and complexsoftware systems are
developed nowadays using object-oriented (OO) languages such as Java, C#, and C++.

The proposed model employs a simple notion of type that is compatible with the
general notion of types adopted by modern OO languages. A typeT is a set of elements
and the subtypesT1, T2...TN of T are disjunct subsets ofT . Only single inheritance is
allowed. An exception is any instance of a type that is a subtype of the typeRootExcep-
tion. We use this name for the supertype of all exceptions, instead of a more usual one,
such asException or Error, to give developers the flexibility to organize exceptions
as required, for instance, based on the adopted programminglanguage. For example,
to mimic the EHS of Java, a developer would define at least fourexception types: (i)
Throwable, subtype ofRootException; (ii) Exception, subtype ofThrowable; (iii)
Error, subtype ofThrowable; and (iv)RuntimeException, subtype ofException.

2 Actually, we use overloaded relation names as a syntactic sugar, since thehomonymous rela-
tions have very similar semantics.
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2.3 Exception Interfaces and Exception Handling Contexts

As mentioned in previously, we consider a component to be a structural element that
encounters and signals exceptions. Exception ducts are similar, but simpler. A compo-
nent consists of: (i) a collection of exception interfaces,which specify the exceptions
the component signals; and (ii) a collection of EHCs, which define regions where ex-
ceptions are always handled in the same way. In this section and the next, for space
reasons, we focus our attention exclusively on the definition of an exception flow model
for components. Exception ducts are described in a more complete version of this paper,
available as a technical report [6].

Exception interfaces are associated to components by theSignalsTo relation and,
for each exception duct in the setC.SignalsTo, there is a corresponding exception in-
terface. A similar one-to-one relation exists betweenCatchesFrom and EHCs. This
represents the fact that a component may signal/encounter different exceptions to/from
the different exception ducts it is connected to. Models forreasoning about exception
flow at the programming language level usually do not have this separation between
interfaces and contexts. Such separation is not necessary because these models usually
focus on fine-grained programming constructs, like methodsand procedures, where
multiple contexts are associated to a single exception interface. For architectural excep-
tions, however, this separation is very important, since a component can have multiple
access points (ports) and these access points are explicit in the system description.

In our model, exception interfaces and EHCs are related by thePortMap relation.
PortMap maps EHCs to exception interfaces based on the exception ducts to which
these contexts and interfaces are associated. For any componentC and exception duct
D, with D ∈ C.CatchesFrom, D.(C.PortMap) = DS, whereDS is a set of ex-
ception ducts such that∀X : DS • X ∈ C.SignalsTo. DS is a set of exception ducts,
instead of a single duct, to represent the fact that the association between EHCs and
exception interfaces is many-to-many. It makes no sense to define aPortMap relation
for exception ducts, since they have exactly one EHC and one exception interface.

2.4 Exception Flow

The exception interfaces of a component are defined by theSignals relation. This
relation specifies which exceptions a component signals andwhich exception ducts in
C.SignalsTo encounter these exceptions. IfD.(C.Signals) = ES, whereES is a set
of exceptions, we say that componentC signals exceptionsES to ductD. Thesignals

relation is defined in terms of three other relations, as follows:

Signals = Raises

⋃
Propagated

⋃
Unhandled

Intuitively, the set of exceptions that a component signalsdepends on the exceptions
it generates (raises) and on exceptions it encounters that were signaled by other archi-
tectural elements. ThePropagated andUnhandled relations are auxiliary relations
defined in terms of the relations that specify a component’s EHCs (described in the
following paragraphs). TheRaises relation specifies the exceptions that components
generate when erroneous conditions are detected. These conditions are dependent on
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the semantics of the application and on the assumed failure model. For reasoning about
exception flow, the fault that caused an exception to be raised is not important, just the
fact that the exception was raised. IfD.(C.Raises) = ES, we say that the component
C raises exceptionsES and these exceptions are signaled to exception ductD, where
D ∈ C.SignalsTo andES ⊂ D.(C.Signals). More generally,Raises ⊂ Signals.

Exception handling contexts are defined in terms of three relations:Encounters,
Handles, andPropagates. Encounters specifies, for an arbitrary componentC, the
exceptionsC receives from the exception ducts in the setC.CatchesFrom. That is, if
D.(C.Encounters) = ES, we say that the componentC encounters exceptionsES

that were signaled by exception ductD. In fact, the set of all exceptions encountered by
componentC is equal to the union of the sets of exceptions signaled toC by exception
ducts inC.CatchesFrom. In this sense, the definition ofEncounters used‘in our
model is different from the definitions adopted in other works in the literature [19, 22].

The Handles relation specifies the exceptions that are handled by a component.
By “handled”, we mean that the component is capable of takingsome action that
stops the propagation of the exception and makes it possiblefor the system to re-
sume its normal activity. The action that is taken by the handler is not important in
the context of this work. We are just interested in the effectthe handler has on the
flow of exceptions, not how this effect is achieved3. If D.(C.Handles) = ES, we
say that the componentC handles the exceptionsES signaled by exception duct
D, whereD ∈ C.CatchesFrom andES ⊂ D.(C.Encounters). More generally,
Handles ⊂ Encounters.

In our model, thePropagates relation explicitly specifies a causal relation be-
tween an exception a component encounters and another one itsignals. More pre-
cisely, if E.(D.(C.Propagates)) = E’, where E and E’ are exceptions, we say
that componentC propagates exceptionE

′, signaled by exception ductD as E,
with D ∈ C.CatchesFrom, E ∈ D.(C.Encounters), E /∈ D.(C.Handles),
andE’∈ (D.(C.PortMap)).(C.Signals). The latter constraint states thatC signals
the propagated exception (E’) to the exception ducts related toD in C.PortMap.
If E.(D.(C.Propagates)) = {} and E /∈ D.(C.Handles), it is assumed that
E.(D.(C.Propagates)) = E andE is signaled to all exception ductsD’ such that
D’∈ C.SignalsTo ∧ D’∈ D.(C.PortMap).

Now we can go back to the definition ofSignals and definePropagated and
Unhandled. Propagated specifies the exceptions that a component signals due to ex-
ception propagation (unlikePropagates, which relates two exceptions, one encoun-
tered and one signaled by the component). For a componentC and an exception duct
D and usingDS as a shortcut for(C.PortMap).D), Propagated is defined by the
following expression:

D.(C.Propagated) = (DS.(C.Encounters \ C.Handles)).(DS.(C.Propagates))

Unhandled specifies the set of exceptions that a component encounters but does
not propagate explicitly (as specified byPropagated) or handle. Like in some pro-
gramming languages, such as Java, the exceptions which are not either handled nor ex-

3 We are not stating that the way an exception is handled is not important. Justthat modeling the
actual exception handlers is beyond the scope of this work.
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plicitly propagated (Propagated) are automaticaly propagated. These exceptions are
signaled by the component (propragated implicitly). For a componentC and a ductD
and using the same shortcut defined in the previous paragraph, Unhandled is defined
as follows:

D.(C.Unhandled) = (DS.(C.Encounters \ C.Handles)) \
((DS.(C.Propagates)).(D.(C.Propagated)))

The last element of our model is theDeclares relation.Declares is used to make
the exception interfaces of components in a system explicit. This relation is part of the
model to allow developers to explicitly state which exceptions each component signals,
for instance, because the programming language that will beused to implement the sys-
tem has a similar feature. IfD.(C.Declares) = E, we say that componentC declares
that exceptionE is signaled to exception ductD or simply E is one of the declared
exceptions of componentC. Explicit exception interfaces are part of several modern
programming languages, for example, Java, C++, and ML. By default, Declares does
not impose any constraints on exception flow. An analysis can, however, take the rela-
tion into account in order to impose some application- or EHS-specific constraints.

3 Materializing the Model

Usually, models like the one described in this paper are usedas the backbone for sta-
tic analysis tools [19][22]. These tools are capable of extracting useful exception flow-
related information from programs and showing that these programs present some prop-
erties of interest, for example, that exceptions are not caught by subsumption4. In this
work, instead of building a new tool with a fixed set of functionalities, we translated the
semantic description presented in Section 2 to Alloy [14]. Alloy is a lightweight mod-
eling language for software design. It is amenable to a fullyautomatic analysis, using
the Alloy Analyzer (AA) [15], and provides a visualizer for making sense of solutions
and counterexamples it finds. The analysis performed by the AA is sound, since it never
returns false positives, but incomplete, since the AA only checks things up to a certain
scope. However, it is complete up to scope; AA never misses a counterexample which
is smaller than the specified scope.

In the proposed approach, systems are modeled by specifyingexception types, com-
ponents and exception ducts (including the relations described in the previous section),
and connections between these architectural elements. Thefollowing snippet shows part
of a trivial model with two components, one exception duct, and one exception type.

sig E extends RootException{}
sig C1,C2 extends Component{} //components extend "Component"
sig D1 extends Duct{} //exception ducts extend "Duct"
fact SystemStructure{
C1.SignalsTo = D1
...

4 An exceptionE is caught by subsumption if it is caught by acatch clause that targets a super-
typeE’ of E.
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}
fact ExceptionFlow{
C1.Raises = D1 -> E
...

}
fact PortMaps{ (...) }

In Alloy, a signature (sig keyword) specifies a type. We use signatures for mod-
eling both structural elements and exceptions. The relations defined in Section 2 are
explicitly instantiated by means of facts, predicates thatthe AA must assume to be true
when evaluating constraints. For instance, the factSystemStructure in the snippet
above states that componentC1 signals exceptions to exception ductD1. Moreover, the
fact ExceptionFlow states that the componentC1 raises exceptionE to exception
ductD1.

Using Alloy to materialize our model makes it possible to specify features of diverse
EHS without having to extend existing tools or build new oneswhen a new feature is
required. Developers need only to specify new Alloy constraints or modify the exist-
ing ones and the AA can be used to check if such constraints hold. Until the present
moment, we have successfully specified several features available in existing EHS and
static analysis tools, including: (i) explicit exception propagation; (ii) detection of ex-
ception subsumption; (iii) checked and unchecked exceptions; and (iv) checked excep-
tion interfaces. Section 3.1 presents a simple example.

In order for the proposed model to be of practical use, it mustbe integrated with
some notation for describing software architectures. In this work, we have chosen the
ACME [11] ADL as the notation for describing software architectures. The Aereal
framework leverages ACME and its tool support [23] in order to allow developers to ex-
tend architecture descriptions with information about architectural exceptions. Aereal
includes a model-to-model transformation tool that generates Alloy models from these
extended architecture descriptions. The generated modelscan be provided “as-is” to
the AA in order for analyses to be performed. Since we have already specified many of
these analyses, in general developers do not need to know Alloy to use the framework.

3.1 An Example: Explicit Exception Propagation

In this section we show how a rule adopted by several EHS [12, 16], explicit exception
propagation, can be described using the proposed model. At the programming language
level, when a component encounters an exception, if it has a handler for the exception,
this handler may re-raise the exception or raise a new one. Ifthe component does not
have a handler, there are two possible outcomes, depending on the programming lan-
guage: (i) the exception is implicitly re-raised by the underlying runtime system; or (ii)
an error occurs either at compile time [12] or run time [16]. In the former case, ex-
ception propagation is said to beimplicit. In the latter, it is said to beexplicit. Some
languages, like Java, are actually hybrid and allow both implicit and explicit propaga-
tion of exceptions. For simplicity, we do not take hybrid approaches into account.

Informally, we can specify explicit exception propagationas follows: for any com-
ponentcomp in a given model, any exception encountered bycomp and not handled
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should be explicitly propagated. The following Alloy predicate formally specifies ex-
plicit propagation, according to the proposed exception flow model:

pred explicit_propagation_component() {
all C: Component | let nonHandled = (C.Encounters - C.Handles)
| (all CF : C.CatchesFrom | #(CF <: nonHandled) > 0 =>

((#nonHandled > 0 => #(C.Propagates) > 0) &&
all e: CF.nonHandled | #(e.(CF.(C.Propagates))) > 0))

}

The snippet above defines an Alloy predicate calledexplicit propagation.
Alloy predicates are logic sentences that must be checked bythe AA. When predi-
cates are checked, Alloy facts are used as preconditions. The names of relations that
appear in the example above refer to the relations describedin Section 2. For ex-
ample,Encounters is a ternary relation of the formComponent ⇐⇒ Duct ⇐⇒

Exception, indicating that a component encounters a certain exception signaled by a
certain exception duct. The predicate associates a local variable,nonHandled, to the
set of pairs of the form(CF, E), whereCF is an exception duct andE is an exception,
such thatE is not handled by componentC. It then states that, for all such pairs, the
expressionE.(CF.(C.Propagates)) yields some element. The interested reader
is referred to the Alloy Tutorial [15] in order to understandthe details of the predicate.

Since the exception flow model has been translated to Alloy, it becomes possible
to check rules such as the one above automatically, using theAA. If the model does
not satisfy the specified rule, the AA produces a counterexample showing why that
happened.

4 Related and Future Work

The works of F̈ahndrich et al [9], Robillard and Murphy [19], and Schaefer and
Bundy [22] describe static analyses for computing theencounters relation in programs
written in ML, Java, and Ada, respectively. Our work focuseson defining a model that
is flexible enough for defining characteristics of real EHS used in different languages,
assuming thatencounters was already computed. Furthermore, instead of extending or
constraining the EHS of an existing language, Aereal definesthe whole EHS and makes
it possible for developers to extended it or constrain it according to their needs.

Another important difference is that we use model checking techniques, instead of
static analysis. This reflects the fact that we are dealing with exceptions in the earlier
phases of development, where the implementation of the system is still not available. It
is argued by some authors that designing the exceptional activity of a system since the
early phases of development improves the overall system dependability [21].

Currently we are extending Aereal in order for it to support all the features of the
proposed model. The first version of the framework used a simplerPropagates relation
and was based on a different set of assumptions. More specifically, it assumed that
theSignals andEncounters relations were specified explicitly by framework users.
Since specifying these relations by hand is a cumbersome anderror-prone task, we are
extending Aereal’s transformation tool so that it can compute them automatically in
terms ofPropagates, Handles, andRaises (which are specified by the user).
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Abstract. This paper gives a short description of some features of long-
running transactions, as well as the language BPEL and its particular
implementation of the compensation concept. Two examples are used
to illustrate the application of BPEL’s compensation construct. These
examples, and reference to a structural operational semantics developed
elsewhere, are used to help support an argument for the need of a more
general implementation of compensation.

1 Introduction

Despite decades of work on ways of modelling long-running activities using trans-
action schemes, the same basic problems exist now as 25 years ago. Many sys-
tems have been designed to address parts of the problem but they tend to be
refinements of the usual recovery mechanisms.

Designers of business process languages, in an attempt to model workflow,
have taken to including a concept called compensation in their work. Compen-
sation, in general, should be capable of addressing both non-reversible errors
and non-erroneous changes in the execution of an activity. Unfortunately, the
implemented design of compensations in languages such as BPEL can only con-
veniently be used to handle a subset of errors.

Possible semantic descriptions of BPEL’s compensation mechanism are given
in [Col04,BFN04] and others. The pragmatics of BPEL’s compensation mecha-
nism, on the other hand, need clarification. This paper aims to demonstrate how
the mechanism’s purpose as described in the BPEL specification [ACD+03] is
left unmet by the constraints given in the same document.

The next section of this paper gives a quick description of properties as-
sociated with the Long-Running Transactions (abbreviated as LRT). Section 3
describes BPEL and its compensation construct. Following that, section 4 gives
an example that shows how BPEL’s compensation model fits with a simple LRT.
Section 5 extends that example into a scenario that does not easily fit BPEL’s
compensation model. The final section concludes this paper with a summary
of the points raised by the examples and the motivation for a more general
implementation of compensation.
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2 Long-Running Transactions

The notion of long-running transactions [ACD+03] arises out of work done in the
database community on structuring transactions intended to run over long peri-
ods of time — from seconds up through minutes, hours, days and longer. In con-
trast, the well-studied notion of ACID transactions give desirable properties for
transactions that run in short periods of time — nanoseconds, milliseconds, and
up to a few seconds in length. The properties of consistency and durability are
common to both LRTs and ACID transactions, but atomicity and isolation are
very much weakened for LRTs [Gra81]. Synonyms for long-running transaction
are long-lived transaction [Gra81,GMS87] and long-running activity [DHL91].

The properties of consistency and durability apply to LRTs in the same man-
ner as they do with short-lived transactions. A LRT must leave the system in a
consistent state, and more importantly, any changes made during the execution
of the LRT that are visible outside of the LRT must also maintain system con-
sistency. The durability requirement is obvious: having the changes made by a
LRT that disappear except through the actions of another LRT is generally not
a desirable thing.

Isolation can only be applied to those bits of state that are truly local to
the LRT. Any state that does not survive past the end of the LRT should be
isolated from everything outside of the LRT. Changes to the overall system state,
however, cannot be isolated as the usual techniques used to isolate changes to
the system state are unsuitable over long periods of time [GMS87].

Atomicity in the context of a LRT is very much relaxed when contrasted
against its meaning for regular database transactions. For a LRT atomicity sim-
ply means that any changes during its progress maintain system consistency.
The use of the compensation notion implicitly acknowledges the fact that there
are cases where it is not possible to put the system state back to what it was
before the start of the transaction.

As with short-lived transactions, LRTs have well-defined boundaries for their
beginning and completion. They can, and usually should, contain short-lived
transactions and even other LRTs.

3 BPEL’s Compensation Construct

BPEL1 [ACD+03] is a relatively recent language that is still under development.
Its origins lie in the web services community, and the initiators of its development
include BEA Systems, IBM, Microsoft and a number of others. Current activity
on the language is now coordinated by the OASIS Web Services Business Process
Execution Language (WSBPEL) Technical Committee2.

One of the claims made in the BPEL specification is that it provides the
necessary tools and structure to support LRTs that are local to a BPEL process.

1 Business Process Execution Language for Web Services
2 Web address: http://www.oasis-open.org/
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Central to that claim is BPEL’s provision of a compensation construct, which
was modelled after ideas in previous work on Sagas [GMS87] and others.

The specific implementation of compensation that BPEL uses is essentially
an extension of the usual exception-handling mechanisms seen in languages such
as C++, Java, and so on. Blocks of code — called scopes in BPEL — may have a
compensation handler associated with them. These scopes, and their associated
compensation handlers, can be nested to an arbitrary depth. Upon successful
completion of the scope the compensation handler and the current state of the
process are saved for possible later invocation.

Invocation of a compensation handler can only be done from within one of
BPEL’s fault (exception) handlers, and when actually invoked, the compensation
handler is run on its associated saved state. It is not possible for the compen-
sation handler to access the current state of the process directly, though it is
not difficult to imagine a situation where current state is accessed by means of
another process.

Three things characterize BPEL’s compensation:

– the mechanism is intended to be a form of backward recovery [ACD+03];
– despite saving the state of the process at scope completion, the mechanism

only provides a convenient means to manipulate the process’ control flow
within the bounds of an exception handler;

– compensation handlers are named to facilitate control flow modification.

It is, in fact, possible to give an operational semantics that shows BPEL’s com-
pensation mechanism to be a primitive named procedure call [Col04]. Though
the compensation “procedures” do not directly allow parameters, it could be ar-
gued that the saved state could be used as a parameter passing mechanism. The
use of names to identify specific compensation handlers allows for an arbitrary,
programmer-defined ordering, including parallel execution.

Categorizing BPEL’s compensation feature as intended for backwards recov-
ery comes directly from the BPEL specification [ACD+03] which mentions the
use of compensation to ‘reverse’ and ‘undo’ previous activities. The specifica-
tion also goes so far as to restrict the invocation of a compensation handler to
within a fault handler. Compensation in BPEL has been relegated to the realm
of abnormal behaviour.

The assessment of BPEL’s compensation mechanism as a convenient means
to alter control flow relies on the fact that the language specification explicitly
restricts compensation to only have meaning in a local sense. Saving the process
state at scope completion is only intended to save the contents of the process’
variables, not the underlying state of the BPEL processing engine [ACD+03].
Saving those variables could be done manually and would give the compensation
handler the added ability of being able to access the current state of the process.
This leaves the single bit of control flow modification that BPEL’s implemen-
tation of compensation usefully achieves: a simple mechanism to partition the
actions of a traditional try/catch-style exception handler so that the handler
need not try to figure out which parts of the body have executed.
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4 The Bookshop

One of the common examples used to illustrate LRTs is that of a buyer-seller-
shipper situation. Here we will consider a bookshop example similar to that used
in [BFN04].

The example starts with the seller accepting an order for books in stock; an
order for books not in stock is rejected immediately. Accepting the order reduces
the seller’s available inventory. The seller then attempts to fulfill the order by
doing the following in parallel: a) arranging for the books to be shipped, b)
packing the order, and c) checking the buyer’s credit.

In this example we are not including the pickup of the books from the seller
by the shipper, the receipt of the books by the buyer, the actual payment of the
seller by the buyer, nor the payment of the shipper by the seller.

Included in the example are compensation actions for accepting the order,
packing the order, and booking the shipper. Since checking the buyer’s credit
was just a ‘read’, there is no compensation required for that action. Of course,
should the buyer’s credit rating be insufficient for the order, then the order will
be canceled.

It is straightforward to cancel this LRT at any point during its execution. If
the seller in the LRT had only just completed accepting the order, canceling it
involves merely throwing the order away, making the books available for sale, and
notifying the buyer that the order was canceled. If the order had been accepted
and the parallel tasks were in progress, then canceling involves unbooking the
shipper and unpacking any packed books, then throwing away the order and
making the books available for sale.

This example translates into a BPEL process in a straightforward manner.
Accepting an order would exist as a BPEL scope object (with its compensation
handler). Unbooking the shipper would also be in its own scope object. However,
to correctly model the required compensation for the parallel tasks, each action
that packs a book would need to be in its own scope, thus allowing only the
compensation handlers for the packed books to run.

5 The Bookshop, Extended

The previous example is fairly straightforward, and perhaps even matches the
most common behaviour that a bookseller might follow. There is, however, a
more complex behaviour that shows the limitations of BPEL’s compensation
model.

For this example, imagine that the seller carries no stock, such that all books
must be pre-ordered. In this case, the seller accepts any order for any collection
of books that it believes it can get. For the sake of simplicity, the seller also
knows the correct final price for any book that it believes to be available.

The seller would then generate, in parallel, an expected delivery time for
the buyer, and charge the buyer for the books. This charge may simply be a
deposit or the full cost of the book, but it would be a charge rather than a credit
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check. After the buyer has been charged, the seller then places an order with
their supplier for the desired books. When the seller receives the books it would
perform the parallel tasks of arranging for the books to be shipped and packing
all of the books to be shipped to the client.

If the seller’s suppliers were completely reliable, then the mechanism for
canceling this order is a straightforward extension of the previous example. Since
it is unlikely that the suppliers would be completely reliable, we will assume
that suppliers will occasionally be unable to supply certain books, and that the
suppliers will notify the seller of this when the seller places their order from the
supplier.

Assume, instead, at some point between when the seller told the buyer when
to expect the books and when the seller should have received the books, that the
seller receives some notification that one of the books in the order is no longer
available. This requires that things be corrected so that the unavailable book is
no longer a part of the order.

If there was only one book in the order then handling this situation is easy:
just cancel the whole LRT. For cases where there were several books in the order,
especially when the seller has already received some of the books, then the seller
will still need to ship the rest of the books and record things appropriately.

Simply canceling then restarting the whole LRT without the unavailable book
is inappropriate: that would likely cost the seller extra in transaction fees. It is
also an unnecessary repetition of effort. What should happen is that the un-
available book is removed from the order, the buyer is refunded the appropriate
amount, and then the LRT proceeds as though the unavailable book had not
been ordered in the first place.

Having the supplier’s notification about the unavailability of a book forces
the seller to perform compensatory actions so as to avoid having to cancel the
entire LRT. It would seem appropriate to use a compensation mechanism to
allow the LRT to proceed, but the actual implementation in BPEL would be
absurdly complex.

Despite BPEL’s restriction that compensation may only be called from within
fault handlers, it is possible to model this behaviour using compensation. The
design would have each book ordered in its own thread — as with the process
given above — but after the individual book order is complete, a busy-wait loop
would prevent the thread and associated compensation scopes from exiting. If
one of the book orders needs to be compensated, then a flag would be set and
the busy-wait loop would throw a fault which in turn would cause a handler to
invoke the compensators.

The problem with this solution — aside from its inelegance — is that it seems
to run against the pragmatics of a compensation construct to use nested scopes
just to isolate fault handlers whose only purpose is to invoke a compensator for
the innermost scope.

So why don’t we just use the fault handler to directly correct the problem?
Leaving aside the convenience of a mechanism that automatically only corrects
the actions that have completed, this solution is not much better. The busy-wait
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loops are still required, leaving a collection of live threads that are doing nothing.
Compare this against a compensation mechanism where, when the compensator
is installed, the individual threads are finished and cleaned up normally.

6 Conclusions

From the standpoint of the structural operational semantics mentioned above
and developed in [Col04], BPEL’s compensation mechanism is only a primitive
procedure call. Indeed, the compensation mechanism doesn’t even require the
full structure of a procedure call, but just that of a block-structure language. The
only restriction in the semantic model that prevents the compensation mecha-
nism from from being used outside of a fault handler is a well-formedness condi-
tion on the abstract syntax of the language. In light of this it is unfortunate that
the BPEL specification states this condition as it needlessly precludes a more
general use of compensation.

The initial example does show that the compensation model used in BPEL is
applicable to some situations. The use of named compensators has advantages,
allowing programmer-defined compensation ordering. Also, in general, the usual
implementations of compensation are extremely useful to simplify the program-
mer’s task of only reversing those actions that have completed successfully.

The use of compensation as implemented in BPEL to handle changes to the
LRT during its execution is inconvenient at best. An argument can be raised that
any changes to the LRT should be kept well defined and incorporated into the
main flow of the process. This argument has the same problems as arguing that
fault handling should be done inline with the main code rather than separated
out into fault handlers.

Some models of compensation have posited a fairly strong property: if an
action and its compensation are independent of all of the actions between the
original action and the compensation, then the action and its compensation is
equivalent to a null action [BHF04]. While this is certainly true, it has been
pointed out that the likelihood of independence is rather low [GFJK03]. First,
there is the difficulty of designing your process so that the interleaving of local
actions maintains this independence. Second, due to the long-running nature of
LRTs, and the requisite lack of lock-based synchronization, it is extremely likely
that another executing LRT will do something that is not completely indepen-
dent. One might observe that part of the point of grouping actions together in
a transaction is because those actions are not independent.

The extended example gives an argument that the particular compensation
model used in BPEL is not applicable to the full range of situations where
compensation would seem to be an ideal tool to structure a long-running trans-
action’s fault tolerance. If BPEL’s compensation mechanism could be invoked
outside of a fault handler then the extended bookshop example would no longer
be an issue.
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Abstract. In this paper, we investigate context aware location-based
mobile systems. In particular, we are interested how their behaviour, in-
cluding fault tolerant aspects, could be captured using a formal semantics
amenable to rigorous analysis and verification. We propose a new formal-
ism and middleware called Cama, which provides a rich environment to
test our approach. The approach itself aims at giving Cama a concur-
rency semantics in terms of a suitable process algebra, and then applying
efficient model checking techniques to the resulting process expressions
in a way which alleviates the state space explosion. The model checking
technique adopted in our work is partial order model checking based on
Petri net unfoldings, and we use a semantics preserving translation from
the process terms used in the modelling of Cama to a suitable class of
high-level Petri nets.

1 Introduction

Mobile agent systems are increasingly attracting attention of software engineers.
However, issues related to fault tolerance and exception handling in such systems
have not received yet the level of attention they deserve. In particular, formal
support for validating the correctness and robustness of fault tolerance properties
is still under-developed. In this paper, we will outline the initial steps of our
approach to dealing with such issues in the context of a concrete system for
dealing with mobility of agents (Cama), and a concrete technique for verifying
their properties (partial order model checking). Our aim in this paper is to
present a formal model for the specification, analysis and model checking of
Cama designs. In doing so, we will use process algebras and Petri nets.

In concrete terms, our approach is first to give a formal semantics (including a
compositional translation) of a suitably expressive subset of Cama in terms of an
appropriate process algebra and its associated operational semantics. The reason
why we chose a process algebra semantics is twofold: (i) process algebras, due to
their compositional and textual nature, are very close to the actual notations and
languages used in real implementations; and (ii) there exists a significant body
of research on the analysis and verification of process algebras. In our particular
case, there are two process algebras which are directly relevant to Cama, viz.
Klaim [2] and π-calculus [9], and our intention is to use the former as a starting
point for the development of the formal semantics.
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2 Location-based fault tolerant mobile systems

The design of our system has been strongly influenced by Linda [6], which is a
set of language-independent coordination primitives that can be used for com-
munication and coordination between several independent pieces of software.
Thanks to its language independence, Linda has become quite popular, and
many programming languages have one or more implementations of its coordi-
nation primitives. Coordination primitives presented in Linda allow processes
to put, get and test for tuples in a tuple space shared by the running processes.
A tuple is a vector of typed data values some of which can be empty (in which
case they match any value of a given type). Certain operations, such as get and
test, can be blocking. This provides effective inter-process coordination; other
kinds of coordination primitives, such as semaphores, can be readily simulated.

We will use an asymmetric communication scheme which is closer to the
traditional service provision architectures. It is based on the concept of a fairly
reliable infrastructure-provided wireless connectivity. (The alternative symmet-
ric scheme can also operate in ad-hoc networks and all the coordination func-
tionality is implemented by the agents.) In the asymmetric scheme, the larger
part of the coordination logic is moved to a location server. This approach is
able to support large-scale mobile agent networks in a predictable and reliable
manner. It makes better use of the available resources since most of the opera-
tions are executed locally. Moreover, the asymmetric architecture eliminates the
need for employing complex distributed algorithms or any kind of remote access.
This allows us to guarantee atomicity of certain operations without sacrificing
performance and usability. Another advantage is that it provides a natural way
of introducing context-aware computing by defining location as a context. The
main disadvantage of the location-based scheme is that an additional infrastruc-
ture is always required to support mobile agent collaboration.

A Cama (context-aware mobile agents) system consists of a set of locations,
and active entities of the system, called agents. An agent is a piece of software
which is executed on its own platform, providing execution environment interface
to the location middleware. Agents can only communicate with other agents in
the same location. Agents can migrate logically (connection and disconnection)
or physically (e.g., movement of a PDA on which the agent is hosted on) from
a location to a location. Agents can also migrate logically from platform to
platform using weak code mobility (transfer of application code or its parts from
one host to another without retaining the execution state). Compatible agents
(i.e., agents capable of cooperation in certain conditions in order to achieve
individual agent goals and in accordance to the abstract specification of the
whole system) collaborate through a scoping mechanism, where a scope defines
a joint activity of several agents. Scoping mechanism also isolates non-compatible
agents from each other. More details about the introduced concepts are provided
below.
Scope is a dynamic container for tuples. It provides an isolated coordination
space for compatible agents, by restricting the visibility of tuples contained
within the scope to the participants of the scope. A scope is initiated by an agent
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and then atomically created by a location when all the participating agents are
ready. It is defined by the set of roles, a minimal required number of active roles,
and a maximal allowed number of active roles. Scopes can be nested as scope
participants can create new contained scopes.

Role is an abstract description of agent functionality. Each role is associated
with some abstract scope model. Agent may implement a number of roles and
can also play several roles within the same scope or different scopes. There is a
formal relationship between a scope and its role. The latter is formally derived
from an abstract model through decomposition process, while the former is a
run-time instantiation of such an abstract model as it is formed via a composition
of agent roles (for more discussion see [7]).

Location is a container for scopes. It can be associated with a particular physical
location and can have certain restrictions on the types of supported scopes.
It is the core part of the system as it provides means of communication and
coordination between agents. We may assume that each location has a unique
name. This roughly corresponds to IP addresses of hosts in a network which
are often unique in some local sense. A location must keep track of the agents
present and their properties in order to be able to automatically create new
scopes and restrict access to the existing ones. Locations may provide additional
services that can vary from location to location. These are made available to
agents via what appears as a normal scope though some roles are implemented
by the location system software. As with all the scopes, agents are required
to implement specific roles in order to connect to a location-provided scope.
Examples of such services include printing on a local printer, Internet access,
making a backup to a location storage, and migration. In addition to supporting
scopes as means of agent communication, locations may also support logical
mobility of agents, hosting of platforms and agent backup. Hosting of platform
on a location allows an agent to run without a support from, say, a PDA. For
example, a user may decide to move an agent from the PDA to a location
before leaving the location. When requested by an agent, a location may play
in certain types of scopes the role of a trusted third party that is neutral to all
the participating agents. This facilitates implementation of various transaction
schemes.

Platform provides an execution environment for an agent. It is composed of
a virtual machine for code execution, networking support, and middleware for
interacting with a location. A platform may be supported by a PDA, smartphone,
laptop or a location server. The notion of a platform is important to clearly
differentiate between the concept of a location providing coordination services
to agents, and the middleware that only supports agent execution. In other
approaches no such distinction is usually made [10, 3, 11].

Agent is a piece of software implementing a set of roles which allow it to take
part in certain scopes. All agents must implement some minimal functionality,
called the default role, which specifies their activities outside of all the scopes.
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3 A process algebra for CAMA systems

The semantical model of Cama will be captured using a process algebra based
on Klaim [2] and also the π-calculus [9]. We now briefly outline some key aspects
of this development (see [5] for details).

We assume that L is a set of localities ranged over by l, l′, l1, . . . and a disjoint
set U of locality variables ranged over by u, v, w, u′, v′, w′, u1, v1, w1, . . . . (We also
assume that a special locality self belongs to L.) Their union forms the set of
names ranged over by `, `′, `1, . . . . In addition, A = {A1, . . . , Am} is a finite set
of process identifiers, each identifier A ∈ A having a finite arity nA.

The syntax comes in four parts: networks, actions, processes and templates.

N ::= l :: P p l :: 〈l〉 p N ‖N (networks)

a ::= out(`)@` p in(T )@` p eval(A(`1, . . . , `nA
))@` (actions)

P ::= nil p A(`1, . . . , `nA
) p a . P p P + P p P |P (processes)

T ::= ` p !z (templates)

Moreover, for each A ∈ A, there is exactly one definition A(u1, . . . , unA
)

df

= PA,
which is available across the whole network.

Networks are finite collections of computational nodes, where data and pro-
cesses can be located. Each node consists of a locality l identifying it and a
process or a datum (itself a locality in this simple presentation). There can be
several nodes with the same locality part. Effectively, one may think of a net-
work as a collection of uniquely named nodes, each node comprising its own data
space and a possibly concurrent process which runs there (for simplicity, we as-
sume that only singleton tuples are stored). This view is embodied in the rules
for structural equivalence on nodes and networks, such as N1 ‖N2 ≡ N1 ‖N2,
(N1 ‖N2) ‖N3 ≡ N1 ‖ (N2 ‖N3) and l :: (P1|P2) ≡ l :: P1 ‖ l :: P2.

Actions are the basic (atomic) operations which can be executed by processes,
as follows: out(`′)@` deposits a fresh copy of `′ inside the locality addressed by `;
in(T )@` retrieves an item matching the template T from the locality addressed
by `; and eval(A(`1, . . . , `nA

))@` instantiates a new copy of the process identified
by A in the locality addressed by `.

Processes act upon the data stored at various nodes and spawn new pro-
cesses. The algebra of processes is built upon the (terminated) process nil and
three composition operators: prefixing by an action (a . P ); choice (P1 +P2); and
parallel composition (P1|P2).

The action prefix in(!z)@` . P binds the locality variable z within P , and we
denote by fn(P ) the free names of P (and similarly for networks). For the process
definition, we assume that fn(PA) ⊆ {u1, . . . , unA

}. Processes are defined up to
the alpha-conversion, and {`/`′, . . .}P will denote the agent obtained from P by
replacing all free occurrences of `′ by `, etc, possibly after alpha-converting P
in order to avoid name clashes. We assume that a network is well-formed, i.e.,
no name across the network and process definitions is both free and bound, it
never generates more than one binding, and there are no free locality variables.
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The operational semantics of networks and processes is based on the struc-
tural equivalence ≡ and labelled transition rules providing the record of an ex-
ecution, e.g., output and input involve the following SOS rules:

if ` = self then l′′ = l else l′′ = `

l :: out(`)@l′ .P
o(l,l′′,l′)
−−−−−−−−→ l :: P ‖ l′ :: 〈l′′〉

l :: in(!z)@l′ .P ‖ l′ :: 〈l′′〉
i(l,l′′,l′)
−−−−−−−−→ l :: {l′′/z}P ‖ l′ :: nil

The semantics of Cama operations is given using a straightforward extension of
the process algebra outlined above.

3.1 Process algebra semantics of CAMA

The basic parts of the Cama system are locations, scopes, agents and middle-
ware. Locations provide scopes which, in turn, provide a private coordination
space to communicating agents. Middleware is an active entity that controls
the state of a location and provides certain services, such as scope creation.
Agents can synchronise using Linda-style operations on scopes. Scopes can con-
tain sub-scopes thus providing a hierarchy of nested agent activities. The subset
of the Cama operations chosen for model-checking comprises a number of loca-
tion/scope operations:

EngageLocation DisengageLocation CreateScope GetScopes
DeleteScope JoinScope LeaveScope

and a number of synchronisation operations: in, rd, inp, rdp, out, ina, rda,
inpa and rdpa. All these operations require locality variable argument which
is a reference to a location. In Cama, locations are static and hence they never
appear or disappear during an agent’s lifetime (dynamic locations creation and
destruction can be simulated by other means). Operations occurring within a
locality l are denoted as, e.g., eval()@l. Synchronisation primitives take a scope
name instead of a location, and we assume that location names are contained
within the scope names. For brevity, the locality l may be omitted if its value is
clear from the context. To model nested scopes, we use the notion of a location
tuple prefix, corresponds to one or more fields of a tuple. The syntax of tuple
prefixes p is based on that of tuple/template:

t ::= ? p !z p t, t

where ‘?’ is a wildcard matching any field value, and ‘t1, t2’ is field concatenation.
We than define p = 〈t〉 as well as use ‘∗’ for prefix concatenation, pn for prefix
repetition, and p∗ for an open prefix. We also use the following operations:

– [p](n) is the value of the n-th field of a tuple with the prefix p where field
count starts after the prefix part. For example, [a](2) applied to a tuple space
containing a ∗ 〈a1, a2〉 can give a2 (note that matching is non-deterministic
if p is a prefix of more then one tuple).
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– [p]′(n) is the same as [p](n) but it also removes the matched tuple.

– [p(n)] is the bag of values of the n-th fields of all p-matching tuples.

All these operations assume that there is at least one tuple matching p and
the length of any tuple that can be matched is at least equal to the length of
p plus n, otherwise operation’s behaviour is undefined. Note that it is possible
to express the above operations via standard Linda constructs; for example,
assigning [p](n) to a variable v is equivalent to rd(p ∗ 〈?〉n ∗ 〈!v〉). Finally, the
open prefix matches all the tuples starting with a given prefix, and so tuples of
different length and structure may be matched.

To model scopes and the location middleware behaviour, we need a structur-
ing of tuple space through special prefixes, as given in the table below:

Prefix name Description
m∗ Requests to the middleware
i∗ Possible agent names
a∗ Issued agent names
s∗ Scopes
s ∗ s∗ Description structures of scope s
s ∗ s ∗ r∗ Roles of a scope
s ∗ s ∗ n∗ Number of roles in a scope
s ∗ s ∗ r ∗ r ∗ 〈min,max〉 Restrictions on individual role r
s ∗ s ∗ d∗ Dynamic state of a scope instance
s ∗ s ∗ c ∗ Contents of scope s

We need two auxiliary operations, lock(p) and unlock(p), which grant and
release exclusive access to all the tuples beginning with a prefix p:

lock(p)
df

= in(X ∗ p ∗ 〈1〉) .out(X ∗ p ∗ 〈0〉)

unlock(p)
df

= in(X ∗ p ∗ 〈0〉) .out(X ∗ p ∗ 〈1〉)

Many operations are carried out by the location middleware, which is mod-
elled as a set of looped event handlers waiting for certain tuples with prefix
m to appear. A middleware process Pmid@l is defined as parallel composition
of the event handling processes: PEngageLocation, PDisenageLocation, PCreateScope,
PDeleteScope, PJoinScope, PLeaveScope, PScopeActivate and PScopeDeactivate. In each
case, there is an agent side code that sends a request and collects any re-
turned data, using some additional operations, such as AEngageLocation@l
and ADisengageLocation@l.

Engage location operation registers an agent in a given location and issues a
new name that is guaranteed to be location-wide unique; it allows the agent to
execute other operations in the location. This operation is always the first one
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executed by an agent when it connects to a new location.

AEngageLocation@l
df

= lock(m) .out(m ∗ 〈engage〉) .

in(e ∗ 〈!a〉) .unlock(m)

PEngageLocation

df

= in(m ∗ 〈engage〉) . in(i ∗ 〈!a〉) .

out(a ∗ 〈a〉) .out(e ∗ 〈a〉) .

PEngageLocation(N)

Disengage location removes the registered agent name from the internal reg-
istry of the agent names.

ADisengageLocation@l
df

= out(m ∗ 〈disengage, a〉)

PDisenageLocation

df

= in(m ∗ 〈disengage, !a〉) .

in(a ∗ 〈a〉) . PDisenageLocation

Create scope adds a new scope defined by a name and a special record d that
describes the scope structure and the role that the creating agent will assume.
The record d has the following fields: rolesn - the number of roles, roles - the
vector of role names, min - the minimal required participants number, and max
- the maximum allowed participants number.

ACreateScope(a, s, d, r)@l
df

= out(m ∗ 〈create scope, a, s, d, r〉)

PCreateScope

df

= in(m ∗ 〈create scope, !a, !s, !d, !r〉) . lock(s) .

if(a ∈ [a(1)] ∧ s ∈ [s(1)] ∧ r ∈ d.roles)
then

out(s ∗ s ∗ n ∗ 〈d.rolesn〉) .outa(s ∗ s ∗ r ∗ 〈d.roles〉) .

outa(s ∗ s ∗ r ∗ 〈d.roles, d.min, d.max〉) .

outa(s ∗ s ∗ d ∗ 〈d.roles, 0〉)
endif . in(s ∗ s ∗ d ∗ 〈r, 0〉) .out(s ∗ s ∗ d ∗ 〈r, 1〉) .

out(s ∗ s ∗ c ∗ 〈a〉) .out(m ∗ 〈activator, s〉) .

out(e ∗ 〈join, s〉) .unlock(s) . PCreateScope

Activated

Closed Open

Pending Expanding

Fig. 1. Hierarchy of scope states.
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A scope becomes activated after some agent creates it with the CreateScope
operation. Scope is open when there are some vacant roles in it. Scope is closed
when all the roles are taken. Scope is pending if some required roles are not
taken yet and expanding if all the required roles are taken but there still some
vacant roles (see figure 1).
Delete scope destroys a scope which must be owned by the calling agent. Any
contained scopes are also destroyed.

ADeleteScope(a, s)@l
df

= out(m ∗ 〈delete scope, a, s〉)

The middleware process simply removes all the tuples associated with the scope
and any of its sub-scopes.

PDeleteScope

df

= lock(m) . in(m ∗ 〈delete scope, !a, !s〉) . inpa(s ∗ s∗) .

inpa(d ∗ s∗) .unlock(m) . PDeleteScope

Join scope puts an agent into an existing scope if there is appropriate vacant
role in the scope.

AJoinScope(a, s, r)@l
df

= out(m ∗ 〈join scope, a, s, r〉)

This operation may trigger scope activation or change of the state from open to
closed. The middleware process adds new participant to the scope and announces
the event.

PJoinScope

df

= in(m ∗ 〈join scope, !a, !s, !r〉) .

lock(s) .

if (a ∈ [a(1)] ∧ s ∈ [s(1)] ∧ r ∈ [s ∗ s ∗ r(1)] ∧
[s ∗ s ∗ d ∗ r ∗ r](1) < [s ∗ s ∗ r ∗ r](2))

then

out(s ∗ s ∗ c ∗ 〈a〉) .

out(s ∗ s ∗ d ∗ r ∗ 〈r, [s ∗ s ∗ d ∗ r ∗ r]′(1) + 1〉) .

out(e ∗ 〈join, s〉)
endif .unlock(s) . PJoinScope

Leave scope removes the calling agent from a given scope and role.

ALeaveScope(a, s, r)@l
df

= out(m ∗ 〈leave scope, a, s, r〉)

The middleware process removes record about the agent and issues an event that
may trigger scope state update.

PLeaveScope

df

= in(m ∗ 〈leave scope, !a, !s, !r〉) . lock(s) .

if a ∈ [s ∗ s ∗ c(1)]
then

out(s ∗ s ∗ d ∗ r ∗ 〈r, [s ∗ s ∗ d ∗ r ∗ r]′(1) − 1〉)
in(s ∗ s ∗ c ∗ 〈a〉) .out(e ∗ 〈leave, s〉)

endif .unlock(s) . PLeaveScope

Linda operations that we are using also sugared with additional checks for
a scope’s state:
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– in(t)@s
df

= rd(s∗s∗〈ready〉) . in(s∗s∗c∗t) removes and returns a tuple that
matches the supplied tuple template. First it checks if the specified scope
exists and that it is ready. If it not so the operation blocks until conditions
change. When there is no tuple available immediately it also blocks until
one appears. In case of multiple matching tuples the result is chosen non-
deterministically.

– out(t)@s
df

= rd(s∗s∗〈ready〉) .out(s∗s∗ c∗ t) outputs a tuple into a scope.
First it checks if the target scope is available and ready.

Other operations are defined in a similar manner. Each operation is prefixed
by rd(s ∗ s ∗ 〈ready〉) and a tuple or template argument is prefixed with the
prefix corresponding to the scope. Operations acting on vector of tuples can be
expressed via other operation using prefix locking function.

Whenever a join event occurs (meaning a joining of an agent to a scope),
the scope activate process checks if the state of the scope in question need to be
updated. There are two possible situations. The first one is when all the required
roles are fulfilled and the scope changes its state from pending to ready. As a
result, the process issues a tuple that triggers execution of possibly suspended
earlier Linda operations. Another situation is when all the possible roles are
taken and no more agents should be able to connect to this scope. In this case
the scope becomes closed and this prevents any other agents from entering it.

PScopeActivate

df

= in(e ∗ 〈Join, !s〉) .

if (s ∈ [s(1)] ∧
∀ρ ∈ [s ∗ s ∗ r(1)] : [s ∗ s ∗ d ∗ ρ](1) ≥ [s ∗ s ∗ r ∗ ρ](1))

then in(s ∗ s ∗ 〈!state〉) .out(s ∗ s ∗ 〈ready〉) .

if (s ∈ [s(1)] ∧
∀ρ ∈ [s ∗ s ∗ r(1)] : [s ∗ s ∗ d ∗ ρ](1) = [s ∗ s ∗ r ∗ ρ](2))

then in(s ∗ s ∗ 〈!state〉) .out(s ∗ s ∗ 〈closed〉) .

PScopeActivate

Moreover, PScopeDeactivate updates the state of a scope whenever some agent
leaves it.

4 Model checking CAMA systems

Mobile systems are highly concurrent causing a state space explosion when ap-
plying model checking techniques. We therefore use approach which copes well
with such a problem based on partial order semantics of concurrency and the
corresponding Petri net unfoldings.

A finite and complete unfolding prefix of a Petri net PN is a finite acyclic net
which implicitly represents all the reachable states of PN together with transi-
tions enabled at those states. Intuitively, it can be obtained through unfolding
PN , by successive firings of transition, under the following assumptions: (i) for
each new firing a fresh transition (called an event) is generated; (ii) for each
newly produced token a fresh place (called a condition) is generated. If PN has
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finitely many reachable states then the unfolding eventually starts to repeat it-
self and can be truncated (by identifying a set of cut-off events) without loss of
information, yielding a finite and complete prefix.

Efficient algorithms exist for building such prefixes [8], and complete prefixes
are often exponentially smaller than the corresponding state graphs, especially
for highly concurrent Petri nets, because they represent concurrency directly
rather than by multidimensional ‘diamonds’ as it is done in state graphs. For
example, if the original Petri net consists of 100 transitions which can fire once
in parallel, then the state graph will be a 100-dimensional hypercube with 2100

vertices, whereas the complete prefix will be isomorphic to the net itself. Since
mobile systems usually exhibit a lot of concurrency, their unfolding prefixes are
often much more compact than the corresponding state graphs. Therefore, un-
folding prefixes are well-suited for alleviating the state space explosion problem.
To apply net unfoldings, we need to translate process algebra terms correspond-
ing to Cama systems into Petri nets.

4.1 From process algebra to Petri nets

The development of Petri net model corresponding to expressions of the process
algebra for Cama systems has been inspired by the box algebra [1] and by the
rp-net algebra used in [4] to model π-calculus. It uses coloured tokens and read-
arcs (allowing any number of transitions to simultaneously check for the presence
of a resource stored in a place). Transitions can have different labels, such as o

to specify outputting of data to tuple spaces, i to specify retrieving of data from
tuple spaces, and e to specify process creation.

A key idea behind the translation is to view a system as consisting of a main
program together with a number of procedure declarations. We then represent
the control structure of the main program and the procedures using disjoint
unmarked nets, one for the main program and one for each of the procedure
declarations. The program is executed once, while each procedure can be invoked
several times (even concurrently), each such invocation being uniquely identified
by structured tokens which correspond to the sequence of recursive calls along
the execution path leading to that invocation. With this in mind, we use the
notion of a trail σ to denote a finite (possibly empty) sequence of e-labelled
transitions. And the places of the nets which are responsible for control flow will
carry tokens which are simply trails. (The empty trail will be treated as the usual
‘black’ token.) Procedure invocation is then possible if each of the input places
of a transition t labelled with e contains the same trail token σ, and it results in
removing these tokens and inserting a new token σt in each initial (entry) place
of the net corresponding to the definition of A(. . .), together with other tokens
representing the corresponding actual parameters. Places are labelled in ways
reflecting their intended role, as explained below.

– Control flow places: These will be used to model control flow and be labelled
by their status symbols (internal places by i, and interface places by e and
x, for entry and exit, respectively).
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– Locality places (or loc-places): These will be labelled by localities in L and
carry structured tokens representing localities known and used by the main
program and different procedure invocations. Each such token, called a
trailed locality, is of the form ω.l where σ is a trail and l is a locality in
L other than self. Intuitively, its first part, σ, identifies the invocation in
which the token is available, while the second part, l, provides its value.
Loc-places labelled by self indicate where processes are being executed.

– Tuple-place: This is a distinguished place, labelled by TS, used to represent
data stored at various tuple spaces. It will store a multiset of structured
tokens of the form l.l′, each such token corresponding to the expression
l :: 〈l′〉 in the process algebra.

e

i

xz

` TS

self

ω

ω

u.vω.u

ω.v ω.w

K(in(!z)@`)

e

o

x`′

` TS

self

ω

ω

u.vω.u

ω.v ω.w

K(out(`′)@`)

Fig. 2. Translations for two basic actions.

Two example translations for the basic actions are given in figure 2. The first
one, K(in(!z)@`), can match any tuple in the space identified by `. We do not
assume that `′, ` and self are distinct, and if that is the case, we collapse the
corresponding loc-places, and gather together the annotations of the read arcs.
When executed under a binding [, the translation generates the visible label
i([(w), [(v), [(u)). In the second translation, K(out(`′)@`), it may well happen
that ` = `′ in which case the two loc-places collapse into a single one, and we
have two annotations for the only read-arc linking it with the only transition, ω.u
and ω.v. When executed under a binding [ each of the translations generates the
visible label o([(w), [(v), [(u)). The translation then proceeds in the following
four phases (see [5] for details):

Phase I Each process Pi is translated compositionally into K(Pi) and during
this process all non-control places with the same label are being merged.

Phase II For each process definition A(u1, . . . , ur)
df

= PA, we first translate
compositionally PA into K(PA) and during this process all non-control places
with the same label are being merged into a single one. After that we add loc-
place labelled ui for each i ≤ r, unless such a place is already present, and
suitably deal with the loc-places. The result is denoted K(A).

Phase III For each network node li :: Pi, we first translate compositionally Pi

into K(Pi) and during this translation all non-control places with the same label
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are being merged. After that, we add loc-place labelled selfi identifying it with
the only self-labelled place (if present) and give the result label selfi.
Phase IV We take the parallel composition of the K(A)’s and K(li :: Pi)’s,
identifying all non-control places with the same label, and then suitably connect
the nets to mimic process instantiation. After that we set the initial marking;
in particular, and for each l′

j
:: 〈l′′

j
〉, we insert a single l′

j
.l′′

j
-token into the TS-

labelled place.
It can be shown that the labelled transition system of the original process

algebraic expression is strongly bisimilar to that of the resulting net, and so the
latter can be used for model checking instead of the former.

5 Conclusion

In this paper, we outlined an approach to context aware location-based mobile
systems based on Cama and sketched how to provide it with a formal concur-
rency semantics in terms of a suitable process algebra. The resulting description
can be analysed using efficient model checking techniques in a way which alle-
viates the state space explosion. The model checking technique adopted in our
work is partial order model checking based on Petri net unfoldings, and we briefly
described a semantics preserving translation from the process terms used in the
modelling of Cama to a suitable class of high-level Petri nets.

This research was supported by the EC IST grant 511599 (Rodin).

References

1. E.Best, R.Devillers and M.Koutny: Petri Net Algebra. EATCS Monographs on
TCS, Springer (2001)

2. L. Bettini et al.: The KLAIM Project: Theory and Practice. Proc. of Global Com-
puting, Springer, LNCS 2874 (2003) 88–150

3. C.Bryce, C.Razafimahefa and M.Pawlak: Lana: An Approach to Programming Au-

tonomous Systems. Proc. of ECOOP’02 (2002) 281–308
4. R.Devillers, H.Klaudel and M.Koutny: Petri Net Semantics of the Finite π-

Calculus. Proc. of FORTE 2004, Springer, LNCS 3235 (2004) 309–325
5. R.Devillers, H.Klaudel and M.Koutny: A Petri Net Semantics of a Simple Process

Algebra for Mobility. Technical Report, CS-TR-912, School of Computing Science,
University of Newcastle upon Tyne (2005)

6. D.Gelernter: Generative Communication in Linda. ACM Computing Surveys 7
(1985) 80–112

7. A.Iliasov, L.Laibinis, A.Romanovsky and E.Troubitsyna: Towards Formal Devel-

opment of Mobile Location-Based Systems. To appear in REFT (2005)
8. V.Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD

Thesis, School of Computing Science, University of Newcastle upon Tyne (2003)
9. R.Milner, J.Parrow and D.Walker: A Calculus of Mobile Processes. Information

and Computation 100 (1992) 1–77
10. G.P.Picco, A.L.Murphy, G.-C.Roman: Lime: Linda Meets Mobility. Proc. of

ICSE’99 (1999)
11. The Mobile Agent List. http://reinsburgstrasse.dyndns.org//mal/preview

140



Shortest Violation Tra
es in Model Che
kingBased on Petri Net Unfoldings and SAT?Vi
tor KhomenkoS
hool of Computing S
ien
e, University of New
astleNew
astle upon Tyne NE1 7RU, U.K.e-mail: Vi
tor.Khomenko�n
l.a
.ukAbstra
t. Model 
he
king based on the 
ausal partial order semanti
sof Petri nets is an approa
h widely applied to 
ope with the state spa
eexplosion problem. One of the possibilities for the veri�
ation pro
ess isto build a �nite and 
omplete pre�x and use it for 
onstru
ting a Booleanformula su
h that any satisfying assignment to its variables yields a tra
eviolating the property being 
he
ked. (And if there are no satisfyingassignments then the property holds.)In this paper a method for 
omputing the shortest violation tra
es (whi
h
an greatly fa
ilitate debugging) is proposed. Experimental results de-monstrate that it 
an a
hieve signi�
ant redu
tions in the size of theBoolean formula as well as in the time required to 
ompute a shortestviolation tra
e, when 
ompared with a na��ve approa
h.Keywords: Shortest tra
e, model 
he
king, Petri net unfolding, SAT,Boolean 
ir
uit.1 Introdu
tion and basi
 notionsA distin
tive 
hara
teristi
 of rea
tive 
on
urrent systems is that their sets oflo
al states have des
riptions whi
h are both short and manageable, and the
omplexity of their behaviour 
omes from highly 
ompli
ated intera
tions withthe external environment rather than from 
ompli
ated data stru
tures and ma-nipulations thereon. One way of 
oping with this 
omplexity problem is to useformal methods and, espe
ially, 
omputer aided veri�
ation tools implementingmodel 
he
king | a te
hnique in whi
h the veri�
ation of a system is 
arriedout using a �nite representation of its state spa
e.The main drawba
k of model 
he
king is that it su�ers from the state spa
eexplosion problem. That is, even a relatively small system spe
i�
ation 
an (andoften does) yield a very large state spa
e. To 
ope with this, several te
hniqueshave been developed, whi
h usually aim either at a 
ompa
t representation ofthe full state spa
e of the system, or at the generation of its redu
ed (thoughsuÆ
ient for a given veri�
ation task) state spa
e. Among them, a prominentte
hnique is M
Millan's (�nite pre�xes of) Petri Net unfoldings (see, e.g., [5, 7℄).They rely on the partial order view of 
on
urrent 
omputation, and representsystem states impli
itly, using an a
y
li
 net, 
alled a pre�x.Most of `interesting' problems for safe Petri nets are PSPACE-
omplete [2℄,but the same problems for pre�xes are often in NP or even P . Though the size? The full version of this paper [6℄ is available on-line.
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of a �nite and 
omplete unfolding pre�x 
an be exponential in the size of theoriginal Petri net, in pra
ti
e it is often relatively small.A model 
he
king problem formulated for a pre�x 
an usually be translatedinto some 
anoni
al problem, e.g., Boolean satis�ability (SAT). Then an o�-the-shelf SAT solver 
an be used for eÆ
iently solving it. Su
h a 
ombination`unfolder & solver' turns out to be quite powerful in pra
ti
e.Petri nets A net is a triple N df= (P; T; F ) su
h that P and T are disjoint sets ofrespe
tively pla
es and transitions, and F � (P �T )[ (T �P ) is a 
ow relation.A marking of N is a multiset M of pla
es, i.e., M : P ! N df= f0; 1; 2; : : :g.The standard rules about drawing nets are adopted in this paper, viz. pla
esare represented as 
ir
les, transitions as boxes, the 
ow relation by ar
s, and themarking is shown by pla
ing tokens within 
ir
les. As usual, �z df= fy j (y; z) 2 Fgand z� df= fy j (z; y) 2 Fg denote the pre- and postset of z 2 P [ T , and�Z df= Sz2Z �z and Z� df= Sz2Z z�, for all Z � P [ T . In this paper, the presetsof transitions are restri
ted to be non-empty, i.e., �t 6= ; for every t 2 T . A netsystem is a pair � df= (N;M0) 
omprising a �nite net N and an initial markingM0. It is assumed that the reader is familiar with the standard notions of thePetri nets theory, su
h as the enabledness and �ring of a transition, markingrea
hability and deadlo
k.Unfolding pre�x A �nite and 
omplete unfolding pre�x � of a Petri net � is a�nite a
y
li
 net whi
h impli
itly represents all the rea
hable states of � togetherwith transitions enabled at those states. Intuitively, it 
an be obtained throughunfolding � , by su

essive �rings of transition, under the following assumptions:(a) for ea
h new �ring a fresh transition (
alled an event) is generated; (b) forea
h newly produ
ed token a fresh pla
e (
alled a 
ondition) is generated. Theunfolding is in�nite whenever � has an in�nite run; however, if � has �nitelymany rea
hable states then the unfolding eventually starts to repeat itself and
an be trun
ated (by identifying a set of 
ut-o� events) without loss of infor-mation, yielding a �nite and 
omplete pre�x. The sets of 
onditions, events and
ut-o� events of the pre�x are denoted by B, E and E
ut , respe
tively. (Notethat E
ut � E).EÆ
ient algorithms exist for building su
h pre�xes [5℄, whi
h ensure that thenumber of non-
ut-o� events jE n E
ut j in a 
omplete pre�x 
an never ex
eedthe number of rea
hable states of � . Moreover, 
omplete pre�xes are often ex-ponentially smaller than the 
orresponding state graphs, espe
ially for highly
on
urrent Petri nets, be
ause they represent 
on
urren
y dire
tly rather thanby multidimensional `diamonds' as it is done in state graphs. For example, if theoriginal Petri net 
onsists of 100 transitions whi
h 
an �re on
e in parallel, thestate graph will be a 100-dimensional hyper
ube with 2100 verti
es, whereas the
omplete pre�x will 
oin
ide with the net itself. Another example, viz. a Petrinet modelling two dining philosophers, and a �nite and 
omplete pre�x of itsunfolding, are shown in Fig. 1. One 
an observe that if this example is s
aled up,the size of the pre�x is linear in the number of dining philosophers, even thoughthe number of rea
hable states grows exponentially.
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p1p2p3
p4
p5p6t1 t2

t3 t4t5 p7
p8 p9p10p11

p12
p13p14 t6t7

t8t9 t10
(a)
1p1 
2p7 
3p8 
4p9


5p2

6p3 
7p10

8p11


9p4
10p5
11p12
12p13

13p6

14p14


15 p1
16 p7
17 p8
18 p7
19 p8
20 p9
e1t1
e2t6

e3t2e4t3e5t7e6t8
e7t4
e8t9

e9t5
ut-o�
e10t10
ut-o�(b)Fig. 1. A Petri net modelling two dining philosophers (a) and a �nite and 
ompletepre�x of its unfolding (b).Sin
e � is a
y
li
, the transitive 
losure of its 
ow relation is a partial order< on B [ E, 
alled the 
ausality relation. (The re
exive order 
orrespondingto < will be denoted by �.) Intuitively, all the events whi
h are smaller thanan event e 2 E w.r.t. < must pre
ede e in any valid exe
ution 
ontaining e.Two nodes x; y 2 B [ E are in 
on
i
t, denoted x#y, if there are distin
tevents e; f 2 E su
h that �e \ �f 6= ; and e � x and f � y. Intuitively, novalid exe
ution 
an 
ontain two events in 
on
i
t. Two nodes x; y 2 B [ E are
on
urrent, denoted x 
o y, if neither y#y0 nor y � y0 nor y0 � y. Intuitively,two 
on
urrent events 
an be enabled simultaneously, and exe
uted in any order,or even 
on
urrently. For example, in the pre�x shown in Fig. 1(b) the followingrelationships hold: e1 < e7, e7#e8 (due to the 
hoi
es at 
2 and 
3) and e3 
o e4.The rea
hable markings of � 
an be represented using 
on�gurations of �. A
on�guration is a set of events C � E nE
ut su
h that for all e; f 2 C, :(e#f)and, for every e 2 C, f < e implies f 2 C. For example, in the net shown inFig. 1(b), fe1; e3; e4g is a 
on�guration, whereas fe1; e2; e3; e5g and fe1; e3; e7g
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x1x2
x3x4 _̂ �g1g2 g3 [g1 $ (:x1 _ x2 _ x3 _ x4)℄^[g2 $ (x1 ^ x2 ^ x3 ^ x4)℄^[g3 $ (g1 � g2)℄�[(:g1 _ :x1 _ x2 _ x3 _ x4)^(g1 _ x1) ^ (g1 _ :x2)^(g1 _ :x3) ^ (g1 _ :x4)℄^[(g2 _ :x1 _ :x2 _ :x3 _ :x4)^(:g2 _ x1) ^ (:g2 _ x2)^(:g2 _ x3) ^ (:g2 _ x4)℄^[(:g1 _ :g2 _ :g3) ^ (:g1 _ g2 _ g3)^(g1 _ :g2 _ g3) ^ (g1 _ g2 _ :g3)℄Fig. 2. Conversion of a Boolean 
ir
uit into a Boolean expression in the CNF.are not (the former in
ludes events in 
on
i
t, e3#e5, while the latter does notin
lude e4 < e7). Intuitively, a 
on�guration is a partial-order exe
ution, i.e., anexe
ution where the order of �ring of some of its events (viz. 
on
urrent ones) isnot important; e.g., the 
on�guration fe1; e3; e4; e7g 
orresponds to two totallyordered exe
utions: e1e3e4e7 and e1e4e3e7. Sin
e a 
on�guration 
an 
orrespondto multiple exe
utions, it is often mu
h more eÆ
ient in model 
he
king toexplore 
on�gurations rather than exe
utions.After starting � from the impli
it initial marking (whereby one puts a singletoken in ea
h 
ondition whi
h does not have an in
oming ar
) and exe
uting allthe events in C, one rea
hes the marking denoted by Cut(C). Mark (C) denotesthe 
orresponding marking of � , rea
hed by �ring a transition sequen
e 
orre-sponding to the events in C. It is remarkable that ea
h rea
hable marking of� is Mark (C) for some 
on�guration C of �, and, 
onversely, ea
h 
on�gura-tion C of � generates a rea
hable marking Mark (C). Thus various behaviouralproperties of � 
an be re-stated as the 
orresponding properties of �, and then
he
ked, often mu
h more eÆ
iently.Boolean satis�ability The Boolean satis�ability problem (SAT) 
onsists in�nding a satisfying assignment, i.e., a mapping A : Var' ! f0; 1g de�ned onthe set of variables Var' o

urring in a given Boolean expression ' su
h that 'evaluates to 1. This expression is often assumed to be given in the 
onjun
tivenormal form (CNF) ' = Vni=1Wl2Li l, i.e., it is represented as a 
onjun
tion of
lauses, whi
h are disjun
tions of literals, ea
h literal l being either a variable orthe negation of a variable. It is assumed that no two literals in the same 
lause
orrespond to the same variable.In order to solve a Boolean satis�ability problem, SAT solvers perform ex-haustive sear
h assigning the values 0 or 1 to the variables, using heuristi
s toredu
e the sear
h spa
e [10℄. Some of the leading SAT solvers, e.g., zChaff [8℄,
an be used in the in
remental mode, i.e., after solving a parti
ular SAT instan
ethe user 
an slightly 
hange it (e.g., by adding and/or removing a small num-ber of 
lauses) and exe
ute the solver again. This is often mu
h more eÆ
ientthan solving these related instan
es as independent problems, be
ause on thesubsequent runs the solver 
an use some of the useful information (e.g., learnt
lauses [10℄) 
olle
ted so far.Boolean 
ir
uits A Boolean 
ir
uit (see, e.g., [9℄) 
omputes a multiple-outputBoolean fun
tion of Boolean input variables x1; : : : ; xn. It 
onsists of a �nite
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number k of gates G1; : : : ; Gk . Ea
h gate Gi is labelled by a Boolean fun
tion fi
hosen from some �xed set of Boolean fun
tions F . (In this paper, F 
omprisesall the unary and binary Boolean fun
tions and 
onjun
tions and disjun
tionsof arbitrary arity with arbitrary input inversions.) A Boolean 
ir
uit 
an berepresented by an a
y
li
 dire
ted graph, where the input variables and the
onstants 0 and 1 are its sour
es, and the vertex representing the gate Gi hasarity(fi) numbered in
oming edges from its prede
essors in the graph. (If fi is
ommutative, the numbering of edges does not have to be spe
i�ed.) In pi
tures,ea
h gate is represented as a 
ir
le with the fun
tion shown within it, and inputinversions are shown as `bubbles'. Note that F is 
losed w.r.t. input inversions,and so they 
an be in
orporated into the 
orresponding gate fun
tion.The Boolean fun
tion fv 
omputed at a vertex v of this a
y
li
 graph is de-�ned indu
tively as follows. If v is an input variable xj then fv(x1; : : : ; xn) df= xj ,and if it is a 
onstant 
 2 f0; 1g then fv(x1; : : : ; xn) df= 
. Otherwise, the vertex issome gate Gi, and fv(x1; : : : ; xn) df= fi(p1; : : : ; parity(fi)), where p1; : : : ; parity(fi)are the fun
tions 
omputed at the prede
essors of this vertex in the graph. Theoutput ve
tor (v1; : : : ; vm), where vi is some vertex of the graph, des
ribes whatthe 
ir
uit 
omputes, viz. the multiple-output Boolean fun
tion (fv1 ; : : : ; fvm).In parti
ular, any Boolean formula over the signature F 
an be represented asa 
ir
uit.It turns out that a Boolean 
ir
uit 
an be eÆ
iently en
oded by a Booleanexpression ' in the CNF depending on the variables Var' 
orresponding to theverti
es of the graph representing the 
ir
uit (ex
ept 0 and 1) su
h that for anyassignment A : Var' ! f0; 1g, A is a satisfying assignment of ' i� for everyv 2 Var', fv(A(x1); : : : ; A(xn)) = A(v) (where the variables are denoted bythe same symbol as the 
orresponding verti
es of the graph) and A(0) df= 0 andA(1) df= 1.The expression ' is 
onstru
ted as follows. For ea
h gate Gi, a new Booleanvariable gi representing its output is 
reated, a Boolean equation relating gi tothe inputs of Gi is written down, and these equations are 
onverted into theCNF. This pro
ess is illustrated in Fig. 2. Note that for a gate labelled with aBoolean fun
tion of bounded arity, the size of the 
orresponding equation (andits CNF) is bounded by a 
onstant; moreover, for a gate labelled with a multiple-input 
onjun
tion or disjun
tion, the size of the equation (and its CNF) is linearin the number of gate inputs. Thus the size of the resulting Boolean expressionin the CNF is linear in the size of the 
ir
uit.Model 
he
king based on Petri net unfoldings This paper 
on
entrateson the following approa
h to model 
he
king. First, a �nite and 
omplete pre�xof the Petri net unfolding is built, and it is then used for 
onstru
ting a Booleanformula en
oding the model 
he
king problem at hand. (It is assumed that theproperty being 
he
ked is the unrea
hability of some `bad' states, e.g., dead-lo
ks.) This formula is unsatis�able i� the property holds, and su
h that anysatisfying assignment to its variables yields a tra
e violating the property being
he
ked.
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Typi
ally su
h a formula would have for ea
h non-
ut-o� event e of the pre�xa variable 
onfe (the formula might also 
ontain other variables), and for everysatisfying assignment A, the set of events C df= fe j 
onfe = 1g is a 
on�gurationsu
h that Mark (C) violates the property being 
he
ked. The formula often hasthe form CONF ^ VIOL. The role of the 
on�guration 
onstraint, CONF , isto ensure that C is a 
on�guration of the pre�x (not just an arbitrary set ofevents). CONF 
an be de�ned as the 
onjun
tion of the formulae^e2EnE
ut ^f2�(�e)(
onfe ! 
onff ) and ^e2EnE
ut ^f2((�e)�nfeg)nE
ut:(
onfe ^ 
onff ) :The former formula ensures that if e 2 C then its immediate prede
essors arealso in C, i.e., C is downward 
losed w.r.t. <. The latter one ensures that C
ontains no 
on
i
ts. CONF 
an be transformed into the CNF by applying therules x ! y � :x _ y and :(x ^ y) � :x _ :y. For example, the 
on�guration
onstraint for the pre�x shown in Fig. 1(b) is(
onfe3!
onfe1)^(
onfe4!
onfe1)^(
onfe5!
onfe2 )^(
onfe6!
onfe2)^(
onfe7!
onfe3)^(
onfe7!
onfe4)^(
onfe8!
onfe5)^(
onfe8!
onfe6)^:(
onfe3^
onfe5)^:(
onfe4^
onfe6) :The role of the violation 
onstraint, VIOL, is to express the property viola-tion 
ondition for a 
on�guration C, so that if a 
on�guration C satisfying this
onstraint is found then the property does not hold, and any ordering of eventsin C 
onsistent with < is a violation tra
e. For example, for deadlo
k 
he
kingVIOL 
an be de�ned aŝe2E � _f2�(�e):
onff _ _f2(�e)�nE
ut
onff� :This formula requires for ea
h event e (in
luding 
ut-o� events) that some of thedire
t 
ausal prede
essors of e has not �red or some of the non-
ut-o� events(in
luding e unless it is 
ut-o�) 
onsuming tokens from �e has �red, and thus eis not enabled. This formula is already in the CNF. For example, the violation
onstraint for the deadlo
k 
he
king problem formulated for the pre�x shown inFig. 1(b) is
onfe1^
onfe2^(:
onfe1_
onfe3)^(:
onfe1_
onfe4)^(:
onfe2_
onfe5)^(:
onfe2_
onfe6)^(:
onfe3_:
onfe4_
onfe7)^(:
onfe5_:
onfe6_
onfe8)^:
onfe7^:
onfe8 :Shortest violation tra
es Note that in general the 
omputed violation tra
e
an be quite long, whi
h might make it diÆ
ult to lo
ate the error, as the designerhas to inspe
t this tra
e in order to �nd and eliminate the sour
e of the problem.(And parts of su
h long tra
es often des
ribe in
idental system a
tivity whi
his unrelated to the problem.) Thus 
omputing shortest possible violation tra
es
an greatly fa
ilitate the debugging pro
ess.A quite obvious algorithm for 
omputing the shortest violation tra
e is shownin Fig. 3, where SAT Assignment(') is a fun
tion 
omputing a satisfying as-signment for a Boolean formula ' and returning UNSAT in 
ase ' is unsat-is�able (it is usually implemented by a 
all to some o�-the-shelf SAT solver,
146



input : ' | a Boolean formulaoutput : T | the shortest violation tra
e or UNSATA SAT Assignment (')if A = UNSATthenT  UNSATstopT  Extra
t Tra
e(A)r jT jl 0while l < r dot d(l+ r)=2eA SAT Assignment(' ^ Threshold t)if A = UNSATthenl = t+ 1elseT  Extra
t Tra
e(A)r jT jFig. 3. An algorithm for 
omputing shortest violation tra
es.e.g., zChaff [8℄), Extra
t Tra
e(A) is a fun
tion extra
ting the violation tra
efrom a satisfying Boolean assignment A, and Threshold t is the threshold 
on-straint jfe j 
onfe = 1gj � t. This algorithm uses a binary sear
h to 
omputethe length of the shortest tra
e still exhibiting the violation. If the propertyholds (i.e., if ' is unsatis�able) then this algorithm does not have any additionaloverhead 
ompared with the original model 
he
king algorithm, but in the 
aseof errors the SAT solver is 
alled several times with larger formulae, and so theoverhead might be quite signi�
ant. This situation is somewhat alleviated bythe fa
t that SAT instan
es are very similar to ea
h other (in fa
t, even the for-mulae of the form Threshold t, des
ribed in detail further in this paper, 
hangevery little when t 
hanges) and thus 
an be eÆ
iently solved in the in
rementalmode. Moreover, the user always 
an terminate the exe
ution of the algorithmand get the shortest violation tra
e 
omputed so far.What still needs des
ribing is the 
onstru
tion of the formula Threshold t for agiven t. It turns out that one 
an exploit some problem-spe
i�
 optimisations inorder to signi�
antly redu
e the size of this formula as well as the 
omputatione�ort required for solving the 
orresponding SAT instan
es. This is the maintopi
 of this paper.2 Basi
 translation of a threshold 
onstraintThreshold t 
an be expressed as a pseudo-Boolean 
onstraintPe2EnE
ut 
onfe � t,where arithmeti
al operations are used instead of logi
al ones. The other 
on-straints 
an also be 
onverted into a similar form, and the problem 
an be solvedby a 0{1 integer linear programming solver. However, SAT solvers tend to be
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x1 � � � xnCounter�tz
(a) y1 y2 y3 � � � yk1 f1 f2 f3 � � � fk zfi df= �^ if ti = 0_ otherwise

(b)

x1 x2�1 x3 x4�1 x5 x6�1 x7 x8�1�2 �2
z�3

(
)
x1 y1

z1h/a x2 y2
z2f/a � � �� � � xk yk

zkf/a zk+1
(d)

x y� _z 
o(e) x yh/a
i zh/a _ 
o(f)Fig. 4. Implementations of a threshold 
onstraint (a); a 
omparator (b), where theinputs y1; : : : ; yk are interpreted as the binary representation of a non-negative integer(least signi�
ant digit �rst) and t1; : : : ; tk is the binary representation of t; a 
ounter asa balan
ed tree of adders (
); a k-bit adder �k 
omprising a half-adder 
ell and k � 1full-adder 
ells (d); and half-adder and full-adder 
ells (e,f).
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more eÆ
ient in pra
ti
e, and so in many 
ases it would be advantageous toexpress Threshold t as a purely Boolean 
onstraint.A possible implementation of Threshold t as a Boolean 
ir
uit is shown inFig. 4(a). It 
onsists of two parts: the 
ounter and the 
omparator. The 
ounter
ir
uit has n inputs and dlog2 ne + 1 outputs, and its purpose is to 
ount thenumber of ones among its inputs and return the result as a binary number. Thepurpose of the 
omparator is to 
ompare this number with a given 
onstant t.Note that the 
ounter 
ir
uit does not depend on t and so the 
orrespond-ing part of the formula does not have to be 
hanged between the 
alls to theSAT solver in the algorithm shown in Fig. 3. A possible implementation of the
omparator is shown in Fig. 4(b). Note that it does depend on t, and so the
orresponding part of the formula has to be amended from 
all to 
all. How-ever, the size of the 
omparator is just O(log n). Thus this implementation ofthe threshold 
onstraint is bene�
ial if the SAT solver is used in the in
rementalmode. The rest of this se
tion is devoted to the 
ounter 
ir
uit.Fig. 4(
) illustrates an implementation of the 
ounter as a tree of adders,where ea
h adder is built of half-adder and full-adder 
ells, as shown in Fig. 4(d).A half-adder 
ell adds up two one-bit numbers, produ
ing a one-bit result anda 
arry bit. A full-adder 
ell adds up two one-bit numbers and a 
arry from theprevious 
ell of the adder, produ
ing a one-bit result and a 
arry bit. Fig. 4(e,f)shows possible implementations of these 
ells.The des
ribed 
ir
uit 
an be 
onverted to a linear-size formula in the CNF,as des
ribed in Se
tion 1. However, somewhat shorter formulae 
an be obtainedusing Boolean minimisation when translating half-adder and full-adder 
ells. Ityields the formulae(:x_:y_:z)^(x_:y_z)^(x_y_:z)^(y_:
o)^(:x_
o_z)^(:
o_:z)with 2 new variables, 6 
lauses and 16 literals for a half-adder 
ell, and(
i_:x_y_z)^(
i_x_:y_z)^(:
i_:x_y_:z)^(:
i_x_:y_:z)^(:
i_
o_z)^(
i_:
o_:z)^(:x_:y_
o)^(x_y_:
o)^(:
i_:x_:y_z)^(
i_x_y_:z)with 2 new variables, 10 
lauses and 36 literals for a full-adder 
ell.It is shown in [6℄ that if n is a power of 2 then the resulting CNF formula forthe 
ounter 
ontains 4n� 2 log2 n� 4 auxiliary variables (
orresponding to gateoutputs), 16n� 10 log2 n� 16 
lauses and 52n� 36 log2 n� 52 literals, i.e., eventhough the size of the formula is linear in the number of the 
ir
uit's inputs, themultipli
ative 
onstants hidden in this O(n) translation are quite large. Nextse
tion tries to remedy this situation by exploiting the stru
ture of the pre�x toimprove the des
ribed translation.3 Exploiting the stru
ture of the pre�xThe 
ontent of this se
tion is the main 
ontribution of this paper. It turns outthat the stru
ture of the pre�x 
an be exploited to redu
e the size of the 
ounter
ir
uit. Below, two heuristi
s are des
ribed, one utilising the 
on
i
ts betweenthe events in the pre�x, and the other making use of the 
ausality relation.
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Exploiting the 
on
i
ts One 
an observe that if E0 � E n E
ut is a set ofevents whi
h are in 
on
i
t with ea
h other (i.e., E0 is a 
lique in the graph
orresponding to the relation #) then no two events from E0 
an belong to thesame 
on�guration. The 
on�guration 
onstraint ensures that at most one ofthe variables 
onfe 
orresponding to the events in E0 is assigned the value 1,i.e., 1 � jfe 2 E0 j 
onfe = 1gj = We2E0 
onfe, and so a single _-gate is suÆ
ientto 
ount the number of variables assigned the value 1.De�nition 1 (#-
luster). A set of events E0 � E nE
ut is a #-
luster if forall distin
t events e; f 2 E0, e#f .Thus the non-
ut-o� events of the pre�x are partitioned into #-
lusters, then_-gates are used to 
ount in ea
h #-
luster the number of variables 
orrespondingto its events and assigned the value 1, and a 
ounter (hopefully, of a mu
hsmaller size) is used to 
ount the number of outputs of these _-gates having thevalue 1. Sin
e the translation of an _-gate into a Boolean expression is mu
hsmaller than the translation of a 
ounter, one 
an expe
t redu
tions in the sizeof the resulting formula. For example, ffe1g; fe2g; fe3; e5g; fe4; e6g; fe7; e8gg isa possible partition into #-
lusters of the non-
ut-o� events of the pre�x shownin Fig. 1(b).When partitioning the non-
ut-o� events of the pre�x into #-
lusters, it isadvantageous to make the number of su
h #-
lusters as small as possible. (Whenthe number of #-
lusters is large, the size of the 
ounter grows; in parti
ular, forthe trivial partition with ea
h event forming its own #-
luster the translationdegrades to the one des
ribed in the previous se
tion.) Thus one 
an formulatean optimisation problem of partitioning the non-
ut-o� events of a pre�x into thesmallest number of #-
lusters. Unfortunately, a de
ision version of this problemturns out to be NP-
omplete.Proposition 1 (NP-
ompleteness of the Partition into #-
lusters prob-lem). Given an unfolding pre�x � and a k 2 N, the problem of de
iding whetherthe set of non-
ut-o� events of � 
an be partitioned into at most k #-
lusters isNP-
omplete.The proof is by redu
tion from the Partition into Cliques problem, whi
h isknown to be NP-
omplete [3, Problem GT15℄, and 
an be found in [6℄.When 
omputing the shortest violation tra
e, one does not want to spend toomu
h e�ort on building the threshold 
onstraints, as the pro
ess of building them
an easily be
ome more time 
onsuming then model 
he
king itself. Therefore,in the a
tual implementation, a fast `greedy' algorithm for partitioning the set ofevents into #-
lusters was adopted, whi
h is justi�able in the view of the aboveresult. This algorithm is des
ribed in [6℄.Exploiting the 
ausality relation The method des
ribed above allowed forsimpli�
ation of the threshold 
onstraint by exploiting the 
on
i
t relation be-tween the events in the pre�x. It turns out that the 
ausality relation 
an alsobe exploited to redu
e the size of the translation even further.
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y1 y2 y3 y4 y5 y6 y7 y8
z4z3z2z1

^^ ^_ ^^ ^ ^_ zi df=� k�2i�12i �_j=0 y2i(j+ 12 )^:y2i(j+1)i 2 f1; : : : ; dlog2 ke+ 1gyk0 df= 0 if k0 > k
Fig. 5. An implementation of an eight-input 
ounter with the values of inputs 
on-strained to be in a non-in
reasing order.De�nition 2. Let Cl and Cl 0 be two #-
lusters. Cl � Cl 0 if for ea
h evente0 2 Cl 0 there exists an event e 2 Cl su
h that e < e0. A sequen
e of #-
lustersCl1 � Cl2 � � � � � Clk is 
alled a �-
hain.For example, fe4; e6g � fe7; e8g is a �-
hain of the pre�x shown in Fig. 1(b).It follows from this de�nition that if Cl � Cl 0 and an event e0 2 Cl 0 be-longs to a 
on�guration C then some event e 2 Cl also belongs to C. SupposeCl1 � Cl2 � � � � � Clk is a �-
hain and y1; : : : ; yk are the outputs of the_-gates 
orresponding to these #-
lusters. The 
on�guration 
onstraint ensuresthat in any satisfying assignment the sequen
e of values of y1; : : : ; yk is non-in
reasing. This allows one to 
ount the number of ones among these valuesmu
h more eÆ
iently than by a 
ounter des
ribed in the previous se
tion. In-deed, the en
oding of the inputs is very similar to the 1-hot en
oding, whi
h
an be obtained from y1; : : : ; yk as :y1; y1 ^ :y2; y2 ^ :y3; : : : ; yk�1 ^ :yk; ykand subsequently 
onverted into the binary 
ode using an en
oder. A somewhatsmaller 
ir
uit is shown in Fig. 5.Thus one 
an partition the a
y
li
 dire
ted graphG� 
orresponding to the�relation on the #-
lusters into �-
hains, then build for ea
h �-
hain a 
ir
uitsimilar to the one shown in Fig. 5, and �nally 
onstru
t an adder tree similarto that in Fig. 4(
), but with the bottom layer 
omprised of the built 
oun-ters rather than half-adders. The algorithm shown in Fig. 6 does this tryingto balan
e the resulting adder tree. Extra
tMin(Q) extra
ts and returns a pair(
;m) 2 Q (where 
 is a 
ir
uit and m 2 N is the maximum value this 
ir
uit
an output) with the minimum value of m, and Add(
1; 
2) 
onstru
ts a 
ir
uitwhi
h 
omputes the sum of values 
omputed by 
1 and 
2 (i.e., an adder is put`on top' of 
1 and 
2). Note that Q is a priority queue and 
an be eÆ
ientlyimplemented as either a binary heap or by keeping a list of 
ir
uits for ea
h m.When partitioning G� into�-
hains, it is advantageous to make the numberof su
h�-
hains as small as possible, in order to redu
e the number of adders inthe adder tree. Thus one 
an formulate an optimisation problem of partitioning
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input : Q | a non-empty set of pairs (
;m), where 
 is a 
ir
uit and m 2 Noutput : 
 | a 
ir
uitwhile jQj > 1 do(
1;m1) Extra
tMin(Q)(
2;m2) Extra
tMin(Q)Q Q [ f(Add(
1; 
2);m1 +m2)g/* now jQj=1 */(
;m) Extra
tMin(Q)return 
 Fig. 6. An algorithm for building a tree of adders.G� into the smallest number of �-
hains. This is essentially the well-knownminimum vertex-disjoint path 
over problem (zero-length paths 
omprising asingle vertex are admissible).This problem is NP-
omplete for general graphs, sin
e 
he
king the existen
eof a Hamiltonian path is equivalent to 
he
king whether it is possible to 
over theverti
es of a given graph by a single vertex-disjoint path. Nevertheless, for a
y
li
graphs (note that G� is a
y
li
) it 
an be redu
ed to the maximum mat
hingproblem on a bipartite graph, and solved in polynomial time [4℄. However, oneshould bear in mind that G� is given impli
itly, and 
an be very large. (It isnot un
ommon to have an unfolding pre�x with hundreds thousands events.)Therefore, using an exa
t algorithm for solving this problem might be either toomemory demanding (if G� is built expli
itly), or too slow due to the need ofworking with an impli
itly represented graph (
he
king whether there is an ar
between two verti
es of G� is quite expensive in su
h a 
ase, as one might haveto traverse the whole pre�x). Thus a fast `greedy' algorithm for partitioning theset of #-
lusters into �-
hains has been designed. It is des
ribed in [6℄.4 Experimental resultsThe proposed method has been tested with the zChaff SAT solver [8℄, andthe popular set of deadlo
k 
he
king ben
hmarks 
olle
ted by J.C. Corbett [1℄has been attempted. (For obvious reasons, only examples with deadlo
ks fromthis 
olle
tion were used.) All the experiments were 
ondu
ted on a PC with aPentiumTM IV/2.8GHz pro
essor and 512M RAM.The experimental results are shown in Table 1, where the meaning of the
olumns is as follows (from left to right): the name of the problem; the num-ber of non-
ut-o� events in the pre�x; the lengths of the �rst 
omputed and ashortest violation tra
es; the number of #-
lusters and �-
hains 
omputed bythe heuristi
 algorithms des
ribed in [6℄; the size (the number of new variables,
lauses and literals) of the translation of the 
ounter 
ir
uit for the basi
 trans-lation des
ribed in Se
tion 2 and for the improved one des
ribed in Se
tion 3;and the time taken by the SAT solver to 
ompute the �rst violation tra
e andthe time taken by the algorithm in Fig. 3 to 
ompute a shortest violation tra
eusing the basi
 and the improved translations of the 
ounter.
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Problem Pre�x Tra
e Partitions Translation of 
ounter TimeBasi
 ImprovedjEnE
ut j 1st shtst #-
l �-
h vars 
ls lits vars 
ls lits 1st Bas. Imp.Q 7229 75 21 179 25 28881 115479 375221 520 8781 26031 <1 3 1Speed 1663 24 4 30 9 6620 26436 85832 98 1952 5806 <1 1 <1Da
(6) 53 6 6 23 11 195 761 2437 72 279 833 <1 <1 <1Da
(9) 95 9 9 35 17 359 1409 4527 116 460 1372 <1 <1 <1Da
(12) 146 12 12 47 23 564 2236 7230 160 662 2000 <1 <1 <1Da
(15) 206 43 15 59 29 802 3182 10292 205 864 2600 <1 <1 <1Dp(6) 66 6 6 18 6 247 973 3135 55 222 628 <1 <1 <1Dp(8) 120 8 8 24 8 461 1823 5885 75 341 987 <1 <1 <1Dp(10) 190 10 10 30 10 737 2919 9431 96 475 1381 <1 <1 <1Dp(12) 276 12 12 36 12 1082 4306 13954 119 635 1861 <1 <1 <1Elev(1) 98 9 9 16 5 374 1478 4770 43 222 640 <1 <1 <1Elev(2) 496 22 12 24 7 1960 7812 25336 65 685 2017 <1 <1 <1Elev(3) 2266 30 15 32 9 9033 36095 117239 94 2549 7607 <1 <1 <1Elev(4) 9598 23 18 40 11 38354 153366 498344 117 9950 29798 2 27 3Hart(25) 101 26 26 76 26 385 1519 4897 218 826 2528 <1 <1 <1Hart(50) 201 51 51 151 51 783 3109 10061 440 1684 5188 <1 <1 <1Hart(75) 301 76 76 226 76 1180 4692 15196 666 2566 7942 <1 <1 <1Hart(100) 401 101 101 301 101 1581 6299 20425 888 3424 10602 <1 <1 <1Key(2) 454 52 42 103 18 1792 7140 23152 285 1309 3761 <1 <1 <1Key(3) 4057 53 43 223 41 16194 64730 210284 680 6123 18051 <1 20 2Key(4) 35905 65 44 407 82 143582 574286 1866352 1269 39797 118855 <1 548 224Mmgt(1) 38 6 6 11 2 136 528 1686 25 98 250 <1 <1 <1Mmgt(2) 385 8 8 26 7 1518 6050 19622 80 618 1806 <1 <1 <1Mmgt(3) 3312 10 10 36 6 13217 52831 171631 98 3584 10658 <1 <1 <1Mmgt(4) 25945 12 12 44 7 103741 414915 1348381 119 26273 78693 77 86 80Sent(25) 176 34 3 40 3 684 2716 8790 69 370 1028 <1 <1 <1Sent(50) 201 59 3 65 3 783 3109 10061 98 480 1302 <1 <1 <1Sent(75) 226 84 3 90 3 883 3509 11361 123 579 1549 <1 <1 <1Sent(100) 251 109 3 115 3 980 3888 12574 149 681 1803 <1 <1 <1Table 1. Experimental results for deadlo
k 
he
king.The experiments show that in many 
ases the �rst 
omputed violation tra
ewas mu
h longer than a shortest one, with the results for the Sent ben
hmarksbeing parti
ularly impressive. This 
on�rms that in pra
ti
e 
omputing shortestviolation tra
es 
an indeed greatly fa
ilitate the debugging pro
ess.One 
an see that the number of #-
lusters and �-
hains is usually quitesmall 
ompared to the number of non-
ut-o� events in the pre�x, and thus theredu
tion in the size of the formula is quite signi�
ant. It is possible to evaluatethe maximum redu
tion whi
h 
an be a
hieved by the improved translation overthe basi
 one as follows. In the ideal 
ase, all the events in the pre�x would bein 
on
i
t with ea
h other, and so the 
ounter 
ir
uit 
an be implemented as asingle _-gate. Su
h an implementation results in one new variable (for the gate'soutput), n + 1 
lauses and 3n + 1 literals in the 
orresponding CNF formula,where n = jE n E
ut j. The 
orresponding parameters for the basi
 translationare given in Se
tion 2, and the improvement ratios for new variables, 
lausesand literals are (4n� 2 log2 n� 4)=1 � 4n, (16n� 10 log2 n� 16)=(n+ 1) � 16and (52n�36 log2 n�52)=(3n+1) � 17 13 , respe
tively. Thus the redu
tion ratiofor variables 
an grow unboundedly with n, whereas for 
lauses and literals it isbounded by 16 and 17 13 , respe
tively.The improvement ratios for the ben
hmarks in Table 1 are plotted in Fig. 7.One 
an see that for the number of new variables, the redu
tion ratio indeedgrows with the size of the pre�x (though not as fast as in the ideal 
ase), and is
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Fig. 7. Improvement ratios.between two and three orders of magnitude for large ben
hmarks. For 
lauses andliterals, the improvement rate also grows with the size of the pre�x, and 
omessurprisingly 
lose to the best possible ratio for large ben
hmarks. Moreover, itshould be noted that sin
e the improved translation uses a lot of multiple-input_-gates, the 
orresponding CNF formula has many 
lauses of length two, whi
hmakes the SAT instan
e easier for the solver.The 
omparison of the running times of the algorithms shows that, ex
eptone test 
ase, it was not too time-
onsuming to 
ompute a shortest violationtra
e. (This is probably due to the fa
t that only a few ben
hmarks are large.)Moreover, the improved approa
h has a 
lear advantage over the basi
 one interms of time. The only ben
hmark where 
omputing the shortest violation tra
eby the improved method took signi�
antly more time than just solving the orig-inal model 
he
king problem was Key(4). (Note that for Mmgt(4) the in
reasein time was quite modest, whi
h 
an be explained by the fa
t that the �rst 
om-puted violation tra
e was already optimal and very short.) In general, however,one 
an expe
t a signi�
ant in
rease in time when 
omputing the shortest viola-tion tra
es, due to the following phenomenon, related to phase transition. Let t�be the length of the shortest violation tra
e. If t is signi�
antly larger than t�,adding the 
onstraint Threshold t to the formula will ex
lude only a few satisfy-ing assignments, and the resulting formula will not be mu
h harder for the solverthan the original one. On the other hand, if t is signi�
antly smaller than t�,adding Threshold t to the formula will yield an over
onstrained SAT instan
ewhi
h usually 
an be qui
kly proven unsatis�able. A hard situation 
an o

urwhen t is 
lose to t�. In su
h a 
ase, if the SAT instan
e is satis�able, it oftenhas only a small number of satisfying assignments (and thus su
h an assignmentmight be diÆ
ult to �nd), and if it is unsatis�able, it might be hard to show
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this. The last part of Se
tion 1 dis
usses how the impa
t of this phenomenon
an be alleviated in pra
ti
e.5 Con
lusions and future workAlthough performed testing was limited in s
ope, one 
an draw some 
on
lusionsabout the eÆ
ien
y of the proposed approa
h. Computing shortest violationtra
es 
an fa
ilitate the debugging pro
ess and save a lot of designer's time,sin
e in many 
ases the �rst 
omputed violation tra
e is mu
h longer than ashortest one. A

ording to the experimental results, for large problem instan
esit 
an redu
e the number of new variables in the formula by two{three ordersof magnitude, and a
hieve almost optimal redu
tion in the number of 
lausesand literals, i.e., the length of the CNF formula 
orresponding to the threshold
onstraint was surprisingly 
lose to that for a single multiple-input _-gate!The possible dire
tions for future resear
h in
lude using a Boolean minimiserto derive short formulae not only for half-adder and full-adder 
ells but also foradders with a small number of inputs, and exploiting the stru
ture of the pre�xto redu
e the size of other pseudo-Boolean 
onstraints en
ountered when dealingwith various model 
he
king problems.A
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