Black tie optional:
Modeling programming language concepts

J W Coleman, N P Jefferson, and C B Jones

School of Computing Science
University of Newcastle upon Tyne
NE1 7RU, UK

e-mail: {j.w.coleman,n.p.jefferson,cliff.jones}@ncl.ac.uk

Abstract. This paper describes an undergraduate course taught at the
University of Newcastle upon Tyne; the title of the module is Under-
standing Programming Languages. The main thrust of the course is to
understand how to model features of language semantics. Specifically,
(structural) operational semantics (SOS) is taught as a convenient and
notational light way of recording and experimenting with features of
procedural programming languages. We outline the content, discuss the
contentious issue of tool support and relate experiences.

1 Introduction

The course discussed in this paper is entitled “Understanding Programming Lan-
guages”.! (For brevity, the module is referred to below by its number “CSC334”.)
It teaches the modeling of concepts from programming languages. Formally, it
covers operational semantics using parts of VDM for the formal notation (in-
cluding an unconventional emphasis on “abstract syntax” (see Section 4) but
tries not to labour the formalism itself. The teaching objectives are about the
student being able to

— read a formal (operational) semantics
— experiment with language ideas by sketching a model

The authors of this paper each bring a different viewpoint to the course being
discussed

— the third author has worked on formal semantics since the operational se-
mantics of VDL; contributed to the move to the denotational semantics of
VDM and is the principal teacher of the course being described

— the second author is a postgraduate student working with SOS. He is in the
unique position of having experienced the course both as a student and a
teaching assistant and is a strong advocate of the use of tool support as a
teaching aid.

1 A book with the same title is being written.

— the first author is currently a postgraduate student using SOS to model CA
Actions [XRR199] in BPEL. He’s also had the pleasure of demonstrating for
CSC334 this past year, watching —and helping— students understand SOS.
He’s a bit of a closet LISPer, having been part of a functional programming
micro-community while in undergrad at Ryerson University (in Toronto).
Immediately prior to returning to academia, he spent a couple of years in
industry as a software developer.

It might be useful to say a few words about the context in which the course
at Newcastle is taught.

The School of Computing Science at Newcastle University offers several un-
dergraduate “degree programmes” each of which offers the CSC334 module as
an optional final year module. The module is taught to a wide variety of students
with varying degrees of experience with formal methods.

No prerequisites are required of the students who enlist in the CSC334 course,
but students from most degree programmes take compulsory 2nd year modules
that teach VDM as an introduction to formal methods (the textbook used for
this is [FL98]). Interestingly Newcastle University does not offer a module on
compiling and this has to be taken into account in the delivery of CSC334.

2 Why teach (formal) semantics?

There are several reasons for teaching formal semantics at undergraduate level.
Probably the strongest can be motivated from the “half life of knowledge” that
can be imparted: programming languages come and go — over previous ten year
periods, there have been complete changes in the fortunes of one or another
language (e.g. Pascal, Modula-n, Ada, C, C++ and Java just within main line
procedural languages). Any language that we teach in a university course today
could have been added to the list of faintly remembered languages in a decade’s
time. It therefore behooves academics to try to teach something which will last
longer and give students a way to look at future languages. There are of course
very good books on comparative languages (a recent example is [Wat04]). The
fact that so many of the programming languages —even those which are widely
used— exhibit really bad design decisions is also worrying and indicates that
there is a need to give future computer scientists ways to explore ideas more
economically than by building a compiler.

The idea of teaching students a way to model concepts in programming lan-
guages is attractive in itself but it also provides an opportunity to say things
about the fundamental nature of Informatics. Computing science is not a natural
science in which one is stuck with modeling the universe as it exists; but nor is it
usefully viewed as a branch of mathematics because one cannot ignore what can
be realised in an engineering sense. This tension is nowhere more clearly seen
than in the design of programming languages. They must find a compromise
between

— clarity of expression of programs written in the language

— reasonable performance of implementations of the language

Of course, this list could be extended to include all sorts of issues like the ability
to diagnose programmers’ errors but the essential tension is that indicated above.
The course then explores language definition questions like

— the separation of syntax and semantic issues
— the nature of procedural programs

— “strong typing”

— linking programs to their data

— the role of objects in OOLs

3 Why choose Operational Semantics?

The next question to consider is why we choose to base the course on “Opera-
tional Semantics”. Research into formal semantics is often classified under the
terms:

— Operational Semantics
— Denotational Semantics
— Axiomatic Semantics

As indicated in Section 1, one of the authors of this paper has been involved
in the development of formal semantic techniques since attempting to use the
early operational semantics work on VDL [LW69,Luc81] in the design of com-
pilers (cf. [BJ78] for itself and further references). The move to denotational
semantics (see [Sto77]) by the IBM Laboratory Vienna gave rise to the language
description parts of VDM [BBH*74,BJ78,BJ82].2 Based on his enthusiasm for
the newer work on denotational semantics, this same author’s courses in Manch-
ester University (1981-96) used that approach. It is therefore something of a
volte face that he now chooses to teach operational semantics in the course in
Newcastle. The essence of operational semantics is that it provides what John
McCarthy called an “abstract interpreter” for the language under study. Both
words are important. An interpreter makes clear how programs are executed; for
an imperative language, it shows how statements cause changes to the state of
the computation. The importance of this being described “abstractly” cannot
be overemphasised: the interpretation can be understood because it is presented
in terms of abstract objects.

4 Technical material covered

This section describes in more detail the material covered in the subject course;
the interesting question of tool support is deferred to Section 8.

Because the interest is in modeling (rather than the meta-theory of seman-
tics), the course teaches by example: a series of three language definitions are
tackled:

2 This development is described in [Jon01]; the wider history of VDM in [Jon99].

— Base introduces the basic idea of states and abstract interpretation; after be-
ginning with a simple deterministic language, concurrency is used to explain
the need to cope with non-determinism; a trivial (and rather dangerous)
form of threads with sequences of unguarded assignments is modeled using
“Plotkin rules” (see Section 6)

— Blocks includes Algol-like blocks and procedures; it is used to show how the
key idea of an “environment” can be used to model sharing and the normal
range of parameter passing mechanisms are discussed®

— COOL is a concurrent object-based language — this is where the rule form
of description really pays off. The language is rich enough to explore many
alternatives.

With each language, there are lecture slots where alternatives suggested by the
students are modeled. This gives a feel for real modeling rather than it being a
static pre-canned set of examples.

The natural division of discussing syntax and semantics (and the difficult to
place issue of context dependencies) is used. Before addressing the semantics of
a language, it is necessary to delimit the language to be described. A traditional
concrete syntax defines the strings of a language and suggests a parsing of any
valid string.* Most texts on semantics are content to write semantic rules in
terms of concrete syntax. Although this is convenient for small definitions, it
really does not scale up to larger languages. We therefore base everything on
Abstract Syntax descriptions (see Appendix A.1l). For example, VDM defines
objects like

Assign :: lhs : 1d

rhs : Expr
which gives rise to a constructor function yielding tagged values
mk-Assn: Id x Expr — Assn

Using abstract syntax has the advantage of immediately getting the students
to think about the information content of a program rather than bothering about
the marks inserted just as parsing aids. There is an additional bonus that pattern
matching with abstract objects gives a nice way of defining functions (or rules)
by cases (see Appendix A.2 and A.3).

The class of Programs defined by any context free syntax (concrete or ab-
stract) is too large in the sense that things like type constraints are not required
to hold. There are many ways of describing Context Conditions but we prefer
to write straightforward recursive predicates over abstract programs and static
environments (see Appendix A.2) rather than, for example, use type theory as
in [Pie02].

3 We have fitted as much of this definition as space would allow into Appendix A.

4 The publication of ALGOL-60 [BBGT63] solved the problem of documenting the
syntax of programming languages: “(E)BNF” offers an adequate notation for defin-
ing the set of strings of a language. But is is a really sad observation that it no
longer appears to be normal to include a concrete syntax in books on programming
languages: very few books on Java have either a BNF nor a “Pascal tramline” syntax.

So, given a class of “well formed” abstract programs, how do we give the
semantics? McCarthy’s formal description of “micro-ALGOL” [McC66] defines
an “abstract interpreter” which takes a Program and a starting state and delivers
the final state. (In the simplest case the states (X) are mappings Id — Value.)
Thus:

Program x ¥ — X
is defined by recursive functions over statements and expressions

exec: Stmt x ¥ — X and eval: Ezpr x ¥ — Value

5 An example modeling idea

The course focuses on general modeling ideas like the use of “environments”
to model sharing. In languages of the ALGOL family, the nesting of blocks
and procedures introduces different scopes for identifiers permitting the same
identifier to refer to different variables. Furthermore the ability to pass arguments
“by location” (“by reference”) makes it possible for different identifiers to refer
to the same location. This gave rise to the idea of splitting the map

Id = Value

into two with an abstract set of Locations representing the equivalences over
identifiers, thus

Env = Id = Loc

Y = Loc = Value

The separation of such an environment from the state is an important aid to
making properties of a language definition obvious:

Stmt x Env X ¥ — %
says more than
Stmt x (Env x) — (Env x X)

This issue has been referred to as “small state vs. grand state”. It is probable
that one of the main attractions of denotational semantics was that it encouraged
“small state” definitions.

The concept of environments and the abstract set of locations make it de-
lightfully easy to illustrate the distinctions between different parameter passing
modes (“call by value”, “call by reference”, “call by value/return”, “call by
name”). Furthermore, careful modeling of —say— ArrayLoc and StructLoc can re-
sult in a collection of semantic objects which convey a lot of information about
a language without even looking at the semantic rules. The semantics given in
Appendix A.3 uses “call by reference”.

6 Plotkin rules

Non-determinism arises in many ways in programming languages. Certainly
the most interesting cause is concurrency but it is also possible to illustrate
via non-deterministic constructs like Dijkstra’s “guarded commands”. Unfortu-
nately, McCarthy’s idea to present an abstract interpreter by recursive functions
does not easily cope with non-determinacy. A move to producing a set of states,
as in exec: Stmt x ¥ — P(X) is not convenient because of the need to ramify the
combinations as follows:

exec-sl : Stmt* x ¥ — P(X)

exec-sl(sl, o) &
cases sl:

[J:{o}

[s] “ rest: | { exec-sl(rest, ') | o' € exec(s, o)}
because

exec : Stmt x ¥ — P(X)

exec(s,0) 4O

An alternative way to mechanise would be

poss-sl : Stmt* x X x ¥ — B

poss-sl(sl,o,0,)
cases sl:
[l:or =0
[s] " rest: 3o; € X - poss(s,0,0;) A poss-sl(rest, oy, 0,)

with

poss : Stmt x X x X — B

poss(s,o,0,) 2

But this moves in the direction of populating a logical frame — which topic is
discussed in Section 10.

In 1981, Gordon Plotkin produced the technical report [Plo81] on “Structural
Operational Semantics”.® This widely photo-copied contribution revived interest
in operational semantics. It can be argued that the most important contribution
of [Plo81] was the step to using a “rule notation”; for example we can define a
“guarded iteration”:

Guardedlter :: GuardedClause-set

5 This material, together with a companion note on its origins [Plo03a], has finally
been published in a journal [Plo03b].

GuardedClause :: test . Expr
action : Stmt*

An example (concrete) program fragment might be:
z:=1;b:=true; do b — z:=x+1]| b — b:= false od

The guarded statement is non-deterministic in that either guarded clause can
be selected when b is true.® The semantics are given as follows:

5 P((Stmt x X) x %)

mk- GuardedClause(test, action) € gcs
(test,0) —— true

. sl
action,c) — o’

(
(mk-Guardedlter(ges),o’) - o
(mk-Guardedlter(gcs), o) — o

mk- GuardedClause(test, action) € gcs = (test,0) — false

(mk-Guardedlter(gcs),o) — o

All that the SOS rules provide are patterns: if the antecedents hold on a given
system, then the consequent can follow. As noted about non-determinism above,
when the antecedents of multiple rules hold, the choice regarding which one to
execute is generally unconstrained.

The advantage of the move to such a rule presentation is the natural way
of presenting non-determinacy. Many features of programming languages give
rise to non-determinacy in the sense that more than one state can result from
a given (program and) starting state. This natural expression extends well to
concurrent languages. The advantage of the rule format appears to be that the
non-determinacy has been factored out to a “meta-level” at which the choice
of order of rule application has been separated from the link between text and
states. For this reason, the complications of writing a function which directly
defines the set of possible final states are avoided. Here is a case where the
notation used to express the concept of relations (on states) is crucial.

Notice that the semantics of Block is non-deterministic in that newlocs is an
underdetermined function. This is important as a way of showing that a compiler
writer is allowed to re-use locations in a stack. It is also an interesting property
that, in a language without a heap, the non-determinism is eliminated at the end
of a block (i.e. a programmer cannot write a program whose result is influenced
by the choice of locations).

One of the properties of SOS is that any given rule covers a small, simple
concept. For things like assignment —a very simple concept in itself- only one
rule is required. Conditional looping constructs, such as while, generally require
two: one where the condition is true, one where it is false.

5 As an example of the limits of ambition in CSC334, we would not (unless pressed)
go into issues of “fairness” or transfinite induction.

7 Coping with exceptions

To describe more complex constructs requires that you decompose the concept
by examining what it does. A simple exception handler, for example, might look
something like s; except s; in a some given language. If we look at how such a
construct is processed, we immediately see that there are two cases: one where
the processing of s; proceeds normally, and one where s; causes some error so
that s, must be evaluated.

This suggests that the statement transition should be modified to:

S Stmtx Y — 3 x [Abn]

where [Abn] is essentially a flag to indicate that an error has occurred (mil
indicating a normal result and error indicating an error). The rule to describe
normal processing is then:

(517 U) — (0/7 nil)

51 except so,0) — (o, nil
p ?)

which simply says that the result of processing s; except sy is the result of s;
if 51 does not produce an error.

The complementary rule, when the processing of s; does produce an error,
requires a little more care. If we decide that the handler, s, should see the state
resulting from the (failed) processing of s1, and that if sy produces an error that
it should be passed on, then we might have a rule like:

(s1,0) = (o', error)
(32,0') = (0", 1)

(s1 except sp,0) — (0",)

This rule then says that the result of processing s; except sy, if s produces an
error is the result of processing so in the modified state.

This particular example provides what is a surprisingly close approximation
of the usual try...catch... constructs you see in common languages like Java,
C++, Python, and so on. It is missing the choice of exception handlers based
on the type of exception, but that is not difficult to add.

The specific details of how an implementation might notice that processing
caused an error is entirely left out of the rules. That is not a necessary part
of this model, and is usually not part of a programmer’s model when they are
debugging code (unless, of course, the programmer is debugging the exception
handling mechanism itself).

The two first year computer science courses at Ryerson did, at one point, use
the Scheme programming language, and part of the syllabus involved teaching
“the environment model of evaluation” essentially as it is found in [ASS85]. The
model was taught through classroom examples and practical assignments.

That model, being concerned with how the language is evaluated, gives a
completely operational definition of the language. It was not presented to the
students as Plotkin-style rules, of course, but it did give them a fundamentally
operational model with which to reason about the language. Most importantly,

those students were using an operational model to design and debug their pro-
grams.

8 Tool support

A key question for teaching CSC334 has been that of tool support. Indeed, this is
an innovation by the second author into a course he experienced (from the third
author) without any tool support. The addition of tool support to the module
has the potential of both affording the students additional understanding and
introducing an extra element of confusion. A student can for example create
example programs which are objects of the abstract syntax and execute them
using the semantic rules they have created. However, the student must learn
how to use the tool and be aware differences between the mathematical VDM
syntax taught in class and that used by the tool. For these reasons, the choice
of whether to use the tool support is left to the individual choice of the students
and teaching support is provided for both.

The tool used is the IFAD VDMTools® [IFA01b,IFA(0la]. Many of the CSC334
students have experience of the tool from other modules. It provides an environ-
ment in which a VDM specification may be syntax and type checked and explicit
functions may be executed via an interpreter. The students are provided with
language specifications translated into ASCII VDM-SL. The semantic rules are
translated into functions so that they can be executed in the Toolbox interpreter.
This translation can in some cases produce functions that are significantly dif-
ferent to their equivalent semantic rules that are taught in class. This can put
many students off using the tools, especially those who are not familiar with the
ASCII syntax.

As an example of this process we will consider the semantic rule for the
execution of a block:

(varenv,o’) = genlocs(vars, o)

funenv = {f — b-FunDen(funs(f), env t varenv) | f € dom funs}

env’ = env T varenv T funenv

sl
(body, env’,0") — o

mk-Block(vars, funs, body), env, o) —— (dom o) < o

Where genlocs and b-FunDen are auxiliary functions. genlocs generates a
new environment varenv and state ¢’ which collectively contain new locations
for any variables that are declared in the block. b- FunDen generates the semantic
objects necessary to execute a function call. Both these functions are presented
in the appendix.

The equivalent function as used with the IFAD VDMTools® would be as
follows:

exec: Stmt * Env * State -> State
exec(s,env,sigma) ==
cases s:

mk_Block(vars,funs,body) ->
let mk_(varenv,sigma’) = genlocs(vars,sigma) in
let funenv =
{f |-> b_FunDen(funs(f),env ++ varenv)|f in set dom funs}
in
let env’ = env ++ varenv ++ funenv in
let sigma’’ = exec_sl(body,env’,sigma’) in
(dom sigma) <: sigma’’
end;

The above only covers the portion of exec that deals with the execution of
blocks. The full definition contains separate cases for each type of statement;
a call to exec made within the IFAD VDMTools® interpreter will execute the
semantics of the relevant statement as defined by the semantic rules.

Beyond the syntactic differences between classical VDM-SL and that used by
the tool, there are often cases where the appearance of a semantic rule can differ
wildly with that of its functional ASCII equivalent. This is most evident when
translating an implicit definition. For example the definition of genlocs supplied
to the students (see the appendix) is highly implicit in nature, specifying the
properties the new environment and state must hold rather than how they are
created. In order for a specification of genlocs to be executed within the IFAD
VDMTools® interpreter, the function has to be redefined as an explicit function.
The process whereby this is accomplished is beyond the scope of this paper and
often results in a large, ugly and confusing specification. Furthermore it is of
no practical benefit for the students to study and comprehend these explicit
definitions; it is important that they focus on the meaning of the semantics and
disregard the implementation issues. For these reasons the students are shielded
from much of the underlying explicit implementation by separating it from the
main language specification through the use of mechanisms made available by
the tool.

Quite often the main hurdle that a student must overcome when using the
tool is the differentiation between the syntax and semantics of the meta-language
and that of the language semantics they are building. Initially many find it
difficult to distinguish between errors in the VDM syntax and errors in their
semantics. Similarly a student will often be working under the misconception
that the tool is nothing more than a compiler of example programs and attempt
to tackle problems as they would a programming assignment or imagine they
must define everything from scratch without identifying the relevant abstractions
that a modeling language like VDM affords.

It is our belief that for some students at least, the benefits of using the tool
outweigh the negatives. Through use of the tool, the students can:

— easily identify bugs in their VDM syntax

— spot type errors in their specifications

execute test programs to improve their understanding
detect semantic errors

Continuing on with the example of block execution as given above, the def-
inition of such a rule has a number of pitfalls. For instance some students do
not initially grasp the concept of separating the environment and the state and
the purpose of locations. This leads to many misunderstandings when defining
semantic rules for blocks and function calls. A common mistake is to confuse the
two mapping relations and attempt to place values in the environment or ids in
the state. In both cases the tool will flag these as VDM type errors.

By far the vast majority of mistakes made are errors in the semantic defini-
tions. Here lies the major benefit of using the tool. The creation and execution
of test programs not only highlights such semantic slips but also fosters a greater
understanding by allowing students to see the consequences of their design de-
cisions and perhaps identify some ramifications they had not previously consid-
ered. Using the example given above, it is not always clear to students why they
must ‘clean up’ the state by removing the new locations as they leave. Should
the old locations be allowed to remain, the consequences of this decision are not
immediately obvious. However it becomes very apparent if the program is exe-
cuted using the tool. The students can clearly see that the final program state
has become ‘polluted’” with excess locations which are taking up large amounts
of space.

Two methods are made available by the tool to aid in the analysis of the
language specifications. The IFAD VDMTools® supplies a set of VDM libraries
that provide simple I/O. These can be used to insert ‘debugging’ information
into the specification, which can be used, for example to output the contents of
the environment and state.

The second method involves using the debugging options made available by
the tool. This involves placing break points in the specification and inspecting
the function stack as the program execution is stepped through one function at
a time.

The tool aids the students in the task of constructing example programs;
they are forced to think of an abstract syntax program as a VDM object rather
than a piece of concrete syntax. Similarly it helps them to distinguish between
the dynamic semantics expressed in the rules and the static semantics expressed
in the context conditions. The use of the tools debugging options introduces
many complications for the students as they have to learn more aspects of the
tool. However it does provide a good mechanism for demonstrating facets of
the specification to groups of students. For example, when checking a program
is well formed, the tool can show the hierarchical composition of the context
conditions, clearly illustrated as each recursive call is placed onto the function
stack.

Finally as an aside, the use of the tool as a teaching aid and the consequential
inputting of the specification into the IFAD VDMTools® has helped identify
and correct typos in our own specification. Thus shielding the students from
unnecessary hardship.

9 Pedagogic experience

The CSC334 course is evaluated positively by the students who take it. As
an optional module, they obviously tend to self select and about one third of
the potential cohort choose to pursue it. The limited number makes it possible
to adopt a reactive learning environment experimenting with ideas from the
students.

The practical work of CSC334 is based heavily on problem solving. Thread-
ing through the semester is a large project to make non-trivial extensions to
the Block definition, and the lecturer tries to keep things timed so that he is
introducing concepts just before they are needed.

For the first couple of weeks —before the project is handed out— the students
have the opportunity to gain familiarity with the toolset. After that they can
choose either to use the tool support or to work on paper. Interestingly, the
student numbers tend to split roughly in half on their choice, giving us two
equally sized groups.

The format of the course’s final exam stresses problem solving: it is an open-
book exam, and relies on a language specification included from the lectures
(this year COOL, in previous years Block).”

One of the course’s final events is a partially structured specification walk-
through. A few of the students have been chosen to study one of the specifications
used in the lectures (the same specification as on the exam), and they will have
the chance to grill the lecturer on the choices made in the design of that lan-
guage. Part of the students’ task is to collect questions and comments from their
classmates as their role is partially representative, and the un-nominated stu-
dents will also have to opportunity to ask questions through the session. One
of the teaching assistants will be chairing the discussion (the other will be in
Copenhagen :-).

During the practical sessions of the course the teaching assistants focused
strongly on making sure that the students understood what information the ab-
stract syntax provides, and what details it leaves out completely. This particular
problem was somewhat more pronounced using the toolset simply because of
its interactive nature. Taking assignment as an example, the students were apt
to confuse the construct that models assignment with a command that causes
assignment in the toolset syntax. There was the also the initial tendency for the
students to attribute meaning to things like the ordering of fields in a construct
of the abstract syntax.

Once the students had the notation clear in their minds, they were able to
think about the language in terms of what the constructs offer, rather than in
terms of what the parser recognises.

7 Had the class size been smaller, there was the possibility of an alternative to the
written exam: an informal (continental style) viva to test the students’ practical
knowledge was discussed. The justification for a viva-style examination lies in the
strong emphasis in the course that the subject material should not be memorised,
but rather taken as a method to be applied.

Another common problem exists as the students figure out where they should
be putting various details of their specification: in the abstract syntax, in the
context conditions, or in the rules.

At one point, one group was debating the specification of a multiple assign-
ment construct. The exercise was given in such a way so that the students would
have to define some semantics for it, then justify their choice. Typically, the first
reaction of the students to the example syntax (x,y:=y,x;) was to equate that
to a sequence of assignments (i.e. x:=y;y:=x). The more mischievous teaching
assistant saw this as a good opportunity to point out to them that it could be
equivalent to a value swap.

This particular exercise worked very well to drive home that the choice de-
pends on what the designer wants to do with the language in question. Under-
standing that point is not always obvious for the students when they are used
to a “right” way of writing programs.

The choice between using VDM-style functions or using Plotkin-style rules
tends to give students some trouble. The project work is all done under the
assumption that everything is deterministic and sequential (no concurrency).
The first impression of many of the students is to ask why they need another
form of notation (as VDM-style semantic functions are covered first).

The Plotkin-style rules became more popular with the students who choose
to work on paper as two things became apparent. First, that the antecedent
portion of a rule is used to pattern-match, rather than create the world. The
difference is subtle: the students use to VDM-style functions to specify what
to do, and initially try to use the Plotkin-style rules in the same way. As they
realise that the Plotkin-style rules are used to describe the world we desire, they
become far more comfortable using them (and a lot less concerned with how
hardware-level details of the operation).

10 Alternatives/Future Directions

This section looks at what would have been called in IBM “outplan” items. In
some cases they indicate directions in which we hope to move in the future.

There is, of course, much related material that could usefully be taught on
semantics. Textbooks such as [NN92] and [Win93] provide excellent introductions
to the basic notions of semantics, but —to our taste— do so without a practical
context. Their concern with meta-properties of the language would motivate
our students less well than experiments with modeling a range of programming
language issues. In our case, students have had prior exposure to the VDM ideas
of specification and development (a second year course based on [FL98]) and the
link from Operational Semantics to the justification of proof rules for “operation
decomposition” is made in a single late lecture in CSC334.

An interesting discussion is that on further tool support. One direction which
would be relatively easy is to use ideas of hyperlink-like objects to build support
into an editor to jump back and forth between various parts of a specification.
For example, while looking at one particular rule in a specification, you see a

constructor, mk-Assign. It is easy to imagine being able to say, right-click on it
and see a menu that allows you to jump to the construct definition, or present
a list of rules and functions in which it is used. The general idea is to help the
reader find the relevant bits of the specification without requiring that they have
their fingers stuck into several sections of a book.

A much more ambitious tool support programme would be to mechanise the
Plotkin rules in the way envisaged by Tom Melham [CM92] and executed by
Tobias Nipkow and colleagues [KNvO™02,Nip04] for Java.

Acknowledgments

All of the authors acknowledge the support of EPSRC’s funding of the Interdisci-
plinary Research Collaboration on the Dependability of Computer-Based Systems
(DIRC). In addition the second author is grateful to the EPSRC funded Diversity
with Off-The-Shelf (DOTS) for providing his studentship and the first author to
the University of Newcastle for his IRS award.

References

[ASS85] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
interpretation of computer programs. MIT Press, 1985.

[BBGT63] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur,
A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein,
A. van Wijngaarden, and M. Woodger. Revised report on the algorithmic
language Algol 60. Communications of the ACM, 6(1):1-17, 1963.

[BBH'74] H. Beki¢, D. Bjgrner, W. Henhapl, C. B. Jones, and P. Lucas. A formal
definition of a PL/I subset. Technical Report 25.139, IBM Laboratory
Vienna, December 1974.

[BJ78] D. Bjgrner and C. B. Jones, editors. The Vienna Development Method:
The Meta-Language, volume 61 of Lecture Notes in Computer Science.
Springer-Verlag, 1978.

[BJ82] D. Bjgrner and C. B. Jones. Formal Specification and Software Develop-
ment. Prentice Hall International, 1982.

[CM92] J. Camilleri and T. Melham. Reasoning with inductively defined relations
in the HOL theorem prover. Technical Report 265, Computer Laboratory,
University of Cambridge, August 1992.

[FLIg] John Fitzgerald and Peter Gorm Larsen. Modelling systems: practical tools
and techniques in software development. Cambridge University Press, 1998.

[[FAOla] IFAD. VDMTools®: The IFAD VDM-SL Language. http://www.ifad.dk,
2001.

[[FAO1b] IFAD. VDMTools®: VDM-SL Toolbox Manual. http://www.ifad.dk, 2001.

[Jon99] C. B. Jones. Scientific decisions which characterise VDM. In FM’99 -
Formal Methods, volume 1708 of Lecture Notes in Computer Science, pages
28-47. Springer-Verlag, 1999.

[Jon01] C. B. Jones. The transition from VDL to VDM. JUCS, 7(8):631-640,
2001.

[KNvO™02]

[Lucs1]
[LW69]
[McC66]
[Nip04]
[NN92]
[Pie02]
[Plo81]
[Plo03a)]
[P1o03b]
[Ste66]
[StoT7]
[Wat04]
[Win93]

[XRR 199

Gerwin Klein, Tobias Nipkow, David von Oheimb, Leonor Prensa Nieto,
Norbert Schirmer, and Martin Strecker. Java source and bytecode formal-
isations in Isabelle: Bali, 2002.

P. Lucas. Formal semantics of programming languages: VDL. IBM Journal
of Research and Development, 25(5):549-561, September 1981.

P. Lucas and K. Walk. On The Formal Description of PL/I, volume 6 of
Annual Review in Automatic Programming Part 3. Pergamon Press, 1969.
J. McCarthy. A formal description of a subset of ALGOL. In [Ste66], pages
1-12, 1966.

Tobias Nipkow. Jinja: Towards a comprehensive formal semantics for a
java-like language. Manuscript, Munich, 2004.

H. R. Nielson and F. Nielson. Semantics with Applications: A
Formal Introduction. Wiley, 1992. Available on the WWW as
http://www.daimi.au.dk/ bra8130/Wiley_book/wiley.html.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
G. D. Plotkin. A structural approach to operational semantics. Technical
report, Aarhus University, 1981.

Gordon D. Plotkin. The origins of structural operational semantics. Jour-
nal of Functional and Logic Programming, 2003. forthcoming.

Gordon D. Plotkin. A structural approach to operational semantics. Jour-
nal of Functional and Logic Programming, 2003. forthcoming.

T. B. Steel. Formal Language Description Languages for Computer Pro-
gramming. North-Holland, 1966.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, 1977.

David A. Watt. Programming Language Design Concepts. John Wiley,
2004.

Glynn Winskel. The Formal Semantics of Programming Languages. The
MIT Press, 1993. ISBN 0-262-23169-7.

J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, A. F. Zorzo, E. Canver,
and F. von Henke. Rigorous development of a safety-critical system based
on coordinated atomic actions. In Proc. of 29th Int. Symp. Fault-Tolerant
Computing. IEEE Computer Society Press, 1999.

A An example definition

This appendix contains much of the definition of one version of Blocks as taught

in CSC334.

conditions,

Here, the definition is presented in the order abstract syntax, context
and Semantics; many of the language definitions printed in the forth-

coming book order the definition by language construct. Apart from dropping
FEzpression etc. for space reasons, the definition here avoids arrays and records
to minimise length. (The parameter passing mode here is by location (aka by

reference).)

A.1 Abstract Syntax

Block ::

vars : Id =~ ScalarType
funs : Id =~ Fun
body : Stmt*

ScalarType = INTTP | BOOLTP

Fun :: returns : ScalarType
params : Id*
paramtps : Id - ScalarType
body : Stmt*
result . Expr

Stmt = Block | Assign | If | Guardedlter | Call

Assign :: lhs : Id

rhs : Expr
If :: test : Expr
th : Stmt*
el : Stmt*

Guardedlter :: GuardedClause-set

GuardedClause :: test . Expr
action : Stmt*

Call :: lhs : VarRef
fun : Id
args : Id*

ScalarValue =7 | B

A.2 Context conditions

We first define some Auxiliary objects

Types = Id = (ScalarType | Fun Type)

FunType :: returns : ScalarType
paramtpl : ScalarType*

Then the Well formedness predicates are:

wf-Stmt(mk-Block(vars, funs, body), tps) 2
dom vars Ndom funs = { } A
let var-tps = tps 1 vars in
let fun-tps =
{f — mk-FunType(funs(f).returns,
apply(funs(f).params, funs(f).paramtps)) |
f € dom funs} in
Vf € dom funs - wf-Fun(funs(f), var-tps)
wf-StmtList(body, var-tps T fun-tps)

wf-StmtList : (Stmt*) x Types — B
wf-StmtList(sl, tps) L Vi € inds sl - wf-Stmt(sl(i), tps)

wf-Stmt(mk-Assign(lhs, rhs), tps) 2 tp(rhs, tps) = tp(lhs, tps)

wf-Stmt (mk-If (test, th, el), tps) 2
tp(test, tps) = BOOLTP A
wf-StmtList(th, tps) N\ wf-StmtList(el, tps)

wf-Stmt(mk-Call(lhs, fun, args), tps) 2
fun € dom tps A
tps(fun) € FunType N
tp(lhs, tps) = (tps(fun)).returns A
len args = len (tps(fun).paramtpl) A
Vi € inds args - tp(args(i), tps) = ((tps(fun)).paramipl)(i)

wf-Fun : Fun x Types — B

wf - Fun(mk-Fun(returns, params, paramtps, body, result), tps) 2
uniquel(params) A
elems params = dom paramtps A
tp(result) = returns A
wf-StmtList(body, tps T paramitps)

The auxiliary function ¢p is defined

tp : Expr x Types — (ScalarType | ERROR))
tp(e, tps) 2 given by cases

A.3 Semantics

We first define the Semantic objects

Env=1Id = Den

Den = ScalarLoc | FunDen

Where ScalarLoc is an infinite set chosen from Token.

FunDen :: parms : Id*
body . Stmt*
result . Ezpr
context : Env

Y = ScalarLoc = Scalar Value

Then the semantic rules are

(varenv, ') = newlocs(vars, o)
funenv =

{f — b-FunDen(funs(f), env t varenv) | f € dom funs}
env’ = env T varenv T funenv
(body, env’, o”) =g
(mk-Block(vars, funs, body), env,o) —— (dom o) < o

1

newlocs (vars: (Id = ScalarType),o: ¥) varenv: Env,o’: %
post dom varenv = dom vars A
disj(rng varenv,dom o) A
one-one(varenv) A
o' = oU{varenv(id) — 0| id € dom vars Avars(id) = INTTP}U
{wvarenv(id) — true | id € dom varsAvars(id) = BooLTp}

b-Fun-Den : Fun x Env — FunDen

b- Fun- Den(mk- Fun(returns, params, paramtps, body, result), env) 2

mk-FunDen(params, body, result, env)
The semantic transition relation for statement lists is

L ((Stmt*) x Env x 8) x 8

([], env,0) LN

(s, env,0) = o

(rest, env, o) LN/

([s] ™ rest, env, o) L g

For Executing statements
5. (Stmt x Env x) x X
(lhs, env, o) A,

(rhs, env,0) > v
(mk-Assign(lhs, rhs), env,0) —— o 1 {l — v}

(test, env,0) —— true
(th, env, o) =g
(mk-If (test, th, el), env, o) —— o

(test, env,o) —— false
(el, env, o) =L o
(mk-If (test, th, el), env, o) —— o’

mk-GuardedClause(test, action) € gcs
(test,0) —— true

. sl
action, o) — o’
!

"

(
(mk-Guardedlter(gcs), o) —= o'
(mk-Guardedlter(gcs), o) —— o

mk-GuardedClause(test, action) € gcs = (test,o) —— false

(mk-Guardedlter(ges), o) — o

lhv
(lhs, env,0) — 1
mk-FunDen(parms, body, result, context) = env(f)
len arglocs = len args
Vi € inds arglocs - (args(i), env, o) LN arglocs (1)
parm-env = {parms(i) — arglocs(i) | i € inds parms}
(body, (context t parm-env), o) NP
(result, (context t parm-env),o’) — res
(mk-Call(lhs, f, args), env,0) —— (o' 1 {I — res})

For evaluating expressions

—%s: (Bapr x Env x X)) x ScalarValue

Finally, for evaluating left-hand-side values

e, (Id x Env x X) x ScalarLoc

id € Id

(e, env, o) LN env(id))

The abbreviations used include
o € Y|a single “state”

by the set of all “States”
Arith [Arithmetic

env |a single “environment”
Env [the set of all “Environments
eval |evaluate

exec |execute

Expr |Expression

Fun |Function

opd |operand

Rel |Relational

Stmt [Statement

”

