List of Authors

List of Authors

JEAN ArAL.... ... LAAS-CNRS, Toulouse, F
Jean-Charles Fabre........oooovuiiii i L AAS-CNRS, Toulouse, F
Valerie ISSAIMYcooie e INRIA, Rocquencourt, F
Cliff JONES ...t University of Newcastle upon Tyne, UK
NICOIE LEVY....ceeeiiiteiee e s ettt e s e e e e e e e e e e e e e e eeeeeaaannnes INRIA, Rocquencourt, F
oY F= VYo (=Y o 1R LAAS:-CNRS, Toulouse, F
Panos Periorellis............cccoovvvivieiveee University of Newcastle upon Tyne, UK
Manuel ROAINQUEZ.........cooee e LAAS:-CNRS, Toulouse, F
Alexander Romanovsky...............ccvvveiiiiiiiineeeennnn) University of Newcastle upon Tyne, UK
Ferda Tartanoglu............uueeeeiiiiie e INRLA, Rocquencourt, F
lan WelCh............oor e, University of Newcastle upon Tyne, UK

Dependable Systems of Systems 3

uRher Results on Architectures and Dependability Mechanisms

Table of Contents

LISt OF AULNOIS ... ettt e e e e e e e an 3
0o [0 [i o] o P PP EPPPPPPR 9
Chapter 1 - Dependable Composition of Web ServiCes ... 11
1.1, INEOAUCTION. ..cciii ettt e e e e e e e e eeaeaeeas 1. 1
2 =7 Tod (o | o 10| o PP 12
1.2.1. Specifying the Composition of Web ServiCes..........ccoovvvviiiiiiiiiiininiiniiniininnnns 12
1.2.2. Transactions for the Dependable Composition of Web Services...................... 15
1.3. Web Service COmMPOSItioN ACHONS.cccoeeeeeeieiieeeeeeiiirsee s e e e e e e 16

1.4. WSCAL for the Abstract Specification of Dependable Web Services Composition 19

O o S VLV 0 Y PP PPPPPPRPPPRP 20
1.4.2. EXAMPIG ..t a e e e e e e e eearranane 27
1.5. Execution of WSCA-DASed SEIVICES.........ccccuuiiiiiiiiieeeeeeeiii e 30

1.5.1. Base Runtime Support for Web ServiCes...........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivieeiennns 30

1.5.2. Generating Web Services from WSCAL specification.........cccccceeeeeeeeeeeeiienenn, 31

1.5.3. Java-based Runtime Support fOr WSCAS........cceiiiiiiiiiiiiiiiiiiiiiiiiiiinieniniennnnnnnnns 32
1.6, CONCIUSION ittt e e e e e e e e e e e e s s s r e e e eeaee s 32

Chapter 2 - Structured Handling of On-Line Interface Upgrades in Integrating Dependable

R0 1 7 34
2.1. INETOAUCTION. ..o 4. 3
P V21 (=Y T 1Y/ o T = 37
2.3, TRE AMEBWOIK e e eaans 37
2.3.1. Structured FAUIt TOIEIANCE.o 37
G I 1 1 (o | gl B 1< (=Y o1 1[0 4 WU TR 38
2.3.3. EITOr RECOVEIY ... 38
2.3.3.1. Different HANAIGIS ... e 38
2.3.3.2. Multilevel Handling............coeuuuiiumiiiiiiieee e e e e 39
2.4. Representing MEANINGcooeiiiiiei et a e e e e e e e e e 40
2.5. Java RMI IMPIEMENTAtION........cccoeeeeeeieieeeeeeeeee e e e e e e e e 41
2.6, REIAIE WOTK ..o e e 43

Dependable Systems of Systems 5

Table of Contents

2.7. ConClUdING REMAIKS.......uuuiiiiiiiee e e e e e e e e e e aaaaaaes 44
Chapter 3 - From Error Detection t0 RECOVErY WIAPPEIScvvviiiiiiiiiiiiiiiiiieeeeeeaee e 45
G 70 A 11 (o To [0 T3 1o o ... 4
3.2. Wrapping Framework for Fault TOlerancCe ... 47
3.3, The RECOVEINY ACHONS......cceiiiiieiiieiee e e e e e e e ettt s e e e e e e e e e e e e e e eeeeeaeansn e as 49
3.4. Application to Real-Time Microkernel Based Systems..............cccccceeeieeeevennnnnnn. 50
3.4.1. EXample Of @ WIapPerttt 50
3.4.2. Example of Implementation of Recovery ACtiQnS................ueveeiiiiniinneeeennnnn. 51
3.4.3. ReflectiveReal-Time MICroKernel............cccuuuuiiiiiiiiiiiiiiieee e 52
3.4.4. Wapper Execution while the Microkernel Behaves Correctly.................. 54
3.4.5. Wrapper Execution when an Error Impacts the Microkernel............cccccvvveee.... 56
I T OF- 110 11 o | PR 58
3.5.1. Assessment by Fault INJECHION............uuuiiiiiriiii e 58
3.5.1.1. Assessment when the Kernel is not Wrappedeeeveevveivieiniiinninninnn. 59
3.5.1.2. Assessment when the Kernel is Wrapped for Error Detection.................. 60
3.5.1.3. Assessment when the Kernel is Wrapped for Error Detection and Error
Recovery 62
3.5.2. Integration of Wrappers into a Real-Time Systemcccoociiiiiiinn, 63
3.5.2.1. Integration of Wrappers into the Schedulability Test........cccccvveeveeeeeeeenn. 63
3.5.2.2. Integration of Error Detection ONIYcccciiiiiiiiiiiiiiiiiiiiiieiieieiineens 64
3.5.2.3. Integration of Error Detection and Error ReCOVErY........ccccevveeeeeeeeennn.. 66
G T T B £ ox U 11 o] o [OOSR PPPPTPPRTRR 67
3.6.1. GENETAl DISCUSSIONeiiiiiiiiiiieee ettt e e e e e e e e e e eeeeaeeeas 67
3.6.2. Wrapping the Interface between the Application and the Middleware...... 67

3.6.3. Wrapping the Interface between the Middleware and the Operating Sysé&m
3.6.4. Wrapping the Interface between the Middleware and Remote Qhjects... 69

T @ [11151 o o 70
RETEIENCES. ...t e e et e e e e e et e e e e e araas 71......

Chapter 1 - Dependable Composition of Web Servicesccoocvvvvviiiiii, 71

Chapter 2 — Structured Handling of On-Line Interface Upgrades in Integrating Dependable

SO S S ittt et e et e ettt e s —nn—ns 73

Chapter 3 — From Error Detection t0 Recovery WrapPersScuuuuueeeeeeeeeeieeeeeeieeaaaaaaaaaeaens 75
Appendix A. Formalisation of Coordinated Atomic ACtionsS INB........cccooeveviiiiiiiiiiiiiieniinns 77

A.l. The B Formal Method..........cooi i 77

6 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

y N o To [(] o T @ N i To] SR 77

AL, PTOOTS e 91
AL, DISCUSSION ...eiiieiiiiiiee et e ettt e et et e e e et e et e e e e e b e e e e e e s e e e e e e e e a s n e e e e e e 91
RETEIBINCES. ...ttt et e e e e e e e e e e e e e e e ee e 91

Dependable Systems of Systems 7

uRher Results on Architectures and Dependability Mechanisms

Further Results on Architectures and
Dependability Mechanisms for Dependable
S0Ss

Jean Arlat Jean-Charles Fabr&/alérie Issarny Cliff Jones, Nicole Levy, Eric
Marsden, Panos PeriorelfisManuel Rodriguez Alexander RomanovsRyFerda
Tartanogld, lan Welch

'LAAS-CNRS (Toulouse, FfINRIA (Rocquencourt, FYUniversity of
Newcastle upon Tyne (UK)

Introduction

This document reporteecentresults of workpackage on architecture adesignrelated to
architecture descriptions and designdefpendability mechanisnfer dependablesystems of
systems (So0Ss), and to systems of systemgratien. These results contribute further in the
achieving the ultimatevork packageaim of delivering thelefinition of an environmeribr the
construction of dependable SoSs out of autonomous heterogeneous systeerzeaddbility
mechanisms assisting in building such systems.

The deliverable extends further mechanisms and techniques presented indeliggreible 1C2
on Initial Results on Architectureand Dependability Mechanisms for Dependabl8oSs

Development of the Conceptudiodel (cf deliverablelC1: Revisedversion ofthe Conceptual
Mode) has had a strongfluence on the advances in work packageSm$ architecture and
design which are reported here.

The document is organised irttree chapters and an Appendix. These chapters may be read
independently, andorrespondingdibliographical references agiven separately at the end of

the repot. The first chapterproposes a structureapproach to integrating complex Web
applications that are built using existing Web services as the com@yséens.The next part

of the deliverableputs forward a general frameworfor dealingwith ondine upgrades of
componentsystems athe level of linking interfaces(LIFs). Thelast chapter introduces an
approach to detecting component system errors at the level of LIFs and to recoveritngrafter
and demonstrates this approach usimgadtime microkernel as a componsgstem. A brief
overview of the chapter contents is as follows:

» Dependable Composition ofWeb Services: This chapter introduces Projewtork
towards supporting the development of dependable SoSs in the contexVééhi&ervice
Architecture. Our approach primarily lies in developingVSCAL (Web Service
Composition Action Language) — an XML-based languagehe abstract specification of
the dependable composition bfeb Services, whictbuilds uponthe CA Actions concept

Dependable Systems of Systems 9

Introduction

for enforcing dpendability. We further introduce base designuddiewaresupport for
the automatic generation of composite Web Senfices their WSCAL specification. An
Internet Travel Agency is used as a case study to demonstrate the approach proposed.

Structured Handling of On-Line Interface Upgrades in Dependable SoSdhere are
many practicakituations inwhich the interfaces of the componeysstemsare changed
dynamically andwvithout notification. Inthis chapter weropose arapproach to handling
suchonline upgrades in a structured and disciplined fashilh.interface changes are
viewed asabnormal eventand general fault tolerance mechanisms (exception handling, in
particular) are applied to dealimgth them. The chapter outlines general waysletecting
such interface upgrades aretovering after them. An Internétavel Agency isused as a
case study throughout the chapter.

From error detection to recovery wrappers this chapter discusses the notion of recovery
action and how iffits within the framework developed in the previous work emor
detection wrapping. In particular, diemonstrates how the wrapping framewprkposed
can be applied to real-time microkerbased systems. Tloasestudy discussed is based
on a real-time applicatiorunning on a COT3eal-time microkernel. The chapteresents
some ofthe results derived from the fault injection experiments and concludeigh a
discussion othe notion of wrapping within a CORBAystem according texperimental
results.

Appendix A reportsrecent Project work on B formalisation of CA actions andthair
composition. This workgives aprecise definition of CA actions and allovisr rigorous
reasoning about dependable behavior of SoSs integrated using this structuring paradigm.

10

Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Chapter 1 - Dependable Composition of Web Services

Ferda Tartanoglu, Valérie Issarny, Nicole Levy (INRIA), Alexander Romanovsky
(University of Newcastle)

1.1. Introduction

Systems that build upon the Web Service architeetuseexpected to become a majlass of
wide-areaSoSs inthe near future due to the architectstgport forintegrating applications
over the Web, which makes it particularly attractive for the development of multifpestyess
processes. Morespecifically, the Web Service architecturegtts the development of
applications based othe XML standard [W3C-XML], hence easintpe development of
distributedsystems byenabling the dynamic integration of applications distributedr the
Internet, independently of their unfeng platforms. Currentlythe main constituents of the
Web Service architecture are as following:

() WSDL (Web Services Description Language) that is a language basédLlofor
describing the interfaces of Web Services [W3C-WSDL].

(i) WSCL (Web @rvices Conversation Language) that is a langdiegspecifying
business-level conversations supported by Web Services [W3C-WSCL].

(i) SOAP (Simple Object Access Protocdhat defines a lightweighprotocol for
information exchange [W3C-SOAP]; SOAP sets the rules of how to emntztden
XML, and also includes conventiofer patly prescribingthe invocation semantics
(either synchronous or asynchronous) as well as the SOAP mapping to HTTP.

The Web Service architecture isrther conveniently complemented byDDI (Universal
Description, Discovery and Integration) that allows specification regestry for dyamically
locating and advertising Web Services [UDDI].

There already exist various platforms that are complmtit the Web Service architecture,
including .NET[MS-NET] and J2EHSUN-J2EE]. Inaddition, integration within CORBA is
being addressed [OMG-WS]. Even though the Web Service architecture isegeité and not
fully mature, it is anticipated thatwiill play a prominent role in the development of the next
generation distributedystemsamainly due to thestrong support from industry antle huge
effort in this areaHowever,there clearly is mumber of research challenges in supporting the
thoroughdevelopment ofistributedsystems based on WebBervices.One suchchallenge
relates to the effective usage of Web Services in develdpisigess processeshich requires
support for composing WeSBervices in avay thatguarantees dependability of the resulting
composed services. This cafisr developing new architecturgrinciples of buildingsuch
composed systems, igeneral,and for studyingspecialized connectorglueing” Web
Services, in particular, so that thesulting composition cadeal withfailures occurring at the

1 http://www.w3.0rg/2002/ws

Dependable Systems of Systems 11

Dependable Composition of Web Services

level of the individual serviceomponents by kEwing co-operative failuréandling at thdevel
of the composed systems.

Solutions that are being investigated towardsatb@/egoal subdivide into: (i) the definition of
XML-based languages fahe specification of Web Services composition, andré¥jsiting
classical transactiongupport so as toopewith the specifics of Web Services (e.grossing
administrative domains, Web latency), i.e., defining connecfitesing transactional properties
over the Internet. Section 1.2 gives an overview of exisotgtions tothe two aforementioned
issues, an@dssesses themith respect to WelBervicecomposition and its dependability. In
particular, it is emphasized thatile thetransaction conceptffers a powerfulabstraction to
deal with theoccurrence of failures in closed systems, it imposesstamg constraints over
component systems in an open environment such a&/éffie The mairconstraint imposed by
transactions relates to muorting backward error recovery that, firstly, quares isolating
componensystems fothe duration of the embeddédested) transaction iwhich they get
involved and hence contradicts the intrinsic autonomy of B&lices, andsecondly, relies on
returning theservice statéback, which is not applicable in many real-lééuationswhich
involve documents, goods, money as well as humans (clients, operators, managers, etc.).

In the light of theabove,this chapteputsforward a solution based on forward errecovery,
which enables dealing with dependability of composed Web Servicebaanubimpact on the
autonomy of theindividual Web Services, whileexploiting their possible support for
dependability (e.g., transactisupport athe level of each service)Our solution, presented in
Section 1.3, lies in system structuring in term&@bperative actions thatve awell-defined
behavior,both inthe absence and in the presencesevicefailures. More specifically, we
define the notion of Web Servic€omposition Action (WSCA) that builds upon the
CoordinatedAtomic Action concept developed at the University Méwcastle, which allows
structuring composite Web Services in terms of dependable actions. Séctiarsl 1.5hen
introduce a framework enabling the development of composite Web Services based on WSCAs,
subdividing into an XML-based languader the specification ofWSCAs and a platform
supporting the execution of WSCAs. Finally, Section 1.6 discusses our current anavbrture
aimed at enhancing the Web Service architecture with respect to dependability.

1.2. Background

Offering solutions tdhe dependable composition of Web Servicastriggered a number of
research projectsever thelast couple of yeardOngoing effortmay be subdivided into two
complementary lines of work: (ipffering languages fothe abstract specification of Web
Services and their composition so as to supiperthoroughdesign, analysis and construction
of composite Welservices(ii) offering transactionasupport for compate Web Services so
as to enforce well-definepropertiesover composed Welservices in the presence of failures.
The two following sections give an overview of proposed solutions in the two above areas.

1.2.1. Specifying the Composition of Web Services

Composing Welservices relates to dealingth the assembly of autonomous components so
as to deliver a new service out of t@mponentsprimitive services, given theorresponding
published interfaces. In the current Web Service architecture, interfaces are desdnsdLin

12 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

and published througblDDI. However, sipporting composition requires further addressing:

() the specification of the composition, and éinsuring thathe services areomposed in a

way that guarantees the consistency of bothritieidual servicesand theoverall composition.

This callsfor the abstract specification of Web Services and of their compositioralkats
reasoning abouhe correctness of interactionsith individual Web Services, which requires
adhering to the interaction patterns assumed by\ble Service’amplementation. In addition,

the specification of Web Services should allow for automating as much as ptssdtelysis

of specification as well athe implementation of serviagomposition in mosenvironments,
including providingsupport forenhanced servicdelivery interms of offered non-functional
properties. mally, it should be possible to reuse composedrices in diverse environments,

and in particular to dynamically select the component Web Services according to the specific
environment in which @aomposedservice is invokedThis putsforward the needor a high-

level specification language of Web Services that is solely based on the components of the Web
Service architecturandthat is as much gsossibledeclarative Defining a language based on
XML then appears as the base design choice for specifying the composition of Web Services.

A first requirementfor the XML-based specification of Web Services is to enforce correct
interaction patterns among servicéhis lies inthe specification of the conversations that are
assumed by the Web Service’s implementatiortferactual delivery of advertised services. In
other words, the specification of any Wé&lrvicemust definethe observable behavior of a
service and the rules for interacting with the service in the form of exchamggshges. Such a
facility is supported by a number of XML-based languages: WSCL from W3C [W3C-WSCL],
WSFL [WSFL], Microsoft's XLANG [XLANG], and WebService Choreographyinterface
(WSCI) [WSCI]. While WSCL isthe currentW3C standard for specifying conversations
associatedwvith Web Services in the context of the Web Services architecture, the other
languages mainly diffefrom WSCL by offering additional capabilities for specifying a
sequence of actions over services in a way similar to a workflow schema in the case of WSFL,
and for specifyinghe external behavior of serviceg#h respect to failure occurrences in the
case of XLANG and WSCI, as further addressed in the next section.

Given the specification of conversatiomssociatedwith individual Web Services, the
composition (also referred to as integration or aggregation) of Web Services may be specified
as a graph (or processhema)ver theset of Web Services, where the interactions with any

one of them must conform to the conversations assocatiedhem. The specification afuch

a graphmay then be: (jautomaticallyinferred fromthe specification of individual services as
addressed in [Narayanan &vlllraith 2002], (ii) distributedover the specification of the
component Web Services as in the XL languader@scuet al 2002], or (iii) begiven
separately as undertaken in [, [BPML], [Casatiet al. 2001], [Fauvetet al. 2001], and

[Yang & Papazoglou 2002T he first approach igjuite attractive butrestricts the composition
patterns that may be applied, and cannot thus be applied in generaécbne approach is the
mostgeneralintroducing an XML-based programming languabewever,this makesmore
complex thereuse of composed WeServices in various environments sintés requires
retrieving the specification of all the component Web Serjices to deploythe composed
service in a given environment. On the othand, the lashpproachsupportsquite directly the
dynamic deployment of a compossgetvicefrom its specification bylearly distinguishing the
specification of component Web Services (comprising primitive components that are considered
as block-box components and/or inner composite components) trenspecification of

Dependable Systems of Systems 13

Dependable Composition of Web Services

composition. Then, bproviding an XML-based languader specifyingthe composition of
Web Services, the provided specification can serve automating the actual cemvesition at
run-time, includingsupport forthe dynamic selection of component serviteough the
exploitation of UDDI. Execution of the composed service may theredlzed by a centralized
service provider orthrough peer-to-peer interactiorfiBenatallah et al. 2002]. The latter
approach that is in particular supported by the Self-Serv platform [FeiLaleR001] is a priori
more scalable due to its decentralized natitewever, this requires installing specific
components on thsites hostinghe participating component Web Services, wigahnot be
enforced in general. laddition, scalability issues in the case of centralized execution of the
composite service provider raise only if the number of composed services is quitetoghis
not expected to be the common case. Centralized execution obrtisedservicefurther
raisesavailability problem, which is not much @ncern since it can be quite eassigived
through replication of the service provider.

In the light of theabove,the development o€omposed WelServices can adequately be
supported through the provision of:

* An XML-baseddeclarativelanguagefor the abstract specification of component Web
Services,including the definition ofboth the service’s interfaces anthe observable
behavior of the service in tHerm of message exchanges. Sudhrguage is already
offered by the Web Service architecture through WSDL and WSCL.

* An XML-based languagéor specifyingthe composition processyhich defines the
graph of interactions amonyeb Services. A specified compositigmocess needs not
fix the instances of component Web Services that antally composed upon
invocation of the embedding service. They may be dynamically selected at runtime
according to the specific invocatioanvironment, exploiting in particular UDDI
functionalities. The actual implementation of the sendomposition may further be
decoupled fromthe specification of the composition proce$saving under the
responsibility ofthe developer to check th&is implementation conforms to the
service's specificationAlternatively, the implementation may be generatedm the
specification. The lattespproach is thenost promising although raisiripe challenge
of defining an XML composition language that is powerehough to meet
requirements of most composgervices, whilebeing abstract enoudior supporting
thorough analysis.

* Tools for automatically checking theonsistency of Web Services compositiaith
respect to the specification of component services. Static cheskimgd here be
promoted as much as possible. In ttostext, thecorrectness of a composedrvice
with respect to th&VSCL specification of its component services mayaoelressed
throughmodel checkingHowever, consistency checking at runtime is stibcessary
when selecting dynamically the component services instaites. further calls for
advertising Web Servicesith their WSCL specification inaddition to theWSDL
specification, so as to implement thensistency chec#luringthe selection obervice
instances instead of deferring it during the invocation of services as addrefisedan
et al.2001].

14 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

In addition to theaboverequirements, the composition of Web Serviomsst promote the
dependability of resulting Web Services. Existing work in #rea primarily relies on
transactional support as discussed in the next section.

1.2.2. Transactions for the Dependable Composition of Web Services

Transactionshave been provensuccessful in enforcinglependability in closed distributed
systems. The base transactionabdel that is themost usedguarantees ACID(atomicity,
consistency, isolation, durabilityropertiesover computations. Enforcing ACID properties
typically requires introducing protocols for: (i) locking resour@es, two-phase lockingjhat
are accessed for the duration of the embedding transaction, and (ii) committing tran§aetions
two or threephasesvalidation protocols).However,such amodel is not suitedor making the
composition of Web Services transactional for at least two reasons:

 The management of transactions that are distribotext Web Services requires
cooperation among the transactional support of individual Web Servicasy-ifwhich
may not be compliant with eaather and may not beilling to do so given their
intrinsic autonomy and the fact that they span different administrative domains.

* Locking accessed resourcgg., the Web Service itself in tleost general casentil
the termination of the embedding transaction is not applicable toS#eices, still due
to their autonomy, an@lso the fact that they potentialljave alarge number of
concurrent clients that will not stand extensive delays.

Enhanced transactional models may dmnsidered toalleviate the latter shortcoming. In
particular, the split model (also referred to as open-nested transauvtf@isfransactions may
split into a number of concurrent sub-transactions taat commitindependently allows
reducing the latency due to lockinfypically, sub-transactionare matched to the transactions
already supported by Web Services (e.g., transactional booking offeregebyicg)and hence
transactions over composed services do not alter the datmss/ affered bythe individual
services. Enforcing the atomicity property over a transaction that has been split into a number of
sub-transactions then requires using compensatien committedsub-transactions ithe case

of sub-transaction abortiorlJsing compensation comes alongith the specification of
compensating operations supported by Web Servicedlftire operations thegffer. Such an
issue is in particular addressed by XLANG [XLANG] awtsSCI [WSCI]. However, itshould

be further accounted that using compensdtioraborting distributed transactions must extend
to all theparticipating Web Services (i.eascading compensation by analoggh cascading
abort), which is noaddressed byXLANG nor WSCI due to theirffocus onthe behavioral
specification of individual Web Servicdsr assistingtheir composition. An approactinat
accountsfor the specification of the transactional behaviour Vdéb Servicesfrom the
standpoint of thelient in addition to theone of theservice isproposed in [Mikalseret al.
2002]. This reference introduces a middleware whose API may be exploited by WelesServ
clients for specifying andxecuting a (open-nested) transactmrer aset of Web Services
whose termination is dictated by tbhatcomes of the transactional operations invoked on the
individual services.

The aforementioned references concentrate on the specification of the transactional behaviour of
Web Services. Complementary work is undertaken in the area of transpotitotols

Dependable Systems of Systems 15

Dependable Composition of Web Services

supportingthe deployment of transactionser theWeb, while notimposing long-lived locks

over Webresources. Existing solutions includielP (TransactiorHold Protocol) from W3C
[W3C-THP] and BTP fromOASIS [OASIS-BTP]. Theformer introduces the notion of
tentative locks over Web resources, which may be shared among a set of clients. A tentative lock
is theninvalidated if theassociated Web resource gets acquired.BF protocol introduces

the notion of cohesion, which allowdefining non-ACID transactions by not requiring
successful termination of all the transaction’s actions for committing.

Developing transactional support for dependable Web Services is an active mseacftthat

is still in its infancy. From oupoint of view, solutions tothe dependable composition of Web
Services thatiseprimarily transactions do not copéth all the specifics of Web Services. A
major source of pealty lies in theuse ofbackward error recovery in apen system such as
the Internet, which is mainly oriented towards tolerating hardware faults but poorly suited to the
deployment of cooperation-based mechanisues autonomous componesystems thabften
require cooperative application-level exceptidmndling among componergystems. An
alternative theries in relying on the existingupport of WebServicesfor managinginternal
concurrencycontrol, possiblyincluding transactional support, so as to guarantee keeping the
consistency of services, while relying on forward error recol@rgnsuringthe dependability

of service comegsition. The next section introduces suckoaution, whichbuilds upon the
concept of Coordinated Atomic (CA) Actions [Xétial. 1995].

1.3. WebService Composition Actions

The CA Actions [Xuet al. 1995] are astructuring mechanism fodeveloping dependable
concurrent systems throughthe generalization of the concepts afomic adbns and
transactions. Basically, atomic actions are used for controlling cooperative concurrency among a
set of participatingporocesses and forealizing coordinated forward rer recovery using
exception handling, and transactions ased formaintaining the coherency sharedexternal
resourceghat are competitivelaccessed by concurrent actions (either CA Actions or not).
Then, a CA Action realizes an atomic state transition where:

1. The initial state is defined by theitial stateS,, of the participanprocesse®i and the
statesS;; of the external resourc&j at the time they were accessed by the CA Action.

2. The final state is defined by the state of the participamteessesS,’) at theaction’s
termination (eitherstandard or exceptional) aride state of the accessed external
resources &, in the case of eithestandardtermination or exceptional termination
without abortiong,in the case of exceptional termination with abortion).

CA Action naturally fits the specification of operations provided by composite Web Services:

» A participant(process) specifies imactionswith eachcomposed Welservice,stating
the role of the specifitVeb Service in thecomposition. Inparticular, the participant
specifies actions to be undertakehen the Web Servicsignals anexception, which
may be either handled locally to the participant or be propagated tevéheof the
embedding CA Action. Thdatter thenleads to co-operative exception handling
according to the exceptional specification of the CA Action.

16 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

» Each Webservice isviewed anexternalresource However,unlike the base CAction
model, inteactions do nothave to be trasactional. The interactions adhere to the
semantics of the WeBervice operations that are invoked. An interaction may then be
transactional if the giveaperation that isalledis. However,transactions do not span
multiple interactions.

* The standard specification tife CA Action gives the expected behavior of g¢fien
operation of thecomposed Welservice in either thebsence of failures or in the
presence of failureshat are locally handled.e., either system-levetxceptions or
programmed exceptions signaled by Web Services operations that do not need to be
cooperatively handled at the CA Action level).

* The exceptional specification of the CA Action states the behavior gitbe operation
of the composed WelServiceunderthe occurrence of failure at one or more of the
participants, that need cooperative excephiandling. The resulting forwardecovery
may then realize a relaxed form of atomicity (i.e., even when individual operations of the
Web service are transactional, its intermediate states may be accessed by external actions
between such operations executed withgivan action) whenWeb Services der both
transactional and compensating operations (toused in cooperativehandling of
exceptions).

The above application of CActions to the context of Web Services composition, leads us to
introduce the concept aVSCA (Web Service Composition Action) WSCAs mainly differ
from CA Actions in relaxing the transactional requiremenier externalresourcegwhich are

not suitablefor wide-areaopen systems) anthe introduction of dynamimesting of CA
Actions (i.e., nested calls 8/ SCASs). The interested reader is referred to AppendifoiAthe
formal specification of CA Actions extendeslith dynamic nesting (referred asaction
composition” in Appendix A), while it is part of our future work to provide a formal
specification of WSCAs. We further do not exploit static nesting ofAC#ons, which may be
realized through dynamic nesting given the relaxed form of atomicity of WSCAs.

In order toillustrate theuse of WSCAs for specifyinthe composition of Welservices, we
take theTravel Agentcasestudy. We considejoint booking of accommodation and flights
using respective hotel araitline Web ServicesThen, thecomposed Web Service’s operation
is specifiedusing WSCAs a$ollows. Thetop-level WSCA TravelAgentcomprisesthe User
and theTravel participants; the former serves interactmith the userwhile the latter achieves
joint booking according tdhe user’s requesthroughcall to theWSCA that composes the
Airline and theHotel participants. A diagrammatic specification of tM/SCAs is shown in
Figure 1.

2 Note that these participants are not necessarily bound togaeuviieb servicehey may interact with
various Web services satisfying the target interface, which may be located through UDDI.

Dependable Systems of Systems 17

Dependable Composition of Web Services

TravelAgent WSCA
User
book
Travel
A
JointBooking WSCA
Flight
A A
Hotel Y
Retry
Airline WS vy 4 alternate
reservation book cancel
Hotel WS A 4 \ 4
reservation reservation

Figure 1 WSCA for composing Web Services

In TravelAgenttheUser participant requests tHeavel participant to book a returicket and a

hotel roomfor the duration of thgjivenstay. This leadshe Travel participant to invoke the
JointBookingWSCA that composethie Hotel Web Serviceand theAirline Web Service. The
participants of thelointBookingWSCA respectivelyrequests for dotel room and a return

ticket, given the departure and return dates provided by the user. Each request is subdivided into
reservatiorfor the givenperiod and subsequent bookingthie reservatiorsucceeds In the

case where either the reservation or ltbeking fails, the participantaisesthe unavailable
exception that is cooperatively handled atléwel of the JointBookingfWSCA dermted by the

greyed box inthe figure. If both participants signéthe unavailable exception, therTravel

3 Such a workflow pocess is certainly not the most common since the user gerieral equested for
confirmation prior to bookingHowever, this scenario thatpplies most certainly to in-hurry-not-
bother users enables concise illustration of the various recovery schemes that are supported.

18 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

signals theabort exception so thahe exceptiorgets handled byravelAgentin a cooperation
with the User (e.g., by choosing analternative date). If only oneparticipant raises the
unavailable exception, cooperative exceptidrandling includes arattempt by the other
participant tofind an alternativebooking. If this retryfails, thebooking that hasucceeded is
cancelled and the abort exception is signaled toc#tisng TravelAgentWSCA for recovery

with user intervention.

Compared to theolutionsthat introduce transactionaupports for composed WeRervices,
ours mainly differs in that it exploits forward error recovery at the composition levelellaas
transactional supports offered by individual Web Servicesavailable. Hence, thenderlying
protocol for interaction among Web Services remains the one of theSéfeioe Architecture
(i.e., SOAP) and does noheed to be complementedth a distributed transaction protocol.
Similarly to our solution, the one of [Mikalsemhal. 2002] does not require any new protocol to
supportdistributed open-nested transactions. An open-nested transaction is declared on the
client side by grouping transactionstbé individualWeb Servicesthroughcall to a dedicated
function of themiddlewarerunning onthe client. The transaction thegets aborted by the
middleware using compensation operations offered Iblye Web Servicesaccording to
conditions set by the client over the outcomes ofgtieeiped transactionQur solution isthen
more general since wadlow for the specification of forward error recovery at the composition
level, enabling inparticular to integrate non-transactional Web Serwgete sill enforcing
dependability at the compositidevel. The next section further introduces WECAL XML-
based language for the specification of composite Web Services based on W&CAs]low
generating corresponding implementation of dependable compositeSEabes, asliscussed

in Section 1.5.

1.4. WSCAL for the Abstract Specification of Dependable Web &vices
Composition

From the WSCA definition given in theprevious section, the specification oM&SCA-based
composite Web Service subdivides into the specification of:

* The abstract interface of the composite Web Service, whiglves interms ofWSDL
and WSCL specification, as for any Web Service.

* Participants binding tahe composed Web Services. The Wd&ervice instance
associated to given participant may be either staticalbet or dynamicallyretrieved
according to the service’s abstract specificatioraddition,for the sake otvailability,
we allow a patrticipant to beound to a set of WeBerviceinstances implementing the
service’s specificationAny composed WelService is characterized bgssociated
WSDL and WSCLdocuments, where th& SDL document includes concrete binding
information only inthe case of statibinding. As raised inthe previous section,
transactional support ahdividual services is exploited wheawvailable. Theabstract
interface of any Web Servicetisus furthercharacterized by thservice’s transactional
behavior, in a way similar to existing solutions in the area (¢Mikalsen et al. 2002],
[WSCI)).

Dependable Systems of Systems 19

Dependable Composition of Web Services

» WSCAs defining the operations provided by the composite Web Service. The definition

of a WSCA specifies thestandard andexceptional behavior of thaVSCA's
participants, including cooperative exception handling.

* The exception resolution tree that serves resolving the exceptions that are concurrently

raisedwithin WSCAs into a single exception, asipported by CAActions [Xu et al.
1995].

The following section define8WSCAL (WSCA Language) that is thEML-based language
that is introducedor the specification oW WSCA-based composite WeBervices. It is then
followed by an example of composkervice specification, still in the context of theavel
Agent case study.

1.4.1. WSCAL

The following XML schema defined/SCAL4, introducing the embedded XML elemelfits.,
Ws for the abstract definition of service interfacasd WsC for the abstract specification of
composite services) where the readeragssumed to bdamiliar with the XML schema
languagé

<xsd: schena xsd:id=""wscal’
xm ns: xsd=""http://ww. w3. or g/ 2001/ XM_Schera”
xsd: t ar get Namespace=""http://www«rocq.inria.fr/arl es/ 2002/ WsCAL"
xsd: el ement FornDefaul t=""qualified ' >
<xsd: el ement name=""Definition'>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref=""Ws'' ninCccurs="0""'/>
<xsd: el ement ref=""WBC ' m nCccurs="0""'/>
</ xsd: sequence>
<xsd: attribute name=""name'' type= "xsd:string''/>
<xsd: attribute name=""target Namespace'' type= "xsd:anyUR"''/>
</ xsd: conpl exType>
</ xsd: el enent >

</xsd:séﬁéna>
Specifying service interfaces

The interface of a Web Service is characterized bynthesages exchangedth the Web
Service (as given by the associated WSDL document) and the protocol of interastiomed
by the servicdasgiven by theassociatedVSCL document). Theservice interface igurther
enrichedwith the characterization of theervice’'s transactionabehavior. More precisely,
interfaces of services are abstractly defined using the follow#iement.

4 Note that we omit the possible definition of comments.

5 http://www.w3.0rg/XML/Schema

20 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

<xsd: el enent nane=""W8 ' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane=""Interface'' type= " XM.Docunent Type''/>
<xsd: el enent nane=""Conversation'
type="" XM.Docunent Type'
mnCccurs=""0""'/>
<xsd: el enent ref=""Transactional'

m nCccurs=""0"" nmaxQccurs=""unbounded’’ />
</ xsd: sequence>
<xsd:attribute nane=""name'' type= "xsd:string'' use= "required '/>
</ xsd: conpl exType>
</ xsd: el erment >

<xsd: conpl exType name=""XM.Docunent Type'' >
<xsd:attribute name=""href Schema'' type="xsd:anyURl"''/>
</ xsd: conpl exType>

Wherethe embeddednt er f ace element gives th&JRI of the relatedWSDL dowment
(limited to the abstract pargnd theConver sati on element gives th&JRI of the related
WSCL document. The latter is optional although iadsisable to provide fior morerigorous
specification of services, allowing in particumforcing a consistent interaction protogoth
the serviceNote that the abstract definition of the interfaces of the Web Seopeeations
given in awSDL doament includes the exceptions that may be signalled by the operations
throughthewsdl : f aul t elemenfW3C-WSDL]. The optionalTr ansacti onal element
further serves specifyinthe transactional behaviour of the Web Service. firsa step, we
consider only support for open-nested transactions through compensation, which we view as the
most common in the context W¥eb Services. Tha@r ansacti onal elementhus defines a
transactional operatiorofer at i on attribute) whose execution can be compensated, together
with the corresponding compensentation operatioanfpensat e attribute),both operations
being defined in the WSDL document associated with the service:
<xsd: el enent nane=""Transactional''>
<xsd: conpl exType>

<xsd:attribute nane=""nane'' type= "xsd:string '/>

<xsd: attribute name=""operation'' type= "xsd:string '/>

<xsd: attribute name=""conpensate'' type= "xsd:string '/>

</ xsd: conpl exType>
</ xsd: el ement >

Note that we assume that executihg compensation operatibor an operation Op leads to
cancelling the effect of executing Gponsidering though thdlhe effect of executing Op may

have been externally observed before the compensate took place). We realise that this cannot be
assumed in general (e.g., cancelling booking may leadotsumer to pay penalty fees) and it

is part ofour futurework to extendNVSCAL for the precise specification of the transactional
behaviour of Web Services. However, we do not see this as a major issue in the light of existing
work in the area (see Section 1.2.2 for references).

Specifying composite services
The specification of a composite Web Service gives:

* The service’s interface through thiest ract element that refers to the corresponding
W5 element defined in the given WSCAL document.

Dependable Systems of Systems 21

Dependable Composition of Web Services

* The exception resolution tree defined by Hxeepti onTr ee element thatefers to
the corresponding XML document.

* The Web Services that are composed as defined IBathéci pant s element.

* The behavior of theupportedoperations, which are WCAs, as defined bthewsca
element.

We get the following definition for thesC element:

<xsd: el enent name=""WsC ' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane=""Abstract'' type= " XM.Docunent Type''/>
<xsd: el emrent nane=""ExceptionTree'' type= "XM.Docunent Type''/>
<xsd: el enent ref=""Participants’’ />
<xsd: el ement ref=""WSCA'' maxQccurs=""unbounded’ ' />
</ xsd: sequence>
<xsd:attribute nane=""name'' type= "xsd:string'' use= "required '/>
</ xsd: conpl exType>
</ xsd: el enent >

The definition of thePar ti ci pant s elementamounts to specifyinghe Web Servicethat
arecomposedEachsuch WebService isdefinedusingthe Parti ci pant elementand is
partly characterized by ttser vi ce element that refers to the WSCAL document defining the
corresponding/s element. In addition, each participant may be statitallynd to aspecific
service instancéas defined by theSt ati cPartici pant element)and/or dyamically
bound to an instance matching the abstract definition o$ehgce’sinterface that is given by
the correspondinger vi ce attribute (as defined by tlmynani cParti ci pant element). In
the formercase,concrete binding information is providgtirough the WSDL doawment
associatedwith the service’'s instancedi.e., | nst ance element), whichmust match the
definition of theservice’s abstradnterface (i.e., the abstraptarts ofthe respectivéVSDL
documents matchwhich is currentlydefined as syntactic matching). In tledter case, a
matching service instance is located at runtime using a location seunciceas a UDDEervice
instancé. Dynamic binding of participants with associated Web Servicestakayplace either
upon invocation of the service®SCAs or uporinstantiation of the composite Wéervice,
according to the value of th@cal | Boolean attribute of thgiven participant. Notice that in
the case of dynamibinding atcall-time and nested calls of W2G, the Web Service is
dynamically located onceiponthe invocation of théop-most WSCA that first involves the
corresponding participant. Finally, we allow each participant to be bound with a set of instances
matching the specification of associagmvice rather than angle instance fothe sake of
availability; this is specified using the nmultiple boolean attribute in the
Dynani cPartici pant elementand by stating as many instances as required in the

6 |deally, the location service must allow retrieving an instance that matches the WSCAL specification of
the service's interface (i.e., matching the WSDL, WSCL and transactional defindiahsjot just the
WSDL abstract part, requiring location services handling WSCAL and related documents. Alternatively,
base UDDI services may be used for locating Web Services matching the provided WSDL specification.
This issue is further discussed in Section 2.5.

22 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

StaticParticipant element. We get the following definitiofor the Partici pants
element:

<xsd: el enent name=""Participants''>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref=""Participant’’ maxQccurs=""unbounded '/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement nane=""Participant''>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane=""Service'' type= " XM.Docunent Type''/>
<xsd: el enent ref=""StaticParticipant’’
m nCccurs= "0’ maxCccur s= " unbounded’ '/ >
<xsd: el enent ref=""Dynam cParticipant’’
m nCccurs=""0"" />
</ xsd: sequence>
<xsd:attribute nane=""name'' type= "xsd:string'' use= "required '/>
</ xsd: conpl exType>
</ xsd: el erment >

<xsd: el enent nane=""StaticParticipant''>
<xsd: conpl exType>
<xsd:attribute nanme=""Instance'
type=""XM.Docunent Type' ' maxCccur s=" " unbounded’ ' / >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nane=""Dynami cPartici pant''>
<xsd: conpl exType>
<xsd:attribute nane=""onCall'' type= "xsd:boolean'' default= "true '/>
<xsd: attribute name=""nmul tiple'
type=""xsd: bool ean'' default=""false''/>
</ xsd: conpl exType>
</ xsd: el enent >

The definition of aWSCA specifies thébehavior of each ats participantswhich arebound

with paticipants of the composite service. TWSCA participant behaviour is defined as a
process, through clasal statements, in way similar to existing XML-based language for
specifying the composition of Web Services (see Section 1.2.1 for refereftuespecifics of
WSCAL comes from structuringhe operations provided by composite Web Services as
WSCASY that coordinate the execution of Web Services operatidifis respect to failure
occurrences, in particular introducing the specification of coordinated exception hakidineg.
precisely, the definition of thesCA elementembeds a sequence Bhrti ci pant WSCA
elements, each speygifig the behaviour of garticipant,and theoper ati on attribute that
gives the name of the operation of the embedding composite Web Service that is being specified
among the one given in the associatedefinition:

<xsd: el enent nanme=""WSCA ' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref=""Partici pant WsCA"’
maxQccur s=" " unbounded’ ' / >
</ xsd: sequence>
<xsd:attribute name=""name'' type= "xsd:string '/>

7 Note that a WSCA with one participant defines a classical process involving a single Web Service.

Dependable Systems of Systems 23

Dependable Composition of Web Services

<xsd:attribute nane=""operation'' type= "xsd:string '/>

</ xsd: conpl exType>

</ xsd: el enent >

The specification of any WSCA participant amounts to defining:

The participant of the embedding composite Web Service to whichMBEA
participant isbound throughhe bi nd attribute that gives the name of the participant
among those defined ithe Parti ci pants element of the ebeddingW5C element.

Note that the attribute is optional since a participant may actually be introduced for
processing results of nest®dSCAs asillustrated by theTravel participant of the
TravelAgenWSCA introduced in Section 1.3.

Parts ofthe messages associateth the WSCA thatare relevant to thepecific
participant, which is defined using theput , Qut put andrFaul t elements. The two
first elements aresubset ofthe correspondingelements within the definition of the
operation implemented by the WSCA thagiigen in theassociatedVSDL document.

In addition, theunion of the out put elements defined in th&/SCA’s participants
must be equal tdhe cut put elementdefining the result of theelated operation.
Finally, the Fault elements define the exceptions that may be raised by the
participants, whiclrequirecooperative exceptiohandling and getomposedwith the
exceptions concurrently raised by peer participants usingtle@t i onTr ee attribute.

The local state of the specific participaimtoughthe st at e element that defines the
local variables.

The behaviour of the specific participant using®le@avi or element. The participant
behavior subdivides into the participanstandard (aslefined by thesSt andar d
element) and exception@s defined by theexcepti onal elements) behavioEach
such behavior is defined as a process using classataments, including in particular
interactionwith the Web Servicenstance(s) associatedth the participantmessage
exchangesvith peer participants and exception handling, as furtle¢ailed hereafter.
The exceptional behavior of the participant actually defines the handlers assoitiated
the exceptions that need coordinated exception handling, as identfiad the
exceptionTree elementand thefault elements associatedith the WSCA'’s
participants. The specific exception that is being handled lgiven handler is
identified by thehandl es attribute, whichmustname an exception of the subtree of
the ExceptionTree element thatencompassesll the exceptions raised by the
WSCA'’s patrticipants.

We get the following definition for thear ti ci pant WSCA element:

<xsd: el ement name=""Partici pant WBCA' ' >

24

<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement nane=""lnput’’ type= " paraniype’
mnQccurs="0"" />

<xsd: el enent nanme=""CQutput’’ type=" " paraniType’
mnCccurs=""0"" />

<xsd: el ement nane=""Fault’’ type= "faultType’
m nCccurs=""0"" maxQccur s= " unbounded’’ />

<xsd: el enent ref=""State’’ mnCccurs=""0" />

<xsd: el ement ref=""Behavior’’'/>

Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

</ xsd: sequence>
<xsd: attribute name=""nanme'' type= "xsd:string'' use= "required />
<xsd:attribute nane=""bind ' type= "xsd:string'' mnCccurs="0"/>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType nane=""par anilype’’ >
<xsd:attribute name=""nanme’’ type="xsd: NMTCKEN ' use=""optional’’'/>
<xsd:attribute nane=""nessage’’ type= "xsd:Q\ane’’ use= "required />
</ xsd: conpl exType>
<xsd: conpl exType nane=""faul t Type’ ' >
<xsd:attribute nane=""nane’’ type= "~xsd: NMICKEN ' use= "required ’'/>

<xsd: attribute name=""nessage’’ type="xsd: QNane’’ use= "required ’'/>
</ xsd: conpl exType>

<xsd: el ement name=""State''>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme=""internal’’ type= "typeType’
m nCccur s=0 maxCccur s=" " unbounded’ ' / >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: conpl exType nane=""typeType'’ >
<xsd: attribute name=""nane’’ type="xsd: NMTCKEN ' use= "optional’’/>
<xsd:attribute nane=""type'’ type= "xsd: Q\ane’’ use= "optional’’/>
<xsd:attribute name=""elenent’’ type= "xsd: Q\ane’'’ use= "optional’'’'/>
</ xsd: conpl exType>

<xsd: el enent nane=""Behavior'' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref=""Standard'’'/>
<xsd: el ement ref=""Exceptional’’ maxCccurs=""unbounded'’/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el erment >
<xsd: el enent nane=""Standard'' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref=""State’’ mnCccurs="0" />
<xsd: el ement ref=""Body'’'/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane=""Exceptional "' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref=""State'’ mnCccurs="0"" />
<xsd: el enent ref=""Body'’'/>
</ xsd: sequence>
<xsd: attribute name=""handl es'' type= "xsd:string'' use= ‘required />
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent nanme=""Body'' type= "statenent’’'/>

<xsd: conpl exType name=""statenent’’>
<xsd: sequence>
<xsd: choi ce nmaxCccur s=unbounded/ >
<xsd: el ement name=""Assign’’ type= “assign’'/>
<xsd: el ement nanme=""Sequence’’ type= "sequence’’/>
<xsd: el enent nanme=""Par’'’ type= "par’'’'/>
<xsd: el enent name=""Choi ce’’ type= "choice'’/>
<xsd: el ement name=""lteration’’ type= "while />
<xsd: el ement nane=""Call’’' type= "call’'’'/>
<xsd: el enent nanme=""Returns’’ type= "return'’'/>
<xsd: el ement nane=""Send’’ type= "send ’'/>
<xsd: el enent nane=""Onlnput’’ type= "onlnput’’'/>

Dependable Systems of Systems 25

Dependable Composition of Web Services

<xsd: el ement nanme=""Wiit'' type= "wait’'’'/>
<xsd: el enent name=""Raise’’ type= "raise '/>
<xsd: el ement nanme=""Try'’' type= "try' />

</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>

WSCAL staterents are quite similar to th@nesintroduced by XML-based languagks the
specification of composite servicésee Sectiorl.2.1 for references). Wiore specifically

base the definition of WSCAL on the CSP language for the siataments, providing sound

basis towards reasoning about WSCAL specifications. Wed#tad hereonly the statements

that are specific to Web Services composition, i.e., handling of interactions with participants and
Web Servicesand of exceptiongelement given inbold face in the abovelefinition of

St at ement).

The cal | statement allows spdéging (synchronous) operation callshere the invoked
operation may be either local to the embedding composite $&slice (i.e., locaWSCA) or
provided by the Web Service to which the participariasnd (which may be &VSCA if the
service is itself composite). Thet ur ns statement is the dual statement allowing specifying
the message to be returnedoastial result of the embedded operatiomsiich is to be merged
with the results returned by peer participants. We get the following definition:

<xsd: conpl exType name=" "cal |''>
<xsd: attribute nane=""service'' type= "boolean’’ default=""false ' />
<xsd:attribute name=""operation’ type= "xsd:Q\ane’'’ use= "required’' />
<xsd:attribute nane=""input’’ type= "xsd:Q\ane’’ mnCccurs=0 />
<xsd: attribute nane=""output’’ type= "xsd: Q\anme’’ m nCccurs=0 />

</ xsd: conpl exType>

<xsd: conpl exType nane=" "return''>
<xsd:attribute name=""el enent’’ type= "xsd: Q\Nane’’ m nCccurs=0 />

</ xsd: conpl exType>

The Sendstatement allows ggifying the sending of a message to a pearticipant or Web
Servicé€ whose dual reception may b&pressed usingtkeer the blockingwai t or thenon-
blockingonl nput statement. We get:

<xsd: conpl exType nane=""send ' >
<xsd:attribute name=""recipient’’ type= xsd: Q\ane’’ m nCQccurs=0 />
<xsd:attribute nane=""nessage’’ type= "xsd:Q\Nane’’ use= "required’ />
</ xsd: conpl exType>
<xsd: conpl exType name=""wait’’ >
<xsd:attribute nane=""sender’’ type= "xsd: Q\anme’’ m nCccurs=0 />
<xsd: attribute name=""nessage’’ type= "xsd: Q\Nane’’ use= ‘required’ />
</ xsd: conpl exType>
<xsd: conpl exType name=""onl nput’’ >
<xsd: attribute name=""sender’’ type= "xsd: Q\ame’’ m nCccurs=0 />
<xsd: attribute nane=""nessage’’ type= "xsd: QNane’’ use= "required’ />

8 Note that when the participant is actually bound to a set of serviandest the call is by default
interpreted as a multicast RPC returningeguence of output mesges. Extension of WSCAL to
specify call to specific instances could further be integrated, although not addressed here.

9 Note that when the participant is actually bound to a set of service instances, the sending of a message to
the Web Service is by default interpreted as a multicast. Extension of WSCAdedifyshe sending
of the message to specific instances could further be integrated, although not addressed here

26 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

</ xsd: conpl exType>

Finally, theRai se statement allows signalling an exception whose handling is specsied
the traditionalrry statement for defining exception handlisgppesThe participant ultimately
raisesthe exception if it is not handlddcally, leading to coordinated exception handling, as
supported by WSCAs. We get:

<xsd: conpl exType name=" "raise'’' >
<xsd:attribute name=""exception’’' type= "xsd:Q\ane’'’ use= "required />
</ xsd: conpl exType>
<xsd: conpl exType nane=""try'’>
<xsd: el ement ref=""Body'’' use= "required ' >
<xsd: el ement ref=""Exceptional’’ maxCccurs=""unbounded'’'/>
</ xsd: conpl exType>

Discussion

The specification of composite Web Serviesing WSCALallows carrying out a number of
analyses with respect to the correctness and the dependable behavior of composite services.

Except classical static type checking, tdugrectness ofhe composite service may be checked
statically with respect to the usage of individual services: the pattern of interadtioras\Web
Service ofany WSCA participantmust conformwith the WSCL specification ofthe Web
Service.Conformancewith the WSCL specification may further be automatédarough model
checking, using e.g., CSP and associated FDR tool where the translafU$C#L processes
into CSP isquite straightforwardgiven the definition of WSCAL. In general, powerful
behavioral analyses of composite services magchevedhrough translation othe WSCAL
specifications into CSP.

Reasoning abouthe dependable behavior of composite Web Services lies in the precise
characterization of the dependabiliyopertiesthat hold over thestates of thendividual Web
Services after the execution WISCAs. Weare in particular interested in the specification of
properties relating tohe relaxedform of atomicity that isintroduced by the exploitation of
open-nested transactiomsthin WSCA. Toward this goal, Appendix A provides the formal
specification of base CA Actions extendedh dynamicnesting, which will serve as laase
ground for the formal specification of WSCAs.

1.4.2. Example

This section illustratethe specification of a composite Web Senvisetng WSCAL, through

the Travel Agent-related WSCAs that were introduced in Section 1.3, focusing more specifically
on the specification of théointBookingWSCA. We further do nogive the specification of
related WSDL and WSCL documents since samples may be found in the literature (see Section
1.2.1 for references) due tioe commorusage othe Travel Agentcasestudy for illustrating

Web Services.

The WCSA specification ohterfaces of thdravelAgentcomposite WelServiceand of the
Hotel andAirline Web Services igjiven below. In particular, the two WeBervices that are
composed support open-nested transactionthéxmeservationand book operationsthrough
the compensatinganceloperations (see embedded definitionmaihsact i onal).

<W5 nane=""Travel AgentInterface'’>

Dependable Systems of Systems 27

Dependable Composition of Web Services

<Interface href Schema=""http://travel agency. coni Travel Agent . wsdl ' '/ >
<Conversation href Schema=""http:// travel agency. conl Travel Agent.wscl '’ />
</ W&>

<W8 nane=""Hotel Interface ' >
<Interface href Schena=""http://travel agency. comi Hotel .wsdl "' />
<Conversation hrefSchena=""http:// travel agency. coni Hotel .wscl '’ />
<Transactional name=""Reservation'’
operation=""reservation'’ conpensate= "cancel’’/>
<Transactional name=""booking'’
operation=""book’’ conpensate=""cancel’’'/>
QG her transactional operations
</ &>

<W5 nanme=""Airlinelnterface ’>
<Interface href Schema=""http://travel agency.conAirline.wsdl'"'/>
<Conversation href Schena=""http:// travel agency.com Airline.wscl’'’/>
<Transactional name=""reservation’
operation=" "reservation'’ conpensate= "cancel’'’/>
<Transactional name=""booki ng"’
oper ati on=""booki ng’’ conpensate=""cancel '’ />
Q her transactional operations
</ W8>

A sample of theWSC element specifying the behavior of theavel Agent composite
service is given below, which directly follows from the informal presentation of SeicBoand
WSCAL definition. Theservice in particulaoffers the JointBookingWSCA thatcoordinates
bookingover theHotel and Airline Web Servicesfor which a single instance is dynamically
retrieved upon invocation of theWSCA (seedefinition of partici pants). Coordinated
booking is achieved asdiscussed inSection 1.3, exploiting in particulaopen-nested
transactions of participating/eb Services. The two participants of tleintBookingWSCA
have similar behavior. The participafirst invokes ther eservati on operation of the Web
Service to which it iound andthen books the proposed seldéion —if any-throughcall to
book. Otherwise, th@navai | abl e exception israised by theeservation operation, leading to
retry analternative reservatiomnd ultimately propagating th@navai | abl e exception for co-
operative handling at the level of td¢SCA. Rnally, cooperativhandling ofunavai | abl e by
the WSCA amounts to cancel performed booking by the peer participant -if any.

<WBC nane=""Tr avel Agent Service'’' >
<Abstract href Schema=""http://travel agency. coni Tr avel Agent I nt erf ace. wscal '’ / >
<ExceptionTree href Schema=""http://travel agency. coni TAExcepti onTree.xm ' />

<Parti ci pant s>
<Partici pant name=""User Browser’’ >
<Servi ce href Schena==""http://travel agency. com TAUser.wscal '’ />
<Dynam cPar ti ci pant >
</Partici pant >
<Partici pant name=""AirlineService ' >
<Servi ce href Schema==""http://travel agency.com Airline.wscal '’ />
<Dynam cParti ci pant >
</ Parti ci pant >
<Partici pant name=""Hot el Service'’>
<Servi ce href Schema==""http://travel agency. comi Hotel . wscal "’/ >
<Dynam cParti ci pant >
</ Parti ci pant >
</ Parti ci pant s>

<WBCA nare=""Travel Agent’’ operation=""Travel Agent’’ >
Not detail ed
</ WBCA>

<WBCA nane=""Joi nt Booki ng’ * oper ati on=""HABooki ng’ ' >
<Partici pant WBCA name=""airline’’ bind=""ArlineService ' >

28 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

<lnput ./[>
<Qut put ./[>
<Faul t name=""unavail abl e’ nessage=""unavai | abl eMsg’ ' / >
<Behavi or >
Not detailed, sinilar to hotel participant given bel ow
</ Behavi or >
</ Parti ci pant WBCA>
<Parti ci pant WBCA nane=""hotel '’ bi nd=""Hot el Servi ce'’' >

<Input ./[>
<Qut put ./[>
<Fault name=""unavail abl €'’ nessage=""unavai | abl eMsg’ ' / >
<St at e>
Not detail ed
</ St at e>
<Behavi or >
<St andar d>
<Body>
<Try>
<Body>

<Conment text=""Try reserve a room nat ching the
user’s input’’/>

<Cal | service= "true'’
operation=""reservation'’
input =~ .7
output= """ />

<Comment text=" "book the roomthat was found,
as given by the output nessage of the call
to reservation ' />

<Cal | service= "true'’
oper ati on=""book’’
input ="V
output= "".." />

<Conment text=""Return booking infornation
obtained as result to the invocation of

booki ng’’ />
<Return element="".""/>
</ Body>
<Exceptional handl es=""unavail abl e’ ' >
<Body>
Ret ry booki ng, propagates unavail abl e
ot herwi se
</ Body>
</ Excepti onal >
</ Try>
</ Body>

</ St andar d>
<Exceptional handl es=" "unavail abl e’ ' >

<Body>
<Choi ce>
<cond=""reserved or booked'’/>
<Body>
<Comment text=""conpensate action’>
<Call service= "true'’
operati on=""cancel "’
input =" .
output= "".." />
<Rai se exception=""unavailable '/>
</ Body>
</ Choi ce>
</ Body>

</ Excepti onal >
</ Behavi or >
</ Parti ci pant WsCA>
</ \WBCA>

<IVBC>

Dependable Systems of Systems 29

Dependable Composition of Web Services
1.5. Execution of WSCA-based Services

As discussed in Section 1.2.1, the execution of a compositeSafglte may be realized either

in a centralized way or through peer-to-peer interactions. We undertake the former approach, as
it does notrequire any additionasupport fromthe Web Services that amomposed. A
composite WebService matching agiven WSCAL specification may then be either
implemented by the developer or generdtedn the specificationdepending on the specific
environment in which the service is to be dgpd and the complexity of theervice. The
complexity of the service in particulaomes fromnternal state management in the case of a
stateful service, which is abstracted M6ECAL due tothe focus on WelServices interactions.

In the context obur work, we aremore specifically interested in the generation of stateless
composite servicekom WSCAL specification, including the integration of adequsigport

for increased quality of servic&his section concentrates dime design of base support for
generating composite WeBervices, while it ispart of our future work to further develop
runtime support foenhanced quality of servic®rior to introduce thedesign of composite
Web Services generation, we first recall base runtime support associated with Web Services.

1.5.1. Base Runtime Support for Web Services

The essential role of tHease runtime support (referred torasidleware in the following) for
Web Services is to deploy anshdeployservices,and to manage thmessages anBemote

Procedure Call§RPCs) to(i.e., the callsland from (i.e., the relies to calls) its deployed
services.

The deploy operationprovided by the middlewaranakes available a localprogram
implementation to all software running on network-connected nodes, and assouiaitessal
identifier (composed by the local host name followed by a name for the sersezkyremote
clients as a reference to connect to the seraié request its functionality. Thendeploy
operation offered bythe middleware is th@pposite functionality; it deletethe mapping
between the universal identifiand theservice implementationmaking this onaunavailable to
its clients.

The middleware idased on SOAP-RP@ith HTTP as binding protocol. Thispecification
requires a container able teceiverequests and send replies usthgHTTP protocol.Thus,
the middlewaremust includethe implementation of théITTP protocol to allow messages
exchange between deployed services and their clidotgeover, theSOAP-RPCspecification
definesXML as the protocol to coddatasent inside HTTP messagéus, the middleware
must also include an XML-parser to transleteeived messages, execute obpaethodcalls,
build replies for clients, and possibly generate fault messages.

As already mentioned, there already exist various platforms supporting the above functionalities.
Considering for instance Java-based platforms, the following software may be used:

* The Java 2 Standard Edition (J29E)

10 http://java.sun.com/j2se

30 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

» The Java Web Service Developtack(Java WSDP) that provides an implementation
of SOAP specification, and all Web Services-related technologiesugmibrt tohandle
XML document$?.

1.5.2. Generating Web Services from WSCAL specification

Given base middleware for running Web Services, supporting the generation of composite Web
Services from WSCAL specification amounts to:

» Generating the service implementation to be run over the local runtime support.

» Enriching thebasemiddlewarefor Web Services so as teupportthe functionalities
introduced by WSCAL, i.e., dynamic binding with Web Services and WSCAs.

We are more specifically concentrating on the generation of Javadmsesalthough our
solution applies as well to other platforms.

Generatinglava implementation of a coogte servicefrom WSCA specification is quite
direct. First, Javastub and askeleton associatedith the invocation of Web Sepes’
operations may be generated from the correspoi8®L specification,usingexisting tools
such as th®v/SDL2Javacompiler. Then, the translation of WSCAL statements Jatarelies
on dedicated runtime support for WSCAs and dynamic binditigWeb Services, thiormer
functionality being detailed in the next section.

Support fordynamicbindings amounts to offering a registry-basachtion Web Service for
advertising and locating Web Services. Such a facility is already support¢édbly However,
in our context,instances oWeb Servicesshould beretrieved withrespect to theNVSCAL
specification of theservices'interfaces, i.e.taking into account th§®/SCL specification and
transactional behavior of the service. We thtes designing extension WDDI-basedservices
for offering a lookup operation thahplement specification matchingith respect toNVSCAL
specification of servicenterfaces. We are more specifically interested in definibgheavioral
specification matching relationship that allovedrieving any service instancevhose behavior
refines the one of the targeservice from the standpoint ofsupportedconversation and
transactional behaviouAlternatively, Web Services instances may Ipetrieved from their
WSDL specification oly, leading toassumethat such services do not &r transactional
operations. Inaddition, correctness othe interactionswith the Web Service withrespect to
conversations assumed the service’s implementation cannot eaforced,possibly leading
the Web Service to raise exceptions to its caller (i.e., WSCA participant in our context).

Finally, note that by advertising tM§SCA specification of a compits Web Servicethrough
location services, servigastances may be deployed in atywironment integrating thabove
support for service generation.

11 http://java.sun.com/webservices.

Dependable Systems of Systems 31

Dependable Composition of Web Services

1.5.3. Java-based Runtime Support for WSCAs

There is a number afavaand Ada implementations of CA actions developémt different
platforms, environments and applicatith€ach of them typicallyffers a set ofre-usable
classes or patterns for the application programmers to apyilly employing CA actions and a
runtime support built on the top of a language runtime (sometimes comfiathealdistributed
communication feature - e.g. with RNtr someJavaimplementations). A comple@MI Java
framework was developed several years ago [ZorZsti&ud 1999] andince then ihasbeen
applied in a number of industry-oriented case studiesfféirs a number of classes (for
defining actions, action participants, exception handlers) and a rustiipp®rt in a form of the
action manager object. Recentlyhias beenused for apreliminary experimental work on
implementing a prototype TAystem [Romanovskgt al. 2002]. Inthe course of this work it
was extended tallow for a special type of action compositidased onaction participant
forking/joining (which weextensivelyuse in WSCA). Alava-based local runtinsupport for
WSCA is under development now. It is built as an adaptation of this extendedtioA Java
framework. The task is simplified bthe fact that we do not needstlibution of action
participantsfor WSCA, soall features related t&MI can be replaced ithis framework by
direct method calls with multiple threads executing on a single machine taking part in an action.
The resulting product is a set ddvaclasses thatan beusedeither whilegenerating the Java
application code or manually by a programmer.

1.6. Conclusion

Web Services are expected to become a natges of systems of systemstie near future.

This chaptehasintroducedour work towards spporting the development oDSoSs in the
context of the Web Service Architectu@ur approach primarily lies in th&SCAL XML-

based languagi®r the abstract specification of the dependable composition of S¢elices,
which builds uponthe CA Actions concepfor enforcing dependability. Wéave further
introduced base design ofiddlewaresupport forthe automatic generation of composite Web
Services from their WSCAL specification. Our current and future work is oriented towards the
following complementary areas:

* Formal specification of WSCAL for enabling thorough reasoning about the behavior of
composite Web Services regarding both the correctness of the composition and offered
dependability properties. We are in particular aiming at offering associatesufmmbrt
for automated analysis of the composite Web Services’ behavior.

» Detaileddesign and implementation of bas&dlewaresupport forthe generation of
composite Web Services from WSCAL specification. We are in particular investigating
the development of a serviéer locating Web Services that implements a behavioral
specification matching relationship based on refinement.

12 hitp://www.cs.ncl.ac.uk/old/people/alexander.romanovsky/home.formal/caa.html

32 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

* Design and implemeation of middlewaresupport forincreasing the quality of
composite Web Services. We are in particular interesting in developing cacipipgrt
that has been proven successful in the Web for enhancing response time.

As discussed inSection 1.2, there is extensivesearch work that is ongoing towards
supportingthe development of dependable composite V&ebvices,addressingthe XML-

based abstract specification of W&ervices and of their composition, and transactional
support for composite WeBervices.Our contribution primarily comes from relying on
forward error recovery instead of backward error recoveryspecifyingthe behavior of
composite Web Services in the presence of failures. Forward error recovery is further specified
in terms of co-operative actions, building upon the CA Actions concept.

Dependable Systems of Systems 33

Structured Handling of On-Line Interface Upgrades

Chapter 2 - Structured Handling of On-Line Interface Upgrades in
Integrating Dependable SoSs

Cliff Jones, Panos Periorellis, Alexander Romanovskyjan Welch (University of
Newcastle)

The integration of complegystems out oéxistingsystems is an aeé area ofresearch and
development. There are many practis@éiliations inwhich the interfaces of the component
systems, for example belonging to separate organisations, are changed dynamicetiyoaihd
notification. Usually SoSslevelopers deabith such situation®ff-line causing considerable
downtime and undermining the quality of thervice thaSoSsare deliveringRomanovsky &
Smith 2002]. In this chapter we propose an approach to handling such upgrades in a structured
and disciplined fashiorAll interface changes axewed as abnormaventsand generalault
tolerance mechanisms (exception handling, in particular) are applied to deglinigem. The
chapter outlines general ways of detecsoghinterfaceupgrades andecovering after them.
An InternetTravel Agency isused as @asestudy throughouthe chapter. An implementation
demonstrating how the general approach proposed can be dpplahlingwith some of the
possible interface upgrades within this case study is discussed.

2.1. Introduction

A “System of Systems” (SoS) kwilt by interfacing tosystemswhich might beunder the
control of organisations totally separate from that commissiathi@goverallSoS. (Wewill
refer to the existing (separa®jstems ascomponents”although this must not confuse the
guestion of their separate ownership). In thisiation, it is unrealistic t@ssume that all
changes to the interfaces of such components will be notified. In fact, in many intecaséag
the organisation responsible for the components may not be aw(ateadf the systems using
its componentOne ofthe most challenging problems faced by researchers davelopers
constructingdependablesystems of systems (DSoSs) therefore, dealing with dime (or
unanticipated) upgrades of component systems in a way which does not interawailéiaity

of the overall SoS.

It is useful to contrastvolutionary (unanticipated)pgradeswith the case wherehanges are
programmed (anticipated). In the spirit of other work on dependable systems, the approach
taken here is to catch as many changes as possible with exception handling mechanisms.

Dependablesystems of systemare made up ofoosely coupled,autonomous component
systemswhose owners may not laevare of the fact thaheir system isinvolved in abigger

system. The components can change without giving any warning (in some application areas, e.g.
web servicesthis is a normal situation)lhe driversfor on-line software upgradingre well

known: correcting bugs, improvingon-) functionality (e.gimproving performance, replacing

an algorithm with a faster one), adding new features, and reacting to changes in the environment.

This chapterfocuses orevolutionary changes that are typical in complex \apblications
which are built out of existing web services; we aim to propose a generally applicable approach.
As a concreteexample, weconsider an Internetravel Agency (TA) [Periorellis & Dobson

34 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

2001] casestudy (see Figure 2)he goal of the casstudy is tobuild atravel service that
allows a client tobook whole journeyswithout having touse multiple webservices each of
which only allows the client to book some component of a trip (e.g. a hotel room, a car, a flight).
To achievethis we are developing fault tolerance techniques that cansee tobuild such
emergent services that provide a service whimhe of its componergystemsare capable of
delivering individually. Of course, the multiplicity of airlines, hotghains etc. provides
redundancywhich makes it possibléor a well-designed error-recovery mechanismstovive
temporary or permanent interruptions of connection but the interest here ssinoving
unanticipated interface changes. As not allsyxstems in our system of systeare owned by
the same organisation, it is inevitable that they will change during the lifetime sydtesn and
there is no guarantee that existing clients of those systems will be notified of the change.

When a component is upgradetthout correct reconfiguration ampgrading ofthe enclosing
system, problems similar tones caused by faulisccur, for example:loss of money, TA
service failures, deterioration of the quality of B&rvice,misuse of componergystems.
Changes to componentan occur atboth the structural and semantic ékv For example
changes of a component systeam result in a revision of thenits in which parameters are
measured (e.g. fromr&ncs toEuro), in the number of parameters expected by an operation
(e.g.when an airline introduces a new type of service), instrgpience of information to be
exchangedetween the TAand a component system (edafter upgrading ahotel booking
server requires that aetlit card number is introduced before theoking starts). In the
extreme, components might cease to exist and new components must be accommodated.

Although some on-line upgrading schemes assume that interfaces of compdmapss stay
unchanged (e.g. [Tat al. 2002]), we believe that in many application areas Very likely that
component interfaces will change and that this will happen without information being sent to all
the users/clients. This ithe nature of the Internet agll as the nature of many complex
systems of systems iwhich componentdave different owners and belong to different
organizations as shown in Figure 2. In some casesowfse, there might be an internal
notification of system changes bubhe semantics of the notificatiosystemmight not be
externally understood.

Although there are several existing paréipbroaches to these problems, they are not generally
applicable in our cdext. Forexample,some solutiongleal only with programmed change
where allpossibleways of upgradingare hard-wired into theéesign and information about
upgrading isalwayspassedetweencomponents. This does nwbrk in our context inwhich

we deal withpre-existing component systems bull svant to be able to deal with interface
upgrading in a safe and reasonable fashion. Other approacheasttéinapt to dealwith
unanticipated or evolutionary change iway thatmakes dynamic reconfiguration transparent
to the TA integratos may befound inthe Al field. However,our intention is not to hide
changes from the applicationvé&. Our aim is to provide &olution that is application-specific
and reliant on general approaches to dealiitiy alnormal situations. Imparticular, we will be
building on existing research in faulteéchnce and exception handlingpich offer disciplined

and structured ways of dealing with errors of any types [Cristian 1995] at the application level.

13 We use terms TA integrators and TA developers interchangeably.

Dependable Systems of Systems 35

Structured Handling of On-Line Interface Upgrades

Our overall aim is topropose structurednulti-level mechanisms thaassistdevelopers in
protecting the integrated DSoSs from interface chaagdsif possible, in letting theseSoSs

continue providing the required services.

[}

|

I
A4

Travel Agency Client Side

: ebservice
Interface

Travel Agency Server Side

bstract Service
Interface

1IS for Hotel Systems

_______ -
|

bstract Service

Interface

T

1IS for Flight Systems

ebservice
Interface

Hilton

ebservice
Interface

Y

ebservice
Interface

Figure 2 UML Component diagram showing the component systems that make up the Internet Travel Agency
(TA). The grey areas indicate the fact that the component systems are under the control of different
organisations. A user is shown interacting with the Travel Agency Client Side component that validates client
side inputs and passes requests to the Travel Agency Server Side component. The Travel Agent Server Side
component handles each request by invoking multiple Intermediate Interfacing Subsystems (IIS). Each IS
provides an abstract service interface for a particular service type, for example the Flight Systems IIS provides

an abstract service interface for booking flights with systems such as AirNZ and KLM even though each of
these systems has different webservice interfaces.

36

Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms
2.2. System Model

Integrators compose BSoS from existing componentg¢systems) thatare connected by
interfaces, glue codand additional (newly-developed) componemisere necessary. An
interface is a set of named operations that can be invoked by ¢#emtserski 1997]. We
assume that the integrators know the component interfaces. Knowledge of the interfaces can be
derived from several sources: interfaces can be either published or discovered (there is a number
of new techniques emerging in this area), programmer’s guides, interfaces are first-tiess ent

in a number of environmentuch asinterpreters, component technologies (CORBA, EJB),
languages (Java).

Besides integrators there are other roles played by huimahged inthe composed system at
runtime, for example: clients of the composed system, other clients of the components, etc.

We assume that component upgrade is out otontrol: components angpgraded somehow
(e.g. off-line) and if necessatieir states are consistenthansferred fronthe old version to
the new version.

2.3. The Framework

2.3.1. Structured Fault Tolerance

We propose to usfault tolerance as the paradigor dealingwith interfacechanges: specific
changesare clearly abnormasituations(even if thedevelopers accept their occurrence is
inevitable),and weview them aserrors ofthe integratedSoS inthe terminology accepted in
the dependability community [Lapri995]. Inthe following wefocus on errometection and
error recovery as two main phases in tolerating faults.

Error detection aims at earlier detection of interface changesdist in protectinghe whole

system fronthe failureswhich they carcause. Foexample, it ipossible tht, because of an
undetected change in the interface, an input parameter is misinterpreted (a year is interpreted as
a number of days the client is intending to stay in a hotel) causing skaous Errorrecovery

follows error detection and canonsist of a number dévels: in thebest case daywamically
reconfiguring the component/system and in the worst with a safe failure notification and off-line
recovery.

Our structured approach to dealingith interface changeselies on multilevel exception
handling which should be incorporated into a DSoS. It is our intentiguréonote” multilevel
structuring of complex applications toake it easiefor developers to deakith a number of
problems, but our main focus here is structured handlimge@face changes. The genadda
is straightforward [Cristian 1995]: durii@SoS design or itegration, the developer identifies
errors thatcan be detected at ealdvel and developsandlers forthem; if handling is not
possible at thidevel, an exception ipropagated to the highdevel and responsibility for
recovery ispassed to this Vel. In addition to this generachemegstudy of someexamples
suggests classifications of changes which can be used as check lists.

Dependable Systems of Systems 37

Structured Handling of On-Line Interface Upgrades

2.3.2. Error Detection

In nearly all cases, there is a nded meta-information to detect interface changg&schmeta-
information is a non-functional description of the interfa@sl possibly otheir upgrades),
which may captureéboth structural andsemantic informationSome languages and most
middleware maintainstructural meta-information,for example Java allowsstructural
introspection and CORBA supports interface discovery via specialised reposktiores.er, at
present there is little work on handling changes to semantic meta-information.

Meta-information for a component includes descriptions of:

» call points (interfaces), including input parameters (typedpwable defaults),output
parameters (types, allowable defaults), pre- and post-conditions, exceptions to be propagated

» protocols: the sequences of calls to be executed to perform spetifites (e.g. canel a
flight, rent a car). A high-level scripting language can be used for this.

Interface changesan be detected either by comparing meta-description ofaottd new
interfaces or if a componestupports some mechanism totify clients of changesAnother,

less general, and as such lesd&@ble, way of detectinguch changes is by usimgneral error
detection featuregsome reasonable run-time type checking; pre- and post-conditions, or
assertions of other types checking parameters in thmll points; protective component
wrappers, etc.).

The intentionshould be toassociate a rich set of exceptiongh structural andsemantic
interface changes (changing the type of eampater, new parameteradditional call points,
changing call points, changing protocols, etc.); this would allow the system developers to handle
them effectively.

2.3.3. Error Recovery

Error recovery can be supported through the use of:

» different handlers (ahe samdevel) for different exceptions related to differetypes of
interface changes

» multilevel handling.

2.3.3.1. Different Handlers
System developers should try and handle the following types of exception:
» changes of types of parameters, new parameter, missing parameter, new call point

» changes of the protocols, re-ordering, splitting, joining, adding, renaming arehtbeal of
protocol events

» change of the meta-description language itself (if components provigghusuch ameta-
description of its interface)

38 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

* raising ofnew exceptions, if thprotocol changes theamew exceptions mawlso be raised
during its execution.

To provide some motivational examples, consider the Travel Agent case study.

» A very simple interface change is where the currency in which prices are quoted changes. In
this case,simple type information could shofgr example, that the TAystem requires a
price in PoundsSterling and the Car rental is being quoted in Norwe@aowns. An
exception handler caask for aprice in Euroswhich might be counteredith an ofer to
quote in Dollars. Note that this process is not the same as reducing everything to a common
unit (dollars?), finding agreement earlier can result in real savings in conversions.

» A previously functioning communication from the Bistem to dotel reservatiosystem
might raise an exception if a previously un-experienced query comes back as to whether the
client wants anon-smoking roomEither of two general strategies might help here: the
guery couldcome markedvith a default which will be applied if noesponse igiven (an
exception handler could accept this option}ha codedvalue might (on request from the
exception handler) translate into an ASEIlting which can bepassed tahe client for
interpretation.

 Some ofthe most interesting changes amacompatibilities are likely to be protocol
changes. An airlinesystemmight suddenly start putting itspecial offers before any
information dialogue can be performed; tbeler in which information is exchanged
between the TAand its suppliers otars,flights etc. might changeGiven enoughmeta-
information, it is in principle, possible to resolve such changes but this is farcorapex
than laying out the@rder of fields in a record: it ithe actuabrder of query and response
which can evolve.

* Inthe extreme, the chosen meta-language might chingga. here, &igher-level exception
handler might be able to recover if the meta-language is from a know repertoire.

* When an airline ceases to respond (exit@)TA system must copeith the excption by
offering a reduced service from the remaining airlines.

» Communication with new systems might be established if there is some agreemmett-on
languages which can be handled.

In all of the above cases, the attempt isuse exceptiorhandling to keep the TAystem
running. Of course, notification obuch changemight well be sent todevelopers; but the
continuing function of the TA should not await their availability.

2.3.3.2. Multilevel Handling

Exceptions are propagated to a higleel if an exception is noexplicitly handled or an
attempt to handle the exception fails. This leads to a recuggstem structuringvith handlers
being associated with different levels of a system. Possible handling strategies are:

* request a description of the new interface from the upgraded component

* renegotiate the new protocol with the component

Dependable Systems of Systems 39

Structured Handling of On-Line Interface Upgrades

use a default value of the new parameters

» pass the unrecognised parameters to the end client (e.g. in ASCII)
* involve system operators into handling

* exclude the component from the operation

» execute safe stop of the whole system.

When designing handlei®SoS developers can apply the concepts of backweodvery,
forward recovery or error compensation [Lapt95]. Backward recoveryestoreghe system
to its state before the errdgr example the TAabandons (aborts) a set jpdrtial bookings
making up an itinerary if one of the components casabtsfy aparticularbooking. Forward
recovery finds a new system state from which the system can still openagetly, for example
where DSoS developers decide tonvolve people in handling interface changes: TA
support/developers, TA users/clients, composepiport. Errorcompensation reliespon the
systemstate containingnough redundancy talow themasking ofthe error. Anexample of
error compensation is these of redundant components. feaample, in the TAasestudy if
the KLM server changetts interface and TA cannokeal with this, itignores it but continues
using servers of BA and AirFrance.

After the TAhasbeen safely stopped or a componeatbeen excluded, the Téupport and
developers can perform off-linenalysis ofthe new interface of the sgponent (cf.fault
diagnosis in [Laprie 1995]). To improve the system performance amake betteuse of the
recent interfacaipgradesthe TA application logic can be off-line modifiashen necessary
following the ideas of fault treatment [Laprie 1995].

2.4. Representing Meaning

In order to communicate semantic information between two computers or in the case of the TA
between the SoS and its providers we need a structured collection of information (meta-data) as
well as a set of inference rul#sat can baised to onduct automateceasoningTraditionally
knowledge engineering [Hruska & Hashimoto 2000], as this process is often called, requires all
participants to sharthe same definitions of concepts.dar case for example,definitions of

what is atrip or a flight aswell asthe parameterfor each of thesdave to bedefined and
shared. The protocdbr booking and paying for #&ip or anitem is also requiredDetailed
descriptions othe parametetypes andtheir semantic informatiomlso need to be held in a
shared knowledge base. Knowledgeseshoweverand theirusage does not necessariake

the system more flexible; quite the contrary. Requestdd have to beperformed undestrict

rules for inference and deduction. The SoS would have to processtédata (gbally shared

data descriptions) in order to infer how to make a request for a particular method (i.e. booking a
flight) and further more inferwvhat parameters accompany this method avitht is their
meaning.

This process requires a well defined globally shared description of the domain in which the SoS
operates. Such a definition is usually called ontological definition anprtieess is referred to

as ontological modeling. Current developments in web architectures and distsipstis are
working towards communicatingeta-data informatioacross components systerX$4L for

40 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

example allows us to define our owags in order to structurgeb pages and it is alseidely
used for structuring soap messages sent to components sy@telmsservices). XML
effectively allows the user to define its owagsthe process ofwhich is sharedvia acommon
document type definition which iturn enables botlelient and servers to interpret them. In
order however to comprehend the semantics behind it then we need human intervention. To put
it simply; auser for a sharprice component that acceptstang and returnghe price of the
share represented by the string may have a tag type stock priséhifche tags<stockprice>
and </stockprice> the price of the share would be retuiiad{ML we could communication
between a provider andcansumer that aertain tag is of typ&tring or Integer but thatoes
not encapsulate its semantic informatidimis is where theresource definitionframework
(RDF) [W3C-RDF 2000] may help as it provides a techniguelescribing resources on the
web. It is a framework for specifying metadata using XML syntax.

In conjunction with RDF interface descriptions could also beaicaminunicate their semantic
information. All these technologies and disciplimesvever have noget being put together for
any meaningful application. They exist separately as hypertext @RAP forexample existed
before the InternetJsing the currentAPI’s our choices are limited. The next sectishows
how Java API is used in our case study to deal with interface upgrading.

2.5. Java RMI Implementation

This sectiondiscussedhow some part ofthe general framework presentalove is being
applied withinour ongoingexperimental work on implementing Internet TA [Periorellis &
Dobson 2001]Current API'sallow us tocarry out some work towards dealimgth online
dynamic upgrades, although there is significant work to be done not just in programming terms
at the applicatiorlevel but interms of providing an adequate API that woaltbw us to
overcome certain technical difficulties.

Java RMI does not offer a full ARbr dynamic interfacedHowever, itdoes supportlynamic
invocation when used in conjunctiavith the standardlava reflectivéAPI. The clientdoes not
need to maintain a local copy of a stub for a remote service, and mEdseitneed tomaintain

a localcopy of the interfacefor the remote servicelhis is becausdavaRMI supports the
automatic downloading of RMI stubs on demand, and oncsttitehasbeen downloaded then
the standard Java reflection APl canused todiscover andnvoke themethods supported by
the stub andtherefore the remote service. Tlmitation of this approach is that the stub
changes during the lifetime of the client then a replacestabtcannot be downloaded. This is
due to caching at the client side, as the replacemenhasthe same name as the origisalb
then the cached copy is used instead of downloading the stub again.

The TA prototype is usingavaRMI and thestandardJava reflectiveAPI to dynamically
compose the emerging service out of participating components. As the stubs can be downloaded
and the interface of thetubs discovered at runtime thiallows the SoS todetermine the
composition of the emerging service at runtime. In order to implesueft a structure weeed

four machines: one tact as arRMI sewer that acceptsequests for amponentsystems (e.g.

playing a role of &LM server), a clien{llS in our casesee Figure 2) and a stub repository

that makes the stubs available via the network (this could be a web servanongmous FTP
server), and a machine that hosts the RMI registry. In our implementation we mainttimbthe

Dependable Systems of Systems 41

Structured Handling of On-Line Interface Upgrades

at the web server while tHeMI serverholds the actual implementations of the component
systems, supporting classes and the interface description.

EachllS only holdsthe names of th80S component systems thatitaps. Each name is a
human readable, implementation-independent reference that is regigtaréte RMI registry.
This allows the location ofSoS components to changeithout forcing changes to the
implementation of the ISVhenthe lIS invokes aSoS componergervice it queries the RMI
registry forthe stub that representhhe S0S componenservice. Thestub is transparently
downloaded from thstub repository byhe RMI infrastructure as thstub doeexist locally.
The 1ISthenusesthe Javaeflection API to discover anithvoke methods orthe stub and via
RMI the SoS component system.

As eachllS provides a fixed abstract interface to the BAS thenany changes to SoS
component systems are localised to the IIS. TheS0& and,via the TA SoS, any clients may
be informed of unexpected changes to the comp@ystems ifextra information that is not
captured by the abstract interface is requiredrder tocomplete arequest. We foresee this
being handled via our distributed exception handling scheme.

We alreadyhave annitial prototypethat does notdeal with serveupgradingwhich can be
accessed dittp://ouston.ncl.ac.uk/main.htifhere are several avenues we exploring right

now that wouldallow some handling of online dynamipgrades to SoS compant systems.
Although, changes to SoS component system interfacetakigaplaceduring the lifetime of a

[IS are not visiblevia chamges tothe stub wecan detect thasome changdas occurred by
catching marshalling/unmarshalling or connection refused exceptions that will be caused by an
upgrade. At preserthe best course oéction that we camsuggest is taestart thellS and
thereby force the local copy of the stub for the SoS component system to be refreshed. Once it
has been refreshed then we can compare the interfacereitstub with a cachedlescription

of the old stub,this would allow the exactnature of the change to be detectmud the
appropriate handlers to bavoked. Inthis approachthe actualstubs represent themeta-
informationused forhandling interfaceipgrades. Assuming that vean find sometechnical
solution tothe caching problem then it would Ip®ssible toavoid restarting thellS and
therefore handling the effect of the upgrade would be more transparent.

Under some assumptions (e.g. the registry is updated before the server has beenniéplaced
new one) severascenariosare possible with respect to handling interface clgas. For
example:

* if a marshalling/unmarshalling exception is raisddle accessing &LM server we force
the refresh ofthe localstub forthe KLM server and compare its interfasth a cached
description of the KLM server in order to discover what has changed.

» if a connectiorrefused exception is raised wanfind out if we are trying to access the
server in the middle of upgrading by going to the registry. This case clearly needs additional
features because there is no guarantee Kb updatesthe registry andthe server
atomically.

Our experienceshowsthat Javaand theRMI architecture in particular are not the most
appropriate technologiefr evaluatingand implementing dynamic interfaagpdateseven
thoughadditional featuresuch aghe Javaeflection APl can beised toimplement a limited

42 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

form of dynamicinterface discovery and remote. particular, they do not allow us to call an
updated service asraeansfor handling because dbcal caching of thestubs. Bycatching

some RMlIserviceexceptions we can infer thatsarvice upgradéasoccurred and this can
drive manual clearing of the cactia arestart of theRMI client. Alternativelyanotherway of
handling such situation is to exclude the upgraded service from the following execution until the
client logs off.

There are two directions in which we garogress fromhere. The first one is to see if we can
modify the Java/RMI infrastructure to fortmcal refresh ofthe stubcache. Thesecond one is

to use modern Wetechnologiesvhich offer much more flexibléeaturesfor ondine dealing

with interface descriptions and provide dynamic discovery and invocation as first-class features.

2.6. Related Work

The distributed computing communityas consideredhe problems of maintaining meta-
information for service discovery within the context of loosely coupled distributed systmms
as DSo0Ss. Mosmiddleware systemsimplementsome form ofobject tradingservice, for
example CORBAhas anObject TraderService,Jini has a Lookuservice,and .NET uses
services provided by the Universal DiscoveBgscription and Integration (@DI) project.
Furthermorerecent developmentsupported bythe World Wide Web ConsortiunfW3C)4
include a number of XML-base languages complementibpl and allowing Webservice
interface§W3C-WSDL 2001]and business-level conversations supportecgunh services
(e.g. [W3C-WSCL 2002]) to be described. Object traders enable providmigddise services
by registering offered interfaces with a trading service. Cliectte a service bguerying the
traderusing descriptions based ¢ime structure of an interface amgiantitative constraints
[Szyperski 1997]. As with our propossdlution, object traders provide the ability to associate
some meta-informatiowith services. Howevethere is anassumption that once dient has
found aservice thatuses agparticular interface then that interface will remain static. Another
difference is that we plan to maintain a richer set of meta-informadtbrservices that capture
both structural andemantic information about interfacesich asversioning information,
protocols, meta-information related tmtology and knowledge representation, dealiviti
abnormal situations while using the service, associating typical scenarios with the protocols, etc.

On the othehand, the object oriented database commumgyexplicitly considered system
evolution. Theyhavedeveloped schemdsr schema esution, schema versioning and class
versioning. Forexample, in [Amanret al. 2000] schemata of multiple DBs aexpressed in
XML. In this approach the user's queries are written using a domain standard, that identifies the
various entities and relationships, dond eachdata-source/base there is a mapping ftbat
sourceentities to the domaistandard. So, that @writing of theuser's query tdhe various
source formatxan bedone automatically.Our work differs in that in addition to structural
changes we consider semantic charggeh agorotocol mismatches that ocowhen evolution
takes place. Also thsolutions proposed by thcommunity tend t@ssumehe existence of a
centralised authorityfor enforcing controlwhereas we are working in the context of
decentralised authority.

14 http:/lwww.w3.org/

Dependable Systems of Systems 43

Structured Handling of On-Line Interface Upgrades

Therehasbeen some work on resolving protocol mismatchdhenarea oicomponent-based
development. In [Vanderperre2002] the concept of a component adaptor is introduced. It
describes adaptations tfe external behaviour independently of a spediiRl. When the
adapter is applied to a composition of components the required adaptationsacéoniadically
inserted. This is achieved through the application of algorithms that are based cautorntata
theory. Ourwork differs in that weconsider dynamic rather than build-time changes to
protocols and we consider maorgde ranging adaptation than jute renaming or addition of
protocol events.

In our future work on the TA case study iméend to exploit thiselated workand some other
features provided by modern component-oriented technologies and Internet technologies. Other
useful featureshat can beusedare languageupport for runtimereflection [Welch 2002],
interfacerepositories and typlbraries,and servicesuch as CORBA’'dMeta-Object Facility

that defines standard interfaces for defining and manipulating meta-models.

2.7. Concluding Remarks

This chapter has not proposed a totally general or efficient solotiwrinterest is irproviding

a pragmatic approach that explicitly uses a fault tolerance framework. Our wuodtivated by
real problems encounterashenconsidering a casgudywhere mismatchegdue toevolution
must be dealt with at runtime. Although there swene existing approaches to this problem we
do not try to hide evolution from the application developer but provide a framéarotlealing
with it dynamically.

44 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Chapter 3 - From Error Detection to Recovery Wrappers

Manuel Rodriguez, Jean-Charles Fabre, Jean Arlat, Eric Marsden(LAAS-CNRS)

3.1. Introduction

The use ottommercial-off-the-shelf (COTS) software components, in particular real-time ex-
ecutivesoftware (microkernels, conventional operatsygtems,middlewarelayers and viual
machines), is an attractive approach to realstems thatan be part of larger infrastructures,
namelysystems of systems. As far @éspendability is concerned, their behaviour in pines-
ence of faults remains an open issue. This issue has been investigated usingdtoit tech-
niques to helgharacterize their failursmodes [Koopman &DeVale 1999Arlat et al. 2002].

The observed failurenodesrevealsome weaknesses tine design andhe implementation of

the COTS software components, mainly because dependability was not a major concern in their
development process. The need to mastemaadmize the coverage of fadssumptions is a
crucial aspect of dependable real-time applications,ontyt regardingthe real-timeexecutive
itself, but also regarding the selection of adequate fault tolerance strategies.

Improving COTS components from a dependability viewpoint has been often done by means of
wrappers. Tadate, wrappers hadseen essentially applied to supplement the built+ior ede-

tection mechanisms and thus improve the overall error detection coverageee [ypasl 998,
Ghoshet al. 1999, Arlat et al. 2002]). Wehaveextended the conventional it of wrappers

by means of recovery actions. The idea is not oniynfwove thesignalling of errors, but also

to define actions able to recover from transient faults or to put the system in a safélestdie.

the objective is to improve the fault assumptions that can be made by an integrator of systems of
systems.ndeed, distributed fault tolerance algorithms deployed system of systems are
based on assumptions whose coverage must be made as high as possitdtailétedentifi-

cation of the erroneous state provided by our formal specifications based apgrablehthese
actions to be defined and implemented on various target software components.

As far as CORBA middleware-bassygstemsare concerned, the work vimavecarried out by

fault injection (cf. IC3 DSOS report) shows that CORB#plementations areery sensitive to
corrupted inter-objeatequestdetween clienteind servers. The results we obtained highlight

the possiblebehaviour in the presence of faults of essential CORBA serwhbes corrupted

IIOP requests are received. The impact of these types of ¢anltbe reducethroughthe use

of simple wrapperssuch aselectronicsignatures applied to IIOP requeststteg application

level. Another majosource ofproblems, leading to the incorrect behaviour of a middleware
layer like CORBA, is the reaction of the operatgygtem supporfmicrokernel, conventional
operating system) to abnormal situations. iRstancesomeexternal and internal faults may

lead the operatingystemlayer to return errostatus codes and exceptionghiie middleware.

The way in which the middlewarbandles these inputs i®ally a majorissue from a
dependability viewpoint. From early experiments, hage olserved thapoor handling ofsuch
exceptional conditions may lead to a complete crash of the system or to error propagation to the
application level. This is not surprising asddleware implementors sometimes negleatdo-

sider every possible outcome of a call to the executive support, ignoring conditions that are very
rare or unexpected (such as resource issues). It Sntipostant to make thexecutivesupport

Dependable Systems of Systems 45

From Error Detection to Recovery Wrappers

as reliable as possible, since theldleware implementatiodoes noimplementany recovery
actions to deal with corrupted behavior of the underlying operating system.

As a matter of fact, a middleware system can be wrapped from above, by means of simple wrap-
perspreventingcorrupted requests to be forwardedtdoget services, butlso amiddleware

system must bevrapped frombelow to prevent the executiayer from disturbing the
middleware layer.

In the work reported in this chapter we concentrate ondea of recoveryrappers and illus-
trate the benefits that can be obtained in particulanagimize faultassumptionsoverage.
These extended wrappers dr@sed on a framework previously describedhmIC2 DSOS
report.

For the sake of completeness we briefly desdfilie wrapping framework in Section 3.2,
which focuses orthe formal development of rappersfor error detection [Rodriguezt al.
2002b].

In the sequel we describe detail howsuch wappers can be enhanoedh forward error re-
covery capabilities. They atmsed on a set of simple error handigalied recovery amns.
The objective is that several elementary data modificattamsed out concurrently by the
recovery actions into the target component, be ab#dirtinate — or at least minimize — the
errors detected by thewrappers. Inaddition, the recovery actions are implemented in a
disciplined way using reflective concepts [Maes 1987].

We also show how the temporal costs of kbth detection and theecovery capabilities of the
wrappers can be made compatible with the hard deadlines of a target resghiioation,while
maximizing the error detection and recovery coverage of the wrappers. To do so, exdirdt

the schedulability test of the applicatidrhen,instead ofusing atheoretic fault model (like in
[Burnset al. 1999]), we study experimentally, by means of software implemented fault injection
(SWIFI) [Carreiraet al. 1998], the impact of errors on the activation profile of the wrappers.

Accordingly, therest of this chapter is structured as follows. The feal#rance wrapping
framework is briefly presented in Secti@2. Section3.3 describeshe notion ofrecovery
action and how ifits within the framework definedSection 3.4 showshow the wrapping
framework can be applied to real-time microkerpated systems. Welaborate here on the
concept ofreflective real-time executive — an essential notioroliserve and control the
microkernel —, and we also illustratee behavior of the wrapps both inthe absence and in
the presence of faults. The case study provided in Section 3.5 consiseabfime application
running on a COTS3eal-time microkernel. The kernel is encapsulatét alarge number of
wrappers. Selected results derived from fault injection experiments are providdd@rssed.
These results help uanalyze how the temporal overheads of the wrappers camaoe
compatible with the hard deadlines of the application. Se8t@provides adiscussion on the
proposed wraping technology, its interestithin middleware-basedystems and somether
wrapping aspects in the context of DSo0S. Section 3.7 concludes the Chapter.

46 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms
3.2. Wrapping Framework for Fault Tolerance

The fault tolerance wrapping framework (Figure 3) is composed of five elemensgiettiica-

tion (a formal description of the system requirements)witeppers(the executable version of

the specification), theuntime checke(a platform for the execution of the wrappers),dbser-
vation & control (a software layer providing interceptors and methods to observe and modify
the behavior of the system), and Trerget Software Componemt TSC (the component of the
system that is to be wrapped).

Specification
(temporallogic) 0 eeemesppesesaomim==
[Formula+Actions FAT

COMPILATION
FormulasActions FAZE-S~ 2+ 2= % {F AN CHFAY, HIFARY

Target
Software

Component

Figure 3 Overall framework

It is worth noting that while this framework is generic and candslwith any TSC, our work
focuses on its application to real-time microkernel-based systems.

To specify system requirements, we have defined a formal language based on temporal logic,
called Clock and Event driven Temporal LogICETL), whose detailed syntax and semantics

are provided in [Rodriguet al. 2002b]. The main particularity of this temporal logic is that it
embodies the notions discrete timgin the form ofclock triggerg andevent As anytemporal

logic, it is built from temporal operators and a first order logiee temporabperators defined

are O (next clock trigger oasynchronougvent), © (next clock trigger), 7 (next asynchro-
nousevent), ®[e] (sometime for asynchronougvente), ®[e]” “ (sometime beforek clock

triggers for asynchronous eveat The first order logic consists of boolean predicates defining
standard logicall{]—, etc.), relational<, <, etc.) and arithmetic+(—, etc.) operators.

Thespecificationof the TSC is given as a set of temporal logic formufasL(FA2, ..., FAn in

Figure 3) which describe formally the parts of the TSC behavior that is to be controlled. A for-
mula is based on a logical implication, composed of acadént and a consequent (see exam-
ple in Section 3.4.1). &ause of their particular structure, the formulas of the specification are
referred to astatementsin addition, the statements also specify the recovery actions that are to
be executed when a predicate of the consequent is violated.

Thewrappersare theexecutable version of the statemeintsn the specification. Their role is
to detect timing and value errors of the TSC operation at runtime, aadoterfrom errors by
properly executinghe recoveryactions. Wehave developed a compiler that automatically
translates each statement intarale wrapper in C language (e.§Al into WFAL FA2 into
WFAZ2 etc.). An example of a wrapper is provided in Se@idnl.

The runtime checkeris a sort olvirtual machine ircharge of executing the wrappel&/KAl
WFA?Z ..., WFAnin thefigure). Essentially, it is an interpreter of temporal logic that provides
an interface with servicdser managing the temporalperators (Table 1a) agell asthe predi-
cates of the antecedent and the consequent of a statement (Table 1b).

Dependable Systems of Systems 47

From Error Detection to Recovery Wrappers

Services (C language) | Meaning
(a) Management of temporal operators (F is a temporal logic formula, and e is an event identifier)
NEXT (k, F, context); O* (F)
NEXT CLOCK (k, F, context); o (F)
NEXT EVENT (k, F, context); @ (F)
SOMETIME (e, F, context); [e] (F)
BOUND SOMETIME (e, k, F, context); S[e]™(F)
(b) Management of predicates
CONDITION (predicates); . Evaluates predicates of the antecedent
ASSERT (predicate, . Evaluates a predicate of the consequent. It
recovery action); signals an error only if after the execution of

recovery action the predicate is false.

(c) Management of the wrapper context

NEW_CONTEXT () ; . Creates a new context from a static memory
pool

CONTEXT SET (value, context, . Updates context[index] with parameter value,

index) ; and returns parameter value

CONTEXT GET (context, index) . Returns the contents of context[index]

Table 1 Services provided by the runtime checker

Note that the runtime checker signals an error if a predicate abtisequent of atatement is
false after the execution of its associated recovery action (SAS®BER Tsee also Sectiod.3).
Wrappersare executed concurrently by the runtime chedencurrency isnade possible
thanks to the decomposition of a wrapper into functionsattgato be executed at different in-
stants. Internally, the runtime checker maintains a form of process contextd@ach wrap-
per, which characterizes the global state of the wraglpeg its different execution§uch an
information is referred to asrapper context whose corresponding runtinolecker services
are listed in Table 1c.

Theobservation & control layeallows the wrappers to observe and controlbibleavior of the

TSC. Theobservationpart of this layer is in charge of providitige necessary TS@forma-

tion to the runtime checker and the wrapp&sch aninformation mayconsist of messages

[Diaz et al. 1994], eventoccurrencegMok & Liu 1997], signals [Savor & Seviora 1997], or
states [Schneider 1998hdeed, itdepends/ery much on the formalismased todescribe the

TSC requirements. In our case, the temporal logic used is built from predicates that describe the
internal state of the TSC at different instants of time signaled by clock triggeevemtdzcur-

rences Accordingly, the type of information we need to obserweerespond tanternal TSC

data, clock triggers (dicks) and asynchronous events, as indicated in Figu@oBversely, the

control part of the observation & control layer allows the wrappers to modifipehavior of

the TSC when an error is detected. This part is composed of arsepweéry actionseach of

them in charge of performing atementary modification into theSC (e.g., the insertion of a

task into a queue or theubstitution ofthe running task by another task). Tobjective is that
several elementary modifications carried out by a set of recovery actions into the TSC be able to
eliminate (or at least minimize) the error detected bywtrappers. Note thahe observation &

control layer makes the runtime checker and the wrappers indepémaerie particular im-
plementation of the underlyin§SC. In other words, when different implementations of the
same TSC are to be tested (e.g., different implementations of theP€28i¥ interface), only

the observation & control layenust be modifiedThe defined wrapping framework is com-
patible with any particular type of observation & control layer provided. Asxample, inSec-

48 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

tion 3.4.3 we used e&eflective approach[Maes 1987] todevelop such alayer for a TSC
consisting of a real-time microkernel.

3.3. The Recovery Actions

A recovery action consists of a distinct implementation (i.e., a variant) of a basic function of the
TSC. Itis thus characterized by disersified implementatioand itsminimal functionality As

an example, let usonsiderthe yielding of therunningthread, which is &nction common to
everysoftware execute. With respect to the set of services provided by a softeaeeutive
(synchronization, temporization, etc.) the functionalitytte$ function is minimal. Inaddition,
consideringthe particular implementation providédr such afunction by agiven software
executive, we can develop a related recovery action whose implementation is different.

The execution model of the recovery actiondescribed in Figure 4. Thimodel corresponds
to the internal algorithm developed by senAKSERTDf the runtime checker.

When a predicate of a wrapper is violated, the runtime cheaissrs an error signal as long as
such a predicate is not associated to any recovery action. Otherwiserrdspondingecovery
action is executed. At the end of teecution, the violated predicatedsecked again. If it is
still false, then the runtime checkeil signal anerror. However, ifthe predicatehas become
true, it can beassumedhat the errohasbeen(possibly)corrected by the recovenction, and
the wrapper can resume its execution. Since various wrappersnaiag concurrently, this
execution model is carried ofr variouspredicates from different wrappers beidigecked
altogether. As wrappers execute concurrently, they prelgent thepropagation of errors. In-
deed, the rationale is that several elementary modificatiamigd out concurrently by the re-
covery acins into the TSC, are able éédminate — or at least minimize — tlegrors at the
origin of a violation of the specification.

A predicate

is violated P Signal error

No recovery action
A recovery action is available
is available

Execution of the
recovery action

The execution__ W

is finished

Reevalua'tion Signal error
of the predicate
The predicate is false

The predicate is true

v
Continue wrapper execution

Figure 4 Execution model of the recovery actions (SerA&SERT

Note however that although the recovery actions can guarantee the satisfaction of the specifica-
tion by means of aalternative implementation of certain elementhmctions ofthe system

(e.g., yielding theunningthread), the erroresponsible for a pdicate violation camowever
propagate, as wrappers cannot cover all faulty situations.

Dependable Systems of Systems 49

From Error Detection to Recovery Wrappers

The implementation of the recovery actions ighly dependent on the targsystem.Indeed,
they are based on the forward error recovery model. In Section 3.4.2, we provide an example of
implementation of recovery actions.

3.4. Application to Real-Time Microkernel Based Systems

3.4.1. Example of a Wrapper

As an example of a wrappésr a microkernel, letconsider atypical kernelservice, namely
Create Figure 5 provides a statement specifying the creation of higher priority tasks carried out
by service Create A comprehensive temporal logic specification of the various services
provided by real-time microkernels can be found in [Rodrigti@t. 2000].

Create

7 (@[1 Create] (thb = created_tH7tha = running/Jprio (thb) > prio (tha)J
@[rsignal] (signaled_th ==thhJrunning ==tha))[J
@ (event ==/ context_switchJrunning == thb [Jtha [J ready (prio(tha))))

Statement

RA (running ==thb) = changeRunning (thb)
RA (thalJready (prio(tha)) = insertThinFrontReadyQ (tha, prio(tha))

Recovery
Actions

Figure 5 StatemenCreatewith its associated recovery actions

The interpretation of thistatement (referred to atatement Creajds as follows.When the
runningtask,represented btha, requestshe creation of a higher prioritaskthb, the kernel
routine corresponding teerviceCreate (indicated byevent rCreatg is executed. Soméme
later, the kerneinsertsthe newly createthskthb into the ready queu@vent7signal). As the

child task has a higher priority than fiarent, the latter is preempted after a context switch op-
eration (event /context_switch As a result, child taskhb is elected torun (predicate
running == thb), while parent taskha is inserted back into the ready queue (preditzde//
ready (prio(tha)).

Theantecedenof statemenCreateis represented by the term:
@[1 Create] (thb = created_tti7tha = runningJprio (thb) > prio (tha)[J
@[rsignal] (signaled_th ==thbJrunning == tha))

while its consequent corresponds to the term:
@ (event ==/ context_switchJrunning == thb [Jtha [Jready (prio(tha))).

Because of operator alwaysl), theimplication antecedent’ consequeninust be satisfied in
all the computations of the targgtstem. Ingeneral, an implication isatisfied eithewhen the
antecedent is false (irrespective of the consequent), or dthrthe antecedersgnd theconse-
guent are true. Therefore, the implicatiorvigated only when the antecedent is truile the
consequent is false. In othewords, an error is detected irsgstemcomputation by statement
Createwhen, at the occurrence e¥ent 1 Create the antecedent is truehile theconsequent is
false.

50 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Two recovery actions have been associated to this wrapper:

» changeRunning (thbwhich will try to substitute theunning task by taskhb whenever
predicate running =thbis violated,;

* insertThinFrontReadyQ (tha, prio(tha)whichwill try to insert taskha at thefront of its
priority level ready queue whenever predidate// ready (prio(tha))s violated.

We havedeveloped a compiler that automaticadiignslates a statement into d@srresponding
wrapper. The wrapper generated by the compilestatemenCreate (referred to asvrapper

Creatg is shown in Figure 6. Ithe wrappercode,routinesANT_1andANT_2represent the
antecedent, while routif@ON represents the consequent.

Each temporal operator of statemE€ntatecorresponds to eall to atemporal operatoservice

of the runtime checker (e. S OMETIME NEXT_EVEN]. The actualalues of the kernelari-
ables are obtained by executingyet_ instruction (e.g.get_created_thget running. Predi-
cates of the antecedent agsessed bserviceCONDITION while those fromthe consequent
are evaluated by servigeéSSERTThe definition of auxiliary variables is allowed within state-
ments. For instance, statem@neatedefines auxiliarywariablestha andthb, which arerespec-
tively assignedthe identifiers of theunning task and othe createdask. Fnally, variable
contextpoints to a structure storirte context of the wrapper. The wrapper context is com-
posed ofthe set of auxiliaryariables definedavithin a statement. For instance, the context of
statemenCreateis composed of auxiliary variabléga andthb. The runtime checkérolds the
wrapper context between the execution of the different routines of the wrapper.

int start () {
return SOVETI ME (ev_begin_Create, (void*) ANT_1, null);

}
int ANT_1 Context* context) {
int thb = get_created_th ();
int tha = get _running ();
OCNDITIO\I (prio (thb) > prio (tha));
context = NEW CONTEXT (); /* Create a wrapper context */
CONTEXT_SET (thb, context, 1); /* Update the context */
CONTEXT_SET (tha, context, 2);
return SOVETI ME (ev_begin_signal, (void*) ANT_2, context);

}
int ANT_2 (Context* context) {

int thb = CONTEXT_GET (context, 1); /* Retrieve context data */

int tha = CONTEXT_GET (context, 2);

int running = get_running (); [* Cbtain kernel data */

int signaled_th = get S|gnal ed_th ();

CONDI TION (signal ed_th == thb & running == tha); /* Request the evaluation of predicates */
return NEXT_EVENT (1, (void*) CON, context); /* Set the next tenporal operator */

i}nt CON (Context* context) {
int thb = CONTEXT GETécontext 1);
int tha = CONTEXT_GET (context, 2);
ASSERT (get _event_id () == ev end _context_switch, NULL);
ASSERT (get_running () == thh, changeRunni ng (thb))
ASSERT (1 sl nReadyQ (tha, ready (prlo (tha) ?
i nsert Thl nFront ReadyQ (tha, prio (t ha)))

Figure 6 WrapperCreate

3.4.2. Example of Implementation of Recovery Actions

Figure 7 provideshe implementation of the recovery actidmngeRunningdefined by state-
mentCreatein Figure 5) for the Chorus microkernel.

This recovery action provides a different implementatica, a variant) of th&ernel function
responsible for yielding the running thread, and is execubeshever dailure affectingsuch a

Dependable Systems of Systems 51

From Error Detection to Recovery Wrappers

function occurgqe.g., violation of predicataunning == thb of statemenCreatein Figure 5).
The recovery action islecomposed intdhe following steps: kernel synchronizatiofi-2),
thread identification (3-4), updating memory and internal kestmattures (5-8), andardware
context-switch (9-11).

int changeRunning (int threadld) {

Assert ({KERN_INTR_LOCK_IS_HOLD_ANY ()); /*1 -no kemel locks must be held */
Assert (SWITCH_IS_HEALTHY ()); /* 2- context switch must be p&ted */
Thread* th =ThreadTable::publicLidCheck (threadld); /* 3 - findthe cpoesling kemel thread */
if (th =NULL) retum FALSE; [* 4 - kemel thread not found, so return */
removeThFromRQ (schedThread((Thread*)th)); /* 5 -remove new thread from ready queue */
if (memSwitchRequired) {
memSwitch((Thread*) currentThread, (Thread*)th); /* 6 - perform amemory switebéssary */

}
currentThread = (Thread*)th; /* 7 - the running thread variable is updated */
CurrentTss->esp0 =(unsigned int) (int)th->thrStack; [* 8 - the stack of the running thread is updated*/
int thThrSwitchCtx =(int)th->thrSwitchCtx; /* 9 - process context block of the new thread */
int oldThrSwitchCtx =(int)&(((Thread_f*)currentThread)->thrSwitchCtx)10 - context of the current thread */
context_switch (oldThrSwitchCtx, thThrSwitchCtx); /* 11 - perform acontext switch */

}

Figure 7 Recovery actiothangeR unnindor the Chorus microkernel
3.4.3. ReflectiveReal-Time Microkernel

In this section, wedescribe how the internal state of a microkernel can be observed and con-
trolled usingreflection[Maes 1987]. In aeflective approach, the targatstemdelivers events

to the wrappers, whereas the wrappers gehéeessanadditional information fronthe target
system. Inreflective terms, théormer relates to the notion ogification, and thelatter to the
notion ofintrospection In addition, reflection also allows the behavior of the target system to be
controlled using mechanisms based on the conceptenEessionThese notions are refined in

the next paragraphs.

In a reflective system [Kiczales al. 1991, Fabre & Pérennou 1998], a clear distinctiomasle
between theso-calledbase-levelrunningthe target system, and tieetalevel responsible for
controlling and updating thieehavior of the targetystem. Information igrovidedfrom the
base-level to the metalevel, that becometalevel dataor metainformation Any change in the
metainformation is reflected to the base-level. The distinction ineieen the base-level and
the metalevel provides a clesgparation of concerrigetween the functionaspects handled at
the base-level and the non-functional aspéetse, error detectioand error recovery) handled
at the metalevel.

Figure 8 detailghe various layers, componerdad mechanisms thatake up theeflective
framework. This framework complies with and extends the principles introdug¢@danet al.
2002].

52 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Metakernel . .
introspection
*

Nrappers

intercession
' ‘\ Real-Time Applications
[Runtime Checker | @ @ @
X ¥

\\mefain_f-ertace
reification Reflection Real-Time Kernel

component

Figure 8 Reflective framework

The base-level obur reflective framework is the real-time microkernethile the metalevel is

called themetakernelcomposed of both the wrappers and the runtime checker. The association
of both layers leads tihe notion ofreflective real-time microkernel The kernel can be ob-
served and controlled through the so-catkftection componenivhich is a special component
added to the target microkernel. The reflection component is responsible for the management of
the intercepted events (i.e., reification), the observation of internal items (i.e., introspection), and
the required actions down into the real-time kernel (i.e., intercesSioa)eified events are de-
livered asupcallsto the metakernel, whereas introspection and intercession are provided by the
reflection component through the so-caltedtainterface The metainterface is defined as a set

of services providing access to thecessary information from and actions ithe real-time
kernel.

As far ageification is concerned, events are delivered to the metakesinal upcalls An up-
call is a jJump instruction inserted into the kernel that diverts the executioririowthe kernel
to the metakernel. Such an upcall is similar to a jump assembly code instrgetioidoes not
trigger any context switch. F@xample, stateme@reatedefines event Create which corre-
sponds to the start of the kernel service that carries out the execution of cylbteraate Ac-
cordingly, an upcall is inserted at the beginning of@neateroutine of thekernel, which takes
as an input parameter the identifier of eve@teate(seeservice create below).

Whenthe kernel enters routine:rvice create, the upcall is executed and diverts execution
to the runtime checker. Eventsignal and: context_switchof statemenCreateare reified in a

similar way.

Clock ticks can also be reified by inserting an upcall at the beginning of the clock handler
tine of the kernel, as indicated hereafter (seex handier below).
service create (...) { clock handler (...) {

upcall (ev _begin create); upcall (clock tick);

} }

On the other handntrospectionandintercessiorfacilities are providedhroughthe metainter-
face. The definition of the metainterface is derift@mn the specification. Indeed, the specifica-
tion points outhe necessargventsdatastructures and functions that must be observed and
controlled. To illustrate thipoint, Table 2lists the set of services of thenetainterface for
statemenCreate

Dependable Systems of Systems 53

From Error Detection to Recovery Wrappers

Temporal logic | Metainterface
Instrospection
created_th int get _created_th @)
running i nt get _runni ng 0
signaled_th int get_signaled_th O
event i nt get _event _id O
prio (th) i nt prio (int th)
ready (level) i nt ready (int level)
th O ready int i sl nReadyQ (int th)
Intercession
running == th int changeRunni ng (int th)
th O ready (p) int insert ThinFront ReadyQ (int th, int p)

Table 2 Metainterface necessary to wrapfaeate

3.4.4. Wrapper Execution while the Microkernel Behaves Correctly

This section illustratethe execution of the wrappengen the microkernel is not affected by
errors. The application considered is represented in Figure 9 by arsat-tihetasksexecut-
ing concurrently and requesting kernel seréceate

|:| l'ask executing Task executing Fask ask ’ Zvent
iser code bl kernel code -elease completion signaling
clock E runtime

handler h I
\ 1signal E |? CRT_1 S_1 S2CS3
t 1 6D clock I
S

‘ handler.

T t'f 1 context_switch(CS_3) _
2 g§ :

CS_3
L context_switch (CS_1) H
T3] T, H Ia
4 L
Cs_1

1 Create (CRT_1) Lcontext_switch 1 signal 1 context_switch -
(CS_2) (CS_4)
o L8 e v, (18 BH I
t. t. tt tott tt. t CRT_1 CS2s2 Cs_ 4
a) Original execution of tasks b) Execution of wrappers by the runtime checker

Figure 9 Execution of wrappe€Createby the runtime checker

Figure 9a representke original execution of thiasks togethewith the eventdriggered into
the microkernel, while igure 9b representhe same set aBisksextendedwith the runtime
checker, which executes wrap@eate The detailed behavior of the origirsdt of tasks rep-
resented in Figure 9a is described in Table 3.

54 Deliverable PCE1

Time

uRher Results on Architectures and Dependability Mechanisms

t, TaskTt; is already running in user mode.

t, T, requests the creation of a higher priority task lIfy means of system cdllreate Event CRT_1 is
triggered when task, enters servic€reatein kernel mode.

t, A periodic tick interrupt leads to the execution of the clock handler of the kernel, which will movge
periodic taskr, from a suspend queue to the ready queue. A signal event (S_1) is triggered just lhefore
taskT, is inserted into the ready queue. Note that the clock hander does not preemp{itaskthere
is no context-switch), but it simply executes at the highest priority on behalf af;task

t, Higher priority taskr, preempts task;. Taskt, obtains the processor after a context switch (event
CS_1).
tt, Taskt, executes.

t, TaskTt, suspends and task is given the processor after a context switch (event CS_2).1Task
continues execution of serviGreatein kernel mode.

ts Creation of task, is completed (event S_2).

t, Because priority of; is higher than priority of;, the latter is preempted by its child, which obtains
the processor after a context switch (event CS_3).

tt, Child taskt, executes.

t, Child task ends execution. Its pareny) ©btains the processor after a context switch (event CS_4)
tg Taskt, finishes executing servi€reatein kernel mode, and continues execution in user mode.
t, Taskt, ends execution and suspends.

Table 3 Original execution of tasks

WrapperCreateis executed by the runtime checklering the intervalsrepresented inFigure

9b, labeled by the kernel event at the origin ofabivation of the runtimehecker. Remember

that the runtime checker is a sort of virtual machine in charge of executing the wrapgdess,
activatedafter the occurrence of aventtriggeredwithin the targetsystem (denoting atate
change). Note also that the runtime cheda@s nopreempt, busimply diverts the execution

flow of the task running athe moment of it@ctivation, so no contexdwitch is triggered. In

other words, the runtime checker executes ahitjeest priority on behalf ahe running task.

In consequence, checks carried out by the wrappers by means of the runtime checker do not
modify the original scheduling of tasks, as shown in Figure 9b.

Each activation of the runtimghecker lead¢hus tothe execution of one meveralwrappers
concurrently. The steps followed by the runtime checker to execute wiGmgaee as well as
the checks performed by this wrapper, are detailed in Table 4.

Events Runtime checker actions
Activated Expectedtype| Wrappe Routine Cxt Expressions checked Resut
r

CRT

CRT_1 CRT Create ANT_1 prio (t1) > prio €3) TRUE

S 1 S, CRT Create ANT_2 cl Signa|ed_th =10 running ==t3 FALSE

CS 1 S, CRT

CS 2 S, CRT

S 2 S, CRT Create ANT_2 cl Signa|ed_th =10 running ==t3 TRUE

CS_3 Any Create CON cl event ==CS TRUE
running ==tl TRUE
13 Oready (priot3)) TRUE

CS 4 CRT

CRT

Table 4 Event occurrences and actions carried out by the runtime checker toGredfg

Dependable Systems of Systems 55

From Error Detection to Recovery Wrappers

Column Activatedcontains the variousventstriggered duringthe execution of the system,
while columnExpected typeorresponds to the type e¥ents expected by the runtime checker
at a givermoment.ColumnsWrapper Routineand Ctx refer respectively to the name of the
wrapperactivated, tahe wrapper routine executealhd to the wrapper contensed.Column
Expressions checkespecifiesthe verificationgperformed by the wrapperklote thatauxiliary
variablegha andthb of Figure 5 have been substituted in this column by the task idettigiger
representt(, T,, etc.),depending on the information contained into ¢oerespondingvrapper
context.

 Initially, given that Create is thenly wrapper installedfor the sake of clarity), theingle
type of event expected by the runtime checkeQOreate (denoted CRT).

» At the occurrence odéventCRT 1, routine ANT_1 of wrapper Create is executed. As the
child task €,) has higher priority than its paremt)(eventt signal (S) is setup by therap-

per as an expected event. Context c1 is amtioisient allocated with auxiliary variables tha
= 1, and thb =t,. Next, the runtime checkeyuspendsand waits for eventst Create and
1 signal.

* Event S_1 (which signals tasy triggers routine ANT_2 of wrapper Creataderwrapper
context c1. Given that the signaled task {s not the child otaskt, (namely,taskt,), the

checkedexpression is falselhus, the runtime checkauspendsand keeps waitg for
eventst Create and signal.

« Events CS_1an@S_2areignored since thegre not expected by the unique wrapper in-
stalled.

« EventS_2 (which signalst,) triggers routine ANT_2 of wrappéZreate under wrapper

context c1. The antecedent of Create is then evaluategetgince thetask signaled during
the execution of, is indeedrt,. The runtime checker waits théor the occurrence of any

event.

» At the occurrence of event CS_3, the consequent of Creatalisatedunder context cl. It
is verified that the event triggered is a context switch, that the running taséns that task
T, hasbeen preempted into the ready queue. Since thgmessionsire evaluated toue,

statement Create succeeds and no error is thus signaled.

» Finally, event CS_4 is ignored since the running checker is waiting for eQesste.

Note that if task, had requested a task creation, two instances of the same wrappehayeauld
been executed concurrently. For 8ake of concisenesthie example illustrates intentionally a
single wrapper instance.

3.4.5. Wrapper Execution when an Error Impacts the Microkernel

In this section, we illustrate the behavior of the wrappers when the microkernel is affected by an
error (Figure 10). Such an errt@ads to an incorrect scheduling of tlasks (Figure 10a).
Then, wrappe€reatesuccessfully correct the error by means of its assodiatedery actions
(Figure 10b)

56 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Fask executing ¥ Task executing rask ask ’ E_vent_
aser code bal kernel code elease completion signaling

runtime
hacl?(;:llgr H checker I I I
‘T nal CRT_1 S_1 S.2CS_3
signal
T 1 clock ‘! I
handler i
S 1
T, g i ﬂ‘ T, _kﬂ E
Scontex(iswitch (CS_1) tcontext_switch (CS_3) 0 ¢hangeRunning (t1)
6 FA T 1 % B
” csj CS_3
1 Create (CRT_1) { context_switch " signal 7] W
(CS2) (S_2) T3 IE g E
t.o tl1 t ‘t3 t‘-A ti > CRT_1 CS2s 2 CS_ 4
a) Incorrect execution of tasks b) Detection and recovery of the error by the wrappers

Figure 10 Example of an error detected and recovered by the wrappers

As depicted in Figure 10a (to be compared to Figure 9a), after the occurrevemtsignal at
instant {, the kernehasalready inserted theewly createdaskt, into the ready queu&iven
thatt, is the highest priority task, it should bkected tarun. However,because of an error af-
fecting the kernel scheduler, the lowmority taskt, becomes running instead, juster a
context switch. This leads in the sequel to an incorrect scheduling tastee (to becompared
to the correct scheduling presented in Figure 9a). This error is successftaigted byrecov-
ery actionchangeRunningf wrappeiCreate as illustrated in Figure 10b and in Table 5.

Events Runtime checker actions |
Time | Activated Expected Wrappe Routine Cxt Expressions checked Resulk
type r
CRT
CRT_]. CRT Create ANT_]. pno ('[1) > pr|0 ([3) TRUE
S1 S, CRT Create ANT_2 ¢l sjgnaled_th =x1 Orunning ==t3 FALSE
CS 1 S, CRT
CS 2 S, CRT
5_2 S, CRT Create ANT_2 cl signa]ed_th =10 running ==13 TRUE
CS_3 Any Create CON cl event ==CS TRUE
running ==t1 FALSE
chahgeRunnlng) TRUE
running ==tl TRUE
v 13 Oready (priot3))
CS 4 CRT
CRT

Table 5 Event occurrences and actions carried out by the runtime checker during the recovery of an error

As described in Table 5, the completion of context switéh 3leads to the execution obu-
tine CON from wrappeCreate After checking theactivatedevent,the wrapper compares the
identifier of the running task () with that of task,. As they are different tasks, this chdals,
and the wrapper triggers the recovery actibangeRunningr(). Such aractionwill try to put
the system into gpossibly) correctstate, by modifyng the necessaryables,structures and
registers of both the microkernel atie processor so that task becomes th@ewly running
task (an implementation example is provided iguFe 7). Wherthe action finishes, the wrap-
per verifiesagainthe identifier of theunning task. Botilable 5and Figure 1O0fllustrate the

Dependable Systems of Systems 57

From Error Detection to Recovery Wrappers

case in which the recovery actisncceedgsee Figure 9b for proaheck).Next, the wrapper
engageshe verification of the lagtredicateand theevaluation of statemer@reateis finally
satisfied. As illustrated ini§ure 10b, the scheduling of thmsksafter the execution of the
recovery action is correct (to be compared to the correct scheduling presented in Figure 9b).

3.5. Case Study

We characterize the error detection and recovery coverage and the performance of wrappers in a
real-timesystem consisting dhe Chorusmicrokernel[Chorus 1997}and themine drainage

control systenapplication[Burns & Wellings 1997]. This is gpical runtime workload that

we have already used in other types of studies [Rodrigjuez22002a].

The Chorus kernel was encapsulated with a set of error detection and recovery wrappers
generated from an extended kernel specification, which encompassed the specification defined
in [Rodriguezet al. 2000]. In total, 31 wrappers were used, corresponding to 18 scheduling
statements, 2 timer statements and 11 synchronization statements. Also, a set of 18 recovery
actions was implemented and used by the wrappers.

The mine drainage contrelystemapplicationhasbeenused by a number of autho(s.g.,
[Burns & Lister 1991, Joseph 1996]). Tetaileddescription of the application can fmind

in [Burns & Wellings 1997]. Table 6 contains the main attributab®fasks that compose the
application.

Task Type Priority T(ms) B(ms) C(ms) D(ms) R(ms)

CH4 Sensor Periodic 10 80 3 12 30 17.16
CO Sensor Periodic 8 100 3 10 60 37.23
Air-Flow Sensor Periodic 7 100 3 10 100 47.27
Water-Flow Sensor Periodic 9 1000 3 10 40 27.19
HLW Handler Sporadic 6 6000 3 20 200 67.32

T: Minimum inter-arrival time (task period) B: WC blocking time C: WC execution time D: Deadline R: WC response time

Table 6 Attributes and worst-case responigees of tasks

The application is used to control a mining environment. The objective is to pump to the surface
mine water collected in sump athe bottom of theshaft. The main safetyequirement ighat

the pump should not be operated when the level of methane gas in the mine reachealaehigh
due to therisk of explosion. Thdevel of methane is monitored btask CH4 Sensor. Other
environment parameters monitored arelével of carbon monoxide (taskO Sensor) and the

flow of air in the ming(task Air-Flow Sensor). The flow of water in theipes ofthe pump is
checked by taskvater-Flow Sensor, whereas thavater levels in thsumpare detected byask

Hlw Handler.

3.5.1. Assessment by Fault Injection

MAFALDA-RT [Rodriguezet al. 2002aJwasused to assedhe efficacy and the performance
of the kernel wrappers. The tobasbeen developed tencompasshe assessment by fault

58 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

injection of both hard and softeal-time systems. Itprovides a facility toeliminate time
intrusiveness by controlling the hardware clock of the tasgstem andhe externaldevices

(e.g., sensors and actuatorSuch afacility was used toeliminate the temporal overhead
introduced both bythe tool itself and by the wrapperBherefore, theaskswere not aware
neither of the execution of the tool nor of the wrappers from a temyevgboint. Note that we
areusingthe wrappers in a testbed system, not in the fgatem; weare thus interested in
evaluating wrapper coverage and wrapper performance without increasing the original execution
time of the tasks. A full account of the MAFALDA-RT tool canfoend in[Rodriguezet al.

2002a].

We carried out three different fault injection campaigns, in which thyettaof theinjected
faults were thescheculing component (campaig®CH), the timers component (campaign
sTIM), and thePriority Ceiling Protocol component (campaigi"CP) ofthe microkernel.
Table 7 brily describeshe types of faultanjected in each campaign. It is worth ingt that
MAFALDA-RT systematically selects randomly the targetimection, and that it checks
whether thecorruptedelement isaccessed duringhe experiment, i.e., whether thault is
actually activated (only activated faults are considered).

Campaign Injected faults

sSCH Substitution of theinning task by the next highest priority ready task.
sTIM (#1) Random corruption by single bit-flip of the expiration time of a randomly selected sporadic
timer.

(#2) Avoiding once the insertion of a randomly selected sporadic timer into the timeout quele.
(#3) Avoiding once the deletion of a randomly selected timer from the timeout queue.
(#4) Random corruption by single bit-flip of the expiration time of a randomly selected pegriodic
timer.
(#5) Avoiding once the insertion of a randomly selected periodic timer into the timeout queye.
(#6) Avoiding once the expiration of a randomly selected timer.
pPCP Random corruption by single bit-flip of PCP system calls parameters during a call invocatjon.

Table 7 Faults injected (only one fault type injected per experiment at a random time)
3.5.1.1. Assessment when the Kernel is not Wrapped

Figure 11 reportshe distribution of thdirst fault manifestations observed in the experiments
(#Exp) of the campaigns carried out in the non-wrapped version of the system.

Dependable Systems of Systems 59

From Error Detection to Recovery Wrappers

Incorrec Application gy qtery
results hang hang

Deadline 9
. 0.1% 0.6%
Coo;r‘;)d missed Incorrect Deadline '~ " " 01%
’ Error

0.7% Incorrect result missoed
8.7% 0.1% status
19.4%

Application
hang
0.1%

Error
status
54.8%

Correci
79.7%

a) sSCH b) sTIM c) pPCP

The most critical situation occurs when an error propagates to the application, making it fail either in the time or in the value
domain. Timing failures are represented by classes Deadline missed, Application hang and System hang, while value
failures are represented by class Incorrect result.

The error detection mechanisms of the microkernel are represented by classes Alarm, Error status and Exception.
Class Correct represents the case when both the time production and the value of the application results are correct.

Figure 11 First fault manifestations observed for the set of experimé&ntp .Y of each campaign

Faultsinjected in campaigeSCH prooked thesubstitution ofthe running task by dower
priority taskwhile theformer taskwas leaving a criticadection. Thempact of this error was
catastrophic to the application, whichissed deadlines andelivered incorrectresults in
respectivelyl0.7% and 6.5% ahe cases. Most erronsere howevesignaled by means of a
built-in error detection mechanism. Indeed, an alarm detected a deadline miggetbanof the
cases, whilé4.8% ofthe times the errostatus mechanism signaldte presence of aerror
affecting a synchronization system call.

Conversely, 28.7% of the faults injected in campaign sTIM led the applicatiesu@ncorrect
results.Indeed,faults #5 and #6revented perioditasks CH4 Sensaand CO Sensorfrom

being released, while they anmequired to the correct computation ksults. Nevertheless,
71.2% of the injected faults did not lead to any observable failure at the application level. After a
careful analysis, we observed that this was due to: i) the internal redundancy of thevalueout

of the timers, making injections #hd #4 indective; ii) the elimination ofalarmswhile the
concernedasks do not mistheir deadline (injection #2); iii) the triggering of alarms that are
not related to any application task (injection #3).

Few errors impaired the system when the parameters of the synchronization system calls were
corrupted (campaign pPCP), because of the high percentage of correct experiments observed
(79.7%). This is mostly due to the corruption of unused bits within parameters (randomly
selection by the fault injection tool). Conversely, the consistency checks implemented within the
kernel API (represented by clasigsor statug detected most errors (19.4%). Few errors (0.9%)
could thus propagate and lead to the failure of the application.

3.5.1.2. Assessment when the Kernel is Wrapped for Error Detection

We carried out the same fault injection campaigns usitgthe error detectioncapabilities of
the wrappers. The distribution of tlfiest fault manifestations observed are reportedigufe
12.

60 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Wrapper Wrapper Application Sz:tnem Error
detection detection hang (0, status

100% 100% 11%

@

0.1%

Wrappel
detection
19.8%

e

a) sSCH b) sTIM c) pPCP

Figure 12 First fault manifestations observed when wrappers are used for error detection

Fromthe 31 wrappers installed, weport in Table 8thosethat detected an mr first in an
experiment, namelyfimer_1 Take_winlock Take_1 Give_1 and Give_owner Their whole
specifications are provided in [Rodriguetzal. 2002a], and their role is briefly explained in
Table 8. We also observed that wrap@eeate (Figure 6) did notletectany error.Indeed, all
the taskswere created at thbeginning of the experimenig.e., wrapperCreate was only
activated athe beginning of thexperiment), whilefaults were injected in the middle of the
experiments. Hence, wrapgereatecould not detect the errors caused by these faults.

W rapper sSCH sTIM pPCP
Timer_1 1239 100
N %
Take winlock| 306 34%
Take 1 305 34%
Give_owner 287 100
%
Give 1 294 32%

e Timer_1lchecks the kernel service responsible for setting timers
* Take_winlockandTake_1icheck the kernel service of the PCP responsible for assigning a critical section.

* Give_owneandGive_1lcheck the kernel service of the PCP responsible for releasing a critical section.

Table 8 First wrappers detecting an error

The error detection coverage provided by wrapperner_1 Take winlockTake landGive 1

in campaignsSCHandsTIM is perfect. Indeed, theljave systemtically interceptedall the
errors atthe origin of the fault manifestations oigbres 10a and 10M&very failure hasbeen
avoided bythese wrappers. Problenpseviously detected by means of amoerdetection
mechanism of the kernel, are now notified by a wrapykr a shorterlatency. Finally,latent
errors within the kernel that did not previously leacgiby observabléailure, are now sigaled
by a wrapper. Conversely, in campaigRCP, wrappeGive_ownerdetected, with a&horter
latency, the samelass of errorgpreviously detected by means of an error stawsjving the
corruption of a parameter handling a critical section identifier. The remaining failure this of
campaign, although not important, could not be further reduced by the wrappers.

Dependable Systems of Systems 61

From Error Detection to Recovery Wrappers

3.5.1.3. Assessment when the Kernel is Wrapped Eoror Detecion and Error
Recovery

The campaigns shown in Figure 12 only considdled error detection capabilities of the
wrappers. Inthe sequel, we concentrate on the capacity of ti@pers to put theystem in a
(possibly)correct state by means of the recovacyions. Accordingly, we activatedhe error
recovery capabilities of the wrappemnd we carried out again the same fault injection
campaigns (see Figure 13).

Application System IncorrecApplication Applicatiol Syster
Incorr(latct hang hang result hang Sg/ster hang r{ang

resu 0.79 0.1% Al 9 an
% % Alarm Deadiine 1-5% 0.8% 9 0.9% 0.2%

0.3%

1484
Exp.
Wrappei

recovery
98.9%

0.1%
Alarn
0.1%

0.1%
Wrappe

recover
23.9%

a) sSCH b) sTIM c) pPCP

Figure 13 First fault manifestations observed when wrappers are used for error detection and
recovery

Under the identical experimental conditions used, the wrappers detecting an error are the same
as before (see Table 8). However, in this case, after the detection of an error, these wrappers
executed a recovery action. We observed that ey a predicate of these wrappers was
violated as a consequence of an error, such a predicate systematically toaeaafter the
execution of its associated recovery action, i.e., the recovery actions were locally successful.
However, we only classed an experiment ag@pper recoverysee Figure 13) when both the
activated recovery actions were successful and no errors were observed in the sequel of the
experiment. On the contrary, when the activated recovery actions were locally successful but one
or several errors were observed in the sequel of the experiment, the latter was classified
depending on the type of thiest error then observed. These considerations are reflected in
Figure 13, which reports the distribution of the first fault manifestations observed when the
wrappers were equipped with the recovery actions. In addition, from the 18 recovery actions
implemented, we report in Table 9 those that were actiiagtdn an experiment classed as a
wrapper recovery, namelychangeRunning insertTolnTimeoutQ) setTimeoutTicks and
setTimeoutTicksTheir role is also briefly explained in the table.

Recovery action sSCH STIM pPCP
changeRunni ng 1467 100%
i nsert Tol nTi meout Q 783 66%
set Ti meout Ti cks 397 34%
0
changeOaner CS 353 100%
» changeRunni ng Changes the running task.
* insertTol nTi neout Q Inserts a timer into the timer queue.
Changes the number of ticks (i.e., timeout) of a
» set Ti meout Ti cks timer.
Changes the critical section of the owner task
» changeOnner CS (PCP).

Table 9 First activated recovery actions

62 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Figure 13 shows thaall the errors appeared in campaignrsSCH and sTIM affecting
respectively98.9% and 97.3% dthe experimentsvere efficientlycorrected by the recovery
actions. However, theycould not prevent esidual errors (that were not corrected) from
provoking the failure of theystem in 1.1% ofhe cases in sSCH, and in 2.6% &T1M.
Conversely, we observed ttalt the errors previously detected by a wrapper in campaign pPCP,
were here corrected by means of recovery actiamgeOwnerCS

3.5.2. Integration of Wrappers into a Real-Time System

In the fault injection campaigns carried out in Section 3.5.1have eliminated (thanks to
MAFALDA-RT) the temporal overhead induced by the vr@s so as techaracterize abest
their error detection andecovery coverage,without perturbing the behavior of the target
application. The quantitativeeasures obtained from thetudy alscallow us to determine the
set of wrappers optimizing the ratomverage vs. temporal overhead that carsumessfully
integrated into the target real-time system in operation.

In general, a fault-tolerant mechanism can be integrated into a real-time system only when, in
spite of the additional overheads it provokes, none ofhtrel deadlines of the real-time
application is missed; in other words, when a feasible scheduling exists. For stafatyreal-

time systems, such a feasible schedphas to be guaranteed off-line (i.e., before the system is
put into operation) by means of a schediitpliest. The earlier this integration takes place in

the development process of the target real-time system, the more it is readily to be achieved,
becausdoth application and wrappers can be developed together.

In the sequel, we show how the temporal cost of the wrappers caadgecompatible with the

hard deadlines of the target real-tirgplication, while maximizing the rer detection and
recovery coverage of therappers. Neither the originaglystem (applicationkernel, hardware,

etc.) nor its temporal constraints (deadlines, WCETs, e#&rg modified, whichmeansthat
wrappers are to be integrated into an alreddyelopedsystem. First, we extend the
schedulability test of the application to take into account the overheads caused by the wrappers.
Then, we use the fault injection experiments carried out in Section 3.5.1 to analyze the influence
of errors onthe behavior of thevrappers. Thisallows us to experimentally calculate their
overhead. Finally, we obtain treets of wrappershat provide thebest errordetection and
recovery coverage, while guaranteeing task deadlines.

3.5.2.1. Integration of Wrappers into the Schedulability Test

The schedulability testised toverify the satisfaction of deadlines in the mine drainage
application [Burns & Wellings 1997] is related to a dynamic, preemptive schedtiies fixed

priority assignment scheme for a uniprocessor architecture-based system. However, this test can
be distinguished from similaests of its kind bythe fact that it igssued from acomplex
systemmodel that takes into account tempocaists imposed byhe underlying operating
system(context-switches, interrupts, clock ticks, etc.). Wave furtherrefined such a model

and extended the schedulability test with the execution times of the wrappers (Figure 14).

As we have illustrated in Section 3.4.4, the wrappers execute ligthest priority on behalf of
the running task. In consequence, the response time of a task increases not only because of the

Dependable Systems of Systems 63

From Error Detection to Recovery Wrappers

wrappers activated during its execution (tern), but also because of thoaetivatedduring the
execution of higher priority tasks (term). Termw, represents thuthe worst-case execution

time of the wrappers in an instancetaskx. The schedulability test is satisfied if and only if
the worst-case response time of every task is lower than or equal to its deadline.

Uiltasks, R; <D,

R =W, +CS' +C +B + z(%R;E(W +Cs'+CS? +C))

JORPTE) gj

WH O e+
& ek U Py

W. Maximum execution time of the wrappers in an instance
of taski.
R, Worst case responsiene of taski.

D. Deadine of task.

cs',cs? Ma'>t<irrr]1um execution time of the initial and final parts of a context-
switch.
C, Worst-case execution time (WCET) of task

B, Worst-case blocking time of task

) Set of tasks whose priority is higher thian
T, Period (or minimum inter-arrival time) of tagk

I's,[p Set of sporadic and periodic tasks.

I[H Maximum execution time of an interrupt handler.
T, Clock period.

CT°¢ Maximum execution time of the clock handler.
CT* Overhead of moving a single periodic task to the dispatch queue.

Figure 14 Schedulability test
(CS1=0.016 ms, CS2 =0.012 ms, Tclk =10 ms, CTc =0.01 ms, CTs =0.03 ms)

In the following sections, it is worth noting therm "~ is measured experimentally: the

maximum value ofthe executiortime of the wrapers is measuredirectly from the target

system, andssigned to ~. This technique does nguaranteehowever that the so-obtained

value derives from the worst-case scenario a@xecution, and hence that ieffectively
corresponds to the worst-case value. The same problem occurs today as far as the determination
of worst-case overheads of operatgygtems isconcerned [Colin & PuauR001]. Indeed,

using techniques based static codeanalysis in these casessidll an open problem that was

out of the scope of our work.

3.5.2.2. Integration of Error Detection Only

When wrappers are used for error deteatioly (see Section 3.5.1.2), their maximawerhead

appears in the absence of faults. Indeed, when an error is detected by a wrapper, the system (and
so the wrapper) is usually stopped (fail-safe behaviog)overhead induced by the wrapper in

this case is thus lower that if it had finished its execution.

64 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

First, we have measured experimentally in the absence of faults, the maxiowerhead
generated by the wholget of wrappers into a task instan&eich measureare reported in
columnW (ALL)of Table 10.

Tasks W (ALL) W (ACT-TIM) W (ACT-PCP)
CH4 Sensor 18.16 2.22 7.47
CO Sensor 7.50 219 2.48
Air-Flow Sensor 7.51 2.21 2.48
Water-Flow Sensor 9.82 2.05 3.61
HLW Handler 9.66 1.50 3.73

Table 10 Maximum overhead of the wrappers in a task instance (ms)

Next, wehaveintegratedsuchmeasurements into the schedulability test igufe 14 and we
have calculated the worst-case response time of the tasks, reported in RalAixir) of Table
11.

R (ACT- R (ACT-PCP)

T ches D R (ALL) TIM)
CH4 Sensor 30 35.34 19.38 24.64
CO Sensor 60 72.76 43.72 50.83
Air-Flow Sensor 100 138.18 55.97 63.35
\éV:r:t:r;rlow 40 55 21 31.49 38.29
HLW Handler 200 281.16 77.53 131.81

Table 11 Worst-case responsienes of the tasks in the presence of the wrappers (ms)

According to the results, in the worst-case scenario, all tasks miss their deadline wivkalehe
set of wrappers is used.

We have apptd the same procedure to more restrictets of wrappers, formed by the
combination of the wrappers that were activated as a consequence of dgnaangy,wrappers
Timer_1 Take_gainlockTake 1 Give_ownerndGive_] reported in Table 8). In otharords,
we haveeliminatedthose wrappershat did not contributed to increase theoerdetection
coverage, but that caused a considerably temporal overhead. Accordintatlyses, theets
of wrappers thasatisfythe schedulability testyhile maximizing the error detectiazoverage,
are the following:

* Set ACT-TIM: Formed bythe singleactivatedwrapper checking temporization, namely
wrapper Timer_1. The error detection coverage it provides in campailyhis maintained
(i.e., it is the same as that reported in Figure 12).

» Set ACT-PCP: Formed byhe activated wappers checking synchronizationamely
wrappers Take_gainlocake_1, Give_owneand Give_1. The error detecti@moverage
provided by this set in campaigns sSCH and pPCP is preserved (see Figure 12).

The temporal overheads of theses W (ACT-TIM)etW (ACT-PCP) are reported infable
10, and the response times of tasktheir presenceR (ACT-TIM)etR (ACT-PCP) in Table
11.

Dependable Systems of Systems 65

From Error Detection to Recovery Wrappers

Note that the wrappers are being integrated into a taygédm whose conception adevelop-
ment are not modified. By modifyingpmetiming constraints ofthe systemfor instance by
increasing the deadline of tadkater-Flow &nsorby only 5 msthe set of wrappers resulting
from the union of set&CT-TIMandACT-PCPsatisfies the schedulability test.

3.5.2.3. Integration of Error Detection and Error Recovery

When wrappers are used for error detection and error recovery (see Section 3.5.1@)ertheir
head depends ahe number otrrors hey detect. Indeed, the greater thenber ofdetected
errors, the greater the number of executsmbvery actionsand so the greater thwverhead
caused by the wrappers. Nakat inthis case, thdault modelused is a keyactor. Instead of
using atheoretic fault model (like in [Burnet al. 1999]), weusethe experimentally injected
faults in Section 3.5.1 to analyze the behavior profile of the wrappers in the presence of faults.

First, we measuredpr each campaign, the maximum overhead éflathe executed recovery
actions induced in a task instan@@ble 12). Clearly, this overheaddepends onhe activation
profile of the recovery actions in the presence of falilten, we havenalyzed which of these
activation profiles can be combined to the wragesidentified in the previous sectidifable
13). Theobjective is that, despite thextra overheadmposed bythe recovery actiongasks
deadlines be guaranteed and the error detectionrenadery coverage of therappers be
maximized. Taking into account the overheads reportethble 12, the schedulability test is
satisfied for the wrapper sets and the activated recovery actions presented in Table 13.

Tasks sSCH sTIM pPCP
CH4 Sensor 2.51 0.02 0.16
CO Sensor 0.10 0.05 0.05
Air-Flow Sensor 0.10 0.03 0.05
Water-Flow 0.15 0.02 0.09
Sensor
HLW Handler 0.13 0.01 0.07

Table 12 Temporal overheads induced by all the activated recovery actions (ms)

ACT-TIM + sTIM
ACT-PCP + pPCP
ACT-sSCH + sSCH

Table 13 Wrapper sets and activated recovery actions that satisfy the schedulability test

Despitethe additional overheads generated by the recovery actions, wisgip®€T-TIM
guarantees the satisfaction alff the task’sdeadlines in campaign sTIMyhile procuring the
same ratios of error detection and recovery previously measured (seelBjgureesame can
be saidwhensetACT-PCPis used incampaignpPCP. ConcerningampaignsSCH, it was
necessary to define a more restricted wragpernamehACT-sSCH composed of wrappers
Take_gainlockTake landGive_ 1 Neverthelesssuch a seprovides the same rer detection
and recovery coverage previously observed in campaign sSCH (see Figure 13).

66 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

3.6. Discussion

3.6.1. General Discussion

In this chapter, wlaveshownthat the conventional notion of error detectwarappers can be
extended to the inclusion of recovery actions to constitute fault toleveragpers. We also
showed that the temporalverhead ofsuch wrapers can benade compatible with theard

deadlines of a target application, while maximizing error detection and recovery coverage.

The efficiency of the fault tolerance wrappers is due tofdbethat they are developdmbm

precise temporal logic specifications. At runtime, they can confideldignosethe source of

the problem that altered the state of #ystem and triggethe most appropriategecovery

actions. The concurrent execution of the wrappetps bothcheck thesystembehaviorfrom

several angles and prevent the propagation of errors. The evaluation of the assertions carried out
by the wrappers on a real-time microkernel relies arflactive approach to capturevents

(notion of reification), to obtain internal dat@notion of introspection), and texecute the
recovery actions (notion of intercession).

From adependability viewpoint, theesults obtained ithe casestudy by usindault injection
showthe real benefiprocured by thi:iewform of comprehensive wrapperklowever, since
wrappers are to be integrated intoeal-time system, the temporal overheads they introduce
must also be taken into account. Although this aspettbeaddressed asarly aspossible in

the design ofthe real-time applicatiompecessary tradeoffs must be decided regarding the
expected coveragaqrured by a set of wrappers athed performance overheads that can be
accepted. This decision is left open to the real-time system designers. Regardispeitiiswe
have provided an experimental methodologgupport such an analysis that is basedaaoit
injection toassesshe impact oferrors inthe overheads of the wrappers, and to determine the
set of wrappers that meets hard task deadhma@ge maximizing the eor detection and
recovery coverage.

The wrapping methodology presented in the previous chapters can be appliGDRBA-

based system at thrésvels: at the interface between thgplication and theniddleware, at the
interface between the middlewaaed the operating system, and at the interfaateveen the
middlewareand the network. Ireach case, the wrpers mediate between theomponents
interacting at the interfacesnsuring thattheir respective expectations ameet, even in the
presence of faults. The types of properties tzat be verified by the wrapperand the
techniques for checking and meeting the properties, are different in each case,sclased
in the next three subsections.

3.6.2. Wrapping the Interface between the Application and the Middleware

In the samevay as aroperating systenmay fail when subjected to invalid parameters in a
system call, a middleware implementation may fail if the application passes invalid parameters to
a CORBA method callConsider forexample theobject to string method that is

defined by the CORBA specification, and which may be invoked in a C++ program as:follows

orb->object_to_string(obj)

Dependable Systems of Systems 67

From Error Detection to Recovery Wrappers

Some middleware implementations crash when the object referends invalid. In particular,

the Ballista projechasinvestigated the impact difiis class of fault§that simulates primarily
software faults) on a number of middleware implementationsfamt! aconsiderable number

of robustness failures [P&t al. 2001]. The authors found that the addition of simple wrappers
protecting these methodagas sufficient tamprove theirrobustnessvith respect to these fault
classes. The technique they usedrplement the wappers watrusive,since it consisted of
modifying the code of theniddleware implementation @dd error checking of the parameters
to certain CORBAmethodsHowever,similar forms of errorchecking could bemplemented
using lesdntrusive techniguesuch as hookingnto the symbol resolution mechanism used
with shared libraries on Unix-like systems.

Unfortunately, this form of wrapping can only be applied to a limited subset of the functionality
provided by an ORB, because the interfaetween application codand code from the
middleware is in general difficult to identify. Insgstem running on microkernel, there is a
clear separatiorbetweenuser space and kernel space (often enforogith the help of the
memory management hardware). Accordingly, the set of system calls implemented by the kernel
constitutes arexplicit interface between the two layers. In contrast, in a middleware-based
system, application code is generally more closely intertwivitdcode fromthe middleware.

In a CORBA-basedniddleware for example,code that is automatically generateain OMG

IDL interfaces (thestubsand skeletonswhich cantrol the process inwhich aprogramming
language methodall is transformed into a ,rote methodnvocation), islinked togethemwith
codewritten by the applicatioprogrammer. Thdorm of this automatically generated code
depends both othe programming languagesed atthe applicationlevel and on the choices
made by théORB implementor, whichmakes it difficult to isolate a specific interfaadere
wrapping could be applied systematically. In consequence, any wrapping teclhimgque
operates at thisevel would be specific to a programming language and to a particular
middleware implementation (and possibly a specific version).

3.6.3. Wrapping the Interface between the Middleware and the Operating
System

A middleware implementatiomlepends onservices provided by the underlying operating
system. Andter The interface between the middlewanel the operatingystem is a potential
error propagation channel in a middleware-based system. If the opengitegibehaves in an
incorrect or unexpected manner, the robustness of the system may be significantly impaired.

There are a number of ways in which errors in the operating system, or unexpected situations in
the operating environment, may propagate to the middleware. The first is via the return code of a
systemcall'>. For instance, arite() systemcall used bythe middleware tsenddata over a
network stream returns a status code indicating the number of bytes that were acitteriyto

the network, or aerror code. Irthe nominalcase, theaumber of bytesvritten is equal to the

length of the argument to the systeatl, butthe callershould alsacheckfor a partial write of

151n the following we use terminology for POSIX-like operating systems. The samecimlddsbe applied
to most modern operating systems.

68 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

the data. The system call can also result in a number of different error codes, indicating that the
network connectiomasbeen closed, or thatlew-level error ocurred, or that theystemcall

was interrupted andghould beretried. Other systeroalls for memory alloation oraccess to

stable storage may fail due to exhaustion of system resources.

A robustmiddleware implementatioshouldcheck the returicodes fromall systemcalls, and
take appropriate meaes foreachpossible return code. Fanstance, the failure of arite()
system call to a network socket should be signaled to the application levelimha FAILURE
exception. AnNEINTR return code from a systerall indicates that thesystem call was
interrupted, and should be replayed.

Unexpected return codes are not the only error propagation channeéh&mperatingsystem

to the middleware. The kernel may also send unexpected signals to the middleware, causing it to
fail, or omit to send signals that were expected by the middleff@arenstance to inform ithat

a timer has expired). The kernel may also fail in the time domain, by not responding to requests
within the time span expected by the applicafimm instance, whemisingthe NFS distributed

file system, when a network file server becomes inaccesaitdeprocesses usitiiges on the

system willtypically be blocked until the file servetarts responding again). Othkernel
services that can cause failure are the threading and synchronization primitives.

Preliminary results obtained Wgult injection have shown thatthe behaviour of &£ORBA
implementation can be significantlgisturbed when kernelfunctions are corrupted. For
instance, when the operating system's memoggources are exhausted, thevICO
implementation of the CORBAVvent Servicevoluntarily aborts, instead of the morebust
alternative ofsignalling aNO_MEMORY exception to the clienfThis is an illustration of how
fault injection experiments can allow the identification of a specific softi@aite which iseasy
to correct.

If a middleware implementation Ising integrated into BSoS as a COT$omponent, it is
difficult to modify the middleware to correct these classes of robustness weaknesses. It is much
easier to apply wrapping techniques to the operating systeardén toimprove its failure

modes and to force them tetter matchthose expected by the middleware. The casady
reported in this chapter demonstrates that wrapping of executive software compoablesas
ensurethe validity of relativelysophisticated propertigsuch asthe scheduling behaviour of
threads); this techniguzan improve the@peratingsystem’sfailure profile asperceived by the
middleware, thus enhancing the overall robustness of the system.

3.6.4. Wrapping the Interface between the Middleware and Remote Objects

In [Marsden & Fabr&001], we showethat CORBA middleware implementations are quite
sensitive to corrupt messages arriving over the network, in certain cases cugsimnngception

of an incorrectly formatted method invocatiowhile this interaction occurs via services

provided by the operatingystem (reads andrites on socket streams), vagstinguish this

interface from the one addressed in the previous paragraph, because in the present case it is the
data received via the system call that may cause a problem, rather theor @ods returned by

the system call.

Dependable Systems of Systems 69

From Error Detection to Recovery Wrappers

Two forms of wrapping arepossible toenhance theobustness of a DSoS usingC®RBA-
based communications infrastructure, with respect to these classes of faults:

* Add a checksum to all IlOP messages, allowing a wrapper to reject any megsagethe
checksum is incorrect. This type of wrapper can be implemented in a transpayersing
the Portable Interceptor mechanism that was standardized in CQRBAhechecksum is
added to theservice context (a section of theader of ahlOP message) by elient-side
interceptor,and checked in theeceiver by aserver-side interceptor. If the checksulmes
not match the message contents, the server-side interceges aCOMM_FAILURE
exception rather than propagating the message to the séteamver,this approach is not
able to protect against malicious faults.

» Use anadditionallevel of encapsulation at the netwotkvel, by using IIOP over SSL
(Secure Sockets Layesr TLS (Transport LayerSecurity. This provides protection from
accidental faultssince the TLS decryptiophase willdetect transport-level corruption, and
also from malicious faults, since messages whose signature is ingald be rejected by
the server-side interceptdtlowever,the performance overhead tbis form of wrapper is
non-negligible.

The implementation of wrappers between remote objects must be based on interception facilities
that can be provided by metaobjgebtocols. Metaobjects controllingbject interactions can
thus be added to both client and server side, thus enabling enhanced assertions to be developed.

3.7. (Conclusion

The above described wrapping technology enables software components to be adjusted from a
non functional viewpoint to the expected assumptions made by companion components. This is
the casefor conventional middleware like CORBA thatften make theassumptionthat
underlying operating system facilities behave as specified. Thistreragassumptiongven in

the absence of faults, but this assumption has a very weak coverage in the presence of faults.

The work presented in this chaptm atproviding a generic framework and toolsdevelop
additional eror detection andecovery mechanisms that makerarget Software Component
compliant withassumptionsnade byits users, who may be othsystem components in a
system of systems. Waelievethat the ability to maksimplifying assumptions othe failure

modes of component systems greatly facilitates the process of building of a dependable system
of systems, andhat theuse of wraping technology, as presented tims chapter, is a
particularly attractive way of obtaining well-encapsulated component systeemsinthe more

difficult case of COTS or legacy systems.

70 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

References

Chapter 1 - Dependable Composition of Web Services

[Abrial 1996] J. R. Abrial. The B Book — Assigning Programs to Meani@gsnbridge
University Press1996.

[Benatallahet al. 2002] B. Benatallah, M.Dumas,M-C. Fauvet,and F.A. Rabhi. Towards
patterns of Web Services composition. Fatterns an skeletons fparallel en distributed
computing. Springer, 2002.

[BPML] A. Arkin. Business Process Modeling Language, BPML 1.0 Last Call WoiRrafj,
2002.

[Casatiet al.2001] F. Casati, M. Sayal, and-C. Shan.Developing E-servicelor composing
E-services. In Proc. Of CAISE’2001, LNCS 2068, pages 171-186, 2001.

[Fauvetet al.2001] M-C. Fauvet, M. Dumas, B. Benatallah, &Y. Paik. Peer-to-pedraced
execution of composite services. In proc. Of TES’2001, LNCS 2193, pages 103-117, 2001.

[Florescuet al. 2002] D. Florescu, AGrunhagen, and CKossmannXL: An XML language
for web service specificatioand composition. In Proceedings the WWW'02 Conference,
2002.

[Kuno et al.2001] H. Kuno, M. Lemon, A. Karp, and D. Bering@onversations+Interfaces=
Business logic. In Proc. Of TES’ 2001, LNCS 2193, pages 30-43, 2001.

[Mikalsen et al. 2002] T.Mikalsen, S.Tai and |. Rouvellou. Transactional attitud€eliable
composition of autonomous Web services. In proc. Of ISDN’2002, 2002.

[MS-NET] Microsoft. .NET .http://msdn.microsoft.com/net/

[Narayanan & Mc llraith2002] S. Narayanan and Slcllraith. Simulation,verification and
automated composition of web services. In Proceedings of the WWW'02 Conference, 2002.

[OASIS-BTP] OASISCommittee SpecificationrBusinessTransaction Protocol, Version 1.0,
2002.

[OMG-WS] OMG. Corba Web Services. OMG TC Document orbos/2001-06-07.
http://www.omg.org2001.

[Romanovskyet al. 2002] A. Romanovsky, P. Periorellis, and A.F. Zorzo. On Structuring
Integrated Web Applicationsor Fault Tolerance.Technical Report 765, Department of
Computing Science, University of Newcastle upon Tyne, 2002

[UDDI] UDDI. UDDI, Version 2.0, APl Specification. Technical report, 2002.
http://Aww.uddi.org

Dependable Systems of Systems 71

References

[SUN-J2EE] Sun Microsystems IncJava 2 Platform, Enterprise Edition (J2EE).
http://java.sun.com/j2ee/

[W3C-SOAP] W3C. Soap version 1.2echnical report, Th&Vorld Wide WebConsortium,
2002.http:/imww.w3.0rg/2000/xp/Group/

[W3C-THP] W3C. Tentative Protocol Part 1: White Paper, 2001.

[W3C-WSCL] W3C. Webservices conversation langua@&SCL), version 1.0.Technical
report, The World Wide Web Consortium, 208&p://www.w3.org/TR/wscl10/

[W3C-WSDL] W3C. Webservices description langua@e/SDL), version 1.1.Technical
report, TheWorld Wide WebConsortium,2001. http://www.w3.org/TR/wsdlWorking draft
version 1.2 available attp://www.w3.0rg/TR/2002/WD-wsdl12-200207.09

[W3C-XML] W3C. Second Edition of the ExtensibleMarkup Language (XML). 1.0
Specification. W3C Recommendatidmitp://www.w3.org/TR/2000/REC-xmI-2001008000.

[WSCI] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawagushi, D. Orchard,dBglRni, K.
Riemer, S.Struble, P. Takacsi-Nagy, Trickovic, and S.Zimeck. Web ServiceChoreography
Interface 1.0.

[WSFL] F. Leymann. Web Services Flow Langua@@SFL 1.0). IBM Software Group.
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.po01.

[XLANG] S. Thatte. XLANG: Web Services for Business Process Design. Microsoft
Corporationhttp://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default. 2001.

[Xu et al.1995] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, FStthud and Z. Wu.
Fault Tolerance in Concurrent Object-Oriented Software through CoordinatedREnmrery.
Proceedings of the IEEE Symposium on Fault Tolerant Compa®e5.

[Yang & Papazoglou 2002] Yangand P. Papazoglou. Web component: A substosteeb
service reuse and composition. In Proceedings of CAISE'02, pages 21-36, 2002

[Zorzo & Stroud 1999] A.FZorzo andR.J. Stroud. AnObject-Oriented Framework for
Dependable Multiparty Interactions. In proc. 6bnf. on Object-Oriented Programming,
Systems & Applications (OOPSLA'99), ACM Sigplan Notices, 34(10), pages 435-446, 1999.

72 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Chapter 2 — Structured Handling of On-Line Interface Upgrades in
Integrating Dependable SoSs

[Amannet al. 2000] B. Amann, I. Fundulaki.Scholl. Integrating ontologies and thesauri for
RDF schema creation and metadata querying. International Journal of Digital Libraries, 3, 3, pp.
221-236, 2000.

[Cristian 1995] F. Cristian. Exception Handling afndlerance of Software dtilts. In Lyu,
M.R. (ed.): Software Fault Tolerance. Wiley, pp. 81-107, 1995.

[Hruska & Hashimoto 2000] T. Hruska and H. Hashim@ds), Knowledge BaseSoftware
Engineering, los Press June 2000.

[Laprie 1995] J.-C. Laprie. Dependable Computing: Concéptsts, Challenges. Proc. of the
25th Int. Symposium On Fault-Tolerant Computing. IEEE CS Press. Pas@dernm. 42-54.
1995.

[Periorellis & Dobson 2001] PPeriorellis,J.E. DobsonCase Study Problem Analysis. The
Travel Agency Problem. Technical Deliverable. Depend8@gltems of Systems Reot (IST-
1999-11585). University of Newecastle upon Tyne. UK. 37 p. 2001.
www.newcastle.research.ec.org/dsos/

[Romanovsky & Smith2002] A. Romanovsky, I. Smith. Dependable On-lidpgrading of
Distributed Systems. In Proc. GOMPSAC 2002. 26-2%ugust 2002, Oxford, UKIEEE
CS Press. pp. 975-976. 2002.

[Szyperski 1997] C. Szyperski. Component Software. ACM Press. 1997.

[Tai et al. 2002] A.T. Tai, K.S. Tso, L. Alkalai, S.N. Chau,W.H. SandersLow-Cost Error
Containment and Recovery for Onboard Guarded SoftWpgrading and BeyondEEE TC-
51, 2, pp. 121-137. 2002.

[Vanderperren2002] W. Vanderperren. A Pattern Based Approach to Sepdrateled
Concerns in Component BasBeavelopmentProc. ofthe 1st AOSD Workshop on Aspects,
Components, and Patterrfier Infrastructure Software, held in conjunctiorwith the 1st
International Conference on Aspect-Oriented Software Developfh@8D 2002). pp. 71-75.
2002.

[Welch 2002] I. Welch. AReflective Security Architecture for Applications. PhDThesis.
Department of Computing, University of Newcastle upon Tyne (in preparation).

[W3C-RDF 2000] W3C. Resource Description FramewollRDF). RDF Specification
Development. 2000. http://www.w3.0rg/RDF/.

[W3C-WSCL 2002] W3C. Welservices conversation langua@#SCL), version 1.0. The
World Wide Web Consortium, 2002. http://www.w3.org/TR/wscl10/.

Dependable Systems of Systems 73

References

[W3C-WSDL 2001] W3C. Welservices description languag@/SDL), version 1.1. The
World Wide WebConsortium,2001. http:/AMmww.w3.org/TR/wsdlWorking draft version 1.2
http://wvww.w3.0rg/TR/2002/WD-wsdl12-20020709

74 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

Chapter 3 — From Error Detection to Recovery Wrappers

[Arlat et al. 2002] J.Arlat, J.-C. Fabre, M. Rodriguez , F. Salle®ependability of COTS
Microkernel-Basedystems”,IEEE Transactions o®omputersvol. 51, no. 2, ppl38-163,
2002.

[Burns & Lister 1991] A. Burns , A. M. Lister, “A Frameworkfor Building Dependable
Systems”,The Computer JournaVol. 34, no. 2, pp. 173-181, 1991.

[Burns et al. 1999] A. Burns, S. Punnekkat, L. Strigini , D. R. Wrigh®robabilistic
Scheduling Guarantees for Fault-Tolerant Real-Time Systems”, inf@olézIP International
Working Conference on Dependable Computiing Critical Applications (DCCA'99), San
Jose, CA (USA), pp. 361-378, 1999.

[Burns & Wellings 19971A. Burns, A. J. WellingsReal-time Systems and th&rogramming
LanguagesAddison Wesley, 1997.

[Carreiraet al. 1998] J. Carreira, H. Madeira , J. Gilva, “Xception: A Technique for the
Experimental Evaluation oDependability inModern Computers”|EEE Transctions on
Software Engineeringrol. 24, no. 2, pp. 125-136, 1998.

[Chorus 1997]Chorus Systems,“CHORUS/ClassiX release 3 - Technical Overview”,
Technical Report no. CS/TR-96-119.12, Chorus Systems, 1997 (www.sun.com/chorusos).

[Colin & Puaut 2001]A. Colin , I. Puaut,“Worst-Case Exadion Time Analysis of the
RTEMS Real-TimeOperatingSystem”, in Proc13th EuromicroConference on Real-Time
SystemdDelft, The Netherlands, pp. 191-198, 2001.

[Diaz et al. 1994]M. Diaz, G. Juanole , J.-Rourtiat,“Observer--A Cooeptfor Formal On-
Line Validation of Distributed SystemdEEE Transactions on Softwakngineering vol. 20,
no. 12, pp. 900-913, 1994.

[Fabre & Pérennou 1998).-C. Fabre T. Péranou, “A Metaobject Architecturéor Fault
Tolerant Distributed Systems: Th&@ENDS Approach” JEEE Trangctions on Computers,
Special Issue on Dependability of Computing Systpms8-95, 1998.

[Ghoshet al. 1999]A. K. Ghosh, M. Schmid , Hill, “Wrapping Windows NT Solvare for
Robustness”, in Pro@9th IEEE Int. Symposium on Fault-Tolerant Computing (FTCS-29),
Madison, WI (USA), pp. 344-347, 1999.

[Joseph 1996]M. Joseph,Real-Time Systems: Specificatiovigrification and Analysis
Prentice-Hall, 1996.

[Kiczaleset al. 1991] G. Kiczales, J. d. Rivieres , D. G. Bobrowhe Art of the Metaobject
Protocol, MIT Press, 1991.

[Koopman & DeVale 1999] P. J. Koopman , JDeVale, “Comparing the Robustness of
POSIX OperatingSystems”, in Proc29th IEEE International Symposium on Fault-Tolerant
Computing (FTCS-29Madison, WI (USA), pp. 30-37, 1999.

Dependable Systems of Systems 75

References

[Maes 1987]P. Maes,“Conceptsand Experiments in Computationdeflection”, in Proc.
OOPSLA'870rlando, FL (USA), pp. 147-155, 1987.

[Marsden & Fabre 2001] “Failure analysis of an ORB irpresence offaults”, DSo0S
deliverable IC3, 2001.

[Mok & Liu 1997] A. K. Mok , G. Liu, “Efficient Run-Time Monitoring of Timing
Constraints”, in Proc3rd Real-Time Technology andpplications Symposium,Montral,
Canada, 1997.

[Pan et al. 2001] J. Pan, P. Koopman, D. Siewiorek, Y. Huang, GQuber , M. Jiang,
“RobustnessTesting and Hardening of CORBA®RB Implementations”, in ProdEEE
International Conference on Dependaliystems and Networks (DSN 200Gpteborg
(Sweden), pp. 141-150, 2001.

[Rodriguezet al. 2002a]M. Rodriguez, A. Albinet J. Arlat, “MAFALDA-RT: A Tool for
Dependability Assessment of Real-Time Systems”, in PEdtE International Conference on
Dependable Systems and Networks (DSN 20@a3hington DC (USA) (to appear), 2002a.

[Rodriguezet al. 2000]M. Rodriguez, J.-C. Fabre , J. Arlat, “Formal SpecificationBiaifding
RobustReal-timeMicrokernels”, in Proc21stIEEE Real-Time SystemSymposium (RTSS
2000),0rlando, Florida (USA), pp. 119-128, 2000.

[Rodriguezet al. 2002b]M. Rodriguez,J.-C. Fabre J. Arlat, “Wrapping Real-TimeSystems
from Temporal Logic Specifications”, in Proc.4th European Dependable Computing
Conference (EDCC-4)Oct. 2002, Toulouse (Fran¢@€P02b (to appear).

[Savor & Seviora 1997T. Savor , R. ESeviora,“An Approach toAutomatic Detection of
Software Failures inReal-Time Systems.”, in Proc.[EEE Real-Time Technology and
Applications Symposiurpp. 136-146, 1997.

[Schneider 1998F. Schneider,EnforceableSecurityPolicies”, no.TR98-1664, Department
of Computer Science, Cornell University, Ithaca, NY (USA), 1998.

[Voas 1998]). M. Voas, “Certifying Off-the-Shelf Software Componen@Gdmputer pp. 53-
59, 1998.

76 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms
Appendix A. Formalisation of Coordinated Atomic Actions in B

Ferda Tartanoglu, Nicole Levy, Valérie Issarny(INRIA)

This part ofthe deliverable ntroduces a formal specification of Coordinastmic (CA)
actions [Xuet al. 1995] and ottheir composition introduced in Chapter 1. The formalisation
allows for rigorous reasoning about dependdigleavior of thesystems of systemategrated
using this structuring paradigm.

A.l. The B Formal Method

We have used the B formal methgbrial 1996] which is amodel-based method built on set
theory and predicate logic and extended by generadigbstitutions. Specifications in B are
represented by abstract machines encapsulating operations and states.

Generally speaking, the B method allows usntée abstract machines and refinements over
them. At the end of the refinement process an implementation can be writtearteaponds to
an executable codddowever, in our model, we haveonly developed the initial abstract
machines.

Proofsare an essential part of the model: the idea is to provealthaperationspreserve the
invariants of the machinand that the implementations and refinements preseniavidigants
and the behaviour of the initial abstract machine.

There are various tools that help writing and proving B specifications. The main of them are B-
Tool [B-Core] and Atelier B [Atelier B]. Both tools include a type checkerar@mator, goroof
obligation generator, theorem provers, ctrdaslators and documentation facilitidgelier B
hasbeenused in ouilinvestigation, however theotation weused is compatible withboth of

them.

A.2. Modeling CA Actions

The system is modeld by four abstract machines (Figure A.IJhe first of which is the
CONSTANTSmachine whichncludes common constanised byall other machinesvhich
access the CONSTANTS machine by using the SEES clause.

CONST [~~__
T N\ SEE3~-._

\ A S
\\ OBJECTS PARTICIP
\ i

iEXTEND

CAACTIO

Figure A.1 Abstract machines

Dependable Systems of Systems 77

Formalisation of CA Actions in B

MACHINE
CONST
SETS
PARTICIPANT
CAACTION_STATE {caa_normajcaa_exceptiond
PARTICIPANT_STATE
CAACTION
OBJECT,
VALUE
CONSTANTS
init_val, begin_vaJ commit_vajabort_val
norma) waiting, exceptiong| EXCEPTIONAL_STATEompute_exception
PROPERTIES
init_val O VALUED
begin_vald VALUEO
commit_vald VALUEO
abort_vall VALUEO
normald PARTICIPANT_STATH
waitingd PARTICIPANT_STATE
EXCEPTIONAL_STATE PARTICIPANT_STATH
exceptiondll PARTICIPANT_STATH
exceptiondll EXCEPTIONAL_STATE
compute_exceptioPARTICIPANT_STATE P PARTICIPANT_STATE - EXCEPTIONAL_STATE
END

Other abstract machinesre PARTICIPANTS, OBJECTS and CAACTIONS. The
CAACTIONS abstract machine extends (with the EXTENDS clause)the other two.
Modularisation of this kind makes syntax simpler and facilitates proofs of the obligations.

The PARTICIPANTS abstract machine includdbk operations related to actiguarticipants
including their activations, state changes or removals.
MACHINE

PARTICIPANTS
SEES

CONST
VARIABLES

participant participant_stateparticipant_valueinitial_values
INVARIANT

[* active paticipants */

participantd PARTICIPANTO

[* associates teach participant its state (normal, exceptional or waiting) */
participant_statd] PARTICIPANT— seqPARTICIPANT _STATEO

[*associates a value to each active participant */
participant_valued PARTICIPANT— VALUE O

[* memorize the initial values of participants for recovery */
initial_values] PARTICIPANT+ seqVALUE) O

78 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

/* CONSTRAINTS */
dom(participant_statg = participant[]
dom(participant_valug¢ = participant [
dom(initial_valueg = participant

INITIALISATION

participant:=0 ||
participant_state=0 ||
participant_value=0 ||
initial_values:=0

OPERATIONS
add_new_participantdepan =

PRE

epard PARTICIPANTO
eparn participant=01

THEN

participant:= participant epar ||

participant_state= participant_states- eparx{| normal} ||
participant_value= participant_valuel epar{init_val} ||

initial_values:=initial_values epar<{[init_val]}
END;
add_nested_participantgepar) =
PRE
epard PARTICIPANTO
epar participant
THEN

participant_state= participant_states- { pa, sps| pal] eparJpa] dom(participant_statg [

spd] sePARTICIPANT_STATH]
Sps- participant_state(pa) — normal} ||

initial_values:=initial_values<-{ pa, sval| pall epar] pa] dom(participant_valug [

svald seqVALUE) O
svak initial_values(pa) init_val }
END;
add_composed_participant§pa, epar) =
PRE
pal] participant [
epard PARTICIPANTO
eparn participant=01
THEN
participant:= participantd epar ||
participant_state= (participant_statd]1 epar{[normal})
< {par> (participant_stata) — waiting)} ||

participant_value= participant_valudl epar{init_val} ||

initial_values:=initial_values epar<{[init_val]}
END;
set_participant_valugpa, val) =
PRE
pall participant O]
val VALUEO
pa 0 dom(participant_valug
THEN
participant_value= participant_value<- {par val}

END;
set_participants_state (epar, staf) =

Dependable Systems of Systems

79

Formalisation of CA Actions in B

PRE
epar participant]
stat(0 PARTICIPANT_STATH
epar] dom(participant_statg
THEN
participant_state= participant_states- { pa, sps|pal eparspd] sePARTICIPANT STATHI
sps= front (participant_statépa)) — stat}
END;
remove_update_participants_state@par, staf) =
PRE
epar participant [
statd PARTICIPANT_STATE
epar] dom(participant_statg [
eparJ dom(initial_valueg
THEN
participant_state= participant_states- { pa, sps| pad eparsp<] sePARTICIPANT_STATH]
sps= front (front (participant_statépa))) — stat} ||
initial_values:= initial_values
< { pa, sval| pall eparOsvall seVALUE) [svak front (initial_valuegpa)) }
END;
delete_participantgepar) =
PRE
epar participant [
eparJ dom(participant_statg [
epar] dom(participant_valug O
eparJ dom(initial_valueg
THEN
participant:= participant - epar||
participant_state= epar< participant_state||
participant_value= epar< participant_value||
initial_values:= epar< initial_values
END;
remove_composed_participantgepar, pa) =
[* set pa state to its previous state */
PRE
epar participant [
pall participant [
palleparld
eparJ dom(participant_stat@]
epar] dom(participant_valug O
epard dom(initial_valueg
THEN
participant:= participant- epar||
participant_state= (epar< participant_statg<- { par> front (participant_stat@a)) } ||
participant_value= epar< participant_value||
initial_values:= epar< initial_values
END;
remove_composed_participants_exceptionédpar, pa) =
/* remove previous state of pa and set it to exceptional */
PRE
epar participant [
pall participant ™
palleparld

80 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

epar] dom(participant_statg [
epar] dom(participant_valug O
eparJ dom(initial_valueg
THEN
participant:= participant- epar||
participant_state= (epar< participant_statg
< {pa> (front (front (participant_stat@a))) — exceptiondl} ||
participant_value= epar< participant_value||
initial_values:= epar< initial_values
END;
remove_participant_statgepar) =
PRE
epar participant [
epar 0 dom(participant_statg [
epard dom(initial_valueg
THEN
participant_state= participant_states- { pa, sps|pal epar O spd] sePARTICIPANT_STATH]
sps= front (participant_statépa))} ||
initial_values:=initial_values<-{ pa, sval| pa eparsvall seqVALUE) O
svak front (initial_valuegpa))}
END;
remove_participant_state_and_valuéepar) =
PRE
epar participant[
epar] dom(participant_statg [
epar] dom(participant_valug O
epard dom(initial_valueg
THEN
participant_state= participant_states- { pa, sps| pall eparflspd] se PARTICIPANT_STATH]
sps= front (participant_statépa))} ||
participant_value= participant_value<-{ pa, val | pal] eparvalll VALUEO
val= last(initial_valuegpa))} ||
[* pdicipants recover their initial values */
initial_values:=initial_valuess { pa, sval| pall eparsvall seqVALUE) O
svaF front (initial_valuegpa))}
END
END

The OBJECTS machine specifies the operations on external objects inchelingnsactional
operations that these objects export.
MACHINE
OBJECTS
SEES
CONST
VARIABLES
values object
INVARIANT
[* any object has a value at any time */
values] OBJECT- VALUEO
[* external objects associated to a CA action */
objectd OBJECT
INITIALISATION
values:= OBJECTx {init_val} ||

Dependable Systems of Systems 81

Formalisation of CA Actions in B

object:=0
OPERATIONS
val — read_object(obj) =
PRE
obj [0 object
THEN
val ;= valuegobj)
END;
write_object(obj,val) =
PRE
obj 0 objectO
val O VALUEDO
obj 00 dom(valueg
THEN
valueqobj) :=val
END;
/* begin transaction on objects */
add_objectgobjs) =
PRE
objs0 OBJECTO
objsn object=01
THEN
values:= values< objsx{ begin_va} ||
object:= objectl] objs
END;
terminate_transaction(objsval) =
PRE
objs[objectd
val OVALUE
THEN
values:=values<- objsx{val} ||
object:= object- objs
END;
terminate_nested_transactiotfobjs,val) =
PRE
objs objectd
val O VALUE
THEN
values:= values<- objs<{ val}
END
END

The CAACTIONS abstraanachine includes operationsed forcreating and terminating CA

actions, action nesting and composing, and also the exceptional state operations.
MACHINE
CAAction
SEES
CONST
EXTENDS
PARTICIPANTS
OBJECTS
VARIABLES
caaction caaction_statecaaction_particip particip_caaction

82 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

caaction_ext_objectss_nestedis_composed
INVARIANT
/* TYPES */

/* active CA actions */
caaction] CAACTIONO

/* associates teach active CA action its state (normal, exceptional) */
caaction_staté] caaction» CAACTION_STATHE

[* associates to each active aprticipant the sequence of nested CA actiond to which it participates */
caaction_particip(] participant — sedcaaction) [

[* associates teach CA action its participants */
particip_caaction] caaction— P (participani [

[* external object accessed from a CA action */
caaction_ext_objects caaction - object[

/* (caal |-> caa2) : caal is nested in caa2 */
is_nested caaction ~ caactiond

[* (pa |->caa) : participant pa is waiting for the composed CA action caa */
is_composed participant+ caaction]

I* CONSTRAINTS */

/* any participant active in a CA action can be active in another CA action
only if this latter imested in the former */
O(pa,caal, caa?).((pa Oparticipant[caall caaction caaZ] caaction]
{caalcaaz O ran(caaction_particiipa)))
O ((caalcaad Ois_nestedd(caa2caal) Ois_nested) O

/* any CA action nested in another CA action cannot have external participants */
O(caal caa?.((caall caactiond caad] caaction] (caalcaa? 0 is_nested)
0 particip_caactioifcaal) O particip_caactiorficaa?d) O

/* any external object accessed from two CA actions implies they are nested one another */
O(obj,caalcaa?d.((obj0 objectd caall caaction caaZ] caaction[]
objd caaction_ext_objedscaal}] n caaction_ext_objediscaa?])
O ((caalcaa? Ois_nested O(caa2caal) Ois_nestey [

[* relation between caaction_particip and particip_caaction */
O(pa).(pad participant
O ran(caaction_particifpa))={ cag caal caactionIpall particip_caactiolicagd}) [

/* a CA actioncan only be in an exceptional state if all of its participants are also in the same state
or a pdicipant may be waiting and in this case, before composing a CA action, the participant was
in anexceptional state */

[J(cag). (cadl caaction[]caaction_stat@cad= caa_exceptional
O O(pa).(pallparticip_caactioticad
O ((last(participant_statépa))[] EXCEPTIONAL_STATHI
((last(participant_statépa)) = waiting [
last(front (participant_statépa)))O

Dependable Systems of Systems 83

Formalisation of CA Actions in B

EXCEPTIONAL_STAT)) O

[* acomposed CA action is not nested in another CA action */
[(cad). (cadl caaction] caall ran(is_composed] caall dom(is_nestey) [

/* (pa |-> caa) : is_composed implies that pa is in a waiting state
and to be in such a state means that pa is waiting for a composed CA action */
O(pa,cad).(pa participant[] cadl caactiond (pa cad) [is_composed

O last(participant_statéa)) = waiting) O
O(pa).(pad participantdpa 0l dom(is_composed] last(participant_statépa)) # waiting)

INITIALISATION
caaction:=[||
caaction_state=0 ||
caaction_particip:=0 ||
particip_caaction=01 ||
caaction_ext_objects 0O ||
is_nested=1[||
is_composed=[J
OPERATIONS
create_external_caactiofcaa, epar, extg =
PRE
caall CAACTIONO
caall caaction
epard PARTICIPANTO
eparn participant=0 O
extod OBJECTO
exton object=01
THEN
caaction:= caactiond {cag ||
caaction_state= caaction_staté] {caar~> caa_normd ||

caaction_particip= caaction_particip] epar{[cad} ||
particip_caaction= particip_caaction] {caar epa# ||
add_new_participantgepan ||
caaction_ext_objects: caaction_ext_objects {caa xexto||
add_objectgexto

END;

create_nested_caactioftaal, caa2 epat, exto =

PRE
caalll CAACTIONO
caadl caaction[
epar participant [
extod objectD
epar particip_caactioifcaa? [
caall caaction]

[* external objects of nested CA action is a subset of external objectscontheing CA action */
Oobj.(objdextod objd caaction_ext_objediscaa?]) O

[* all paticipants to caal are in the same state which is not waiting */
card(ran({ pa, stat|pad epardstat] PARTICIPANT _STATE

stat= last(participant_statépa))}))=10

O(pa).(paldepard last(participant_stat@a)) # waiting) O

84 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

[* all paticipants of the nested CA action are in the same containing CA action */
card(ran({ pa, ca|pad epardcal CAACTIONO ca= last(caaction_particiipa)) })) =1

THEN
caaction:= caactionld {caaZ} ||
caaction_state= caaction_staté] {caal— caa_normd ||

caaction_particip= caaction_particip

< { pa, scaa| pall epar[Jscadl seqcaactior) [1scaa caaction_particip(pa) — caal} ||

particip_caaction= particip_caaction] {caal— epa# ||

caaction_ext_objects caaction_ext_objectS {caal xexto||
is_nested=is_nested] {caal~> caa2? ||

add_nested_participantgepar)
END;
create_composed_caactidpa, caa, epar, exto =
PRE
pall participant [
caal CAACTIONDO
caal caactionO
epard PARTICIPANTO
eparn participant=0 [
extod OBJECTO
exton object=01
THEN
caaction:= caaction(] {cag ||
caaction_state= caaction_staté] {caar> caa_normd ||

caaction_particip.= caaction_particip] epar<{[cad} ||
particip_caaction= particip_caaction {caar epa# ||

caaction_ext_objects: caaction_ext_objects {caa xexto||
is_composed=is_composed {par caa} ||

add_composed_participant§pa, epar) ||
add_objectgexto
END;
F** NORMAL MODE OPERATIONS #**¥¥kiiittbiikikkkoick
send_messagpal, pa2 val) =
PRE
palll participantd
pa2d participantd
vall VALUE[D

/* theegence of CA actions must be the same : messages between

pdicipants of the same CA action */
caaction_particiipal) = caaction_particifipa?) O
last(participant_statépal)) = last(participant_stat@a2)) [
last(participant_statépal)) # waiting O
last(participant_statépa?)) # waiting
THEN
set_participant_valugpa2val)
END;
read_value— read_ext_objectpa,eob) =
PRE
pall participant
eobjd objectd
eobf] caaction_ext_objedis last(caaction_particifpa))}]
THEN

Dependable Systems of Systems

85

Formalisation of CA Actions in B

read_value— read_objecieob)
END;
write_ext_object(pa,eobjfunct =
PRE
pal] participant [
eobjd objectd
functO VALUE - VALUED
eob[] caaction_ext_objedis last(caaction_particifpa)) }]
THEN
write_object(eobj funcvaluegeob)))
END;
/k******* EXCEPTION RAISE ****************/
raise_exception(pa, excep =
PRE
pall participant [
excep] EXCEPTIONAL_STATE
last(participant_statéa)) = normal O
caaction_stat@ast(caaction_particigpa))) = caa_normal
THEN
set_participants_staté{ pa}, excep
END;
[* propagate exception to all participants */
propagate_exceptiofipa) =
PRE
pall participant
last(participant_statépa)) 0 EXCEPTIONAL_STATH]
caaction_stat@ast(caaction_particifpa))) = caa_normall
Opacaa(pacaall particip_caactiorflast(caaction_particifipa)))
O last(participant_statépacag) # waiting) [
[* all pdticipants must be in the same CA action */
card(ran({ paacaa| paal particip_caactioiflast(caaction_particigpa))) (I
caall CAACTIONC caa= last(caaction_particigpaa) })) =1
THEN
LET pasostBE
pasost= { paag sta| paad] particip_caactiofflast(caaction_particifipa))) O
stad PARTICIPANT_STATHE sta= last(participant_statépaaq)

}
IN
LET statBE
stat= compute_exceptidlast(participant_statépa)),ran(pasos})
IN
set_participants_state
(particip_caactiorflast(caaction_particigpa))), stad ||
caaction_stat¢last(caaction_particifpa))) := caa_exceptional
END
END

/Eki*l*l:ia\z**** TERMINATE IN NORMAL STATE ******************/
terminate_caaction(caa) =
PRE

cad] caaction[]

caall dom(is_nesteji[]

caal ran(is_nesteji]

86 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

caall ran(is_composed]
caaction_statead = caa_normal
[*all pdticipants must be in a normal state */
O(pa).(pald particip_caactiorficad) O last(participant_statépa)) = normal)
THEN
LET epar BE
epar=particip_caactioricad)
IN
feommit and remove objects */
terminate_transaction(caaction_ext_objecfcaa}], commit_va) ||
delete_participantgepar) ||
caaction:= caaction- {cag ||
caaction_state= {cag < caaction_state]|
caaction_particip= epar< caaction_particip||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects {cag < caaction_ext_objects
END
END;
terminate_nested_caactiofcaa) =
PRE
cad caaction[]
caal dom(is_nestel[]
caal ran(is_nestejl]
caaction_statgcad) =caa_normal
[*all peticipants must be in normal state */
O(pa).(pald particip_caactiofficad) [last(participant_statépa)) = normal)
THEN
LET epar BE
epar=particip_caactiorfcad)
IN
[* all external objects aoenmited */
terminate_nested_transactiolicaaction_ext_objeckscaa}], commit_va) ||
[* the pgecipants recover their initial state */
remove_participant_statdepar) ||
caaction:= caaction- {cag ||
caaction_state= {cag < caaction_state]|
caaction_particip:= caaction_particip
< { pa, scaa| pal epar]scad]l seqcaactior) [
scaar front (caaction_particigpa)) } ||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects {cag < caaction_ext_objects
END
END;
terminate_composed_caactiorfcaa, pa) =
PRE
cad caaction[]
pal] participant [
pal particip_caactiorficag) O
pa] dom(is_composed]
caa=is_composegga) [
caall dom(is_nestefi[]
caallran(is_nestejl[]
caaction_statgcad = caa_normal’]

Dependable Systems of Systems

87

Formalisation of CA Actions in B

[*all peticipants must be in a normal state */
O(pacag.(pacadl particip_caactioifcad) O last(participant_stat@pacag) = normal)
THEN
LET epar BE
epar= particip_caactiorfcad
IN
/* all external objects acenmited */
terminate_transaction(caaction_ext_objeckscaa}], commit_va) ||
/* set to previous state */
remove_composed_participantgepar, pa) ||
caaction:= caaction- {cag ||
caaction_state= {cag < caaction_state]|
caaction_particip:= epar< caaction_particip||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects: {cag < caaction_ext_object$
is_composecE is_composed {pa+r caa}
END
END;
/**** ABORT OPERATION **********************/
abort_caaction(caa) =

PRE
caa [J caaction]
caall dom(is_nesteji(]
caallran(is_nesteyl [
caall ran(is_composed
THEN
LET epar BE
epar=particip_caactioricad)
IN
/* all external objects atmrted */
terminate_transaction(caaction_ext_objeciscasa}], abort_va) ||
delete_participantgepar) ||
caaction:= caaction- {cag ||
caaction_state= {cag < caaction_state]|
caaction_particip= epar< caaction_particip||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects {cag < caaction_ext_objects
END
END;
abort_nested_caactioficaa) =
PRE
cad caaction[]
caal dom(is_nesteil[]
caal ran(is_nesteyl]
Opa.(pa O particip_caactiorficad) [0 last(participant_statépa)) # waiting)
THEN

LET epar BE
epar= particip_caactioricag)
IN
/* all external objects atmrted */
terminate_nested_transactioficaaction_ext_objectscaa}], abort_va) ||
remove_participant_state_and_valuéepar) ||
caaction:= caaction- {cag ||

88 Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

caaction_state= {cag < caaction_state]|
caaction_particip:= caaction_particip
< {passcad pal epardscadl seqcaactior)
scaa= front (caaction_particiipa))} ||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects {cag < caaction_ext_objects

END
END;
abort_composed_caactio(taapa) =
PRE
cad caactiond
pall participant [
pall dom(is_composed]
caa=is_composegga) [
caall dom(is_nestefi[]
caal ran(is_nestejl
THEN
LET epar BE
epar=particip_caactioicad
IN
/* all external objects atmrted */
terminate_transaction(caaction_ext_objecfscaa}], abort_va) ||
[*emove last state and set to exceptional */
remove_composed_participants_exception@dpar, pa) ||
caaction;= caaction- {cag ||
caaction_state= {cag < caaction_state||
caaction_particip:= epar< caaction_patrticip||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects {cag < caaction_ext_object$
is_composed=is_composed {pa cag}
END
END;

/**** EXCEPTIONAL TERMINATION **********************/
terminate_caaction_exceptiondglcaa) =
PRE
caa [caactiond
caall dom(is_nesteji[]
caalran(is_nestell O
caall ran(is_composed]
caaction_statcad) = caa_exceptiondl
Opa.(pa particip_caactioricad O last(participant_statépa)) 0 EXCEPTIONAL_STATE
THEN
LET epar BE
epar=particip_caactioricad)
IN
/* all external objects atmrted */
terminate_transaction(caaction_ext_objeclscaa}], abort_va) ||
delete_participants(epar) ||
caaction:= caaction- {cag ||
caaction_state= {cag < caaction_state]|
caaction_particip= epar< caaction_particip||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects {cag < caaction_ext_objects

Dependable Systems of Systems 89

Formalisation of CA Actions in B

END;

END

terminate_nested_caaction_exception&taa) =

PRE

cad caactiond

cadl dom(is_nesteyl[]

cadl ran(is_nesteji(]

caaction_stat@cad) = caa_exceptionall

Opa.(pa particip_caactioricad) O last(participant_statépa)) 0 EXCEPTIONAL_STATE

THEN

END;

LET epar BE
epar=particip_caactioricad)
IN
/* all external objects atmrted */
terminate_nested_transactioficaaction_ext_objecfscaa)], abort_va) ||
[* the p&cipants state is set to exceptional
(thexception is signalled outside the CA action) */
remove_update_participants_state@@par, exceptiond)||
caaction;= caaction- {cag ||
caaction_state= {cag < caaction_state||
caaction_particip:= caaction_particip
< { pa, scaa| pal epar]scadl seqcaactior) [
scaar front (caaction_particigpa)) } ||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects {cag < caaction_ext_objects
END

terminate_composed_caaction_exception@aa, pa) =

THEN

90

PRE

cad] caactiond
pall participant
pad dom(is_composed
caa=is_composegga) [
caall dom(is_nestejfi[]
caal ran(is_nestejl]
caaction_stat@cad) = caa_exceptiondl
Opacaa(pacaall particip_caactioricad)
O last(participant_statépacag) 0 EXCEPTIONAL_STATE

LET epar BE
epar= particip_caactioricag)
IN
/* all external objects atmrted */
terminate_transaction(caaction_ext_objecfscaa}], abort_va) ||
caaction:= caaction- {cag ||
caaction_state= {cag < caaction_state]|
[*emove last state and set to exceptional */
remove_composed_participants_exceptionépar,pa) ||
caaction_particip:= epar< caaction_particip||
particip_caaction= {cag < particip_caaction||
caaction_ext_objects: {cag < caaction_ext_object$
is_composed= is_composed {pa+ cag}

END

Deliverable PCE1

uRher Results on Architectures and Dependability Mechanisms

END
END

A.3. Proofs

The tool has generated837 proof obligations (416 are obvious and421 non-obvious).
Approximately 58% of the 421 non-obviousobligations are proved automatically. The
remaining obligationshould beproved interactively. The maieason thatll the obligations
have not been proved automatically is the fact thatawe notwritten operation@ndinvariants
according to the capabilities of the tool. Especially the tool providespaeny results ircase of
using sequencdbat wehaveused dot in order tohave aless complex syntax. Othe other
hand, due to time limitations we have not started interactive proofs vetjaire writing special
lemmas, moreover that on eachange to the abstract machine operations, variables or
invariants, most of them should be rewritten and/or reproved.

A.4. Discussion

The model is builtunder an assumption th#tere is an underlying nestexlipport that
guarantees the transactional behaviour of the external objects. For each nested GRalkatjon
an external object the support starts a nested transactie @xternal object and commits or
aborts it on action termination. If the containing CA actadortsafter the nested one commits,
the support ensures that all nested operations are aborted.

A participant that makes eall to create a conagite action enters a wiaifj state: it neither
accepts any message from other participaotsit can be part of a nested action until the
composed action is terminated. It restores its state to "normal” or "exceptional" according to the
composite CA action outcome. If the composite CA action returns an exception or is aborted or
the operation timeouts, the participant raises an internal exception which is either handled locally
or when it is not possible, is propagatedatb partigpants and the participant enters the
"exceptional" state. External objects accessed by the composigct@A, or recursively, by

other composite CA actions invoked by it, are unknown to the participant of the main containing
CA action, as well the possibility that other CA actions may have accessed to them.

We haveaddressedhe formal specification of Coordinatédomic Actions enrichedwith the
notion of composite actions. We are now working on the formalizationWeb Service
Composition Actions introduced in Chapter 2 based on this experience.

References

[Abrial 1996] J. R. Abrial.The B Book - Assigning Programs to Meanings. Cambridge
University Press. 1996.

[Atelier B] Atelier B. Clearsy (France) http://www.atelierb.societe.com/index_uk.html
[B-Core] The B-Tool. B-Core (UK) http://www.b-core.com/btool.html

[Xu et al.1995] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, Rstdbud and Z. Wu.
“Fault Tolerance in Concurrent Object-Oriented Softwal#ough Coordinated Error

Dependable Systems of Systems 91

Formalisation of CA Actions in B

Recovery” inProc. the 25th International Symposium éfault Tolerant ComputingFTCS-
25), Pasadena, California, pp.499 — 509, 1995.

92 Deliverable PCE1

Dependable Systems of Systems

Appendix A

93

