
List of Authors

Dependable Systems of Systems 3

List of Authors

Jean Arlat...........................................................................................LAAS-CNRS, Toulouse, F

Jean-Charles Fabre.............................................................................LAAS-CNRS, Toulouse, F

Valérie Issarny .......................................................................................INRIA, Rocquencourt, F

Cliff Jones ....................................................................University of Newcastle upon Tyne, UK

Nicole Levy............................................................................................INRIA, Rocquencourt, F

Eric Marsden......................................................................................LAAS-CNRS, Toulouse, F

Panos Periorellis ...........................................................University of Newcastle upon Tyne, UK

Manuel Rodriguez..............................................................................LAAS-CNRS, Toulouse, F

Alexander Romanovsky................................................University of Newcastle upon Tyne, UK

Ferda Tartanoglu....................................................................................INRIA, Rocquencourt, F

Ian Welch......................................................................University of Newcastle upon Tyne, UK



4 



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  5

Table of Contents

List of Authors........................................................................................................................... 3

Introduction................................................................................................................................ 9

Chapter 1 - Dependable Composition of Web Services ........................................................... 11

1.1. Introduction.............................................................................................................. 11

1.2. Background.............................................................................................................. 12
1.2.1. Specifying the Composition of Web Services.................................................. 12
1.2.2. Transactions for the Dependable Composition of Web Services...................... 15

1.3. Web Service Composition Actions........................................................................... 16

1.4. WSCAL for the Abstract Specification of Dependable Web Services Composition 19
1.4.1. WSCAL........................................................................................................... 20
1.4.2. Example........................................................................................................... 27

1.5. Execution of WSCA-based Services........................................................................ 30
1.5.1. Base Runtime Support for Web Services......................................................... 30
1.5.2. Generating Web Services from WSCAL specification..................................... 31
1.5.3. Java-based Runtime Support for WSCAs........................................................ 32

1.6. Conclusion............................................................................................................... 32

Chapter 2 - Structured Handling of On-Line Interface Upgrades in Integrating Dependable
SoSs......................................................................................................................................... 34

2.1. Introduction.............................................................................................................. 34

2.2. System Model.......................................................................................................... 37

2.3. The Framework........................................................................................................ 37
2.3.1. Structured Fault Tolerance............................................................................... 37
2.3.2. Error Detection................................................................................................. 38
2.3.3. Error Recovery................................................................................................. 38

2.3.3.1. Different Handlers ................................................................................... 38
2.3.3.2. Multilevel Handling.................................................................................. 39

2.4. Representing Meaning ............................................................................................. 40

2.5. Java RMI Implementation........................................................................................ 41

2.6. Related Work........................................................................................................... 43



Table of Contents

6 Deliverable PCE1

2.7. Concluding Remarks................................................................................................ 44

Chapter 3 - From Error Detection to Recovery Wrappers........................................................ 45

3.1. Introduction.............................................................................................................. 45

3.2. Wrapping Framework for Fault Tolerance............................................................... 47

3.3. The Recovery Actions.............................................................................................. 49

3.4. Application to Real-Time Microkernel Based Systems............................................ 50
3.4.1. Example of a Wrapper ..................................................................................... 50
3.4.2. Example of Implementation of Recovery Actions............................................. 51
3.4.3. Reflective Real-Time Microkernel..................................................................... 52
3.4.4. Wrapper Execution while the Microkernel Behaves Correctly......................... 54
3.4.5. Wrapper Execution when an Error Impacts the Microkernel............................ 56

3.5. Case Study............................................................................................................... 58
3.5.1. Assessment by Fault Injection.......................................................................... 58

3.5.1.1. Assessment when the Kernel is not Wrapped .......................................... 59
3.5.1.2. Assessment when the Kernel is Wrapped for Error Detection ................. 60
3.5.1.3. Assessment when the Kernel is Wrapped for Error Detection and Error
Recovery 62

3.5.2. Integration of Wrappers into a Real-Time System ........................................... 63
3.5.2.1. Integration of Wrappers into the Schedulability Test ............................... 63
3.5.2.2. Integration of Error Detection Only ......................................................... 64
3.5.2.3. Integration of Error Detection and Error Recovery................................... 66

3.6. Discussion ............................................................................................................... 67
3.6.1. General Discussion.......................................................................................... 67
3.6.2. Wrapping the Interface between the Application and the Middleware.............. 67
3.6.3. Wrapping the Interface between the Middleware and the Operating System.... 68
3.6.4. Wrapping the Interface between the Middleware and Remote Objects............. 69

3.7. Conclusion............................................................................................................... 70

References................................................................................................................................ 71

Chapter 1 - Dependable Composition of Web Services ....................................................... 71

Chapter 2 – Structured Handling of On-Line Interface Upgrades in Integrating Dependable
SoSs..................................................................................................................................... 73

Chapter 3 – From Error Detection to Recovery Wrappers ................................................... 75

Appendix A. Formalisation of Coordinated Atomic Actions in B............................................. 77

A.1. The B Formal Method.............................................................................................. 77



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  7

A.2. Modeling CA Actions.............................................................................................. 77

A.3. Proofs...................................................................................................................... 91

A.4. Discussion ............................................................................................................... 91

References............................................................................................................................ 91





                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  9

Further Results on Architectures and
Dependability Mechanisms for Dependable

SoSs

Jean Arlat1, Jean-Charles Fabre1, Valérie Issarny2, Cliff Jones3, Nicole Levy2, Eric
Marsden1, Panos Periorellis3, Manuel Rodriguez1, Alexander Romanovsky3, Ferda

Tartanoglu2, Ian Welch3

1LAAS-CNRS (Toulouse, F), 2INRIA (Rocquencourt, F), 3University of
Newcastle upon Tyne (UK)

Introduction

This document reports recent results of work package on architecture and design related to
architecture descriptions and design of dependability mechanisms for dependable systems of
systems (SoSs), and to systems of systems integration. These results contribute further in the
achieving the ultimate work package aim of delivering the definition of an environment for the
construction of dependable SoSs out of autonomous heterogeneous systems and dependability
mechanisms assisting in building such systems.

The deliverable extends further mechanisms and techniques presented in Project deliverable IC2
on Initial Results on Architectures and Dependability Mechanisms for Dependable SoSs.
Development of the Conceptual Model (cf deliverable IC1: Revised Version of the Conceptual
Model) has had a strong influence on the advances in work package on SoS architecture and
design which are reported here.

The document is organised into three chapters and an Appendix. These chapters may be read
independently, and corresponding bibliographical references are given separately at the end of
the report. The first chapter proposes a structured approach to integrating complex Web
applications that are built using existing Web services as the component systems. The next part
of the deliverable puts forward a general framework for dealing with on-line upgrades of
component systems at the level of linking interfaces (LIFs). The last chapter introduces an
approach to detecting component system errors at the level of LIFs and to recovering after them,
and demonstrates this approach using a real-time microkernel as a component system.  A brief
overview of the chapter contents is as follows:

•  Dependable Composition of Web Services: This chapter introduces Project work
towards supporting the development of dependable SoSs in the context of the Web Service
Architecture. Our approach primarily lies in developing WSCAL (Web Service
Composition Action Language) – an XML-based language for the abstract specification of
the dependable composition of Web Services, which builds upon the CA Actions concept



Introduction

10 Deliverable PCE1

for enforcing dependability. We further introduce base design of middleware support for
the automatic generation of composite Web Services from their WSCAL specification. An
Internet Travel Agency is used as a case study to demonstrate the approach proposed.

•  Structured Handling of On-Line Interface Upgrades in Dependable SoSs: There are
many practical situations in which the interfaces of the component systems are changed
dynamically and without notification. In this chapter we propose an approach to handling
such online upgrades in a structured and disciplined fashion. All interface changes are
viewed as abnormal events and general fault tolerance mechanisms (exception handling, in
particular) are applied to dealing with them. The chapter outlines general ways of detecting
such interface upgrades and recovering after them. An Internet Travel Agency is used as a
case study throughout the chapter.

•  From error detection to recovery wrappers: this chapter discusses the notion of recovery
action and how it fits within the framework developed in the previous work on error
detection wrapping. In particular, it demonstrates how the wrapping framework proposed
can be applied to real-time microkernel based systems. The case study discussed is based
on a real-time application running on a COTS real-time microkernel. The chapter presents
some of the results derived from the fault injection experiments and concludes with a
discussion of the notion of wrapping within a CORBA system according to experimental
results.

Appendix A reports recent Project work on B formalisation of CA actions and of their
composition. This work gives a precise definition of CA actions and allows for rigorous
reasoning about dependable behavior of SoSs integrated using this structuring paradigm.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  11

Chapter 1 - Dependable Composition of Web Services

Ferda Tartanoglu, Valérie Issarny, Nicole Levy (INRIA), Alexander Romanovsky
(University of Newcastle)

1.1. Introduction

Systems that build upon the Web Service architecture1 are expected to become a major class of
wide-area SoSs in the near future due to the architecture support for integrating applications
over the Web, which makes it particularly attractive for the development of multi-party business
processes. More specifically, the Web Service architecture targets the development of
applications based on the XML standard [W3C-XML], hence easing the development of
distributed systems by enabling the dynamic integration of applications distributed over the
Internet, independently of their underlying platforms. Currently, the main constituents of the
Web Service architecture are as following:  

(i) WSDL (Web Services Description Language) that is a language based on XML for
describing the interfaces of Web Services [W3C-WSDL].

(ii)  WSCL (Web Services Conversation Language) that is a language for specifying
business-level conversations supported by Web Services [W3C-WSCL].

(iii)  SOAP (Simple Object Access Protocol) that defines a lightweight protocol for
information exchange [W3C-SOAP]; SOAP sets the rules of how to encode data in
XML, and also includes conventions for partly prescribing the invocation semantics
(either synchronous or asynchronous) as well as the SOAP mapping to HTTP.

The Web Service architecture is further conveniently complemented by UDDI (Universal
Description, Discovery and Integration) that allows specification of a registry for dynamically
locating and advertising Web Services [UDDI].

There already exist various platforms that are compliant with the Web Service architecture,
including .NET [MS-NET] and J2EE [SUN-J2EE]. In addition, integration within CORBA is
being addressed [OMG-WS]. Even though the Web Service architecture is quite recent and not
fully mature, it is anticipated that it will play a prominent role in the development of the next
generation distributed systems mainly due to the strong support from industry and the huge
effort in this area. However, there clearly is a number of research challenges in supporting the
thorough development of distributed systems based on Web Services. One such challenge
relates to the effective usage of Web Services in developing business processes, which requires
support for composing Web Services in a way that guarantees dependability of the resulting
composed services. This calls for developing new architectural principles of building such
composed systems, in general, and for studying specialized connectors “glueing” Web
Services, in particular, so that the resulting composition can deal with failures occurring at the

                                                

1 http://www.w3.org/2002/ws.



Dependable Composition of Web Services

12 Deliverable PCE1

level of the individual service components by allowing co-operative failure handling at the level
of the composed systems.

Solutions that are being investigated towards the above goal subdivide into: (i) the definition of
XML-based languages for the specification of Web Services composition, and (ii) revisiting
classical transactional support so as to cope with the specifics of Web Services (e.g., crossing
administrative domains, Web latency), i.e., defining connectors offering transactional properties
over the Internet. Section 1.2 gives an overview of existing solutions to the two aforementioned
issues, and assesses them with respect to Web Service composition and its dependability. In
particular, it is emphasized that while the transaction concept offers a powerful abstraction to
deal with the occurrence of failures in closed systems, it imposes too strong constraints over
component systems in an open environment such as the Web. The main constraint imposed by
transactions relates to supporting backward error recovery that, firstly, requires isolating
component systems for the duration of the embedded (nested) transaction in which they get
involved and hence contradicts the intrinsic autonomy of Web Services, and, secondly, relies on
returning the service state back, which is not applicable in many real-life situations which
involve documents, goods, money as well as humans (clients, operators, managers, etc.).

In the light of the above, this chapter puts forward a solution based on forward error recovery,
which enables dealing with dependability of composed Web Services, and has no impact on the
autonomy of the individual Web Services, while exploiting their possible support for
dependability (e.g., transaction support at the level of each service). Our solution, presented in
Section 1.3, lies in system structuring in terms of co-operative actions that have a well-defined
behavior, both in the absence and in the presence of service failures. More specifically, we
define the notion of Web Service Composition Action (WSCA) that builds upon the
Coordinated Atomic  Action concept developed at the University of Newcastle, which allows
structuring composite Web Services in terms of dependable actions. Sections 1.4 and 1.5 then
introduce a framework enabling the development of composite Web Services based on WSCAs,
subdividing into an XML-based language for the specification of WSCAs and a platform
supporting the execution of WSCAs. Finally, Section 1.6 discusses our current and future work
aimed at enhancing the Web Service architecture with respect  to dependability.

1.2. Background

Offering solutions to the dependable composition of Web Services has triggered a number of
research projects over the last couple of years. Ongoing effort may be subdivided into two
complementary lines of work: (i) offering languages for the abstract specification of Web
Services and their composition so as to support the thorough design, analysis and construction
of composite Web Services, (ii) offering transactional support for composite Web Services so
as to enforce well-defined properties over composed Web Services in the presence of failures.
The two following sections give an overview of proposed solutions in the two above areas.

1.2.1. Specifying the Composition of Web Services

Composing Web services relates to dealing with the assembly of autonomous components so
as to deliver a new service out of the components’ primitive services, given the corresponding
published interfaces. In the current Web Service architecture, interfaces are described in WSDL



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  13

and published through UDDI. However, supporting composition requires further addressing:
(i) the specification of the composition, and (ii) ensuring that the services are composed in a
way that guarantees the consistency of both the individual services and the overall composition.
This calls for the abstract specification of Web Services and of their composition that allows
reasoning about the correctness of interactions with individual Web Services, which requires
adhering to the interaction patterns assumed by the Web Service’s implementation. In addition,
the specification of Web Services should allow for automating as much as possible the analysis
of specification as well as the implementation of service composition in most environments,
including providing support for enhanced service delivery in terms of offered non-functional
properties. Finally, it should be possible to reuse composed services in diverse environments,
and in particular to dynamically select the component Web Services according to the specific
environment in which a composed service is invoked. This puts forward the need for a high-
level specification language of Web Services that is solely based on the components of the Web
Service architecture and that is as much as possible declarative. Defining a language based on
XML then appears as the base design choice for specifying the composition of Web Services.

A first requirement for the XML-based specification of Web Services is to enforce correct
interaction patterns among services. This lies in the specification of the conversations that are
assumed by the Web Service’s implementation for the actual delivery of advertised services. In
other words, the specification of any Web Service must define the observable behavior of a
service and the rules for interacting with the service in the form of exchanged messages. Such a
facility is supported by a number of XML-based languages: WSCL from W3C [W3C-WSCL],
WSFL [WSFL], Microsoft’s XLANG [XLANG], and Web Service Choreography Interface
(WSCI) [WSCI]. While WSCL is the current W3C standard for specifying conversations
associated with Web Services in the context of the Web Services architecture, the other
languages mainly differ from WSCL by offering additional capabilities for specifying a
sequence of actions over services in a way similar to a workflow schema in the case of WSFL,
and for specifying the external behavior of services with respect to failure occurrences in the
case of XLANG and WSCI, as further addressed in the next section.

Given the specification of conversations associated with individual Web Services, the
composition (also referred to as integration or aggregation) of Web Services may be specified
as a graph (or process schema) over the set of Web Services, where the interactions with any
one of them must conform to the conversations associated with them. The specification of such
a graph may then be: (i) automatically inferred from the specification of individual services as
addressed in [Narayanan & MvIllraith 2002], (ii) distributed over the specification of the
component Web Services as in the XL language [Florescu et al. 2002], or (iii) be given
separately as undertaken in [WFSL], [BPML], [Casati et al. 2001], [Fauvet et al. 2001], and
[Yang & Papazoglou 2002]. The first approach is quite attractive but restricts the composition
patterns that may be applied, and cannot thus be applied in general. The second approach is the
most general, introducing an XML-based programming language. However, this makes more
complex the reuse of composed Web Services in various environments since this requires
retrieving the specification of all the component Web Services prior to deploy the composed
service in a given environment. On the other hand, the last approach supports quite directly the
dynamic deployment of a composed service from its specification by clearly distinguishing the
specification of component Web Services (comprising primitive components that are considered
as block-box components and/or inner composite components) from the specification of



Dependable Composition of Web Services

14 Deliverable PCE1

composition. Then, by providing an XML-based language for specifying the composition of
Web Services, the provided specification can serve automating the actual service composition at
run-time, including support for the dynamic selection of component services through the
exploitation of UDDI. Execution of the composed service may then be realized by a centralized
service provider or through peer-to-peer interactions [Benatallah et al. 2002]. The latter
approach that is in particular supported by the Self-Serv platform [Fauvet et al. 2001] is a priori
more scalable due to its decentralized nature. However, this requires installing specific
components on the sites hosting the participating component Web Services, which cannot be
enforced in general. In addition, scalability issues in the case of centralized execution of the
composite service provider raise only if the number of composed services is quite high, which is
not expected to be the common case. Centralized execution of the composed service further
raises availability problem, which is not much a concern since it can be quite easily solved
through replication of the service provider.

In the light of the above, the development of composed Web Services can adequately be
supported through the provision of:

•  An XML-based declarative language for the abstract specification of component Web
Services, including the definition of both the service’s interfaces and the observable
behavior of the service in the form of message exchanges. Such a language is already
offered by the Web Service architecture through WSDL and WSCL.

•  An XML-based language for specifying the composition process, which defines the
graph of interactions among Web Services. A specified composition process needs not
fix the instances of component Web Services that are actually composed upon
invocation of the embedding service. They may be dynamically selected at runtime
according to the specific invocation environment, exploiting in particular UDDI
functionalities. The actual implementation of the service composition may further be
decoupled from the specification of the composition process, leaving under the
responsibility of the developer to check that his implementation conforms to the
service’s specification. Alternatively, the implementation may be generated from the
specification. The latter approach is the most promising although raising the challenge
of defining an XML composition language that is powerful enough to meet
requirements of most composite services, while being abstract enough for supporting
thorough analysis.

•  Tools for automatically checking the consistency of Web Services composition with
respect to the specification of component services. Static checking should here be
promoted as much as possible. In this context, the correctness of a composed service
with respect to the WSCL specification of its component services may be addressed
through model checking. However, consistency checking at runtime is still necessary
when selecting dynamically the component services instances. This further calls for
advertising Web Services with their WSCL specification in addition to the WSDL
specification, so as to implement the consistency check during the selection of service
instances instead of deferring it during the invocation of services as addressed in [Kuno
et al. 2001].



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  15

In addition to the above requirements, the composition of Web Services must promote the
dependability of resulting Web Services. Existing work in the area primarily relies on
transactional support as discussed in the next section.    

1.2.2. Transactions for the Dependable Composition of Web Services

Transactions have been proven successful in enforcing dependability in closed distributed
systems. The base transactional model that is the most used guarantees ACID (atomicity,
consistency, isolation, durability) properties over computations. Enforcing ACID properties
typically requires introducing protocols for: (i) locking resources (i.e., two-phase locking) that
are accessed for the duration of the embedding transaction, and (ii) committing transactions (i.e.,
two or three phases validation protocols). However, such a model is not suited for making the
composition of Web Services transactional for at least two reasons:

•  The management of transactions that are distributed over Web Services requires
cooperation among the transactional support of individual Web Services –if any-, which
may not be compliant with each other and may not be willing to do so given their
intrinsic autonomy and the fact that they span different administrative domains.

•  Locking accessed resources (i.e., the Web Service itself in the most general case) until
the termination of the embedding transaction is not applicable to Web Services, still due
to their autonomy, and also the fact that they potentially have a large number of
concurrent clients that will not stand extensive delays.

Enhanced transactional models may be considered to alleviate the latter shortcoming. In
particular, the split model (also referred to as open-nested transactions) where transactions may
split into a number of concurrent sub-transactions that can commit independently allows
reducing the latency due to locking. Typically, sub-transactions are matched to the transactions
already supported by Web Services (e.g., transactional booking offered by a service) and hence
transactions over composed services do not alter the access latency as offered by the individual
services. Enforcing the atomicity property over a transaction that has been split into a number of
sub-transactions then requires using compensation over committed sub-transactions in the case
of sub-transaction abortion. Using compensation comes along with the specification of
compensating operations supported by Web Services for all the operations they offer. Such an
issue is in particular addressed by XLANG [XLANG] and WSCI [WSCI]. However, it should
be further accounted that using compensation for aborting distributed transactions must extend
to all the participating Web Services (i.e., cascading compensation by analogy with cascading
abort), which is not addressed by XLANG nor WSCI due to their focus on the behavioral
specification of individual Web Services for assisting their composition. An approach that
accounts for the specification of the transactional behaviour of Web Services from the
standpoint of the client in addition to the one of the service is proposed in [Mikalsen et al.
2002]. This reference introduces a middleware whose API may be exploited by Web Services’
clients for specifying and executing a (open-nested) transaction over a set of Web Services
whose termination is dictated by the outcomes of the transactional operations invoked on the
individual services.

The aforementioned references concentrate on the specification of the transactional behaviour of
Web Services. Complementary work is undertaken in the area of transaction protocols



Dependable Composition of Web Services

16 Deliverable PCE1

supporting the deployment of transactions over the Web, while not imposing long-lived locks
over Web resources. Existing solutions include THP (Transaction Hold Protocol) from W3C
[W3C-THP] and BTP from OASIS [OASIS-BTP]. The former introduces the notion of
tentative locks over Web resources, which may be shared among a set of clients. A tentative lock
is then invalidated if the associated Web resource gets acquired. The BTP protocol introduces
the notion of cohesion, which allows defining non-ACID transactions by not requiring
successful termination of all the transaction’s actions for committing.

Developing transactional support for dependable Web Services is an active area of research that
is still in its infancy. From our point of view, solutions to the dependable composition of Web
Services that use primarily transactions do not cope with all the specifics of Web Services. A
major source of penalty lies in the use of backward error recovery in an open system such as
the Internet, which is mainly oriented towards tolerating hardware faults but poorly suited to the
deployment of cooperation-based mechanisms over autonomous component systems that often
require cooperative application-level exception handling among component systems. An
alternative then lies in relying on the existing support of Web Services for managing internal
concurrency control, possibly including transactional support, so as to guarantee keeping the
consistency of services, while relying on forward error recovery for ensuring the dependability
of service composition. The next section introduces such a solution, which builds upon the
concept of Coordinated Atomic (CA) Actions [Xu et al. 1995].

1.3. Web Service Composition Actions

The CA Actions [Xu et al. 1995] are a structuring mechanism for developing dependable
concurrent systems through the generalization of the concepts of atomic actions and
transactions. Basically, atomic actions are used for controlling cooperative concurrency among a
set of participating processes and for realizing coordinated forward error recovery using
exception handling, and transactions are used for maintaining the coherency of shared external
resources that are competitively accessed by concurrent actions (either CA Actions or not).
Then, a CA Action realizes an atomic state transition where:

1. The initial state is defined by the initial state SPi of the participant processes Pi and the
states SRj of the external resources Rj at the time they were accessed by the CA Action.

2. The final state is defined by the state of the participant proceesses (SPi’) at the action’s
termination (either standard or exceptional) and the state of the accessed external
resources (SRj’ in the case of either standard termination or exceptional termination
without abortion, SRj in the case of exceptional termination with abortion).

CA Action naturally fits the specification of operations provided by composite Web Services:

•  A participant (process) specifies interactions with each composed Web Service, stating
the role of the specific Web Service in the composition. In particular, the participant
specifies actions to be undertaken when the Web Service signals an exception, which
may be either handled locally to the participant or be propagated to the level of the
embedding CA Action. The latter then leads to co-operative exception handling
according to the exceptional specification of the CA Action.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  17

•  Each Web service is viewed an external resource. However, unlike the base CA Action
model, interactions do not have to be transactional. The interactions adhere to the
semantics of the Web Service operations that are invoked. An interaction may then be
transactional if the given operation that is called is. However, transactions do not span
multiple interactions.

•  The standard specification of the CA Action gives the expected behavior of the given
operation of the composed Web Service in either the absence of failures or in the
presence of failures that are locally handled (i.e., either system-level exceptions or
programmed exceptions signaled by Web Services operations that do not need to be
cooperatively handled at the CA Action level).

•  The exceptional specification of the CA Action states the behavior of the given operation
of the composed Web Service under the occurrence of failure at one or more of the
participants, that need cooperative exception handling. The resulting forward recovery
may then realize a relaxed form of atomicity (i.e., even when individual operations of the
Web service are transactional, its intermediate states may be accessed by external actions
between such operations executed within a given action) when Web Services offer both
transactional and compensating operations (to be used in cooperative handling of
exceptions).

The above application of CA Actions to the context of Web Services composition, leads us to
introduce the concept of WSCA (Web Service Composition Action). WSCAs mainly differ
from CA Actions in relaxing the transactional requirements over external resources (which are
not suitable for wide-area open systems) and the introduction of dynamic nesting of CA
Actions (i.e., nested calls of WSCAs). The interested reader is referred to Appendix A for the
formal specification of CA Actions extended with dynamic nesting (referred as “action
composition” in Appendix A), while it is part of our future work to provide a formal
specification of WSCAs. We further do not exploit static nesting of CA Actions, which may be
realized through dynamic nesting given the relaxed form of atomicity of WSCAs.

In order to illustrate the use of WSCAs for specifying the composition of Web Services, we
take the Travel Agent case study. We consider joint booking of accommodation and flights
using respective hotel and airline Web Services. Then, the composed Web Service’s operation
is specified using WSCAs as follows. The top-level WSCA TravelAgent comprises the User
and the Travel participants; the former serves interacting with the user while the latter achieves
joint booking according to the user’s request through call to the WSCA that composes the
Airline and the Hotel participants2.  A diagrammatic specification of the WSCAs is shown in
Figure 1.

                                                

2 Note that these participants are not necessarily bound to a unique Web service, they may interact with

various Web services satisfying the target interface, which may be located through UDDI.



Dependable Composition of Web Services

18 Deliverable PCE1

Figure 1 WSCA for composing Web Services

In TravelAgent, the User participant requests the Travel participant to book a return ticket and a
hotel room for the duration of the given stay. This leads the Travel participant to invoke the
JointBooking WSCA that composes the Hotel Web Service and the Airline Web Service. The
participants of the JointBooking WSCA respectively requests for a hotel room and a return
ticket, given the departure and return dates provided by the user. Each request is subdivided into
reservation for the given period and subsequent booking if the reservation succeeds3. In the
case where either the reservation or the booking fails, the participant raises the unavailable
exception that is cooperatively handled at the level of the JointBooking WSCA denoted by the
greyed box in the figure. If both participants signal the unavailable exception, then Travel

                                                

3 Such a workflow process is certainly not the most common since the user is in general requested for

confirmation prior to booking. However, this scenario that applies most certainly to in-hurry-not-

bother users enables concise illustration of the various recovery schemes that are supported.

TravelAgent WSCA

cancel

book

User

Travel

Retry
alternate

reservation

book

reservation

reservation

Flight

Hotel

Airline WS

Hotel WS

JointBooking WSCA



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  19

signals the abort exception so that the exception gets handled by TravelAgent in a cooperation
with the User (e.g., by choosing an alternative date). If only one participant raises the
unavailable exception, cooperative exception handling includes an attempt by the other
participant to find an alternative booking. If this retry fails, the booking that has succeeded is
cancelled and the abort exception is signaled to the calling TravelAgent WSCA for recovery
with user intervention.

Compared to the solutions that introduce transactional supports for composed Web Services,
ours  mainly differs in that it exploits forward error recovery at the composition level,  as well as
transactional supports offered by individual Web Services – if available. Hence, the underlying
protocol for interaction among Web Services remains the one of the Web Service Architecture
(i.e., SOAP) and does not need to be complemented with a distributed transaction protocol.
Similarly to our solution, the one of [Mikalsen et al. 2002] does not require any new protocol to
support distributed open-nested transactions. An open-nested transaction is declared on the
client side by grouping transactions of the individual Web Services, through call to a dedicated
function of the middleware running on the client. The transaction then gets aborted by the
middleware using compensation operations offered by the Web Services, according to
conditions set by the client over the outcomes of the grouped transactions. Our solution is then
more general since we allow for the specification of forward error recovery at the composition
level, enabling in particular to integrate non-transactional Web Services while still enforcing
dependability at the composition level. The next section further introduces the WSCAL XML-
based language for the specification of composite Web Services based on WSCAs, which allow
generating corresponding implementation of dependable composite Web Services, as discussed
in Section 1.5.

1.4. WSCAL for the Abstract Specification of Dependable Web Services
Composition

From the WSCA definition given in the previous section, the specification of a WSCA-based
composite Web Service subdivides into the specification of:

•  The abstract interface of the composite Web Service, which is given in terms of WSDL
and WSCL specification, as for any Web Service.

•  Participants binding to the composed Web Services. The Web Service instance
associated to a given participant may be either statically set or dynamically retrieved
according to the service’s abstract specification. In addition, for the sake of availability,
we allow a participant to be bound to a set of Web Service instances implementing the
service’s specification. Any composed Web Service is characterized by associated
WSDL and WSCL documents, where the WSDL document includes concrete binding
information only in the case of static binding. As raised in the previous section,
transactional support of individual services is exploited when available. The abstract
interface of any Web Service is thus further characterized by the service’s transactional
behavior, in a way similar to existing solutions in the area (e.g.,  [Mikalsen et al. 2002],
[WSCI]).



Dependable Composition of Web Services

20 Deliverable PCE1

•  WSCAs defining the operations provided by the composite Web Service. The definition
of a WSCA specifies the standard and exceptional behavior of the WSCA’s
participants, including cooperative exception handling.

•  The exception resolution tree that serves resolving the exceptions that are concurrently
raised within WSCAs into a single exception, as supported by CA Actions [Xu et al.
1995].

The following section defines WSCAL (WSCA Language) that is the XML-based language
that is introduced for the specification of WSCA-based composite Web Services. It is then
followed by an example of composite service specification, still in the context of the Travel
Agent case study.

1.4.1. WSCAL

The following XML schema defines WSCAL4, introducing the embedded XML elements (i.e.,
WS for the abstract definition of service interfaces and WSC for the abstract specification of
composite services) where the reader is assumed to be familiar with the XML schema
language5:

<xsd:schema xsd:id=``wscal’’
xmlns:xsd=``http://www.w3.org/2001/XMLSchema”
xsd:targetNamespace=``http://www-rocq.inria.fr/arles/2002/WSCAL”
xsd:elementFormDefault=``qualified’’>

<xsd:element name=``Definition''>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=``WS'' minOccurs=``0''/>
<xsd:element ref=``WSC'' minOccurs=``0''/>

</xsd:sequence>
<xsd:attribute name=``name'' type=``xsd:string''/>
<xsd:attribute name=``targetNamespace'' type=``xsd:anyURI''/>

</xsd:complexType>
</xsd:element>
...

</xsd:schema>

Specifying service interfaces

The interface of a Web Service is characterized by the messages exchanged with the Web
Service (as given by the associated WSDL document) and the protocol of interactions assumed
by the service (as given by the associated WSCL document). The service interface is further
enriched with the characterization of the service’s transactional behavior. More precisely,
interfaces of services are abstractly defined using the following WS element.

                                                

4 Note that we omit the possible definition of comments.

5 http://www.w3.org/XML/Schema.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  21

<xsd:element name=``WS''>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=``Interface'' type=``XMLDocumentType''/>
<xsd:element name=``Conversation''

type=``XMLDocumentType''
minOccurs=``0''/>

<xsd:element ref=``Transactional''

minOccurs=``0'' maxOccurs=``unbounded’’/>
</xsd:sequence>
<xsd:attribute name=``name'' type=``xsd:string'' use=``required''/>

</xsd:complexType>
</xsd:element>

<xsd:complexType name=``XMLDocumentType''>
<xsd:attribute name=``hrefSchema'' type=``xsd:anyURI''/>

</xsd:complexType>

Where the embedded Interface element gives the URI of the related WSDL document
(limited to the abstract part) and the Conversation element gives the URI of the related
WSCL document. The latter is optional although it is advisable to provide it for more rigorous
specification of services, allowing in particular enforcing a consistent interaction protocol with
the service. Note that the abstract definition of the interfaces of the Web Service operations
given in a WSDL document includes the exceptions that may be signalled by the operations
through the wsdl:fault element [W3C-WSDL]. The optional Transactional element
further serves specifying the transactional behaviour of the Web Service. In a first step, we
consider only support for open-nested transactions through compensation, which we view as the
most common in the context of Web Services. The Transactional element thus defines a
transactional operation (operation attribute) whose execution can be compensated, together
with the corresponding compensentation operation (compensate attribute), both operations
being defined in the WSDL document associated with the service:

<xsd:element name=``Transactional''>
<xsd:complexType>

<xsd:attribute name=``name'' type=``xsd:string''/>
<xsd:attribute name=``operation'' type=``xsd:string''/>
<xsd:attribute name=``compensate'' type=``xsd:string''/>

</xsd:complexType>
</xsd:element>

Note that we assume that executing the compensation operation for an operation Op leads to
cancelling the effect of executing Op (considering though that the effect of executing Op may
have been externally observed before the compensate took place). We realise that this cannot be
assumed in general (e.g., cancelling booking may lead the consumer to pay penalty fees) and it
is part of our future work to extend WSCAL for the precise specification of the transactional
behaviour of Web Services. However, we do not see this as a major issue in the light of existing
work in the area (see Section 1.2.2 for references).

Specifying composite services

The specification of a composite Web Service gives:

•  The service’s interface through the Abstract element that refers to the corresponding
WS element defined in the given WSCAL document.



Dependable Composition of Web Services

22 Deliverable PCE1

•  The exception resolution tree defined by the ExceptionTree element that refers to
the corresponding XML document.

•  The Web Services that are composed as defined by the Participants element.

•  The behavior of the supported operations, which are WSCAs, as defined by the WSCA
element.

We get the following definition for the WSC element:

<xsd:element name=``WSC''>
<xsd:complexType>
    <xsd:sequence>

<xsd:element name=``Abstract'' type=``XMLDocumentType''/>
<xsd:element name=``ExceptionTree'' type=``XMLDocumentType''/>
<xsd:element ref=``Participants’’ />
<xsd:element ref=``WSCA'' maxOccurs=``unbounded’’/>

</xsd:sequence>
<xsd:attribute name=``name'' type=``xsd:string'' use=``required''/>

</xsd:complexType>
</xsd:element>

The definition of the Participants element amounts to specifying the Web Services that
are composed. Each such Web Service is defined using the Participant element and is
partly characterized by the Service element that refers to the WSCAL document defining the
corresponding WS element. In addition, each participant may be statically bound to a specific
service instance (as defined by the StaticParticipant element) and/or dynamically
bound to an instance matching the abstract definition of the service’s interface that is given by
the corresponding service attribute (as defined by the DynamicParticipant element). In
the former case, concrete binding information is provided through the WSDL document
associated with the service’s instance (i.e., Instance element), which must match the
definition of the service’s abstract interface (i.e., the abstract parts of the respective WSDL
documents match, which is currently defined as syntactic matching). In the latter case, a
matching service instance is located at runtime using a location service such as a UDDI service
instance6. Dynamic binding of participants with associated Web Services may take place either
upon invocation of the service’s WSCAs or upon instantiation of the composite Web Service,
according to the value of the onCall Boolean attribute of the given participant. Notice that in
the case of dynamic binding at call-time and nested calls of WSCAs, the Web Service is
dynamically located once, upon the invocation of the top-most WSCA that first involves the
corresponding participant. Finally, we allow each participant to be bound with a set of instances
matching the specification of associated service rather than a single instance for the sake of
availability; this is specified using the multiple boolean attribute in the
DynamicParticipant element and by stating as many instances as required in the

                                                

6 Ideally, the location service must allow retrieving an instance that matches the WSCAL specification of

the service’s interface (i.e., matching the WSDL, WSCL and transactional definitions) and not just the

WSDL abstract part, requiring location services handling WSCAL and related documents. Alternatively,

base UDDI services may be used for locating Web Services matching the provided WSDL specification.

This issue is further discussed in Section 2.5.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  23

StaticParticipant element. We get the following definition for the Participants
element:

<xsd:element name=``Participants''>
<xsd:complexType>
    <xsd:sequence>

<xsd:element ref=``Participant’’ maxOccurs=``unbounded’’/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name=``Participant''>
<xsd:complexType>
    <xsd:sequence>

<xsd:element name=``Service'' type=``XMLDocumentType''/>
<xsd:element ref=``StaticParticipant’’

minOccurs=``0’’ maxOccurs=``unbounded’’/>
<xsd:element ref=``DynamicParticipant’’

minOccurs=``0’’ />
</xsd:sequence>
<xsd:attribute name=``name'' type=``xsd:string'' use=``required''/>

</xsd:complexType>
</xsd:element>

<xsd:element name=``StaticParticipant''>
<xsd:complexType>

<xsd:attribute name=``Instance''
type=``XMLDocumentType'' maxOccurs=``unbounded’’/>

</xsd:complexType>
</xsd:element>

<xsd:element name=``DynamicParticipant''>
     <xsd:complexType>

<xsd:attribute name=``onCall'' type=``xsd:boolean'' default=``true’’/>
<xsd:attribute name=``multiple''

type=``xsd:boolean'' default=``false''/>
</xsd:complexType>

</xsd:element>

The definition of a WSCA specifies the behavior of each of its participants, which are bound
with participants of the composite service. The WSCA participant behaviour is defined as a
process, through classical statements, in a way similar to existing XML-based language for
specifying the composition of Web Services (see Section 1.2.1 for references). The specifics of
WSCAL comes from structuring the operations provided by composite Web Services as
WSCAs7 that coordinate the execution of Web Services operations with respect to failure
occurrences, in particular introducing the specification of coordinated exception handling. More
precisely, the definition of the WSCA element embeds a sequence of ParticipantWSCA

elements, each specifying the behaviour of a participant, and the operation attribute that
gives the name of the operation of the embedding composite Web Service that is being specified
among the one given in the associated WS definition:

<xsd:element name=``WSCA''>
<xsd:complexType>
    <xsd:sequence>

<xsd:element ref=``ParticipantWSCA’’
maxOccurs=``unbounded’’/>

    </xsd:sequence>
<xsd:attribute name=``name'' type=``xsd:string''/>

                                                

7 Note that a WSCA with one participant defines a classical process involving a single Web Service.



Dependable Composition of Web Services

24 Deliverable PCE1

<xsd:attribute name=``operation'' type=``xsd:string''/>
</xsd:complexType>

</xsd:element>

The specification of any WSCA participant amounts to defining:

•  The participant of the embedding composite Web Service to which the WSCA
participant is bound through the bind  attribute that gives the name of the participant
among those defined in the Participants element of the embedding WSC element.
Note that the attribute is optional since a participant may actually be introduced for
processing results of nested WSCAs as illustrated by the Travel participant of the
TravelAgent WSCA introduced in Section 1.3.

•  Parts of the messages associated with the WSCA that are relevant to the specific
participant, which is defined using the Input, Output and Fault elements.  The two
first elements are subset of the corresponding elements within the definition of the
operation implemented by the WSCA that is given in the associated WSDL document.
In addition, the union of the Output elements defined in the WSCA’s participants
must be equal to the Output element defining the result of the related operation.
Finally, the  Fault elements define the exceptions that may be raised by the
participants, which require cooperative exception handling and get composed with the
exceptions concurrently raised by peer participants using the exceptionTree attribute.

•  The local state of the specific participant through the State element that defines the
local variables.

•  The behaviour of the specific participant using the Behavior element. The participant
behavior subdivides into the participant’s standard (as defined by the Standard
element) and exceptional (as defined by the Exceptional elements) behavior. Each
such behavior is defined as a process using classical statements, including in particular
interaction with the Web Service instance(s) associated with the participant, message
exchanges with peer participants and exception handling, as further detailed hereafter.
The exceptional behavior of the participant actually defines the handlers associated with
the exceptions that need coordinated exception handling, as identified using the
exceptionTree element and the fault elements associated with the WSCA’s
participants. The specific exception that is being handled by a given handler is
identified by the handles attribute, which must name an exception of the subtree of
the ExceptionTree element that encompasses all the exceptions raised by the
WSCA’s participants.

We get the following definition for the ParticipantWSCA element:

<xsd:element name=``ParticipantWSCA''>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=``Input’’ type=``paramType’’

minOccurs=``0’’ />
<xsd:element name=``Output’’ type=``paramType’’

minOccurs=``0’’ />
<xsd:element name=``Fault’’ type=``faultType’’

minOccurs=``0’’ maxOccurs=``unbounded’’/>
<xsd:element ref=``State’’ minOccurs=``0’’ />
<xsd:element ref=``Behavior’’/>



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  25

</xsd:sequence>
<xsd:attribute name=``name'' type=``xsd:string'' use=``required’’/>
<xsd:attribute name=``bind'' type=``xsd:string'' minOccurs=``0’’/>

</xsd:complexType>
</xsd:element>

<xsd:complexType name=``paramType’’>
<xsd:attribute name=``name’’ type=``xsd:NMTOKEN’’ use=``optional’’/>
<xsd:attribute name=``message’’ type=``xsd:QName’’ use=``required’’/>

</xsd:complexType>
<xsd:complexType name=``faultType’’>

<xsd:attribute name=``name’’ type=``xsd:NMTOKEN’’ use=``required’’/>
<xsd:attribute name=``message’’ type=``xsd:QName’’ use=``required’’/>

</xsd:complexType>

<xsd:element name=``State''>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=``internal’’ type=``typeType’’

minOccurs=0 maxOccurs=``unbounded’’/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:complexType name=``typeType’’>

<xsd:attribute name=``name’’ type=``xsd:NMTOKEN’’ use=``optional’’/>
<xsd:attribute name=``type’’ type=``xsd:QName’’ use=``optional’’/>
<xsd:attribute name=``element’’ type=``xsd:QName’’ use=``optional’’/>

</xsd:complexType>

<xsd:element name=``Behavior''>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=``Standard’’/>
<xsd:element ref=``Exceptional’’maxOccurs=``unbounded’’/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=``Standard''>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=``State’’ minOccurs=``0’’ />
<xsd:element ref=``Body’’/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=``Exceptional''>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=``State’’ minOccurs=``0’’ />
<xsd:element ref=``Body’’/>

</xsd:sequence>
<xsd:attribute name=``handles'' type=``xsd:string'' use=``required’’/>

</xsd:complexType>
</xsd:element>
<xsd:element name=``Body'' type=``statement’’/>

<xsd:complexType name=``statement’’>
<xsd:sequence>

<xsd:choice maxOccurs=unbounded/>
<xsd:element name=``Assign’’ type=``assign’’/>
<xsd:element name=``Sequence’’ type=``sequence’’/>
<xsd:element name=``Par’’ type=``par’’/>
<xsd:element name=``Choice’’ type=``choice’’/>
<xsd:element name=``Iteration’’ type=``while’’/>
<xsd:element name=``Call’’ type=``call’’/>
<xsd:element name=``Returns’’ type=``return’’/>
<xsd:element name=``Send’’ type=``send’’/>
<xsd:element name=``OnInput’’ type=``onInput’’/>



Dependable Composition of Web Services

26 Deliverable PCE1

<xsd:element name=``Wait’’ type=``wait’’/>
<xsd:element name=``Raise’’ type=``raise’’/>
<xsd:element name=``Try’’ type=``try’’/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

WSCAL statements are quite similar to the ones introduced by XML-based languages for the
specification of composite services (see Section 1.2.1 for references). We more specifically
base the definition of WSCAL on the CSP language for the base statements, providing a sound
basis towards reasoning about WSCAL specifications. We thus detail here only the statements
that are specific to Web Services composition, i.e., handling of interactions with participants and
Web Services, and of exceptions (element given in bold face in the above definition of
Statement).  

The Call statement allows specifying (synchronous) operation calls where the invoked
operation may be either local to the embedding composite Web Service (i.e., local WSCA) or
provided by the Web Service to which the participant is bound8 (which may be a WSCA if the
service is itself composite). The Returns statement is the dual statement allowing specifying
the message to be returned as partial result of the embedded operations, which is to be merged
with the results returned by peer participants. We get the following definition:

<xsd:complexType name=``call''>
<xsd:attribute name=``service’’ type=``boolean’’ default=``false’’ />
<xsd:attribute name=``operation’’ type=``xsd:QName’’ use=``required’’ />
<xsd:attribute name=``input’’ type=``xsd:QName’’ minOccurs=0 />
<xsd:attribute name=``output’’ type=``xsd:QName’’ minOccurs=0 />

</xsd:complexType>
<xsd:complexType name=``return''>

<xsd:attribute name=``element’’ type=``xsd:QName’’ minOccurs=0 />
</xsd:complexType>

The Send statement allows specifying the sending of a message to a peer participant or Web
Service9 whose dual reception may be expressed using either the blocking Wait or the non-
blocking onInput statement. We get:

<xsd:complexType name=``send’’>
<xsd:attribute name=``recipient’’ type=``xsd:QName’’ minOccurs=0 />
<xsd:attribute name=``message’’ type=``xsd:QName’’ use=``required’’ />

</xsd:complexType>
<xsd:complexType name=``wait’’>

<xsd:attribute name=``sender’’ type=``xsd:QName’’ minOccurs=0 />
<xsd:attribute name=``message’’ type=``xsd:QName’’ use=``required’’ />

</xsd:complexType>
<xsd:complexType name=``onInput’’>

<xsd:attribute name=``sender’’ type=``xsd:QName’’ minOccurs=0 />
<xsd:attribute name=``message’’ type=``xsd:QName’’ use=``required’’ />

                                                

8 Note that when the participant is actually bound to a set of service instances, the call is by default

interpreted as a multicast RPC returning a sequence of output messages. Extension of WSCAL to

specify call to specific instances could further be integrated, although not addressed here.

9 Note that when the participant is actually bound to a set of service instances, the sending of a message to

the Web Service is by default interpreted as a multicast. Extension of WSCAL to specify the sending

of the message to specific instances could further be integrated, although not addressed here



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  27

</xsd:complexType>

Finally, the Raise statement allows signalling an exception whose handling is specified using
the traditional Try statement for defining exception handling scopes. The participant ultimately
raises the exception if it is not handled locally, leading to coordinated exception handling, as
supported by WSCAs. We get:

<xsd:complexType name=``raise’’>
<xsd:attribute name=``exception’’ type=``xsd:QName’’ use=``required’’/>

</xsd:complexType>
<xsd:complexType name=``try’’>

<xsd:element ref=``Body’’ use=``required’’ >
<xsd:element ref=``Exceptional’’ maxOccurs=``unbounded’’/>

</xsd:complexType>

Discussion

The specification of composite Web Services using WSCAL allows carrying out a number of
analyses with respect to the correctness and the dependable behavior of composite services.

Except classical static type checking, the correctness of the composite service may be checked
statically with respect to the usage of individual services: the pattern of interactions with a Web
Service of any WSCA participant must conform with the WSCL specification of the Web
Service. Conformance with the WSCL specification may further be automated through model
checking, using e.g., CSP and associated FDR tool where the translation of WSCAL processes
into CSP is quite straightforward given the definition of WSCAL. In general, powerful
behavioral analyses of composite services may be achieved through translation of the WSCAL
specifications into CSP.

Reasoning about the dependable behavior of composite Web Services lies in the precise
characterization of the dependability properties that hold over the states of the individual Web
Services after the execution of WSCAs. We are in particular interested in the specification of
properties relating to the relaxed form of atomicity that is introduced by the exploitation of
open-nested transactions within WSCA. Toward this goal, Appendix A provides the formal
specification of base CA Actions extended with dynamic nesting, which will serve as a base
ground for the formal specification of WSCAs.

1.4.2. Example

This section illustrates the specification of a composite Web Service using WSCAL, through
the Travel Agent-related WSCAs that were introduced in Section 1.3, focusing more specifically
on the specification of the JointBooking WSCA. We further do not give the specification of
related WSDL and WSCL documents since samples may be found in the literature (see Section
1.2.1 for references) due to the common usage of the Travel Agent case study for illustrating
Web Services.

The WCSA specification of interfaces of the TravelAgent composite Web Service and of the
Hotel and Airline Web Services is given below. In particular, the two Web Services that are
composed support open-nested transactions for the reservation and book operations, through
the compensating cancel operations (see embedded definition of Transactional).

<WS name=``TravelAgentInterface’’>



Dependable Composition of Web Services

28 Deliverable PCE1

<Interface hrefSchema=``http://travelagency.com/TravelAgent.wsdl''/>
<Conversation hrefSchema=``http:// travelagency.com/TravelAgent.wscl’’/>

</WS>

<WS name=``HotelInterface’’>
<Interface hrefSchema=``http://travelagency.com/Hotel.wsdl''/>
<Conversation hrefSchema=``http:// travelagency.com/Hotel.wscl’’/>
<Transactional name=``Reservation’’

operation=``reservation’’ compensate=``cancel’’/>
<Transactional name=``booking’’

operation=``book’’ compensate=``cancel’’/>
Other transactional operations

</WS>

<WS name=``AirlineInterface’’>
<Interface hrefSchema=``http://travelagency.com/Airline.wsdl''/>
<Conversation hrefSchema=``http:// travelagency.com/Airline.wscl’’/>
<Transactional name=``reservation’’

operation=``reservation’’ compensate=``cancel’’/>
<Transactional name=``booking’’

operation=``booking’’ compensate=``cancel’’/>
Other transactional operations

</WS>

A sample of the WSC element specifying the behavior of the TravelAgent composite
service is given below, which directly follows from the informal presentation of Section 1.3 and
WSCAL definition. The service in particular offers the JointBooking WSCA that coordinates
booking over the Hotel and Airline Web Services, for which a single instance is dynamically
retrieved upon invocation of the WSCA (see definition of Participants). Coordinated
booking is achieved as discussed in Section 1.3, exploiting in particular open-nested
transactions of participating Web Services. The two participants of the JointBooking WSCA
have similar behavior. The participant first invokes the reservation operation of the Web
Service to which it is bound and then books the proposed selection –if any- through call to
book. Otherwise, the unavailable exception is raised by the reservation operation, leading to
retry an alternative reservation, and ultimately propagating the unavailable exception for co-
operative handling at the level of the WSCA. Finally, cooperative handling of unavailable by
the WSCA amounts to cancel performed booking by the peer participant -if any.

<WSC name=``TravelAgentService’’>
<Abstract hrefSchema=``http://travelagency.com/TravelAgentInterface.wscal’’/>
<ExceptionTree hrefSchema=``http://travelagency.com/TAExceptionTree.xml’’/>

<Participants>
<Participant name=``UserBrowser’’>

<Service hrefSchema==``http://travelagency.com/TAUser.wscal’’/>
<DynamicParticipant>

</Participant>
<Participant name=``AirlineService’’>

<Service hrefSchema==``http://travelagency.com/Airline.wscal’’/>
<DynamicParticipant>

</Participant>
<Participant name=``HotelService’’>

<Service hrefSchema==``http://travelagency.com/Hotel.wscal’’/>
<DynamicParticipant>

</Participant>
</Participants>

<WSCA name=``TravelAgent’’ operation=``TravelAgent’’>
Not detailed

</WSCA>

<WSCA name=``JointBooking’’ operation=``HABooking’’>
<ParticipantWSCA name=``airline’’ bind=``AirlineService’’>



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  29

<Input …/>
<Output …/>
<Fault name=``unavailable’’ message=``unavailableMsg’’/>
<Behavior>

Not detailed, similar to hotel participant given below
</Behavior>

</ParticipantWSCA>
<ParticipantWSCA name=``hotel’’ bind=``HotelService’’>

<Input …/>
<Output …/>
<Fault name=``unavailable’’ message=``unavailableMsg’’/>
<State>

Not detailed
</State>
<Behavior>

<Standard>
<Body>
<Try>
<Body>

<Comment text=``Try reserve a room matching the
user’s input’’/>

<Call service=``true’’
operation=``reservation’’
input = ``…’’
output= ``…’’/>

<Comment text=``book the room that was found,
as given by the output message of the call
to reservation’’/>

<Call service=``true’’
operation=``book’’
input = ``…’’
output= ``…’’/>

<Comment text=``Return booking information
obtained as result to the invocation of
booking’’/>

<Return element=``…’’/>
</Body>
<Exceptional handles=``unavailable’’>

<Body>
Retry booking, propagates unavailable
otherwise

</Body>
</Exceptional>
</Try>
</Body>

</Standard>
<Exceptional handles=``unavailable’’>

<Body>
<Choice>

<cond=``reserved or booked’’/>
<Body>

<Comment text=``compensate action’’>
<Call service=``true’’

operation=``cancel’’
input = ``…’’
output= ``…’’/>

<Raise exception=``unavailable’’/>
</Body>

</Choice>
</Body>

</Exceptional>
</Behavior>

</ParticipantWSCA>
</WSCA>
…

</WSC>



Dependable Composition of Web Services

30 Deliverable PCE1

1.5. Execution of WSCA-based Services

As discussed in Section 1.2.1, the execution of a composite Web Service may be realized either
in a centralized way or through peer-to-peer interactions. We undertake the former approach, as
it does not require any additional support from the Web Services that are composed. A
composite Web Service matching a given WSCAL specification may then be either
implemented by the developer or generated from the specification, depending on the specific
environment in which the service is to be deployed and the complexity of the service. The
complexity of the service in particular comes from internal state management in the case of a
stateful service, which is abstracted in WSCAL due to the focus on Web Services interactions.
In the context of our work, we are more specifically interested in the generation of stateless
composite services from WSCAL specification, including the integration of adequate support
for increased quality of service. This section concentrates on the design of base support for
generating composite Web Services, while it is part of our future work to further develop
runtime support for enhanced quality of service. Prior to introduce the design of composite
Web Services generation, we first recall base runtime support associated with Web Services.

1.5.1. Base Runtime Support for Web Services

The essential role of the base runtime support (referred to as middleware in the following) for
Web Services is to deploy and undeploy services, and to manage the messages and Remote
Procedure Calls (RPCs) to (i.e., the calls) and from (i.e., the replies to calls) its deployed
services.

The deploy operation provided by the middleware makes available a local program
implementation to all software running on network-connected nodes, and associates a universal
identifier (composed by the local host name followed by a name for the service) used by remote
clients as a reference to connect to the service and request its functionality. The undeploy
operation offered by the middleware is the opposite functionality; it deletes the mapping
between the universal identifier and the service implementation, making this one unavailable to
its clients.

The middleware is based on SOAP-RPC with HTTP as binding protocol. This specification
requires a container able to receive requests and send replies using the HTTP protocol. Thus,
the middleware must include the implementation of the HTTP protocol to allow messages
exchange between deployed services and their clients. Moreover, the SOAP-RPC specification
defines XML as the protocol to code data sent inside HTTP messages. Thus, the middleware
must also include an XML-parser to translate received messages, execute object method calls,
build replies for clients, and possibly generate fault messages.

As already mentioned, there already exist various platforms supporting the above functionalities.
Considering for instance Java-based platforms, the following software may be used:

•  The Java 2 Standard Edition (J2SE)10.

                                                

10 http://java.sun.com/j2se.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  31

•  The Java Web Service Developer Pack (Java WSDP) that provides an implementation
of SOAP specification, and all Web Services-related technologies and support to handle
XML documents11.

1.5.2. Generating Web Services from WSCAL specification

Given base middleware for running Web Services, supporting the generation of composite Web
Services from WSCAL specification amounts to:

•  Generating the service implementation to be run over the local runtime support.

•  Enriching the base middleware for Web Services so as to support the functionalities
introduced by WSCAL, i.e., dynamic binding with Web Services and WSCAs.

We are more specifically concentrating on the generation of Java-based services, although our
solution applies as well to other platforms.

Generating Java implementation of a composite service from WSCA specification is quite
direct. First, Java stub and a skeleton associated with the invocation of Web Services’
operations may be generated from the corresponding WSDL specification, using existing tools
such as the WSDL2Java compiler. Then, the translation of WSCAL statements into Java relies
on dedicated runtime support for WSCAs and dynamic binding with Web Services, the former
functionality being detailed in the next section.

Support for dynamic bindings amounts to offering a registry-based location Web Service for
advertising and locating Web Services. Such a facility is already supported by UDDI. However,
in our context, instances of Web Services should be retrieved with respect to the WSCAL
specification of the services’ interfaces, i.e., taking into account the WSCL specification and
transactional behavior of the service. We are thus designing extension to UDDI-based services
for offering a lookup operation that implement specification matching with respect to WSCAL
specification of service interfaces. We are more specifically interested in defining a behavioral
specification matching relationship that allows retrieving any service instance whose behavior
refines the one of the target service from the standpoint of supported conversation and
transactional behaviour. Alternatively, Web Services instances may be retrieved from their
WSDL specification only, leading to assume that such services do not offer transactional
operations. In addition, correctness of the interactions with the Web Service with respect to
conversations assumed by the service’s implementation cannot be enforced, possibly leading
the Web Service to raise exceptions to its caller (i.e., WSCA participant in our context).

Finally, note that by advertising the WSCA specification of a composite Web Service through
location services, service instances may be deployed in any environment integrating the above
support for service generation.  

                                                

11 http://java.sun.com/webservices.



Dependable Composition of Web Services

32 Deliverable PCE1

1.5.3. Java-based Runtime Support for WSCAs

There is a number of Java and Ada implementations of CA actions developed for different
platforms, environments and applications12. Each of them typically offers a set of re-usable
classes or patterns for the application programmers to apply while employing CA actions and a
runtime support built on the top of a language runtime (sometimes combined with a distributed
communication feature - e.g. with RMI for some Java implementations). A complete RMI Java
framework was developed several years ago [Zorzo & Stroud 1999] and since then it has been
applied in a number of industry-oriented case studies. It offers a number of classes (for
defining actions, action participants, exception handlers) and a runtime support in a form of the
action manager object. Recently it has been used for a preliminary experimental work on
implementing a prototype TA system [Romanovsky et al. 2002]. In the course of this work it
was extended to allow for a special type of action composition based on action participant
forking/joining (which we extensively use in WSCA). A Java-based local runtime support for
WSCA is under development now. It is built as an adaptation of this extended CA action Java
framework. The task is simplified by the fact that we do not need distribution of action
participants for WSCA, so all features related to RMI can be replaced in this framework by
direct method calls with multiple threads executing on a single machine taking part in an action.
The resulting product is a set of Java classes that can be used either while generating the Java
application code or manually by a programmer.

1.6. Conclusion

Web Services are expected to become a major class of systems of systems in the near future.
This chapter has introduced our work towards supporting the development of DSoSs in the
context of the Web Service Architecture. Our approach primarily lies in the WSCAL XML-
based language for the abstract specification of the dependable composition of Web Services,
which builds upon the CA Actions concept for enforcing dependability. We have further
introduced base design of middleware support for the automatic generation of composite Web
Services from their WSCAL specification. Our current and future work is oriented towards the
following complementary areas:

•  Formal specification of WSCAL for enabling thorough reasoning about the behavior of
composite Web Services regarding both the correctness of the composition and offered
dependability properties. We are in particular aiming at offering associated tool support
for automated analysis of the composite Web Services’ behavior.

•  Detailed design and implementation of base middleware support for the generation of
composite Web Services from WSCAL specification. We are in particular investigating
the development of a service for locating Web Services that implements a behavioral
specification matching relationship based on refinement.

                                                

12 http://www.cs.ncl.ac.uk/old/people/alexander.romanovsky/home.formal/caa.html



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  33

•  Design and implementation of middleware support for increasing the quality of
composite Web Services. We are in particular interesting in developing caching support
that has been proven successful in the Web for enhancing response time.

As discussed in Section 1.2, there is extensive research work that is ongoing towards
supporting the development of dependable composite Web Services, addressing the XML-
based abstract specification of Web Services and of their composition, and transactional
support for composite Web Services. Our contribution primarily comes from relying on
forward error recovery instead of backward error recovery for specifying the behavior of
composite Web Services in the presence of failures. Forward error recovery is further specified
in terms of co-operative actions, building upon the CA Actions concept.



Structured Handling of On-Line Interface Upgrades

34 Deliverable PCE1

Chapter 2 - Structured Handling of On-Line Interface Upgrades in
Integrating Dependable SoSs

Cliff Jones, Panos Periorellis, Alexander Romanovsky, Ian Welch (University of
Newcastle)

The integration of complex systems out of existing systems is an active area of research and
development. There are many practical situations in which the interfaces of the component
systems, for example belonging to separate organisations, are changed dynamically and without
notification. Usually SoSs developers deal with such situations off-line causing considerable
downtime and undermining the quality of the service that SoSs are delivering [Romanovsky &
Smith 2002]. In this chapter we propose an approach to handling such upgrades in a structured
and disciplined fashion. All interface changes are viewed as abnormal events and general fault
tolerance mechanisms (exception handling, in particular) are applied to dealing with them. The
chapter outlines general ways of detecting such interface upgrades and recovering after them.
An Internet Travel Agency is used as a case study throughout the chapter. An implementation
demonstrating how the general approach proposed can be applied for dealing with some of the
possible interface upgrades within this case study is discussed.

2.1. Introduction

A “System of Systems” (SoS) is built by interfacing to systems which might be under the
control of organisations totally separate from that commissioning the overall SoS. (We will
refer to the existing (separate) systems as “components” although this must not confuse the
question of their separate ownership). In this situation, it is unrealistic to assume that all
changes to the interfaces of such components will be notified. In fact, in many interesting cases,
the organisation responsible for the components may not be aware of (all of) the systems using
its component. One of the most challenging problems faced by researchers and developers
constructing dependable systems of systems (DSoSs) is, therefore, dealing with on-line (or
unanticipated) upgrades of component systems in a way which does not interrupt the availability
of the overall SoS.

It is useful to contrast evolutionary (unanticipated) upgrades with the case where changes are
programmed (anticipated). In the spirit of other work on dependable systems, the approach
taken here is to catch as many changes as possible with exception handling mechanisms.

Dependable systems of systems are made up of loosely coupled, autonomous component
systems whose owners may not be aware of the fact that their system is involved in a bigger
system. The components can change without giving any warning (in some application areas, e.g.
web services, this is a normal situation). The drivers for on-line software upgrading are well
known: correcting bugs, improving (non-) functionality (e.g. improving performance, replacing
an algorithm with a faster one), adding new features, and reacting to changes in the environment.

This chapter focuses on evolutionary changes that are typical in complex web applications
which are built out of existing web services; we aim to propose a generally applicable approach.
As a concrete example, we consider an Internet Travel Agency (TA) [Periorellis & Dobson



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  35

2001] case study (see Figure 2). The goal of the case study is to build a travel service that
allows a client to book whole journeys without having to use multiple web services each of
which only allows the client to book some component of a trip (e.g. a hotel room, a car, a flight).
To achieve this we are developing fault tolerance techniques that can be used to build such
emergent services that provide a service which none of its component systems are capable of
delivering individually. Of course, the multiplicity of airlines, hotel chains etc. provides
redundancy which makes it possible for a well-designed error-recovery mechanism to survive
temporary or permanent interruptions of connection but the interest here is on surviving
unanticipated interface changes. As not all the systems in our system of systems are owned by
the same organisation, it is inevitable that they will change during the lifetime of the system and
there is no guarantee that existing clients of those systems will be notified of the change.

When a component is upgraded without correct reconfiguration or upgrading of the enclosing
system, problems similar to ones caused by faults occur, for example: loss of money, TA
service failures, deterioration of the quality of TA service, misuse of component systems.
Changes to components can occur at both the structural and semantic level. For example
changes of a component system can result in a revision of the units in which parameters are
measured (e.g. from Francs to Euro), in the number of parameters expected by an operation
(e.g. when an airline introduces a new type of service), in the sequence of information to be
exchanged between the TA and a component system (e.g. after upgrading a hotel booking
server requires that a credit card number is introduced before the booking starts). In the
extreme, components might cease to exist and new components must be accommodated.

Although some on-line upgrading schemes assume that interfaces of components always stay
unchanged (e.g. [Tai et al. 2002]), we believe that in many application areas it is very likely that
component interfaces will change and that this will happen without information being sent to all
the users/clients. This is the nature of the Internet as well as the nature of many complex
systems of systems in which components have different owners and belong to different
organizations as shown in Figure 2. In some cases of course, there might be an internal
notification of system changes but the semantics of the notification system might not be
externally understood.

Although there are several existing partial approaches to these problems, they are not generally
applicable in our context. For example, some solutions deal only with programmed change
where all possible ways of upgrading are hard-wired into the design and information about
upgrading is always passed between components. This does not work in our context in which
we deal with pre-existing component systems but still want to be able to deal with interface
upgrading in a safe and reasonable fashion. Other approaches that attempt to deal with
unanticipated or evolutionary change in a way that makes dynamic reconfiguration transparent
to the TA integrators13 may be found in the AI field. However, our intention is not to hide
changes from the application level. Our aim is to provide a solution that is application-specific
and reliant on general approaches to dealing with abnormal situations. In particular, we will be
building on existing research in fault tolerance and exception handling which offer disciplined
and structured ways of dealing with errors of any types [Cristian 1995] at the application level.

                                                
13 We use terms TA integrators and TA developers interchangeably.



Structured Handling of On-Line Interface Upgrades

36 Deliverable PCE1

Our overall aim is to propose structured multi-level mechanisms that assist developers in
protecting the integrated DSoSs from interface changes and, if possible, in letting these DSoSs
continue providing the required services.

IIS for Flight SystemsIIS for Hotel Systems

Hilton AirNZ KLM

Webservice
Interface

Webservice
Interface

Webservice
Interface

Travel Agency Server Side

Abstract Service
Interface

Abstract Service
Interface

Travel Agency Client Side

Webservice
Interface

Figure 2 UML Component diagram showing the component systems that make up the Internet Travel Agency

(TA). The grey areas indicate the fact that the component systems are under the control of different

organisations. A user is shown interacting with the Travel Agency Client Side component that validates client

side inputs and passes requests to the Travel Agency Server Side component. The Travel Agent Server Side

component handles each request by invoking multiple Intermediate Interfacing Subsystems (IIS). Each IIS

provides an abstract service interface for a particular service type, for example the Flight Systems IIS provides

an abstract service interface for booking flights with systems such as AirNZ and KLM even though each of

these systems has different webservice interfaces.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  37

2.2. System Model

Integrators compose a DSoS from existing components (systems) that are connected by
interfaces, glue code and additional (newly-developed) components where necessary. An
interface is a set of named operations that can be invoked by clients [Szyperski 1997]. We
assume that the integrators know the component interfaces. Knowledge of the interfaces can be
derived from several sources: interfaces can be either published or discovered (there is a number
of new techniques emerging in this area), programmer’s guides, interfaces are first-class entities
in a number of environments such as interpreters, component technologies (CORBA, EJB),
languages (Java).

Besides integrators there are other roles played by humans involved in the composed system at
runtime, for example: clients of the composed system, other clients of the components, etc.

We assume that component upgrade is out of our control: components are upgraded somehow
(e.g. off-line) and if necessary their states are consistently transferred from the old version to
the new version.

2.3. The Framework

2.3.1. Structured Fault Tolerance

We propose to use fault tolerance as the paradigm for dealing with interface changes: specific
changes are clearly abnormal situations (even if the developers accept their occurrence is
inevitable), and we view them as errors of the integrated DSoS in the terminology accepted in
the dependability community [Laprie 1995]. In the following we focus on error detection and
error recovery as two main phases in tolerating faults.

Error detection aims at earlier detection of interface changes to assist in protecting the whole
system from the failures which they can cause. For example, it is possible that, because of an
undetected change in the interface, an input parameter is misinterpreted (a year is interpreted as
a number of days the client is intending to stay in a hotel) causing serious harm. Error recovery
follows error detection and can consist of a number of levels: in the best case dynamically
reconfiguring the component/system and in the worst with a safe failure notification and off-line
recovery.

Our structured approach to dealing with interface changes relies on multilevel exception
handling which should be incorporated into a DSoS. It is our intention to “promote” multilevel
structuring of complex applications to make it easier for developers to deal with a number of
problems, but our main focus here is structured handling of interface changes. The general idea
is straightforward [Cristian 1995]: during DSoS design or integration, the developer identifies
errors that can be detected at each level and develops handlers for them; if handling is not
possible at this level, an exception is propagated to the higher level and responsibility for
recovery is passed to this level. In addition to this general scheme, study of some examples
suggests classifications of changes which can be used as check lists.



Structured Handling of On-Line Interface Upgrades

38 Deliverable PCE1

2.3.2. Error Detection

In nearly all cases, there is a need for meta-information to detect interface changes. Such meta-
information is a non-functional description of the interfaces (and possibly of their upgrades),
which may capture both structural and semantic information. Some languages and most
middleware maintain structural meta-information, for example Java allows structural
introspection and CORBA supports interface discovery via specialised repositories. However, at
present there is little work on handling changes to semantic meta-information.

Meta-information for a component includes descriptions of:

•  call points (interfaces), including input parameters (types, allowable defaults), output
parameters (types, allowable defaults), pre- and post-conditions, exceptions to be propagated

•  protocols: the sequences of calls to be executed to perform specific activities (e.g. cancel a
flight, rent a car). A high-level scripting language can be used for this.

Interface changes can be detected either by comparing meta-description of old and new
interfaces or if a component supports some mechanism to notify clients of changes. Another,
less general, and as such less reliable, way of detecting such changes is by using general error
detection features (some reasonable run-time type checking; pre- and post-conditions, or
assertions of other types of checking parameters in the call points; protective component
wrappers, etc.).

The intention should be to associate a rich set of exceptions with structural and semantic
interface changes (changing the type of a parameter, new parameters, additional call points,
changing call points, changing protocols, etc.); this would allow the system developers to handle
them effectively.

2.3.3. Error Recovery

Error recovery can be supported through the use of:

•  different handlers (at the same level) for different exceptions related to different types of
interface changes

•  multilevel handling.

2.3.3.1. Different Handlers

System developers should try and handle the following types of exception:

•  changes of types of parameters, new parameter, missing parameter, new call point

•  changes of the protocols, re-ordering, splitting, joining, adding, renaming and the removal of
protocol events

•  change of the meta-description language itself (if components provide us with such a meta-
description of its interface)



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  39

•  raising of new exceptions, if the protocol changes then new exceptions may also be raised
during its execution.

To provide some motivational examples, consider the Travel Agent case study.

•  A very simple interface change is where the currency in which prices are quoted changes. In
this case, simple type information could show, for example, that the TA system requires a
price in Pounds Sterling and the Car rental is being quoted in Norwegian Crowns. An
exception handler can ask for a price in Euros which might be countered with an offer to
quote in Dollars. Note that this process is not the same as reducing everything to a common
unit (dollars?), finding agreement earlier can result in real savings in conversions.

•  A previously functioning communication from the TA system to a hotel reservation system
might raise an exception if a previously un-experienced query comes back as to whether the
client wants a non-smoking room. Either of two general strategies might help here: the
query could come marked with a default which will be applied if no response is given (an
exception handler could accept this option) or the coded value might (on request from the
exception handler) translate into an ASCII string which can be passed to the client for
interpretation.

•  Some of the most interesting changes and incompatibilities are likely to be protocol
changes. An airline system might suddenly start putting its special offers before any
information dialogue can be performed; the order in which information is exchanged
between the TA and its suppliers of cars, flights etc. might change. Given enough meta-
information, it is in principle, possible to resolve such changes but this is far more complex
than laying out the order of fields in a record: it is the actual order of query and response
which can evolve.

•  In the extreme, the chosen meta-language might change. Even here, a higher-level exception
handler might be able to recover if the meta-language is from a know repertoire.

•  When an airline ceases to respond (exist?) the TA system must cope with the exception by
offering a reduced service from the remaining airlines.

•  Communication with new systems might be established if there is some agreement on meta-
languages which can be handled.

In all of the above cases, the attempt is to use exception handling to keep the TA system
running. Of course, notification of such changes might well be sent to developers; but the
continuing function of the TA should not await their availability.

2.3.3.2. Multilevel Handling

Exceptions are propagated to a higher level if an exception is not explicitly handled or an
attempt to handle the exception fails. This leads to a recursive system structuring with handlers
being associated with different levels of a system. Possible handling strategies are:

•  request a description of the new interface from the upgraded component

•  renegotiate the new protocol with the component



Structured Handling of On-Line Interface Upgrades

40 Deliverable PCE1

•  use a default value of the new parameters

•  pass the unrecognised parameters to the end client (e.g. in ASCII)

•  involve system operators into handling

•  exclude the component from the operation

•  execute safe stop of the whole system.

When designing handlers DSoS developers can apply the concepts of backward recovery,
forward recovery or error compensation [Laprie 1995]. Backward recovery restores the system
to its state before the error, for example the TA abandons (aborts) a set of partial bookings
making up an itinerary if one of the components cannot satisfy a particular booking. Forward
recovery finds a new system state from which the system can still operate correctly, for example
where DSoS developers decide to involve people in handling interface changes: TA
support/developers, TA users/clients, component support. Error compensation relies upon the
system state containing enough redundancy to allow the masking of the error. An example of
error compensation is the use of redundant components. For example, in the TA case study if
the KLM server changes its interface and TA cannot deal with this, it ignores it but continues
using servers of BA and AirFrance.

After the TA has been safely stopped or a component has been excluded, the TA support and
developers can perform off-line analysis of the new interface of the component (cf. fault
diagnosis in [Laprie 1995]). To improve the system performance and to make better use of the
recent interface upgrades the TA application logic can be off-line modified when necessary
following the ideas of fault treatment [Laprie 1995].

2.4. Representing Meaning

In order to communicate semantic information between two computers or in the case of the TA
between the SoS and its providers we need a structured collection of information (meta-data) as
well as a set of inference rules that can be used to conduct automated reasoning. Traditionally
knowledge engineering [Hruska & Hashimoto 2000], as this process is often called, requires all
participants to share the same definitions of concepts. In our case, for example, definitions of
what is a trip or a flight as well as the parameters for each of these have to be defined and
shared. The protocol for booking and paying for a trip or an item is also required. Detailed
descriptions of the parameter types and their semantic information also need to be held in a
shared knowledge base. Knowledge bases however and their usage does not necessarily make
the system more flexible; quite the contrary. Requests would have to be performed under strict
rules for inference and deduction. The SoS would have to process its metadata (globally shared
data descriptions) in order to infer how to make a request for a particular method (i.e. booking a
flight) and further more infer what parameters accompany this method and what is their
meaning.

This process requires a well defined globally shared description of the domain in which the SoS
operates. Such a definition is usually called ontological definition and the process is referred to
as ontological modeling. Current developments in web architectures and distributed systems are
working towards communicating meta-data information across components systems. XML for



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  41

example allows us to define our own tags in order to structure web pages and it is also widely
used for structuring soap messages sent to components systems (web services). XML
effectively allows the user to define its own tags the process of which is shared via a common
document type definition which in turn enables both client and servers to interpret them. In
order however to comprehend the semantics behind it then we need human intervention. To put
it simply; a user for a share price component that accepts a string and returns the price of the
share represented by the string may have a tag type stock price. So within the tags <stockprice>
and </stockprice> the price of the share would be returned. Via XML we could communication
between a provider and a consumer that a certain tag is of type String or Integer but that does
not encapsulate its semantic information. This is where the resource definition framework
(RDF) [W3C-RDF 2000] may help as it provides a technique for describing resources on the
web. It is a framework for specifying metadata using XML syntax.

In conjunction with RDF interface descriptions could also bear and communicate their semantic
information. All these technologies and disciplines however have not yet being put together for
any meaningful application. They exist separately as hypertext and TCP/IP for example existed
before the Internet. Using the current API’s our choices are limited. The next section shows
how Java API is used in our case study to deal with interface upgrading.

2.5. Java RMI Implementation

This section discusses how some part of the general framework presented above is being
applied within our ongoing experimental work on implementing Internet TA [Periorellis &
Dobson 2001]. Current API's allow us to carry out some work towards dealing with online
dynamic upgrades, although there is significant work to be done not just in programming terms
at the application level but in terms of providing an adequate API that would allow us to
overcome certain technical difficulties.

Java RMI does not offer a full API for dynamic interfaces. However, it does support dynamic
invocation when used in conjunction with the standard Java reflective API. The client does not
need to maintain a local copy of a stub for a remote service, and neither does it need to maintain
a local copy of the interface for the remote service. This is because Java RMI supports the
automatic downloading of RMI stubs on demand, and once the stub has been downloaded then
the standard Java reflection API can be used to discover and invoke the methods supported by
the stub and therefore the remote service. The limitation of this approach is that if the stub
changes during the lifetime of the client then a replacement stub cannot be downloaded. This is
due to caching at the client side, as the replacement stub has the same name as the original stub
then the cached copy is used instead of downloading the stub again.

The TA prototype is using Java RMI and the standard Java reflective API to dynamically
compose the emerging service out of participating components. As the stubs can be downloaded
and the interface of the stubs discovered at runtime this allows the SoS to determine the
composition of the emerging service at runtime. In order to implement such a structure we need
four machines: one to act as an RMI server that accepts requests for component systems (e.g.
playing a role of a KLM server), a client (IIS in our case, see Figure 2) and a stub repository
that makes the stubs available via the network (this could be a web server or an anonymous FTP
server), and a machine that hosts the RMI registry. In our implementation we maintain the stubs



Structured Handling of On-Line Interface Upgrades

42 Deliverable PCE1

at the web server while the RMI server holds the actual implementations of the component
systems, supporting classes and the interface description.

Each IIS only holds the names of the SoS component systems that it wraps. Each name is a
human readable, implementation-independent reference that is registered with the RMI registry.
This allows the location of SoS components to change without forcing changes to the
implementation of the IIS. When the IIS invokes a SoS component service it queries the RMI
registry for the stub that represents the SoS component service. The stub is transparently
downloaded from the stub repository by the RMI infrastructure as the stub does exist locally.
The IIS then uses the Java reflection API to discover and invoke methods on the stub and via
RMI the SoS component system.

As each IIS provides a fixed abstract interface to the TA SoS then any changes to SoS
component systems are localised to the IIS. The TA SoS and, via the TA SoS, any clients may
be informed of unexpected changes to the component systems if extra information that is not
captured by the abstract interface is required in order to complete a request. We foresee this
being handled via our distributed exception handling scheme.

We already have an initial prototype that does not deal with server upgrading which can be
accessed at http://ouston.ncl.ac.uk/main.htm. There are several avenues we are exploring right
now that would allow some handling of online dynamic upgrades to SoS component systems.
Although, changes to SoS component system interfaces that take place during the lifetime of a
IIS are not visible via changes to the stub we can detect that some change has occurred by
catching marshalling/unmarshalling or connection refused exceptions that will be caused by an
upgrade. At present the best course of action that we can suggest is to restart the IIS and
thereby force the local copy of the stub for the SoS component system to be refreshed. Once it
has been refreshed then we can compare the interface of the new stub with a cached description
of the old stub, this would allow the exact nature of the change to be detected and the
appropriate handlers to be invoked. In this approach the actual stubs represent the meta-
information used for handling interface upgrades. Assuming that we can find some technical
solution to the caching problem then it would be possible to avoid restarting the IIS and
therefore handling the effect of the upgrade would be more transparent.

Under some assumptions (e.g. the registry is updated before the server has been replaced with a
new one) several scenarios are possible with respect to handling interface changes. For
example:

•  if a marshalling/unmarshalling exception is raised while accessing a KLM server we force
the refresh of the local stub for the KLM server and compare its interface with a cached
description of the KLM server in order to discover what has changed.

•  if a connection refused exception is raised we can find out if we are trying to access the
server in the middle of upgrading by going to the registry. This case clearly needs additional
features because there is no guarantee that KLM updates the registry and the server
atomically.

Our experience shows that Java and the RMI architecture in particular are not the most
appropriate technologies for evaluating and implementing dynamic interface updates even
though additional features such as the Java reflection API can be used to implement a limited



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  43

form of dynamic interface discovery and remote. In particular, they do not allow us to call an
updated service as a means for handling because of local caching of the stubs. By catching
some RMI service exceptions we can infer that a service upgrade has occurred and this can
drive manual clearing of the cache via a restart of the RMI client. Alternatively another way of
handling such situation is to exclude the upgraded service from the following execution until the
client logs off.

There are two directions in which we can progress from here. The first one is to see if we can
modify the Java/RMI infrastructure to force local refresh of the stub cache. The second one is
to use modern Web technologies which offer much more flexible features for on-line dealing
with interface descriptions and provide dynamic discovery and invocation as first-class features.

2.6. Related Work

The distributed computing community has considered the problems of maintaining meta-
information for service discovery within the context of loosely coupled distributed systems such
as DSoSs. Most middleware systems implement some form of object trading service, for
example CORBA has an Object Trader Service, Jini has a Lookup Service, and .NET uses
services provided by the Universal Discovery, Description and Integration (UDDI) project.
Furthermore recent developments supported by the World Wide Web Consortium (W3C)14

include a number of XML-base languages complementing UDDI and allowing Web service
interfaces [W3C-WSDL 2001] and business-level conversations supported by such services
(e.g. [W3C-WSCL 2002]) to be described. Object traders enable providers to advertise services
by registering offered interfaces with a trading service. Clients locate a service by querying the
trader using descriptions based on the structure of an interface and quantitative constraints
[Szyperski 1997]. As with our proposed solution, object traders provide the ability to associate
some meta-information with services. However, there is an assumption that once a client has
found a service that uses a particular interface then that interface will remain static. Another
difference is that we plan to maintain a richer set of meta-information with services that capture
both structural and semantic information about interfaces such as versioning information,
protocols, meta-information related to ontology and knowledge representation, dealing with
abnormal situations while using the service, associating typical scenarios with the protocols, etc.

On the other hand, the object oriented database community has explicitly considered system
evolution. They have developed schemes for schema evolution, schema versioning and class
versioning. For example, in [Amann et al. 2000] schemata of multiple DBs are expressed in
XML. In this approach the user's queries are written using a domain standard, that identifies the
various entities and relationships, and for each data-source/base there is a mapping from that
source entities to the domain standard. So, that a rewriting of the user's query to the various
source formats can be done automatically. Our work differs in that in addition to structural
changes we consider semantic changes such as protocol mismatches that occur when evolution
takes place. Also the solutions proposed by this community tend to assume the existence of a
centralised authority for enforcing control whereas we are working in the context of
decentralised authority.

                                                

14 http://www.w3.org/



Structured Handling of On-Line Interface Upgrades

44 Deliverable PCE1

There has been some work on resolving protocol mismatches in the area of component-based
development. In [Vanderperren 2002] the concept of a component adaptor is introduced. It
describes adaptations of the external behaviour independently of a specific API. When the
adapter is applied to a composition of components the required adaptations can be automatically
inserted. This is achieved through the application of algorithms that are based on finite automata
theory. Our work differs in that we consider dynamic rather than build-time changes to
protocols and we consider more wide ranging adaptation than just the renaming or addition of
protocol events.

In our future work on the TA case study we intend to exploit this related work and some other
features provided by modern component-oriented technologies and Internet technologies. Other
useful features that can be used are language support for runtime reflection [Welch 2002],
interface repositories and type libraries, and services such as CORBA’s Meta-Object Facility
that defines standard interfaces for defining and manipulating meta-models.

2.7. Concluding Remarks

This chapter has not proposed a totally general or efficient solution; our interest is in providing
a pragmatic approach that explicitly uses a fault tolerance framework. Our work is motivated by
real problems encountered when considering a case study where mismatches due to evolution
must be dealt with at runtime. Although there are some existing approaches to this problem we
do not try to hide evolution from the application developer but provide a framework for dealing
with it dynamically.   



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  45

Chapter 3 - From Error Detection to Recovery Wrappers

Manuel Rodriguez, Jean-Charles Fabre, Jean Arlat, Eric Marsden  (LAAS-CNRS)

3.1. Introduction

The use of commercial-off-the-shelf (COTS) software components, in particular real-time ex-
ecutive software (microkernels, conventional operating systems, middleware layers and virtual
machines), is an attractive approach to realise systems that can be part of larger infrastructures,
namely systems of systems. As far as dependability is concerned, their behaviour in the pres-
ence of faults remains an open issue. This issue has been investigated using fault injection tech-
niques to help characterize their failure modes [Koopman & DeVale 1999, Arlat et al. 2002].
The observed failure modes reveal some weaknesses in the design and the implementation of
the COTS software components, mainly because dependability was not a major concern in their
development process. The need to master and maximize the coverage of fault assumptions is a
crucial aspect of dependable real-time applications, not only regarding the real-time executive
itself, but also regarding the selection of adequate fault tolerance strategies.

Improving COTS components from a dependability viewpoint has been often done by means of
wrappers. To date, wrappers have been essentially applied to supplement the built-in error de-
tection mechanisms and thus improve the overall error detection coverage (e.g., see [Voas 1998,
Ghosh et al. 1999, Arlat et al. 2002]). We have extended the conventional notion of wrappers
by means of recovery actions. The idea is not only to improve the signalling of errors, but also
to define actions able to recover from transient faults or to put the system in a safe state. Clearly
the objective is to improve the fault assumptions that can be made by an integrator of systems of
systems. Indeed, distributed fault tolerance algorithms deployed in a system of systems are
based on assumptions whose coverage must be made as high as possible. The detailed identifi-
cation of the erroneous state provided by our formal specifications based approach enable these
actions to be defined and implemented on various target software components.

As far as CORBA middleware-based systems are concerned, the work we have carried out by
fault injection (cf. IC3 DSOS report) shows that CORBA implementations are very sensitive to
corrupted inter-object requests between clients and servers. The results we obtained highlight
the possible behaviour in the presence of faults of essential CORBA services when corrupted
IIOP requests are received. The impact of these types of faults can be reduced through the use
of simple wrappers, such as electronic signatures applied to IIOP requests at the application
level. Another major source of problems, leading to the incorrect behaviour of a middleware
layer like CORBA, is the reaction of the operating system support (microkernel, conventional
operating system) to abnormal situations. For instance, some external and internal faults may
lead the operating system layer to return error status codes and exceptions to the middleware.
The way in which the middleware handles these inputs is really a major issue from a
dependability viewpoint. From early experiments, we have observed that poor handling of such
exceptional conditions may lead to a complete crash of the system or to error propagation to the
application level. This is not surprising as middleware implementors sometimes neglect to con-
sider every possible outcome of a call to the executive support, ignoring conditions that are very
rare or unexpected (such as resource issues). It si thus important to make the executive support



From Error Detection to Recovery Wrappers

46 Deliverable PCE1

as reliable as possible, since the middleware implementation does not implement any recovery
actions to deal with corrupted behavior of the underlying operating system.

As a matter of fact, a middleware system can be wrapped from above, by means of simple wrap-
pers preventing corrupted requests to be forwarded to target services, but also a middleware
system must be wrapped from below to prevent the executive layer from disturbing the
middleware layer.

In the work reported in this chapter we concentrate on this idea of recovery wrappers and illus-
trate the benefits that can be obtained in particular to maximize fault assumptions coverage.
These extended wrappers are based on a framework previously described in the IC2 DSOS
report.

For the sake of completeness we briefly describe this wrapping framework in Section 3.2,
which focuses on the formal development of wrappers for error detection [Rodríguez et al.
2002b].

In the sequel we describe in detail how such wrappers can be enhanced with forward error re-
covery capabilities. They are based on a set of simple error handlers called recovery actions.
The objective is that several elementary data modifications carried out concurrently by the
recovery actions into the target component, be able to eliminate — or at least minimize — the
errors detected by the wrappers. In addition, the recovery actions are implemented in a
disciplined way using reflective concepts [Maes 1987].

We also show how the temporal costs of both the detection and the recovery capabilities of the
wrappers can be made compatible with the hard deadlines of a target real-time application, while
maximizing the error detection and recovery coverage of the wrappers. To do so, we first extend
the schedulability test of the application. Then, instead of using a theoretic fault model (like in
[Burns et al. 1999]), we study experimentally, by means of software implemented fault injection
(SWIFI) [Carreira et al. 1998], the impact of errors on the activation profile of the wrappers.

Accordingly, the rest of this chapter is structured as follows. The fault tolerance wrapping
framework is briefly presented in Section 3.2. Section 3.3 describes the notion of recovery
action and how it fits within the framework defined. Section 3.4 shows how the wrapping
framework can be applied to real-time microkernel based systems. We elaborate here on the
concept of reflective real-time executive — an essential notion to observe and control the
microkernel —, and we also illustrate the behavior of the wrappers both in the absence and in
the presence of faults. The case study provided in Section 3.5 consists of a real-time application
running on a COTS real-time microkernel. The kernel is encapsulated with a large number of
wrappers. Selected results derived from fault injection experiments are provided and discussed.
These results help us analyze how the temporal overheads of the wrappers can be made
compatible with the hard deadlines of the application. Section 3.6 provides a discussion on the
proposed wrapping technology, its interest within middleware-based systems and some other
wrapping aspects in the context of DSoS. Section 3.7 concludes the Chapter.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  47

3.2. Wrapping Framework for Fault Tolerance

The fault tolerance wrapping framework (Figure 3) is composed of five elements: the specifica-
tion (a formal description of the system requirements), the wrappers (the executable version of
the specification), the runtime checker (a platform for the execution of the wrappers), the obser-
vation & control (a software layer providing interceptors and methods to observe and modify
the behavior of the system), and the Target Software Component or TSC (the component of the
system that is to be wrapped).

 

Target  
Software  

Component  

WFA2 WFAn WFA1 
Formula+Actions FA1  
Formula+Actions FA2  

...  
Formula+Actions FAn  

(temporal logic)  

COMPILATION 

Error signal 

...  

Observation 
(data, ticks, events)

Specification 

TSC 

Control 
(recovery actions) 

Runtime checker 

Wrappers 

Figure 3 Overall framework

It is worth noting that while this framework is generic and can be used with any TSC, our work
focuses on its application to real-time microkernel-based systems.

To specify system requirements, we have defined a formal language based on temporal logic,
called Clock and Event driven Temporal Logic (CETL), whose detailed syntax and semantics
are provided in [Rodríguez et al. 2002b]. The main particularity of this temporal logic is that it
embodies the notions of discrete time (in the form of clock triggers) and event. As any temporal
logic, it is built from temporal operators and a first order logic. The temporal operators defined
are � (next clock trigger or asynchronous event), � (next clock trigger), � (next asynchro-
nous event), �[e]  (some time for asynchronous event e), �[e]

< k
 (some time before k clock

triggers for asynchronous event e). The first order logic consists of boolean predicates defining
standard logical (∧ ,¬ , etc.), relational (<, ≤, etc.) and arithmetic (+, –, etc.) operators.

The specification of the TSC is given as a set of temporal logic formulas (FA1, FA2, …, FAn in
Figure 3) which describe formally the parts of the TSC behavior that is to be controlled. A for-
mula is based on a logical implication, composed of an antecedent and a consequent (see exam-
ple in Section 3.4.1). Because of their particular structure, the formulas of the specification are
referred to as statements. In addition, the statements also specify the recovery actions that are to
be executed when a predicate of the consequent is violated.

The wrappers are the executable version of the statements from the specification. Their role is
to detect timing and value errors of the TSC operation at runtime, and to recover from errors by
properly executing the recovery actions. We have developed a compiler that automatically
translates each statement into a single wrapper in C language (e.g., FA1 into WFA1, FA2 into
WFA2, etc.). An example of a wrapper is provided in Section 3.4.1.

The runtime checker is a sort of virtual machine in charge of executing the wrappers (WFA1,
WFA2, …, WFAn in the figure). Essentially, it is an interpreter of temporal logic that provides
an interface with services for managing the temporal operators (Table 1a) as well as the predi-
cates of the antecedent and the consequent of a statement (Table 1b).



From Error Detection to Recovery Wrappers

48 Deliverable PCE1

Services (C language) Meaning
(a) Management of temporal operators (F is a temporal logic formula, and e is an event identifier)

NEXT (k, F, context); �k (F)

NEXT_CLOCK (k, F, context); �k (F)

NEXT_EVENT (k, F, context); �k (F)

SOMETIME (e, F, context); �[e] (F)

BOUND_SOMETIME (e, k, F, context); �[e]<k(F)
(b) Management of predicates

CONDITION (predicates); •  Evaluates predicates of the antecedent

ASSERT (predicate,
recovery_action);

•  Evaluates a predicate of the consequent. It
signals an error only if after the execution of
recovery_action the predicate is false.

(c) Management of the wrapper context

NEW_CONTEXT (); •  Creates a new context from a static memory
pool

CONTEXT_SET (value, context,
index);

•  Updates context[index] with parameter value,
and returns parameter value

CONTEXT_GET (context, index) •  Returns the contents of context[index]

Table 1 Services provided by the runtime checker

Note that the runtime checker signals an error if a predicate of the consequent of a statement is
false after the execution of its associated recovery action (service ASSERT, see also Section 3.3).
Wrappers are executed concurrently by the runtime checker. Concurrency is made possible
thanks to the decomposition of a wrapper into functions that are to be executed at different in-
stants. Internally, the runtime checker maintains a form of process context block for each wrap-
per, which characterizes the global state of the wrapper along its different executions. Such an
information is referred to as wrapper context, whose corresponding runtime checker services
are listed in Table 1c.

The observation & control layer allows the wrappers to observe and control the behavior of the
TSC. The observation part of this layer is in charge of providing the necessary TSC informa-
tion to the runtime checker and the wrappers. Such an information may consist of messages
[Diaz et al. 1994], event occurrences [Mok & Liu 1997], signals [Savor & Seviora 1997], or
states [Schneider 1998]. Indeed, it depends very much on the formalism used to describe the
TSC requirements. In our case, the temporal logic used is built from predicates that describe the
internal state of the TSC at different instants of time signaled by clock triggers and event occur-
rences. Accordingly, the type of information we need to observe correspond to internal TSC
data, clock triggers (or ticks) and asynchronous events, as indicated in Figure 3. Conversely, the
control part of the observation & control layer allows the wrappers to modify the behavior of
the TSC when an error is detected. This part is composed of a set of recovery actions, each of
them in charge of performing an elementary modification into the TSC (e.g., the insertion of a
task into a queue or the substitution of the running task by another task). The objective is that
several elementary modifications carried out by a set of recovery actions into the TSC be able to
eliminate (or at least minimize) the error detected by the wrappers. Note that the observation &
control layer makes the runtime checker and the wrappers independent from the particular im-
plementation of the underlying TSC. In other words, when different implementations of the
same TSC are to be tested (e.g., different implementations of the same POSIX interface), only
the observation & control layer must be modified. The defined wrapping framework is com-
patible with any particular type of observation & control layer provided. As an example, in Sec-



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  49

tion 3.4.3 we used a reflective approach [Maes 1987] to develop such a layer for a TSC
consisting of a real-time microkernel.

3.3. The Recovery Actions

A recovery action consists of a distinct implementation (i.e., a variant) of a basic function of the
TSC. It is thus characterized by its diversified implementation and its minimal functionality. As
an example, let us consider the yielding of the running thread, which is a function common to
every software executive. With respect to the set of services provided by a software executive
(synchronization, temporization, etc.) the functionality of this function is minimal. In addition,
considering the particular implementation provided for such a function by a given software
executive, we can develop a related recovery action whose implementation is different.

The execution model of the recovery actions is described in Figure 4. This model corresponds
to the internal algorithm developed by service ASSERT of the runtime checker.

When a predicate of a wrapper is violated, the runtime checker raises an error signal as long as
such a predicate is not associated to any recovery action. Otherwise, the corresponding recovery
action is executed. At the end of the execution, the violated predicate is checked again. If it is
still false, then the runtime checker will signal an error. However, if the predicate has become
true, it can be assumed that the error has been (possibly) corrected by the recovery action, and
the wrapper can resume its execution. Since various wrappers are running concurrently, this
execution model is carried out for various predicates from different wrappers being checked
altogether. As wrappers execute concurrently, they help prevent the propagation of errors. In-
deed, the rationale is that several elementary modifications carried out concurrently by the re-
covery actions into the TSC, are able to eliminate — or at least minimize — the errors at the
origin of a violation of the specification.

A predicate 
is violated

Execution of the
recovery action

The execution
is finished 

Reevaluation
of the predicate

The predicate is true

Continue wrapper execution

The predicate is false

Signal error

A recovery action 
is available 

No recovery action 
is available

Signal error

Figure 4 Execution model of the recovery actions (service ASSERT)

Note however that although the recovery actions can guarantee the satisfaction of the specifica-
tion by means of an alternative implementation of certain elementary functions of the system
(e.g., yielding the running thread), the error responsible for a predicate violation can however
propagate, as wrappers cannot cover all faulty situations.



From Error Detection to Recovery Wrappers

50 Deliverable PCE1

The implementation of the recovery actions is highly dependent on the target system. Indeed,
they are based on the forward error recovery model. In Section 3.4.2, we provide an example of
implementation of recovery actions.

3.4. Application to Real-Time Microkernel Based Systems

3.4.1. Example of a Wrapper

As an example of a wrapper for a microkernel, let consider a typical kernel service, namely
Create. Figure 5 provides a statement specifying the creation of higher priority tasks carried out
by service Create. A comprehensive temporal logic specification of the various services
provided by real-time microkernels can be found in [Rodríguez et al. 2000].

S
ta

te
m

en
t Create

� ( �[↑Create] (thb = created_th ∧  tha = running ∧  prio (thb) > prio (tha) ∧
�[↑signal] (signaled_th == thb ∧  running == tha )) ⇒
� (event == ↓context_switch ∧  running == thb ∧  tha ∈  ready (prio(tha))) )

R
ec

o
ve

ry
A

ct
io

ns

RA (running == thb) = changeRunning (thb)

RA (tha ∈  ready (prio(tha)) = insertThInFrontReadyQ (tha, prio(tha))

Figure 5 Statement Create with its associated recovery actions

The interpretation of this statement (referred to as statement Create) is as follows. When the
running task, represented by tha, requests the creation of a higher priority task thb, the kernel
routine corresponding to service Create (indicated by event ↑Create) is executed. Some time
later, the kernel inserts the newly created task thb into the ready queue (event ↑signal). As the
child task has a higher priority than its parent, the latter is preempted after a context switch op-
eration (event ↓context_switch). As a result, child task thb is elected to run (predicate
running == thb), while parent task tha is inserted back into the ready queue (predicate tha ∈
ready (prio(tha))).

The antecedent of statement Create is represented by the term:

�[↑Create] (thb = created_th ∧  tha = running ∧  prio (thb) > prio (tha) ∧
�[↑signal] (signaled_th == thb ∧  running == tha ))

while its consequent corresponds to the term:

� (event == ↓context_switch ∧  running == thb ∧  tha ∈  ready (prio(tha))).

Because of operator always (�), the implication antecedent ⇒  consequent must be satisfied in
all the computations of the target system. In general, an implication is satisfied either when the
antecedent is false (irrespective of the consequent), or when both the antecedent and the conse-
quent are true. Therefore, the implication is violated only when the antecedent is true while the
consequent is false. In other words, an error is detected in a system computation by statement
Create when, at the occurrence of event ↑Create, the antecedent is true while the consequent is
false.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  51

Two recovery actions have been associated to this wrapper:

•  changeRunning (thb), which will try to substitute the running task by task thb whenever
predicate running == thb is violated;

•  insertThInFrontReadyQ (tha, prio(tha)), which will try to insert task tha at the front of its
priority level ready queue whenever predicate tha ∈  ready (prio(tha)) is violated.

We have developed a compiler that automatically translates a statement into its corresponding
wrapper. The wrapper generated by the compiler for statement Create (referred to as wrapper
Create) is shown in Figure 6. In the wrapper code, routines ANT_1 and ANT_2 represent the
antecedent, while routine CON represents the consequent.

Each temporal operator of statement Create corresponds to a call to a temporal operator service
of the runtime checker (e.g., SOMETIME, NEXT_EVENT). The actual values of the kernel vari-
ables are obtained by executing a get_ instruction (e.g., get_created_th, get_running). Predi-
cates of the antecedent are assessed by service CONDITION, while those from the consequent
are evaluated by service ASSERT. The definition of auxiliary variables is allowed within state-
ments. For instance, statement Create defines auxiliary variables tha and thb, which are respec-
tively assigned the identifiers of the running task and of the created task. Finally, variable
context points to a structure storing the context of the wrapper. The wrapper context is com-
posed of the set of auxiliary variables defined within a statement. For instance, the context of
statement Create is composed of auxiliary variables tha and thb. The runtime checker holds the
wrapper context between the execution of the different routines of the wrapper.

int start () { 
 return SOMETIME (ev_begin_Create, (void*) ANT_1, null); 
} 
int ANT_1 (Context* context) { 
 int thb = get_created_th (); 
 int tha = get_running (); 
 CONDITION (prio (thb) > prio (tha)); 
 context = NEW_CONTEXT ();    /* Create a wrapper context */ 
 CONTEXT_SET (thb, context, 1);   /* Update the context */ 
 CONTEXT_SET (tha, context, 2); 
 return SOMETIME (ev_begin_signal, (void*) ANT_2, context); 
} 
int ANT_2 (Context* context) { 
 int thb = CONTEXT_GET (context, 1);   /* Retrieve context data */ 
 int tha = CONTEXT_GET (context, 2);  
 int running = get_running ();    /* Obtain kernel data */ 
 int signaled_th = get_signaled_th (); 
 CONDITION (signaled_th == thb && running == tha); /* Request the evaluation of predicates */ 
 return NEXT_EVENT (1, (void*) CON, context);  /* Set the next temporal operator */ 
} 
int CON (Context* context) { 
 int thb = CONTEXT_GET (context, 1); 
 int tha = CONTEXT_GET (context, 2); 
 ASSERT (get_event_id () == ev_end_context_switch, NULL); 
 ASSERT (get_running () == thb, changeRunning (thb)); 
 ASSERT (isInReadyQ (tha, ready (prio (tha))),  
  insertThInFrontReadyQ (tha, prio (tha))); 
} 

Figure 6 Wrapper Create

3.4.2. Example of Implementation of Recovery Actions

Figure 7 provides the implementation of the recovery action changeRunning (defined by state-
ment Create in Figure 5) for the Chorus microkernel.

This recovery action provides a different implementation (i.e., a variant) of the kernel function
responsible for yielding the running thread, and is executed whenever a failure affecting such a



From Error Detection to Recovery Wrappers

52 Deliverable PCE1

function occurs (e.g., violation of predicate running == thb of statement Create in Figure 5).
The recovery action is decomposed into the following steps: kernel synchronization (1-2),
thread identification (3-4), updating memory and internal kernel structures (5-8), and hardware
context-switch (9-11).

int changeRunning (int threadId) {

Assert (!KERN_INTR_LOCK_IS_HOLD_ANY());               /* 1 - no kernel locks must be held */

Assert (SWITCH_IS_HEALTHY());              /* 2- context switch must be permitted */

Thread* th = ThreadTable::publicLidCheck(threadId);              /* 3 - find the corresponding kernel thread */

if (th == NULL) return FALSE;             /* 4 - kernel thread not found, so return */

removeThFromRQ (schedThread((Thread*)th));            /* 5 - remove new thread from ready queue */

if (memSwitchRequired) {

memSwitch((Thread*) currentThread, (Thread*)th);           /* 6 - perform a memory switch if necessary*/

}

currentThread = (Thread*)th;          /* 7 - the running thread variable is updated */

CurrentTss->esp0 = (unsigned int) (int)th->thrStack;         /* 8 - the stack of the running thread is updated*/

int thThrSwitchCtx = (int)th->thrSwitchCtx;         /* 9 -  process context block of the new thread */

int oldThrSwitchCtx = (int)&(((Thread_f*)currentThread)->thrSwitchCtx); /*10 - context of the current thread */

context_switch (oldThrSwitchCtx, thThrSwitchCtx);         /* 11 - perform a context switch */

}

Figure 7 Recovery action changeRunning for the Chorus microkernel

3.4.3. Reflective Real-Time Microkernel

In this section, we describe how the internal state of a microkernel can be observed and con-
trolled using reflection [Maes 1987]. In a reflective approach, the target system delivers events
to the wrappers, whereas the wrappers get the necessary additional information from the target
system. In reflective terms, the former relates to the notion of reification, and the latter to the
notion of introspection. In addition, reflection also allows the behavior of the target system to be
controlled using mechanisms based on the concept of intercession. These notions are refined in
the next paragraphs.

In a reflective system [Kiczales et al. 1991, Fabre & Pérennou 1998], a clear distinction is made
between the so-called base-level, running the target system, and the metalevel, responsible for
controlling and updating the behavior of the target system. Information is provided from the
base-level to the metalevel, that becomes metalevel data or metainformation. Any change in the
metainformation is reflected to the base-level. The distinction made between the base-level and
the metalevel provides a clear separation of concerns between the functional aspects handled at
the base-level and the non-functional aspects (here, error detection and error recovery) handled
at the metalevel.

Figure 8 details the various layers, components and mechanisms that make up the reflective
framework. This framework complies with and extends the principles introduced in [Arlat et al.
2002].



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  53

WFA2 WFAn 
Real-Time Applications 

Wrappers 
WFA1 ... 

reification 

introspection 
+  

intercession 

Metakernel 

Real-Time Kernel 

Metainterface 

Reflection 
component 

Runtime Checker 

Figure 8 Reflective framework

The base-level of our reflective framework is the real-time microkernel, while the metalevel is
called the metakernel, composed of both the wrappers and the runtime checker. The association
of both layers leads to the notion of reflective real-time microkernel. The kernel can be ob-
served and controlled through the so-called reflection component, which is a special component
added to the target microkernel. The reflection component is responsible for the management of
the intercepted events (i.e., reification), the observation of internal items (i.e., introspection), and
the required actions down into the real-time kernel (i.e., intercession). The reified events are de-
livered as upcalls to the metakernel, whereas introspection and intercession are provided by the
reflection component through the so-called metainterface. The metainterface is defined as a set
of services providing access to the necessary information from and actions into the real-time
kernel.

As far as reification is concerned, events are delivered to the metakernel using upcalls. An up-
call is a jump instruction inserted into the kernel that diverts the execution flow from the kernel
to the metakernel. Such an upcall is similar to a jump assembly code instruction, i.e., it does not
trigger any context switch. For example, statement Create defines event ↑Create, which corre-
sponds to the start of the kernel service that carries out the execution of system call Create. Ac-
cordingly, an upcall is inserted at the beginning of the Create routine of the kernel, which takes
as an input parameter the identifier of event ↑Create (see service_create below).

When the kernel enters routine service_create, the upcall is executed and diverts execution
to the runtime checker. Events ↑signal and↓context_switch of statement Create are reified in a
similar way.

Clock ticks can also be reified by inserting an upcall at the beginning of the clock handler rou-
tine of the kernel, as indicated hereafter (see clock_handler below).
service_create (...) {

upcall (ev_begin_create);

...

}

clock_handler (...) {

upcall (clock_tick);

...

}

On the other hand, introspection and intercession facilities are provided through the metainter-
face. The definition of the metainterface is derived from the specification. Indeed, the specifica-
tion points out the necessary events, data structures and functions that must be observed and
controlled. To illustrate this point, Table 2 lists the set of services of the metainterface for
statement Create.



From Error Detection to Recovery Wrappers

54 Deliverable PCE1

Temporal  logic Metainterface
Instrospection

created_th int get_created_th ()

running int get_running ()

signaled_th int get_signaled_th ()

event int get_event_id ()

prio (th) int prio (int th)

ready (level) int ready (int level)

th ∈  ready int isInReadyQ (int th)

Intercession

running == th int changeRunning (int th)

th ∈  ready (p) int insertThInFrontReadyQ (int th, int p)

Table 2 Metainterface necessary to wrapper Create

3.4.4. Wrapper Execution while the Microkernel Behaves Correctly

This section illustrates the execution of the wrappers when the microkernel is not affected by
errors. The application considered is represented in Figure 9 by a set of real-time tasks execut-
ing concurrently and requesting kernel service Create.

Task executing  
user code  

Task executing  
kernel code 

Task  
release 

Task  
completion 

Event  
signaling 

↑Create (CRT_1)

↓context_switch (CS_3)

↑signal
(S_2)

↓context_switch (CS_1)

↓context_switch
(CS_2)

↓context_switch 
(CS_4)

τ 1

τ 2

τ 3

t0 t1 t3 t4 t5 t6 t7 t8

clock 
handler

t2

↑signal
(S_1)

t9

τ1

τ2

τ 3

CRT_1 S_2 CS_3

CRT_1

CS_1

CS_2 S_2

CS_3

CS_4

runtime
checker

clock 
handler

S_1

S_1

a) Original execution of tasks b) Execution of wrappers by the runtime checker

Figure 9 Execution of wrapper Create by the runtime checker

Figure 9a represents the original execution of the tasks together with the events triggered into
the microkernel, while Figure 9b represents the same set of tasks extended with the runtime
checker, which executes wrapper Create. The detailed behavior of the original set of tasks rep-
resented in Figure 9a is described in Table 3.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  55

t0
Task τ 3 is already running in user mode.

t1
τ 3 requests the creation of a higher priority task (τ 1) by means of system call Create. Event CRT_1 is
triggered when task τ 3 enters service Create in kernel mode.

t2
A periodic tick interrupt leads to the execution of the clock handler of the kernel, which will move
periodic task τ 2 from a suspend queue to the ready queue. A signal event (S_1) is triggered just before
task τ 2 is inserted into the ready queue. Note that the clock handler does not preempt task τ 3 (i.e., there
is no context-switch), but it simply executes at the highest priority on behalf of task τ 3.

t3
Higher priority task τ 2 preempts task τ 3. Task τ 2 obtains the processor after a context switch (event
CS_1).

t3-t4
Task τ 2 executes.

t4
Task τ 2 suspends and task τ 3 is given the processor after a context switch (event CS_2). Task τ 3

continues execution of service Create in kernel mode.

t5
Creation of task τ 1 is completed (event S_2).

t6
Because priority of τ 1 is higher than priority of τ 3, the latter is preempted by its child, which obtains
the processor after a context switch (event CS_3).

t6-t7
Child task τ 1 executes.

t7
Child task ends execution. Its parent (τ 3) obtains the processor after a context switch (event CS_4).

t8
Task τ 3 finishes executing service Create in kernel mode, and continues execution in user mode.

t9
Task τ 3 ends execution and suspends.

Table 3 Original execution of tasks

Wrapper Create is executed by the runtime checker during the intervals represented inFigure
9b, labeled by the kernel event at the origin of the activation of the runtime checker. Remember
that the runtime checker is a sort of virtual machine in charge of executing the wrappers, and is
activated after the occurrence of an event triggered within the target system (denoting a state
change). Note also that the runtime checker does not preempt, but simply diverts the execution
flow of the task running at the moment of its activation, so no context switch is triggered. In
other words, the runtime checker executes at the highest priority on behalf of the running task.
In consequence, checks carried out by the wrappers by means of the runtime checker do not
modify the original scheduling of tasks, as shown in Figure 9b.

Each activation of the runtime checker leads thus to the execution of one or several wrappers
concurrently. The steps followed by the runtime checker to execute wrapper Create, as well as
the checks performed by this wrapper, are detailed in Table 4.

Ev ent s Runt i me check er act i o ns
Activated Expected type Wrappe

r
Routine Cxt Expressions checked Result

… CRT
CRT_1 CRT Create ANT_1 prio (τ1) > prio (τ3) TRUE

S_1 S, CRT Create ANT_2 c1 signaled_th == τ1 ∧  running == τ3 FALSE

CS_1 S, CRT
CS_2 S, CRT
S_2 S, CRT Create ANT_2 c1 signaled_th == τ1 ∧  running == τ3 TRUE

CS_3 Any Create CON c1 event == CS
running == τ1

τ3 ∈  ready (prio(τ3))

TRUE
TRUE
TRUE

CS_4 CRT
… CRT

Table 4 Event occurrences and actions carried out by the runtime checker to verify Create

Time



From Error Detection to Recovery Wrappers

56 Deliverable PCE1

Column Activated contains the various events triggered during the execution of the system,
while column Expected type corresponds to the type of events expected by the runtime checker
at a given moment. Columns Wrapper, Routine and Ctx refer respectively to the name of the
wrapper activated, to the wrapper routine executed, and to the wrapper context used. Column
Expressions checked specifies the verifications performed by the wrappers. Note that auxiliary
variables tha and thb of Figure 5 have been substituted in this column by the task identifier they
represent (τ1, τ2, etc.), depending on the information contained into the corresponding wrapper
context.

•  Initially, given that Create is the only wrapper installed (for the sake of clarity), the single
type of event expected by the runtime checker is ↑Create (denoted CRT).

•  At the occurrence of event CRT_1, routine ANT_1 of wrapper Create is executed. As the
child task (τ1) has higher priority than its parent (τ3), event ↑signal (S) is setup by the wrap-
per as an expected event. Context c1 is at this moment allocated with auxiliary variables tha
= τ3 and thb = τ1. Next, the runtime checker suspends and waits for events ↑Create and
↑signal.

•  Event S_1 (which signals task τ2) triggers routine ANT_2 of wrapper Create under wrapper
context c1. Given that the signaled task (τ2) is not the child of task τ3 (namely, task τ1), the
checked expression is false. Thus, the runtime checker suspends and keeps waiting for
events ↑Create and ↑signal.

•  Events CS_1 and CS_2 are ignored since they are not expected by the unique wrapper in-
stalled.

•  Event S_2 (which signals τ1) triggers routine ANT_2 of wrapper Create under wrapper
context c1. The antecedent of Create is then evaluated to true, since the task signaled during
the execution of τ3 is indeed τ1. The runtime checker waits then for the occurrence of any
event.

•  At the occurrence of event CS_3, the consequent of Create is evaluated under context c1. It
is verified that the event triggered is a context switch, that the running task is τ1, and that task
τ3 has been preempted into the ready queue. Since these expressions are evaluated to true,
statement Create succeeds and no error is thus signaled.

•  Finally, event CS_4 is ignored since the running checker is waiting for event ↑Create.

Note that if task τ2 had requested a task creation, two instances of the same wrapper would have
been executed concurrently. For the sake of conciseness, the example illustrates intentionally a
single wrapper instance.

3.4.5. Wrapper Execution when an Error Impacts the Microkernel

In this section, we illustrate the behavior of the wrappers when the microkernel is affected by an
error (Figure 10). Such an error leads to an incorrect scheduling of the tasks (Figure 10a).
Then, wrapper Create successfully correct the error by means of its associated recovery actions
(Figure 10b)



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  57

Task executing  
user code  

Task executing  
kernel code 

Task  
release 

Task  
completion 

Event  
signaling 

↑ Create (CRT_1)

↓context_switch (CS_3)

↑signal
(S_2)

↓context_switch (CS_1)

↓context_switch
(CS_2)

τ1

τ2

τ3

t 0 t1 t3 t4 t5

clock 
handler

t2

↑signal
(S_1)

τ1

τ2

τ3

CRT_1 S_2 CS_3

CRT_1

CS_1

CS_2 S_2

CS_3

CS_4

runtime
checker

clock 
handler

S_1

changeRunning (τ 1)

S_1

a) Incorrect execution of tasks b) Detection and recovery of the error by the wrappers

Figure 10 Example of an error detected and recovered by the wrappers

As depicted in Figure 10a (to be compared to Figure 9a), after the occurrence of event signal at
instant t5, the kernel has already inserted the newly created task τ1 into the ready queue. Given
that τ1 is the highest priority task, it should be elected to run. However, because of an error af-
fecting the kernel scheduler, the lower priority task τ2 becomes running instead, just after a
context switch. This leads in the sequel to an incorrect scheduling of the tasks (to be compared
to the correct scheduling presented in Figure 9a). This error is successfully corrected by recov-
ery action changeRunning of wrapper Create, as illustrated in Figure 10b and in Table 5.

Ev ent s Runt i me check er act i o ns
Activated Expected

type
Wrappe
r

Routine Cxt Expressions checked Result

… CRT
CRT_1 CRT Create ANT_1 prio (τ1) > prio (τ3) TRUE

S_1 S, CRT Create ANT_2 c1 signaled_th == τ1 ∧  running == τ3 FALSE

CS_1 S, CRT
CS_2 S, CRT
S_2 S, CRT Create ANT_2 c1 signaled_th == τ1 ∧  running == τ3 TRUE

CS_3 Any Create CON c1 event == CS
running == τ1

chang eRunni ng  (τ1 )

running == τ1

τ3 ∈  ready (prio(τ3))

TRUE
FALSE

TRUE
TRUE

CS_4 CRT
… CRT

Table 5 Event occurrences and actions carried out by the runtime checker during the recovery of an error

As described in Table 5, the completion of context switch CS_3 leads to the execution of rou-
tine CON from wrapper Create. After checking the activated event, the wrapper compares the
identifier of the running task (τ2) with that of task τ1. As they are different tasks, this check fails,
and the wrapper triggers the recovery action changeRunning (τ1). Such an action will try to put
the system into a (possibly) correct state, by modifying the necessary tables, structures and
registers of both the microkernel and the processor so that task τ1 becomes the newly running
task (an implementation example is provided in Figure 7). When the action finishes, the wrap-
per verifies again the identifier of the running task. Both Table 5 and Figure 10b illustrate the

Time



From Error Detection to Recovery Wrappers

58 Deliverable PCE1

case in which the recovery action succeeds (see Figure 9b for proof check). Next, the wrapper
engages the verification of the last predicate, and the evaluation of statement Create is finally
satisfied. As illustrated in Figure 10b, the scheduling of the tasks after the execution of the
recovery action is correct (to be compared to the correct scheduling presented in Figure 9b).

3.5. Case Study

We characterize the error detection and recovery coverage and the performance of wrappers in a
real-time system consisting of the Chorus microkernel [Chorus 1997] and the mine drainage
control system application [Burns & Wellings 1997]. This is a typical runtime workload that
we have already used in other types of studies [Rodríguez et al. 2002a].

The Chorus kernel was encapsulated with a set of error detection and recovery wrappers
generated from an extended kernel specification, which encompassed the specification defined
in [Rodríguez et al. 2000]. In total, 31 wrappers were used, corresponding to 18 scheduling
statements, 2 timer statements and 11 synchronization statements. Also, a set of 18 recovery
actions was implemented and used by the wrappers.

The mine drainage control system application has been used by a number of authors (e.g.,
[Burns & Lister 1991, Joseph 1996]). The detailed description of the application can be found
in [Burns & Wellings 1997]. Table 6 contains the main attributes of the tasks that compose the
application.

Task Type Priority T (ms) B (ms) C (ms) D (ms) R (ms)

CH4 Sensor Periodic 10 80 3 12 30 17.16

CO Sensor Periodic 8 100 3 10 60 37.23

Air-Flow Sensor Periodic 7 100 3 10 100 47.27

Water-Flow Sensor Periodic 9 1000 3 10 40 27.19

HLW Handler Sporadic 6 6000 3 20 200 67.32

T: Minimum inter-arrival time (task period)  B: WC blocking time  C: WC execution time  D: Deadline  R: WC response time

Table 6 Attributes and worst-case response times of tasks

The application is used to control a mining environment. The objective is to pump to the surface
mine water collected in a sump at the bottom of the shaft. The main safety requirement is that
the pump should not be operated when the level of methane gas in the mine reaches a high value
due to the risk of explosion. The level of methane is monitored by task CH4 Sensor. Other
environment parameters monitored are the level of carbon monoxide (task CO Sensor) and the
flow of air in the mine (task Air-Flow Sensor). The flow of water in the pipes of the pump is
checked by task Water-Flow Sensor, whereas the water levels in the sump are detected by task
Hlw Handler.

3.5.1. Assessment by Fault Injection

MAFALDA-RT [Rodríguez et al. 2002a] was used to assess the efficacy and the performance
of the kernel wrappers. The tool has been developed to encompass the assessment by fault



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  59

injection of both hard and soft real-time systems. It provides a facility to eliminate time
intrusiveness by controlling the hardware clock of the target system and the external devices
(e.g., sensors and actuators). Such a facility was used to eliminate the temporal overhead
introduced both by the tool itself and by the wrappers. Therefore, the tasks were not aware
neither of the execution of the tool nor of the wrappers from a temporal viewpoint. Note that we
are using the wrappers in a testbed system, not in the final system; we are thus interested in
evaluating wrapper coverage and wrapper performance without increasing the original execution
time of the tasks. A full account of the MAFALDA-RT tool can be found in [Rodríguez et al.
2002a].

We carried out three different fault injection campaigns, in which the targets of the injected
faults were the scheculing component (campaign sSCH), the timers component (campaign
sTIM), and the Priority Ceiling Protocol component (campaign pPCP) of the microkernel.
Table 7 briefly describes the types of faults injected in each campaign. It is worth noting that
MAFALDA-RT systematically selects randomly the target of injection, and that it checks
whether the corrupted element is accessed during the experiment, i.e., whether the fault is
actually activated (only activated faults are considered).

Campaign Injected faults
sSCH Substitution of the running task by the next highest priority ready task.
sTIM (#1) Random corruption by single bit-flip of the expiration time of a randomly selected sporadic

timer.
(#2) Avoiding once the insertion of a randomly selected sporadic timer into the timeout queue.
(#3) Avoiding once the deletion of a randomly selected timer from the timeout queue.
(#4) Random corruption by single bit-flip of the expiration time of a randomly selected periodic
timer.
(#5) Avoiding once the insertion of a randomly selected periodic timer into the timeout queue.
(#6) Avoiding once the expiration of a randomly selected timer.

pPCP Random corruption by single bit-flip of PCP system calls parameters during a call invocation.

Table 7 Faults injected (only one fault type injected per experiment at a random time)

3.5.1.1. Assessment when the Kernel is not Wrapped

Figure 11 reports the distribution of the first fault manifestations observed in the experiments
(#Exp.) of the campaigns carried out in the non-wrapped version of the system.



From Error Detection to Recovery Wrappers

60 Deliverable PCE1

Alarm
27.3%

Incorrect 
result
6.5%

Deadline 
missed
10.7%

Correct
0.7%

Error 
status
54.8%

1036 
Exp.

Correct
71.2%

Application
hang
0.1%

Incorrect
result
28.7%

1229 
Exp.

Correct
79.7%

Error
status
19.4%

Deadline
missed
0.1%

Incorrect
results
0.1%

Application
hang
0.6%

System
hang 
0.1%

1451
Exp.

a) sSCH b) sTIM c) pPCP

•  The most critical situation occurs when an error propagates to the application, making it fail either in the time or in the value
domain. Timing failures are represented by classes Deadline missed, Application hang and System hang, while value
failures are represented by class Incorrect result.

•  The error detection mechanisms of the microkernel are represented by classes Alarm, Error status and Exception.

•  Class Correct represents the case when both the time production and the value of the application results are correct.

Figure 11 First fault manifestations observed for the set of experiments (Exp.) of each campaign

Faults injected in campaign sSCH provoked the substitution of the running task by a lower
priority task while the former task was leaving a critical section. The impact of this error was
catastrophic to the application, which missed deadlines and delivered incorrect results in
respectively 10.7% and 6.5% of the cases. Most errors were however signaled by means of a
built-in error detection mechanism. Indeed, an alarm detected a deadline missed in 27.3% of the
cases, while 54.8% of the times the error status mechanism signaled the presence of an error
affecting a synchronization system call.

Conversely, 28.7% of the faults injected in campaign sTIM led the application to issue incorrect
results. Indeed, faults #5 and #6 prevented periodic tasks CH4 Sensor and CO Sensor from
being released, while they are required to the correct computation of results. Nevertheless,
71.2% of the injected faults did not lead to any observable failure at the application level. After a
careful analysis, we observed that this was due to: i) the internal redundancy of the timeout value
of the timers, making injections #1 and #4 ineffective; ii) the elimination of alarms while the
concerned tasks do not miss their deadline (injection #2); iii) the triggering of alarms that are
not related to any application task (injection #3).

Few errors impaired the system when the parameters of the synchronization system calls were
corrupted (campaign pPCP), because of the high percentage of correct experiments observed
(79.7%). This is mostly due to the corruption of unused bits within parameters (randomly
selection by the fault injection tool). Conversely, the consistency checks implemented within the
kernel API (represented by class error status) detected most errors (19.4%). Few errors (0.9%)
could thus propagate and lead to the failure of the application.

3.5.1.2. Assessment when the Kernel is Wrapped for Error Detection

We carried out the same fault injection campaigns using only the error detection capabilities of
the wrappers. The distribution of the first fault manifestations observed are reported in Figure
12.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  61

Wrapper 
detection

100%

905 
Exp.

Wrapper 
detection

100%

1239 
Exp.

System
hang
0.2%

Error
status
0.1%

Wrapper
detection

19.8%

Application
hang
1.1%

Correct
78.8%

1450
Exp

a) sSCH b) sTIM c) pPCP

Figure 12 First fault manifestations observed when wrappers are used for error detection

From the 31 wrappers installed, we report in Table 8 those that detected an error first in an
experiment, namely Timer_1, Take_winlock, Take_1, Give_1 and Give_owner. Their whole
specifications are provided in [Rodríguez et al. 2002a], and their role is briefly explained in
Table 8. We also observed that wrapper Create (Figure 6) did not detect any error. Indeed, all
the tasks were created at the beginning of the experiments (i.e., wrapper Create was only
activated at the beginning of the experiment), while faults were injected in the middle of the
experiments. Hence, wrapper Create could not detect the errors caused by these faults.

Wrapper sSCH sTIM pPCP
Timer_1 1239 100

%
Take_winlock 306 34%

Take_1 305 34%
Give_owner 287 100

%
Give_1 294 32%

•  Timer_1 checks the kernel service responsible for setting timers.

•  Take_winlock and Take_1 check the kernel service of the PCP responsible for assigning a critical section.

•  Give_owner and Give_1 check the kernel service of the PCP responsible for releasing a critical section.

Table 8 First wrappers detecting an error

The error detection coverage provided by wrappers Timer_1, Take_winlock, Take_1 and Give_1
in campaigns sSCH and sTIM is perfect. Indeed, they have systematically intercepted all the
errors at the origin of the fault manifestations of Figures 10a and 10b. Every failure has been
avoided by these wrappers. Problems previously detected by means of an error detection
mechanism of the kernel, are now notified by a wrapper with a shorter latency. Finally, latent
errors within the kernel that did not previously lead to any observable failure, are now signaled
by a wrapper. Conversely, in campaign pPCP, wrapper Give_owner detected, with a shorter
latency, the same class of errors previously detected by means of an error status, involving the
corruption of a parameter handling a critical section identifier. The remaining failure rate of this
campaign, although not important, could not be further reduced by the wrappers.



From Error Detection to Recovery Wrappers

62 Deliverable PCE1

3.5.1.3. Assessment when the Kernel is Wrapped for Error Detection and Error
Recovery

The campaigns shown in Figure 12 only considered the error detection capabilities of the
wrappers. In the sequel, we concentrate on the capacity of the wrappers to put the system in a
(possibly) correct state by means of the recovery actions. Accordingly, we activated the error
recovery capabilities of the wrappers, and we carried out again the same fault injection
campaigns (see Figure 13).

Incorrect
result
0.3%

Application
hang
0.7%

System 
hang
0.1% Alarm

0.1%

Wrapper
recovery
98.9%

1484
Exp.

Deadline
missed
0.2%

Incorrec
result
1.5%

System
hang
0.1%

Alarm
0.1%

Application
hang
0.8%

Wrapper
recovery
97.3%

1220
Exp

System
hang
0.2%

Wrappe
recovery
23.9%

Application
hang
0.9%

Correc
75.0%

147
Exp

a) sSCH b) sTIM c) pPCP

Figure 13 First fault manifestations observed when wrappers are used for error detection and

recovery

Under the identical experimental conditions used, the wrappers detecting an error are the same
as before (see Table 8). However, in this case, after the detection of an error, these wrappers
executed a recovery action. We observed that every time a predicate of these wrappers was
violated as a consequence of an error, such a predicate systematically became true after the
execution of its associated recovery action, i.e., the recovery actions were locally successful.
However, we only classed an experiment as a wrapper recovery (see Figure 13) when both the
activated recovery actions were successful and no errors were observed in the sequel of the
experiment. On the contrary, when the activated recovery actions were locally successful but one
or several errors were observed in the sequel of the experiment, the latter was classified
depending on the type of the first error then observed. These considerations are reflected in
Figure 13, which reports the distribution of the first fault manifestations observed when the
wrappers were equipped with the recovery actions. In addition, from the 18 recovery actions
implemented, we report in Table 9 those that were activated first in an experiment classed as a
wrapper recovery, namely changeRunning, insertToInTimeoutQ, setTimeoutTicks and
setTimeoutTicks. Their role is also briefly explained in the table.

Recovery action sSCH sTIM pPCP
changeRunning 1467 100%
insertToInTimeoutQ 783 66%
setTimeoutTicks 397 34%

changeOwnerCS
353 100%

•  changeRunning Changes the running task.

•  insertToInTimeoutQ Inserts a timer into the timer queue.

•  setTimeoutTicks
Changes the number of ticks (i.e., timeout) of a
timer.

•  changeOwnerCS
Changes the critical section of the owner task
(PCP).

Table 9 First activated recovery actions



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  63

Figure 13 shows that all the errors appeared in campaigns sSCH and sTIM affecting
respectively 98.9% and 97.3% of the experiments were efficiently corrected by the recovery
actions. However, they could not prevent residual errors (that were not corrected) from
provoking the failure of the system in 1.1% of the cases in sSCH, and in 2.6% in sTIM.
Conversely, we observed that all the errors previously detected by a wrapper in campaign pPCP,
were here corrected by means of recovery action changeOwnerCS.

3.5.2. Integration of Wrappers into a Real-Time System

In the fault injection campaigns carried out in Section 3.5.1, we have eliminated (thanks to
MAFALDA-RT) the temporal overhead induced by the wrappers so as to characterize at best
their error detection and recovery coverage, without perturbing the behavior of the target
application. The quantitative measures obtained from this study also allow us to determine the
set of wrappers optimizing the ratio coverage vs. temporal overhead that can be successfully
integrated into the target real-time system in operation.

In general, a fault-tolerant mechanism can be integrated into a real-time system only when, in
spite of the additional overheads it provokes, none of the hard deadlines of the real-time
application is missed; in other words, when a feasible scheduling exists. For safety-critical real-
time systems, such a feasible scheduling has to be guaranteed off-line (i.e., before the system is
put into operation) by means of a schedulability test. The earlier this integration takes place in
the development process of the target real-time system, the more it is readily to be achieved,
because both application and wrappers can be developed together.

In the sequel, we show how the temporal cost of the wrappers can be made compatible with the
hard deadlines of the target real-time application, while maximizing the error detection and
recovery coverage of the wrappers. Neither the original system (application, kernel, hardware,
etc.) nor its temporal constraints (deadlines, WCETs, etc.) are modified, which means that
wrappers are to be integrated into an already developed system. First, we extend the
schedulability test of the application to take into account the overheads caused by the wrappers.
Then, we use the fault injection experiments carried out in Section 3.5.1 to analyze the influence
of errors on the behavior of the wrappers. This allows us to experimentally calculate their
overhead. Finally, we obtain the sets of wrappers that provide the best error detection and
recovery coverage, while guaranteeing task deadlines.

3.5.2.1. Integration of Wrappers into the Schedulability Test

The schedulability test used to verify the satisfaction of deadlines in the mine drainage
application [Burns & Wellings 1997] is related to a dynamic, preemptive scheduler with a fixed
priority assignment scheme for a uniprocessor architecture-based system. However, this test can
be distinguished from similar tests of its kind by the fact that it is issued from a complex
system model that takes into account temporal costs imposed by the underlying operating
system (context-switches, interrupts, clock ticks, etc.). We have further refined such a model
and extended the schedulability test with the execution times of the wrappers (Figure 14).

As we have illustrated in Section 3.4.4, the wrappers execute at the highest priority on behalf of
the running task. In consequence, the response time of a task increases not only because of the



From Error Detection to Recovery Wrappers

64 Deliverable PCE1

wrappers activated during its execution (term iW ), but also because of those activated during the
execution of higher priority tasks (term jW ). Term xW  represents thus the worst-case execution

time of the wrappers in an instance of task x. The schedulability test is satisfied if and only if
the worst-case response time of every task is lower than or equal to its deadline.

ii DRtasksi ≤∈∀ ,

( )
( )

∑∑

∑

Γ∈Γ∈

∈












+








+








+

+++











++++=

pg

s

g

ic

clk

i

sk k

i

ihpj
j

j

i
iii

CT
T
R

CT
T
R

IH
T
R

CCSCS
T

R
BCCSR 211

ji WW

iW Maximum execution time of the wrappers in an instance
of task i .

iR Worst case response time of task i.

iD Deadline of task i.

21,CSCS Maximum execution time of the initial and final parts of a context-
switch.

iC Worst-case execution time (WCET) of task i.

iB Worst-case blocking time of task  i.
( )ihp Set of tasks whose priority is higher than i.

jT Period (or minimum inter-arrival time) of task j.

ps ΓΓ , Set of sporadic and periodic tasks.
IH Maximum execution time of an interrupt handler.

clkT Clock period.
cCT Maximum execution time of the clock handler.
sCT Overhead of moving a single periodic task to the dispatch queue.

Figure 14 Schedulability test

(CS1 = 0.016 ms, CS2 = 0.012 ms, Tclk = 10 ms, CTc = 0.01 ms, CTs = 0.03 ms)

In the following sections, it is worth noting that term xW  is measured experimentally: the

maximum value of the execution time of the wrappers is measured directly from the target
system, and assigned to xW . This technique does not guarantee however that the so-obtained

value derives from the worst-case scenario of execution, and hence that it effectively
corresponds to the worst-case value. The same problem occurs today as far as the determination
of worst-case overheads of operating systems is concerned [Colin & Puaut 2001]. Indeed,
using techniques based on static code analysis in these cases is still an open problem that was
out of the scope of our work.

3.5.2.2. Integration of Error Detection Only

When wrappers are used for error detection only (see Section 3.5.1.2), their maximum overhead
appears in the absence of faults. Indeed, when an error is detected by a wrapper, the system (and
so the wrapper) is usually stopped (fail-safe behavior); the overhead induced by the wrapper in
this case is thus lower that if it had finished its execution.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  65

First, we have measured experimentally in the absence of faults, the maximum overhead
generated by the whole set of wrappers into a task instance. Such measures are reported in
column W (ALL) of Table 10.

Tasks W (ALL) W (ACT-TIM) W (ACT-PCP)

CH4 Sensor 18.16 2.22 7.47

CO Sensor 7.50 2.19 2.48

Air-Flow Sensor 7.51 2.21 2.48

Water-Flow Sensor 9.82 2.05 3.61

HLW Handler 9.66 1.50 3.73

Table 10 Maximum overhead of the wrappers in a task instance (ms)

Next, we have integrated such measurements into the schedulability test of Figure 14 and we
have calculated the worst-case response time of the tasks, reported in column R (ALL) of Table
11.

T ches D R (ALL) R (ACT-
TIM)

R (ACT-PCP)

CH4 Sensor 30 35.34 19.38 24.64

CO Sensor 60 72.76 43.72 50.83

Air-Flow Sensor 100 138.18 55.97 63.35

Water-Flow
Sensor

40 55.21 31.49 38.29

HLW Handler 200 281.16 77.53 131.81

Table 11 Worst-case response times of the tasks in the presence of the wrappers (ms)

According to the results, in the worst-case scenario, all tasks miss their deadline when the whole
set of wrappers is used.

We have applied the same procedure to more restricted sets of wrappers, formed by the
combination of the wrappers that were activated as a consequence of an error (namely, wrappers
Timer_1, Take_gainlock, Take_1, Give_owner and Give_1, reported in Table 8). In other words,
we have eliminated those wrappers that did not contributed to increase the error detection
coverage, but that caused a considerably temporal overhead. According to our analyses, the sets
of wrappers that satisfy the schedulability test, while maximizing the error detection coverage,
are the following:

•  Set ACT-TIM: Formed by the single activated wrapper checking temporization, namely
wrapper Timer_1. The error detection coverage it provides in campaign sTIM is maintained
(i.e., it is the same as that reported in Figure 12).

•  Set ACT-PCP: Formed by the activated wrappers checking synchronization, namely
wrappers Take_gainlock, Take_1, Give_owner and Give_1. The error detection coverage
provided by this set in campaigns sSCH and pPCP is preserved (see Figure 12).

The temporal overheads of these sets (W (ACT-TIM) et W (ACT-PCP)) are reported in Table
10, and the response times of tasks in their presence (R (ACT-TIM) et R (ACT-PCP)) in Table
11.



From Error Detection to Recovery Wrappers

66 Deliverable PCE1

Note that the wrappers are being integrated into a target system whose conception and develop-
ment are not modified. By modifying some timing constraints of the system, for instance by
increasing the deadline of task Water-Flow Sensor by only 5 ms, the set of wrappers resulting
from the union of sets ACT-TIM and ACT-PCP satisfies the schedulability test.

3.5.2.3. Integration of Error Detection and Error Recovery

When wrappers are used for error detection and error recovery (see Section 3.5.1.3), their over-
head depends on the number of errors they detect. Indeed, the greater the number of detected
errors, the greater the number of executed recovery actions, and so the greater the overhead
caused by the wrappers. Note that in this case, the fault model used is a key factor. Instead of
using a theoretic fault model (like in [Burns et al. 1999]), we use the experimentally injected
faults in Section 3.5.1 to analyze the behavior profile of the wrappers in the presence of faults.

First, we measured, for each campaign, the maximum overhead that all the executed recovery
actions induced in a task instance (Table 12). Clearly, this overhead depends on the activation
profile of the recovery actions in the presence of faults. Then, we have analyzed which of these
activation profiles can be combined to the wrapper sets identified in the previous section (Table
13). The objective is that, despite the extra overhead imposed by the recovery actions, tasks
deadlines be guaranteed and the error detection and recovery coverage of the wrappers be
maximized. Taking into account the overheads reported in Table 12, the schedulability test is
satisfied for the wrapper sets and the activated recovery actions presented in Table 13.

Tasks sSCH sTIM pPCP

CH4 Sensor 2.51 0.02 0.16

CO Sensor 0.10 0.05 0.05

Air-Flow Sensor 0.10 0.03 0.05

Water-Flow
Sensor

0.15 0.02 0.09

HLW Handler 0.13 0.01 0.07

Table 12 Temporal overheads induced by all the activated recovery actions (ms)

ACT-TIM + sTIM

ACT-PCP + pPCP

ACT-sSCH + sSCH

Table 13 Wrapper sets and activated recovery actions that satisfy the schedulability test

Despite the additional overheads generated by the recovery actions, wrapper set ACT-TIM
guarantees the satisfaction of all the task’s deadlines in campaign sTIM, while procuring the
same ratios of error detection and recovery previously measured (see Figure 13). The same can
be said when set ACT-PCP is used in campaign pPCP. Concerning campaign sSCH, it was
necessary to define a more restricted wrapper set, namely ACT-sSCH, composed of wrappers
Take_gainlock, Take_1 and Give_1. Nevertheless, such a set provides the same error detection
and recovery coverage previously observed in campaign sSCH (see Figure 13).



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  67

3.6. Discussion

3.6.1. General Discussion

In this chapter, we have shown that the conventional notion of error detection wrappers can be
extended to the inclusion of recovery actions to constitute fault tolerance wrappers. We also
showed that the temporal overhead of such wrappers can be made compatible with the hard
deadlines of a target application, while maximizing error detection and recovery coverage.

The efficiency of the fault tolerance wrappers is due to the fact that they are developed from
precise temporal logic specifications. At runtime, they can confidently diagnose the source of
the problem that altered the state of the system and trigger the most appropriate recovery
actions. The concurrent execution of the wrappers helps both check the system behavior from
several angles and prevent the propagation of errors. The evaluation of the assertions carried out
by the wrappers on a real-time microkernel relies on a reflective approach to capture events
(notion of reification), to obtain internal data (notion of introspection), and to execute the
recovery actions (notion of intercession).

From a dependability viewpoint, the results obtained in the case study by using fault injection
show the real benefit procured by this new form of comprehensive wrappers. However, since
wrappers are to be integrated into a real-time system, the temporal overheads they introduce
must also be taken into account. Although this aspect can be addressed as early as possible in
the design of the real-time application, necessary tradeoffs must be decided regarding the
expected coverage procured by a set of wrappers and the performance overheads that can be
accepted. This decision is left open to the real-time system designers. Regarding this aspect, we
have provided an experimental methodology to support such an analysis that is based on fault
injection to assess the impact of errors in the overheads of the wrappers, and to determine the
set of wrappers that meets hard task deadlines while maximizing the error detection and
recovery coverage.

The wrapping methodology presented in the previous chapters can be applied to a CORBA-
based system at three levels: at the interface between the application and the middleware, at the
interface between the middleware and the operating system, and at the interface between the
middleware and the network. In each case, the wrappers mediate between the components
interacting at the interface, ensuring that their respective expectations are met, even in the
presence of faults. The types of properties that can be verified by the wrappers, and the
techniques for checking and meeting the properties, are different in each case, and are discussed
in the next three subsections.

3.6.2. Wrapping the Interface between the Application and the Middleware

In the same way as an operating system may fail when subjected to invalid parameters in a
system call, a middleware implementation may fail if the application passes invalid parameters to
a CORBA method call. Consider for example the object_to_string method that is
defined by the CORBA specification, and which may be invoked in a C++ program as follows:

     orb->object_to_string(obj)



From Error Detection to Recovery Wrappers

68 Deliverable PCE1

Some middleware implementations crash when the object reference obj is invalid. In particular,
the Ballista project has investigated  the impact of this class of faults (that simulates primarily
software faults) on a number of middleware implementations, and found a considerable number
of robustness failures [Pan et al. 2001]. The authors found that the addition of simple wrappers
protecting these methods was sufficient to improve their robustness with respect to these fault
classes. The technique they used to implement the wrappers was intrusive, since it consisted of
modifying the code of the middleware implementation to add error checking of the parameters
to certain CORBA methods. However, similar forms of error checking could be implemented
using less intrusive techniques, such as hooking into the symbol resolution mechanism used
with shared libraries on Unix-like systems.

Unfortunately, this form of wrapping can only be applied to a limited subset of the functionality
provided by an ORB, because the interface between application code and code from the
middleware is in general difficult to identify. In a system running on a microkernel, there is a
clear separation between user space and kernel space (often enforced with the help of the
memory management hardware). Accordingly, the set of system calls implemented by the kernel
constitutes an explicit interface between the two layers. In contrast, in a middleware-based
system, application code is generally more closely intertwined with code from the middleware.
In a CORBA-based middleware, for example, code that is automatically generated from OMG
IDL interfaces (the stubs and skeletons, which control the process in which a programming
language method call is transformed into a remote method invocation), is linked together with
code written by the application programmer. The form of this automatically generated code
depends both on the programming language used at the application level and on the choices
made by the ORB implementor, which makes it difficult to isolate a specific interface where
wrapping could be applied systematically. In consequence, any wrapping technique that
operates at this level would be specific to a programming language and to a particular
middleware implementation (and possibly a specific version).

3.6.3. Wrapping the Interface between the Middleware and the Operating
System

A middleware implementation depends on services provided by the underlying operating
system. Another The interface between the middleware and the operating system is a potential
error propagation channel in a middleware-based system. If the operating system behaves in an
incorrect or unexpected manner, the robustness of the system may be significantly impaired.

There are a number of ways in which errors in the operating system, or unexpected situations in
the operating environment, may propagate to the middleware. The first is via the return code of a
system call15. For instance, a write() system call used by the middleware to send data over a
network stream returns a status code indicating the number of bytes that were actually written to
the network, or an error code. In the nominal case, the number of bytes written is equal to the
length of the argument to the system call, but the caller should also check for a partial write of

                                                

15 In the following we use terminology for POSIX-like operating systems. The same ideas could be applied

to most modern operating systems.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  69

the data.  The system call can also result in a number of different error codes, indicating that the
network connection has been closed, or that a low-level error occurred, or that the system call
was interrupted and should be retried. Other system calls for memory allocation or access to
stable storage may fail due to exhaustion of system resources.

A robust middleware implementation should check the return codes from all system calls, and
take appropriate measures for each possible return code. For instance, the failure of a write()

system call to a network socket should be signaled to the application level by a COMM_FAILURE

exception. An EINTR return code from a system call indicates that the system call was
interrupted, and should be replayed.

Unexpected return codes are not the only error propagation channel from the operating system
to the middleware. The kernel may also send unexpected signals to the middleware, causing it to
fail, or omit to send signals that were expected by the middleware (for instance to inform it that
a timer has expired). The kernel may also fail in the time domain, by not responding to requests
within the time span expected by the application (for instance, when using the NFS distributed
file system, when a network file server becomes inaccessible, and processes using files on the
system will typically be blocked until the file server starts responding again). Other kernel
services that can cause failure are the threading and synchronization primitives.

Preliminary results obtained by fault injection have shown that the behaviour of a CORBA
implementation can be significantly disturbed when kernel functions are corrupted. For
instance, when the operating system's memory resources are exhausted, the MICO
implementation of the CORBA Event Service voluntarily aborts, instead of the more robust
alternative of signalling a NO_MEMORY exception to the client. This is an illustration of how
fault injection experiments can allow the identification of a specific software fault, which is easy
to correct.

If a middleware implementation is being integrated into a DSoS as a COTS component, it is
difficult to modify the middleware to correct these classes of robustness weaknesses. It is much
easier to apply wrapping techniques to the operating system, in order to improve its failure
modes and to force them to better match those expected by the middleware. The case study
reported in this chapter demonstrates that wrapping of executive software components is able to
ensure the validity of relatively sophisticated properties (such as the scheduling behaviour of
threads); this technique can improve the operating system’s failure profile as perceived by the
middleware, thus enhancing the overall robustness of the system.

3.6.4. Wrapping the Interface between the Middleware and Remote Objects

In [Marsden & Fabre 2001], we showed that CORBA middleware implementations are quite
sensitive to corrupt messages arriving over the network, in certain cases crashing upon reception
of an incorrectly formatted method invocation. While this interaction occurs via services
provided by the operating system (reads and writes on socket streams), we distinguish this
interface from the one addressed in the previous paragraph, because in the present case it is the
data received via the system call that may cause a problem, rather than an error code returned by
the system call.



From Error Detection to Recovery Wrappers

70 Deliverable PCE1

Two forms of wrapping are possible to enhance the robustness of a DSoS using a CORBA-
based communications infrastructure, with respect to these classes of faults:

•  Add a checksum to all IIOP messages, allowing a wrapper to reject any messages where the
checksum is incorrect. This type of wrapper can be implemented in a transparent way using
the Portable Interceptor mechanism that was standardized in CORBA 2.4. The checksum is
added to the service context (a section of the header of an IIOP message) by a client-side
interceptor, and checked in the receiver by a server-side interceptor. If the checksum does
not match the message contents, the server-side interceptor raises a COMM_FAILURE

exception rather than propagating the message to the servant. However, this approach is not
able to protect against malicious faults.

•  Use an additional level of encapsulation at the network level, by using IIOP over SSL
(Secure Sockets Layer) or TLS (Transport Layer Security). This provides protection from
accidental faults, since the TLS decryption phase will detect transport-level corruption, and
also from malicious faults, since messages whose signature is invalid would be rejected by
the server-side interceptor. However, the performance overhead of this form of wrapper is
non-negligible.

The implementation of wrappers between remote objects must be based on interception facilities
that can be provided by metaobject protocols. Metaobjects controlling object interactions can
thus be added to both client and server side, thus enabling enhanced assertions to be developed.

3.7. Conclusion

The above described wrapping technology enables software components to be adjusted from a
non functional viewpoint to the expected assumptions made by companion components. This is
the case for conventional middleware like CORBA that often make the assumption that
underlying operating system facilities behave as specified. This is a strong assumption, even in
the absence of faults, but this assumption has a very weak coverage in the presence of faults.

The work presented in this chapter aim at providing a generic framework and tools to develop
additional error detection and recovery mechanisms that make a Target Software Component
compliant with assumptions made by its users, who may be other system components in a
system of systems. We believe that the ability to make simplifying assumptions on the failure
modes of component systems greatly facilitates the process of building of a dependable system
of systems, and that the use of wrapping technology, as presented in this chapter, is a
particularly attractive way of obtaining well-encapsulated component systems, even in the more
difficult case of COTS or legacy systems.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  71

References

Chapter 1 - Dependable Composition of Web Services

[Abrial 1996] J. R. Abrial. The B Book – Assigning Programs to Meanings. Cambridge
University Press. 1996.

[Benatallah et al. 2002] B. Benatallah, M. Dumas, M-C. Fauvet, and F.A. Rabhi. Towards
patterns of Web Services composition. In Patterns an skeletons for parallel en distributed
computing. Springer, 2002.

[BPML] A. Arkin. Business Process Modeling Language, BPML 1.0 Last Call Working Draft,
2002.

[Casati et al. 2001] F. Casati, M. Sayal, and M-C. Shan. Developing E-services for composing
E-services. In Proc. Of CAISE’2001, LNCS 2068, pages 171-186, 2001.

[Fauvet et al. 2001] M-C. Fauvet, M. Dumas, B. Benatallah, and H-Y. Paik. Peer-to-peer traced
execution of composite services. In proc. Of TES’2001, LNCS 2193, pages 103-117, 2001.

[Florescu et al. 2002] D. Florescu, A. Grunhagen, and D. Kossmann. XL: An XML language
for web service specification and composition. In Proceedings of the WWW'02 Conference,
2002.

[Kuno et al. 2001] H. Kuno, M. Lemon, A. Karp, and D. Beringer. Conversations+Interfaces=
Business logic. In Proc. Of TES’ 2001, LNCS 2193, pages 30-43, 2001.

[Mikalsen et al. 2002] T. Mikalsen, S. Tai and I. Rouvellou. Transactional attitudes: Reliable
composition of autonomous Web services. In proc. Of ISDN’2002, 2002.

[MS-NET] Microsoft. .NET. http://msdn.microsoft.com/net/.

[Narayanan & Mc Ilraith 2002] S. Narayanan and S. McIlraith. Simulation, verification and
automated composition of web services. In Proceedings of the WWW'02 Conference, 2002.

[OASIS-BTP] OASIS Committee Specification. Business Transaction Protocol, Version 1.0,
2002.

[OMG-WS] OMG. Corba Web Services. OMG TC Document orbos/2001-06-07.
http://www.omg.org. 2001.

[Romanovsky et al. 2002] A. Romanovsky, P. Periorellis, and A.F. Zorzo. On Structuring
Integrated Web Applications for Fault Tolerance. Technical Report 765, Department of
Computing Science, University of Newcastle upon Tyne, 2002

[UDDI] UDDI. UDDI, Version 2.0, API Specification. Technical report, 2002.
http://www.uddi.org.



References

72 Deliverable PCE1

[SUN-J2EE] Sun Microsystems Inc. Java 2 Platform, Enterprise Edition (J2EE).
http://java.sun.com/j2ee/.

[W3C-SOAP] W3C. Soap version 1.2. Technical report, The World Wide Web Consortium,
2002. http://www.w3.org/2000/xp/Group/.

[W3C-THP] W3C. Tentative Protocol Part 1: White Paper, 2001.

[W3C-WSCL] W3C. Web services conversation language (WSCL), version 1.0. Technical
report, The World Wide Web Consortium, 2002. http://www.w3.org/TR/wscl10/.

[W3C-WSDL] W3C. Web services description language (WSDL), version 1.1. Technical
report, The World Wide Web Consortium, 2001. http://www.w3.org/TR/wsdl, Working draft
version 1.2 available at http://www.w3.org/TR/2002/WD-wsdl12-20020709.

[W3C-XML] W3C. Second Edition of the Extensible Markup Language (XML). 1.0
Specification. W3C Recommendation. http://www.w3.org/TR/2000/REC-xml-2001006. 2000.

[WSCI] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawagushi, D. Orchard, S. Poligliani, K.
Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimeck. Web Service Choreography
Interface 1.0.

[WSFL] F. Leymann. Web Services Flow Language (WSFL 1.0). IBM Software Group.
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf. 2001.

[XLANG] S. Thatte. XLANG: Web Services for Business Process Design. Microsoft
Corporation. http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm. 2001.

[Xu et al. 1995] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J. Stroud and Z. Wu.
Fault Tolerance in Concurrent Object-Oriented Software through Coordinated Error Recovery.
Proceedings of the IEEE Symposium on Fault Tolerant Computing. 1995.

[Yang & Papazoglou 2002] J. Yang and P. Papazoglou. Web component: A substrate for web
service reuse and composition. In Proceedings of CAISE'02, pages 21-36, 2002

[Zorzo & Stroud 1999] A.F. Zorzo and R.J. Stroud. An Object-Oriented Framework for
Dependable Multiparty Interactions. In proc. of Conf. on Object-Oriented Programming,
Systems & Applications (OOPSLA'99), ACM Sigplan Notices, 34(10), pages  435-446, 1999.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  73

Chapter 2 – Structured Handling of On-Line Interface Upgrades in
Integrating Dependable SoSs

[Amann et al. 2000] B. Amann, I. Fundulaki, M.Scholl. Integrating ontologies and thesauri for
RDF schema creation and metadata querying. International Journal of Digital Libraries, 3, 3, pp.
221–236, 2000.

[Cristian 1995] F. Cristian. Exception Handling and Tolerance of Software Faults. In Lyu,
M.R. (ed.): Software Fault Tolerance. Wiley, pp. 81-107, 1995.

[Hruska & Hashimoto 2000] T. Hruska and H. Hashimoto (eds), Knowledge Based Software
Engineering, Ios Press June 2000.

[Laprie 1995] J.-C. Laprie. Dependable Computing: Concepts, Limits, Challenges. Proc. of the
25th Int. Symposium On Fault-Tolerant Computing. IEEE CS Press. Pasadena, CA. pp. 42-54.
1995.

[Periorellis & Dobson 2001] P. Periorellis, J.E. Dobson. Case Study Problem Analysis. The
Travel Agency Problem. Technical Deliverable. Dependable Systems of Systems Project (IST-
1999-11585). University of Newcastle upon Tyne. UK. 37 p. 2001.
www.newcastle.research.ec.org/dsos/

[Romanovsky & Smith 2002] A. Romanovsky, I. Smith. Dependable On-line Upgrading of
Distributed Systems. In Proc. of COMPSAC 2002. 26-29 August 2002, Oxford, UK. IEEE
CS Press. pp. 975-976. 2002.

[Szyperski 1997] C. Szyperski. Component Software. ACM Press. 1997.

[Tai et al. 2002] A.T. Tai, K.S. Tso, L. Alkalai, S.N. Chau, W.H. Sanders. Low-Cost Error
Containment and Recovery for Onboard Guarded Software Upgrading and Beyond. IEEE TC-
51, 2, pp. 121-137. 2002.

[Vanderperren 2002] W. Vanderperren. A Pattern Based Approach to Separate Tangled
Concerns in Component Based Development. Proc. of the 1st AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software, held in conjunction with the 1st
International Conference on Aspect-Oriented Software Development (AOSD 2002). pp. 71-75.
2002.

[Welch 2002] I. Welch. A Reflective Security Architecture for Applications. PhD Thesis.
Department of Computing, University of Newcastle upon Tyne (in preparation).

[W3C-RDF 2000] W3C. Resource Description Framework (RDF). RDF Specification
Development. 2000. http://www.w3.org/RDF/.

[W3C-WSCL 2002] W3C. Web services conversation language (WSCL), version 1.0. The
World Wide Web Consortium, 2002. http://www.w3.org/TR/wscl10/.



References

74 Deliverable PCE1

[W3C-WSDL 2001] W3C. Web services description language (WSDL), version 1.1. The
World Wide Web Consortium, 2001. http://www.w3.org/TR/wsdl, Working draft version 1.2
http://www.w3.org/TR/2002/WD-wsdl12-20020709



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  75

Chapter 3 – From Error Detection to Recovery Wrappers

[Arlat et al. 2002] J. Arlat, J.-C. Fabre, M. Rodríguez , F. Salles, “Dependability of COTS
Microkernel-Based Systems”, IEEE Transactions on Computers, vol. 51, no. 2, pp. 138-163,
2002.

[Burns & Lister 1991] A. Burns , A. M. Lister, “A Framework for Building Dependable
Systems”, The Computer Journal, vol. 34, no. 2, pp. 173-181, 1991.

[Burns et al. 1999] A. Burns, S. Punnekkat, L. Strigini , D. R. Wright, “Probabilistic
Scheduling Guarantees for Fault-Tolerant Real-Time Systems”, in Proc. 7th IFIP International
Working Conference on Dependable Computing for Critical Applications (DCCA'99), San
Jose, CA (USA), pp. 361-378, 1999.

[Burns & Wellings 1997] A. Burns, A. J. Wellings, Real-time Systems and their Programming
Languages, Addison Wesley, 1997.

[Carreira et al. 1998] J. Carreira, H. Madeira , J. G. Silva, “Xception: A Technique for the
Experimental Evaluation of Dependability in Modern Computers”, IEEE Transactions on
Software Engineering, vol. 24, no. 2, pp. 125-136, 1998.

[Chorus 1997] Chorus Systems, “CHORUS/ClassiX release 3 - Technical Overview”,
Technical Report no. CS/TR-96-119.12, Chorus Systems, 1997 (www.sun.com/chorusos).

[Colin & Puaut 2001] A. Colin , I. Puaut, “Worst-Case Execution Time Analysis of the
RTEMS Real-Time Operating System”, in Proc. 13th Euromicro Conference on Real-Time
Systems, Delft, The Netherlands, pp. 191-198, 2001.

[Diaz et al. 1994] M. Diaz, G. Juanole , J.-P. Courtiat, “Observer--A Concept for Formal On-
Line Validation of Distributed Systems”, IEEE Transactions on Software Engineering, vol. 20,
no. 12, pp. 900-913, 1994.

[Fabre & Pérennou 1998] J.-C. Fabre , T. Pérennou, “A Metaobject Architecture for Fault
Tolerant Distributed Systems: The FRIENDS Approach”, IEEE Transactions on Computers,
Special Issue on Dependability of Computing Systems, pp. 78-95, 1998.

[Ghosh et al. 1999] A. K. Ghosh, M. Schmid , F. Hill, “Wrapping Windows NT Sofware for
Robustness”, in Proc. 29th IEEE Int. Symposium on Fault-Tolerant Computing (FTCS-29),
Madison, WI (USA), pp. 344-347, 1999.

[Joseph 1996] M. Joseph, Real-Time Systems: Specification, Verification and Analysis,
Prentice-Hall, 1996.

[Kiczales et al. 1991] G. Kiczales, J. d. Rivières , D. G. Bobrow, The Art of the Metaobject
Protocol, MIT Press, 1991.

[Koopman & DeVale 1999] P. J. Koopman , J. DeVale, “Comparing the Robustness of
POSIX Operating Systems”, in Proc. 29th IEEE International Symposium on Fault-Tolerant
Computing (FTCS-29), Madison, WI (USA), pp. 30-37, 1999.



References

76 Deliverable PCE1

[Maes 1987] P. Maes, “Concepts and Experiments in Computational Reflection”, in Proc.
OOPSLA'87, Orlando, FL (USA), pp. 147-155, 1987.

[Marsden & Fabre 2001]  “Failure analysis of an ORB in presence of faults”, DSoS
deliverable IC3, 2001.

[Mok & Liu 1997] A. K. Mok , G. Liu, “Efficient Run-Time Monitoring of Timing
Constraints”, in Proc. 3rd Real-Time Technology and Applications Symposium, Montral,
Canada, 1997.

[Pan et al. 2001] J. Pan, P. Koopman, D. Siewiorek, Y. Huang, R. Gruber , M. Jiang,
“Robustness Testing and Hardening of CORBA ORB Implementations”, in Proc. IEEE
International Conference on Dependable Systems and Networks (DSN 2001), Goteborg
(Sweden), pp. 141-150, 2001.

[Rodríguez et al. 2002a] M. Rodríguez, A. Albinet , J. Arlat, “MAFALDA-RT: A Tool for
Dependability Assessment of Real-Time Systems”, in Proc. IEEE International Conference on
Dependable Systems and Networks (DSN 2002), Washington DC (USA) (to appear), 2002a.

[Rodríguez et al. 2000] M. Rodríguez, J.-C. Fabre , J. Arlat, “Formal Specification for Building
Robust Real-time Microkernels”, in Proc. 21st IEEE Real-Time Systems Symposium (RTSS
2000), Orlando, Florida (USA), pp. 119-128, 2000.

[Rodríguez et al. 2002b] M. Rodríguez, J.-C. Fabre , J. Arlat, “Wrapping Real-Time Systems
from Temporal Logic Specifications”, in Proc. 4th European Dependable Computing
Conference (EDCC-4) , Oct. 2002, Toulouse (France), 2002b (to appear).

[Savor & Seviora 1997] T. Savor , R. E. Seviora, “An Approach to Automatic Detection of
Software Failures in Real-Time Systems.”, in Proc. IEEE Real-Time Technology and
Applications Symposium, pp. 136-146, 1997.

[Schneider 1998] F. Schneider, “Enforceable Security Policies”, no. TR98-1664, Department
of Computer Science, Cornell University, Ithaca, NY (USA), 1998.

[Voas 1998] J. M. Voas, “Certifying Off-the-Shelf Software Components”, Computer, pp. 53-
59, 1998.



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  77

Appendix A. Formalisation of Coordinated Atomic Actions in B

Ferda Tartanoglu, Nicole Levy, Valérie Issarny (INRIA)

This part of the deliverable introduces a formal specification of Coordinated Atomic (CA)
actions [Xu et al. 1995] and of their composition introduced in Chapter 1. The formalisation
allows for rigorous reasoning about dependable behavior of the systems of systems integrated
using this structuring paradigm.

A.1. The B Formal Method

We have used the B formal method [Abrial 1996] which is a model-based method built on set
theory and predicate logic and extended by generalised substitutions. Specifications in B are
represented by abstract machines encapsulating operations and states.

Generally speaking, the B method allows us to write abstract machines and refinements over
them. At the end of the refinement process an implementation can be written that corresponds to
an executable code. However, in our model, we have only developed the initial abstract
machines.

Proofs are an essential part of the model: the idea is to prove that all operations preserve the
invariants of the machine and that the implementations and refinements preserve the invariants
and the behaviour of the initial abstract machine.

There are various tools that help writing and proving B specifications. The main of them are B-
Tool [B-Core] and Atelier B [Atelier B]. Both tools include a type checker, an animator, a proof
obligation generator, theorem provers, code translators and documentation facilities. Atelier B
has been used in our investigation, however the notation we used is compatible with both of
them.

A.2. Modeling CA Actions

The system is modelled by four abstract machines (Figure A.1). The first of which is the
CONSTANTS machine which includes common constants used by all other machines which
access the CONSTANTS machine by using the SEES clause.

Figure A. 1 Abstract machines

CONST

OBJECTS PARTICIP

CAACTIO

SEES

EXTENDS



Formalisation of CA Actions in B

78 Deliverable PCE1

MACHINE
    CONST
SETS
    PARTICIPANT;
    CAACTION_STATE = {caa_normal, caa_exceptional};
    PARTICIPANT_STATE;
    CAACTION;
    OBJECT;
    VALUE
CONSTANTS
    init_val, begin_val, commit_val, abort_val,
    normal, waiting, exceptional, EXCEPTIONAL_STATE, compute_exception
PROPERTIES
    init_val ∈  VALUE ∧
    begin_val ∈  VALUE ∧
    commit_val ∈  VALUE ∧
    abort_val∈  VALUE ∧
    normal∈  PARTICIPANT_STATE ∧
    waiting∈  PARTICIPANT_STATE ∧  
    EXCEPTIONAL_STATE ⊆  PARTICIPANT_STATE ∧
    exceptional∈  PARTICIPANT_STATE ∧
    exceptional∈  EXCEPTIONAL_STATE ∧
    compute_exception:(PARTICIPANT_STATE ×  P (PARTICIPANT_STATE)) → EXCEPTIONAL_STATE
END

Other abstract machines are PARTICIPANTS, OBJECTS and CAACTIONS. The
CAACTIONS abstract machine extends (with the EXTENDS clause) the other two.
Modularisation of this kind makes syntax simpler and facilitates proofs of the obligations.

The PARTICIPANTS abstract machine includes all operations related to action participants
including their activations, state changes or removals.
MACHINE
    PARTICIPANTS
SEES
    CONST
VARIABLES
    participant, participant_state, participant_value, initial_values
INVARIANT
    /* active participants */     
    participant ⊆  PARTICIPANT ∧

    /* associates to each participant its state (normal, exceptional or waiting) */    
    participant_state ∈  PARTICIPANT  seq(PARTICIPANT_STATE)  ∧

    /*associates a value to each active participant */    
    participant_value ∈  PARTICIPANT  VALUE ∧

    /* memorize the initial values of participants for recovery */    
    initial_values∈  PARTICIPANT  seq(VALUE) ∧



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  79

    /* CONSTRAINTS */
    dom(participant_state) = participant ∧
    dom(participant_value) = participant  ∧   
    dom(initial_values) = participant    
INITIALISATION
    participant := ∅  ||
    participant_state := ∅  ||
    participant_value := ∅  ||
    initial_values := ∅
OPERATIONS
    add_new_participants(epar) =     
    PRE

  epar ⊆  PARTICIPANT ∧
  epar ∩ participant = ∅

    THEN
  participant := participant ∪  epar   ||
  participant_state := participant_state  epar×{[ normal]} ||
  participant_value := participant_value ∪  epar×{ init_val} ||
  initial_values := initial_values ∪  epar×{[ init_val]}

    END ;
    add_nested_participants(epar) =     
    PRE

  epar ⊆  PARTICIPANT ∧
  epar ⊆  participant

    THEN
  participant_state := participant_state  { pa, sps | pa∈  epar ∧ pa∈  dom(participant_state) ∧

sps∈  seq(PARTICIPANT_STATE) ∧
sps= participant_state(pa) ← normal } ||

  initial_values := initial_values  { pa, sval | pa∈  epar ∧ pa∈  dom(participant_value) ∧
sval∈  seq(VALUE) ∧
sval= initial_values(pa) ← init_val }

    END ;    
    add_composed_participants(pa, epar) =     
    PRE

  pa∈  participant ∧
  epar ⊆  PARTICIPANT ∧
  epar ∩ participant = ∅

    THEN
  participant := participant ∪  epar   ||
  participant_state := (participant_state ∪  epar×{[ normal]})

   {pa a (participant_state(pa) ← waiting)} ||

  participant_value := participant_value ∪  epar×{ init_val} ||
  initial_values := initial_values ∪  epar×{[ init_val]}

    END ;    
    set_participant_value(pa, val) =      
    PRE

  pa∈  participant ∧
  val∈  VALUE ∧
  pa ∈  dom(participant_value)

    THEN
  participant_value := participant_value  {pa a val}

    END ;
    set_participants_state (epar, stat) =



Formalisation of CA Actions in B

80 Deliverable PCE1

    PRE
  epar ⊆  participant ∧
  stat ∈  PARTICIPANT_STATE ∧
  epar ⊆  dom(participant_state)  

    THEN
  participant_state := participant_state   { pa, sps | pa∈  epar ∧ sps∈  seq(PARTICIPANT_STATE) ∧

sps= front (participant_state(pa)) ← stat }
    END ;
    remove_update_participants_states(epar, stat) =
    PRE

  epar ⊆  participant ∧
  stat ∈  PARTICIPANT_STATE ∧
  epar ⊆  dom(participant_state) ∧
  epar ⊆  dom(initial_values)

    THEN
  participant_state := participant_state  { pa, sps | pa∈  epar ∧ sps∈  seq(PARTICIPANT_STATE) ∧

sps= front (front (participant_state(pa))) ← stat } ||
  initial_values := initial_values
   { pa, sval | pa∈  epar ∧ sval∈  seq(VALUE) ∧ sval= front (initial_values(pa)) }

    END ;
    delete_participants(epar) =     
    PRE

  epar ⊆  participant ∧
  epar ⊆  dom(participant_state) ∧
  epar ⊆  dom(participant_value) ∧
  epar ⊆  dom(initial_values)

    THEN
  participant := participant  - epar ||
  participant_state := epar  participant_state  ||
  participant_value := epar  participant_value  ||
  initial_values := epar  initial_values

    END ;
    remove_composed_participants(epar, pa) =         
    /* set pa state to its previous state */    
    PRE

  epar ⊆  participant ∧
  pa∈  participant ∧
  pa ∉  epar ∧
  epar ⊆  dom(participant_state)∧
  epar ⊆  dom(participant_value) ∧
  epar ⊆  dom(initial_values)

    THEN
  participant := participant - epar ||
  participant_state := (epar  participant_state)  {pa a front (participant_state(pa))  } ||

  participant_value := epar  participant_value  ||
  initial_values := epar  initial_values

    END ;
    remove_composed_participants_exceptional(epar, pa) =
    /* remove previous state of pa and set it to exceptional */           
    PRE

  epar ⊆  participant ∧
  pa∈  participant ∧
  pa ∉  epar ∧



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  81

  epar ⊆  dom(participant_state) ∧
  epar ⊆  dom(participant_value) ∧
  epar ⊆  dom(initial_values)  

    THEN
  participant := participant - epar ||
  participant_state := (epar  participant_state)

   {pa a (front (front (participant_state(pa))) ← exceptional) } ||

  participant_value := epar  participant_value  ||
  initial_values := epar  initial_values

    END ;
    remove_participant_state(epar) =     
    PRE

  epar ⊆  participant ∧
  epar ⊆  dom(participant_state) ∧
  epar ⊆  dom(initial_values)

    THEN
  participant_state := participant_state   { pa, sps | pa∈  epar ∧ sps∈  seq(PARTICIPANT_STATE) ∧

  sps= front (participant_state(pa))} ||
  initial_values := initial_values  { pa, sval | pa∈  epar ∧ sval∈  seq(VALUE) ∧

  sval= front (initial_values(pa))}
    END ;
    remove_participant_state_and_value(epar) =         
    PRE

  epar ⊆  participant ∧
  epar ⊆  dom(participant_state) ∧
  epar ⊆  dom(participant_value) ∧
  epar ⊆  dom(initial_values)

    THEN
  participant_state := participant_state  { pa, sps | pa∈  epar∧ sps∈  seq(PARTICIPANT_STATE) ∧

sps= front (participant_state(pa))} ||
  participant_value := participant_value  { pa, val | pa∈  epar ∧ val∈  VALUE ∧

 val= last(initial_values(pa))}  ||
                 /* participants recover their initial values */   

  initial_values := initial_values  { pa, sval | pa∈  epar ∧ sval∈  seq(VALUE) ∧
 sval= front (initial_values(pa))}

    END
END

The OBJECTS machine specifies the operations on external objects including the transactional
operations that these objects export.
MACHINE
    OBJECTS
SEES
    CONST
VARIABLES
    values, object  
INVARIANT
   /* any object has a value at any time */    
    values ∈  OBJECT → VALUE ∧
    /* external objects associated to a CA action */    
    object ⊆  OBJECT
INITIALISATION
    values := OBJECT × { init_val} ||



Formalisation of CA Actions in B

82 Deliverable PCE1

    object := ∅
OPERATIONS
    val ← read_object(obj) =
    PRE

  obj ∈  object
    THEN

  val := values(obj)
    END ;
    write_object(obj,val) =
    PRE

  obj ∈  object ∧
  val ∈  VALUE ∧
  obj ∈  dom(values)

    THEN
  values(obj) := val

    END ;
    /* begin transaction on objects */    
    add_objects(objs) =
    PRE

  objs ⊆  OBJECT ∧
  objs ∩ object = ∅

    THEN
  values := values  objs×{ begin_val} ||
  object := object ∪  objs

    END ;  
    terminate_transaction(objs,val) =
    PRE

  objs ⊆  object ∧
  val   ∈  VALUE

    THEN
  values := values   objs×{ val} ||
  object := object - objs

    END ;   
    terminate_nested_transaction(objs,val) =
    PRE

  objs ⊆  object ∧
  val   ∈  VALUE

    THEN
  values := values  objs×{ val}

    END    
END

The CAACTIONS abstract machine includes operations used for creating and terminating CA
actions, action nesting and composing, and also the exceptional state operations.
MACHINE
    CAAction
SEES
    CONST
EXTENDS
    PARTICIPANTS,
    OBJECTS
VARIABLES
    caaction, caaction_state, caaction_particip, particip_caaction,



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  83

    caaction_ext_objects, is_nested, is_composed
INVARIANT
    /* TYPES */

    /* active CA actions */
    caaction ⊆  CAACTION ∧

    /* associates to each active CA action its state (normal, exceptional) */
    caaction_state ∈  caaction →  CAACTION_STATE ∧     

    /* associates to each active aprticipant the sequence of nested CA actiond to which it participates */
    caaction_particip ∈  participant → seq(caaction) ∧

    /* associates to each CA action its participants */
    particip_caaction ∈  caaction → P (participant) ∧

    /* external object accessed from a CA action */
    caaction_ext_objects ∈  caaction ↔ object ∧     

    /* (caa1 |-> caa2) : caa1 is nested in caa2 */
    is_nested∈  caaction ↔ caaction ∧     

    /* (pa |-> caa) : participant pa is waiting for the composed CA action caa  */
    is_composed∈  participant  caaction ∧

     
    /* CONSTRAINTS */

    /* any participant active in a CA action can be active in another CA action
        only if this latter is nested in the former */
    ∀ (pa,caa1, caa2).((pa ∈ participant ∧  caa1∈  caaction ∧  caa2∈  caaction ∧

  {caa1,caa2} ⊆  ran(caaction_particip(pa)))
 ⇒  ((caa1,caa2) ∈  is_nested  ∨  (caa2,caa1) ∈  is_nested ) ) ∧

    /* any CA action nested in another CA action cannot have external participants */
    ∀ (caa1, caa2).((caa1∈  caaction ∧  caa2∈  caaction ∧  (caa1,caa2) ∈  is_nested  )

   ⇒    particip_caaction(caa1) ⊆  particip_caaction(caa2) ) ∧

    /* any external object accessed from two CA actions implies they are nested one another */    
    ∀ (obj,caa1,caa2).((obj∈  object ∧  caa1∈  caaction ∧  caa2∈  caaction ∧
                       obj∈  caaction_ext_objects[{ caa1}] ∩ caaction_ext_objects[{ caa2}] )

 ⇒  ((caa1,caa2) ∈  is_nested   ∨  (caa2,caa1) ∈  is_nested)) ∧

    /* relation between caaction_particip and particip_caaction */
    ∀ (pa).(pa∈  participant

⇒  ran(caaction_particip(pa))={caa| caa∈  caaction ∧ pa∈  particip_caaction(caa)}) ∧

    /* a CA action can only be in an exceptional state if all of its participants are also in the same state
        or a participant may be waiting and in this case, before composing a CA action, the participant was
        in an exceptional state */
    ∀ (caa). (caa∈  caaction ∧  caaction_state(caa)= caa_exceptional

  ⇒  ∀ (pa).(pa∈ particip_caaction(caa)
  ⇒  ((last(participant_state(pa))∈  EXCEPTIONAL_STATE) ∨

 ((last(participant_state(pa)) = waiting  ∧
   last(front (participant_state(pa)))∈



Formalisation of CA Actions in B

84 Deliverable PCE1

EXCEPTIONAL_STATE))))) ∧
   

    /* a composed CA action is not nested in another CA action */    
    ∀ (caa). (caa∈  caaction ∧   caa ∈  ran(is_composed) ⇒  caa ∉  dom(is_nested)) ∧

    /* (pa |-> caa) : is_composed implies that pa is in a waiting state
         and to be in such a state means that pa is waiting for a composed CA action */  
    ∀ (pa,caa).(pa∈  participant ∧  caa∈  caaction ∧  (pa a caa) ∈  is_composed

⇒  last(participant_state(pa)) = waiting ) ∧

    ∀ (pa).(pa∈  participant ∧  pa ∉  dom(is_composed) ⇒  last(participant_state(pa)) ≠ waiting )

INITIALISATION
    caaction := ∅  ||
    caaction_state := ∅  ||
    caaction_particip := ∅  ||
    particip_caaction := ∅  ||
    caaction_ext_objects := ∅  ||
    is_nested := ∅  ||
    is_composed := ∅  
OPERATIONS
    /*** CREATE CA ACTIONS  ***********************/
    create_external_caaction(caa, epar, exto) =
    PRE

  caa∈  CAACTION ∧
  caa ∉  caaction ∧
  epar ⊆  PARTICIPANT ∧
  epar ∩ participant =∅  ∧
  exto ⊆  OBJECT ∧
  exto ∩ object = ∅

    THEN
  caaction := caaction ∪  {caa} ||
  caaction_state := caaction_state ∪  {caa a caa_normal} ||

  caaction_particip := caaction_particip ∪  epar×{[ caa]} ||
  particip_caaction := particip_caaction ∪  {caa a epar} ||

  add_new_participants(epar)  ||
  caaction_ext_objects := caaction_ext_objects ∪   {caa}×exto ||
  add_objects(exto)  

    END ;
    create_nested_caaction(caa1, caa2, epar, exto) =
    PRE

  caa1∈  CAACTION ∧
  caa2∈  caaction ∧
  epar ⊆  participant ∧
  exto ⊆  object ∧
  epar ⊆  particip_caaction(caa2) ∧
  caa1∉  caaction ∧

    /* external objects of nested CA action is a subset of external objects of the containing CA action */
  ∀ obj.(obj∈ exto ⇒  obj∈  caaction_ext_objects[{ caa2}]) ∧

    /* all participants to caa1 are in the same state which is not waiting */
  card(ran({ pa, stat | pa∈  epar ∧ stat∈  PARTICIPANT_STATE ∧

stat= last(participant_state(pa))}  )) = 1 ∧
  ∀ (pa).(pa∈ epar ⇒  last(participant_state(pa)) ≠ waiting ) ∧



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  85

    /* all participants of the nested CA action are in the same containing CA action */   
  card(ran({ pa, ca | pa∈  epar ∧ ca∈  CAACTION ∧ ca= last(caaction_particip(pa)) } )) = 1

    THEN
  caaction := caaction ∪  {caa1} ||
  caaction_state := caaction_state ∪  {caa1 a caa_normal} ||

  caaction_particip := caaction_particip
   { pa, scaa | pa∈  epar ∧ scaa∈  seq(caaction) ∧ scaa= caaction_particip(pa) ← caa1 } ||

  particip_caaction := particip_caaction ∪  {caa1 a epar} ||

  caaction_ext_objects := caaction_ext_objects ∪   {caa1}×exto ||
  is_nested := is_nested ∪  {caa1 a caa2} ||  

  add_nested_participants(epar)
    END ;
    create_composed_caaction(pa, caa, epar, exto) =
    PRE

  pa∈  participant ∧
  caa∈  CAACTION ∧
  caa ∉  caaction ∧
  epar ⊆  PARTICIPANT ∧
  epar ∩ participant =∅  ∧
  exto ⊆  OBJECT ∧
  exto ∩ object = ∅  

    THEN
  caaction := caaction ∪  {caa} ||
  caaction_state := caaction_state ∪  {caa a caa_normal} ||

  caaction_particip := caaction_particip ∪  epar×{[ caa]} ||
  particip_caaction := particip_caaction ∪  {caa a epar} ||

  caaction_ext_objects := caaction_ext_objects ∪   {caa}×exto ||
  is_composed := is_composed ∪  {pa a caa} ||

  add_composed_participants(pa, epar) ||
  add_objects(exto)

    END ;    
    /*** NORMAL MODE OPERATIONS ***********************/
    send_message(pa1, pa2, val) =
    PRE

  pa1∈  participant ∧
  pa2∈  participant ∧
  val∈  VALUE ∧

                 /* the seqence of CA actions must be the same : messages between
                     participants of the same CA action */   

  caaction_particip(pa1) = caaction_particip(pa2) ∧
  last(participant_state(pa1)) = last(participant_state(pa2)) ∧
  last(participant_state(pa1)) ≠ waiting ∧
  last(participant_state(pa2)) ≠ waiting

    THEN
  set_participant_value(pa2,val)

    END ;
    read_value ← read_ext_object(pa,eobj) =
    PRE

  pa∈  participant ∧
  eobj ∈  object ∧
  eobj∈  caaction_ext_objects[{ last(caaction_particip(pa))}  ]   

    THEN



Formalisation of CA Actions in B

86 Deliverable PCE1

  read_value ← read_object(eobj)
    END ;
    write_ext_object(pa,eobj,funct) =
    PRE

  pa∈  participant ∧
  eobj ∈  object ∧
  funct ∈  VALUE → VALUE ∧
  eobj∈  caaction_ext_objects[{ last(caaction_particip(pa)) } ]

    THEN
  write_object(eobj, funct(values(eobj)))

    END ;
    /********  EXCEPTION RAISE ****************/    
    raise_exception (pa, excep) =
    PRE

  pa∈  participant ∧
  excep∈  EXCEPTIONAL_STATE ∧
  last(participant_state(pa)) = normal  ∧
  caaction_state(last(caaction_particip(pa))) = caa_normal

    THEN
  set_participants_state({ pa}, excep)

    END ;
    /* propagate exception to all participants */
    propagate_exception(pa) =
    PRE

  pa∈  participant ∧
  last(participant_state(pa)) ∈  EXCEPTIONAL_STATE  ∧
  caaction_state(last(caaction_particip(pa))) = caa_normal ∧
  ∀ pacaa.(pacaa ∈  particip_caaction(last(caaction_particip(pa)))

⇒  last(participant_state(pacaa)) ≠ waiting ) ∧
                 /* all participants must be in the same CA action */   

  card(ran({paa,caa | paa ∈  particip_caaction(last(caaction_particip(pa))) ∧
caa ∈  CAACTION ∧  caa = last(caaction_particip(paa)) }  )) = 1

    THEN
  LET  pasost  BE  

 pasost = { paac, sta | paac∈  particip_caaction(last(caaction_particip(pa))) ∧
      sta∈  PARTICIPANT_STATE ∧ sta= last(participant_state(paac))

  }
  IN

 LET  stat BE
stat = compute_exception(last(participant_state(pa)),ran(pasost) )

 IN
set_participants_state
(particip_caaction(last(caaction_particip(pa))), stat) ||
caaction_state(last(caaction_particip(pa))) := caa_exceptional

 END
  END

    END ;    
    /********** TERMINATE IN NORMAL STATE ******************/  
    terminate_caaction(caa) =
    PRE

  caa∈  caaction ∧
  caa ∉  dom(is_nested) ∧
  caa ∉  ran(is_nested) ∧



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  87

  caa ∉  ran(is_composed) ∧
  caaction_state(caa) = caa_normal ∧

                 /*all participants must be in a normal state */   
  ∀ (pa).(pa∈  particip_caaction(caa) ⇒  last(participant_state(pa)) = normal )

    THEN
  LET  epar  BE

 epar =particip_caaction(caa)
  IN

                         /* commit and remove objects */  
 terminate_transaction(caaction_ext_objects[{ caa}], commit_val) ||
 delete_participants(epar) ||
 caaction := caaction - {caa} ||
 caaction_state := {caa}  caaction_state  ||
 caaction_particip := epar  caaction_particip ||
 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects

  END
    END ;
    terminate_nested_caaction(caa) =
    PRE

  caa∈  caaction ∧
  caa∈  dom(is_nested) ∧
  caa ∉  ran(is_nested) ∧
  caaction_state(caa) = caa_normal ∧

                 /*all participants must be in normal state */
  ∀ (pa).(pa∈  particip_caaction(caa) ⇒  last(participant_state(pa)) = normal )

    THEN
  LET  epar  BE

 epar =particip_caaction(caa)
  IN

                              /* all external objects are commited */  
 terminate_nested_transaction(caaction_ext_objects[{ caa}], commit_val)  ||

                              /* the participants recover their initial state */
 remove_participant_state(epar) ||
 caaction := caaction - {caa} ||
 caaction_state := {caa}  caaction_state  ||
 caaction_particip := caaction_particip
  { pa, scaa | pa∈  epar ∧ scaa∈  seq(caaction) ∧

  scaa= front (caaction_particip(pa)) } ||
 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects

  END
    END ;
    terminate_composed_caaction (caa, pa) =
    PRE

  caa∈  caaction ∧
  pa∈  participant ∧
  pa ∉   particip_caaction(caa) ∧
  pa∈  dom(is_composed) ∧
  caa = is_composed(pa) ∧
  caa ∉  dom(is_nested) ∧
  caa ∉  ran(is_nested) ∧
  caaction_state(caa) = caa_normal ∧



Formalisation of CA Actions in B

88 Deliverable PCE1

                 /*all participants must be in a normal state */
  ∀ (pacaa).(pacaa∈  particip_caaction(caa) ⇒  last(participant_state(pacaa)) = normal )

    THEN
  LET  epar  BE

 epar = particip_caaction(caa)
  IN

                             /* all external objects are commited */
 terminate_transaction(caaction_ext_objects[{ caa}], commit_val) ||

                             /* set to previous state */
 remove_composed_participants (epar, pa) ||
 caaction := caaction - {caa} ||
 caaction_state := {caa}  caaction_state  ||
 caaction_particip := epar  caaction_particip ||
 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects ||
 is_composed := is_composed - {pa a caa}

  END
    END ;
/**** ABORT OPERATION **********************/    
    abort_caaction(caa) =
    PRE

  caa  ∈  caaction ∧
  caa ∉  dom(is_nested) ∧
  caa ∉  ran(is_nested)  ∧
  caa ∉  ran(is_composed)

    THEN
  LET  epar  BE

 epar =particip_caaction(caa)
  IN

                             /* all external objects are aborted */
 terminate_transaction(caaction_ext_objects[{ caa}], abort_val) ||
 delete_participants(epar) ||
 caaction := caaction - {caa} ||
 caaction_state := {caa}  caaction_state  ||
 caaction_particip := epar  caaction_particip ||
 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects

  END
    END ;
    abort_nested_caaction(caa) =
    PRE

  caa∈  caaction ∧
  caa∈  dom(is_nested) ∧
  caa ∉  ran(is_nested) ∧
  ∀ pa.(pa ∈  particip_caaction(caa) ⇒  last(participant_state(pa)) ≠ waiting )

    THEN
  LET  epar  BE

 epar = particip_caaction(caa)
  IN

                             /* all external objects are aborted */
 terminate_nested_transaction(caaction_ext_objects[{ caa}], abort_val) ||
 remove_participant_state_and_value(epar) ||
 caaction := caaction - {caa} ||



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  89

 caaction_state := {caa}  caaction_state  ||
 caaction_particip := caaction_particip

  {pa,scaa| pa ∈  epar ∧ scaa∈  seq(caaction) ∧
scaa = front (caaction_particip(pa))} ||

 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects

  END
    END ;
    abort_composed_caaction(caa,pa) =
    PRE

  caa∈  caaction ∧
  pa∈  participant ∧
  pa∈  dom(is_composed) ∧
  caa = is_composed(pa) ∧
  caa ∉  dom(is_nested) ∧
  caa ∉  ran(is_nested)

    THEN
  LET  epar  BE

 epar = particip_caaction(caa)
  IN

                             /* all external objects are aborted */
 terminate_transaction(caaction_ext_objects[{ caa}], abort_val) ||

                             /* remove last state and set to exceptional */
 remove_composed_participants_exceptional(epar, pa) ||
 caaction := caaction - {caa} ||
 caaction_state := {caa}  caaction_state  ||
 caaction_particip := epar  caaction_particip ||
 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects ||
 is_composed := is_composed - {pa a caa} 

  END
    END ;
/**** EXCEPTIONAL TERMINATION **********************/    
    terminate_caaction_exceptional(caa) =
    PRE

  caa  ∈  caaction ∧
  caa ∉  dom(is_nested) ∧
  caa ∉  ran(is_nested)  ∧
  caa ∉  ran(is_composed) ∧
  caaction_state(caa) = caa_exceptional ∧
  ∀ pa.(pa ∈  particip_caaction(caa) ⇒  last(participant_state(pa)) ∈  EXCEPTIONAL_STATE )

    THEN
  LET  epar  BE

 epar =particip_caaction(caa)
  IN

                             /* all external objects are aborted */
 terminate_transaction(caaction_ext_objects[{ caa}], abort_val) ||
 delete_participants (epar) ||
 caaction := caaction - {caa} ||
 caaction_state := {caa}  caaction_state  ||
 caaction_particip := epar  caaction_particip ||
 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects 



Formalisation of CA Actions in B

90 Deliverable PCE1

  END
    END ;    
    terminate_nested_caaction_exceptional(caa) =
    PRE

  caa∈  caaction ∧
  caa∈  dom(is_nested) ∧
  caa∉  ran(is_nested) ∧
  caaction_state(caa) = caa_exceptional  ∧
  ∀ pa.(pa ∈  particip_caaction(caa) ⇒  last(participant_state(pa)) ∈  EXCEPTIONAL_STATE )

    THEN
  LET  epar  BE

 epar =particip_caaction(caa)
  IN

                             /* all external objects are aborted */
 terminate_nested_transaction(caaction_ext_objects[{ caa}], abort_val) ||

                             /* the participants state is set to exceptional
                                 (the exception is signalled outside the  CA action) */

 remove_update_participants_states(epar, exceptional)||
 caaction := caaction - {caa} ||
 caaction_state := {caa}  caaction_state  ||
 caaction_particip := caaction_particip

  { pa, scaa | pa ∈  epar ∧ scaa∈  seq(caaction) ∧
  scaa= front (caaction_particip(pa)) } ||

 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects

  END
    END ;
    terminate_composed_caaction_exceptional(caa, pa) =
    PRE

  caa∈  caaction ∧
  pa∈  participant ∧
  pa∈  dom(is_composed) ∧
  caa = is_composed(pa) ∧
  caa ∉  dom(is_nested) ∧
  caa ∉  ran(is_nested) ∧
  caaction_state(caa) = caa_exceptional ∧
  ∀ pacaa.(pacaa ∈  particip_caaction(caa)

  ⇒  last(participant_state(pacaa)) ∈  EXCEPTIONAL_STATE )
    THEN

  LET  epar  BE
 epar = particip_caaction(caa)

  IN
                             /* all external objects are aborted */

 terminate_transaction(caaction_ext_objects[{ caa}], abort_val) ||
 caaction := caaction - {caa} ||
 caaction_state := {caa}  caaction_state  ||

                             /* remove last state and set to exceptional */
 remove_composed_participants_exceptional(epar,pa) ||
 caaction_particip := epar  caaction_particip ||
 particip_caaction := {caa}  particip_caaction ||
 caaction_ext_objects := {caa}  caaction_ext_objects ||
 is_composed := is_composed - {pa a caa} 

  END



                                       Further Results on Architectures and Dependability Mechanisms

Dependable Systems of Systems  91

    END
END

A.3. Proofs

The tool has generated 837 proof obligations (416 are obvious and 421 non-obvious).
Approximately 58% of the 421 non-obvious obligations are proved automatically. The
remaining obligations should be proved interactively. The main reason that all the obligations
have not been proved automatically is the fact that we have not written operations and invariants
according to the capabilities of the tool. Especially the tool provides very poor results in case of
using sequences that we have used a lot in order to have a less complex syntax. On the other
hand, due to time limitations we have not started interactive proofs which require writing special
lemmas, moreover that on each change to the abstract machine operations, variables or
invariants, most of them should be rewritten and/or reproved.

A.4. Discussion

The model is built under an assumption that there is an underlying nested support that
guarantees the transactional behaviour of the external objects. For each nested CA action calling
an external object the support starts a nested transaction on the external object and commits or
aborts it on action termination. If the containing CA action aborts after the nested one commits,
the support ensures that all nested operations are aborted.

A participant that makes a call to create a composite action enters a waiting state: it neither
accepts any message from other participants nor it can be part of a nested action until the
composed action is terminated. It restores its state to "normal" or "exceptional" according to the
composite CA action outcome. If the composite CA action returns an exception or is aborted or
the operation timeouts, the participant raises an internal exception which is either handled locally
or when it is not possible, is propagated to all participants and the participant enters the
"exceptional" state. External objects accessed by the composite CA action, or recursively, by
other composite CA actions invoked by it, are unknown to the participant of the main containing
CA action, as well the possibility that other CA actions may have accessed to them.

We have addressed the formal specification of Coordinated Atomic Actions enriched with the
notion of composite actions. We are now working on the formalization of Web Service
Composition Actions introduced in Chapter 2 based on this experience.

References

[Abrial 1996] J. R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge
University Press. 1996.

[Atelier B] Atelier B. Clearsy (France) http://www.atelierb.societe.com/index_uk.html

[B-Core] The B-Tool. B-Core (UK) http://www.b-core.com/btool.html

[Xu et al. 1995] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J. Stroud and Z. Wu.
“Fault Tolerance in Concurrent Object-Oriented Software through Coordinated Error



Formalisation of CA Actions in B

92 Deliverable PCE1

Recovery” in Proc. the 25th International Symposium on Fault Tolerant Computing (FTCS-
25), Pasadena, California, pp.499 – 509, 1995.



Appendix A

Dependable Systems of Systems 93


