

1

Goal-Diversity in the
Design of Dependable Computer-Based Systems

A. T. Lawrie and C. B. Jones

Department of Computing Science
University of Newcastle University NE1 7RU

February 2002

Abstract
This paper sets out an argument for experimenting with some aspects of the “Open
Source” development style in the creation of “Computer-Based Systems”. The particular
objective is to find ways of increasing the “Dependability” of systems. The most
interesting facet of Open Source development in this connection is the use of multiple
developers to introduce diversity into the design process. In addition to relying on the fact
that no two developers are identical, the suggestion here is that asking each developer to
emphasize different goals might result in solutions whose comparison and combination
could increase dependability.

Keywords
COMPUTER-BASED SYSTEM, DEPENDABILITY, DESIGN PROCESS, DIVERSITY, FUNCTIONAL

GOALS, GOAL-DIVERSITY, HUMAN-DIVERSITY, HUMAN-REDUNDANCY, NON-FUNCTIONAL

GOALS, OPEN-SOURCE SOFTWARE PROCESS, REDUNDANCY.

1. Pre-Prologue
In the spirit of the proposed approach to development, the two authors (ATL, CBJ) have

discussed many ways of presenting the ideas in this paper. In the end, two rather different

styles are given below: in the Section titled “Prologue” (CBJ), an outline argument is

presented; Sections 3 – 6 (ATL) expand on this argument and provide definitions of

terms etc.

2. Prologue
• The systems of interest are referred to as “Computer-Based Systems” to reflect

the key role of people in the overall system.

• The aim is the creation of systems that are dependable.

• Dependability is often achieved by careful use of redundancy.

• Systems are created by (groups of) humans.

2

• The interest then is to use redundancy in the design and development process.

• Such redundancy is present in projects described as “Open Source” developments.

• Humans inevitably introduce an element of diversity into any task.

• Setting different secondary goals for designs can enhance diversity.

• Careful comparison and combination of diverse solutions could result in

dependable systems.

• The whole discussion can be related to standard notions such as the “attributes”,

“impairments”, and “means” of dependability.

3. The Design Process of Computer-Based Systems
The phrase “Computer-Based System” (CBS) is used in a socio-technical sense that

extends the chosen view of systems to include both humans and computers. This is

illustrated in Fig 3.1.

Figure 3.1 Two-Subsystem CBS Definition

This definition has ramifications since it interprets the human subsystem mainly in terms

of the user-domain and emphasises the need to balance and consider the influences of

both technology and social issues in their development [Mason & Willcocks, 1994].

Although this is critically important, it ignores the other key human role in the subsystem

that concerns the design and development of the computer system.

Human

Subsystem

Computer
Subsystem

Computer-Based System

3

To clarify this point, it is possible to illustrate how the view of a CBS could be extended

to include three subsystems:1 1) the design-process, 2) the computer system, and 3) the

user-domain. This view is illustrated in Fig 3.2.

Figure 3.2. Three Subsystem CBS Definition

When viewed in this way, a number of important considerations can be discussed

regarding the design and use of CBS.

1. The two human subsystems can be considered as natural-systems and the

computer-system can be considered as an artificial system

o Natural systems can set and change their goals whereas artificial systems

are designed by humans to fulfil human needs and therefore have their

goals designed into their function2.

2. Here then, we can appreciate the important dominating relationship between the

design process and the computer-system. The design process generates the

computer-system (see [Jones, 2002]).

3. The goals of the design-process will therefore have an overriding influence upon

the eventual computer-system produced. Any errors or shortcomings that arise in

the design process can manifest themselves as defects or deficiencies in the

computer-system (see Section 4)

1 It should be noted that the terms for design process and end-user domain include both their primary
secondary environments (see: [Cooke & Slacke, 1991]). Additionally, the term computer-system includes
both hardware and software components.
2 Whether natural or artificial, most systems are goal-directed i.e. their behaviour is purposive towards
achieving and maintaining some desired state [Heylighen, 2001].

Uses

Generates
Design
Process

Computer
System

User
Domain

Specification

Requirements

4

4. The design specification represents a formal interpretation of the user-domains

requirements, in terms of goals of the computer-system: misunderstandings or

omissions will result in a computer-system that does not fully satisfy this purpose.

5. Over time, the user-domain may change its goals. Unless the design-process can

change the computer system’s “designed-in” goals accordingly, the computer-

system will no longer fully satisfy the user-domains goals.3

3.1 Section Summary

The key point from this Section is that the design process is a key (socio-technical)

subsystem in a CBS. Its players are responsible for the interpretation, creation, and

evolution of the user-domains goals and expectations – via computer system

development. Whilst traditional software engineering has improved the technical

approaches to CBS development, there are criticisms that there has been little progress

into understanding and progressing the socio-technical influences upon the software

development process [Beynon-Davies, 1999]. Furthermore, as indicated in this Section,

the existing CBS definition, at best, makes its inclusion implicit.

4. Dependability of Computer-Based Systems
The stance taken by the dependability community is to accept that, in any non-trivial

software system, it is almost certain residual design faults will remain in the CBS

[Randell, 2000]. Therefore, dependability is concerned with how, at the system level,

such systems can be designed and developed to provide an acceptable continuity of

service in the event of faults giving rise to errors that may affect the expected delivery of

service (see Section 4.1).

In order to help achieve this goal, a large body of theoretical knowledge and technical

application has been combined into a conceptual framework. At the highest level, this

framework identifies three principal factors influencing dependability.4

3 Software evolution and maintenance is problematic and extremely costly. It may consume 80% of a
software system’s total life-cycle costs. Legacy systems represent computer-systems that can no longer
fully satisfy the user-domains goals [Sommerville, 2001].
4 Unless otherwise cited, Sections 4.1 through to 4.3 is with direct reference to [Laprie, 1992].

5

4.1. Impairments to Achieving Dependability

The impairments of dependability are concerned with the nature of problems in complex

systems. These are faults, errors, and failures:

• Faults: are the hypothesized cause(s) of a system error. A fault becomes active

when it produces an error

• Errors: are any part(s) of the system state that is liable to lead to a subsequent

system failure. During system execution, the presence of active faults can only be

determined by the detection of errors.

• Failures: occur whenever the delivered service no longer complies with the

specification - this being an agreed description of the system’s expected function

and/or service.

4.2. Means to Achieving Dependability

There exists a collection of methods and techniques to promote the ability to deliver a

service on which reliance can be placed, and to establish confidence in the system’s

ability to help accomplish this:

• Fault prevention: how to prevent fault occurrence or introduction into the CBS

system.

• Fault removal: how to reduce the presence (number, or seriousness) of faults;

• Fault tolerance: how to provide a service complying with the specification in

spite of faults;

• Fault forecasting: how to estimate the present number, the future incidence, and

the consequences of faults.

4.3. Attributes to Achieving Dependability

System properties can be identified that help reveal certain desirable attributes of

dependability. However, depending upon the users and application domain, such

properties may be more (or less) emphasized. The main attributes are [Laprie, 1995]. :

• Availability: readiness for usage;

6

• Confidentiality: non-occurrence of unauthorized disclosure of information

• Integrity: non-occurrence of improper alterations of information

• Maintainability: the ability to undergo repairs and evolution

• Reliability: continuity of service;

• Safety: non-occurrence of catastrophic consequences on the environment

Furthermore, some of these may be compound attributes generated from other ones. For

example, Security is seen as being the combination of attributes Integrity, Availability,

and Confidentiality.

4.4. A CBS View of Achieving Dependability

By mapping these means and impairments to an extended version of the three subsystem

CBS definition (cf. Fig 4.1), the dependability factors documented above can be

illustrated to reveal the generic strategies available to achieving greater dependability of

CBS during their design and development.

Figure 4.1 Main CBS Dependability Strategies

Fault
Removal

“Means” of
 Achieving

Dependability

“Means” of
 Achieving

Dependability

Design
Process Generates

Software
Artifact Generates

Dynamic
Behaviour Generates

Delivered
Service

Fault
Forecasting
(Coverage) Human

Error

Residual
 Design
 Faults

Activated
Faults

(Errors)

Incorrect
Service
(Failure) Uses

User
Domain

Fault
Tolerance

Fault
Prevention

7

Firstly, as already highlighted in Section 3, Fig. 4.1 shows the dominating influence of

the design process. Any human errors or oversights in the design process can quickly

result in generating design faults in the software artefact5, which then, during execution,

become activated into errors and result in service delivery failures later during

operational use. Secondly, the main dependability strategies employed are also shown, in

terms of fault prevention in the design process, fault removal in the software artefact, and

fault tolerance to intervene and limit errors causing service failure during operational

usage.

Fault prevention, although an important means to achieving dependability, is seen as a

‘general’ system and software engineering responsibility, while fault-tolerance is seen as

a specialist area concerned directly with achieving increased dependability at the system

level. Fault removal may be employed by both fields – either at the process level (i.e.

testing) or system level (i.e. fault-masking) (see: [Laprie, 1992], [Randell, 2000]).

Fault forecasting is concerned with techniques (i.e. fault-injection) to ensure a

representational “coverage” of the system’s intended operational usage. It is a

responsibility of both general software engineering, in terms of gaining a thorough

understanding of the user domain to support fault-prevention strategies (i.e. specification

completeness) and a specific means of achieving increased dependability that supports

fault-tolerance – regarding the anticipation and generation of more accurate fault

assumptions to decide which fault-tolerant mechanisms will be most effective to apply

[Randell, 2000].

5 The software artefact represents a “white-box” compositional view of the system…whereas the
computational behaviour represents a “black-box” dynamic execution view of the system (cf. [Jones,
2002]). Of particular interest is that, since the user can only judge the provision of service from a black-box
view of the CBS, perceptions of service failure may vary from one user to another. Equally, while faults
and errors (in an absolute technical sense i.e. a fault manifests into an error which then affects the
computational behaviour) may occur at the white-box and black box levels, it is only considered (i.e.
judged) a failure if it becomes undesirably perceptible to the user’s view of required service delivery.
Therefore, a failure in the CBS can occur without a failure in the service (but not vice versa – hence the
‘generates’ relationship in diagram 4.1)

8

4.5 The Complexity Involved in Achieving Dependable CBS
Dependability is an inclusive concept but all of its aspects can have very subtle,

interdependencies, interactions, and interpretations in any specific context. It can also be seen

that the dependability attributes relate not to “what” functionality is delivered, but “how” that

functionality is delivered. They therefore relate to the desirable non-functional qualities that

promote CBS dependability (see: [Lamsweerde, 2001], [Jackson, 2001]). For example:

• Reliability of CBS is where the system behaviour provides (and only provides) that

functionality needed for service delivery

• Availability of CBS is where authorised access to the required functionality can be

provided whenever service delivery is needed.

• Safety of CBS is where the required functionality does not result in service delivery that

can result in damage to the user or wider environment

• Security of CBS is where the required functionality does not result in service delivery

that can be mitigated by unauthorized accidental or malicious access by others.

• Maintainability of CBS is where required service delivery changes, over time - by the

user-domain, can be satisfied by equivalent functionality changes in the computer system.

• Performability of CBS is where the required functionality can be provided at a time

needed to provide the delivered service. 6

However, not only may these non-functional qualities vary from one specific application to

another, but also, as [Bell, 2000] notes, in any design or development context the relationship

between these non-functional attributes can be either complementary or conflicting (these

relationships may however vary also between specific applications). A simplified and generic

view is shown in Fig. 4.2.

Here, we can see that while reliability and maintainability may often complement each other

during design and development, trying to achieve increased performance, also, may well conflict

with, and militate against fulfilment of, the other two design goals7.

6 The “close proximity” of non-functional considerations relating to timeliness of functionality provision
and the actual functionality provided in designing and developing real-time applications is highly visible
and usually made explicit.
7 The pursuit of increased structural flexibility offered by low data coupling, information hiding, and high
cohesion to achieve maintainability goals will often also complement the achievement of reliability goals
through increased faults and errors control and containment offered by program scope localisation.

9

Figure 4.2: Complementary and Conflicting Goals in CBS Design

4.6 Redundancy and Diversity

One key general weapon to achieve Dependability is Redundancy. In many engineering

applications, one can “over engineer” by, for example, introducing more strength than is

required in materials or leaving more than minimum time. In situations where random

failure or decay is the enemies of dependability, the use of multiple instances of a

component (as in “Triple Modular Redundancy”) can increase dependability. But design

errors are not random and the execution of three copies of a flawed algorithm will do

nothing to remove their inherent undependability. Redundancy can be utilised in software

systems but it must be weeded to a way of achieving diverse solutions.

4.7 Section Summary

The key point from this Section is that, in complex CBS, residual design faults from the

design process are almost inevitable. Awareness of this has given rise to a range of

dependability strategies to prevent, remove, tolerate, and forecast faults, errors, and

failures that may occur. To aid this goal, dependability employs a range of mechanisms

that leverage redundancy and diversity in fault tolerant strategies. However despite the

dominating role of the design process, concepts of redundancy and diversity are little

However, the pursuit of performance goals using such structures as inline-functions (c.f. Prata, 1995) and
fast complex algorithms can often reduce program comprehension and produce unanticipated and
undesirable side-effects – that can result in faults, errors, and failures later. Therefore undermining
potentially both maintainability and/or reliability goals.

Reliability

Maintainability

Performability

Source:
[Bell, 2000: p 17]

10

used to facilitate the other dependability strategies or overcome the inherent difficulties

of promoting and assuring the desirable attributes that embody dependable CBS.

5. Human Redundancy and Human Diversity
5.1 Human Redundancy

It has been argued in Section 4 that redundancy is fundamental to improving the

dependability of engineered systems. In particular, it is a core feature of the many fault-

tolerant strategies that have been applied to improve CBS dependability. What is less

well understood is how forms of human-redundancy can be applied to the other

dependability strategies of fault-prevention, fault-removal and correction, fault-coverage

– involving the design process. Furthermore, it is legitimate to consider how human

redundancy may also help promote the integration and assurance of important non-

functional attributes that reinforce the dependability of CBS.

5.2. Human Redundancy and Open Source

The emergence of Open-Source software development is a recent example of how

human-redundancy can be employed in a highly decentralized way [Raymond, 1999].

Factors common (see [Gacek et al., 2001] for a discussion of different Open Source

attributes) too many Open Source projects include development through geographically

remote collaboration across the Internet. The main form of communication and

coordination is usually via email, website domains, and central source-code repositories.

Such products as the Linux operating system, the Kde desktop, and the Apache web-

server have become highly successful with both industrial and domestic users and

advocates.

The voluntary and indirectly subsidized nature of Open-Source development [Meyer,

2000] allows the potential for a level of duplication of development effort that could be

rarely (if ever) matched and supported in traditional software development projects.

Successful Open-Source projects can be supported by hundreds, and sometimes

thousands, of contributing developers. Furthermore, [Yamouchi et al., 2000] indicates

that a combination of voluntary effort and self-appointed work allocation supports the

11

potential for duplication of effort and overlapping development. Such human-redundancy

characteristics are often found in high reliability organisations where dedicated

duplication and overlapping responsibilities are employed for crosschecking and

verification [Viller et al., 1997]. This is, however, in stark contrast to traditional software

engineering practice where commercial constraints view human resources as

economically limited and any duplication could result in increased costs and reduced

market competitiveness. Consequently, traditional software development has increasingly

been managed along concurrent engineering lines where project schedules are expedited

by ensuring that the work is divided up and allocated on an individual task basis.

[Weinberg, 1971] argued that this inhibits the ability to judge the quality of programs, as

no source exists for generating comparative criteria.

5.3. Human Diversity

As noted in Section 4.6, software redundancy also requires diversity. Therefore, implicit

in the discussion in Sections 5.1 and 5.2, is the fact that human redundancy is valuable

because humans, at both the physiological and psychological levels, have a significant

degree of variation ([Lewontin, 1982], [Kandola & Fullerton, 1998]). For example, at the

cognitive level, humans have different intellectual abilities, experiences, knowledge, and

personalities that have already been studied and considered beneficial for fault-detection

and correction [cf. Westerman et al., 1997]. If this were not the case, human redundancy

– in terms of task duplication and overlapping, would be of no value since the redundant

human resources would always reach the same view and make the same mistakes8.

Despite this, the levels of diversity required in achieving some fault-tolerant mechanisms

(i.e. n-software channels for Triple Modular Redundancy) are very high and even with

attempts to ‘force’ design diversity, within the task environment [Popov et al., 1999],

8 It should be noted, however, that human redundancy does not necessarily provide the equivalent diversity
expected. Such influences as organizational culture, management, and group/team influences of “group-
think”, “freeloading” and “dominating individuals and group-norms” can all mitigate and undermine the
expected diversity benefits from redundant human resources ([Byrne, 1991], [Cooke & Slack, 1991]). To
achieve expected levels of diversity, redundant resources, and the environment in which they interact, must
be carefully managed (cf.[Kandola & Fullerton, 1998]). Therefore, “human diversity” must be assured at
the social level before it can be benefited from at the technical level.

12

humans are still prone to common-mode-failure9. However, this paper is not concerned

with such issues10, but instead, focuses upon how human resources could be reorganized

within the software development process to employ human redundancy and diversity to

increase the potential of the other existing means of dependability - such as fault

prevention, fault-removal, fault-coverage. Furthermore, how could the diverse usage of

human resources improve design for dependability – in terms of assuring the integration

of desirable dependability attributes (e.g. Security, Reliability etc)? Three areas are

explored in Sections 5.3.1 to 5.3.3, which also draws upon the Open-Source development

process where appropriate.

5.3.1 Increased Fault-Removal and Correction

One of the most visible benefits of the Open-Source development process is its increased

bug finding ability through massive peer reviews of submitted source-code. This was

characterised by [Raymond, 1999] in his seminal paper on evaluating the Open-Source

software development approach as:

“Given enough eyeballs, all bugs are shallow.” (p. 41)

This informal approach to using human diversity for bug finding was, however,

exemplified much earlier by [Weinberg, 1971] in his “egoless programming” philosophy.

To return to the main strategies of achieving dependability in CBS (see Fig. 4.1), this

example demonstrates how the design process can improve the dependability of CBS

through leveraging existing cognitive diversity [Westerman et al., 1997] for increased

fault detection, removal, and correction before deployment.

9 This is where two (or more) developers make the same human error during system development resulting
in multiple version failure under the same functionality demands (cf. [Knight & Leveson, 1986]).
10 Although we do not wish to imply that design and cognitive diversity for minimizing common-mode-
failure is unimportant. Only that human redundancy and diversity may also be valuable in the other areas of
promoting dependability e.g. fault-prevention, removal, coverage and assuring design for dependability.

13

5.3.2 Increased Fault-Coverage

A much less visible characteristic of Open-Source development is the belief that, because

of the voluntary nature of Open-Source, developers naturally “gravitate” to software

development work they are naturally interested and/or already knowledgeable in

performing [Lang, 2000]. This choice-orientated resource allocation, combined with the

reality that Open-Source developers are also users of the software they develop [Gacek et

al., 2001] reveals that Open-Source developers have an intrinsically enhanced

understanding and knowledge of the user-domain in which the software will be deployed.

Consequently, this improves the particular developer’s ability to anticipate potential

usage exceptions, and generate accurate fault, error, and failure assumptions that the

system may be susceptible too during operational usage (cf.[Randell, 2000]).

On a less positive note, the Open-Source development approach appears only to develop

software where there are well-established existing systems to clone/improve upon, or

where the development knowledge required is well exposed [Meyer, 2000]. This seems to

limit major interest to the development of such systems as commercial-of-the-shelf

applications (e.g. desktops, word-processors, office-applications, RDMS etc) or systems

and systems development type software (e.g. compilers, operating systems, programming

IDEs etc). Therefore, while it is possible that the Open-Source software development

approach may be capable of developing such systems more dependably, it highlights that

the Open-Source software process may be unworkable for development of software

systems for specific application domains like business applications, process control

software, or medical information system [Gacek et al., 2001]. It appears that, in contrast

to traditional development approaches, Open-Source development is not subject to the

additional requirements engineering challenges with which traditional software

engineering is often faced.

However, influenced by the Open-Source phenomenon, [Anderson, 1999] carried out an

experiment in massive parallel requirements engineering to derive a security specification

for a (notional) national lottery system. He reported positively on how human diversity

can be used to increase the reliability of computer-based systems through enhanced

14

specification completeness and consistency checking. His findings are consistent with

social constructivist views that different confirming observations that support each other

increase the reliability of what is perceived [Heylighen, 2001].

While the Open-Source process indicates that greater fault-coverage can only be achieved

though human redundancy and diversity in known or well-established user-domains,

[Anderson, 1999]’s example begins to indicate otherwise. It suggests that such an

approach could be utilized as a fault-prevention approach to decrease the risks of errors

of omission possibly resulting in functionally deficient computer systems through

specification incompleteness due to ignoring or omitting important user-domain details in

deriving CBS requirements.

5.3.3 Increased Problem-Solving and Solution Finding

A much more ambiguous possibility, in Open-Source development, is the increased

potential for problem solving and solution finding through massive forms of human

redundancy and diversity. In his review of formal and informal design philosophies

[McPhee, 1997] noted that the benefits of the informal route was the increased learning

and specific knowledge acquisition that an explorative and iterative approach to design

offered. Such views are reinforced by the experiences of [Raymond, 1999] when he

designed the Open-Source product “Fetchmail”. During the project he became convinced

that having many developers scrutinize source-code designs can result in someone

helping you reframe the problem and simplify the design solution. He noted that:

“…It is not only debugging that is parallelizable; development and (to a perhaps

surprising extent) exploration of design space is, too…at a higher level of design,

it can be very valuable to have the thinking of many co-developers random-

walking through the design-space near your product…exploration essentially by

diffusion…This works very well. ” (p. 47-52).

Software design and development has long been recognized as one of the most complex

tasks imaginable [Brooks, 1995], [Glass, 1998]. This is because a designer is often faced

15

with a multiplicity of design goals to accomplish [Weinberg, 1971]. In such situations,

studies have shown that, as a result of this complexity, developers will focus on the most

prioritized goals through treating other important system attributes as “free-variables” to

be traded-off in their achievement [Weinberg and Schulman, 1974]. However, it is

suggested here that the Open-Source software process is ‘geared’ towards openly

resolving such technical conflicts. A justification for such a view is that Open-Source

software development is driven by, and relies upon, experienced and talented developers

having ongoing “self-interest” to continue supporting the product [Sanders, 1998]. To

achieve this, the Open-Source approach must be focused upon searching and finding

appropriate design solutions to resolve such conflicts in order to accommodate the

interests of the developer majority11. A good example of this is discussed in [Pettit et al.,

2001]. They argue that the reason why the Linux kernel was designed to support

dynamically linked modules was through a very large group of people pursuing their own

individual interests of wanting to add or remove large sections of functionality in a

convenient manner to suite their own technical and functionality needs. In short, they

believed the stimulus for such a solution was because:

“Linux was made by a very large group of people with a very diverse set of

objectives.” (p. 40).

Although this is a much less certain attribute of Open-Source software development,

there are indications that a combination of massive human-redundancy and diversity of

individual development goals helps to overcome the inherent complexity of software

development by supporting increased problem reframing and solution finding. This is

achieved not only through increased design ideas generated, but also through greater

visibility12 of the many design conflicts and trade-offs regarding important system

attributes that developers make during software development. To return to the theme of

11 The Apache “shared-leadership” project is a good example of how design is the result of accommodating
and resolving design solutions through majority consensus [Fielding, 1999]. Furthermore, it is suggested
that the inability to resolve technical design conflicts can often result in “code-forking” of one project into
two different design directions (cf. [Moody, 2001]).
12 See also [Lamsweerde, 2001]: the review of “goal-orientated requirements” and the potential for goals to
making requirements and design conflicts more identifiable.

16

Section 4, it is suggested that leveraging human redundancy and diversity in a similar

way may improve the integration and assurance of such desirable non-functional

attributes of dependable software systems in CBS design.

5.4 Section Summary

The key point of this section was to explore how human forms of redundancy and

diversity may be employed within the software development process to promote the other

dependability strategies of fault prevention, removal, coverage, and design for

dependability. It has been identified that human forms of redundancy are relevant for

CBS design as they are inherently differentiated and therefore bring a level of diversity

required for software development. As examples, we have identified human redundancy

and diversity issues raised by the recent phenomenon of Open Source Software

development. The Open Source approach begins to suggest that human redundancy and

diversity can be utilised favourably for all three dependability strategies. Furthermore,

there are indications that human redundancy and diversity increase problem solving and

solution finding through the leveraging of others design views/ideas and subsequent

resolution of self-orientated development goals. It is suggested and discussed in Section 6

below that such an approach to software development may also help increase the

integration and assurance of desirable dependability attributes during CBS creation.

6. Goal-Diversity
6.1 Engineering Human Diversity

As discussed in Section 3, the design process is a natural system that sets and changes its

own goals. Furthermore, it has a dominant affect on the computer systems it creates.

Since a computer systems are artificial systems that has its goals designed-in, the goals

pursued by the developers will have an overriding influence on the eventual system

produced. Any omissions, conflicts, or mismatches are likely to result in defects and

deficiencies in the system it eventually generates. Therefore, one way to improve control

and help reduce such problems is to influence the goals of the developers through careful

17

goal setting13 of required design goals to be achieved and maintained throughout the

development of CBS.

Taking the lead from existing approaches of “forced” diversity [Popov et al., 1999],

cognitive-engineering [Westerman et al., 1997], along with goal-setting in management

theory [Latham & Locke, 1979], diversity can be engineered through goal-diversity, also,

to achieve purposive design behaviour by deliberately predisposing individual developers

to pursue and maintain different goals14. Such an approach would contain both

convergent and divergent influencing factors often considered vital for creating effective

and successful “heterogeneous teams”. As [Shepard, 1964] advised:

“Variety is the spice of life in a group, so long as there is a basic core of

similarity.” [p. 118].

With “goal-diversity” the similarity core will be maintained by contributing developers

all pursuing the same functional specification, whilst variety will be engineered-in at the

technical task level through ensuring that each individual developer is responsible for

promoting the influence of a different desired dependability attribute to be assured and

integrated throughout the design/implementation phase of the project (e.g. contributor 1 =

Security; contributor 2 = Reliability; contributor 3 = Maintainability, etc.). Furthermore,

such convergence and divergence is congruent with uses of human redundancy in high-

13 The value of goal setting has been long recognized since “Management by Objectives” was first
advocated by management guru Peter Drucker in the 1950s for its ability to improve performance, create
purposive goal-directed behaviour, and alter attitudes in both individuals and groups, see: [Latham &
Locke, 1979] i.e. management by objectives, [Demarco & Lister, 1987] i.e. goal alignment and “shared-
goals” in teams, [Covey, 1992] i.e. personal improvement. It should be noted, however, that such
philosophies were orientated towards creating alignment and harmony. The usage of goal-setting advocated
here is to deliberately create dissonance and disharmony. In this respect, it is a perversion of the purpose
that goal-setting is normally utilized.
14 It can be argued that approaches to “diversity” so far in software engineering have been “implicit” forms
that rely on subconscious and pre-existing variation in humans. For example, design-diversity attempts to
stimulate diversity only through the artifacts used in the task of software development (i.e. methods, tools,
techniques). Cognitive diversity also only attempts to leverage subconscious diversity through appropriate
psycho-metric measurement and subsequent team member selection. However, goal-diversity attempts to
engineer and stimulate diversity at the conscious level of the task by “explicitly” affecting the approaches
to the task - irrespective of the artifacts used and natural cognitive variation of the specific individuals
involved. However, it would be interesting also to see the impact of explicit diversity approaches on the
others and their combined potential for increasing human diversity.

18

reliability organisations mentioned in Section 5.2. (i.e.. duplicative and overlapping at

the functional level).

The following Section from 6.2 to 6.4 discusses the envisaged benefits that may be

derived from such an approach – along with initial ideas of how it could be implemented.

6.2. Goal-Promotion

Non-functional attributes of a software system are more likely to be fulfilled when they

possess a close proximity to the required functionality. For instance, system performance,

in terms of its timeliness of functionality, is so closely linked to required functionality in

‘real-time’ systems that this non-functional attribute will be explicitly promoted as an

important development goal to be achieved during the design process. However,

maintainability of the CBS is often so remote from present required functionality that it is

more likely to remain and implicit user-domain expectation of the system in the future.

When this happens achievement of the non-functional goal is ultimately left to the

responsibility of the particular developer(s) involved – with regards to their discretion,

skill, and professionalism. As we have seen, the complexity and multiplicity of the

software design task will often result in such implicit goals being traded-off for more

explicitly demanded ones. Consequently, the integrity of the CBS, in terms of its

maintainability attribute, may well be compromised and will not become an issue until

years later when the user-domain requires the system functionality to be changed,

corrected, or enhanced. Therefore, if one wants a CBS to possess the desirable non-

functional attributes that support dependability, such attributes must be explicitly

promoted as desired non-functional goal(s) of the system during development.15

15 The value of making explicit non-functional requirement qualities is well established in manufacturing
and is known as a “design for X” approach. Here, for example, they may ensure the subsequent commercial
effectiveness of the manufacturing process at the initial product development stage by making explicit the
non-functional requirement of “design for ease of assembly” to reduce costs and speed-up production
during manufacture (cf. [Chen, 1999]). It appears, from Bill Gates recent email (see: [Boutin, 2002]), that
software producers like Microsoft, are now placing an increased value and priority on making explicit non-
functional dependability attributes – such as Availability and Security in order to achieve and realise their
design goal(s) in the future of “Trustworthy Computing” for .NET.

19

The idea of goal promotion is to achieve both increased diversity and coverage of

important non-functional attributes, at the system level, of CBS by utilising human

redundancy and diversity to implement the same functional specification as a primary

goal, during development, while deliberately predisposing individual developers of the

contributing group to take responsibility and ownership of an important non-functional

attribute as their own secondary goal during implementation. This not only reduces the

complexity of the task, in terms of removing the multiplicity of goals an individual

developer must consider, but also ensures sufficient coverage of important desirable

attributes of the CBS.

6.3. Iterative Design Phases

The notion of goal-promotion from Section 6.2 is an important prerequisite for this phase

to work correctly - as it relies upon continued goal-ownership of secondary non-

functional goals throughout the iterative stages of design review and goal relationship

identification (see: Sections 6.3.1 – 6.3.2). This ensures that individual developers

continue to defend their own secondary goals and critically evaluate and question the

other developer’s secondary goal design decisions throughout the design and

development of the system. As already discussed in Section 5.3.3, it is proposed here that

a number of iterative design and refinement phases (see Sections 6.3.1 – 6.3.2) will

promote increased learning and problem domain understanding. This is necessary with

such an approach as it was already noted in Section 4.5 how the desired non-functional

attributes of dependability have subtle, interdependencies, interactions, and emphasis

given any specific application. Therefore, because of this novelty, it will be necessary for

the developers to acquire a deeper understanding before a specific set of evaluation

criteria will emerge that will allow the developers to be able to judge the design

rationales to assess more accurately whether a particular non-functional goal has been

achieved or not (or to what degree it has been achieved or not).

It is also suggested here that a deeper understanding of the problem domain will also

support other dependability strategies of increased fault-prevention and fault-coverage

through both natural cognitive-diversity that exists in humans – but also because of the

20

increased sensitivity of developers to other developers design decisions and fault, error,

failure assumptions as the design progresses. It is suggested that this will also allow them

the increased ability to anticipate potential defects and deficiencies of the CBS in

advance of its deployment 16(i.e. links with fault-coverage and fault-prevention).

6.3.1 Peer-Review

The benefits of peer review inspections of program design have already been discussed in

the context of human redundancy and diversity and the Open-Source approach. The

“many eyes” affect not only supports fault detection and removal strategies of

dependability but, (as noted in Section 6.3 above) in the context of this approach, it also

increases the visibility of the overall development through stimulating greater insight

through reviewing diverse approaches to the design problem by other contributing

developers.

As an initial attempt at envisaging how it should be undertaken, it is suggested that the

beginning of the design phase should be undertaken by developers working in complete

isolation from each other until they have a deeper overall knowledge of the design

problem.17 After an initial attempt at the design each developer then reviews all of the

other developers’ diverse attempts at the design problem. Along with promoting fault

detection and removal strategies, the purpose of the review will be to identify important

goal relationships that exist between the diverse designs. This is further explored and

discussed in Section 6.3.2, below.

16 In fact the approach advocated may also be beneficial for the fault-tolerant strategy - as improved
problem domain understanding may also help in generating more accurate fault-assumptions and help in
determining the most effective fault-tolerant mechanisms to employ (see: [Randell, 2000] for more on the
importance of generating accurate fault-assumptions). .
17 Although the subject of another paper and outside the scope here, it has already been highlighted that
diversity can be mitigated by group, organizational, and management influences. The justification for this
isolation is therefore to preclude interruptions and negative group affects that may squash ideas and
innovative approaches to the problem. Once all of the developers have a thorough understanding of the
problem it is suggested that such influences will have a reduced affect.

21

6.3.2 Goal Relationship Identification

One of the benefits of a goal-orientated approach is that it quickly allows identification of

relationships that exist between goals [Lamsweerde, 2001]. As we seen from Section 4.5,

non-functional goals can be related as being either complementary or conflicting.

However, it is also suggested here, that in some cases, two goals – while not being

complementary, may also not necessarily be conflicting either. In such circumstances, the

two goals represent a different interpretation and emphasis during their implementation,

and could be made compatible when they are conceived in a different way and/or their

concrete specifics are reworked or re-factored.

As discussed in Section 6.3.1, during the review stages an important consideration for

developers will be to recognise the important relationships that may exist between diverse

versions. Where the individual developer believes that another developers non-functional

goal is complementary or compatible to theirs they should redesign to implement it.

However, where the developer believes that another developer’s non-functional goal is

conflicting with their own they should document their reasons and rationale for why they

think it cannot be integrated into their program. After redesign, by each developer, to

integrate complementary and compatible non-functional goals of the other developers the

design review process begins again - only this time with the redesigned and reintegrated

programs. The benefit of such an approach is that it allows a synthesis of non-functional

goals to be iteratively integrated and reviewed. More importantly, however, it also begins

to unearth particular conflicting aspects of the design problem - where concentration of

the contributing developers should be focused. However, such technical conflict

shouldn’t be viewed negatively, as the discussion of Open-Source suggests in Section

5.3.3, it can stimulate the search and identification of higher-level design solutions.

6.4. Conflict Resolution

It is inevitable, however, that even with iterative stages of review and redesign to find

solutions to outstanding non-functional goal conflicts, some goal-conflicts will remain

intractable and unresolved. In such situations the prioritization of one goal over another

will need to take place. Goal-orientated approaches are highly valuable in such situations

22

as they facilitate the evaluation of goals with regards to their priority status [Lamsweerde,

2001]. Furthermore, since the emphasis upon certain desirable attributes of dependability

is reliant upon the specific user and application domain, it will be necessary to get the

input from the user-domain to explicitly decide which dependability attributes are more

important than others. Here, also, goal-orientated approaches are useful as they permit an

interface for discussion between the technical aspects of the design process and the

business/user/management aspects of the user-domain18 [Lamsweerde, 2001].

The important point to this, is that the user-domain has a direct and explicit input into the

prioritisation of what dependability attributes of the CCBS are considered more (or less)

important. This makes non-functional prioritisation an explicit user-domain consideration

– rather than an implicit (and often unfulfilled) expectation, that is often determined

discretely by a single developer during system development. Therefore, such an approach

has the additional advantage of making the dimensions and attributes of CBS

dependability (and potentially undependability) known to the user-domain prior to

deployment.

6.5 Section Summary

The key point of this section is that we can engineer diversity by predisposing developers

to pursue different and desirable goals at the non-functional level. This is vitally

important since the goals of the process have an overriding influence on the eventual

dependability of the CBS. Goal promotion not only helps reduce the complexity of the

task faced by developers, but also ensures sufficient diversity and coverage of the

important system level attributes that ensure the dependability of CBS. However, because

different attributes are important in different user and application domains’ it is important

to apply an iterative approach that allows progressive problem understanding, synthesis,

integration, and evaluation criteria of the subtle interdependencies of non-functional

attributes to emerge. Finally, it is vitally important that irreconcilable goal conflicts are

explicitly prioritised within the user-domain in which the CBS will operate. This allows

18 Although outside the scope of this paper, in real-life application, this goal-oriented approach to design-
diversity, would probably require an equivalent goal-orientated approach to requirements engineering [cf.
Lamsweerde, 2001].

23

the particular priorities and limits of the CBS dependability dimensions to be made

known in advance of deployment.

7. Future Research
The ideas presented by the authors are explorative, in nature, and a number of

experimental and empirical possibilities have been discussed. It should first be noted that,

due to the inherent range of programming abilities and non-linear scaling of complexity

in software engineering, experiments in software design are inherently difficult to control

and generalise from. However, the interdisciplinary research project (i.e. DIRC see

acknowledgements in Section 9) in which this research will be carried out has resources

and facilities that will be useful for conducting such research. Secondly, a number of

possible initial research approaches include:

• A pilot experiment into the benefits of increasing human redundancy in fault

detection. It is conjectured that a law of diminishing returns will be experienced.

• A pilot experiment into “goal-diversity” using students initially and later attempts

to confirm any results through observations within an industrial setting. It is

thought that the initial experiment would utilise two groups attempting the same

design problem and giving them different (non-functional) goals to pursue (i.e.

performance vs. maintainability). Eventual solutions would then be exchanged,

discussed, and then merged. Depending upon the outcome of such an experiment,

it may be repeated later using three such groups and objectives. With regards to a

later industrial investigation, it has been suggested that a study should observe

how an organisation and/or traditional software development team manages non-

functional goals within the design/development process, in terms of which goals

are achieved, maintained, and or compromised.

8. Conclusion
This paper has argued that redundancy and diversity are important ways to achieve

dependability in CBS. However, despite the fact that the design process is mostly

24

responsible for the residual design faults that are to be expected (and may ultimately need

to be tolerated) in any non-trivial CBS. There has not been the same exploitation of

redundancy and/or diversity principles, at the process level, as that practiced and pursued

by fault-tolerant strategies at the computer-system level. Nevertheless, the nature of the

Open-Source Software development process begins to suggest that massive forms of

human redundancy and diversity can help improve the dependability of CBS through

leveraging them for other dependability strategies such as fault prevention, removal and

coverage. There are also indications from the Open Source approach that human

redundancy and diversity can promote increased problem solving and solution finding via

multiple views/ideas and the resolution of self-orientated goal-conflict. In recognition of

these Open Source influences, and the important influence of design process goals, the

notion of goal-diversity was discussed. It has been suggested that such an approach may

improve the dependability of CBS through a process of deliberately predisposing

developers to pursue diverse non-functional design goals. It is suggested that this may

lead to greater levels of design diversity, coverage, synthesis, solution finding, and

integration of desired non-functional attributes that promote the assurance of

dependability and trustworthiness of CBS.

9. Acknowledgements
The research of both authors is supported by the EPSRC grant to the Interdisciplinary

Research Collaboration on Dependability of Computer-Based Systems; that of ATL is

also funded by an EPSRC PhD studentship. Both authors are grateful to many colleagues

in “DIRC” for fruitful discussions but would like to single out Denis Besnard and Carles

Sala-Oliveras for particularly intensive interchanges on the subjects reported here.

10. References
Anderson, R., (1999) “How to Cheat at the Lottery (or, Massively Parallel Requirements

Engineering),” in Proc. Computer Security Applications Conference, Phoenix,
AZ,

Bell, D. (2000). Software engineering: A programming approach. 3rd edition. Addison-
Wesley, U.K.

25

Beynon-Davies, P., (1999) Human error and information systems failure: the case of

the London ambulance service computer-aided dispatch system project.
Interacting with Computers vol. 11. pp 699–720

Boutin, P., (2002) Bill Gates Email on Trustworthy Computing. Online at URL:
http://paulboutin.weblogger.com/stories/storyReader$155

Brooks, F. P. (1995). The mythical man month: Essays on software engineering.

Anniversary Edition. Addison-Wesley, New York, NY.

Byrne, B. (1991) Social Psychology: Understanding Human Interaction (6th Edition).
Allyn & Bacon Publishers. USA.

Chen, K., (1999). Identifying the Relationship among Design Methods: Key to
Successful Applications and Developments of Design Methods. Journal of
Engineering Design, Vol. 10, No. 2, 1999. pp 125-141.

Cooke, S. & Slack, N. (1991). Making management decisions. Prentice-Hall, UK.

Covey, S. R., (1992) The Seven Habits of Highly Effective People: Powerful Lessons in

Personal Change. Simon & Schuster Ltd. London. UK.

Demarco, T., Lister, T., (1987) Peopleware: Productive Projects and Teams. Dorset
House Publishing. New York. USA.

Fielding, R. T., (1999) Shared Leadership in the Apache Project. Communications of the
ACM. Vol. 42, No. 4. April 1999. pp-42-43.

Gacek, C., Lawrie, T., Arief, B. (2001) The Many Meanings of Open Source. Department
of Computing Science, University of Newcastle-upon-Tyne, Technical Report
CS-TR-737

Glass, R.L., (1998) Software Runaways; Lessons Learned from Massive Software Project

Failures. Prentice Hall New Jersey, USA.

Heylighen, F.H., (2001) Cybernetics and Second-Order Cybernetics :in: R.A. Meyers
(ed.) Encyclopedia of Physical Science & Technology (3rd ed), 2001. Academic
Press, New York. USA.

Jackson, M., (2001) Problem Frames: Analyzing and structuring software development
problems. Addison-Wesley Publishers. Harlow. UK.

Jones, C.B., (2002) Providing a formal basis for dependability notions. Department of
Computer Science. University of Newcastle. UK. (to be published)

26

Kandola, R., Fullerton, J., (1998). Diversity in Action: Managing the Mosaic (2nd
Edition). Institute of Personnel & Development. London. UK.

Knight, J.C., Leveson, N.G. (1986) An Experimental Evaluation of the Assumption of

Independence in Multiversion Programming. IEEE Transactions on Software
Engineering. Vol. 12. No. 1. January., pp 96-109.

Lamsweerde, A. V., (2001) Goal-Orientated Requirements Engineering: A Guided Tour.
Proceedings of Requirements Engineering 2001, 5th IEEE International
Symposium on Requirements Engineering, Toronto, August 2001. pp 249-263.

Lang. R. (2000) Open Source Software: Issues and Implications. News @ SEI. Vol. 3.
No. 1. Winter 2000., pp. 6-7. Online at URL: http://www.sei.edu

Laprie, J. C., (1995) “Dependable Computing: Concepts, Limits, Challenges,” in 25th
IEEE International Symposium on Fault-Tolerant Computing - Special Issue, pp.
42-54, Pasadena, California, USA, IEEE.

Laprie, J.C., (1992) (Ed.). Dependability: Basic concepts and terminology — in English,
French, German, Italian and Japanese, Dependable Computing and Fault
Tolerance. Vienna, Austria, Springer-Verlag

Latham, G.P., Locke, E.A., (1979) Goal-Setting – A Motivational Technique That
Works. Organizational Dynamics, Vol. 8. No 2. pp 68-80.

Lewontin, R., (1982). Human Diversity. Scientific American Books. San Francisco. USA.

Mason, D., Willcocks, L., (1994) Systems Analysis, Systems Design. Alfred Waller

Publishing, Oxfordshire, UK.

McPhee, K., (1997) Design Theory and Software Design, Technical Report TR 96-26
(October 1996 : - Revised May, 1997) Department of Computer Science,
University of Alberta, Edmonton, Alberta Canada.

Meyer, B., (2000) The Ethics of Free Software. Software Development Magazine. Online
at URL: http://www.sdmagazine.com/articles/2000/0003/0003d/0003d.htm

Moody, G., (2001) Rebel Code: Linux and The Open Source Revolution. Allen Lane

Penguin Press. Hammondsworth Middlesex. UK.

Pettit, K., Chen, S., Coffing, C., Ho, T., Brockmeier, J., Harris, A., (2000) Suse Linux:
Install, Configure, and Customize. Prima Publishing, California. USA.

Popov, P., Strigini, L., Romanovsky, A., (1999) Choosing Effective Methods for Design
Diversity – how to progress from intuition to science. Lecture Notes in Computer
Science, Vol. 1698.

27

Prata, S., (1995) C++ Primer Plus (2nd Edition). Waite Group Press. California. USA

Randell, B. (2000). Turing Memorial Lecture: Facing up to faults. The Computer

Journal, Vol. 43. No. 2. pp 95-106.

Raymond, E.S. (1999). The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Rielly & Associates, Inc. USA

Sanders, J., (1998) Linux, Open Source, and Software’s Future. IEEE Software.
September/October 1998. pp 88-91.

Shepard, C, R., (1964). Small Groups. San Francisco, CA. Chandler Publishing. USA :in:
Kandola, R., Fullerton, J., (1998). Diversity in Action: Managing the Mosaic
 (2ndEdition). Institute of Personnel & Development. London. UK. Cited pp 49.

Sommerville, I., (2001) Software Engineering (6th Edition). Addison-Wesley Publishers.

Essex. UK.

Viller, S., Bowers, J., Rodden, T., (1997) Human Factors in Requirements Engineering:
A Survey of Human Sciences Literature Relevant to the Improvement of
Dependable Systems Development Processes. Technical Report CSEG/8/1997.
Computing Department. Lancaster University. UK.

Weinberg, G. M. (1971). The psychology of computer programming. Van Nostrand

Reinhold, London.

Weinberg, G.M., Schulman, E.L., (1974) Goals and Performance in Computer

Programming. Human Factors. Vol. 16. No. 1.pp 70-77.

Westerman, S. J., Shryane, N. M., Crawshaw, C. M. & Hockey, G. R. J. (1997).

Engineering cognitive diversity. in F. Redmill & T. Anderson (Eds). Safer
Systems. Proceedings of the 5th Safety-critical Systems Symposium, Brighton, UK
(pp. 111-120).

Yamouchi, Y., Yokozawa, M., Shinohara, T., Ishida. T. (2000). Collaboration with Lean
Media: How Open-Source Software Succeeds. Conference Paper Presented at
Computer Supported Cooperative Work Conference 2nd to 6th December 2000.
Philadelphia., pp 329-338.

