
DSoS
IST-1999-11585

Dependable Systems of Systems

Final Version of DSoS Conceptual Model
(CSDA1)

Technical Report CS-TR-782, University of Newcastle upon Tyne

Report N° 54/2002, Institut für Technische Informatik, Technical University of Vienna

LAAS-CNRS Report No. 02441

Technical Report QINETIQ/KI/TIM/TR030434, QinetiQ Ltd.

Report Version: Deliverable CSDA1

Report Preparation Date: April 2003

Classification: Public Circulation (after review)

Contract Start Date: 1 April 2000 Duration: 36m

Project Coordinator: Newcastle University
Partners: QinetiQ, Malvern — UK; INRIA — France; CNRS-LAAS — France; TU Wien —
Austria; Universität Ulm — Germany; LRI Paris-Sud - France

Project funded by the European Community
under the Information Society Technology
Programme (1998-2002)

Dependable Systems of Systems Final Version of DSoS Conceptual Model

ii

Dependable Systems of Systems Final Version of DSoS Conceptual Model

iii

Table of Contents

1 Introduction 1

1.1 SCOPE OF DSOS 1

1.2 BREADTH OF THIS CONCEPTUAL MODEL 2

1.3 SOME PRE-DEFINITIONS 3

1.3.1 A first look at the notion of “system” 3

1.3.2 Legacy systems and architectural style 3

1.3.3 The key role of time 4

1.4 THE INSPIRATION FROM CASE STUDIES 5

1.5 STRUCTURE OF THE DOCUMENT 5

2 Taxonomy of Systems of Systems 7

2.1 ATTRIBUTES OF SYSTEMS 7

2.1.1 Autonomy dimension 7

2.1.2 Controllability dimension 8

2.1.3 Observability dimension 9

2.1.4 Dependability provision dimension 9

2.1.5 Dependability justification dimension 9

2.1.6 Functional dimension 9

2.1.7 Other classical (non-SoS-specific) attributes 10

2.2 ATTRIBUTES OF COLLECTIONS OF SYSTEMS 10

2.2.1 Integration dimension 10

2.2.2 Interaction dimension 10

2.2.3 Binding dimension 10

2.2.4 Timing dimension 11

2.2.5 Mismatch dimension 11

2.2.6 Dependability provision dimension 12

2.2.7 Dependability justification dimension 12

2.3 ATTRIBUTES OF CONNECTIONS BETWEEN SYSTEMS 12

2.3.1 The nature of connectors 12

2.3.2 Type dimension 13

2.3.3 Dependability dimension 13

2.3.4 Flexibility dimension 13

2.3.5 Intercession dimension 13

3 Concepts 15

3.1 OUTLINE 15

Dependable Systems of Systems Final Version of DSoS Conceptual Model

iv

3.2 SYSTEMS 16

3.3 BEHAVIOUR 17

3.4 STATE 23

3.5 DEPENDABILITY 28

3.6 SYSTEM INTERCONNECTION ISSUES 30

3.7 OTHER NOTIONS OF BEHAVIOUR 34

3.8 TIME 35

4 Interface and Connection Characterization 39

4.1 INTERFACE TYPES 40

4.2 HIGH-LEVEL INTERFACE ISSUES 42

4.2.1 Naming 42

4.2.2 Interaction styles 45

4.2.3 Dependability attributes of interactions 51

4.2.4 State persistence 52

4.3 LOW-LEVEL INTERFACE ISSUES 54

4.3.1 Transport timing across the interface 56

4.3.2 Flow control 57

4.3.3 Basic DSoS transport mechanisms 60

4.3.4 Integration of event-triggered and time-triggered operation 62

4.4 IDEAL CHARACTERISTICS OF LIFS 64

4.4.1 What does ‘ideal’ mean? 65

4.4.2 Independent development of components 66

4.4.3 Stability of prior services 67

4.4.4 Performance of the communication system 67

5 Formalization 69

5.1 THE UNIVERSE OF APPLICATIONS 69

5.1.1 Non-time critical 69

5.1.2 Time critical 70

5.2 CURRENT APPROACHES TO FORMALIZATION 70

5.2.1 The role of specifications 70

5.2.2 Operations and state machines 72

5.2.3 Abstractions 72

5.2.4 Model-based techniques 74

5.2.5 Extensions to deal with concurrency 76

5.2.6 Process Algebras 77

5.2.7 Coping with real-time 78

5.3 BENEFITS OF IDEAL LIF CHARACTERISTICS 79

Dependable Systems of Systems Final Version of DSoS Conceptual Model

v

5.3.1 Formal Reasoning for non-time sensitive SoSs 80

5.3.2 Formal Reasoning for time sensitive SoSs 80

5.4 FORMALIZING LIFS AND COMPOSITIONS 83

5.4.1 IDLs as syntactic specifications 83

5.4.2 Proposed UML-based ADL 86

5.5 OTHER DSOS FORMALIZATION ACTIVITIES 90

5.5.1 Compositional development based on CA Actions 90

5.5.2 CSP modelling of GIOP 93

5.5.3 CSP Modelling of a CAN Emulator 95

6 Summary and Future Work 97

Annex 1. Models of Time 99

A.1 MULTI-CLUSTER GLOBAL TIME 101

Annex 2. Glossary 103

Dependable Systems of Systems Final Version of DSoS Conceptual Model

vi

Final Version of DSoS Conceptual Model Introduction

1

Final Version of DSoS Conceptual Model
Marie-Claude Gaudel1, Valérie Issarny2, Cliff Jones3, Hermann Kopetz5,

Eric Marsden4, Nick Moffat6, Michael Paulitsch5, David Powell4,
Brian Randell3, Alexander Romanovsky3, Robert Stroud3, François Taiani4

1LRI (Paris, F),
2INRIA (Rocquencourt, F),

3University of Newcastle upon Tyne (UK),
4LAAS-CNRS (Toulouse, F),

5Technical University of Vienna (Austria),
 6QinetiQ (UK)

1 INTRODUCTION

This document defines the key concepts underlying DSoS. Before coming to their
definitions, it is worth emphasising the breadth of systems and issues that the project is
addressing.

1.1 Scope of DSoS

There are different ways of building systems: at one extreme there are “green fields”
projects where a whole system is constructed from scratch; at the other extreme, systems
can be constructed mainly from (large) existing systems. It is the objective of the DSoS
Project to investigate issues related to the integration of existing complete systems in order
to generate a new set of dependable services from the resulting system of systems.
Emphasis is put on systems of systems because the latter will typically be non-trivial
systems in their own right. This is in distinction to the construction of a system from more-
or-less basic components with simple, fixed, interfaces that are fully under the control of
the designer of the required system.

Clearly, building a system of systems is a recursive idea in that the required system could
be a component of a yet larger system.

One key attribute of component systems is that they will normally exist before the design
of the required system. Moreover, a component system is, typically, an autonomous
computer system that provides a useful service to an organisation or a set of users. A
system of systems may thus span different organisations, each one with their own systems
that are, as a result, in different spheres of management control. This is precisely why our
sense of SoS differs from “just a large system”: however many component systems there

Introduction Final Version of DSoS Conceptual Model

2

are, a system composed of systems that are not controlled by the same organisation
typically poses more difficult challenges than does a system that is managed in one piece.

The principal problem addressed by the DSoS Project is that of ensuring that the result of
such integration is an adequately dependable system of systems. This objective remains
even when the component systems are less dependable: ways of masking failures in the
underlying systems are addressed.

A further important requirement of such integration is that the stability of any existing
services of the component systems must not be compromised.

Furthermore, it is typically not possible for the designer of a system of systems to change
the component systems. It is, however, important to recognise that those component
systems might continue to evolve without consultation. One potential failure mode of a
system of systems is the result of a change to interfaces of its (separately controlled)
component systems. The DSoS Project has decided to include within its scope attempts to
recover from such failures.

1.2 Breadth of this conceptual model

There does, of course, exist literature on building systems from components. Indeed, in
specific domains, members of the DSoS project have made earlier contributions to such
approaches. For example, the Time Triggered Architecture approach from TUV1 is widely
recognised as a key contribution to the design of real-time control systems.

What makes the DSoS project goals challenging (and worthwhile) is the decision to tackle
a wide class of information systems (of systems). The aim of this document is to define a
collection of concepts that can embrace, for example, inter-organisational on-line systems
and real-time control (systems of) systems. The concepts will have to be abstract enough
to cover failures as different as timing mismatches in actuators for a car braking system
and interface mismatches when a change is made to a component system (not under our
control).

While it is unlikely that a single fault-tolerance approach can be found to attempt to
contain all failures, only the identification of the underlying similarities (and the residual
differences) can unify the design of systems of systems. Although the different viewpoints
bring their own concepts and terminology, it is seen as a key objective of the DSoS
Conceptual Model to analyse and unify concepts where possible.

There is another potential pay-off of this broad objective: there is real scope for cross-
fertilisation. For example, the concept of time has been extensively studied in vehicle

1 Technical University of Vienna

Final Version of DSoS Conceptual Model Introduction

3

control systems but has been treated as an afterthought in too much of the rest of
computing. Similarly, concepts of ownership and management control are more familiar to
the designers of large institutional systems. The DSoS Project aims to get synergy from its
broad aims.

1.3 Some pre-definitions

1.3.1 A first look at the notion of “system”

A precise characterisation of the concept of system is one of the objectives of Section 3
but an intuitive notion will suffice to set the scope of the discussion. A system is normally
a collection of components whose behaviour can be discussed by fixing a boundary and its
interfaces. Although a system such as a car can be viewed in different ways by its driver
and a maintenance mechanic, there is for either purpose a system view which facilitates
discussion. Interaction with a system takes place at interfaces which can usefully be
thought of as being at the boundary of the system. The concern in DSoS is with systems of
systems and this brings the key issue of mismatches between interfaces. Before addressing
this, it is worth looking more closely at what it means to characterise the operations
available at an interface.

When discussing systems that are themselves composed of systems, a choice of
terminology arises. One may choose to refer to a ‘system of systems’ and its ‘component
systems’ or to a ‘system’ and its ‘subsystems’. This document, in common with other
Project deliverables, uses the former terminology for describing systems in which the
components are systems; the latter terminology is used when referring to systems in
general.

1.3.2 Legacy systems and architectural style

We distinguish legacy component systems from two other types of component system,
which in contrast will have been designed in accordance with the chosen architecture for a
given system of systems. These are previously-developed general purpose component
systems, and component systems that have been specially developed for a particular
system of systems. The integration of the component systems is realised via a
communication service across special connections, the linking connections between
linking interfaces of the component systems. From the point of view of any linking
interface, a component system’s specification can be reduced to the functional and
temporal description of those services that are required for the integration, together with,
ideally, a description of its dependability guarantees. From this point of view, the other
(i.e., local) services of the component systems are not important.

We assume that every autonomous legacy system is developed according to its own rules

Introduction Final Version of DSoS Conceptual Model

4

and conventions concerning data representation, protocol choices, error handling, etc. We
call the sum of these conventions the architectural style of the system. It is probable that
any two legacy systems that are to be integrated will conform to different, and
incompatible, architectural styles. Any difference in architectural style, something we call
a property mismatch, could, unless dealt with, give rise to a failure at a linking connection
[Allen and Garlan 1997; Garlan et al. 1995]. It is an important function of the linking
connection to reconcile these architectural styles in order that the component systems can
communicate without any property mismatch. Furthermore, it may be required that
specified independent failure modes of component systems are tolerated by the system of
systems, or that mechanisms are provided to increase the dependability of the system of
systems. The implementation of these fault tolerance mechanisms is also in the scope of
the linking connections.

The subject of interface mismatches is explored in detail below but it is worth emphasising
that the concern in DSoS goes far beyond simple types of format mismatches. This partly
results from the observation that the component systems of a SoS might be under separate
management control. It will be necessary to cope with what might be termed protocol
mismatches where two systems need to exchange a collection of information but have
differing flows of control.

1.3.3 The key role of time

The focus of the conceptual model of the DSoS Project is on the linking interfaces of the
component systems, and the linking connections that enable communication between these
systems in order to generate the emerging services of the system of systems. The DSoS
conceptual model differs from many other models of computation by the explicit inclusion
of physical time. Physical time is needed if we are to reason about timely failure detection
(in particular, of autonomous component systems), performance, and other real-time
properties. This point of view is also taken by E. A. Lee in an excellent recent survey on
embedded computer systems: “Time has been systematically removed from theories of
computation, since it is an annoying property that computations take time. ‘Pure’
computation does not take time, and has nothing to do with time. It is hard to
overemphasize how deeply rooted this is in our culture. So called “real-time” operating
systems have so little to go on that they often reduce the characterization of a component
(a process) to a single number, its priority. Even most ‘temporal’ logics talk about
‘eventually’ and ‘always’ where time is not a quantifier, but rather a qualifier.” [Lee
1999].

Final Version of DSoS Conceptual Model Introduction

5

Most non-trivial systems employ a state which captures aspects of the history of
interaction2 with the system (various notions of state are discussed in Section 3.4 below).
In the trivial example of a stack the state can be viewed as a sequence of values; in a hotel
database, the state would include all bookings for future dates. In both cases, interactions
at the interface can reflect and influence the state. One could already employ a notion of
time here but many computer scientists try to finesse this by implicitly indexing the state
by the point in the sequence of operations performed at the interface. Whether or not this
is a good idea, it can be seen to be wholly inadequate in the case of systems whose state
evolves autonomously. If the interface of a system emits –for example– the temperature of
a nuclear reactor, it is essential to discuss the time at which the interaction occurs. (It is
also easy to make the case that, if many other systems are interacting with a hotel
reservation system, the interactions must also be indexed by time; for example, the offer of
a reservation might be made at time t with a validity period of d). The notion of time is so
central that it is explored more thoroughly in Section 1.3.3.

1.4 The inspiration from case studies

The problems of composing a system of systems take many forms, since there are many
forms of system. For this reason, we have chosen to scope the problem by pursuing case
studies which span several different kinds of system. We have considered a wide variety
of SoSs and have chosen two particular SoSs that represent extremes.

The first kind of system is exemplified by an embedded real-time system, something that
can typically be treated as a black box and defined by its interfaces. Another kind of
system is exemplified by an on-line commercial information system, where it is not clear
that the black box perspective is appropriate, since any connection could be negotiated by
the parties concerned, and the use of the system has important implications outside the
system. It is not at all obvious that the same compositional principles apply in both cases
— indeed this is something we are investigating.

Of course, these two examples are just different points on a spectrum, with most systems
coming somewhere between them. One important dimension of the spectrum is the extent
to which the implications of invoking the services provided by the system can or cannot be
confined to state variables within the system – others are discussed in Section 2.

1.5 Structure of the document

This deliverable presents the final version of the DSoS conceptual model, which was first

2 Notice that the state will not normally record (or even represent) the whole of the history of interactions –

this point is returned to below.

Introduction Final Version of DSoS Conceptual Model

6

presented in deliverable BC1 [Kopetz 2000a] and then revised in deliverable IC1 [Jones et
al. 2001].

This version is a considerable advance compared to IC1. The main differences are:

1) Section 3 is now more complete: several concepts have been revised, others have
been added, and their presentation has been re-organised.

2) Section 4 now contains a discussion of the characteristics of linking interfaces that
we consider particularly important for systems of systems dependability.

3) Section 5 has been completely re-written.

Section 2 presents a taxonomy that explores the range of possible systems of systems, and
the different factors that could impact upon the dependability of such compositions of
systems. Section 3 introduces the set of basic DSoS concepts relating to systems of
systems and their dependability, including a model of time. Section 4 discusses a range of
interface and connection issues for dependable systems of systems. Section 5 discusses
approaches to formalisation. Finally, we conclude by summarising the contents of the
deliverable and briefly discussing further work. Annex 1 contains further information
about our models of time, and Annex 2 provides a glossary.

It is our intention to try to distil the concepts described in this deliverable into a form that
can benefit a wider community. We feel there is clear potential for exploiting synergies
with the wider community.

Final Version of DSoS Conceptual Model Taxonomy of Systems of Systems

7

2 TAXONOMY OF SYSTEMS OF SYSTEMS

The purpose of this taxonomy is to assist DSoS in its aim of developing a coherent overall
understanding of the dependability related problems, and opportunities, that are inherent in
a whole spectrum of system of systems. This can be, and is being here, undertaken without
regard for the particular domain of application – nor those aspects of dependability
required – of the resulting system. In particular, it aims to situate the concerns of DSoS,
related to dependability, autonomy and time, in the overall domain of system construction
using components that are – or could usefully be regarded as – complete systems in
themselves.

It draws principally on the basic concepts and ideas from the work of distributed systems
and system architecture research communities, in effect summarising this material from a
taxonomical viewpoint.

This taxonomy of systems of systems is organised into three principal parts. The first
involves a classification based on the attributes of an individual system. This concentrates
on attributes that are of particular relevance to the fact that the system is being, or might
be, used as a component system in one or more systems of systems whose dependability is
of concern. The second part is based on the attributes of the collection of systems that are
incorporated in a system of systems (i.e., on issues that are to do with what has been called
a “global architectural structure”). The third part is based on attributes of the connections
between the systems that make up a system of systems.

2.1 Attributes of Systems

The attributes of systems that are of particular relevance to the problems of incorporating
them into a system of systems relate to a number of readily distinguishable types of issue,
including autonomy, controllability, observability, etc.

2.1.1 Autonomy dimension

It is useful to distinguish between several different forms of autonomy, i.e., independence
of the considered component system with respect to its existence, its operation and its
evolution.

2.1.1.1 Independent existence

We distinguish between:
• component systems that were built especially for a given system of systems,

Taxonomy of Systems of Systems Final Version of DSoS Conceptual Model

8

• component systems that are re-used, either (a) having been built with re-use in mind

(component-based engineering; COTS; general-purpose servers and services), or (b)
being legacy components.

2.1.1.2 Independent operation

The various component systems involved in a system of systems can either be:
• operating under independent management, in which case their involvement in the

system of systems may either be subject to a service delivery contract, or (most

problematically) involve no contractual obligations, or

• operating under the same global management as the system of systems of which it is

part.

This topic is explored in more detail in PCE4 [Dobson and Periorellis 2002].

2.1.1.3 Independent evolution

A system of systems may have to cope with the fact that component systems can evolve.
In such situations, their component systems can either
• evolve under independent management, in which case their involvement in the system

of systems may be subject to a contract that ensures stability of its interfaces or (most

problematically) involve no contractual obligations, thus introducing the possibility of
dynamic interface mismatch, or

• evolve under the same global management as the system of systems of which it is part.

Strategies for coping with evolving interfaces are discussed in detail in [Jones et al. 2002].

2.1.2 Controllability dimension

In this dimension, the issue is whether a system has to be treated as a black box whose
internal operation cannot be controlled by a means other than through its normal service
interface, or has instead been provided with an “intercession interface” (either explicitly
by its designer, or implicitly by the enclosing infrastructure). This dimension therefore
correlates with the intercession dimension of connections (Section 2.3.5).

Final Version of DSoS Conceptual Model Taxonomy of Systems of Systems

9

2.1.3 Observability dimension

In this case, the issue is whether a system has to be treated as a black box whose internal
operation cannot be observed, or has instead been provided with an “introspection
interface” (either explicitly by its designer, or implicitly by the enclosing infrastructure).

2.1.4 Dependability provision dimension

In this dimension we distinguish between:
• provisions w.r.t. internal faults – there may be none, so that it is necessary to rely on

external error detection, or the system may have an exception reporting interface
(whose use can be supplemented by means of external error detection) or at least have

a controlled failure mode (e.g., will only fail by crashing),

• provisions w.r.t. external faults – again there may be none, so that it is necessary to

rely on external error detection, or it may have means of detecting one or more classes

of threat.

Unless the component system has been purpose-built for integration in the DSoS, and

particularly in the case of COTS component systems that were not built with dependability
issues in mind, system integrators may not have sufficient information on these factors

available. The validation work reported in deliverable IC3 [Marsden 2001] aims to

synthesize information on these factors, through the use of fault injection techniques.

2.1.5 Dependability justification dimension

In this dimension, it would be possible to classify component systems according to:
• the construction, the verification, and the evaluation processes that their designers have

employed (if any),

• any quantified guarantees related to reliability, availability, security, safety, and

various QoS/performance measures (throughput, latency, WCET…).

2.1.6 Functional dimension

Two aspects of this dimension that are of particular relevance to the task of creating a
dependable system of systems concern:
• the designers’ knowledge of, and confidence in, the semantics of the services offered

by each putative component system,

• the extent to which these semantics are formally specified.

Taxonomy of Systems of Systems Final Version of DSoS Conceptual Model

10

2.1.7 Other classical (non-SoS-specific) attributes

Other relevant attributes of component systems include their flexibility / adaptability.

2.2 Attributes of Collections of Systems

This dimension of our taxonomy concerns the collection of component systems, in
particular the legacy component systems, as a whole – a topic that is termed the “global
architecture structure” by [Garlan et al. 1995].

2.2.1 Integration dimension

Component systems can be integrated together to form a system of systems at various
integration levels, such as:
• network-level integration (e.g., TCP/IP…)

• component architecture (e.g., CORBA, COM…)

• web-level integration (e.g., HTTP, SOAP…)

It is also worth distinguishing situations in which the integration is essentially
homogeneous from those in which it is heterogeneous, in the sense that different subsets of
the set of component systems are integrated together at different levels, perhaps as a result
of the whole having been developed incrementally, and indeed opportunistically.

2.2.2 Interaction dimension

As described in some detail below in Section 4.2.2, interactions can be either event-
triggered or time-triggered, and a number of different interaction styles are available for
constructing systems of systems. These include: client-server, publish/subscribe, multipeer
and peer-to-peer, the use of a data sharing repository, mobile code, etc.

With regard to both the triggering method used, and the interaction style, it is useful to
distinguish between homogeneous and heterogeneous approaches.

2.2.3 Binding dimension

The binding of names to entities among the component systems can either be static or
dynamic, as discussed in Section 4.2.1. In the latter case, it requires the provision of some
type of naming service, which in itself may be another component system (e.g., the
CORBA naming service).

Final Version of DSoS Conceptual Model Taxonomy of Systems of Systems

11

2.2.4 Timing dimension

We are assuming that all component systems are influenced by the passage of time
(perhaps by possessing or having access to some form of clock). The important distinction
to make in this dimension is between the situation where all one can rely on is a bounded
drift among the set of local clocks, and that in which there is a common notion of time,
i.e., of global time (e.g., provided by synchronized clocks).

2.2.5 Mismatch dimension

This important dimension concerns the known (or assumed) property mismatches among a
set of component systems, all of which will have to be handled by connection systems if
they are not to be a cause of non-dependability. These mismatches may (i) all be known a
priori, (ii) may vary among a known set of possibilities, or (iii) may involve the
occurrence of new mismatches during operation of the system of systems. These are three
increasingly difficult challenging possibilities, requiring the use of ever more sophisticated
connection systems.

The differing types of property mismatch, from low-level towards high-level, include:

Physical (Mechanical, Electrical) - In order to be able to transmit bit strings from one
component system to another component system, the mechanical and electrical and coding
characteristics at the connection must be compatible.

Syntactic - Caused by incompatible information structures at a connection. This includes
issues of data formats, bit and byte ordering (e.g., “endianess”), and the like.

Flow Control – If there is implicit flow control in one component system and explicit flow
control in another component system then the difficult problem of flow-control
reconciliation must be solved in the connection system.

Protocol - Different communication protocols can be used in different component
systems.

Data Representation - Representational issues normally only show up at interfaces, not
within a component system. To facilitate the interconnection of component systems, rules
and conventions concerning data representation and data encoding need to be enforced
whenever possible. The specification of a standard format for the representation of time is
being investigated; simple representation mismatches might be handled by XML, but this
clearly has limitations (being purely syntactic).

Temporal - The duration between a request by a client and the expected response by the
server is important from the point of view of the temporal accuracy of the data (in real-

Taxonomy of Systems of Systems Final Version of DSoS Conceptual Model

12

time systems) and error detection. The systematic calculation of time-outs and the
associated handling of orphan service requests are important research topics.

Dependability - The designer of a system of systems must make assumptions about the
reliability, failure modes, and error detection and handling mechanisms of the systems to
be incorporated into the system of systems. If a system of systems is to be dependable,
these assumptions must be validated. This is an important topic in the DSoS Project.

Semantics - If we investigate high-level interface issues (HLII), then a property mismatch
can occur if slightly different meanings are associated with a name. Such a property
mismatch is called a semantic mismatch in [Garlan et al. 1995].

2.2.6 Dependability provision dimension

This relates to the classification of collections of systems according to the fault tolerance
mechanisms they employ. Any such mechanisms might either be application-dependent
(e.g., transactions, transactional workflow, co-ordinated atomic actions, spheres of control)
or application -transparent mechanisms (e.g., providing recoverability, and perhaps
making use of replication).

2.2.7 Dependability justification dimension

Similar comments can be made here as are made in Section 2.1.5. In this dimension, it
would be possible to classify collections of systems according to:
• the construction, the verification, and the evaluation processes that their designers have

employed (if any),

• any quantified guarantees related to reliability, availability, security, safety, and

various QoS/performance measures (throughput, latency, WCET…).

2.3 Attributes of Connections between Systems

2.3.1 The nature of connectors

Using the classification given by [Garlan et al. 1995], the issues here concern the protocols
and the data models used. Regarding protocols, the primary distinction is between
blocking and non-blocking protocols – see Section 4.3 below. The data models used in
transmitting information among component systems will, presumably, be based on the
forms of data representation used by these systems.

Final Version of DSoS Conceptual Model Taxonomy of Systems of Systems

13

2.3.2 Type dimension

The connection types that we have identified (see Section 3.6 below) are boundary lines
and connection systems, where the latter may deal with various types of mismatch, and
provide varying sophistication of mismatch resolution mechanism.

2.3.3 Dependability dimension

Connection systems, though not boundary lines, can be classified in this dimension
according to their provisions regarding their own internal and external faults, and the
quantitative guarantees (if any) that can be given regarding the dependability of their
provisions for coping with mismatches. This classification is therefore essentially the same
as that given in Sections 2.1.4 and 2.1.5 above concerning (component) systems.

2.3.4 Flexibility dimension
Connection systems can be developed generically, e.g., like CORBA or specifically, e.g., a

wrapper for a legacy system. Generic connection systems provide means for their

customization whereas specific ones are specialized for the particular systems they
interconnect.

2.3.5 Intercession dimension

A connection may allow some form of intercession, i.e. it may allow a component system
to affect, configure, or control its behaviour. For instance, a connection system that
provides support for mobility of component systems may allow an interacting system to
request the use of a lower bandwidth communications protocol when it switches from a
fixed to a wireless network.

Taxonomy of Systems of Systems Final Version of DSoS Conceptual Model

14

Final Version of DSoS Conceptual Model Concepts

15

3 CONCEPTS

In this section we introduce the basic concepts of the DSoS Project by a set of definitions,
which though informal are intended to be precise and unambiguous, together with
explanatory notes.

3.1 Outline

We start by defining what we mean by a system. Systems of systems are then defined as
special types of system. Time is fundamental to the concept of a system in DSoS. This is
largely because useful notions of behaviour and failure require some notion of time, or at
least an ordering of events that corresponds to the progression of time. So the simple
concepts of ‘instant’ and ‘duration’ are defined before proceeding further.

Apart from concerns such as cost, the ultimate thing the user of a system cares about is its
behaviour. We begin by considering only the simplest notion of system behaviour –
traces of activity at system interfaces. Other types of behaviour are considered later in the
section.

System state is then defined, abstractly, as essentially ‘that which determines potential
behaviour’. This definition might appear vague at first, but this reflects its generality and
is not a weakness. The meaning is in fact precise for any given notion of behaviour. So we
present abstract state as a convenience for describing system behaviour. The strongly
related concept of ‘stored state’, which records some aspect of the history of a system, is
also defined.

Next, we define some system dependability concepts. The definitions are based on some
standard definitions of fault/error/failure [Laprie 1992], but have been tailored to suit the
DSoS context, influenced by [Jones 2002].

We are then ready to define some concepts that help describe system interconnections.
Among the most important of these concepts are ‘linking interface’, ‘property mismatch’
and ‘linking connection’.

Other types of behaviour are discussed next. The impact of the new types of behaviour
on the preceding definitions is explored.

The section ends with a more detailed discussion of the DSoS model of time.

Our intention is that the concepts described here make sense at different levels of
abstraction. Clearly, systems (and systems of systems) are sometimes usefully viewed
according to different abstractions, and it is desirable to relate alternative views. Most
obviously, one would hope that an implemented system (or SoS) meets its specification, if
one exists. Specifications are often just abstract views of system (or SoS) behaviour: they

Final Version of DSoS Conceptual Model Concepts

16

disregard irrelevant (or unimportant) aspects of behaviour. Non-determinism is considered
below – even though all implementations are deterministic – because non-deterministic
specifications are often useful. Another reason for emphasising abstractions is that some of
the concepts defined here differ only according to the viewpoint; this is evident, below, for
various concepts derived from state.

3.2 Systems

For our purposes we need a definition of system that incorporates a notion of time:

System: An entity that is capable of interacting with its environment and may be sensitive
to the progression of time.

By ‘sensitive to the progression of time’ we mean the system may react differently, at
different times, to the same pattern of input activity, and this difference is due to the
progression of time. A simple example is a time-controlled heating system, where the
temperature setpoint depends on the current time; such a system may react differently, at
different times, to the same sensed temperature.

Fundamental to this definition is the distinction between a system — the object of
consideration — and its environment. The environment (itself in principle another system)
takes advantage of the existence of the system: it produces input information to the system
and acts on the output information from the system. Since our main focus is on the
information exchanged between a system and its environment, we will abstract from the
non-information relevant properties of a system as far as is meaningful and possible.

Typically, the systems in which we are interested have some degree of autonomy in that
they are capable of independent behaviour, and in particular of failing. (A standard
definition of autonomous is: “Not controlled by others or by outside forces; independent.”)
Our definition of system excludes, for example, a software package without an associated
processor. However, we would consider software packages that share the same processor
to be separate (but not wholly independent) systems. Our definition of system also
includes human organisations, for example (though these are not the focus of our project).

A system can be decomposed into interacting components, which are sometimes systems
that can themselves be decomposed. This recursive decomposition will be stopped when
the inner details of a component system are of no relevance for the current analysis.
Conversely, a set of systems can be composed to form a system of systems.

System of Systems (SoS): A system constructed from autonomous component systems,
where autonomous means independence with respect to existence, operation and/or
evolution (see Section 2.1.1).

A system may comprise an information processing subsystem and a mechanical

Final Version of DSoS Conceptual Model Concepts

17

subsystem. For example, a smart sensor system comprises a microcontroller and an
electromechanical sensing element. The microcontroller calibrates the sensed information
and presents this information at the smart sensor interface in a standardized message.

Time is important for a system’s failure to be observable by some other system. We
assume a model based on Newtonian time. Time progresses along a dense timeline,
consisting of an infinite set of instants, from the past to the future.

Instant: A cut of the timeline.

Duration: A section of the timeline.

Note that the decision to use a dense time model does not prevent one abstracting time to a
simpler model, such as integer time, when the system architecture permits. More detailed
discussions of the DSoS model of time are contained at the end of this section and in
Annex 1.

3.3 Behaviour

Ultimately, what most concerns the user of a system is its behaviour. We focus on the
simplest notion of system behaviour in this subsection – traces of activity at system
interfaces. Other types of behaviour are considered later in the section.

Interface: A point of interaction between a system and its environment.

By the environment of a system we mean everything other than the system.

At the physical level, for instance, an interface can exist as a single line (a serial port) or as
a set of lines (a parallel interface).

An interface can be an output interface or an input interface or both, i.e., a bi-directional
interface.

Output Interface: An interface of a system at which information is produced for the
environment of the system.

A system without an output interface is meaningless, since it cannot deliver information to
its environment and, therefore, has no effect on the environment.

Input Interface: An interface of a system at which information is consumed from the
environment of the system.

It is possible to have systems without an input interface, e.g., a clock that produces
periodic signals without an explicit input.

Example: A smoke detector is a simple computer-controlled system with two
interfaces: an input interface which is connected to a smoke sensor and an

Final Version of DSoS Conceptual Model Concepts

18

output interface which is connected to a central fire alarm station. It is required
that, at most one second after a critical level of smoke is detected at the input
interface, an alarm message must arrive at the central fire alarm station. Crash
failures of the smoke detector must also be detected within a second. The
smoke detector is a system that has no control input. It samples the state of its
environment at points in time that are determined by the internal clock of the
smoke detector and sends its observations to the central fire alarm station,
either periodically or sporadically when a relevant change-of-state has been
detected.

In a distributed system based on message exchanges among system components, the
interface specification can comprise three parts: the syntactic specification, the temporal
specification, and the meta-level specification [Kopetz 2002c]:

• A syntactic specification concerns the specification of the data elements that cross
the interface; it bridges the gap between the logical level and the informational
level [Avizienis 1982]. An incoming (outgoing) syntactic interface specification
specifies the structure of incoming (outgoing) messages at this interface (e.g.,
numbers, operations, and text) and assigns names to the chunks of a structure.

• An incoming (outgoing) temporal interface specification specifies when a message
is expected (must be sent): instant, phase, and frequency.

• A meta-level interface specification bridges the gap between the informational
level and the user’s level [Avizienis 1982]. The meta-level specification establishes
the meaning of information chunks in messages that cross the interface. (The
chunks are generated according to the syntactic specification.) This is done by
defining the semantics of the information chunks and by providing a conceptual
model of the interface – the interface model – that relates the names of the chunks
to the user’s conceptual world. This conceptual model must be expressed in
concepts that are familiar to the user of the interface services.

Actuation (Sensing) Operation: The production (recording) by a system at a physical
output (input) interface of a single value change at an instant or of a temporally-
controlled sequence of value changes during a duration.

The concept of an actuation (sensing) operation is a general concept that encompasses the
exchange of information among widely different types of systems (including analog
systems, digital electronic systems, and computer systems).

The description of communication among computer systems can be simplified by the
introduction of the concept of a message. In DSoS, we assume that the idiosyncrasies of
any sensors and actuators that interface to the environment of a computer system are, if

Final Version of DSoS Conceptual Model Concepts

19

necessary, encapsulated within transducer systems that can send and receive messages.
Hence, the further development of the conceptual model below focuses on the operations
of sending and receiving messages.

Message: A data structure that is formed for the purpose of communication among
computer systems.

In order that errors in a message may be detected, an output assertion and an input
assertion can be associated with a message. Such an assertion is a predicate on values of
the message, and relevant state variables, that defines an application-specific acceptance
criterion [Meyer 1988].

Using such assertions, it is possible to classify messages as shown in Table 1.

Attribute Explanation Antonym

valid A message is valid if its checksum and contents are in
agreement.

invalid

checked A message is checked at source (or, in short, checked) if
it passes the output assertion.

not checked

permitted A message is permitted with respect to a receiver if it
passes the input assertion of that receiver. The input
assertion should verify, at least, that the message is
valid.

not permitted

timely A message is timely if it is in agreement with the
temporal specification

untimely

value-correct A message is value-correct if it is in agreement with the
value specification

not
value-correct

correct A message is correct if it is both timely and value-
correct.

incorrect

insidious A message is insidious if it is permitted but incorrect not insidious

Table 1 — Message Classification

Send (Receive) Operation: The sending (receiving) of a message at an interface.

Successful termination of a receive operation always results in the reception of a complete
message.

Final Version of DSoS Conceptual Model Concepts

20

Message Send Instant: The instant when the sending of a message starts at the sender.

Message Receive Instant: The instant when the receiving of a message terminates at the
receiver.

A send (receive) operation requires a certain time. The duration between the start-instant
of a message-send operation and the termination-instant of the corresponding message-
receive operation can be of relevance for the correct operation of a system of systems.

Example: A driver of a car approaching an intersection observes the change of
the traffic light from “green” to “yellow”. He/she decides whether to accelerate
and cross the intersection during this cycle of the traffic light or to brake and
wait for the next cycle. This decision is transmitted in a message to the
computer system controlling the car. If the message can be stored in a queue
for a significant interval of time, the consequential uncertainty about the state
of the light at the message receive instant can have safety implications.

Behaviour: A sequence of (perhaps timestamped) send and receive operations of a
system.

Sometimes it is useful to abstract away from time and consider untimed trace behaviour of
a system. In other cases it is not appropriate to abstract away from time. We postpone
consideration of other types of behaviour – such as liveness and nondeterminism – to
Section 3.7, but note here that, in general, the appropriate notion of behaviour depends on
the context. (For example, one might not care whether the system is available, only that it
never performs some dangerous action. Alternatively, one might only care about its
behaviour at a given interface.)

A system’s behaviour is characterised by its send operations, though these of course can
be affected by preceding operations.

The appropriate handling of a message at the sender and receiver (update in place, or
queue) depends on the information content of a message. In order to be able to
characterize this information content we need to introduce the important concepts of state
variables and state observations.

State Variable: A relevant variable, either in the environment or in the computer system,
whose value may change as time progresses.

Here, a relevant variable is one that can influence system behaviour (recall that behaviour
is, in general, defined with respect to some abstraction, or view, of the system). Examples
of state variables are the position of an actuator in a controlled system or the size of a
queue in a computer system. A state variable has static attributes that do not change during
the lifetime of the state variable, in addition to the dynamic attributes that may change.

Final Version of DSoS Conceptual Model Concepts

21

Examples of static attributes are the name3, the type, the value domain, and the maximum
rate of change. The value that is set at a particular instant is the most important dynamic
attribute. Another example of a dynamic attribute is the rate of change at a chosen instant.
The information about the value of a state variable at an instant is captured by the notion
of a state observation.

State Observation: A record of the value of a state variable. It may be represented as a
tuple <Name, Value, tobs> consisting of the name of the state variable, the observed
value of the state variable, and the instant when the state variable was observed. The
recorded time tobs may be NULL, in which case the observation has no timestamp.

When we wish to refer specifically to state observations with timestamps, or not, we will
do so explicitly.

State observations may be transported in state messages (defined below) to a receiver,
which may reconstruct the dynamics of the environment based on the incoming state
messages. State observations, whether timestamped or not, are idempotent and may be
communicated using the update-in-place technique. [Powell 2002].

Image: A representation of a state variable, e.g., at a receiver of messages that contain
state observations.

Value Accuracy: An image is a value accurate representation of a state variable if the
interpretation of the image value by the user is in agreement with the semantic
content of the state variable at the instant of observation.

Temporal Accuracy: An image is a temporally accurate representation of a state variable
at instant t if the duration between the time-of-observation of the state variable (tobs)
and the instant t is less than the accuracy interval dacc, an application-specific
parameter associated with the dynamics of the given state variable.

Accuracy: An image is an accurate representation of a state variable (it is valid) at a
given instant if it is value accurate and temporally accurate.

While a state observation records a fact that remains valid forever (a statement about a
state variable that has been observed at an instant), the temporal accuracy and hence the
validity of an image is time-dependent, so an image may be invalidated by the progression
of real-time. Delaying a message containing an observation in a queue may affect the
temporal accuracy of the information contained in the message.

3 Naming issues will be discussed later, in Section 4.2.1.

Final Version of DSoS Conceptual Model Concepts

22

Event Observation: An event observation records the occurrence of an event. An event is
a significant happening, e.g., an important difference between the state observation
immediately before the happening and the state observation immediately after the
happening. An event observation can be represented by the tuple

<Name of the observed event, attributes of the event, time of the event>

where the time of the event field may be NULL, in which case the observation has
no timestamp.

As with state observations, when we wish to refer specifically to event observations with
timestamps, or not, we will do so explicitly.

For example, “the temperature of the boiler has increased by 2°C” is an event observation
without a timestamp, and the following are timestamped event observations: “The position
of control valve A changed by 5 degrees at 10:42 a.m.” or “An amount of 1000 Euro has
been withdrawn from bank account xyz at 1:35 p.m.”

Event observations that do not include a timestamp require exactly-once semantics
because they are not idempotent. In contrast, timestamped event observations can be
considered to be idempotent, since consumers can assume that two events with the same
timestamp are duplicates. Timestamped event observations therefore require at-least-once
semantics at the consumer [Powell 2002].

Idempotency: An observation is idempotent if the effect of processing it more than once
can be made the same as the effect of processing it once.

Depending on the information content within a message, we distinguish between a state
message and an event message.

State Message: A message that contains only state observations.

In many real-time and multimedia systems, state messages are sent periodically.

Periodic State Message: A state message that is sent periodically at a priori known
instants. These instants are common knowledge to the sender and the receivers.

The instants when periodic state messages are sent can either be fixed at design time or
negotiated during the operation of the system.

Event Message: A message that contains only event observations.

The two most common approaches for the observation of a dynamic environment are to
use either time-triggered state observations or event-triggered event observations. Both
approaches allow the relevant aspects of states and events of the environment to be
reconstructed at the receiver [Tisato and DePaoli 1995]. Periodic state observations

Final Version of DSoS Conceptual Model Concepts

23

produce a sequence of equidistant “snapshots” of the environment. These snapshots can be
used by the receiver to infer those events that occur within a minimum temporal distance
longer than the duration of the sampling period. Starting from an initial state, a complete
sequence of event observations can be used by the receiver to infer a complete sequence of
states of the state variable that occurred in the environment. However, if there is no
assumed minimum duration between events, the observer and the communication system
must be infinitely fast.

If all messages are eventually received and each one contains a complete observation, i.e.,
name, value and time, then the precise temporal sequence of states and events of a state
variable can be reconstructed at the receiver. If this reconstruction is time-constrained—as
is the case in many real-time systems and multimedia systems—then the transport delay of
the communication system must be bounded. Real-time communication requires a small
transport delay and minimal jitter.

In some systems, the time-of-observation of a state variable (or of an event) is not
contained in the message, but inferred from the receive instant of the message. In these
systems, the jitter of the communication system affects the accuracy of the inferred instant
of observation. The varying delay of a non-timestamped message in a queue degrades the
quality of the delivered observation.

Service Specification: The specification of the set of intended behaviours of a system.

In the general case, all the send and receive operations since the startup of the system must
be observed at all of the system’s interfaces in order to decide whether the service
delivered by the system is in agreement with its service specification. This specification
should, but in practice may not, accurately reflect the intentions of the relevant
stakeholders.

3.4 State

There are two approaches to defining the ‘state’ of a system: state can be defined
according to either (what are called here) the forward looking style or the backward
looking style. It is important to recognise that these approaches lead to different concepts
of state, which are useful for different purposes. A comprehensive literature review [Peti
2002] has recently compared accepted notions of state from a diverse range of engineering
disciplines; it is noticeable that these definitions all conform to one or other of the styles
described here.

In the forward-looking style of definition:

At a given instant, the state of a system is a notional attribute of the system that is
sufficient to determine its potential behaviour;

Final Version of DSoS Conceptual Model Concepts

24

In the backward-looking style of definition:

At a given instant, the state of a system is the total information explicitly stored (in
state variables) by the system up to the given instant.

‘Potential behaviour’ is intended to mean the possible behaviour of the system after the
given instant, at all its interfaces, including responses to possible input operations at its
interfaces. (Also, recall that for the moment we are only considering trace behaviour,
timed or untimed.)

The first definition is more popular with system modellers than with system implementers.
It corresponds to the view of a system as a labelled transition system (an LTS) or
automaton. Strictly speaking, one would model the system as an LTS, where each ‘node’
in the LTS represents (or denotes) the behaviour of the system from some point in its
execution onwards. (Indeed, the nodes of an LTS are often called ‘states’, though this is
really just shorthand for the fact that they represent states of the system.)

The second definition is typically favoured by system implementers. It corresponds to the
view of a system as a physical entity that stores information about its interaction with the
environment, and uses stored information to influence its future behaviour. This concept
of state is therefore often called ‘stored state’ (or ‘internal state’). Note that stored state
only consists of values explicitly stored in state variables; it does not include static
information about the system.

Variant definitions of the concept of a stored state can cause confusion4. However, as it
stands, the second definition above allows stored state to include autonomously changing
state, such as the time recorded by an internal clock (which is not part of the behaviour of
the system), and it does not restrict the stored state to relevant stored state – information
about the history of the system that can possibly influence its future behaviour.

Consider a physical system that implements a pure function by alternately inputting a
single value and then outputting the corresponding function value. Such a ‘pure function
system’ can be viewed at a number of ‘levels of abstraction’. Now consider an abstract
version that ignores the delay between corresponding inputs and outputs: it repeatedly
inputs a value and outputs the corresponding function value ‘simultaneously’. No
information about the preceding behaviour of such a system is needed for it to continue

4 For example, instead of the phrase ‘total information’ in the second definition, something like ‘total

information about the behaviour of the system’ may be used; and the phrase ‘that can influence potential

behaviour’ may be appended to this definition.

Final Version of DSoS Conceptual Model Concepts

25

operating5, and so no stored state is necessary. Yet the potential behaviour of this system is
well defined. Recall that we define ‘state’ as essentially ‘that which determines potential
behaviour’. In this case, potential behaviour is determined by the definition of the abstract
‘pure function system’ itself, a crucial part of which is the function definition.

For all systems, stored state is data, which must be acted upon by the system. So, stored
state alone cannot determine potential behaviour; it can only determine potential behaviour
when considered together with the system definition. So, one could say that stored state
represents the dynamic part of the system state.

In the light of these considerations, we propose the following definitions of "abstract state"
and "stored state". Each may be called, simply, ‘state’ when the variant is clear from the
context:

(Abstract) State of a System: At a given instant, a notional attribute of the system that is
sufficient to determine its potential behaviour.

An alternative way of defining abstract state is as ‘a representative of the equivalence class
of histories’, where two histories of system activity are considered equivalent precisely
when the potential behaviour of the system after one history is indistinguishable from that
after the other history. In such a definition, the ‘history’ of a system must capture all its
activity, both internal and external – behaviour at its interfaces is not enough. These
notions of abstract state are essentially equivalent.

(Stored) State of a System: At a given instant, the total information explicitly stored by
the system (in state variables) up to the given instant.

In concrete implementation terms, the stored state of a system is the set of values assigned
to the internal state variables. Although not implied by the above definition, we will
usually assume that the stored state of a system is relevant to its future behaviour. One
could define ‘relevant stored state’ and ‘irrelevant stored state’ but, though the distinction
is real6, these terms are not necessary for our purposes.

5 though some input/output pairs could be recorded to avoid some recalculation of the function

6 it may happen, presumably in error, that a particular state variable is never relevant to the potential

behaviour of the system. Even in the absence of design/implementation errors, the value of a state variable

might not be relevant in some circumstances. (It often happens during execution of a program that a state

variable is never read without first being written.)

Final Version of DSoS Conceptual Model Concepts

26

For abstract state and (relevant) stored state to be well defined, the notion of behaviour
must be well defined. This is because these concepts are defined with respect to a
particular notion of behaviour. For the same reason, an abstraction of behaviour induces an
abstraction of abstract state and of stored state. Note that a particular state variable may be
irrelevant to a given abstract notion of potential behaviour, so state variable relevance is
important when applying abstractions.

Stored state can be structured – state variables can be grouped – according to criticality of
service: some state variables may be more critical than others because they might be
relevant to more critical behaviour.

In many legacy systems it can be difficult to determine the complete abstract state of a
system; the (dynamic) stored state and the (static) system definition may both be difficult
to ascertain.

A system consists of a set of interacting subsystems. Therefore the system state space is
the Cartesian product of its subsystem state spaces. (Note that the same is not generally
true for reachable state spaces, because subsystem states are typically correlated by their
interactions.)

Table 2 summarises and relates some useful concepts of ‘state’ (those not yet defined are
defined below).

Abstract Stored Declared

Sy
ste

m

Abstract State
A notional attribute that
determines potential
system behaviour

Stored State
Stored data that is
relevant to future
system behaviour

Declared State
The value of a declared data
structure containing state
variables relevant to essential
future system behaviour

In
te

rfa
ce

Abstract Interface State
A notional attribute that
determines potential
behaviour at this
interface

Stored Interface State
Stored data that is
relevant to future
behaviour at this
interface

Declared Interface State
The value of a declared data
structure containing state
variables relevant to essential
future behaviour at this
interface

Table 2 — Some concepts of state for systems and interfaces

Some explanation of Table 2 is appropriate. Observe that the concepts in the first row
relate to system behaviour, and those in the second row relate to system behaviour at a
particular interface. The columns describe abstract, stored and declared concepts of state.
The concepts ‘declared state’ and ‘declared interface state’ are defined with reference to

Final Version of DSoS Conceptual Model Concepts

27

essential behaviour, by which we mean some part of the full behaviour considered
essential for the application. Clearly, one could parameterise these concepts in terms of
essential behaviour. We assume here that essential behaviour is understood, but remark
that different ideas about what constitutes essential behaviour can cause problems when
constructing systems of systems.

Notice that all the concepts in Table 2 vary according to the underlying notion of
behaviour. Even with a fixed underlying notion of behaviour, these concepts are related in
interesting ways. For example, the ‘Abstract’ concepts give the same information about
the potential behaviour as do the ‘Stored’ concepts when the latter are taken together with
a definition of the system. Further, in each row the ‘Declared’ variant of state is a subset of
the ‘Stored’ variant. The ‘Interface’ concepts specialise the ‘System’ concepts by
abstracting the behaviour to behaviour at the interface.

Declared State: At a given instant, the value assigned to a declared data structure that can
be accessed via an interface and that records all the stored state that is relevant to
(i.e., that can influence) the future essential behaviour of the system.

So ‘declared state’ is simply a structured representation, made available at a system
interface, of the stored state that is relevant to essential behaviour. In principle, there may
be any number of suitable declared data structures, but there will typically be one, or none,
known to an engineer who wishes to include the system within a system of systems.
Observe that a declared state is simply a representation, made available by the system at
an interface, of the (relevant) stored state, for a given notion of behaviour. Since a
declared state can be accessed from the environment of the system, it is possible to
observe this declared state and to store it as part of the stored state of another system. As
with state, and stored state, abstractions of behaviour induce corresponding abstractions of
declared state.

(Abstract) Interface State: The (abstract) state of a component system as viewed from a
particular interface. It is a notional attribute of the interface that is sufficient to
explain future behaviour of the component system across this interface.

The abstract interface state for a given interface is determined by the abstract state of the
component (when both are defined in terms of the same underlying notion of behaviour).

(Stored) Interface State: The (stored) state of a component system that is relevant to
future behaviour at a particular interface. Together with a definition of the system, it
is sufficient to explain the behaviour of the component system across this interface.

Stored interface state consists of data that might, or might not, be made explicitly available
to an interfacing system. The stored interface state for a given interface will typically be a
subset of the full stored state of the component.

Final Version of DSoS Conceptual Model Concepts

28

Example: One would expect the (abstract or stored) interface state of a
particular Amazon.com session to be independent of the identities of the users
running simultaneous sessions, though their identities etc. are part of the server
state.

We will argue that a linking interface ideally makes the interface state available, and that
this interface state should be as simple as possible. We will also argue that the DSoS
sparse model of time simplifies the interface state.

Declared Interface State: At a given instant, the value assigned to a declared data
structure that can be accessed via an interface and that records all the stored state
that is relevant to (i.e., that can influence) the future essential behaviour of the
system at the given interface.

The declared interface state is the declared state that is part of the interface model of the
considered interface.

Interface Model: the model of the concepts a user has in mind when he/she relates the
meaning of the chunks of information in a message (which are the results of the
syntactic specification) to his/her conceptual world [Kopetz 2002c].

3.5 Dependability

Our concern is with system dependability, the definition of which term, in similar fashion
to a number of related terms, we base on that of [Laprie 1992]. In addition, the definitions
of fault, error and failure below owe much to [Jones 2002], especially where ideal
terminology is described. (There is a choice between defining real-world concepts and
defining idealised counterparts; the latter are more readily formalised but less generally
applicable. We have chosen to formulate real-world definitions, and indicate idealisations
in the text.)

Dependability: The dependability of a system is the ability to deliver a service that can
justifiably be trusted, where the service is the intended behaviour of the system.

Ideally, dependability is defined with respect to a specified behaviour and a specified
dependability metric, but these may be informal (and in practice often will be). It is helpful
to make these specifications explicit, because this helps prevent differences in this
essential information being ignored during development of a system of systems.

In principle, different stakeholders, such as the system owners and various system users,
will have different views regarding the intended behaviour of a system – they will desire
conformance to different specifications of behaviour, where available. Consequently, the
stakeholders will have different views of its dependability.

Final Version of DSoS Conceptual Model Concepts

29

Failure: A failure of a system occurs at an interface of the system at the instant when its
behaviour starts to deviate from the intended behaviour at that interface.

Ideally, failure of a system is defined with respect to an explicit specification of (intended)
system behaviour. This explicit reference to a specification – which may be formal or
informal – is intended to ensure that the appropriate relationship exists between validated
properties and required properties of component systems. Absence of component system
failure, from the perspective of a SoS designer, must follow from absence of failure from
the perspective of the component system implementer. That is: the (validated) properties
of individual component systems should imply the respective requirements placed on them
by the SoS designer.

Many systems are designed such that failures can only occur at outputs. Other systems
may be able to refuse to accept an input from an interfacing system that is ready to send it
an output, perhaps by failing to send an ‘input buffer not full’ message, or failing to send
an acknowledgment.

Service Failure: A failure at a service interface of the system.

Ideally, a precise specification (both in the value domain and in the temporal domain) of
the intended behaviour for a particular stakeholder is available for the judgement about
whether a system has failed for this stakeholder. In practice, the judgment will sometimes
have to take into account the inadequacies of any pre-existing specification. Different
judges may thus come to different decisions about whether a system failure has occurred.

A useful distinction can be made between ‘failure to produce correct output when
provided with correct input’, and ‘failure to produce correct output because provided with
incorrect input’. In the former case, the given system has been affected by an internal
fault, whereas in the latter case it has failed due to error propagation from the system that
provided the erroneous input.

Error: An error is that part of the system state that may cause a subsequent failure.

A failure occurs when an error reaches the service interface and can be judged to have
adversely affected the service. Errors can exist in any part of a system’s state, i.e., in its
(static) definition or in its (dynamic) stored state.

Fault: A fault is the cause of an error.

A judgement is needed to diagnose a fault. This judgement will depend on precisely what
is considered as the system, and at what level of detail the system is considered.

A fault is active when it produces an error, otherwise it is dormant. On activation, a fault
causes an error within the stored state of one or more components, but system failure will

Final Version of DSoS Conceptual Model Concepts

30

not be deemed to have occurred as long as the error does not reach a service interface of
the system.

Error Containment Region: A well-defined subsystem of a computer system that
contains error-detection mechanisms such that there is a high probability – the error
containment coverage – that the consequences of an error that occurs within this
subsystem will not propagate outside this subsystem without being detected.

In the above definition, well-defined means accessible only through well-defined (linking)
interfaces.

Fault Containment Region: A set of components that is considered to fail (a) as an
atomic unit, and (b) in a statistically independent way with respect to other fault
containment regions.

If the failure of a fault containment region is unconstrained, an error containment region
must comprise at least two fault containment regions in order to be able to detect the
consequences of a single fault [Kopetz 2002a].

Although (components of) different fault containment regions are considered to fail
independently, their respective failure rates may differ.

Fault Tolerance: Methods and techniques aimed at providing the intended system
behaviour in spite of faults.

Fault tolerance is implemented by (a) error detection and subsequent recovery, (b) error
compensation, or (c) combinations of both techniques. An error that is present but not
detected is a latent error. Recovery transforms a system state that contains one or more
errors and (possibly) faults into a state without detected errors, though possibly with faults
that could be activated again.

3.6 System Interconnection Issues

Connection: A link between the interfaces of two or more interacting systems.

Architectural Style: A set of rules and conventions governing the connections and
interactions between the components of a system.

In order to build a system of systems out of component systems, it is necessary to ensure
that architectural styles match at any interfaces between which direct interactions occur.
This implies that the interfaces via which the component systems interact must be
compatible, either directly, or after some form of adaptation.

Properties of an Interface: The set of attributes associated with an interface.

Every interface may be characterized by a set of attributes that control the types of

Final Version of DSoS Conceptual Model Concepts

31

interaction that are possible across the interface, e.g., attributes that refer to the encoding
of the information, the structure of the information, the meaning of the information, or the
temporal sequence of information exchanges at a particular interface.

An important interface property is whether it is elementary or composite [Kopetz 1999]:

Elementary Interface: An interface across which only elementary interactions can occur.
An elementary interaction is one where all messages are transmitted according to the
information push model (i.e., the consumer of each message exerts no control – no
back pressure – on its transmission).

Composite Interface: An interface across which composite interactions can occur. A
composite interaction is one where at least one message is transmitted according to
the information pull model (i.e., the consumer of some message exerts control –
back pressure – on its transmission).

Elementary interfaces are inherently simpler than composite interfaces, so elementary
interfaces are preferable for the linking interfaces (see below) of dependable systems of
systems.

Property Mismatch: A disagreement among connected interfaces in one or more of their
properties.

If the properties of connected interfaces are in conflict (e.g., different byte orders), then a
failure can occur during system operation. So, directly connecting together non-matching
interfaces is a fault.

Boundary Line: A connection between at least two interfaces with matching properties.

Whereas matching interfaces can be connected directly via a boundary line, connecting
together non-matching interfaces requires the introduction of a new entity that we call a
connection system. The role of the connection system is to resolve the property
mismatches between the connected interfaces.

Connection System: A new system with at least two interfaces that is introduced between
interfaces of the connected component systems in order to resolve property
mismatches among these systems (which will typically be legacy systems), to
coordinate multicast communication, and/or to introduce emerging services.

A connection system is delimited by at least two boundary lines, one for each of the
component systems that it connects. By definition, there are no property mismatches at
any of these boundary lines.

Example: An electric appliance that has been manufactured according to US
standards and that is used in Europe has to face property mismatches with

Final Version of DSoS Conceptual Model Concepts

32

respect to the physical dimensions of the plug, the voltage and the frequency.
A special connection system (some kind of transformer) that has two boundary
lines, one according to US standards and the other according to European
standards, can resolve these property mismatches.

At a given level of abstraction, a boundary line does not introduce any relevant properties
of its own. For example, if the physical length of a connection introduces a propagation
delay, between two interfaces, that must be considered, then such a connection must be
modelled by a connection system and not a boundary line.

Example: If it is of relevance that a wireless connection can be monitored by
an intruder, then this connection must be modelled by a connection system
with an extra output interface to the intruder.

Connection systems and boundary lines can be viewed at different levels of abstraction. If
a property mismatch is not relevant at a given level of abstraction, then the connection
system that deals with the mismatch, and the boundary lines over which it communicates
with the interacting component systems, can be abstracted away to a single boundary line
that connects the component systems directly. Conversely, a boundary line that hides a
particular property mismatch can be refined into a connection system, and appropriate
connecting boundary lines, that expose the detail of dealing with that property mismatch.

Figure 1 depicts the expansion of a boundary line into a connection system delimited by
two boundary lines. This expansion can be continued recursively until the proper level of
detail is exposed. In the following sections, we will make use of this expansion whenever
appropriate.

Communication across a boundary line is only possible if the interacting systems share a
set of concepts and a notion of time. The science of semiotics, the study of signs and their
relation and interpretation, subdivided into the fields of syntax, semantics, and pragmatics,
is relevant in this context. The required common knowledge among the interacting
partners must be established either prior to the exchange of a connection data structure or
has to be bootstrapped during different phases of the communication. The designer of a
connection must be careful to specify all assumptions about this common knowledge that
are a prerequisite for a successful communication across the connection. Any mismatch of
the concepts or any other properties of the connections among the connected partners will
cause a failure of the communication with respect to this specification. Section 2.2.5
identifies a number of types of property mismatch that can occur at a connection.

Final Version of DSoS Conceptual Model Concepts

33

Figure 1 — Expansion of a Boundary Line (BL) into a
Connection System (CS) with two Boundary Lines

Linking Interface (LIF): An interface of a component system through which it is
connected to other component systems within a given system of systems.

Well chosen linking interface specifications together include all information about the
interface behaviour of all the component systems in a system of systems. In this way, they
insulate the development of, and reasoning about, the SoS from the implementation of any
component systems that are not already available.

Local Interface: An interface of a component system that is not a linking interface within
a given system of systems.

An existing legacy system is likely to have many different interfaces. The services of a
system can only be accessed via its interfaces. The notion of a linking interface focuses on
those interfaces that are needed to generate the emergent services produced by the desired
integration. The emergent services can be functional or non-functional. For example,
systems can be replicated for the sole purpose of introducing fault tolerance (and thereby
improving the dependability), without a change in the functionality.

Linking Connection: A connection between two or more existing systems that is
introduced in order to resolve property mismatches and thus incorporate these
systems into a system of systems with new emergent services.

BL

system A system B

boundary line (BL)

system A system B
Connection

system
(CS)

BL

(CS)

Final Version of DSoS Conceptual Model Concepts

34

Interaction: A sequence of message exchanges between connected interfaces.

This sequence of message exchanges must be specified by a protocol that is respected by
all these connected interfaces.

Protocol: A set of rules that specifies the interactions between two or more component
systems between connected interfaces.

The notion of a protocol is more limited than the notion of a service specification. The
service specification may cover the behaviour of a system at all of its interfaces, whereas
the protocol focuses on only the interfaces connected by the protocol.

Temporal Composability: The characteristic that ensures that the temporal properties of a
component system are not influenced by the integration of the component system
into a system of systems [Kopetz and Bauer 2003].

3.7 Other Notions of Behaviour

System behaviour can only be defined with respect to a particular computational model.
Even with the notions of send and receive operations here, the appropriate concept of
behaviour varies according to the context of the discussion.

It often happens that the only aspect of system behaviour that matters, in the context where
the system is used, is the set of possible (timed or untimed) traces of (input and output)
operations that the system may perform. Trace behaviour is typically the simplest
behaviour of interest to system stakeholders. It allows so-called safety properties to be
expressed.

Sometimes, however, it is important to know when the system can ‘refuse’ to perform
some operation (in a well-defined sense). This allows one to distinguish between a system
that can perform some important trace (but may refuse to do so), and one that must
perform that trace (it cannot refuse to do so). For example, it matters whether a clock can
refuse to send ticks, or refuse to send the current time value, to an interfacing system. In
the extreme, systems can deadlock.

Another aspect of behaviour that sometimes matters is the occurrence of internal events,
particularly when internal ‘livelock’ is possible. If one wishes to distinguish between
possible livelock and possible deadlock of a system, then the notion of behaviour must be
enriched to take account of internal events.

At a low enough level of abstraction, all physical systems are deterministic7. However, if
details are hidden then the resulting abstract system may behave nondeterministically. In

7 We ignore quantum mechanical effects.

Final Version of DSoS Conceptual Model Concepts

35

order to allow (abstract) specifications of system behaviour, it is often useful to be able to
represent nondeterministic behaviour. Contrary to what one might at first think, non-
determinism is not incompatible with the notion that state ‘determines’ potential
behaviour. With a suitable definition of behaviour, potential behaviour captures the non-
determinism.

3.8 Time

The conceptual model of the DSoS Project is notable for the fact that it includes time as an
integral feature. This is done for the following reasons:

1. The DSoS Project is concerned with the design of dependable systems of systems. The
classification, detection, and handling of failures are thus an important part of the
DSoS Project. The simplest external failure mode of a system is a crash failure [Laprie
1992]; i.e., a system either operates correctly or does not operate at all. Crash failures
can only be detected in the temporal domain.

2. A number of generic services that are required in the design of distributed systems,
such as a membership service, can only be defined if the temporal dimension is part of
the conceptual model.

3. Many communication protocols that control the interactions among component
systems depend on the consistent specification of time-out values for their proper and
efficient operation. The DSoS conceptual model should provide the capability to
develop a calculus for the setting of these time-outs.

4. The DSoS model is to cover the specification, design, and validation of, inter alia, so-
called real-time systems. In these systems, the validity of real-time information
depends on the progression of physical time. For example, it makes little sense to talk
about the angular position of a crankshaft in an automotive engine, if the precise
instant when this position was measured is not recorded as part of the measurement. In
real-time systems, time is an integral part of the concept of an observation. If the DSoS
model does not contain a proper model of time, it is not possible to address these core
properties of real-time systems.

The inclusion of time in the DSoS model has a number of consequences. The most far-
reaching consequence is that, as indicated earlier, DSoS component systems must be
physical (typically hardware/software) systems. A stand-alone piece of software has no
temporal properties and is, thus, not a proper object of integration in the DSoS context.

In other contexts, such as software engineering, this issue of how to integrate pieces of
software together is central. Although a stand-alone piece of software has no temporal
properties, these properties might be defined a priori and be required to be respected when

Final Version of DSoS Conceptual Model Concepts

36

the software is installed (along with other software) on a given piece of hardware.
Schedulability analysis aims to show that these temporal properties will be respected (in
the absence of faults). Violation of the temporal properties at run-time leads to a timing
failure for which appropriate detection and tolerance mechanisms might be provided.

Time Measurement

The following three different types of time measurement are supported by the DSoS
model:

a) Time Measurement by an Omniscient External Observer

b) Global Time

c) Local Time.

Time Measurement by an Omniscient External Observer: We assume for definitional
purposes that there exists an omniscient external observer who can observe all events that
are of interest in a given context (relativistic effects are disregarded), and that this observer
possesses a unique reference clock z with frequency fz, which is in perfect agreement with
the international standard of time. The counter of the reference clock is always the same as
that of a chronoscopic international time standard (e.g., TAI time or GPS time). We call
1/fz the granularity gz of clock z . Let us assume that fz is very large, say 1015

microticks/second, so that the granularity gz is 1 femtosecond (10-15 seconds). Since the
granularity of the reference clock is so small and there is only a single reference clock, the
digitization error of the reference clock will be disregarded. Whenever the omniscient
observer perceives the occurrence of an event e, she/he will instantaneously record the
current state of the reference clock as the time of occurrence of this event e, and will
generate an absolute timestamp of the event e. Since there is only one reference clock,
issues concerning the consistency of observations among many observers do not arise. The
temporal order of events that occur between any two consecutive microticks of the
reference clock, i.e., within the granularity gz, cannot be reestablished from their absolute
timestamps. This is a fundamental limit in time measurement. In the DSoS model, we will
make use of this time measurement by the omniscient external observer if we want to
reason about the temporal relationship between events that cannot be precisely measured
within the component systems.

Global Time: A number of distributed systems, particularly distributed real-time systems,
synchronize the local clocks of the nodes in order to establish an approximation of a
common global time [Kopetz and Ochsenreiter 1987]. Suppose a set of n nodes exists,
each one with its own local physical clock ck that ticks with granularity gk. Assume that all
of the clocks are internally synchronized with a precision P, i.e., for any two clocks j,k Œ
[1,n] and all ticks i:

Final Version of DSoS Conceptual Model Concepts

37

.

It is then possible to select a subset of the ticks of each local clock k for the generation of
the local implementation of a global notion of time. We call such a selected local tick i a
macrotick of the global time. For example, every tenth tick of a local clock k may be
interpreted as the global tick, the macrotick , of this clock. If it does not matter at which
clock k the macrotick occurs, we denote the tick ti without a superscript. A global time is
thus an abstract notion that is approximated by properly selected ticks from the
synchronised local physical clocks of an ensemble. A global time t is called reasonable, if
all local implementations of the global time satisfy the condition

g > P

the reasonableness condition for the macrotick granularity g. This reasonableness
condition ensures that the synchronisation error is bounded to less than one macrogranule,
i.e., the duration between two macroticks. If this reasonableness condition is satisfied, then
for a single event e that is observed by any two different clocks of the ensemble:

t j(e) - t k(e) £ 1 ,

i.e., the global timestamps for a single event can differ by at most one tick. This is the best
we can achieve! Due to the impossibility of synchronising the clocks perfectly and the
denseness property of real time, there is always the possibility of the following sequence
of events: clock j ticks, event e occurs, clock k ticks. In such a situation, the single event e
is time-stamped by the two clocks j and k with a difference of one macrotick. The finite
precision of the global time base and the digitisation of time cause an unavoidable error in
time measurement in distributed systems that is extensively discussed in [Kopetz 1997].

Local Time: In many distributed systems there exists no global notion of time. In these
systems every node has its own local oscillator that establishes a local time base for this
particular node.

For a more detailed discussion of the DSoS models of time, refer to Annex 1.

Final Version of DSoS Conceptual Model Interface and Connection Characterization

39

4 INTERFACE AND CONNECTION CHARACTERIZATION

Let us analyze a request-response interaction between, for the sake of simplicity, just two
component systems A and B (Figure 2). Component system A produces a request DAA

according to an architectural style intrinsic to itself. (In our notation the first subscript
denotes the producer of the information, the second subscript denotes the architectural
style of the information.) The architectural style comprises the set of rules and conventions
that are specified in an architecture and must be adhered to by the component systems at
their linking interfaces in order to avoid property mismatches at the interfaces. For B to
understand this request, its architectural style has to conform to B’s architectural style.
Any such required transformation of DAA to D AB is done by a connection system (CS).
Sometime later, B responds to the request from A with DBB, which is then transformed as
appropriate by the connection system and delivered to A as DBA at some later instant. If
both A and B conform to the same architectural style, then the connection system may be
collapsed to a single boundary line BL (cf. Figure 1, page 33).

Figure 2 — Request-response interaction through a connection system

A connection system is thus necessary to resolve mismatches when there is
communication between component systems with non-matching interfaces. In the software
community such a connection system is often called a connector. At a high level of
abstraction, a large software system can be described as a configuration of component
systems and connectors [Deline 1999]: connectors mediate the interaction among
components. At this level, Architecture Description Languages (ADL) [Medvidovic and
Taylor 2000] have been introduced to model components, connectors, and their
configurations.

The integration of a set of component systems into a system of systems is substantially
simplified if all component systems conform to the same architectural style. An
architectural style prescribes the endorsed properties of the interfaces of connected
component systems such that all significant property mismatches are eliminated. It is

system A system BLI
F

D
AA D

AB

D
BA

D
BB

BL_A BL_B

(CS

)

system
connection LIF

Interface and Connection Characterization Final Version of DSoS Conceptual Model

40

possible to solve the mismatch problem by designing a special connection system for
every legacy component system that transforms the properties of a legacy system to this
uniform architectural style. Such a special connection system is called a wrapper [Deline
1999 p.26]. A prerequisite for designing wrappers around existing legacy component
systems is the definition of a linking architecture that defines the intended architectural
style.

The component systems A and B must process received information and eventually
respond, either with an action within their environments, with a response across the
linking connection, or with an internal state change. In real-time systems, the duration of
the interval between information receipt and the corresponding response must be bounded.
The type of data transformation that must be performed within a component system is
specific to the given application.

4.1 Interface Types

In order to disentangle unrelated functions it is advantageous to specify a distinct interface
for every separable service [Kopetz 2000b]. We have identified three unique functions that
occur in many scenarios and should normally be serviced across independent interfaces.

Service Interface: This is the interface that provides the intended service to the
environment, namely the systems with which it interacts.

The service interface is the most important interface for the user of the service. To keep
the service interface small and understandable, only those objects and functions that are
required for the intended emerging service should be visible at the service interface. It is
counterproductive for all internal objects of a component system to be visible at the
service interface.

In order to realize the emergent services of a system of systems, a set of component
systems is linked together by connecting them via their service interfaces. The service
interfaces thus become the linking interfaces (LIFs) of the components.

The specification of a service interface must define, either directly or indirectly, all
properties introduced in Section 2.2.5, from low level to high level. Many of the low level
properties of this service can be defined indirectly by referring to a designated
architectural style (see Section 1.3.2). The high-level properties of a service interface can
be specified by presenting a service interface model. In general, such a service interface
model will contain parts that are amenable to formal specification (e.g., the syntax of the
input and output messages) and parts that can only be expressed by reference to natural
language concepts (e.g., the meaning of the data in the input and output messages). The
service interface model can also include a declared interface state (see Section 3.4) that

Final Version of DSoS Conceptual Model Interface and Connection Characterization

41

records the cumulative effect of the history of the component system, including events at
all its interfaces, on the future behaviour at this service interface.

Ideally, the specification of the service interface should be self-contained such that the
user of the component services finds all information needed to use the services of the
component system in the service interface specification. All issues related to the
composition of a set of component systems can then be investigated by referring only to
the specification of the LIFs of the component systems without any knowledge of their
internal structure and operation.

A single component system may support many LIFs that are, from the point of view of
each LIF user, separate, although they might not be independent. In a SoS the interface
state of a LIF may change autonomously (by the progression of time or, more generally,
by the occurrence of some internal event) or at least independently of the interfacing
system (because of activities at other separate LIFs).

In the CORBA world [Siegel 2000], the (syntax of the) services that are provided by an
object are defined by the interface definition in a special interface definition language
(IDL) that can be mapped into a number of different programming languages. The
interface definition specifies the operations that can be performed by the object, the input
and output parameters, possible exceptions that may by raised by the object during
execution, and possibly, the declared state of the component.

In real-time systems of systems, the purpose of the real-time service (RS) interfaces of
component systems is the timely exchange of observations among the component systems.
An observation states that the state variable possessed the stated value at the indicated
instant or an event occurred at the instant. In control applications, the temporal access
pattern of information at the RS interface is typically periodic, and a small delay and
minimal jitter are important for the quality of control. These temporal parameters must be
stable in order to support the composability at the RS interface. The user of the
observations at the RS interface must know only about the meaning of these observations
but does not need any knowledge about the internal structure or operation of the
component system that delivers the observation.

Diagnostic and Management (DM) Interface: The DM interface provides a
communication channel to the internals of the component system for the purpose of
diagnosis and management.

A maintenance engineer who accesses the internals of a component system via the DM
interface must have detailed knowledge about the internal structure, the internal objects
and the precise behaviour of the system. The end-points of communication are the
internals of a component system on one side and some maintenance system or engineer,

Interface and Connection Characterization Final Version of DSoS Conceptual Model

42

possibly sitting at a remote terminal on the Internet, on the other side. The communication
pattern is, thus, point-to-point and the messages between the maintained component
system and the maintenance system or engineer must be routed transparently through a set
of networks. The DM interface should be independent from the service interface, since
these two interfaces are directed towards two different user groups and require different
knowledge.

In a real-time system, there is usually a need to support on-line maintenance and
management while a system is operational. To achieve this objective, any sporadic
maintenance and management traffic must coexist with the time-critical real-time traffic
without disturbing the latter. The traffic pattern across the DM interface is normally
sporadic and not time-critical, although precise knowledge about the instant when a
particular value was observed or modified can be important.

Configuration Planning (CP) Interface: The CP interface is used during the integration
or reconfiguration phase to connect a component system to other component systems
of a system of systems.

The CP interface is typically point-to-point and not time-critical.

4.2 High-Level Interface Issues

We now consider several issues relating to interactions between component systems.

Issues relating to the interpretation and handling of the information exchanged between
the component systems and the dependency of DBB on D AB (cf. Figure 2, page 39)
constitute the high-level interface issues (HLII). In particular, the following topics are
among the HLII:

a) Naming

b) Interaction styles

c) State persistence

4.2.1 Naming

Naming is concerned with associating an entity with an identifier within a defined context
[Radia and Pachl 1993]. To resolve a name means to decide which entity is denoted by the
name. The rules that determine which context, out of the many contexts in a large system,
must be selected in order to resolve a given name are called closure mechanisms. If the
same meaning is assigned to a name in different parts of a system, the naming schema is
called coherent. Whenever there is an incoherence in naming among interacting
component systems, i.e., a naming mismatch, a connection system must be employed to
resolve this incoherence.

Final Version of DSoS Conceptual Model Interface and Connection Characterization

43

We distinguish between the following name structures [Hauzeur 1986]:

a) Flat name: the names of all entities are unstructured elements of a specified context,
the name space.

b) Partitioned name (or compound names): a concatenation of flat names, describing a
context, a sub-context, a sub-sub-context and so on until the entity is identified.

Partitioned names are useful in a distributed system, since a section of the name can be
used to identify the context, e.g., the particular sub-system, where the name has to be
resolved.

Names can be static or dynamic. A static name implies that the name is always associated
with the same entity. A dynamic name means that the assignment of names to an entity
can vary over the lifetime of the system. However, at any instant, a dynamic name refers
to a particular entity out of the selected context. Radia and Pachl have investigated how
the context for resolving names is selected [Radia and Pachl 1993]: “For a given name n,
what context c should be used to yield the correct entity c(n)? An implicit context is
needed whenever a name is resolved. An implicit context cannot be avoided, because
whenever a context is specified explicitly by a name another implicit context is needed to
resolve that name; therefore one implicit (nameless) context is needed whenever a name is
resolved.”

[Saltzer 1978] investigates some of the issues that have to be resolved if two or more
parallel and independently operating naming systems are asked to cooperate coherently
with each other. These issues are:

a) Sharing objects between systems that have different name space designs.

b) The effect on naming of moving an object from one system to another system.

c) Naming and consistency of replicated objects.

In principle, there are two possible approaches to extending the naming schemes of
autonomous legacy systems to support limited interactions in a federated environment
[Radia and Pachl 1993]:

a) The establishment of cross-links between the local naming graphs in order to create an
encapsulated subset of shared entities that can be accessed from both systems.

b) The generation of a new, united name space by the hierarchical integration of the name
spaces of the existing legacy systems. This is the approach of the Newcastle
Connection [Brownbridge et al. 1982].

For the DSoS Project, alternative (a) seems to be more appropriate, because we do not
want to expose all names of a legacy system to the other component systems in the system

Interface and Connection Characterization Final Version of DSoS Conceptual Model

44

of systems, but rather restrict the interaction to a well-defined context of shared entities.
The problem of how to design name spaces in order to support controlled information
transfers across linking connections in a DSoS is an important research topic in the DSoS
Project [Jones et al. 2002].

There are many different types of entities that are named in a computer system: hardware
units, memory references, files, data records, variables, programs, etc. (Some of these
entities take the role of a container, the contents of which change dynamically, e.g., a
variable.) In a system of systems, where it is assumed that the component systems have
been developed independently, the same name can — and probably will — carry a
different meaning in each one of the component systems. Coherence in naming is
essentially impossible to achieve in a system of systems.

When investigating high-level interface issues (HLII), the relationship between a name
and its meaning in human communication becomes an issue [Hayakawa 1990]. In natural
languages a name often refers to a concept. According to [Vigotsky 1962], a concept is a
consolidated unit of thought that abstracts and characterizes an aspect of reality. If a
variable name denotes a concept, the associated variable value signifies a particular
instance of that concept. A variable can then be considered as representing an indicative
proposition, e.g., temperature!=!20 means “the temperature is 20 (degrees Celsius)”. Many
natural languages support syntactic forms to express the subjective truth-value of a
proposition (conjunctive, subjunctive) and to place the proposition in the temporal context
(tenses). The limited awareness of the temporal validity of information in many computer
systems is a cause for many inconsistencies and failures. The notion of a (timestamped)
observation (see Section 3.2) tries to make this temporal aspect explicit.

The relationship between variable names in programs and concepts in the natural language
of the programmer is exploited by [Caprile and Tonella 1999] to gain an understanding of
the meaning of legacy software.

The explicit inclusion of a flat name in a message leads to the formation of an atomic unit
that can be interpreted in any context that can resolve these names. This requires, however,
that the context of message names is global to all communicating partners and entails the
following consequences:

a) If incoherence in naming is to be avoided, the size of the name space for message
names can become huge in large systems. This can cause inefficiencies if small data
structures are communicated.

b) One cannot encapsulate communication, i.e., avoid the possibility of interference
between communications that are occurring among one set of component systems, and

Final Version of DSoS Conceptual Model Interface and Connection Characterization

45

communications among a second separate set of component systems, unless there is a
coordinated scheme of name allocation.

c) The architectural rule of including a flat name in every message cannot be enforced on
legacy systems.

The designers of CAN (control area network [CAN 1990]) decided to follow this
approach. However, it soon became apparent that the originally-provided name space in
CAN would have to be expanded. Still, naming incoherence can normally not be avoided
if multiple CAN domains are deployed in a large system.

Example: Consider the case where the internal parameters of a component
system have to be changed by a diagnostic message from a maintenance access
point. If the namespace is unstructured, then all other component systems must
be designed such that this (internal) diagnostic message name is different from
the message names of all other component systems.

4.2.2 Interaction styles

Component systems may communicate using different patterns of interaction. For
example, a travel agency may send a query to an airline’s flight database and wait for its
response. An engine controller in an automobile might raise an interrupt informing all
onboard systems that the engine temperature is too high. We classify these forms of
coordination of the computational activities of distributed component systems into
interaction styles [Garlan et al. 1995].

4.2.2.1 Client-server interactions

The client-server model is a popular approach for organizing software across distributed
platforms. In its basic form, (human) users interact with clients, which contact the servers
to ask for computationally-intensive or data-intensive services [Hauswirth and Jazayeri
1999]. This model is based on request-reply interactions between the client and server,
which are normally one-to-one and synchronous.

The interaction style of client-server systems may be connection-based, in that a state is
shared between a client and a server and is modified by their interactions. Conversely, as
in basic web-based systems, the interaction may be connectionless in that no state
information concerning clients is kept by the server between interactions. The
management of state dependencies between interactions is in this case delegated to the
clients by means of cookies, or, less elegantly, through hidden fields in post requests.
Alternatively, the server can manage a connection-based interaction by means of a session
identifier encoded in the page URL.

Interface and Connection Characterization Final Version of DSoS Conceptual Model

46

In the basic client/server model, clients have a fixed, pre-allocated knowledge of the
identity of the servers. Improved flexibility is provided by the use of a naming service or a
trading service, which allows the identity of the most appropriate server to be determined
dynamically.

Client-server interactions can be implemented by remote procedure calls (RPC) or by
remote method invocations (RMI).

Remote Procedure Call (RPC)

In the remote procedure call (RPC) form of interaction, the arriving message causes the
activation of a remote procedure (information push) at the receiving component system. In
the Distributed Computing Environment (DCE) of the Open Software Foundation [OSF
1992], remote procedure calls are proposed for communication across heterogeneous
platforms. Since the RPC glue can be generated automatically by the middleware, neither
the sender nor the recipient needs to be aware of the remoteness of the call (if the temporal
aspects are disregarded). This transparency, which makes RPC calls look similar to local
procedure calls, hides the fact that the sender and the recipient may reside in different
error or fault containment regions. The performance cost penalty of an RPC over a local
procedure call can be of the order of more than a thousand [Szyperski 1998]. The World
Wide Web Consortium (W3C) is currently working on the Simple Object Access Protocol
(SOAP) for defining remote procedure calls in an Internet setting.

Remote Method Invocation (RMI)

The main difference between an RPC and a remote object method invocation lies in the
late binding of the code to the call. An object instance is identified by a unique object
reference (name) that can be created dynamically immediately before the call to the
object’s method.

Method calls can be implemented above an infrastructure that implements remote
procedure calls. IBM’s System Object Model (SOM) provides a runtime system that
dynamically selects the methods to be called on top of an RPC infrastructure [Forman et
al. 1985].

The most prominent standard for object-oriented computing is the CORBA 3 standard
developed by the OMG and described in much detail in [Siegel 2000]. The OMG has
introduced a special language, the interface definition language (IDL), to specify the
syntax of the externally visible interfaces of objects. There exist mappings from IDL to
many of the standard programming languages (C, C++, Java, etc.) to support distributed
computations in heterogeneous environments.

Final Version of DSoS Conceptual Model Interface and Connection Characterization

47

In the object-oriented world of CORBA, an incoming message can dynamically create a
new object by a method call to an object factory. The object factory instantiates the new
object dynamically and returns the unique object reference to the caller. By referring to
this object reference, the caller can then invoke methods of the newly created object
remotely [Siegel 2000].

Other environments for remote method invocation include Microsoft’s Distributed
Component Object Model (DCOM) and JavaSoft’s Java/RMI.

4.2.2.2 Publish/subscribe

In the publish/subscribe interaction style (which is also referred to in the literature as
implicit activation), interactions are modeled as asynchronous occurrences of, and
responses to, events. Systems do not communicate with each other directly but use a
publication mechanism to announce that an event has occurred and a subscription
mechanism to be informed about the occurrence of events. This interaction style provides
a decoupling between component systems:

• Space decoupling: producers do not need to know who has subscribed to their
events, which in turn allows consumers to remain anonymous.

• Time decoupling: subscribers do not need to be alive at the instant the events are
produced.

This reduces the static dependencies between component systems, and facilitates system
evolution, but at a cost in computational predictability. Indeed, the announcer of an event
does not know who will receive this event, in which order it will be delivered to
subscribers, and is not informed when they finish handling the event.

The publish/subscribe interaction style depends on the existence of a middleware
infrastructure responsible for propagating events from producers to consumers, and for
managing subscriptions to classes of events. Different implementations of this
infrastructure are possible, depending on the sophistication of the subscription
mechanisms that are made available, and on the topology of the underlying
interconnection network. For example:

• The multicast mechanisms in the Internet Protocol implement channel-based
subscription. A channel is associated with a multicast group, which is identified by
a network address.

• USENET, and its underlying NNTP protocol, implements a subject-based
subscription mechanism on top of a hierarchical client/server topology. A subject
identifies a single newsgroup (such as comp.object.corba), or a family of

Interface and Connection Characterization Final Version of DSoS Conceptual Model

48

newsgroups (such as comp.*). A USENET site receives all articles belonging to
the subjects to which it is subscribed.

• Messaging-oriented middleware such as IBM’s MQSeries‚ provide reliable
message queues. These queues are a form of channel-based subscription.

• The CORBA Event Service [OMG 2000b] defines a publish/subscribe model for
inter-object communication that complements the traditional one-to-one RMI
semantics of CORBA method invocations. An architectural element called an
event channel mediates the transfer of events between the suppliers and consumers
as follows:

o The event channel allows consumers to register interest in events, and
stores this registration information.

o The channel accepts incoming events from suppliers.

o The channel forwards supplier-generated events to registered consumers.

• The CORBA Notification Service [OMG 2000c] extends the point-to-multipoint
delivery semantics communications of the Event Service to provide additional
properties:

o Event filtering, which allows consumers to register only for specific classes
of events. If no consumers are interested in receiving a particular event type
then the supplier will not send the event to the notification channel. This
can significantly reduce the amount of network traffic required to propagate
events, improving the scalability of the service. Event filtering is content-
based, using an extension of the constraint language used by the CORBA
Trading Service. There is a mechanism that allows new consumers entering
the system to discover which types of event are currently available.

o Quality of service characteristics such as delivery guarantees and priorities.
The event aging characteristic allows a supplier to specify a time after
which the notification channel should discard an event because it is no
longer considered timely. Similarly, it is possible to specify an earliest
delivery time for an event. Channels can be made persistent, to ensure
delivery of events across crashes. QoS attributes can be assigned at
different levels of granularity: per event, per channel or per
supplier/consumer. When end-to-end QoS is required, it is the
programmer’s responsibility to ensure that QoS is consistent across the
whole path.

Final Version of DSoS Conceptual Model Interface and Connection Characterization

49

The Notification Service emerged primarily from the needs of the
telecommunications industry.

4.2.2.3 Multipeer

Another style of interaction is multipeer, conveying the notion of spontaneous, symmetric
interchange of information, amongst a collection of peer entities. No component system is
privileged with respect to its peers, and there is little or no centralized coordination. This
paradigm appeared as early as in [Powell et al. 1988] where it is called multipoint
association. Multipeer interaction is the kind of interaction one might wish among
managers of a distributed database or a group of servers. Communication requirements
may be heavy in ordering and reliability requirements, and a notion of composition or
membership may be required (for example, to provide explicit control over who is
currently in the group). Again, the highly interactive nature of the multipeer style of
interactions prevents per se the number of participants in real applications from exceeding
the small-scale threshold [Veríssimo 2000].

Peer-to-Peer

The peer-to-peer interaction style is a form of multipeer interaction characterized by
opportunistic interactions. It has emerged in an Internet setting [Clark 2001], where many
systems have intermittent connections to the network. This form of interaction places a
strong emphasis on discovery protocols, since a peer entering the network has little
information on the existence of other peers and of the services they may be offering.
Popular examples of this form of interaction are instant messaging systems such as AIM,
and the notorious file-sharing systems Napster and Gnutella.

Another, more ambitious, example of peer-to-peer interaction is Freenet [Clarke et al.
2000], a distributed file storage and retrieval system that addresses a number of reliability
and privacy failings of the Internet protocols. Indeed, while the Internet is often cited as an
example of a distributed, decentralized and robust architecture, this is only true to a
limited extent. The naming system used on the Internet constitutes a single point of failure,
and the common publication protocols are lacking certain dependability attributes.

Naming on the Internet is managed by the Domain Name System (DNS), a hierarchical
distributed database which maps from symbolic names to numerical addresses. Though it
is distributed, the DNS is centrally controlled (there are a limited number of top level
domains), provides limited protection against malicious updates, and has even proven to
be liable to fail due to operator error during routine maintenance [Wayner 1997].

Publication systems such as the Web, while very popular, present several disadvantages
from a dependability point of view:

Interface and Connection Characterization Final Version of DSoS Conceptual Model

50

• No built-in mechanism for load balancing: techniques such as caching and
mirroring are not transparent to clients.

• Little privacy support: the publisher of a document can determine which clients
have requested the document, and when.

Freenet addresses these reliability and privacy problems by implementing a new layer of
routing above IP which abstracts from the location of information. It is an adaptive peer-
to-peer network of nodes that query one another to store and retrieve files. The files are
named by location-independent keys.

Each Freenet node has some local storage that it makes available to the network for
reading and writing, and knows of the existence of a number of other nodes in the system.
If it receives a request for a file that it does not have locally, it will forward the request to
the peer node it thinks is most likely to have that file. When the file is found, it is passed
back to the requestor through the chain of proxies (each of which notes that the file is now
likely to be available from the requestor). Thus information will tend to migrate towards
the nodes where it is most often accessed.

The algorithms for routing requests are designed to be efficient while only requiring local
knowledge (which is necessary, since no node is privileged with respect to its peers). A
request is presumed to have failed if it has exceeded a certain number of hops. There is no
hierarchy or central point of failure. Freenet can be seen as a cooperative distributed file
system providing location independence and transparent lazy replication.

4.2.2.4 Data passing via a repository

Another form of interaction between component systems is based on the establishment of
a shared memory space that can be accessed by all interacting partners. The sender writes
data into the shared memory and it is up to the recipient to decide when to read this data
(information pull). To avoid the mutilation of data due to concurrency conflicts, specified
atomicity properties must be maintained by the repository (e.g., mutual exclusion for the
access of a record). Examples of this form of interaction include:

• Distributed filesystems such as NFS: no constraints on control propagation are
necessary for multiple readers. Constraints on control propagation to provide
mutual exclusion for multiple writers is assured by a locking protocol.

• AI-type blackboard architectures: a number of knowledge sources interact via a
shared data structure. The knowledge sources make changes to this blackboard that
lead incrementally to a solution to the problem. Control propagation is driven by
the state of the blackboard, which triggers activity of knowledge sources.

• Database architecture: data is contained within a number of collaborating

Final Version of DSoS Conceptual Model Interface and Connection Characterization

51

component systems. Control propagation to component systems is triggered by
incoming requests.

The temporal firewall model is destined for hard real-time systems. Central to the
temporal firewall model is a global time base, available at every node of the distributed
system, and a data structure that resides in the communication memory of each node
[Kopetz and Nossal 1997]. We distinguish between an input firewall and an output
firewall. In an input firewall, the shared data structure at the recipient’s site contains state
information that must be periodically updated by the producer at instants that have been
established a priori. The temporal properties of the data at the instant of update, e.g., the
temporal accuracy of the data, must be precisely defined. In an output firewall, the shared
memory must contain a temporally specified data structure at periodic a priori defined
output instants. At an output instant, the output data is copied and sent to the recipient’s
input firewall by the communication system. The temporal firewall is a strict data-sharing
connection interface without any control signal crossing the firewall. Control error
propagation from one component system to another via a temporal firewall is thus
impossible by design.

4.2.3 Dependability attributes of interactions

A system may rely on various non-functional characteristics of the interactions it has with
other component systems. For example, a braking system will depend on the time it takes
for a “brake” request to propagate to the wheel controllers.

4.2.3.1 Timing guarantees

For real-time systems, the temporal characteristics of an interaction will be important. The
timing properties of a client/server type interaction depend on the timing guarantees
provided by the communications infrastructure and on the time required by the server
system to handle the request. These timing guarantees can be decomposed into latency and
jitter.

4.2.3.2 Delivery guarantees

The reliability of the communications infrastructure is an important factor in the
dependability of the overall DSoS. Some communication protocols may not provide
delivery guarantees concerning the non-loss of messages, or their order of delivery.

4.2.3.3 Transactions

Transactions provide the capability of performing multiple actions encapsulated with
certain reliability guarantees. There are three candidates for a transactional interaction

Interface and Connection Characterization Final Version of DSoS Conceptual Model

52

style – atomic transactions, conversations and coordinated atomic actions!– each providing
different guarantees [Veríssimo 2000]. Atomic transactions are a well-known structuring
mechanism that are best suited to competitive interactions. Atomic transactions guarantee
the properties of atomicity, consistency, isolation and durability (ACID). The three major
currently-available distributed object environments (Corba, COM, and Enterprise Java
Beans) all offer transactional services [OFTA 2000].

Conversations [Campbell and Randell 1986] are traditionally used for cooperative systems
and employ coordinated exception handling for tolerating faults. Coordinated atomic
actions (or CA actions) [Xu et al. 1995; Xu et al. 1999] are a structuring mechanism that
integrates and extends conversations and atomic transactions. The former are used to
control cooperative interactions and to implement coordinated error recovery whilst the
latter are used to maintain the consistency of shared resources in the presence of failures
and competitive concurrency. Coordinated exception handling is supported by distributed
exception resolution algorithms [Xu et al. 1998].

4.2.4 State persistence

We define a ground state of a node in a distributed system at a given level of abstraction as
a state where no task is active and where all communication channels are flushed, i.e.,
there are no messages in transit [Ahuja et al. 1990]. Consider a node that contains a
number of concurrently executing tasks that exchange messages with each other and with
the environment of the node. Let us choose a level of abstraction that considers the
execution of a task as an atomic action. If the executions of the tasks are asynchronous, the
situation depicted in the upper section of Figure 3 can arise; at every point in real time,
there is at least one active task, thus, implying that there is no point in real time when the
ground state of the component system can be defined.

A ground state is a declared state of a component system assuming all tasks are inactive
and no messages are in transit. Thus, strictly, a system can have a number of ground states.

Final Version of DSoS Conceptual Model Interface and Connection Characterization

53

Figure 3 — Task Executions: without (above), and with (below) ground state

In the lower part of Figure 3, there is an instant where no task is active and all the
communication channels are empty, i.e., where the system is in the ground state. If a
component system is in the ground state, then the internal state of the component system is
contained in its data structures and the program counter. The reintegration of a component
system after a failure is simplified if a component system periodically visits a ground state
that can be used as a reintegration point.

In many large legacy systems, it is not possible to come across an instant where the system
is in a ground state. If these systems are structured according to the object paradigm,
where methods and states are encapsulated in objects, it may be possible to declare a
persistent state for each object or at least for the objects that are visible at the LIFs. In
some applications, it might be sufficient to deal only with the persistent state that is visible
from the LIF. In their most recent versions, the CORBA Common Object Services
(CosServices) specify several services that are related to object persistency. The Persistent
State Service [OMG 1999] for instance allows the user to define the declared state of so
called “storage objects” using an extended version of IDL (the Persistent State Definition
Language, PSDL). The code for these storage objects is then generated automatically in
the same way as stubs and skeletons are generated from their IDL descriptions. The
Externalization Service [OMG 2000a] on the other hand defines interfaces like the
Streamable interface, which are to be implemented by the application programmer in order
to be able to store an object’s state. Furthermore, FT-CORBA [OMG 2000d], which is a
specialized version of the CORBA specification targeting fault-tolerant applications,
defines a similar Checkpointable interface. The Checkpointable interface has two
methods, get_state() and set_state(), both of which are intended to be implemented by the
application programmer.

Task A

Task B

Task C

Task A

Task B

Task C

Real timeGround state

Real time

Interface and Connection Characterization Final Version of DSoS Conceptual Model

54

4.3 Low-Level Interface Issues

Issues relating to the transport and the syntactic representation of information are
considered as low-level interface issues (LLII). In particular, the following topics are
among the LLII:

a) Issues of data representation (e.g., byte order)

b) Transport timing

c) Flow control

Although there are interdependencies between the HLII and the LLII, the HLII focus on
the semantic, pragmatic and!— in real-time systems!— the temporal aspects of the
information processing within a component system, while the LLII are concerned with the
transport and representation of the information. Real-time aspects are important at both
levels: low-level transport timing needs to be carefully considered to ensure high-level
temporal properties.

In the following, we analyze the transport and timing of a single message between two
component systems A and B residing on different sites. These are represented in Figure 4
as application components A and B. The application components interact through a
network by means of local communication components. A communication component
may, for example, be a hardware communication controller such as that used in the time-
triggered protocol (TTP) [Kopetz et al. 1999], a CORBA object request broker (ORB), or
an HTTP server.

Figure 4 — Transport model between two application components on different sites

communicatio

n

component A component B

communicatio

n
component

applicatio

n

applicatio

n

component

BL

communication network

BL

BL

communication infrastructure connection system

site of A site of B

Final Version of DSoS Conceptual Model Interface and Connection Characterization

55

Comparing Figure 4 with Figure 1, page 33, it is interesting to note that the
communication infrastructure, consisting of the two communication components and the
intermediate network, can be viewed as a sort of connection system, the conventions of
which must be adhered to at each extremity by application components A and B. CORBA
provides an example of such a connection system, in which the communication
components are the object request brokers (ORBs) and the common conventions are
specified as interfaces through the CORBA interface definition language (IDL).

Each application component of Figure 4 is interfaced across a boundary line to a
communication component that connects across another boundary line to the
communication network and, if needed, to an intermediate connection system (Figure 5).

Figure 5 — Transport via an intermediate connection system

The communication components contain memory for the temporary storage, during
transmission and acquisition, of communicated data structures. The inclusion of such
communication memory in the transport model is justified by the following arguments:
• Time-to-Space Mapping: During the transmission of a message, data and control are

inextricably linked. In serial communication, for example, it takes some time to

assemble the arriving bits into the message data structure. The focus of interest in real-
time systems of systems is on the message data structures and the associated control

signals that mark the start and end of message transmission (and not on the sequence

of the individual bits of a message). We therefore need a communication memory to
accumulate the message data structure out of the incoming bit stream and to act as an

information source for the outgoing bit stream.

BL

BLBL

BL

applicatio

n
component A

applicatio

n
component B

communicatio

n

connectioncommunicatio

n
system componentcomponent

site of Bsite of A

Interface and Connection Characterization Final Version of DSoS Conceptual Model

56

• Design of Existing Hardware Controllers: If we look at the design of existing

hardware interfaces, e.g., commercial communication controllers, we always find a
memory block associated with the communication controller. Such a memory block is

either part of the communication controller or is dynamically reserved for use by the
communication controller (e.g., a DMA area in the associated host computer).

• Expressive Power of the Model: The inclusion of a communication memory in the

DSoS connection model makes it possible to describe the mechanisms of different
connection types within the model. In the following section, we will classify

connection types by the type of data structure in the communication memory and by
the source of the control signals.

A unidirectional data flow takes place if the sending system publishes data in the shared
communication memory at the recipient’s site (i.e., if application component A transfers
the data to the communication memory at B). The data is made available at a given instant.
It is up to the recipient to decide when to access this data after the instant of its
publication.

A unidirectional control flow takes place if the sending system sends a control message to
the receiving system. After accepting the signal, the receiving system checks a shared
communication memory at the recipient’s site to identify the signal and then performs the
intended actions. An example of such a unidirectional control flow is the raising of an
interrupt after a new message has arrived in the communication memory of the recipient.

4.3.1 Transport timing across the interface

The timing of a unidirectional message send and receive operation across the basic
communication interface is shown in Figure 6 and Figure 7 . We describe this timing by
taking the position of the omniscient observer with the absolute reference clock z that can
record the occurrence of the significant events and can assign corresponding absolute
timestamps z(event). It is thus possible to express the duration of relevant intervals in the
metric of the physical second within our model. At event e1 in Figure 6 the application
component starts writing a data structure into the send buffer of the communication
memory and signals the communication component to start transmitting at e2. The
communication component has to wait until e3 before it can start the transmit operation
(e.g., because the channel does not become free before e3). At e4, the transmission of the
message is started at the sender. At e5, the transmission is completed at the receiver.

Final Version of DSoS Conceptual Model Interface and Connection Characterization

57

Figure 6 — Timing of a Message Send Operation

Figure 7 shows the timing of the receive operation. At e6 the start of a new frame arrives
at the communication boundary line. Sometime later, at e7, the communication component
starts the update of the communication memory. This update is completed at e8. During
the interval <e7,e8> the communication controller must have write access to the memory
and any concurrent reading operation will be faulted. At e8 the communication component
signals the application component the arrival of a new message. This data structure is read
by the application component during the interval <e9,e10>. At e10 the transmission is
completed, and the message has been delivered to the application component.

Figure 7 — Timing of a Message Receive Operation

4.3.2 Flow control

Flow control is concerned with the control of the speed of information flow between a
sender and a recipient across a connection in order to ensure that the recipient can keep up
with the sender. In any communication scenario, it is normally the recipient, rather than
the sender, that determines the maximum speed of communication. In the following, two
types of flow control are distinguished: explicit flow control and implicit flow control.

Explicit flow control: In explicit flow control, the recipient sends an explicit
acknowledgment message to the sender, after the successful arrival of a message,
informing the sender that the recipient is now ready to accept the next message. Explicit

component
transmits the

Communication

message
component waits for

p e r m i s s i o n t o

transmit

transmit

Application
component

component
wri tes data

into
signals ready to

Application

communicatio

n
memory

Communication

Time

s i g n a l e d t o

application

memory terminated;
(SOF) arrives at
communicatio

n
component

communicatio

n
memory started

Start of frame
Update of

Update of
communicatio

nmessage arrival

component

Time

z(e1)

memory
communicatio

n

component
accesses data

from

Application

z(e2) z(e3) z(e4) z(e5)

z(e10)z(e9)z(e8)z(e7)z(e6)

Interface and Connection Characterization Final Version of DSoS Conceptual Model

58

flow control is based on the sometimes overlooked assumption that the sender must be
under the control of the recipient, i.e., that the recipient can exert back pressure on the
sender to control the rate of transmission (back-pressure flow control). The most important
protocol class with explicit flow control is the well-known class of event-triggered
Positive-Acknowledgment-or-Retransmission (PAR) protocols. This protocol class relies
on the following principles:

a) The client at the sender’s site initiates the communication at an arbitrary instant.

b) The recipient has the authority to delay the sender via explicit flow control across the
bi-directional communication channel.

c) A communication error is detected by the sender when the expected acknowledgment
signal does not arrive in the specified time window. The recipient is not informed
when a communication error has been detected by the sender.

d) Time redundancy (retransmission) is used to correct a communication error, thereby
increasing the protocol latency in case of errors.

Explicit flow control protocols are widely used in distributed systems. Such protocols
differ by, among other attributes, the point in space where the acknowledgement message
originates. If we assume that a message is sent from application component A to
application component B in Figure 4 (page 54), then we can distinguish between the
following four possibilities:

a) The acknowledgement message is sent by the communication component at site A.
This is called a best-effort datagram service. Whenever the network is congested or the
recipient B is unable to accept the message, the message is discarded.

b) The communication component at site B sends the acknowledgement message. The
arrival of the acknowledgement message at the sender informs the latter that the
message has correctly arrived at site B. Communication memory management is under
the control of the communication component of the recipient B.

c) The acknowledgement message is sent after the acceptance of the message by the
application component B. This assures the sender that the recipient is alive and
accepted the message. This alternative is used in CSP [Hoare 1985].

d) The recipient B sends the acknowledgement message after it has processed the
message. This is the semantics of the Ada rendezvous mechanism. This alternative
corresponds to the implementation of an end-to-end protocol [Saltzer et al. 1984]
between sender and recipient. It gives the highest assurance, but the lowest
concurrency.

Implicit flow control: In implicit flow control, the sender and recipient agree a priori, i.e.,

Final Version of DSoS Conceptual Model Interface and Connection Characterization

59

before the communication is started, on the transmission rate and the instants when
messages are going to be sent. This requires the availability of a global time base. The
sender commits itself to sending a message only at the agreed instants, and the recipient
commits itself to accepting all messages sent by the sender, as long as the sender fulfils its
obligation. No acknowledgment messages are exchanged during run time. Error detection
is the responsibility of the recipient, which knows (by looking at its global clock) when an
expected message has failed to arrive. In implicit flow control, the number of messages
that must be delivered by the communication system is always constant. Communication
is unidirectional because there is no need for a return channel from the recipient to the
sender. Thus, implicit flow control is well suited to multicast communication.
Publish/subscribe protocols and time-triggered protocols (such as TTP [Kopetz et al.
1999]) are based on implicit flow control.

As already indicated, a prerequisite for implicit flow control is the availability of a global
time base at sender and recipient. Implicit flow-control is best suited for periodic traffic
patterns.

The following table (Table 3) compares the characteristics of explicit and implicit flow
control:

Explicit Flow
Control

Implicit Flow
Control

Best suited for sporadic traffic periodic traffic
Control flow bi-directional unidirectional
Multicast topology difficult simple
Error detection at sender at recipient
Error detection latency large small
Interface complexity higher lower

Table 3 — Characteristics of explicit and implicit flow control

4.3.2.1 Management of communication memory

Existing communication protocols differ in the way they manage the memory for outgoing
and incoming messages. We can identify two ways by which communication memory is
managed:

Enqueue/dequeue: If the transmitted information contains non-timestamped event
observations, an exactly-once semantics must be implemented by the communication
protocol, because the reception of such information is non-idempotent. Event information
is information on the state change of a variable. This requires a strict synchronization of

Interface and Connection Characterization Final Version of DSoS Conceptual Model

60

the sender and recipient, i.e., every message sent must eventually be consumed. The
message data structures in the communication memory are queues, where the sender
enqueues a new message and the recipient dequeues this message. Enqueue/dequeue
protocols require explicit flow control and consequently a bi-directional communication
channel, even if only a unidirectional data transfer takes place. Multicast communication
is difficult to implement with enqueue/dequeue protocols. Many of the explicit flow-
control protocols use the enqueue/dequeue model. The enqueue/dequeue model is well
suited for systems that have a point-to-point topology and implement information push.

Copy/update-in-place: If the transmitted information contains state information, then the
sender can copy a message out of a single send buffer that is updated either periodically or
whenever a state change occurs, and the recipient can update-in-place the old version of a
message by the new version. The processing of sender and recipient does not have to be
strictly synchronized, i.e., the recipient is free to decide when to read the state information,
it can read it never, once, or many times, because state information is idempotent. The
copy/update-in-place model matches well with implicit flow control. This model is well
suited for systems that implement a multipoint topology and the information pull model
[Deline 1999], e.g., reading a shared variable or a shared file.

4.3.3 Basic DSoS transport mechanisms

The following two transport mechanisms, event messages and periodic state messages,
form the basis of the DSoS conceptual model for the transmission of a message from a
sender to a recipient. For a more detailed discussion of the various combinations of
information types (event information, state information) and control methods (external
control, autonomous control) refer to [Kopetz 1997].

4.3.3.1 Event-triggered Event message

An event-triggered event message (or for short, event message) combines a unidirectional
data flow with a bi-directional control flow. Unless event messages are timestamped, they
are not idempotent, so exactly-one semantics is required. A typical means of implementing
these semantics is to use a message queue, with bi-directional control flow between the
sender and recipient to ensure that the queue data structure does not overflow. As soon as
the message data structure containing the event information is available in a
communication memory at the recipient’s site, the communication component sends a
signal to the receiving system to inform the receiving system that a new message data
structure is available (information push). Since there is only a finite buffer space, the
recipient must when appropriate send a control handshake signal back to the sender in
order to inform the latter that the message has been consumed and that buffer space has
been made available again (back pressure). Event messages are used, for instance, in

Final Version of DSoS Conceptual Model Interface and Connection Characterization

61

client-server protocols.

4.3.3.2 Periodic state message

A periodic state message sequence is characterized by a periodic unidirectional data flow
into a shared memory data structure in the communication memory. Flow control is
implicit. The recipient accesses this data structure based on its local schedule (information
pull). Since a state message contains state information, a new version of a state message
updates-in-place the current version of the state message and no strict synchronization
between sender and recipient is required. It is up to the recipient to decide when to read
the message, how often to read the message, or not to read it at all. Accessing a state
message at the interface is similar to the accessing a variable in memory (we assume that
read and write operations are atomic).

The following table (Table 4) compares the characteristics of these two transport
mechanisms.

Event messages are sent sporadically, triggered by the irregular occurrence of events.

Event Message Periodic State Message
Information event information state information
Flow Control explicit implicit
Communication
Memory

message queue shared variable

Synchronization strict loose
Interaction type information push information pull
Main usage for client-server protocols real-time state variables

Table 4 — Characteristics of the transport mechanisms:
Event Message and Periodic State Message

From the point of view of coupling across a connection, the state message model results in
the minimum coupling between sender and recipient. Indeed, this is consistent with the
observation that asynchronously exchanged messages increase system modularity [Pnueli
1986]. State messages, like non-blocking invocations, avoid control propagation through
component interfaces, thus improving error-confinement and decreasing interdependencies
between a system’s components.

Interface and Connection Characterization Final Version of DSoS Conceptual Model

62

4.3.4 Integration of event-triggered and time-triggered operation

The DSoS conceptual model distinguishes between three different types of interfaces, as
described in more detail above (Section 4.1): the service interface, the diagnostic and
management interface, and the configuration planning interface. These interfaces serve
different functions, have different operational characteristics, provide access to different
views of a system and, in large systems, may connect to different management domains.
From the point of view of composability of services, only the characteristics of the service
interface are relevant.

In real-time systems, the service interface can be time-triggered (TT), while the other two
interfaces can be event-triggered (ET). In order to provide access to these interfaces on a
single physical communication channel, the operation of event-triggered and time-
triggered services must be integrated in such a way that the characteristic service
parameters of the time-triggered interface are maintained (see also Section 4.3.3). These
characteristic service parameters relate to the temporal properties of known delay and
minimal jitter.

There exist three different alternatives for the integration of ET and TT services, as
depicted in Table 5. The first alternative, the provision of a basic ET service at the
transport layer and the implementation of the TT service on top of the ET layer is
implemented in a number of industrial CAN systems that are used for real-time control
[Führer et al. 2000]. In order to reduce the jitter at the critical instant, i.e., when all nodes
access the network simultaneously, these systems are normally operated with a very low
bandwidth utilization. However, even under these circumstances it is not possible to
guarantee a small jitter, which is important in control applications. Another alternative is
the implementation of the ET service on top of the TT service. This alternative provides
temporal composability [Kopetz and Bauer 2003] and the required jitter guarantee at the
transport level. It is, however, not possible to globally share the bandwidth for the ET
traffic. The third alternative is a combination of ET and TT media access protocols. In this
alternative, which is implemented in the FIP protocol [Kopetz and Bauer 2003], the
timeline is partitioned in two alternating intervals for the TT traffic and the ET traffic. In
the TT interval media access is controlled by a TT protocol and in the ET interval media
access is controlled by an ET protocol control. The advantages of temporal predictability
for the TT traffic and global bandwidth sharing of the ET traffic are bought by an increase
in protocol complexity and a loss of temporal composability of the ET traffic.

Final Version of DSoS Conceptual Model Interface and Connection Characterization

63

Characteristic TT on top of ET ET on top of TT ET and TT in

parallel

Basic Service TT operation ET operation one slot TT,

another slot ET

Media access TT protocol ET protocol ET and TT
protocol

Global sharing of
bandwidth

yes no no for TT
yes for ET

Temporal
composability

difficult, since

global bandwidth
allocation

yes yes for TT part,

no for ET part

Jitter large (critical

instant)

small small for TT,

large for ET

Examples CAN TTA FIP

Table 5 — Alternatives for the Integration of ET and TT Services

For embedded real-time control systems, DSoS has selected the middle alternative of
Table 5, ET on top of TT, as the preferred alternative, because it supports temporal
composability for the ET and TT traffic. In this alternative, event message channels are
constructed on top of the basic time-triggered communication service by assigning an a
priori specified number of bytes of selected time-triggered messages to the event-triggered
transport service. These periodically transmitted bytes form a dedicated communication
channel for the transmission of the dynamically generated event information. In order to
implement the event semantics at the sender and receiver, two message queues must be
provided in the CNIs: the sender queue at the sender’s CNI and the receiver queue at the
receiver’s CNI. The sender pushes a newly produced event-message on the sender queue,
while the receiver must check the receiver queue to pull and consume the event message.
An alternative design could produce an interrupt whenever a new event message arrives at
the receiver, but such a design is not recommended since it violates the principle of
providing an information pull interface at the receiver and could interfere with the
principle of stability of prior services (by providing more interrupts than a node can
handle).

At the conceptual level, four interfaces are provided at every node: input and output
interfaces for state messages (update-in-place on input, no consumption on output) and
input and output interfaces for event messages (input queue and output queue) as depicted

Interface and Connection Characterization Final Version of DSoS Conceptual Model

64

in Figure 8 . State messages and event messages are stored in the memory element of the
DSoS interface model.

Figure 8 — Model TT-ET Interface

In most real-time architectures, the basic communication service is a broadcast service
(e.g., in CAN and TTP) that connects the n nodes of a cluster. Every transmitted event
message thus generates (n-1) event messages at (n-1) receivers. To handle these message
showers, two additional services should be provided by the middleware to avoid a queue
overflow at the receiver: a filter service and a garbage collection service. The filter service
selects the incoming event messages according to filtering criteria established by the
receiver and accepts only those event messages that pass the filter. The garbage collection
service eliminates decayed event messages from the receiver’s queue based on the age of
the message. A maximum queue-storage duration is assigned to each timestamped event
message for this purpose. After this duration has elapsed, the message is eliminated from
the receiver queue. The event-message channels are used in the TTA to implement the
non-time-critical DM and CP services. It is possible to implement widely-used event-
based protocols, such as TCP/IP or CAN, on the TTA event channels [Obermaisser 2002].

Event message channels should not be used for time-critical or safety-critical functions. In
case of a rare-event peak-load scenario, the event-message service may be delayed or
stopped in order to maintain the safety-critical time-triggered service. It follows that the
host tasks servicing the event channels are best scheduled according to the “best-effort”
paradigm. Care must be taken that any software interaction between the event-service and
the safety-critical time-triggered service inside the application software of the host is fully
understood and no negative consequences on the replica determinism of the time-triggered
service can occur.

4.4 Ideal characteristics of LIFs

Each of the following LIF characteristics facilitates development and/or verification of
dependable SoSs. These characteristics are not obligatory, and indeed some – which are
indicated – are targeted at safety-critical real-time systems. Section 5.3 provides examples
of how some of these characteristics benefit SoS development and verification.

TT
Control

Push

Pull

Host A
State

Message
State

Message

Pull

Push

 Host B

EventsEvents

Final Version of DSoS Conceptual Model Interface and Connection Characterization

65

4.4.1 What does ‘ideal’ mean?

The ultimate objective is the development and verification of dependable systems of
systems. LIFs are central to these activities, for two reasons:

1) LIFs are critical for the emergent services of a system of systems, and to their
dependability, since these are realised by the interaction of component systems at
their LIFs;

2) LIF specifications insulate SoS-level considerations from component-system-level
considerations.

Good LIF specifications allow SoS design and verification to proceed under the
assumption that suitably verified component systems will be provided (either developed
afresh, or pre-existing and perhaps then wrapped); and they allow engineers to provide
component systems, and verify them against their LIF specifications, without depending
on any particular SoS design. Ideal LIF properties facilitate this decoupling of SoS and
component system considerations.

The ‘ideal’ LIF characteristics are presented according to how they support composability
of component systems into systems of systems.

Four ‘Principles of Composability’ are identified in [Kopetz 2002c] as ideal characteristics
of composable architectures. In the terminology of the DSoS Conceptual Model, these
principles are (1) Independent development of component systems, (2) Stability of prior
services, (3) Performance of the connection systems, and (4) Replica determinism.

The temporal domain of SoSs is similar for different application domains. This similarity
allows generic rules, such as the above principles of composability, to be formulated. In
turn, these rules help explain some ideal LIF characteristics, identified below. However,
we have not identified generic rules for the value domain – composability in this domain
depends very much on the application. The ideal LIF characteristics described below focus
mainly on temporal composability.

Even so, one “golden rule” can be formulated for the design of ideal LIFs (irrespective of
the domain): to understand the operation of a component system at a LIF, it should only be
necessary to understand its interfacing component systems and not the whole SoS. This
reduces the complexity of cognitive perception, because to understand a SoS it is then only
necessary to understand the individual interfaces and components. By this rule, a pre-
defined communication schedule is preferable to a priority scheme.

Many of the characteristics described below can be justified on the grounds that they lead
to simple interfaces. This is clearly helpful for human understanding, and so for design. It
also simplifies formal verification, as explained in Section 5.3 below.

Interface and Connection Characterization Final Version of DSoS Conceptual Model

66

4.4.2 Independent development of components

For independent development of the component systems of a SoS to be possible, based on
some set of component system specifications, these specifications must include all their
behavioural information that is relevant to the SoS design. As well as allowing component
systems to be developed independently of each other, such specifications allow
verification of the design to proceed independently of the development of the component
systems.

Of course, development can proceed top-down, bottom-up or as some mixture of these
paradigms. Construction of suitable component system specifications is the responsibility
of the SoS designer if development is top-down. In bottom-up development the component
system specifications may be available before SoS design begins. SoSs are likely to be
made from existing component systems, though the SoS designer will be free to design
and implement new connection systems.

LIF specifications should together fully specify component system service insofar as is
relevant to correct operation of the SoS – they will then insulate SoS design from
component system development (where component systems are not already available),
since all issues related to the composition of a set of component systems can then be
investigated with reference to only the LIF specifications of the component systems
without any knowledge of their internal structure and operation (Section 4.1).

Of course, LIF specifications should be clear and unambiguous.

Time is fundamental to the DSoS Conceptual Model. By definition LIFs must be specified
in both the value domain and the temporal domain.

It is helpful if component systems (perhaps wrapped) provide distinct interfaces for
separable services; this helps disentangle unrelated functions and so simplifies SoS design
and verification. For this reason it may be helpful if separate service specifications are
available for each stakeholder.

Explicitly available interface state allows interfacing systems to have easy access to the
state of a component system, insofar as is relevant to its behaviour at the interface. In
effect, the interface state is a ready-made relevant abstraction of the component system; it
hides irrelevant details and thus simplifies dependable SoS design, since interfacing
systems are saved the effort (and complexity) of deriving the interface state. It is strongly
advisable to make at least some parts of the interface state explicitly available, if only to
help interfacing systems recognise failures of component systems, and take appropriate
action.

Final Version of DSoS Conceptual Model Interface and Connection Characterization

67

LIFs may contain redundancy in the presented interface state, for efficiency reasons and/or
dependability reasons. It may be desirable to group state variables of the interface state, to
allow fast self-restart or efficient re-initialisation of failed peer component systems.

A sparse time model simplifies interface state because time can be abstracted to a
sequence of global times. This gives rise to an observation/action lattice [Kopetz and
Bauer 2003] according to which all component systems act.

4.4.3 Stability of prior services

Importantly, LIFs should be incapable of propagating control errors – it should not be
possible for flow control to be exerted by one system on another through LIFs. This
prevents component system errors contaminating an interfacing component except by
providing incorrect data. Restricting component system errors to be data errors – that is,
not control errors – often simplifies error detection and error handling [Kopetz and Bauer
2003].

4.4.4 Performance of the communication system

Time-triggered, resource-adequate communication, with small transport delay and
minimal jitter, allows temporally accurate RT images to be maintained, which are
necessary for safety-critical real-time SoSs.

Stable delay and low jitter are required for composability (Section 4.1).

Final Version of DSoS Conceptual Model Formalization

69

5 FORMALIZATION

This section discusses the formal specification and verification of dependable systems of
systems. Emphasis is placed on the linking interfaces of component systems within a SoS
– the LIFs of the component systems are central to the specification of each component,
and of course it is via the LIFs that the connections are realised that allow the services of
the SoS to emerge.

Section 5.1 classifies systems of systems as either non-time-critical or time-critical. This
distinction is useful in the subsequent sections. Section 5.2 discusses formal specification
and verification for SoSs in which no particular characteristics of the LIFs are assumed.
This is followed by a discussion, in Section 5.3, of how the various ‘ideal’ characteristics
of LIFs (introduced above in Section 4.4) benefit the formal specification and verification
of SoSs.

Section 5.4 discusses formal specification of LIFs, and also of complete SoSs. A popular
approach to specifying interfaces is the use of an interface definition language (IDL);
CORBA’s IDL is summarised and its suitability for defining LIFs is assessed. The UML-
based architecture description language (ADL) that has been developed within the DSoS
Project is also briefly described.

Other DSoS formalization activities are summarized in Section 5.5.

5.1 The Universe of Applications

The scope of what is viewed as a system in DSoS is very wide (see Introduction, Section
1.2). This in turn means that no single formal notation (nor technique) will cover all
Systems of Systems. This section briefly sets out the distinguishing characteristics of non-
time-critical systems and time-critical systems.

5.1.1 Non-time critical

In some senses, it is confusing to refer to any system as being non-time critical: if a
square-root routine took a hundred hours to compute, it would be unacceptable. So the
overall performance of even a simple operation (or function) is of concern and might be
part of its specification. (Performance issues of this sort are often referred to as non-
functional or meta-functional requirements – this terminology is unfortunate in that
performance is connected in most users’ minds with function and is clearly specifiable and
measurable.) Beyond such simple (non-interfering) operations of systems, there are
concurrent systems which are normally characterised as being non-time critical. As
indicated below, characterising the interference of such systems can be a difficult issue
but, unless the relative rates of progress have a part to play in the specification, a

Formalization Final Version of DSoS Conceptual Model

70

specification can be given which does not require explicit reference to the progress of
time. As indicated below, real-time questions normally become central when the progress
of time in the environment of a system affects the behaviour required of the system. If the
temperature in a nuclear reactor is increasing, it matters how often that temperature is
sampled and when the reaction is damped.

Essentially then, the characterization of a system as “non real time” means that it can be
specified by simpler approaches that are less-constraining in terms of time awareness,
which allow more design freedom. However, time related properties cannot be guaranteed
for the resulting system, so one should not pretend that a system is not time critical if it
actually is. On the other hand, one should strive to identify sub-systems where time can be
discussed as simply as possible

5.1.2 Time critical

It is most common for systems to become time-critical when they interact with the
physical world: a train continues its forward progress (possibly into an occupied section of
track) unless the brakes are applied. A system controlling the train must issue orders in a
timely fashion. In order to do so, the system will also need to obtain information at
sufficient frequency (there is no value in out of date speed or signal status information).

As explained below (Section 5.2.7), the formal specification and verification of time-
critical systems is greatly eased if the system architecture supports a sparse time base (see
Annex 1). A sparse time base allows significant simplification of the formalization
process, as it allows time to be represented by integer values. These integer time values
can be consistently ordered and used by an application. If the architecture includes a
mechanism that provides fault-tolerant clock synchronization, these integer values have a
guaranteed relationship to real time, and this relationship may be exploited for the
purposes of verification.

5.2 Current Approaches to Formalization

There is an extensive literature of formal specification techniques of various kinds. Much
of this literature pre-dates the identification of LIFs as a key concept for specifying real-
time systems and, suitably generalised, for specifying systems of systems in general. This
work is reviewed here and its suitability is considered for SoSs in which no special
characteristics of the LIFs are assumed.

5.2.1 The role of specifications

In nearly all engineering disciplines, there is a need to understand key properties of an
artefact without knowing all of its internal details. A purchaser of a car might be interested

Final Version of DSoS Conceptual Model Formalization

71

in the energy from the engine or in the time to accelerate to various speeds; only those
concerned with design and maintenance will be concerned with the precise dimensions of
the pistons etc.

It is, then, commonplace to say that a specification concerns what a system should do
rather than how this is achieved. Such a specification can serve as an insulation between
those using a system and those building it. If we are ever to achieve a world of re-usable
systems, these systems must be accompanied by specifications. It is also crucial that such
specifications define the semantics (as well as the syntax) of the operations of a system.
How this is to be achieved is of course a matter of debate – one which is tackled below.

The what and the how above can be considered as different levels of abstraction.
Abstractions, and their importance to verification, are discussed in more detail in Section
5.2.3.

So far, the case has been made for specifications of extant systems so that one can
determine whether they fit (possibly after wrapping) a required purpose in constructing a
system of systems.

One particular role for specifications is in the creation of a new system (or the evolution of
an old one). A specification should be used to provide a reference point for development;
otherwise the developer has no way of knowing what is required. Notice that the
qualification of “formal” (specification) has been dropped here: the observation is simply
that there must be some way of specifying what function is required of a system. (It can be
argued that formal specifications have advantages in contracts, but a different argument is
used for formalization below). It is worth heading off two potential objections here. First,
it is easier to talk about the order of specification creation and implementation as in a
“waterfall” diagram although, in nearly all real systems, there will be iteration back to the
specification (and thus to the customer) during the design process. This simplification
makes description easier; it is not a limitation to the approach. Second, enthusiasts of
“open source” development or “extreme” programming might maintain that their systems
are developed without specifications. While there might be some truth in this claim where
the developers of a system are also a subset of the intended user community, it is certainly
not an appropriate model for many sorts of system. In order to reflect the position of such
developers, the arguments for a specification as an insulator between the developers and
an eventual (larger) user community can substantiate the case for understandable
descriptions that avoid the need to understand the internals of a system.

It is widely accepted that the productivity of developers of large systems is not high. One
clear reason for this is the imprecision of informal specifications. Furthermore, much of
the lost productivity comes from undetected mistakes in the early stages of development,
which in turn leads to the scrapping of much work based on flawed early design decisions.

Formalization Final Version of DSoS Conceptual Model

72

Inspections of informal high-level designs all too often concern themselves with trivia
such as grammatical and spelling errors because no formal material exists until code is
available (code inspections –by contrast– are far more effective). One advantage of formal
specifications is that they can support both precise arguments and objections early in the
development process.

Another use of (formal) specifications is the generation of test cases.

The remainder of this section discusses some of the main approaches to formal
specification.

5.2.2 Operations and state machines

So far, we have described systems in terms of the operations they provide (here called the
operation style of description). A common alternative style is to describe systems in the
state machine (automaton) style of description. Depending on the system, the automaton
used may be finite or infinite state, and it may be deterministic or nondeterministic. A state
machine description of a system consists of a set of system states, with transitions between
them (which may be labelled). Such an automaton describes a system that moves between
states along transitions. Transitions may occur in response to inputs (external stimuli), or
when providing outputs, or by internal activity. The particular action (or event) for a
transition may be represented by its label.

A system description in terms of its operations can be cast, instead, in terms of an
underlying state machine: an operation can be thought of as a set of transitions from states
satisfying the pre-condition to states that are related to these by the post-condition. The
state machine is deterministic only when all post-condition relations are functional.
Conversely, any state machine description can be cast in terms of operations: in the
extreme, one might have one operation per transition (though there is a free choice of
operation names, pre-conditions and post-conditions as long as the two descriptions are
equivalent).

This duality between operation style and state machine style descriptions allows us to
move between the two styles as we wish; some of the issues discussed below are most
easily made in terms of one style or the other, but it should be clear that the same points,
suitably translated, apply to both styles.

5.2.3 Abstractions

The idea that any system can be considered at different levels of abstraction is well known
in all scientific and engineering disciplines.

Final Version of DSoS Conceptual Model Formalization

73

A specification can be pitched at any one of many levels of abstraction. A user only
interested in the basic features of a system does not care whether it has an ‘expert’ mode,
but of course an expert user does. There is often a hierarchy of abstraction levels, at each
of which the system can be described in a suitable way for particular stakeholders. At
successively lower levels of abstraction, the stakeholders might, for example, include
basic, intermediate and advanced users, system designers and then software and hardware
engineers. The particular levels of abstraction that are appropriate will obviously depend
on the system, its end-users, and its manner of implementation. Since simple descriptions
are desirable, any system description should ideally omit as much irrelevant detail as
possible: it should ‘abstract away’ from the lower level details without leaving out any
information that is relevant to the stakeholders at this level of abstraction.

Verification very frequently exploits a hierarchy of abstractions: by arguing that each
system description refines (in some sense) that at the level of abstraction above it, one can
argue that the least abstract description of a system refines the most abstract one. A
suitably transitive notion of refinement is needed, which (to be useful) must correspond to
one system description satisfying the more abstract system description (in a well-defined
sense).

Each description is at a particular level of abstraction. The intention with a hierarchy of
abstractions is that each description can be viewed as a specification of the systems
described at lower layers, and as an implementation of the systems described at higher
layers. Thus ‘specification’ and ‘implementation’ are descriptions that have distinct roles.

When discussing hierarchies of abstraction layers, it is often convenient to focus on a so-
called concrete layer and a (higher) abstract layer. Examples are the real world system
and a model of it, respectively. Often, the layers themselves are not located in a particular
hierarchy, in which case the discussion refers to any pair of layers, provided only that the
concrete layer is indeed below the abstract one in some hierarchy.

The suitability of any abstraction from a concrete system to an abstract model is obviously
determined by the uses to which the model is put. To be useful for verification, an
abstraction must preserve enough information for properties of the model to be validly
mapped to properties of the real world system.

A general approach to verifying properties of a concrete system is as follows:

1. map the concrete system (up) to an abstract model;

2. reason about the abstract model to discover some of its properties;

3. map these abstract properties (down) to properties of the concrete system.

Formalization Final Version of DSoS Conceptual Model

74

An example of this approach is the seminal work of [Cousot and Cousot 1977] on abstract
interpretation. They introduced abstraction functions to map from any concrete
description or property up to an abstract one, and concretization functions to map from any
abstract description or property down to a set of concrete ones. Essentially, abstract
interpretation calculates properties of a concrete program by using abstractions and
concretization functions for steps 1 and 3 above and interpreting the abstract program in
step 2.

5.2.4 Model-based techniques

The centrality of the notion of a state in most systems has been discussed in the
Introduction (Section 1) and in Section 3. A system interface then consists of a number of
operations which, optionally8

1. take arguments;

2. depend on the state of the system when the operation begins;

3. transform the state by termination of the operation; and

4. deliver results.

In the case that there is no interference (there is only one operation executing at any one
time and the state of this system is insulated from interference from any other system), it is
a straightforward task to specify each operation. The terminology of VDM [Jones 1990] is
used here but the same points could be made with other formalisms such as B [Abrial
1996] (or with some reservations Z [Hayes 1993]).

A pre-condition is used to record the applicability of an operation. A pre-condition is a
predicate of a state (the initial one) and any inputs. A post-condition describes the valid
outcomes of an operation. A post-condition is a predicate of two states (the initial and final
ones) and all inputs and results. So an operation can be partial and non-deterministic. Each
of these points is worthy of consideration.

One can argue that operations should be made as robust as possible and this would suggest
that pre-conditions should evaluate to true for any inputs and thus require that the
implementer arranges that the code always terminates. In fact, it is very difficult to write
systems that are this general (even for the trivial example of a Stack one can ask what
result should be returned when Popping from the empty stack). In general, a specification
method must permit partial operations to be specified (in fact, VDM allows error clauses

8 Everything that is written here about specifying operations specialises to pure functions simply by dropping

the States.

Final Version of DSoS Conceptual Model Formalization

75

to be specified that enlarge the domain of an operation without clouding the normal post-
condition with strings of implications).

The implementation of an operation is required to terminate for all situations where its
pre-condition evaluates to true, and to yield results (when compared to the starting
situation) for which the post-condition evaluates to true. It is thus easy for a specification
to be written that admits more than one result or final state. This is actually desirable even
when the final implementation is to be a deterministic program. Permitting a range of
results allows design decisions to be postponed. For example, one might say of a storage
management system that it should alloc a free piece of store (of the requisite size) and
postpone the design of free chains etc. (There is a more subtle point about non-
determinacy resulting from levels of data abstraction in [Hayes et al. 1993].)

Post-conditions are written in the language of first-order predicate calculus (or the LPF
variant – see [Barringer et al. 1984]). This makes it possible to document requirements in a
compact and economical way: conjunction and negation are operators which are not (in
full generality) available in programming languages (the simplest example that illustrates
why this makes it possible to state perspicuously what is required is sorting, where one can
say that an ascending sequence is required as a result and that this must be a permutation
of the input).

Useful though the pre/post-condition idea has proved, the technique of specifying states of
systems in terms of abstract objects is even more important. Much of what makes
programming difficult is choosing objects which fit the linear address space of a computer.
Specifying systems in terms of

• sets

• maps

• sequences; and

• composite objects (cf. records or structures)

makes specifications far shorter and more tractable than the eventual implementations.
Another idea which proves very useful in practice is that of “data type invariants”. Further
details of these ideas can be found in [Jones 1990] along with formal methods (operation
decomposition and data reification) for proving that designs and/or implementations
satisfy specifications; it is time here to move on to the specification issues which are more
challenging.

One contribution of the TTA work [Kopetz and Bauer 2003] is the identification of
multiple interfaces as a way to structure understanding of a single system from different
points of view. It is not yet completely clear whether all such interfaces should be

Formalization Final Version of DSoS Conceptual Model

76

described at the same level of abstraction. It might –for example– be necessary for a
diagnostic interface to discuss representation details which are not required in the service
level interface. If this turns out to be the case, one could deploy known ideas on relating
representations (see again [Jones 1990]).

Another interesting issue is the existence of systems where the availability of operations
depends on the state of the system (to resume an earlier trivial example, the Pop operation
could be made unavailable when the stack is empty). In practice, such systems can be
rather fragile and can result in deadlock. But –contrary to widely held opinion– there is
little difficulty in specifying them. Many object-oriented languages (e.g. POOL [America
1989]) include an Ada-like routine for each method which defines which calls can be
accepted. This point is resumed below under the discussion of controlling interference.

5.2.5 Extensions to deal with concurrency

The essence of concurrency is interference. If one is to have a specification method to deal
with concurrent systems, this fact must be taken on board. In particular, devising a
compositional development method for concurrent systems requires that specifications
characterise the interference that operations can accept from –and inflict on– their
environment. The “Owicki/Gries” method [Owicki 1975] [Owicki and Gries 1976] is non-
compositional because the method is to:

1. specify the separate components;

2. develop and prove code which satisfies the separate (pre/post) specifications;

3. prove that no step of one process can interfere with a proof step of the other
process.

This can result in having to discard one or more developments if the “interference
freedom” test fails.

Rely and guarantee-conditions were proposed in [Jones 1981] as a way of specifying
interference. A rely-condition for an operation is a predicate of two states and limits the
interference that a developer must tolerate; a guarantee-condition is a predicate of two
states that specifies the limits of interference which the developed component can
generate. (It is useful to compare pre with rely-conditions: both give the developer
permission to ignore certain situations; and guarantee with post-conditions: both are
requirements on the created system.) Of course, it is only safe to deploy a system in an
environment where it can be shown that the rely (or pre) condition holds. To this end,
there are proof rules (which can be compared to the standard rule for while introduction)
which permit the introduction of a parallel statement in the design process. This rule is
compositional in the sense that the specification tells the developer all they need to know

Final Version of DSoS Conceptual Model Formalization

77

about the requirements on an operation. The product of their labours will not be rejected
by some post-facto check.

The basic idea of rely and guarantee specifications has been greatly extended (including
covering forms of progress) in the theses of Ketil Stølen, Xu Qiwen, Pierre Collette and
Juergen Dingel (for example).

But writing such specifications is delicate: [Collette and Jones 2000] shows how one has
to balance placing conditions in the various predicates (and the “dynamic invariant”). It
became obvious that one should localise the use of interference and one attractive way of
doing this is to recognise that object-based languages permit:

1. complete isolation of their instance variables;

2. the segregation of private references that point to “islands” of objects in which no
interference is possible; and

3. general references that the designer can use to control interference.

This observation led to the “POBL” approach – see [Jones 1996] (which paper also has a
useful sketch of the rely/guarantee idea).

5.2.6 Process Algebras

One way of looking at process algebraic approaches is to ask – if (shared) state is a
problem – why not eliminate states? (This echoes the point that functional languages are
more tractable than (sequential) procedural languages.) It is also true that process algebras
provide a natural way of fixing the varying availability of services in a process (again,
taking the stack example, it is easy to describe a stack which declines to accept a pop
message when there is no data available). This of course introduces a possibility of
deadlock like situations. While the traces of processes are very intuitive, the divergences
and refusals are harder to reason about. But there is a rich literature of equivalences (bi-
simulations).

As soon as one realises that one can simulate a shared variable with a CCS process, it is
obvious that the scourge of interference has not been eliminated. Colin Stirling [Stirling
1988] has actually published a development of the rely/guarantee idea which applies to
process algebras. It does not therefore appear likely that viewing systems (of systems)
solely in terms of process algebras will solve all of the problems of describing SoSs.

However, process algebras can still be useful for effective modelling and verification of
concurrent systems. In DSoS, we have taken advantage of the compositionality of the CSP
process algebra in order to describe the development of systems based on coordinated
atomic actions (see Section 5.5.1).

Formalization Final Version of DSoS Conceptual Model

78

The proposed development method allows two types of refinement: the refinement of
processes (where a process is replaced by a network of sub-processes), and the refinement
of communication interfaces (where the communication mechanism used to link processes
is replaced by another mechanism described using activities at a lower level of
abstraction). To relate processes with different interfaces a new implementation relation is
used in addition to the standard CSP refinement relation [BKP01].

The process algebra CSP has been used within the DSoS Project to model CORBA’s
protocol GIOP (General Inter-Orb Protocol). This work has demonstrated the utility of
data-independence techniques for proving properties that are relevant to the dependability
of CORBA-based SoSs and that hold for arbitrarily large SoSs, in a well-defined sense
(see Section 5.5.2).

In addition, CSP is being used to model an emulation of the CAN protocol on top of
TTP/C. By model-checking, we are exploring the effectiveness of this CAN emulation.
This work is described in Section 5.5.3.

5.2.7 Coping with real-time

5.2.7.1 The Challenge

Real-time systems are inherently parallel. The real-time constraints come from the fact
that other "processes" are evolving in parallel. In many cases these external processes are
actually physical systems linked by sensors and actuators. Thus, coping with real-time
systems is bound to be at least as difficult as reasoning about concurrency. The extra
difficulties relating to the actual passage of time are largely related to finding some
abstraction level to avoid having to reason at the level of machines instructions and clock
ticks.

It is not in principle difficult to develop notations which can record assumptions or
requirements in terms of intervals on a time line. But those "real-time" logics which
handle everything in terms of specific points in time and explicit intervals are of little use
in a design process. Notations such as the "Duration Calculus" are an attempt to provide
more tractable notations which admit relating levels of abstraction.

5.2.7.2 Approaches to real-time verification

Formal reasoning about real-time systems directly (i.e., without first abstracting away
from real time) is possible using a theorem prover, but cannot be guaranteed to terminate
if automated and is generally harder than for integer-time systems. If a model-checker is
used then real-time systems must be abstracted to rational-time or integer-time systems (in
order to guarantee a finite state space). So, real-time verification, whether by theorem

Final Version of DSoS Conceptual Model Formalization

79

proving or model-checking, is either simplified by, or requires, abstraction away from real
time.

Recall the three step approach to verification described in Section 5.2.3: (1) map the
concrete system to an abstract model; (2) reason about the abstract model to discover some
of its properties; (3) map these abstract properties to properties of the concrete system.
Crucial to this approach, when verifying real-time systems, is the availability of a suitable
abstraction function that maps a real-time concrete system to an integer-time abstract
system. Then (importantly) step 2 only requires reasoning about an integer-time system.
Identifying this abstraction is a key task; it can be found manually or, sometimes,
automatically, as outlined below.

The abstraction from real-time system descriptions to integer-time descriptions is typically
induced by an abstraction from real time to integer time. This time abstraction might be
intrinsic to the system: all component systems might operate with respect to a common,
discrete time. (This can be the case for real-time systems if the discrete time is guaranteed
to correspond to real time in a precise and well-defined way.) Alternatively, the time
abstraction might be a discretization based on ‘significant’ points in time, which are those
times at which ‘significant’ events occur in the system or its environment. (The significant
events are those that matter to the property being verified.)

Manual discovery of an abstraction function for system descriptions is often difficult. It
can be labour-intensive and error-prone. Also, manual discovery is not ‘formal’.

Automatic discovery of an abstraction function is possible for some real-time (or rational-
time) modelling languages. Particular examples are the timed formalisms UPPAAL
[UPPAAL] and Kronos [Bozga et al. 1998]. Automatic discovery can be achieved
formally.

Alternatively, the system architecture might support a common sparse time base and so
allow all nodes of a distributed system to operate with respect to a common, discrete,
notion of time. Separate, one-off formal verification of the architecture might prove that it
provides the claimed common time base. This is the intention with the Time-Triggered
Architecture (TTA). Efforts are continuing to verify that the TTP/C protocol provides a
common sparse time base to all participating nodes [Rushby 2002].

5.3 Benefits of ideal LIF characteristics

This section describes some particular ways in which the ‘ideal’ LIF characteristics of
Section 4.4 are beneficial for SoS development and verification.

Formalization Final Version of DSoS Conceptual Model

80

5.3.1 Formal Reasoning for non-time sensitive SoSs

Where the interface requirements of a system (its LIF) do not have explicit timing
constraints, familiar notations such as VDM, Z or B can be used to specify the behaviour.
Notice that nearly all systems actually have some performance constraints: what is really
being done in non time sensitive descriptions is to separate the performance issue from the
"functional" specification. DSoS recognises that there are many systems where such a
separation is impossible.

5.3.2 Formal Reasoning for time sensitive SoSs

5.3.2.1 Formal reasoning for temporal firewalls

Temporal firewalls are ideal LIFs for state messages in safety-critical real-time systems.
Here we describe how they facilitate formal reasoning.

The temporal firewall has been designed as the fundamental interface of a time-triggered
architecture. A temporal firewall is an operationally fully specified digital interface for the
unidirectional exchange of state information between a sender and a receiver over a time-
triggered communication system. The basic data and control transfer of a temporal firewall
interface is depicted in Figure 9, showing the data and control flow between a sender and a
receiver [Kopetz 2002b].

Figure 9 — Data flow (full line) and control flow
(dashed line) across a temporal firewall interface

The CNI (Communication Network Interface) memory at the sender forms the output
firewall of the sender, and the CNI memory of the receiver forms the input firewall of the
receiver. The sender deposits its output information into its temporal firewall (update in
place) according to the information push paradigm, while the receiver must pull the input
information out of its CNI (non-consumable read). The transport of the information is
realized by a time-triggered communication system that derives its control signals
autonomously from the progression of time. It is common knowledge to the sender and the
receiver at what instants (on a sparse time base) the typed data structure is fetched from

Information Pull
Ideal for Sender Communication System Ideal for Receiver

Sender CNI
Memory

CNI
Memory Receiver

Information Push Time-Triggered

Clock

Final Version of DSoS Conceptual Model Formalization

81

the sending CNI and at what instants this data structure is delivered to the receiving CNI
by the communication system.

Importantly, pre- and post-conditions suitable for formal verification can be obtained
directly from the temporal firewall interface specifications. The precise operational
interface specifications (in the temporal and value domain) of the inputs give the pre-
conditions for the correct operation of the application software. The precise interface
specifications of the outputs give the post-conditions that must be satisfied by the
application software, provided the preconditions have been satisfied by the environment.

Since no control signals cross a temporal firewall interface, control-error propagation
across this interface is eliminated by design. In addition to clear dependability benefit, we
believe this has the potential to simplify formal verification.

A temporal firewall eliminates low-level concurrency from the interface. The sparseness
of the global time establishes a system-wide action lattice, the lattice points of which are
precisely synchronized with the global time. The behavior of a system with temporal
firewall interfaces can be explained by sequential stepwise progression through this action
lattice. The elimination of concurrency from interfaces simplifies understanding, since the
human mind is ill-equipped to handle concurrent processes [Reason 1990] Formal
verification, too, is simplified by the avoidance of concurrency.

At the CNI within a node of a time-triggered architecture, the records of the RT entities
are periodically updated by the real-time communication system to establish temporally
accurate RT-images of the RT-entities. The computational tasks within the host of a node
take these temporally accurate RT-images as inputs to calculate the outputs, which are
stored in the CNI and transported by the time-triggered communication system to the CNIs
of other nodes at a priori determined instants. This known timing of inputs and outputs
contributes temporal information to the pre- and post-conditions for formal verification:
the outputs are required within an a priori known time interval, and that this deadline will
always be met can be verified, for any given piece of source code, by worst-case execution
time (WCET) analysis.

The a priori knowledge of the receive instant of a message in a time-triggered system can
be used to implement prompt error detection at the receiver of the message. As soon as the
instant of arrival of a time-triggered message has passed without the message arriving, an
error handling process can be initiated at the receiver. This form of time-based error
detection at the receiver can also be deployed in systems that provide unidirectional
information and unidirectional control flow only. In contrast, in an event-triggered system
– where it is not known a priori when a message should arrive at a receiver – a bi-
directional control flow is required for error detection. This bi-directional control flow
complicates the interface, especially when a multi-cast communication topology must be

Formalization Final Version of DSoS Conceptual Model

82

supported. Formal verification benefits from the simpler interface that is possible for time-
triggered SoSs with temporal firewalls as LIFs.

We have seen that temporal firewalls simplify formal verification. The next section
discusses the formal verification of TTP/C protocol itself.

5.3.2.2 Proving properties of TTP/C

The TTP/C protocol is intended for safety-critical real-time applications. It provides fault-
tolerant scheduled communication between the CNI (communication network interface)
memories of TTP/C nodes. Systems of systems can make use of TTP/C’s fault-tolerant
communication service to connect component systems together, but of course such SoSs
can only be fully verified if the TTP/C properties they exploit are verified. Therefore,
although the verification of TTP/C was not intended as part of the DSoS Project, it is
worth discussing the TTP/C verification challenges that remain.

TTP/C comprises a set of distributed algorithms that provide functions such as clock
synchronization and group membership. These algorithms are highly mutually dependent,
and ingenious reasoning is required to prove correctness formally; indeed, it is challenging
to express the properties of TTP/C in a fully formal manner, let alone to verify them.

In the face of these challenges, much verification work for TTP/C has been performed
([Rushby 2002] contains a good summary). The published verification efforts to date have
concentrated on proving the correctness of simple forms of the individual algorithms
within TTP/C, and their predecessor algorithms. (For example, group membership has
typically been verified under the assumption that clocks remain synchronized.)
Furthermore, these verifications sometimes make strong assumptions about the patterns of
faults that can arise, thus restricting the verification claims. The algorithms that have been
verified, along with the fault assumptions in each case, are summarized in [Rushby 2002].

[Rushby 2002] also discusses a major remaining challenge: reasoning about the various
services provided by TTP/C together, rather than in isolation. The constituent algorithms
of TTP/C are tightly integrated, for reasons of efficiency, but this in turn makes their
formal verification particularly challenging. It is unlikely that the full range of services
provided by TTP/C can be proved, without overly-restrictive assumptions, by combining
isolated results about the correctness of its individual algorithms. Rushby proposes an
interesting style of proof: a form of assume-guarantee reasoning where decomposition is
by function, rather than by structure. Circular reasoning is broken by exploiting the
progression of time. Essentially, the group membership algorithm could assume correct
operation of the clock synchronization algorithm in (or perhaps up to) round n, and in
return guarantee to maintain the group membership correctly in round k+1. It is argued

Final Version of DSoS Conceptual Model Formalization

83

that this should allow the mutually dependent algorithms of TTP/C to be verified together
instead of in isolation.

5.4 Formalizing LIFs and Compositions

Within the DSoS project, the architecture of a dependable system of systems consists of
component systems composed together at connections, which are often connection
systems. The formalization approach that we have adopted follows this decomposition,
formalizing component systems by providing specifications of their LIFs, and formalizing
the notion of composition through techniques derived from the field of Architectural
Description Languages. Work on the formalization of LIFs has used OMG IDL as a basis
for syntactic specifications, and an ADL that is based on UML.

5.4.1 IDLs as syntactic specifications

This section summarizes OMG IDL and discusses its suitability for describing the
interfaces of component systems of a system of systems.

5.4.1.1 Summary of OMG IDL

Establishing a communication between two subsystems requires that all properties match.
If we focus on the data properties there are a number of different aspects:

• Representation of data

• Structure of data

• Typing of data

• Meaning of data

In order to support the communication among heterogeneous systems the Object
Management Group (OMG) has defined a semiformal Interface Definition Language
(IDL) to avoid data property mismatches at the representation layer and structure layer.
The syntax of this language is similar to the programming language C and so are the basic
data types. The following list contains some of the types available in OMG IDL:

• boolean: may have two values only (TRUE and FALSE)

• char: 8 bit value for characters

• octet: 8 bit unsigned value (is not subject to conversions)

• short and unsigned short: 16 bit integer value

• long and unsigned long: 32 bit integer value

• long long and unsigned long long: 64 bit integer value

Formalization Final Version of DSoS Conceptual Model

84

• float: IEEE single-precision floating point

• double: IEEE double-precision floating point

• long double: IEEE double-extended floating point

Additionally to these basic types it is possible to define user-defined struct or union types,
or use several instances by using the sequence or array type constructors.

In order to avoid the restriction that static typing imposes, two additional types exist in
OMG IDL: any and DynAny. When the any-type is used for a method any predefined type
in the IDL-file can be used. The DynAny-type allows the use of types not predefined in the
IDL-file.

In OMG IDL a method may have a valid return value or raise/signal an exception. This
mechanism for reporting errors is supported by a number of programming-languages
natively (e.g., C++, Java). Other languages provide mechanisms to emulate this behaviour.
In real-time systems, exceptions are not widely used because of their interrupt-like nature.

Attributes in conjunction with the associated methods are combined as objects. It is
important to mention that objects can be declared in OMG IDL but not defined, i.e., only
parameters (input- and output-parameters) and results of methods (regular results or
exceptions) are stated, but the algorithms cannot be described.

It must be stressed that OMG IDL defines the system appearance of the exchanged data
and operations but not the meaning associated with the structures. It is a background
assumption that the client has an informal understanding of the meaning. A formalization
of this meaning is an important open issue.

The OMG standard defines language mappings from OMG IDL to C, C++, Java,
Smalltalk, COBOL, and Ada. For Java even a reverse mapping is defined (Java to OMG
IDL). Although not defined in an OMG standard, there exist additional language mappings
for some other programming languages like Perl, Common Lisp, Eiffel, or Python. Thus it
is possible to compose a system from parts that may be written in different programming
languages.

Different computer architectures may use a different representation of data (e.g., byte
order or different character-sets). The Common Data Representation (CDR) defines
representations for all data types available in OMG IDL. Thus the receiver of a message is
able to convert the message into its preferred representation. This strategy minimizes the
number of format conversions when messages are exchanged within an architecture. If a
receiver is not under the control of the SoS integrator, a connection system can be
implemented to convert the data provided by the sender to the format expected by the

Final Version of DSoS Conceptual Model Formalization

85

receiver. This allows the integration of different computer architectures to be transparent
to the user. A syntactic property mismatch cannot occur.

OMG IDL supports synchronous interfaces and asynchronous interfaces. The synchronous
interface allows a client to wait for a result or to continue immediately (in which case it
may happen that no result is retrieved). The asynchronous interface allows an event-
triggered (callback) or a time-triggered (polling) retrieval of the result. The different types
of flow-control provide the flexibility to choose the interface most suitable for the
application.

CORBA provides two ways of using a method of another object: The Static Invocation
Interface (SII) and the Dynamic Invocation Interface (DII).

The SII can be used like procedures or functions in most programming languages.
Although this interface is restricted to methods known at compile-time, it provides some
advantages. If one abstracts from the temporal properties, one need not be aware if the
method is defined locally in a library or if it is a CORBA-method, which will call an
object on a remote location. Furthermore, this interface provides type checking at compile-
time. A static invocation requires two steps:

1. The object providing the required method must be identified. This can be done by
simply knowing the reference to the object or by using the CORBA “Naming
Service” or “Trading Service”.

2. Then the request is invoked and the results are received.

The DII allows more flexibility by allowing a client to use methods of objects that were
designed after compilation of the client. Thus calling a method requires four steps:

1. The object providing the required method must be identified. This step is the same
as the first step in the SII.

2. The interface definition must be found out. For this purpose CORBA provides the
service “Interface Repository” where the interface definition of objects can be
registered.

3. The invocation is constructed.

4. The request is invoked and the results are received. This step is similar to the
second step in the SII.

5.4.1.2 Extensibility of OMG IDL

For an SoS to cope with changing component interfaces, an IDL used to describe those
interfaces must have an introspection mechanism that provides information on the syntax
of a new interface, and a mechanism for dynamically constructing requests and responses

Formalization Final Version of DSoS Conceptual Model

86

against this interface. In CORBA, these are provided by the Interface Repository and the
DII and DSI modules.

There are two approaches to making a syntactic change to an existing interface without
breaking backward compatibility: (1) dynamic/latent typing, where clients ignore
attributes that they don’t understand; and (2) static typing, where new clients bind to a new
interface that inherits from the old interface. The CORBA approach includes direct
provision for the second approach, but the first approach can be achieved by use of data
types such as strings and Anys.

CORBA also provides for signalling of a service change. A client realises it has a stale
object reference when it receives an exception, either raised by the remote ORB to signal
that the object whose invocation was requested no longer existed, or raised by the remote
application. Some CORBA systems use a leasing mechanism, where object references
automatically expire after a certain time. A client can be recompiled to support a new
interface, or alternatively it can obtain a syntactic description of the new interface from the
Interface Repository and dispatch requests against that interface using the Dynamic
Invocation Interface. The client obtains an object reference for the new service by using
the naming or trading service.

5.4.2 Proposed UML-based ADL

Architecture Description Languages (ADLs) are notations enabling the rigorous
specification of the structure and behaviour of systems [Medvidovic and Taylor 2000].
Several ADLs proposed in recent years are all based on the same principle: specifying the
structure of systems using the following basic concepts: components, connectors and
configurations (described below).

The DSoS report “Architecture and Design: Initial Results on Architectures and
Dependability Mechanisms for Dependable SoSs” [2001] proposes an ADL defined in
relation to standard UML elements. The proposed ADL is being developed by the
definition of a set of core extensible language constructs for the specification of
components, connectors and configurations. The intention is that these extensible
constructs will enable a variety of ADLs to be mapped into UML.

The definition of the proposed DSoS ADL environment is based on UML for a number of
good reasons, detailed in [2001]. One of the most important reasons is the prevalence of
UML as a notation – it is widely used by Industry and is therefore likely to minimize
resistance by Industry to the take-up of the emerging DSoS methodology.

Final Version of DSoS Conceptual Model Formalization

87

5.4.2.1 Components, connectors and configurations

It is now accepted by the vast majority of the software architecture community that the
description of a system architecture should be based on Components, Connectors and
Configurations. These terms are discussed in detail in Chapter 1 of the DSoS State of the
Art Survey [2000]. Briefly:

ß Components abstractly characterize units of computation or data stores.
In general, the specification of a component gives the behavioural specification of the
component together with the component’s interfacing points with other architectural
elements.

ß Connectors abstractly characterize composition patterns among components.
A connector thus prescribes the interaction protocol that takes place among the
components that are composed through it.

ß Configurations define the structures of systems by composing collections of
component instances through bindings via connector instances. A system’s software
architecture is then defined as a configuration together with the component and
connector types that are instantiated within the configuration.

5.4.2.2 Extensibility of the proposed ADL

Extensibility is a major consideration in the design of the proposed ADL, as evidenced by
its definition using core extensible language constructs. This should enable its use for
rigorous architectural description of a wide range of SoSs, since these constructs can be
extended to provide particular descriptive abilities necessary for particular systems. It is
harder to anticipate all possible architectural features of a system than it is to provide the
flexibility to extend an ADL to cope with particular features as the need arises, and not
providing this flexibility would unnecessarily constrain the types of systems that can be
described (and subsequently validated).

The proposed DSoS ADL is based on UML, which in turn is meant to be a standard base
for the development of a family of languages, called UML profiles. Profiles are defined
using UML standard extension mechanisms (e.g., stereotypes, constraints, etc.). Those
mechanisms can be used to extend the definitions of the base ADL elements, as needed.

5.4.2.3 Formal Verification of ADL Designs

It is widely recognised that the development of any system can benefit greatly from an
ability to ‘check the design’ in order to catch design errors that might otherwise lead to
wasted implementation effort. An ADL description of a design provides an obvious
opportunity to check the design itself, without the need to wait for an implementation to

Formalization Final Version of DSoS Conceptual Model

88

become available. Indeed, much research on ADLs for software has concentrated on
easing the behavioural analysis of software systems at the architectural level. The ADL
developed within the DSoS Project [Nguyen and Issarny 2002] extends the approach to the
behavioural analysis of SoS designs. The prototype framework for verification of such
SoS designs is summarised here.

ADLs describe systems by describing their architectural elements and the relationships
between them. The DSoS ADL, which is based on UML, represents component systems
and their interfaces, connections between interfacing systems, etc.

The properties to be checked of an architectural design can be represented in PROMELA
using the ADL and incorporated into the design itself. This is natural because properties
can often be decomposed according to system structure – though this is sometimes
difficult. It is helpful if the ADL allows system properties to be associated with the system
description, and to be decomposed into properties of constituent sub-systems if the
designer is able to perform the decomposition.

The ADL developed in the DSoS project has been specialized for enabling the behavioral
analysis of system architectures using model checking, as follows:

• ADL components are characterized by a property, called "Body Behavior", whose
value can be assigned to a textual specification, given in any behavioural
modelling formalism, describing the components’ behaviour.

• UML interfaces provided/required by ADL components are characterized by a
property, called "Port Behavior", whose value describes in some textual
specification, the particular protocol used at that point of interaction.

• ADL connectors are characterized by:

• A property, named "Body Protocol", whose value specifies the role-independent
part of the interaction protocol.

• A set of properties, named "Role Protocol". Each one of these corresponds to an
association end, i.e., a role. The value of each property specifies the role-
dependant part of the interaction protocol represented by the connector.

From the standpoint of associated tool support, we chose SPIN[Holzmann 1997]because:
(i) it is based on a C-like language for modelling system behaviour, which is more familiar
to system developers compared to other modelling languages, and (ii) it has built-in
channels, i.e., constructs used for modelling message-passing, with which we can easily
model parts of the ADL connectors. A model in the SPIN modelling language, i.e.,
PROMELA, consists of a number of independent processes (each one having its own
thread of execution) which communicate either through global variables or through special

Final Version of DSoS Conceptual Model Formalization

89

communication channels by message-passing, as is done in CSP. Therefore, our basic
architectural elements can be mapped to the constructs of PROMELA in a way analogous
to the mapping used by the Wright ADL [Allen and Garlan 1994] for CSP. In particular,
for each component, connector, port/interface and role, a corresponding process is
generated in [Allen and Garlan 1994]. Each generated process communicates with the rest
through channels generated as prescribed by the system configuration. However, such a
mapping results in the generation of a large number of processes and requires substantial
resources for model checking.

To alleviate this problem, we chose to generate independent processes for each component
and connector specified in a system architectural description, while for each port and role
we generate PROMELA inline procedures. This inline procedure construct of PROMELA
allows us to define new functions that can be used by processes, but that do not introduce
their own threads of execution. In this manner, we minimise the number of different
processes the model-checker will be asked to verify, thus enabling the verification of
larger architectures. Then, for each port of an ADL component we declare a
communication channel in the PROMELA description of the component, named after that
port. This channel will be used by the process related to the ADL component for
communicating through that specific port. Since ports of ADL components are bound to
specific roles of ADL connectors, their channels are passed as arguments to the processes
created for these connectors at the time of their initiation.

Thus, messages sent from a process of an ADL component at a channel corresponding to a
port of it, will be received by a process of an ADL connector. Similarly, messages sent
from a process of an ADL connector to a channel it has received as argument at initiation
time, will be received by a process of an ADL component, whose port was mapped to that
channel. The proposed mapping may seem to deprive the architect of the ability to
describe complex cases, such as multi-threaded components, but this is not so. Indeed, it is
always possible to describe a component as a composite one, i.e., one that consists of a
number of simpler components and connectors, which will subsequently be modelled as
independent processes. The steps that are followed for generating a complete PROMELA
model from an architectural description are given in Table 6.

A prototype implementation of the DSoS development environment, including generation
of PROMELA models from architecture descriptions, is presented in DSoS Deliverable
CSDA2 [Nguyen and Issarny 2002]. Future work to formalize DSoS architecture will aim
to make the behavioural specification of architectural elements more tractable for
developers, using a library of architectural elements that characterize common
architectural styles.

Formalization Final Version of DSoS Conceptual Model

90

Component For each component c:
• Create a PROMELA process type, “proctype”, named after the

component, whose behaviour is given by the value of “Body
Behaviour”

• For each port p of c, create an "inline" procedure whose name is the
catenation of the component’s and the port’s names, i.e., c_p. This
procedure contains the Port Behaviour of the respective port p. For
interacting with its environment, c_p uses a channel named after the
port, i.e., p.

Connector For each connector c:
• Create a “proctype” named after the connector, whose behaviour is

given by the value of “Body Protocol”. Unlike the processes
corresponding to ADL components that take no arguments, these
processes receive as arguments at initiation time the channels they will
be using for their respective roles. These channels are named after the
roles themselves.

Configuration Create a special process called "init" in PROMELA, which will be
responsible for instantiating the rest of the architecture. More specifically:
• The “init” process creates as many instances of the processes

corresponding to particular ADL components as there are instances of
these components in the configuration.

• Afterwards, it does the same for each instance of an ADL connector
but it uses the attachments of component ports to connector roles to
deduce the specific channels that should be passed as arguments to the
processes corresponding to the connector.

Table 6 — Generating complete PROMELA models from a DSoS ADL description

5.5 Other DSoS Formalization Activities

5.5.1 Compositional development based on CA Actions

The Coordinated Atomic (CA) action concept is an approach to structuring complex
concurrent activities in a distributed environment, aimed at supporting fault-tolerance in
object-oriented systems.

5.5.1.1 Historical approaches to formalizing CA actions

Several models have been proposed for formalizing the CA action concept with the
intention either to give a more complete and rigorous description of the concept or to
verify systems designed using CA actions.

These are four approaches falling into the first category.

Final Version of DSoS Conceptual Model Formalization

91

• The concept of Dependable Multiparty Interactions has many similarities with that
of CA actions, and is formally specified using Temporal Logic of Actions TLA
[Zorzo 1999]. There were several earlier attempts to specify the CA action
semantics using TLA (for example, the one reported in [Schwier et al. 1997]).

• The COALA framework [Vachon 2000] was proposed to allow system developers
to model complex distributed/concurrent systems. Within this work a formalization
of the CA action concept is developed using CO-OPN/2: an object-oriented
language based on Petri nets and partial order-sorted algebraic specifications.

• The ERT model (ERT stands for extraction, refusals and traces) is used for
formalising the CA action concept [Koutny and Pappalardo 1998]. Refusals and
traces are terms that come from semantic models of CSP; term extraction refers to
a specific technique used to relate systems specified at different levels of
abstraction.

• A mathematical framework, based on Timed CSP, for representing the use of CA
actions in real-time safety-critical systems is proposed in [Veloudis and Nissanke
2000]. It allows the interactions between concurrently functioning pieces of
equipment to be modelled – and their behaviour to be reasoned about – in an
abstract way. The framework models dynamic system structuring using CA actions
and explicitly uses events representing synchronization between items and the
control system to allow the action context to be changed dynamically. Although
the framework was not developed for dealing with erroneously behaving action
participants, it helps provide a better understanding of the CA action concept and
can be used in developing general models incorporating mechanisms that support
system safety.

The following research belongs to the second category.

• A formal approach is used to model and verify a safety-critical system designed
using CA actions in [Xu et al. 1999]. To model-check the system controlling a
fault-tolerant Production Cell, the state transition system corresponding to a CA
action based design is expressed in SMV (Symbolic Model Verifier) and the
properties of the system to be analysed are expressed in CTL.

5.5.1.2 Compositional development of systems designed using CA actions

In our research within the DSoS project we returned to the modeling of the CA action
concept [Randell et al. 1997] to investigate compositional methods for verifying the
correctness of dependable systems of systems. To model CA actions we used the most
recent version of the ERT model [Burton et al. 2001a]. We have proposed a development
method for systems designed using CA actions. The method is iterative and starts with an

Formalization Final Version of DSoS Conceptual Model

92

initial abstract system design given in the form of a network9 of concurrently operating
processes modelled in the CSP process algebra [Hoare 1985], [Roscoe 1998], [Schneider
2000].

For a high-level description, one can relatively easily verify the relevant correctness
requirements using, for example, the FDR model-checking tool [Failures-Divergence
Refinement: FDR2 User Manual 1992-99]. Requirements such as deadlock freeness, or a
particular order of the execution of actions, can be expressed as refinement of suitably
chosen CSP ‘specification’ processes.

Two refinement steps have been studied for compositional development of the initial
specification towards a correct implementation. These are process refinement and
intercommunication interface refinement.

Process refinement can be applied to any of the sub-processes of the network – any sub-
process can be implemented as a separate sub-network. By doing so, the designer is able to
describe the chosen sub-process in a more concrete and detailed manner. Because the
substituted sub-process and the network that replaces it have the same interfaces, we can
relate them using the standard refinement order (_) of CSP, which distributes over the
network composition operator (see [Roscoe 1998]).

The second kind of refinement – intercommunication interface refinement – can be
applied to the communication channels linking the sub-processes of the network. The
motivation for allowing this type of refinement is as follows: when deriving an
implementation from a specification, we often wish to implement abstract, high-level
interface actions at a lower level of detail, or in a more concrete manner. In the following
example scenarios, interface refinement is desirable:

1. The channel connecting one component process (Pi) of the network to another
component process (Pj) may be unreliable and so may need to be replaced by two
channels: a data channel and an acknowledgement channel;

2. Pi itself may be liable to fail and so its behaviour may need to be replicated, with each
new component having its own communication channels to avoid a single channel
becoming a bottleneck [Burton et al. 2001a; Burton et al. 2001b; Burton et al. 2002];

3. It may simply be that a high-level action of Pi has been rendered in a more concrete,
and so more directly implementable, form.

9 We define the network P1_…_Pn to be the process obtained by composing the processes
Pi in parallel and then hiding all interprocess communication, i.e., the process (P1 || … || Pn)
\ B, where B is the set of channels shared by two different processes in the network.

Final Version of DSoS Conceptual Model Formalization

93

As a result, the interface of an implementation process may end up being expressed at a
lower (and so different) level of abstraction to that of the corresponding specification
process. The refinement of communication interfaces in our development method means
that we can replace two of the component processes of our network with respective
implementations that have different interfaces than the specifying components have.

The resulting network still has the same interface as the original one, but since we want to
verify our system compositionally (first verify that each component of the implementation
network implements an appropriate component of the specification network, and then
legitimately conclude that the overall new network satisfies the original specification) we
need to relate processes with different interfaces. This can be done using the
implementation relation (_) introduced in [Burton et al. 2001a] (and further investigated in
[Burton et al. 2002]instead of the standard CSP refinement order (which cannot be used in
this refinement step, since it relates processes that have the same interfaces).

Our development method relies on the compositionality of the relations _ and _.

The results of our work on compositional development based ofn CA actions are presented
in [Burton et al. 2002] where we compare the _ and _ refinement relations and show how
to employ them in our scheme. We illustrate our development steps on a practical example
of the production cell [Randell et al. 1997].

5.5.2 CSP modelling of GIOP

5.5.2.1 Modelling Context

CORBA is used to build a wide variety systems of systems, so it is of interest to find ways
to reason effectively about such systems. This is especially true for large systems, which
usually require scalable verification techniques. The work presented here has two aims:
firstly, to demonstrate that CSP and FDR are sufficiently advanced to model and verify
complex object interactions via GIOP; secondly, to demonstrate the use of CSP data-
independence techniques to rigorously extrapolate the results of the modelling – which is
necessarily finite-state – to arbitrarily large systems.

We did not expect our modelling of the GIOP protocol to reveal any hitherto unknown
significant design flaws or holes – given that CORBA is popular and widely used, it is
likely that, by now, any problems that do exist are already known and/or are of a highly
pathological nature. Even so, it sometimes happens that formal validation discovers an
error; it is often beneficial to formally validate in order, one hopes, to confirm
expectations of correct behaviour.

For the purposes of realism, and for brevity, we make assumptions about the underlying
transport-level protocol – for example, addressing information is necessarily transport-

Formalization Final Version of DSoS Conceptual Model

94

specific. Our modelling assumes that the underlying protocols are TCP/IP – so, in effect,
we are modelling the IIOP mapping of GIOP.

There is plenty of scope for further refinement of the models presented here – for example,
the incorporation of TCP/IP idiosyncrasies, message fragmentation, and different
threading models.

The CSP GIOP modelling presented owes much to the research reported in [Kamel and
Leue 1998]. In that research, the GIOP protocol was modelled in PROMELA, and basic
properties were verified of the system using the Spin model checker [Holzmann 1997].
The main novelty of the results obtained using CSP is the extrapolation to systems of
arbitrary size (using data-independence techniques); this is not easily achievable with
PROMELA and Spin.

5.5.2.2 Overview of the Model

We have modelled basic ORB processing of GIOP messages.

The OMG allows vendors considerable leeway in the way they implement ORBs. This is
reflected in our models. We have endeavoured to design a simple, but ‘fair’ ORB that will
guarantee that all invocation requests are eventually serviced under non-pathological
conditions. Those conditions are detailed in the annotations of the CSP scripts.

Our base case model is of a two-ORB CORBA environment in which up to five objects
may be instantiated on either machine, and those objects may relocate at will.

By introducing the concept of object relocation early on, we were able to resort to the
data-independence theory of [Lazic and Roscoe 1998] in order to extrapolate our results
for an arbitrary number of objects (five is the calculated threshold cardinality of objects in
our models).

Without free object relocation, we would have had to resort to more advanced data
independence arguments, such as data-independent induction [Creese and Roscoe 2000]
with no guarantee of success. However, free object relocation can lead to pathological
cases in which a server object persistently re-locates and a (prospective) client ORB
cannot ‘catch up’ with it. This anomaly was described in [Kamel and Leue 1998]. In that
study, the authors proposed a solution based on constraining the number of times an object
is allowed to relocate. We propose an alternative solution that imposes no constraints on
the number of relocations. This solution relies on the explicit ‘fairness’ that has been built
into our ORBs. We have not, however, formally verified our proposed solution for this
issue (i.e., through CSP/FDR).

Finally, we have described how the results of certain 2-ORB CSP models (such as those
presented here) can, in principle, be extrapolated to arbitrary n-ORB implementations by

Final Version of DSoS Conceptual Model Formalization

95

resorting to simple compositionality arguments only. Such an argument, however, would
necessitate a significant weakening of our ORB functionality: client objects themselves
would have to re-send requests to relocated objects, rather than rely on the ORBs to do this
for them automatically. Such a weakening of the ORBs would, among other things, mean
that we could not legitimately impose our ‘persistent object-relocation’ solution without,
potentially, introducing deadlock into the CORBA environment.

Further details of this modelling can be found in DSoS Deliverable DSC2 [Fabre et al.
2003], which describes on-going work to enable formal application of data-independent
reasoning when model-checking models expressed using CSPM, the machine-readable
version of CSP.

5.5.3 CSP Modelling of a CAN Emulator

Section 4.3.4 discusses the integration of event-triggered (ET) and time-triggered (TT)
communication, opting for integration, in the DSoS Conceptual Model, by implementing
ET communication on top of TT communication. This approach is exemplified by the
CAN on TTP/C emulator being developed at TU Vienna [Obermaisser 2002]. Here, ET
messages that conform to the CAN (Controller Area Network) standard are accepted at a
sending node by a local CAN emulator, which packs them into TT messages; these are
broadcast by the underlying TTP/C bus to remote nodes. Remote CAN emulators then
reconstruct the ET data as if it had been communicated by a valid implementation of CAN
(but see the next two paragraphs).

There are two points to make. First, the final sentence of the previous paragraph needs
some explanation. The faithfulness of this CAN emulation, compared with the chosen
CAN implementation, can be set in accordance with the demands made of the emulation
(by the application).

The second point is that the emulation actually provides extra information, not provided
by CAN implementations, by virtue of the underlying use of the TTP/C protocol. In
particular, the clock synchronisation and group membership information can be made
available to the event-triggered application, as can other parts of the TTP/C interface state.
This extra information can potentially be used to improve the service provided by the ET
application in the absence of faults, or its dependability in the presence of faults. An
example of the former is the removal of the need for expensive clock synchronisation
algorithms performed by the ET application on top of the ET protocol; an example of the
latter is the provision of group membership information when the ET application doesn’t
provide it.

On-going work among DSoS Project partners is modelling the CAN emulator outlined
above. This work uses CSP to model the emulator at local and remote nodes, and an

Formalization Final Version of DSoS Conceptual Model

96

abstraction of the TTP/C protocol between these emulators. Its aim is to verify some
faithfulness properties of the emulator.

A key feature of this work is the identification and modelling of the essential properties of
the underlying TT communications, rather than the full TTP/C protocol; this has two
benefits: (1) it simplifies the modelling, and (2) it assures the emulator for use on top of
any conforming TT protocol, not just TTP/C. (Indeed, the emulator has been designed to
work over a generic TT protocol.)

The property we have aimed to verify by our modelling is a consistency property: that the
communications service provided by the emulator is consistent with that advertised for the
particular CAN controller emulated. We have split the verification task into separate
pieces by structurally and functionally decomposing the target property in a way that
closely corresponds to the design of the emulator. In particular, this approach has allowed
us to localise the modelling of time, greatly improving tractability.

We expect that this modelling work will help justify the use of the CAN emulator for
CAN applications. In particular, the TTP/C architecture – which has been developed to
high standards of assurance – will then be available for assured communication between
CAN applications.

A very important aspect of this modelling, in the context of DSoS, is its potential to enable
formal verification of systems of systems that include both TT and ET component
systems, integrated using an emulator such as the one modelled.

Final Version of DSoS Conceptual Model Summary and Future Work

97

6 SUMMARY AND FUTURE WORK

In this deliverable, we have presented the DSoS conceptual model, and illustrated some of
the concepts using a series of examples. The case studies (as outlined in Section 1.4) have
had a major influence on this conceptual model: it would have been straightforward to
provide a set of concepts for one domain; the case studies have ensured that DSoS takes a
wider view.

The taxonomy presented in Section 2 attempts to summarize the large number of different
classificatory dimensions that can be of use for characterizing and comparing different
systems of systems. Equipped with this taxonomy, it should be quite straightforward to
position any given system of systems in the taxonomy. This positioning can help one to
understand which features of the given SoS are likely to impact dependability.

Many general DSoS concepts have been introduced and motivated in Sections 3 and 4.
Extensive work has been carried out to make the concepts, and the corresponding
definitions, consistent and yet embrace a wide scope of SoSs. Indeed, as indicated in
Section 1.2, one of the greatest challenges of the conceptual model is to provide useful
definitions that cover the wide range of systems considered. Much effort has been invested
in defining the concepts in a way that allows formal treatment, without sacrificing
relevance to the real-world; this has entailed a great deal of discussion which, we believe,
has greatly benefited the conceptual model.

Finally, Section 5 gives our views on formalization. It provides a comprehensive summary
of formal and semi-formal specification and verification techniques that are particularly
relevant to systems of systems, and describes a number of formal tasks performed within
the DSoS Project that extend and illustrate what can be achieved.

This conceptual model has been validated against the case studies of the DSoS Project, yet
it would be useful to test and expand them further by considering more systems of
systems. We believe it would be beneficial to structure the concepts into a hierarchy of
core concepts and progressively specialised concepts, each suited to a particular
application domain or sub-domain. Such a structure would benefit understanding, and
allow techniques to be developed and refined either for all SoSs or for particular
(sub)domains – in each case with reference to just those concepts that are relevant.

Final Version of DSoS Conceptual Model Annex 1. Models of Time

99

ANNEX 1. MODELS OF TIME

In the following paragraphs we develop further the models of time that are part of the
conceptual model of the DSoS Project.

Events and States: The flow of real time can be modelled by a directed timeline that
extends from the past into the future [Whitrow 1990]. A cut of the timeline is an instant.
Any occurrence that happens at an instant is called an event. There can be many events
happening at a single instant. Instants are totally ordered, events are only partially ordered.
Information that describes an event is called event information. Event information is non-
idempotent and requires exactly-once semantics when transmitted to a consumer. The
present instant, now, is a very special instant that separates the past from the future (the
presented model of time is based on Newtonian physics and disregards relativistic effects).
An interval on the timeline is defined by two instants, the start event; and the terminating
event of the interval. The duration of the interval is the time of the terminating event
minus the time of the start event, measured in some metric (see below). Any property of
an object that remains valid during a finite duration is called a state attribute and the
corresponding information state information. State information is idempotent and requires
an at-least once semantics when transmitted to a consumer. A change of state is an event.
An observation is an event that records the state of an object at a particular instant, the
point of observation. An event observation can be expressed by the atomic triple:

<Name of the observed event, attributes of the event, time of the event>

A trigger is an event that causes the start of some action, e.g., the execution of a task or
the transmission of a message. Depending on the triggering mechanism for the start of
communication and processing activities in each node of a distributed computer system,
two distinctly different approaches to the design of real-time computer applications can be
identified [Kopetz 1993; Tisato and DePaoli 1995]: the event-triggered and the time-
triggered approach. In the event-triggered (ET) approach, all communication and
processing activities are initiated whenever a significant change of state, i.e., an event
other than the regular event of a clock tick, is noted. In the time-triggered (TT) approach,
all communication and processing activities are initiated at predetermined instants. While
ET systems are flexible, TT systems are temporally predictable.

Physical Clock: A (physical) clock is a device for measuring time. It contains a counter,
and a physical oscillation mechanism that periodically generates an event to increase the
counter. A clock partitions the time line into a sequence of nearly equally spaced intervals,
called the granules of the clock, which are bounded by special periodic events, the ticks of
the clock. Whenever an observer perceives the occurrence of an event e, she/he will
instantaneously record the current state of the clock (the current granule) as the time of

Annex 1. Models of Time Final Version of DSoS Conceptual Model

100

occurrence of this event e, and, will generate a timestamp for e. A Clock (event) denotes
the timestamp generated by the use of a given clock to timestamp an event. The
granularity of any digital clock leads to a digitalization error in time measurement. Since
any two clocks will have slightly different physical oscillation mechanisms, the time-
references generated by two clocks will drift apart, if the clocks are not periodically
resynchronized. Even if the clocks are properly synchronized, there is always the
possibility that an external event is observed by two clocks with a tick difference. This tick
difference, which is unavoidable in a distributed system, can cause the loss of replica
determinism [Poledna 1995] of two replicated systems.

Dense time: Assume a set of events {E} that are of interest in a particular context. This set
{E} could be the ticks of all clocks, or the events of sending and receiving messages of the
nodes of a distributed system. If these events are allowed to occur at any instant of the
timeline, then we call the time base dense. To arrive at a consistent view among a set of
nodes about the order of the events that occur on a dense time base of a distributed system,
the nodes must execute an agreement protocol. The first phase of an agreement protocol
requires an information interchange among the nodes with the goal that every node
acquires the differing local views about the state of the observation of every other node. At
the end of this first phase, every node possesses exactly the same information as every
other node. In the second phase of the agreement protocol, each node applies a
deterministic algorithm to this consistent information to reach the same conclusion—the
commonly agreed value. In the fault-free case, an agreement algorithm requires an
additional round of information exchange as well as the resources for executing the
agreement algorithm (see also [Kopetz 1997]). Agreement algorithms are costly, both in
terms of communication requirements, processing requirements, and!— worst of all!— in
terms of the additional delay they introduce into a control loop. It is therefore expedient to
look for solutions to the ordering problem that do not require these additional overheads.

Sparse Time: If the occurrence of significant events that are to be observed is restricted to
some active intervals of duration e with an interval of silence of duration D between any
two active intervals, then, we call the time base e/D-sparse, or simply sparse for short
[Kopetz 1992]. If a system is based on a sparse time base, there are time intervals during
which no significant event is allowed to occur. If the intervals e and D are properly chosen
(see, e.g., [Kopetz 1997], then, it is possible to establish a consistent order of the
significant events among a set of properly synchronized nodes without the execution of an
agreement protocol. It is evident that the occurrences of events can only be restricted if the
given system has the authority to control these events, i.e., these events are in the sphere of
control of the computer system (Davies 1979). For example, within a distributed
computing system the sending of messages can be restricted to some intervals of the
timeline and can be forbidden at some other intervals. The occurrence of events outside

Final Version of DSoS Conceptual Model Annex 1. Models of Time

101

the sphere of control of the computer system cannot be restricted. These external events
are based on a dense time base.

If there is a global time available among a set of DSoS component systems, we assume
that the macrotick granularity of this global time base is a negative power-of-two of the
physical second. Considering the reasonableness condition, the achieved precision
determines which negative power-of-two of the second is selected for the macrotick
granularity. By restricting the macrotick granularities to the negative powers-of-two of the
full second it is ensured

• that a consistent time base for the measurement of events in the different
component systems of a distributed system is established and

• that a full second tick can be generated by a simple binary counter that counts the
macroticks of the global time base.

A.1 Multi-cluster global time

The number of system components that can be directly connected is limited due to
physical constraints, where ‘directly’ means using one physical connection system without
a gateway component (that is, an intermediate system component between component
systems). Yet, in order to achieve good synchronization, the jitter of the communication
delay must be small, which can only be achieved using direct connections. As a
consequence, it is advisable to group component systems into so-called clusters that
consist of several directly connected component systems. A system comprising several
connected clusters is called a multi-cluster system, where clusters are connected via
gateway components. Component systems of one cluster should build their own global
time using internal clock synchronization. A common system-wide notion of time can be
achieved by synchronizing the global times of different clusters.

Component systems belonging to the same cluster have high functional and temporal
coupling, while coupling between the component systems of different clusters is much
looser.

Synchronization of the global times of clusters has the effect of synchronizing all
component systems, of all clusters, to within a maximum drift rate and/or accuracy with
respect to the time of an omniscient external observer (see Section 3.7). Multi-cluster
synchronization makes a single global time base available system-wide, which is a
prerequisite of a sparse time base. A sparse time base enables the establishment of a
consistent order of significant events in a system without the execution of an agreement
protocol. Furthermore, a system-wide notion of time simplifies the design and evaluation
of algorithms, since they can take advantage of the common notion of time. Furthermore,
the quality of multi-cluster synchronization – measured in terms of system-wide precision

Annex 1. Models of Time Final Version of DSoS Conceptual Model

102

– determines the quality of a system-wide image of the environment and, consequently,
the quality of control exerted by the whole system.

Clock synchronization for multi-cluster systems must fulfill several properties in order to
be deployable in dependable systems of systems; these properties are described in detail in
[Paulitsch 2002]. One of these properties is non-interference, which is defined as
composability with respect to the precision of clusters. The synchronization of the
different global times of clusters must not increase the precision required of the internal
clock synchronization of the synchronizing clusters. An increased required precision may
require a corresponding increase in the granularity of the global time of a cluster and thus
invalidate timing properties of applications that depend on the global cluster time. It can
be shown that non-interfering clock synchronization of the global times of multi-cluster
systems can be achieved if the clock synchronization algorithms take advantage of the
global time at cluster level and of reliable broadcast [Paulitsch 2002].

Final Version of DSoS Conceptual Model Annex 2. Glossary

103

ANNEX 2. GLOSSARY

This glossary contains an alphabetized list of all the terms for which explicit definitions
are given above.

(Abstract) Interface State: The (abstract) state of a component system as viewed from a
particular interface. It is a notional attribute of the interface that is sufficient to
explain future behaviour of the component system across this interface.

 (Abstract) State of a System: At a given instant, a notional attribute of the system that is
sufficient to determine its potential behaviour.

Accuracy: An image is an accurate representation of a state variable (it is valid) at a
given instant if it is value accurate and temporally accurate.

Actuation (Sensing) Operation: The production (recording) by a system at a physical
output (input) interface of a single value change at an instant or of a temporally-
controlled sequence of value changes during a duration.

Architectural style: A set of rules and conventions governing the connections and
interactions between the components of a system.

Behaviour: A sequence of (perhaps timestamped) send and receive operations of a
system.

Boundary Line: A connection between at least two interfaces with matching properties.

Composite Interface: An interface across which composite interactions can occur. A
composite interaction is one where at least one message is transmitted according to
the information pull model (i.e., the consumer of some message exerts control –
back pressure – on its transmission).

Configuration Planning (CP) Interface: The CP interface is used during the integration
or reconfiguration phase to connect a component system to other component systems
of a system of systems.

Connection System: A new system with at least two interfaces that is introduced between
interfaces of the connected component systems in order to resolve property
mismatches among these systems (which will typically be legacy systems), to
coordinate multicast communication, and/or to introduce emerging services.

Connection: A link between the interfaces of two or more interacting systems.

Annex 2. Glossary Final Version of DSoS Conceptual Model

104

Declared Interface State: At a given instant, the value assigned to a declared data
structure that can be accessed via an interface and that records all the stored state
that is relevant to (i.e., that can influence) the future essential behaviour of the
system at the given interface.

Declared State: At a given instant, the value assigned to a declared data structure that can
be accessed via an interface and that records all the stored state that is relevant to
(i.e., that can influence) the future essential behaviour of the system.

Dependability: The dependability of a system is the ability to deliver a service that can
justifiably be trusted, where the service is the intended behaviour of the system.

Diagnostic and Management (DM) Interface: The DM interface provides a
communication channel to the internals of the component system for the purpose of
diagnosis and management.

Duration: A section of the timeline.

Elementary Interface: An interface across which only elementary interactions can occur.
An elementary interaction is one where all messages are transmitted according to the
information push model (i.e., the consumer of each message exerts no control – no
back pressure – on its transmission).

Error: An error is that part of the system state that may cause a subsequent failure.

Error Containment Region: A well-defined subsystem of a computer system that
contains error-detection mechanisms such that there is a high probability – the error
containment coverage – that the consequences of an error that occurs within this
subsystem will not propagate outside this subsystem without being detected.

Event Message: A message that contains only event observations.

Event Observation: An event observation records the occurrence of an event. An event is
a significant happening, e.g., an important difference between the state observation
immediately before the happening and the state observation immediately after the
happening. An event observation can be represented by the tuple

<Name of the observed event, attributes of the event, time of the event>

where the time of the event field may be NULL, in which case the observation has
no timestamp.

Failure: A failure of a system occurs at an interface of the system at the instant when its
behaviour starts to deviate from the intended behaviour at that interface.

Final Version of DSoS Conceptual Model Annex 2. Glossary

105

Fault: A fault is the cause of an error.

Fault Containment Region: A set of components that is considered to fail (a) as an
atomic unit, and (b) in a statistically independent way with respect to other fault
containment regions.

Fault Tolerance: Methods and techniques aimed at providing the intended system
behaviour in spite of faults.

Idempotency: An observation is idempotent if the effect of processing it more than once
can be made the same as the effect of processing it once.

Image: A representation of a state variable, e.g., at a receiver of messages that contain
state observations.

Input Interface: An interface of a system at which information is consumed from the
environment of the system.

Instant: A cut of the timeline.

Interaction: A sequence of message exchanges between connected interfaces.

Interface: A point of interaction between a system and its environment.

Interface Model: the model of the concepts a user has in mind when he/she relates the
meaning of the chunks of information in a message (which are the results of the
syntactic specification) to his/her conceptual world.

Interface State: See (Abstract) Interface State and (Stored) Interface State.

Jitter: The difference between minimum and maximum latencies.

Latency: The time interval that elapses between a stimulus and a response. For example,
the latency of an observation is the interval between the instant of observation of a
real-time entity and the instant of use of the observation.

Legacy System: An existing system that provides a service to an organization or set of
users.

Linking Connection: A connection between two or more existing systems that is
introduced in order to resolve property mismatches and thus incorporate these
systems into a system of systems with new emergent services.

Linking Interface (LIF): An interface of a component system through which it is
connected to other component systems within a given system of systems.

Annex 2. Glossary Final Version of DSoS Conceptual Model

106

Local Interface: An interface of a component system that is not a linking interface within
a given system of systems.

Message: A data structure that is formed for the purpose of communication among
computer systems.

Message Receive Instant: The instant when the receiving of a message terminates at the
receiver.

Message Send Instant: The instant when the sending of a message starts at the sender.

Output Interface: An interface of a system at which information is produced for the
environment of the system.

Periodic State Message: A state message that is sent periodically at a priori known
instants. These instants are common knowledge to the sender and the receivers.

Properties of an Interface: The set of attributes associated with an interface.

Property Mismatch: A disagreement among connected interfaces in one or more of their
properties.

Protocol: A set of rules that specifies the interactions between two or more component
systems across connected interfaces.

Send (Receive) Operation: The sending (receiving) of a message at an interface.

Service Failure: A failure at a service interface of the system.

Service Interface: This is the interface that provides the intended service to the
environment, namely the systems with which it interacts.

Service Specification: The specification of the set of intended behaviours of a system.

State Message: A message that contains only state observations.

State Observation: A record of the value of a state variable. It may be represented as a
tuple <Name, Value, tobs> consisting of the name of the state variable, the observed
value of the state variable, and the instant when the state variable was observed. The
recorded time tobs may be NULL, in which case the observation has no timestamp.

State of a System: See (Abstract) State of a System and (Stored) State of a System.

State Variable: A relevant variable, either in the environment or in the computer system,
whose value may change as time progresses.

Final Version of DSoS Conceptual Model Annex 2. Glossary

107

(Stored) Interface State: The (stored) state of a component system that is relevant to
future behaviour at a particular interface. Together with a definition of the system, it
is sufficient to explain the behaviour of the component system across this interface.

 (Stored) State of a System : At a given instant, the total information explicitly stored by
the system (in state variables) up to the given instant.

System: An entity that is capable of interacting with its environment and may be sensitive
to the progression of time.

System of Systems (SoS): A system constructed from autonomous component systems,
where autonomous means independence with respect to existence, operation and/or
evolution.

Temporal Accuracy: An image is a temporally accurate representation of a state variable
at instant t if the duration between the time-of-observation of the state variable (tobs)
and the instant t is less than the accuracy interval dacc, an application-specific
parameter associated with the dynamics of the given state variable.

Temporal Composability: The characteristic that ensures that the temporal properties of a
component system are not influenced by the integration of the component system
into a system of systems.

Value Accuracy: An image is a value accurate representation of a state variable if the
interpretation of the image value by the user is in agreement with the semantic
content of the state variable at the instant of observation.

Final Version of DSoS Conceptual Model References

109

References

[Abrial 1996] J.-R. Abrial. The B-Book: Assigning Programs to Meanings, Cambridge
University Press, 1996.

[Ahuja et al. 1990] M. Ahuja, A.D. Kshemkalyani and T. Carlson. “A Basic Unit of
Computation in a Distributed System,” in 10th IEEE Distributed Computer Systems
Conference, pp. 12-19, IEEE Press, 1990.

[Allen and Garlan 1994] R. Allen and D. Garlan. “Formalizing Architectural Connection,”
in Proc. 16th ACM-SIGSOFT-IEEE International Conference on Software Engineering
(ICSE'94), pp. 71-80, 1994.

[Allen and Garlan 1997] R.J. Allen and D. Garlan, “A Formal Basis for Architectural
Connection,” ACM Transactions on Software Engineering and Methodology, vol. 6, no. 3,
pp.213-249, 1997.

[America 1989] P. America, “Issues in the Design of a Parallel Object-Oriented
Language,” Formal Aspects of Computing, vol. 1, no. 4,1989.

[Arlat et al. 2000] J. Arlat, J.-C. Fabre, V. Issarny, M. Kaâniche, K. Kanoun, C.
Kloukinas, B. Marre, E. Marsden, D. Powell, A. Romanovsky, P. Thévenod-Fosse, H.
Waeselynck, I. Welch, I. Zakkiudin and A. Zarras. State of the Art Survey (DSoS Project
deliverable BC2), University of Newcastle upon Tyne, 2000.

[Arlat et al. 2001] J. Arlat, J.-C. Fabre, V. Issarny, C. Kloukinas, V.K. Nguyen, M.
Rodriguez, A. Romanovsky and A. Zarras. Architecture and Design: Initial Results on
Architectures and Dependable Mechanisms for Dependable SoSs (DSoS Project
deliverable IC2), University of Newcastle upon Tyne, 2001.

[Avizienis 1982] A. Avizienis. “The Four-Universe Information System Model for the
Study of Fault Tolerance,” in 12th FTCS Symposium, Los Angeles, IEEE Press, 1982.

[Barringer et al. 1984] H. Barringer, J.H. Cheng and C.B. Jones, “A Logic Covering
Undefinedness in Proram Proofs,” acta, vol. 21, pp.251-269, 1984.

[Bozga et al. 1998] M. Bozga, C. Daws, O. Maler, A.O. and, S. Tripakis and S. Yovine.
“Kronos: A Model-Checking Tool for Real-Time Systems,” in Proc. 10th International
Conference on Computer Aided Verification, pp. 546-550, Vancouver, Canada, Springer-
Verlag, 1998.

References Final Version of DSoS Conceptual Model

110

[Brownbridge et al. 1982] D.R. Brownbridge, L.F. Marshall and B. Randell, “The
Newcastle Connection, or - UNIXes of the World Unite!,” Software Practice and
Experience, vol. 12, no. 12, pp.1147-1162, 1982.

[Burton et al. 2001a] J. Burton, M. Koutny and G. Pappalardo. “Implementing
Communicating Processes in the Event of Interface Difference,” in Proc. ICACSD'01, pp.
87-96, Newcastle upon Tyne, U.K., 2001a.

[Burton et al. 2001b] J. Burton, M. Koutny and G. Pappalardo. “Verifying Implementation
Relations in the Event of Interface Difference,” in Proc. of FME 2001, Lecture Notes in
Computer Science 2021, pp. 364-383, Springer-Verlag, 2001b.

[Burton et al. 2002] J. Burton, M. Koutny, G. Pappalardo and M. Pietkiewicz-Koutny.
“Compositional Development in the Event of Interface Difference,” in Concurrency in
Dependable Computing, ed. P. Ezhilchelvan and A. Romanovsky, pp. 3-22, Kluwer
Academic Publishers, 2002.

[Campbell and Randell 1986] R.H. Campbell and B. Randell, “Error Recovery in
Asynchronous Systems,” IEEE Trans. Software Engineering, vol. SE-12, no. 8, pp.811-
826, 1986.

[CAN 1990] CAN. “Controller Area Network CAN, an In-Vehicle Serial Communication
Protocol,” in SAE Handbook 1992, SAE J1583, pp. 20.341-20.355, SAE Press, 1990.

[Caprile and Tonella 1999] C. Caprile and P. Tonella. “Nomen est omen: Analyzing the
Language of Function Identifiers,” in Sixth Working Conference on Reverse Engineering,
pp. 112-122, IEEE Press, 1999.

[Clark 2001] D. Clark, “Face-to-Face with Peer-to-Peer Networking,” Computer, vol. 34,
no. 1, pp.18-21, 2001.

[Clarke et al. 2000] I. Clarke, O. Sandberg, B. Wiley and T. Hong. “Freenet: A Distributed
Anonymous Information Storage and Retrieval System,” in ICSI Workshop on Design
Issues in Anonymity and Unobservability, Berkeley, CA, International Computer Science
Institute, 2000.

[Collette and Jones 2000] P. Collette and C.B. Jones. “Enhancing the Tractability of
Rely/Guarantee Specifications in the Development of Interfering Operations,” in Proof,
Language and Interaction, ed. G. Plotkin, C. Stirling and M. Tofte, pp. 277-307, MIT
Press, 2000.

Final Version of DSoS Conceptual Model References

111

[Cousot and Cousot 1977] P. Cousot and R. Cousot. “Abstract Interpretation: A unified
lattice model for static analysis of programs by construction or approximation of
fixpoints,” in Proc. 4th ACM Symp. Principles Programming Languages, pp. 238-252,
1977.

[Creese and Roscoe 2000] S.J. Creese and A.W. Roscoe. “Data Independent Induction
over Structured Networks,” in Proc. International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA '00), Las Vegas, USA,
2000.

[Deline 1999] R. Deline. Resolving Packaging Mismatch (PhD Thesis), 178, Computer
Science Department, Carnegie Mellon University, Pittsburgh, 1999.

[Dobson and Periorellis 2002] J.E. Dobson and P. Periorellis. Organisational Aspects of
Failure (DSoS Project deliverable PCE4), University of Newcastle, 2002.

[Fabre et al. 2003] J.-C. Fabre, M. Goldsmith, T. Losert, E. Marsden, N. Moffat, M.
Paulitsch, D. Powell, W. Simmonds and P. Whittaker. Validation of Fault Tolerance and
Timing Properties (DSoS Project deliverable DSC2), Report No. 03174, LAAS-CNRS,
2003.

[Failures-Divergence Refinement: FDR2 User Manual 1992-99] Failures-Divergence
Refinement: FDR2 User Manual, Formal Systems (Europe) Ltd., 1992-99.

[Forman et al. 1985] I.R. Forman, M.H. Conner, S.H. Danforth and L.K. Raper, “Release-
to-Release Binary Compatibility in SOM,” ACM Sigplan Notices, Proc. OOPSLA 1995,
vol. 30, no. 10, pp.426-438, 1985.

[Führer et al. 2000] T. Führer, B. Muller and W. Dieterle. “Time-Triggered CAN-
TTCAN:Time-Triggered Communication on CAN,” in Proc. 6th International CAN
Conference (ICC6), Torino, Italy, 2000.

[Garlan et al. 1995] D. Garlan, R. Allen and J. Ockerbloom. “Architectural Mismatch or
Why It's Hard to Build Systems out of Existing Parts,” in Proc. ICSE 17, pp. 179-185,
Seattle, 1995.

[Hauswirth and Jazayeri 1999] M. Hauswirth and M. Jazayeri. “A Component and
Communication Model for Push Systems,” in Joint 7th European Software Engineering
Conference (ESEC) and 7th ACM SIGSOFT Int. Symp. on the Foundations of Software
Engineering (FSE-7), Toulouse, France, ACM, 1999.

[Hauzeur 1986] B.M. Hauzeur, “A Model for Naming, Addressing, and Routing,” ACM
Transactions of Office Information Systems, vol. 4, no. 4, pp.293-311, 1986.

References Final Version of DSoS Conceptual Model

112

[Hayakawa 1990] S.I. Hayakawa. Language in Thought and Action, Harvest Original, San
Diego, 1990.

[Hayes 1993] I. Hayes. Specification Case Studies, Prentice Hall International, 1993.

[Hayes et al. 1993] I. Hayes, C.B. Jones and J.E. Nicholls, “Understanding the Differences
between VDM and Z,” FACS Europe, vol. 1, no. 1, pp.7-30, 1993.

[Hoare 1985] C.A.R. Hoare. Communicating Sequential Processes, Prentice Hall, 1985.

[Holzmann 1997] G. Holzmann, “The SPIN Model Checker,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp.279-295, 1997.

[Jones 1981] C.B. Jones. Development Methods for Computer Programs including a
Notion of Interference. Programming Research Group Technical Monograph 25. 1981.

[Jones 1990] C.B. Jones. Systematic Software Development using VDM, Prentice Hall
International, 1990, 333 p.

[Jones 1996] C.B. Jones, “Accommodating Interference in the Formal Design of
Concurrent Object-Based Programs,” Formal Methods in System Design, vol. 8, no. 2,
pp.105-222, 1996.

[Jones 2002] C.B. Jones. “A Formal Basis for some Dependability Notions,” in Proc.
UNU/IIST Anniversary Colloquium (To appear), Lisbon, 2002.

[Jones et al. 2001] C.B. Jones, M.-O. Killijian, H. Kopetz, E. Marsden, N. Moffat, M.
Paulitsch, M. Powell, B. Randell, Romanovsky, A. and R.J. Stroud. Revised Version of
DSoS Conceptual Model (DSoS Project deliverable IC1), CS-TR-746, University of
Newcastle upon Tyne, 2001.

[Jones et al. 2002] C.B. Jones, A. Romanovsky and I. Welch. “A Structured Approach to
Handling On-Line Interface Upgrades,” in COMPSAC 2002, pp. 1000-1005, Oxford, UK,
IEEE CS Press, 2002.

[Kamel and Leue 1998] M. Kamel and S. Leue. Validation of Remote Object Invocation
and Object Migration in CORBA GIOP using Promela/Spin, Ecole Nationale Supérieure
de la Télécommunication, 1998.

[Kopetz 1992] H. Kopetz. “Sparse Time versus Dense Time in Distributed Real-Time
Systems,” in Proc. 14th Int. Conf. on Distributed Computing Systems, pp. 460-467,
Yokohama, Japan, IEEE Press, 1992.

Final Version of DSoS Conceptual Model References

113

[Kopetz 1993] H. Kopetz, “Should Responsive Systems be Event-Triggered or Time-
Triggered?,” IEICE Trans. on Information and Systems (Special Issue on Responsive
Computer Systems), 1993.

[Kopetz 1997] H. Kopetz. Real Time Systems: Design Principles for Distributed
Embedded Applications, Boston, Kluwer Academic Publishers, 1997.

[Kopetz 1999] H. Kopetz. “Elementary versus Composite Interfaces in Distributed Real-
time Systems,” in ISADS 99, Tokyo, Japan, IEEE Press, 1999.

[Kopetz 2000a] H. Kopetz. Preliminary Version of Conceptual Model (DSoS Project
deliverable BC1), University of Newcastle upon Tyne, 2000a.

[Kopetz 2000b] H. Kopetz. “Software Engineering for Real-Time: A Roadmap,” in
Software Engineering Conference 2000, Limmerick, Ireland, IEEE Press, 2000b.

[Kopetz 2002a] H. Kopetz. Fault Containment and Error Detection inthe Time-Triggered
Architecture, 39/2002, Technische Universitat Wien, Institut fur Technische Informatik,
2002a.

[Kopetz 2002b] H. Kopetz. “Time-Triggered Real-Time Computing,” in IFAC World
Congress, Barcelona, Spain, IFAC Press, 2002b.

[Kopetz and Bauer 2003] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,”
Proc. IEEE, Special Issue on Modeling and Design of Embedded Software, vol. 91, no.
1,2003.

[Kopetz et al. 1999] H. Kopetz, T. Galla, H. Angelow, E. Fuchs, T. Führer and R. Hexel.
Specification of the TTP/C Protocol, http://www.ttpforum.org, 1999.

[Kopetz and Nossal 1997] H. Kopetz and R. Nossal. “Temporal Firewalls in Large
Distributed Real-Time Systems,” in Proc. IEEE Workshop on Future Trends in
Distributed Computing, pp. 310-315, Tunis, Tunesia, IEEE Press, 1997.

[Kopetz and Ochsenreiter 1987] H. Kopetz and W. Ochsenreiter, “Clock Synchronisation
in Distributed Real-Time Systems,” IEEE Trans. Computers, vol. 36, no. 8, pp.933-940,
1987.

[Kopetz 2002c] H.S. Kopetz, N. Compositional Design of RT Systems: A Conceptual
Basis for Specification of Llinking Interfaces, 37/2002, Technische Universitat Wien,
Institut fur Technische Informatik, 2002c.

References Final Version of DSoS Conceptual Model

114

[Koutny and Pappalardo 1998] M. Koutny and G. Pappalardo. The ERT Model of Fault-
Tolerant Computing and Its Application to a Formalisation of Coordinated Atomic
Actions, TR 636, Department of Computing Science, University of Newcastle upon Tyne,
1998.

[Laprie 1992] J.C. Laprie, (Ed.). Dependability: Basic concepts and terminology — in
English, French, German, Italian and Japanese, Dependable Computing and Fault
Tolerance. Vienna, Austria, Springer-Verlag, 1992, 265 p.

[Lazic and Roscoe 1998] R. Lazic and A.W. Roscoe. Verifying Determinism of
Concurrent Systems Which Use Unbounded Arrays, TR-2-98., Oxford University
Computing Laboratory, 1998.

[Lee 1999] E.A. Lee. Embedded Software - An Agenda for Research, UCB/ERL No.
M99/93, University of California, Berkeley, 1999.

[Marsden 2001] E.F. Marsden, J-C. Failure Analysis of an ORB in the Presence of Faults,
LAAS-CNRS, 2001.

[Medvidovic and Taylor 2000] N. Medvidovic and R.N. Taylor, “A Classification and
Comparison Framework for Software Architecture Description Languages,” IEEE
Transactions on Software Engineering, vol. 26(1), no. Jan. 2000, pp.70-93, 2000.

[Meyer 1988] B. Meyer. Object-Oriented Software Construction, Prentice Hall, 1988.

[Nguyen and Issarny 2002] V.K. Nguyen and V. Issarny. Demonstration of Support for
Architectural Design for Dependable SoSs (Deliverable CSDA2), INRIA, 2002.

[Obermaisser 2002] R. Obermaisser. “CAN Emulation in a Time-Triggered
Enviornment,” in Proc. 2002 IEEE International Symposium on Industrial Economics,
2002.

[OFTA 2000] OFTA. Software Architecture and Component Re-use, Arago. Paris,
Masson, 2000.

[OMG 1999] OMG. CORBA Persistent State Service V2.0, Joint Revised Submission,
orbos/99-07-07, Object Management Group, 1999.

[OMG 2000a] OMG. CORBA Externalization Service V1.0, formal/00-06-16, Object
Management Group, 2000a.

[OMG 2000b] OMG. CORBAServices: Common Object Service Specification: Event
Service Specification. 2000b.

Final Version of DSoS Conceptual Model References

115

[OMG 2000c] OMG. CORBAServices: Common Object Service Specification:
Notification Service Specification. 2000c.

[OMG 2000d] OMG. Fault Tolerant CORBA Specification V1.0, ptc/2000-04-04, Object
Management Group, 2000d.

[OSF 1992] OSF. Introduction to OSF DCE, Open System Fondation, Englewood Cliffs,
N.J, Prentice Hall, 1992.

[Owicki 1975] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. Department
of Computer Science. 1975.

[Owicki and Gries 1976] S. Owicki and D. Gries, “An Axiomatic Proof Technique for
Parallel Programs,” Acta Informatica, vol. 6, pp.319-340, 1976.

[Paulitsch 2002] M. Paulitsch. Fault-Tolerant Clock Synchronization for Embedded
Distributed Multi-Cluster Systems. Institut fur Technische Informatik. 2002.

[Peti 2002] Peti. The Concepts behind Time, State, Component and Interface - a Literature
Survey., 2002/52, TU Vienna, 2002.

[Pnueli 1986] A. Pnueli. “Specification and Development of Reactive Systems (Invited
Paper),” in Proc. IFIP World Computer Congress, pp. 845-858, Dublin, Ireland, 1986.

[Poledna 1995] S. Poledna. Fault-Tolerant Real-Time Systems, The Problem of Replica
Determinism, Hingham, Mass, USA, Kluwer Academic Publishers, 1995.

[Powell 2002] D. Powell. “Time/Event Triggering is Orthogonal to State/Event
Observation,” in Workshop on the Integration of Event-Triggered and Time-Triggered
Services, Grenoble, France, 2002.

[Powell et al. 1988] D. Powell, G. Bonn, D. Seaton, P. Veríssimo and F. Waeselynck.
“The Delta-4 Approach to Dependability in Open Distributed Computing Systems,” in
18th IEEE Int. Symp. on Fault-Tolerant Computing Systems (FTCS-18), pp. 246-251,
Tokyo, Japan, IEEE Computer Society Press, 1988.

[Radia and Pachl 1993] S. Radia and J. Pachl. “Coherence in Naming in Distributed
Computing Environments,” in 13th Int. Conference on Distr. Computing Systems, pp. 83-
92, IEEE Press, 1993.

[Randell et al. 1997] B. Randell, A. Romanovsky, R.J. Stroud, J. Xu, A.F. Zorzo, D.
Schwier and F. von Henke. Coordinated Atomic Actions: Formal Model, Case Study and
System Implementation, Manuscript, 1997.

References Final Version of DSoS Conceptual Model

116

[Reason 1990] J. Reason. Human Error, Cambridge, UK, Cambridge University Press,
1990.

[Roscoe 1998] A.W. Roscoe. The Theory and Practice of Concurrency, Prentice Hall,
1998.

[Saltzer et al. 1984] J. Saltzer, D.P. Reed and D.D. Clark, “End-to-End Arguments in
System Design,” ACM Transactions on Computer Systems, vol. 2, no. 4, pp.277-288,
1984.

[Saltzer 1978] J.H. Saltzer. “Naming and Binding of Objects,” in Operating Systems: An
Advanced Course, pp. 1-105, New York, Springer Verlag, 1978.

[Schneider 2000] S. Schneider. Concurrent and Real-time Systems: The CSP Approach,
Wiley, 2000.

[Schwier et al. 1997] D. Schwier, F.v. Henke, R.J. Stroud, J. Xu, A. Romanovsky and B.
Randell. “Formalisation of the CA Action Concept Based on Temporal Logic,” in DeVa -
Design for Validation, 2nd year, pp. 3-15, ESPRIT LTR 20072, 1997.

[Siegel 2000] J. Siegel. CORBA 3 - Fundamentals and Programming, OMG Press, John
Wiley, 2000, 899 p.

[Stirling 1988] C. Stirling, “A Generalisation of Owicki-Gries Hoare Logic for a
Concurrent While Language,” TCS, vol. 58, pp.347-359, 1988.

[Szyperski 1998] C. Szyperski. Component Software, Addison Wesley, 1998.

[Tisato and DePaoli 1995] F. Tisato and F. DePaoli. “On the Duality between Event-
Driven and Time Driven Models,” in Proc. of 13th. IFAC DCCS 1995, pp. 31-36,
Toulouse France, 1995.

[UPPAAL] UPPAAL. An Integrated Tool Environment for Modeling, Simulation and
Verification of Real-Time Systems, Aalborg University. [http://www.uppaal.com]

[Vachon 2000] J. Vachon. COALA: A Design Language for Reliable Distributed Systems.
2000.

[Veloudis and Nissanke 2000] S. Veloudis and N. Nissanke. “Modelling Coordinated
Atomic Actions in Timed CSP,” in Formal Techniques in Real-Time and Fault-Tolerant
Systems, ed. M. Joseph, pp. 228-239, Springer, 2000.

[Veríssimo 2000] P. Veríssimo. Topological Model. Malicious and Accidental-Fault
Tolerance for Internet Applications: Reference Model and Use Cases. 67-74, 2000.

Final Version of DSoS Conceptual Model References

117

[Vigotsky 1962] L.S. Vigotsky. Thought and Language, Boston, Mass., MIT Press, 1962.

[Wayner 1997] P. Wayner. Human error cripples the Internet. New York Times. 1997.

[Whitrow 1990] G.J. Whitrow. The Natural Philosophy of Time, Oxford Science
Publications. Oxford, Clarendon Press, 1990.

[Xu et al. 1995] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R.J. Stroud and Z. Wu.
“Fault Tolerance in Concurrent Object-Oriented Software through Coordinated Error
Recovery,” in 25th Int. Symp. on Fault-Tolerant Computing (FTCS-25), pp. 499-508,
Pasadena, CA, USA, IEEE Computer Society Press, 1995.

[Xu et al. 1999] J. Xu, B. Randell, A. Romanovsky, R.J. Stroud, A.F. Zorzo, E. Canver
and F. von Henke. “Rigorous Development of a Safety-Critical System Based on
Coordinated Atomic Actions,” in 29th Int. Symp. on Fault-Tolerant Computing (FTCS-
29), pp. 68-75, Madison, WI, USA, IEEE Computer Society Press, 1999.

[Xu et al. 1998] J. Xu, A. Romanovsky and B. Randell. “Co-ordinated Exception Handling
in Distributed Object Systems: from Model to System Implementation,” in Proc. 18th
IEEE International Conference on Distributed Computing Systems, pp. 12-21,
Amsterdam, Netherlands, 1998.

[Zorzo 1999] A.F. Zorzo. Multiparty Interaction in Dependable Distributed Systems (PhD
Thesis), Department of Computing Science, University of Newcastle upon Tyne, 1999.

