

DSoS
IST-1999-11585

Dependable Systems of Systems

Revised Version of DSoS Conceptual Model
(IC1)

Technical Report CS-TR-746, University of Newcastle upon Tyne

Report N° 35/2001, Technical University of Vienna

LAAS-CNRS Report No. 01441

Report Version: Deliverable IC1

Report Preparation Date: 23 Oct 2001

Classification: Public Circulation (after review)

Contract Start Date: 1 April 2000 Duration: 36m

Project Coordinator: Newcastle University

Partners: DERA, Malvern — UK; INRIA — France; CNRS-LAAS — France; TU Wien —
Austria; Universität Ulm — Germany; LRI Paris-Sud - France

Project funded by the European Community
under the Information Society Technology
Programme (1998-2002)

Dependable Systems of Systems IC1 – Revised Version of Conceptual Model

 iii

Table of Contents

1 Introduction .. 1

1.1 SCOPE OF DSOS...1

1.2 BREADTH OF THIS CONCEPTUAL MODEL..2

1.3 SOME PRE-DEFINITIONS ...3

1.3.1 A first look at the notion of “system” ...3

1.3.2 Legacy systems and architectural style ..3

1.3.3 The key role of time ...4

1.4 THE INSPIRATION FROM CASE STUDIES..5

1.5 STRUCTURE OF THE DOCUMENT ..5

2 Taxonomy of Systems of Systems ... 7

2.1 ATTRIBUTES OF SYSTEMS..7

2.1.1 Autonomy dimension ...7

2.1.2 Controllability dimension ...8

2.1.3 Observability dimension..8

2.1.4 Dependability provision dimension ..9

2.1.5 Dependability justification dimension ..9

2.1.6 Functional dimension..9

2.1.7 Other classical (non-SoS-specific) attributes ...9

2.2 ATTRIBUTES OF COLLECTIONS OF SYSTEMS ...10

2.2.1 Integration dimension ...10

2.2.2 Interaction dimension..10

2.2.3 Binding dimension...10

2.2.4 Timing dimension ..11

2.2.5 Mismatch dimension..11

2.2.6 Dependability provision dimension ..12

2.2.7 Dependability justification dimension ..12

2.3 ATTRIBUTES OF CONNECTIONS BETWEEN SYSTEMS ...12

2.3.1 The nature of connectors...12

2.3.2 Type dimension..13

2.3.3 Dependability dimension...13

2.3.4 Flexibility dimension...13

3 Concepts .. 15

3.1 SYSTEMS AND THEIR BEHAVIOUR ...15

3.2 SYSTEM DEPENDABILITY ISSUES...20

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 iv

3.3 SYSTEM INTERCONNECTION ISSUES ..22

3.4 TIME...25

4 Interface and Connection Characterization .. 29

4.1 INTERFACE TYPES..30

4.2 HIGH-LEVEL INTERFACE ISSUES ...32

4.2.1 Naming...32

4.2.2 Interaction styles ...35

4.2.3 Dependability attributes of interactions ...41

4.2.4 State persistence..42

4.3 LOW-LEVEL INTERFACE ISSUES ..44

4.3.1 Transport timing across the interface...46

4.3.2 Flow control ..47

4.3.3 Basic DSoS transport mechanisms ...50

4.3.4 Integration of event- and time-triggered operation..52

5 Towards Formalization.. 55

5.1 FORMAL VALIDATION OF SOS DEPENDABILITY..56

5.1.1 DSoS validation context ..56

5.1.2 Validation activities...56

5.1.3 Characteristics of SoSs and implications for description/validation...................................57

5.1.4 Characteristics of SoS properties and implications for description/validation60

5.1.5 Abstraction ..62

5.2 ARCHITECTURE DESCRIPTION ...63

5.2.1 Proposed UML-based ADL...63

5.2.2 Components, connectors and configurations ...63

5.2.3 Extensibility of the proposed ADL ..64

5.3 INTERFACE DESCRIPTION ..64

5.3.1 Summary of OMG IDL ..64

5.3.2 Extensibility of OMG IDL ...67

5.4 INTERACTION DESCRIPTION ..68

5.4.1 Formal validation techniques ...68

5.4.2 Modeling systems using CSP ..69

5.4.3 Validation by compositional reasoning ..69

5.5 CSP MODELS OF CORBA PROTOCOLS ...70

5.5.1 Common object services and CORBA facilities ...70

5.5.2 ORBs and GIOP ..70

5.5.3 The CSP modeling of GIOP..71

5.6 MODELLING CA-ACTIONS...74

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 v

6 Summary and Future Work.. 77

Annex 1. Models of Time... 79

Annex 2. Glossary... 83

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 vi

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 1

Revised Version of DSoS Conceptual Model
Cliff Jones1, Marc-Olivier Killijian3, Herman Kopetz2,

Eric Marsden3, Nick Moffat4, Michael Paulitsch2,
David Powell3, Brian Randell1, Alexander Romanovsky1, Robert Stroud1

1University of Newcastle upon Tyne (UK),
2Technical University of Vienna (Austria),

3LAAS-CNRS (Toulouse, F), 4QinetiQ (UK)

1 INTRODUCTION

This document defines the key concepts underlying DSoS. Before coming to their definitions,
it is worth emphasising the breadth of systems and issues that the project is addressing.

1.1 Scope of DSoS

There are different ways of building systems: at one extreme there are “green fields” projects
where a whole system is constructed from scratch; at the other extreme, systems can be
constructed mainly from (large) existing components. It is the objective of the DSoS Project
to investigate issues related to the integration of components that are existing complete
systems in order to generate a new set of dependable services from the resulting system of
systems. Emphasis is put on systems of systems because the latter will typically be non-trivial
systems in their own right. This is in distinction to the construction of a system from more-or-
less basic components with simple, fixed, interfaces that are fully under the control of the
designer of the required system.

Clearly, building a system of systems is a recursive idea in that the required system could be a
component of a yet larger system.

One key attribute of component systems is that they will normally exist before the design of
the required system. Moreover, a component system is, typically, an autonomous computer
system that provides a useful service to an organization or a set of users. A system of systems
may thus span different organizations, each one with their own systems that are, as a result, in
different spheres of management control.

The principal problem to be addressed by the DSoS Project is that of ensuring that the result
of such integration is an adequately dependable system of systems. This objective remains

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 2

even when the component systems are less dependable: ways of masking failures in the
underlying systems are to be addressed.

A further important requirement of such integration is that the stability of any existing
services of the component systems not be compromized.

Furthermore, it is typically not possible for the designer of a system of systems to change the
component systems. It is, however, important to recognize that those component systems
might continue to evolve without consultation. One potential failure mode of a system is the
result of a change to interfaces in its (separately controlled) components. The DSoS project
has decided to include within its scope attempts to recover from such failures.

1.2 Breadth of this conceptual model

There does, of course, exist literature on building systems from components. Indeed, in
specific domains, members of the DSoS project have made earlier contributions to such
approaches. For example, the Time Triggered Architecture approach from TUV1 is widely
recognized as a key contribution to the design of real-time control systems.

What makes the DSoS project goals challenging (and worthwhile) is the decision to tackle a
wide class of systems (of systems). The aim of this evolving document is to define a
collection of concepts which can embrace, for example, inter-organizational on-line systems
and real-time control (systems of) systems. The concepts will have to be abstract enough to
cover failures as different as timing mismatches in actuators for a car braking system and
interface mismatches when a change is made to a component system (not under our control) .

While it is unlikely that a single fault-tolerance approach can be found to attempt to contain
all failures, only the identification of the underlying similarities (and the residual differences)
can unify the design of systems of systems. Although the different viewpoints bring their own
concepts and terminology, it is seen as a key objective of the DSoS Conceptual Model to
analyse and unify concepts where possible.

There is another potential pay-off of this broad objective: there is real scope for cross-
fertilization. For example, the concept of time has been extensively studied in vehicle control
systems but has been treated as an afterthought in too much of the rest of computing.
Similarly, concepts of ownership and management control are more familiar to the designers
of large institutional systems. The DSoS project aims to get synergy from its broad aims.

1 Technical University of Vienna

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 3

1.3 Some pre-definitions

1.3.1 A first look at the notion of “system”

A precise characterization of the concept of system is one of the objectives of Section 3.1 but
an intuitive notion will suffice to set the scope of the discussion. A system is normally a
collection of components whose behaviour can be discussed by fixing a boundary and its
interfaces. Although a system such as a car can be viewed in different ways by its driver and a
maintenance mechanic, there is for either purpose a system view which facilitates discussion.
Interaction with a system takes place at interfaces which can usefully be thought of as being
at the boundary of the system. The concern in DSoS is with systems of systems and this brings
the key issue of mismatches between interfaces but, before addressing this, it is worth looking
more closely at what it means to characterize the operations available at an interface.

Most non-trivial systems possess a state which captures some aspects of the history of
interaction with the system (various notions of state are discussed in Section 3.2 below). In
the trivial example of a stack the state can be viewed as a sequence of values; in a hotel
database, the state would include all future bookings. In both cases, interactions at the
interface can reflect and influence the state. One could already employ a notion of time here
but many computer scientists try to finesse this by implicitly indexing the state by the point in
the sequence of operations performed at the interface. Whether or not this is a good idea, it
can be seen to be wholly inadequate in the case of systems whose state evolves
autonomously. If the interface of a system emits –for example– the temperature of a nuclear
reactor, it is essential to discuss the time at which the interaction occurs. (It is also easy to
make the case that, if many other systems are interacting with a hotel reservation system, the
interactions must also be indexed by time (e.g., the offer of a reservation might be made at
time t with a validity period of d)). This notion of time is so central that it is explored more
thoroughly in Section 1.3.3.

1.3.2 Legacy systems and architectural style

We distinguish legacy component systems from two other types of component system, which
in contrast will have been designed in accordance with the chosen architecture for a given
system of systems. These are previously-developed general purpose components, and
components that have been specially developed for a particular system of systems. The
integration of the component systems is realized via a communication service across special
connections, the linking connections between linking interfaces of the component systems.
From the point of view of any linking interface, a component system’s specification can be

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 4

reduced to the functional and temporal description of those services that are required for the
integration, together with, ideally, a description of its dependability guarantees. From this
point of view, the other (i.e., local) services of the component systems are not important.

We assume that every autonomous legacy system is developed according to its own rules and
conventions concerning data representation, protocol choices, error handling, etc. We call the
sum of these conventions the architectural style of the system. It is probable that any two
legacy systems that are to be integrated will conform to different non-compatible architectural
styles. Any difference in architectural style, something we call a property mismatch, could,
unless dealt with, give rise to a failure at a linking connection (Garlan, Allen et al. 1995;
Allen and Garlan July 1997). It is an important function of the linking connection to reconcile
these architectural styles in order that the component systems can communicate without any
property mismatch. Furthermore, it may be required that specified independent failure modes
of component systems are tolerated by the system of systems, or that mechanisms are
provided to increase the dependability of the system of systems. The implementation of these
fault tolerance mechanisms is also in the scope of the linking connections.

The subject of interface mismatches is explored in detail below but it is worth emphasising
that the concern in DSoS goes far beyond simple types of format mismatches. This partly
results from the observation that the component systems of a SoS might be under separate
management control. It will be necessary to cope with what might be termed protocol
mismatches where two systems need to exchange a collection of information but have
differing flows of control.

1.3.3 The key role of time

The focus of the conceptual model of the DSoS Project is on the linking interfaces of the
component systems, and the linking connections that enable communication between these
systems in order to generate the emerging services of the system of systems. The DSoS
conceptual model differs from many other models of computation by the explicit inclusion of
physical time. Physical time is needed if we are to reason about timely failure detection (in
particular, of autonomous component systems), performance, and other real-time properties.
This point of view is also taken by E. A. Lee in an excellent recent survey on embedded
computer systems: “Time has been systematically removed from theories of computation,
since it is an annoying property that computations take time. ‘Pure’ computation does not
take time, and has nothing to do with time. It is hard to overemphasize how deeply rooted this
is in our culture. So called “real-time” operating systems have so little to go on that they
often reduce the characterization of a component (a process) to a single number, its priority.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 5

Even most ‘temporal’ logics talk about ‘eventually’ and ‘always’ where time is not a
quantifier, but rather a qualifier.” (Lee 1999).

1.4 The inspiration from case studies

The problems of composing a system of systems take many forms, since there are many
forms of system. For this reason, we have chosen to scope the problem by pursuing case
studies which span several different kinds of system.

The first kind of system is exemplified by an embedded real-time system, something that can
typically be treated as a black box and defined by its interfaces. Another kind of system is
exemplified by an on-line commercial information system, where it is not clear that the black
box perspective is appropriate, since any connection could be negotiated by the parties
concerned, and the use of the system has important implications outside the system. It is not
at all obvious that the same compositional principles apply in both cases — indeed this is
something we are investigating.

Of course, these two examples are just different points on a spectrum, with most systems
coming somewhere between them. One important dimension of the spectrum is the extent to
which the implications of invoking the services provided by the system can or cannot be
confined to state variables within the system – others are discussed in Section 2.

1.5 Structure of the document

The purpose of this deliverable is to present a revised version of the DSoS conceptual model,
which was first presented in deliverable BC1. As part of this revision, we have attempted to
generalize the model by identifying abstract concepts that are applicable to more than one
kind of system of systems. We have also developed a taxonomy (see Section 2) in order to
explore the range of possible systems of systems, and the different factors that could impact
upon the dependability of such compositions of systems. Sections 3 and 4 introduce the set of
basic DSoS concepts including a model of time. We then present our initial ideas about
formalization in Section 5. Finally, we conclude by summarizing the contents of the
deliverable and briefly discussing further work. Annex 1 contains further information about
our models of time, and Annex 2 provides a glossary.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 7

2 TAXONOMY OF SYSTEMS OF SYSTEMS

The purpose of this taxonomy is to assist DSoS in its aim of developing a coherent overall
understanding of the dependability related problems, and opportunities, that are inherent in a
whole spectrum of system of systems. This can be, and is being here, undertaken without
regard for the particular domain of application – nor those aspects of dependability required –
of the resulting system. In particular, it aims to situate the concerns of DSoS, related to
dependability, autonomy and time, in the overall domain of system construction using
components that are – or could usefully be regarded as – complete systems in themselves.

In its present state of development, it draws principally on the basic concepts and ideas from
the work of distributed systems and system architecture research communities, in effect
summarizing this material from a taxonomical viewpoint. It no doubt merits further
development and refinement.

This taxonomy of systems of systems is organized into three principal parts. The first involves
a classification based on the attributes of an individual system. This concentrates on attributes
that are of particular relevance to the fact that the system is being, or might be, used as a
component in one or more systems of systems whose dependability is of concern. The second
part is based on the attributes of the collection of systems that are incorporated in a system of
systems (i.e., on issues that are to do with what has been called a “global architectural
structure”). The third part is based on attributes of the connections between the systems that
make up a system of systems.

2.1 Attributes of Systems

The attributes of systems that are of particular relevance to the problems of incorporating
them into a system of systems relate to a number of readily distinguishable types of issue,
including autonomy, controllability, observability, etc.

2.1.1 Autonomy dimension

It is useful to distinguish between several different forms of autonomy, i.e., independence of
the considered component system with respect to its existence, its operation and its evolution.

2.1.1.1 Independent existence

We distinguish between:

• component systems that were built especially for a given system of systems,

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 8

• component systems that are re-used, either (a) having been built with re-use in mind

(component-based engineering; COTS; general-purpose servers and services), or being (b)

legacy components.

2.1.1.2 Independent operation

The various component systems involved in a system of systems can either be:

• operating under independent management, in which case their involvement in the system

of systems may either be subject to a service delivery contract, or (most problematically)

involve no contractual obligations, or

• operating under the same global management as the system of systems of which it is part.

2.1.1.3 Independent evolution

A system of systems may have to cope with the fact that component systems can evolve. In
such situations, their component systems can either

• evolve under independent management, in which case their involvement in the system of

systems may be subject to a contract that ensures stability of its interfaces or (most

problematically) involve no contractual obligations, thus introducing the possibility of

dynamic interface mismatch, or

• evolve under the same global management as the system of systems of which it is part.

2.1.2 Controllability dimension

In this dimension, the issue is whether a system has to be treated as a black box whose
internal operation cannot be interfered with, or has instead been provided with an
“intercession interface” (either explicitly by its designer, or implicitly by the enclosing
infrastructure).

2.1.3 Observability dimension

In this case, the issue is whether a system has to be treated as a black box whose internal
operation cannot be observed, or has instead been provided with an “introspection interface”
(either explicitly by its designer, or implicitly by the enclosing infrastructure).

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 9

2.1.4 Dependability provision dimension

In this dimension we distinguish between:

• provisions w.r.t. internal faults – there may be none, so that it is necessary to rely on

external error detection, or the system may have an exception reporting interface (whose

use can be supplemented by means of external error detection) or at least have a

controlled failure mode (e.g., will only fail by crashing),

• provisions w.r.t. external faults – again there may be none, so that it is necessary to rely

on external error detection, or it may have means of detecting one of more classes of

threat.

2.1.5 Dependability justification dimension

In this dimension, it would be possible to classify component systems according to:

• the construction, the verification, and the evaluation processes that their designers have

employed (if any),

• any quantified guarantees related to reliability, availability, security, safety, and various

QOS/performance measures (throughput, latency, WCET…).

2.1.6 Functional dimension

Two aspects of this dimension that are of particular relevance to the task of creating a
dependable system of systems concern:

• the designers’ knowledge of/confidence in the semantics of the services offered by each

putative component system,

• the extent to which these semantics are formally specified.

2.1.7 Other classical (non-SoS-specific) attributes

Other relevant attributes of component systems include their flexibility / adaptability.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 10

2.2 Attributes of Collections of Systems

This dimension of our taxonomy concerns the collection of component systems, in particular
the legacy component systems, as a whole – a topic that is termed the “global architecture
structure” by (Garlan, Allen et al. 1995)

2.2.1 Integration dimension

Component systems can be integrated together to form a system of systems at various
integration levels, such as:

• network-level integration (e.g., TCP/IP…)

• component architecture (e.g., CORBA, COM…)

• web-level integration (e.g., HTTP, SOAP…)

It is also worth distinguishing situations in which the integration is essentially homogeneous
from those in which it is heterogeneous, in the sense that different subsets of the set of
component systems are integrated together at different levels, perhaps as a result of the whole
having been developed incrementally, and indeed opportunistically.

2.2.2 Interaction dimension

As described in some detail below in Section 4.2.2, interactions can be either event-triggered
or time-triggered, and a number of different interaction styles are available for constructing
systems of systems. These include: client-server, publish/subscribe, multipeer and peer-to-
peer, the use of a data sharing repository, mobile code, etc.

With regard to both the triggering method used, and the interaction style, it is useful to
distinguish between homogeneous and heterogeneous approaches.

2.2.3 Binding dimension

The binding of names to entities among the component systems can either be static, or
dynamic as discussed in Section 4.2.1. In the latter case, it requires the provision of some type
of naming service, which in itself may be another component system (e.g., the CORBA
naming service).

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 11

2.2.4 Timing dimension

We are assuming that all component systems are influenced by the passage of time (perhaps
by possessing or having access to some form of clock). The important distinction to make in
this dimension is between the situation where all one can rely on is a bounded drift among the
set of local clocks, and that in which there is a common notion of time, i.e., of global time
(e.g., provided by synchronized clocks).

2.2.5 Mismatch dimension

This important dimension concerns the known (or assumed) property mismatches among a set
of component systems, all of which will have to be handled by connection systems if they are
not to be a cause of undependability. These mismatches may (i) all be known a priori, (ii)
may vary among a known set of possibilities, or (iii) may involve the occurrence of new
mismatches during operation of the system of systems. These are three increasingly difficult
challenging possibilities, requiring the use of ever more sophisticated connection systems.

The differing types of property mismatch, from low-level towards high-level, include:

Physical (Mechanical, Electrical) - In order to be able to transmit bit strings from one system
to another system, the mechanical and electrical and coding characteristics at the connection
must be compatible.

Syntactic - Caused by incompatible information structures at a connection. This includes
issues of data formats, bit and byte ordering (e.g., “endianess”), and the like.

Flow Control – If there is implicit flow control in one component system and explicit flow
control in another system then the difficult problem of flow-control reconciliation must be
solved in the connection system.

Protocol - Different communication protocols can be used in different parts of the component
systems.

Data Representation - Representational issues normally only show up at interfaces, not within
a component system. To facilitate the interconnection of systems, rules and conventions
concerning data representation and data encoding need to be enforced whenever possible. The
specification of a standard format for the representation of time is being investigated; simple
representation mismatches might be handled by XML, but this clearly has limitations (being
purely syntactic).

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 12

Temporal - The duration between a request by a client and the expected response by the
server is important from the point of view of the temporal accuracy of the data (in real-time
systems) and error detection. The systematic calculation of time-outs and the associated
handling of orphan service requests are important research topics.

Dependability - The designer of a system of systems must make assumptions about the
reliability, failure modes, and error detection and handling mechanisms of the systems to be
incorporated into the system of systems. If a system of systems is to be dependable, these
assumptions must be validated. This is an important topic in the DSoS Project.

Semantics - If we investigate high-level interface issues (HLII), then a property mismatch can
occur if slightly different meanings are associated with a name. Such a property mismatch is
called a semantic mismatch in (Garlan, Allen et al. 1995).

2.2.6 Dependability provision dimension

This relates to the classification of collections of systems according to the fault tolerance
mechanisms they employ. Any such mechanisms might either be application-dependent (e.g.,
transactions, transactional workflow, co-ordinated atomic actions, spheres of control) or
application -transparent mechanisms (e.g., providing recoverability, and perhaps making use
of replication).

2.2.7 Dependability justification dimension

In this dimension, it would be possible to classify collections of systems according to:

• the construction, the verification, and the evaluation processes that their designers have

employed (if any),

• any quantified guarantees related to reliability, availability, security, safety, and various

QOS/performance measures (throughput, latency, WCET…).

2.3 Attributes of Connections between Systems

2.3.1 The nature of connectors

Using the classification given by (Garlan, Allen et al. 1995), the issues here concern the
protocols and the data models used. Regarding protocols, the primary distinction is between
blocking and non-blocking protocols – see Section 4.3 below. The data models used in

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 13

transmitting information among component systems will, presumably, be based on the forms
of data representation used by these systems.

2.3.2 Type dimension

The connection types that we have identified (see Section 3.3 below) are boundary lines and
connection systems, where the latter may deal with various types of mismatch, and provide
varying sophistication of mismatch resolution mechanism.

2.3.3 Dependability dimension

Connection systems, though not boundary lines, can be classified in this dimension according
to their provisions regarding their own internal and external faults, and the quantitative
guarantees (if any) that can be given regarding the dependability of their provisions for
coping with mismatches. This classification is therefore essentially the same as that given in
Sections 2.1.4 and 2.1.5 above concerning (component) systems.

2.3.4 Flexibility dimension

Connection systems can be developed generically, e.g., like CORBA or specifically, e.g., a
wrapper for a legacy system. Generic connection systems provide means for their
customization whereas specific ones are specialized for the particular systems they
interconnect.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 15

3 CONCEPTS

In this section we introduce the basic concepts of the DSoS Project by a set of definitions,
which though informal are intended to be precise and unambiguous, and explanatory notes.

3.1 Systems and their Behaviour

The definition of a system found in, for example (Laprie 1992) is: A set of components bound
together in order to interact.

While not disagreeing with this definition, for our purposes we need a definition of system
that incorporates a notion of time:

System: An entity that is capable of interacting with its environment and is sensitive to the
progression of time.

Fundamental to this definition is the distinction between a system — the object of
consideration — and its environment. The environment (itself in principle another system)
takes advantage of the existence of a system and produces input information to the system and
acts on the output information from the system. Since our main focus is on the information
exchanged between a system and its environment, we will abstract from the non-information
relevant properties of a system as far as is meaningful and possible.

Typically, the systems in which we are interested have some degree of autonomy in that they
are capable of independent behaviour, and in particular of failing. (A standard definition of
autonomous is: “Not controlled by others or by outside forces; independent.”)

Our definition of system excludes, for example, a software package without an associated
processor. However, we would consider software packages that share the same processor to
be separate (but not wholly independent) systems. Our definition of system also includes
human organizations, for example (though these are not the focus of our project).

A system can be decomposed into interacting component systems. This recursive
decomposition will be stopped when the inner details of a component system are of no
relevance for the current analysis. Conversely, a set of systems can be composed to form a
system of systems; i.e., a new system is generated.

A behaviour (see the definition below) can only be associated with a system if some notion of
time is taken into account. Time is also important for the introduction of the concept of a
failure. This justifies organising further definitions around a timeline.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 16

The introduction of temporal awareness requires a model of time. We assume a model based
on Newtonian time. Time progresses along a dense timeline, consisting of an infinite set of
instants, from the past to the future.

Instant: A cut of the timeline.

Duration: A section of the timeline.

A duration is delimited by two instants. A more detailed discussion of the DSoS model of
time is contained in Annex 1.

Interface: A point of interaction between a system and its environment.

At the physical level, for instance, an interface can exist as a single line (a serial port) or a set
of lines (a parallel interface).

An interface can be an output interface or an input interface or both, i.e., a bi-directional
interface.

Output Interface: An interface of a system at which information is produced for the
environment of the system.

A system without an output interface is meaningless, since it cannot deliver information to its
environment and, therefore, has no effect on the environment.

Input Interface: An interface at which information is consumed from the environment of the
system.

It is possible to have systems without an input interface, e.g., a clock that produces periodic
signals without an explicit input.

Example: A smoke detector is a simple computer-controlled system with two
interfaces: an input interface which is connected to a smoke sensor and an output
interface which is connected to a central fire alarm station. It is required that,
within one second after a critical level of smoke is detected at the input interface,
an alarm message must arrive at the central fire alarm station. Crash failures of the
smoke detector must also be detected within a second. The smoke detector is a
system that has no control input. It samples the state of its environment at points
in time that are determined by the internal clock of the smoke detector and sends
its observations to the central fire alarm station, either periodically or sporadically
when a relevant change-of-state has been detected.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 17

Actuation (Sensing) Operation: The production (recording) by a system at a physical output
(input) interface of a single value change at an instant or of a temporally-controlled
sequence of value changes during a duration.

The concept of an actuation (sensing) operation is a general concept that encompasses the
exchange of information among widely different types of systems (analog systems, digital
electronic systems, computer systems).

The description of the communication among computer systems can be simplified by the
introduction of the concept of a message. In DSoS, we assume that the idiosyncrasies of any
sensors and actuators that interface to the environment of a computer system are, if necessary,
encapsulated within transducer systems that can send and receive messages. Hence, the
further development of the conceptual model will focus on the operations of sending and
receiving messages.

Message: A data structure that is formed for the purpose of communication among computer
systems.

Send (Receive) Operation: The sending (receiving) of a message at an interface.

Successful termination of a receive operation always results in the reception of a complete
message.

Message Send Instant: The instant when the sending of a message starts at the sender.

Message Receive Instant: The instant when the receiving of a message terminates at the
receiver.

A send (receive) operation requires a certain time. The duration between the start-instant of a
message-send operation and the termination-instant of the corresponding message-receive
operation can be of relevance for the correct operation of a system of systems.

Example: A driver of a car approaching an intersection observes the change of the
traffic light from “green” to “yellow”. He/she makes a decision whether to
accelerate and cross the intersection during this cycle of the traffic light or to
brake and wait for the next cycle. This decision is transmitted to the computer
system controlling the car in a message. If the message is stored in a queue for a
significant interval of time, the consequent change of the meaning contained in the
message can have safety implications.

The appropriate handling of a message at the sender and receiver (update in place, queue)
depends on the information content of a message. In order to be able to characterize this

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 18

information content we need to introduce the important concept of state variables and state
observations.

State Variable: A state variable is a relevant variable, either in the environment or in the
computer system, whose value may change as time progresses.

Examples of state variables are the position of an actuator in a controlled system or the size of
a queue in a computer system. A state variable has static attributes that do not change during
the lifetime of the state variable, in addition to the dynamic attributes that may change.
Examples of static attributes are the name2, the type, the value domain, and the maximum rate
of change. The value set at a particular instant is the most important dynamic attribute.
Another example of a dynamic attribute is the rate of change at a chosen instant. The
information about the value of a state variable at an instant is captured by the notion of an
observation.

State Observation: A tuple <Name,Value, tobs,> consisting of the name of the state variable,
the observed value of the state variable, and the instant when the state variable has been
observed..

State observations may be transported in messages to a receiver, which may reconstruct the
dynamics of the environment based on the incoming messages containing state observations.

Image: A representation of a state variable, e.g., at a receiver of messages containing state
observations.

Temporal Accuracy: An image is a temporally accurate representation of a state variable at
instant t, if the duration between the time-of-observation of the state variable (tobs,) and
the instant t is less than the accuracy interval dacc, an application-specific parameter
associated with the dynamics of the given state variable.

An image is thus valid at a given instant if it is an accurate representation of the
corresponding state variable, both in the value and the time domain (Kopetz and Kim 1990).
While a state observation records a fact that remains valid forever (a statement about a state
variable that has been observed at an instant), the validity of an image is time-dependent and
is invalidated by the progression of real-time. Delaying a message containing an observation
in a queue may affect the temporal accuracy of the information contained in the message.

2 Naming issues will be discussed later in Section 4.2.1.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 19

Event Observation: An event observation records the occurrence of an event. An event is a
significant happening, e.g., an important difference between a state observation
immediately before the happening and the state observation immediately after the
happening.

An event observation can be expressed by the tuple

<Name of the observed event, attributes of the event, time of the event>

For example, the following are event observations: “The position of control valve A changed
by 5 degrees at 10:42 a.m.” or “An amount of 1000 Euro has been withdrawn from bank
account xyz at a particular time?.” An event observation requires exactly-once semantics
when transmitted to a receiver.

Depending on the information content within a message, we distinguish between a state
message and an event message.

State Message: A message that contains only state observations.

State messages are not consumed at sending and require an “update-in-place” semantics on
receiving for the proper handling of the meaning of state observations.

In many real-time and multimedia systems, state messages are sent periodically.

Periodic State Message: A state message that is sent periodically at a priori known instants.
These instants are common knowledge to the sender and the receivers.

The instants when periodic state messages are sent can be fixed either at design time or can be
negotiated during the operation of the system.

Event Message: A message that contains only event observations.

Event messages are consumed on sending and stored in a queue at the receiver to implement
the exactly-once semantics that is required for the proper handling of event information. Event
messages are sent sporadically, triggered by the irregular occurrence of events.

Periodic state observations and sporadic event observations are examples of two alternative
approaches for the observation of a dynamic environment in order to reconstruct the states
and events of the environment at the receiver (Garlan, Allen et al. 1995). Periodic state
observations produce a sequence of equidistant “snapshots” of the environment that can be
used by the receiver to infer those events that occur within a minimum temporal distance that
is longer than the duration of the sampling period. Starting from an initial state, a complete
sequence of (sporadic) event observations can be used by the receiver to infer the complete

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 20

sequence of states of the state variable that occurred in the environment. However, if there is
no assumed minimum duration between events, the observer and the communication system
must be infinitely fast.

If all messages are eventually received and each one contains a complete observation, i.e.,
name, value, and time, then the precise temporal sequence of states and events of a state
variable can be reconstructed at the receiver. If this reconstruction is time-constrained—as is
the case in many real-time systems and multimedia systems—then the transport delay of the
communication system must be bounded. Real-time communication requires a small transport
delay and minimal jitter.

In some systems, the time-of-observation of a state variable is not contained in the message,
but inferred from the receive instant of the message. In these systems, the jitter of the
communication system influences the temporal precision of the instant of observation. The
delay of a non-time-stamped observation message in a queue degrades the quality of the
delivered observation.

Behaviour: The temporal sequence of send operations of a system in relation to its previous
receive operations, and any internal state that it retains.

A system’s behaviour is characterized by its send operations, though these of course can be
affected by its receive operations, and any internal state that it retains.

Service Specification: The specification of the set of intended behaviours of a system.

In the general case, all the send and receive operations since the startup of the system must be
observed at all of the system’s interfaces in order to decide whether the service delivered by
the system is in agreement with its service specification. This specification should, but in
practice may not, accurately reflect the intentions of the relevant stakeholders.

3.2 System Dependability Issues

Our concern is with system dependability, the definition of which term, and of a number of
related terms, we base on that of (Laprie 1992).

Dependability: The dependability of a system is the ability to deliver a service that can
justifiably be trusted, where the service is the intended behaviour of the system.

In almost all cases, the intended behaviour of a system will depend on its initial state, on the
proper reaction of the system to the sequence of receive operations, and, possibly, the passage
of time. In principle, different stake-holders, such as the system owners and various system

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 21

users, will have different views regarding the intended behaviour of a system, and thus of its
dependability.

Failure: A failure is an event that occurs at the instant when the actual behaviour of a system
starts to deviate from the intended behaviour.

Ideally, a precise service specification (both in the value domain and in the temporal domain)
that specifies the intended behaviour is a prerequisite for the judgment about whether a
system has failed or not. In practice, the judgment will sometimes have to take into account
the inadequacies of any pre-existing specification. Different judges may thus come to
different decisions with regard to whether a system failure has occurred.

State of a System: At a given instant, the values assigned to an internal data structure of a
system that synthesizes all cumulative effects of all receive operations at all input
interfaces between the startup of the system and this given instant.

In many legacy systems it can be difficult to determine the complete state of a system.

A system consists of a set of interacting components, therefore the system state is the set of its
component states.

Declared State: At a given instant, the values assigned to a declared data structure that can be
accessed via an interface and that synthesizes all relevant effects of previous receive
operations up to the given instant.

Since the declared state can be accessed from the environment of the system, it is possible to
observe this declared state and to store it as part of the internal state of another system.

It must be pointed out that a system may well not have a (known) declared state.

Error: An error is that part of the system state that may cause a subsequent failure.

A failure occurs when an error reaches the service interface and can be judged to have
adversely affected the service.

Fault: A fault is the adjudged or hypothesized cause of an error.

A fault is active when it produces an error, otherwise it is dormant. A fault originally causes
an error within the state of one or more components, but system failure will not be deemed to
have occurred as long as the error does not reach a service interface of the system.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 22

Fault Containment Region: A set of components that is considered to fail (a) as an atomic
unit, and (b) in a statistically independent way with respect to other fault containment
regions.

Error Containment Region: A subsystem of a computer system that is encapsulated by
error-detection interfaces such that there is a high probability (the error containment
coverage) that the consequences of an error that occurs within this subsystem will not
propagate outside this subsystem without being detected.

Fault Tolerance: Methods and techniques aimed at providing the intended system behaviour
in spite of faults.

Fault tolerance is implemented by (a) error detection and subsequent recovery, (b) error
compensation, or (c) combinations of both techniques. An error that is present but not
detected is a latent error. Recovery transforms a system state that contains one or more errors
and (possibly) faults into a state without detected errors, though possibly with faults that
could be activated again.

3.3 System Interconnection Issues

Connection: A link between the interfaces of two or more interacting systems.

Architectural Style: A set of rules and conventions governing the connections and
interactions between the components of a system.

In order to build a system out of component systems, it is necessary to ensure that the
interactions between the component systems conform to a consistent architectural style. This
implies that the interfaces via which the component systems interact must be compatible,
either directly, or after some form of adaptation.

Properties of an Interface: The set of attributes associated with an interface.

Every interface may be characterized by a set of attributes that control the types of interaction
that are possible across the interface, e.g., attributes that refer to the encoding of the
information, the structure of the information, the meaning of the information, or the temporal
sequence of information exchanges at a particular interface.

Property Mismatch: A disagreement among connected interfaces in one or more of their
properties.

If the properties of connected interfaces are in conflict (e.g., different byte orders), then a

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 23

failure can occur during system operation. So, directly connecting together non-matching
interfaces is a fault.

Boundary Line: A connection between at least two interfaces with matching properties.

Whereas matching interfaces can be connected directly via a boundary line, connecting
together non-matching interfaces requires the introduction of a new entity that we call a
connection system. The role of the connection system is to resolve the property mismatches
between the connected interfaces.

Connection System: A new system with at least two interfaces that is introduced between
interfaces of the connected component systems in order to resolve property mismatches
among these systems (which will typically be legacy systems), to coordinate multicast
communication, and/or to introduce emerging services.

A connection system is delimited by at least two boundary lines, one for each of the
component systems that it connects. By definition, there are no property mismatches at any of
these boundary lines.

Example: An electric appliance that has been manufactured according to US
standards and that is used in Europe has to face property mismatches with respect
to the physical dimension of the plug, voltage and frequency. A special
connection system (some kind of transformer) that has two boundary lines, one
according to US standards and the other according to European standards, can
resolve these property mismatches.

At a given level of abstraction, a boundary line does not introduce any relevant properties of
its own. For example, if the physical length of a connection introduces a propagation delay
between two interfaces that must be considered, then such a connection must be modelled by
a connection system and not a boundary line.

Example: If it is of relevance that a wireless connection can be monitored by an
intruder, then this connection must be modeled by a connection system with an
extra output interface to the intruder.

Connection systems and boundary lines can be viewed at different levels of abstraction. If a
property mismatch is not relevant at a given level of abstraction, then the connection system
that deals with the mismatch, and the boundary lines over which it communicates with the
interacting component systems, can be abstracted away to a single boundary line that connects
the component systems directly. Conversely, a boundary line that hides a particular property
mismatch can be refined into a connection system (and appropriate connecting boundary

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 24

lines) that expose the detail of dealing with that property mismatch.

Figure 1 depicts this expansion of a boundary line into a connection system that is delimited
by two boundary lines. This expansion can be continued recursively until the proper level of
detail is exposed. In the following sections, we will make use of this expansion whenever
appropriate.

system A system B
connection

system
(CS)

BL BL

system A system B

boundary line (BL)

Figure 1 — Expansion of a Boundary Line (BL) into a
Connection System (CS) with two Boundary Lines

Communication across a boundary line is only possible if the interacting systems share a set
of concepts and a notion of time. The science of semiotics, the study of signs and their
relation and interpretation, subdivided into the fields of syntax, semantics, and pragmatics, is
relevant in this context. The required common knowledge among the interacting partners
must be established either prior to the exchange of a connection data structure or has to be
bootstrapped during different phases of the communication. The designer of a connection
must be careful to specify all assumptions about this common knowledge that are a
prerequisite for a successful communication across the connection. Any mismatch of the
concepts or any other properties of the connections among the connected partners will cause a
failure of the communication with respect to this specification. Section 2.2.5 identifies a
number of types of property mismatch that can occur at a connection.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 25

Linking Interface: An interface of a component system through which it is connected to
other component systems within a given system of systems.

Local Interface: An interface of a component system that is not a linking interface within a
given system of systems.

An existing legacy system is likely to have many different interfaces. The services of a system
can only be accessed via its interfaces. The notion of a linking interface focuses on those
interfaces that are needed to generate the emergent services produced by the desired
integration. The emergent services can be functional or non-functional. For example, a
replication of systems can be introduced for the sole purpose of introducing fault tolerance
(and thereby improving the dependability), without a change in the functionality.

Linking Connection: A connection between two or more existing systems that is introduced
in order to incorporate these systems into a system of systems with new emergent
services.

Interaction: A sequence of message exchanges between connected interfaces.

This sequence of message exchanges must be specified by a protocol that is respected by all
these connected interfaces.

Protocol: The set of rules that specifies the interactions between two or more component
systems between connected interfaces.

The notion of a protocol is more restrictive than the notion of a service specification. The
service specification may cover the behaviour of a system at all of its interfaces, whereas the
protocol is focusing on the connected interfaces.

Temporal Composability: The characteristic that ensures that the temporal properties of a
component system are not influenced by the integration of the component system into a
system of systems.

3.4 Time

The conceptual model of the DSoS Project is notable for the fact that it includes time as an
integral feature. This is done for the following reasons:

1. The DSoS Project is concerned with the design of dependable systems of systems. The
classification, detection, and handling of failures are thus an important part of the DSoS
Project. The simplest external failure mode of a system is a crash failure (Laprie 1992);

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 26

i.e., a system either operates correctly or does not operate at all. Crash failures can only be
detected in the temporal domain.

2. A number of generic services that are required in the design of distributed systems, such
as a membership service, can only be defined if the temporal dimension is part of the
conceptual model.

3. Many communication protocols that control the interactions among component systems
depend on the consistent specification of time-out values for their proper and efficient
operation. The DSoS conceptual model should provide the capability to develop a
calculus for the setting of these time-outs.

4. The DSoS model is to cover the specification, design, and validation of, inter alia, so-
called real-time systems. In these systems, the validity of real-time information depends
on the progression of physical time. For example, it makes little sense to talk about the
angular position of a crankshaft in an automotive engine, if the precise instant when this
position was measured is not recorded as part of the measurement. In real-time systems,
time is an integral part of the concept of an observation. If the DSoS model does not
contain a proper model of time, it is not possible to address these core properties of real-
time systems.

The inclusion of time in the DSoS model has a number of consequences. The most far-
reaching consequence is that, as indicated earlier, DSoS component systems must be physical
(typically hardware/software) systems. A stand-alone piece of software has no temporal
properties and is, thus, not a proper object of integration in the DSoS context.

In other contexts, such as software engineering, this issue of how to integrate pieces of
software together is central. Although a stand-alone piece of software has no temporal
properties, these properties might be defined a priori and be required to be respected when the
software is installed (along with other software) on a given piece of hardware. Schedulability
analysis aims to show that these temporal properties can be respected (in the absence of
faults). Violation of the temporal properties at run-time leads to a timing failure for which
appropriate detection and tolerance mechanisms might be provided.

Time Measurement

The following three different types of time measurement are supported by the DSoS model:

a) Time Measurement by an Omniscient External Observer

b) Global Time

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 27

c) Local Time.

Time Measurement by an Omniscient External Observer: We assume for definitional
purposes that there exists an omniscient external observer who can observe all events that are
of interest in a given context (relativistic effects are disregarded), and that this observer
possesses a unique reference clock z with frequency fz, which is in perfect agreement with the
international standard of time. The counter of the reference clock is always the same as that of
a chronoscopic international time standard (e.g., TAI time or GPS time). We call 1/fz the
granularity gz of clock z. Let us assume that fz is very large, say 1015 microticks/second, so
that the granularity gz is 1 femtosecond (10-15 seconds). Since the granularity of the reference
clock is so small and there is only a single reference clock, the digitization error of the
reference clock will be disregarded. Whenever the omniscient observer perceives the
occurrence of an event e, she/he will instantaneously record the current state of the reference
clock as the time of occurrence of this event e, and will generate an absolute timestamp of the
event e. Since there is only one reference clock, issues concerning the consistency of
observations among many observers do not arise. The temporal order of events that occur
between any two consecutive microticks of the reference clock, i.e., within the granularity gz
cannot be reestablished from their absolute timestamps. This is a fundamental limit in time
measurement. In the DSoS model, we will make use of this time measurement by the
omniscient external observer if we want to reason about the temporal relationship between
events that cannot be precisely measured within the component systems.

Global Time: A number of distributed systems, particularly distributed real-time systems,
synchronize the local clocks of the nodes in order to establish an approximation of a common
global time (Kopetz and Ochsenreiter 1987). Suppose a set of n nodes exists, each one with
its own local physical clock ck that ticks with granularity gk. Assume that all of the clocks are
internally synchronized with a precision Π, i.e., for any two clocks j,k ε [1,n] and all ticks i:

z(ticki
j) − z(ticki

k) < Π .

It is then possible to select a subset of the ticks of each local clock k for the generation of the
local implementation of a global notion of time. We call such a selected local tick i a
macrotick of the global time. For example, every tenth tick of a local clock k may be
interpreted as the global tick, the macrotick ti

k , of this clock. If it does not matter at which
clock k the macrotick occurs, we denote the tick ti without a superscript. A global time is thus
an abstract notion that is approximated by properly selected ticks from the synchronized local
physical clocks of an ensemble. A global time t is called reasonable, if all local
implementations of the global time satisfy the condition

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 28

g > Π

the reasonableness condition for the macrotick granularity g. This reasonableness condition
ensures that the synchronization error is bounded to less than one macrogranule, i.e., the
duration between two macroticks. If this reasonableness condition is satisfied, then for a
single event e that is observed by any two different clocks of the ensemble:

t j (e) − t k(e) ≤ 1,

i.e., the global timestamps for a single event can differ by at most one tick. This is the best we
can achieve! Due to the impossibility of synchronizing the clocks perfectly and the denseness
property of real time, there is always the possibility of the following sequence of events:
clock j ticks, event e occurs, clock k ticks. In such a situation, the single event e is time-
stamped by the two clocks j and k with a difference of one macrotick. The finite precision of
the global time base and the digitalization of time cause an unavoidable error in time
measurement in a distributed systems that is extensively discussed in (Kopetz 1997).

Local Time: In many distributed systems there exists no global notion of time. In these
systems every node has its own local oscillator that establishes a local time base for this
particular node.

For a more detailed discussion on the DSoS models of time, refer to Annex 1.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 29

4 INTERFACE AND CONNECTION CHARACTERIZATION

Let us analyze a request-response interaction between, for the sake of simplicity, just two
component systems A and B (Figure 2). Component system A produces a request DAA
according to an architectural style intrinsic to itself. (In our notation the first subscript denotes
the producer of the information, the second subscript denotes the architectural style of the
information.) The architectural style comprises the set of rules and conventions that are
specified in an architecture and must be adhered to by the component systems at their linking
interfaces in order to avoid property mismatches at the interfaces. For B to understand this
request, its architectural style has to conform to B’s architectural style. Any such required
transformation of DAA to DAB is done by a connection system (CS). Sometime later, B
responds to the request from A with DBB, which is then transformed as appropriate by the
connection system and delivered to A as DBA at some later instant. If both A and B conform to
the same architectural style, then the connection system may be collapsed to a single
boundary line BL (cf. Figure 1, page 24).

system A system B
connection

system
(CS)

BL_A BL_B

LI
F LIF

DAA DAB

DBA DBB

Figure 2 — Request-response interaction through a connection system

A connection system is thus necessary to resolve mismatches when there is communication
between component systems with non-matching interfaces. In the software community such a
connection system is often called a connector. At a high level of abstraction, a large software
system can be described as a configuration of component systems and connectors (Deline
1999): connectors mediate the interaction among components. At this level, Architecture
Description Languages (ADL) (Medvidovic and Taylor 2000) have been introduced to model
components, connectors, and their configurations.

The integration of a set of component systems into a system of systems is substantially
simplified if all component systems conform to the same architectural style. An architectural
style prescribes the endorsed properties of the interfaces of connected component systems

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 30

such that all significant property mismatches are eliminated. It is possible to solve the
mismatch problem by designing a special connection system for every legacy component
system that transforms the properties of a legacy system to this uniform architectural style.
Such a special connection system is called a wrapper (Deline 1999 p.26). A prerequisite for
designing wrappers around existing legacy component systems is the definition of a linking
architecture that defines the intended architectural style.

The components systems A and B must process received information and eventually respond,
either with an action within their environments, with a response across the linking connection,
or with an internal state change. In real-time systems, the duration of the interval between
information receipt and the corresponding response must be bounded. The type of data
transformation that must be performed within a component system is specific to the given
application. One of the research issues in the DSoS Project is to find out which formalism
should be used to describe the intended functions of the component systems, as seen through
the linking interface. Since, in general, in a legacy component system it will not be possible to
describe the whole component system, a focus is placed on devising a formalism that supports
the encapsulation abstraction of the functions as required by the linking connection (Gaudel
1994).

4.1 Interface Types

In order to disentangle unrelated functions it is advantageous to specify a distinct interface for
every separable service (Kopetz 2000). We have identified three unique functions that occur
in many scenarios and should normally be serviced across independent interfaces.

Service Interface: This is the interface that provides the intended service to the environment,
namely the systems with which it interacts.

The service interface is the most important interface for the user of the service. To keep the
service interface small and understandable, only those objects and functions that are required
for the intended emerging service should be visible at the service interface. It is
counterproductive for all internal objects of a component system to be visible at the service
interface.

In the CORBA world (Siegel 2000), the (syntax of the) services that are provided by an object
are defined by the interface definition in a special interface definition language (IDL) that can
be mapped into a number of different programming languages. The interface definition
specifies the operations that can be performed by the object, the input and output parameters,
possible exceptions that may by raised by the object during execution, and possibly, the

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 31

declared state of the component.

In real-time systems, the purpose of the real-time service (RS) interface is the timely
exchange of observations among the component subsystems. An observation states that the
state variable possessed the stated value at the indicated instant or an event occured at the
instant. In control applications, the temporal access pattern of information at the RS interface
is typically periodic, and a small delay and minimal jitter are important for the quality of
control. These temporal parameters must be stable in order to support the composability at the
RS interface. The user of the observations at the RS interface must know only about the
meaning of these observations but does not need any knowledge about the internal structure
or operation of the component system that delivers the observation.

The Diagnostic and Management (DM) Interface: The DM interface provides a
communication channel to the internals of the component system for the purpose of
diagnosis and management.

A maintenance engineer who accesses the internals of a component system via the DM
interface must have detailed knowledge about the internal structure, the internal objects and
the precise behaviour of the system. The end-points of communication are the internals of a
component system on one side and some maintenance system or engineer, possibly sitting at a
remote terminal on the Internet, on the other side. The communication pattern is, thus, point-
to-point and the messages between the maintained component system and the maintenance
system or engineer must be routed transparently through a set of networks. The DM interface
should be independent from the service interface, since these two interfaces are directed
towards two different user groups and require different knowledge.

In a real-time system, there is usually a need to support on-line maintenance and management
while a system is operational. To achieve this objective, any sporadic maintenance and
management traffic must coexist with the time-critical real-time traffic without disturbing the
latter. The traffic pattern across the DM interface is normally sporadic and not time-critical,
although precise knowledge about the instant when a particular value was observed or
modified can be important.

The Configuration Planning (CP) Interface: The CP interface is used during the integration
or reconfiguration phase to connect a component system to other component systems of
a system of systems.

The CP interface is typically point-to-point and not time-critical.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 32

4.2 High-Level Interface Issues

We now consider several issues relating to interactions between component systems.

Issues relating to the interpretation and handling of the information exchanged between the
component systems and the dependency of DBB on DAB (cf. Figure 2, page 29) constitute the
high-level interface issues (HLII). In particular, the following topics are part of the HLII:

a) Naming

b) Interaction styles

c) State persistence

4.2.1 Naming

Naming is concerned with associating an entity with an identifier within a defined context
(Radia and Pachl 1993). To resolve a name means to decide which entity is denoted by the
name. The rules that determine which context, out of the many contexts in a large system,
must be selected in order to resolve a given name are called closure mechanisms. If the same
meaning is assigned to a name in different parts of a system, the naming schema is called
coherent. Whenever there is an incoherence in naming among interacting component systems,
i.e., a naming mismatch, a connection system must be employed to resolve this incoherence.

We distinguish between the following name structures (Hauzeur 1986):

a) Flat name: the names of all entities are unstructured elements of a specified context, the
name space.

b) Partitioned name (or compound names): a concatenation of flat names, describing a
context, a sub-context, a sub-sub-context and so on until the entity is identified.

Partitioned names are useful in a distributed system, since a section of the name can be used
to identify the context, e.g., the particular system, where the name has to be resolved.

Names can be static or dynamic. A static name implies that the name is always associated
with the same entity. A dynamic name means that the assignment of names to an entity can
vary over the lifetime of the system. However, at any instant, a dynamic name refers to a
particular entity out of the selected context. Radia and Pachl investigate how the context for
resolving names is selected (Radia and Pachl 1993): “For a given name n, what context c
should be used to yield the correct entity c(n)? An implicit context is needed whenever a name
is resolved. An implicit context cannot be avoided, because whenever a context is specified
explicitly by a name another implicit context is needed to resolve that name; therefore one

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 33

implicit (nameless) context is needed whenever a name is resolved.”

(Saltzer 1978) investigates some of the issues that have to be resolved if two or more parallel
and independently operating naming systems are asked to cooperate coherently with each
other. These issues are:

a) Sharing objects between systems that have different name space designs.

b) The effect of moving of an object from one system to another system on naming.

c) Naming and consistency of replicated objects.

In principle, there are two possible approaches extending the naming schemes of autonomous
legacy systems to support limited interactions in a federated environment (Radia and Pachl
1993):

a) The establishment of cross-links between the local naming graphs in order to create an
encapsulated subset of shared entities that can be accessed from both systems.

b) The generation of a new, united name space by the hierarchical integration of the name
spaces of the existing legacy systems. This is the approach of the Newcastle Connection
(Brownbridge, Marshall et al. 1982).

For the DSoS Project, alternative (a) seems to be more appropriate, because we do not want to
expose all names of a legacy system to the other systems in the system of systems but rather
restrict the interaction to a well-defined context of shared entities. The problem of how to
design name spaces in order to support controlled information transfers across linking
connections in a DSoS is an important research topic in the DSoS Project.

There are many different types of entities that are named in a computer system: hardware
units, memory references, files, data records, variables, programs, etc. (Some of these entities
take the role of a container, the contents of which change dynamically, e.g., a variable.) In a
system of systems where it is assumed that the component systems have been developed
independently, the same name can — and probably will — carry a different meaning in each
one of the component systems. Coherence in naming is essentially impossible to achieve in a
system of systems.

When investigating high-level interface issues (HLII), the relationship between a name and its
meaning in human communication becomes an issue (Hayakawa 1990). In natural languages
a name often refers to a concept. According to (Vigotsky 1962), a concept is a consolidated
unit of thought that abstracts and characterizes an aspect of reality. If a variable name
denotes a concept, the associated variable value signifies a particular instance of that concept.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 34

A variable can then be considered as representing an indicative proposition, e.g.,
temperature = 20 means “the temperature is 20 (degrees Celsius)”. Many natural languages
support syntactic forms to express the subjective truth-value of a proposition (conjunctive,
subjunctive) and to place the proposition in the temporal context (tenses). The limited
awareness of the temporal validity of information in many computer systems is a cause for
many inconsistencies and failures. The notion of an observation (see Section 3.1) tries to
make this temporal aspect explicit.

The relationship between variable names in programs and concepts in the natural language of
the programmer is exploited by (Caprile and Tonella 1999) for gaining an understanding of
the meaning of legacy software.

The explicit inclusion of a flat name in a message leads to the formation of an atomic unit that
can be interpreted in any context that can resolve these names. This requires, however, that
the context of message names is global to all communicating partners and entails the
following consequences:

a) If incoherence in naming is to be avoided, the size of the name space for message names
can become huge in large systems. This can cause inefficiencies if small data structures
are communicated.

b) One cannot encapsulate communication, i.e., avoid the possibility of interference between
communications that are occurring among one set of component systems, and
communications among a second separate set of components, unless there is a coordinated
scheme of name allocation.

c) The architectural rule of including a flat name in every message cannot be enforced on
legacy systems.

The designers of CAN (control area network (CAN 1990)) have decided to follow this
approach. However, it soon became apparent that the originally-provided name space in CAN
would have to be expanded. Still, naming incoherence can normally not be avoided if
multiple CAN domains are deployed in a large system.

Example: Consider the case where the internal parameters of a component system
have to be changed by a diagnostic message from a maintenance access point. If
the namespace is unstructured, then all other component systems must be
designed such that this (internal) diagnostic message name is different from the
message names to all other component systems.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 35

4.2.2 Interaction styles

Component systems may communicate using different patterns of interaction. For example, a
travel agency may send a query to an airline’s flight database and wait for its response. An
engine controller in an automobile might raise an interrupt informing all onboard systems that
the engine temperature is too high. We classify these forms of coordination of the
computational activities of distributed component systems into interaction styles (Garlan,
Allen et al. 1995)

4.2.2.1 Client-server interactions

The client-server model is a popular approach for organizing software across distributed
platforms. In its basic form, clients interact with (human) users and contact the servers to ask
for computationally-intensive or data-intensive services (Hauswirth and Jazayeri 1999). This
model is based on request-reply interactions between the client and server, which are
normally one-to-one and synchronous.

The interaction style of client-server systems may be connection-based, in that a state is
shared between a client and a server and is modified by their interactions. Conversely, as in
basic web-based systems, the interaction may be connectionless in that no state information
concerning clients is kept by the server between interactions. The management of state
dependencies between interactions is in this case delegated to the clients by means of cookies,
or, less elegantly, through hidden fields in post requests. Alternatively, the server can manage
a connection-based interaction by means of a session identifier encoded in the page URL (see,
e.g., www.sun.com).

In the basic client/server model, clients have a fixed, pre-allocated knowledge of the identity
of the servers. Improved flexibility is provided by the use of a naming or trading service,
which allows the identity of the most appropriate server to be determined dynamically.

Client-server interactions can be implemented by remote procedure calls (RPC) or by remote
method invocations (RMI).

Remote Procedure Call (RPC)

In the remote procedure call (RPC) form of interaction, the arriving message causes the
activation of a remote procedure (information push) at the receiving component system. In the
Distributed Computing Environment (DCE) of the Open Software Foundation (OSF 1992),
remote procedure calls are proposed for communication across heterogeneous platforms.
Since the RPC glue can be generated automatically by the middleware, neither the sender nor

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 36

the recipient needs to be aware of the remoteness of the call (if the temporal aspects are
disregarded). This transparency, which makes RPC calls look similar to local procedure calls,
hides the fact that the sender and the recipient may reside in different error fault containment
regions. The performance cost penalty of an RPC over a local procedure call can be of the
order of more than a thousand (Szyperski 1998). The World Wide Web consortium (W3C) is
currently working on the Simple Object Access Protocol (SOAP) for defining remote
procedure calls in an Internet setting.

Remote Method Invocation

The main difference between an RPC and a remote object method invocation lies in the late
binding of the code to call. An object instance is identified by a unique object reference
(name) that can be created dynamically immediately before the call to the object’s method.

Method calls can be implemented above an infrastructure that implements remote procedure
calls. IBM’s System Object Model (SOM) provides a runtime system that dynamically selects
the methods to be called on-top of an RPC infrastructure (Forman, Conner et al. 1985).

The most prominent standard for object-oriented computing is the CORBA 3 standard
developed by the OMG and described in much detail in (Siegel 2000). The OMG has
introduced a special language, the interface definition language (IDL), to specify the syntax of
the externally visible interfaces of objects. There exist mappings from IDL to many of the
standard programming languages (C, C++, Java, etc.) to support distributed computations in
heterogeneous environments.

In the object-oriented world of CORBA, an incoming message can dynamically create a new
object by a method call to an object factory. The object factory instantiates the new object
dynamically and returns the unique object reference to the caller. By referring to this object
reference, the caller can then invoke methods of the newly created object remotely (Siegel
2000).

Other environments for remote method invocation include Microsoft’s Distributed
Component Object Model (DCOM) and JavaSoft’s Java/RMI.

4.2.2.2 Publish/subscribe

In the publish/subscribe interaction style (which is also referred to in the literature as implicit
activation), interactions are modeled as asynchronous occurrences of, and responses to,
events. Systems do not communicate with each other directly but use a publication
mechanism to announce that an event has occurred and a subscription mechanism to be

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 37

informed about the occurrence of events. This interaction style provides a decoupling between
component systems:

• Space decoupling: producers do not need to know who has subscribed to their events,
which in turn allows consumers to remain anonymous.

• Time decoupling: subscribers do not need to be alive at the instant the events are
produced.

This reduces the static dependencies between component systems, and facilitates system
evolution, but at a cost in computational predictability. Indeed, the announcer of an event
does not know who will receive this event, in which order it will be delivered to subscribers,
and is not informed when they finish handling the event.

The publish/subscribe interaction style depends on the existence of a middleware
infrastructure responsible for propagating events from producers to consumers, and for
managing subscriptions to classes of events. Different implementations of this infrastructure
are possible, depending on the sophistication of the subscription mechanisms that are made
available, and on the topology of the underlying interconnection network. For example:

• The multicast mechanisms in the Internet Protocol implement channel-based
subscription. A channel is associated with a multicast group, which is identified by a
network address.

• USENET, and its underlying NNTP protocol, implements a subject-based subscription
mechanism on top of a hierarchical client/server topology. A subject identifies a single
newsgroup (such as comp.object.corba), or a family of newsgroups (such as
comp.*). A USENET site receives all articles belonging to the subjects to which it is
subscribed.

• Messaging-oriented middleware such as IBM’s MQSeries provide reliable message
queues. These queues are a form of channel-based subscription.

• The CORBA Event Service (OMG 2000) defines a publish/subscribe model for inter-
object communication that complements the traditional one-to-one RMI semantics of
CORBA method invocations. An architectural element called an event channel
mediates the transfer of events between the suppliers and consumers as follows:

o The event channel allows consumers to register interest in events, and stores
this registration information.

o The channel accepts incoming events from suppliers.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 38

o The channel forwards supplier-generated events to registered consumers.

• The CORBA Notification Service (OMG 2000) extends the point-to-multipoint
delivery semantics communications of the Event Service to provide additional
properties:

o Event filtering, which allows consumers to register only for specific classes of
events. If no consumers are interested in receiving a particular event type then
the supplier will not send the event to the notification channel. This can
significantly reduce the amount of network traffic required to propagate
events, improving the scalability of the service. Event filtering is content-
based, using an extension of the constraint language used by the CORBA
Trading Service. There is a mechanism that allows new consumers entering the
system to discover which types of event are currently available.

o Quality of service characteristics such as delivery guarantees and priorities.
The event aging characteristic allows a supplier to specify a time after which
the notification channel should discard an event because it is no longer
considered timely. Similarly, it is possible to specify an earliest delivery time
for an event. Channels can be made persistent, to ensure delivery of events
across crashes. QoS attributes can be assigned at different levels of granularity:
per event, per channel or per supplier/consumer. When end-to-end QoS is
required, it is the programmer’s responsibility to ensure that QoS is consistent
across the whole path.

The Notification Service emerged primarily from the needs of the telecommunications
industry.

4.2.2.3 Multipeer

Another style of interaction is multipeer, conveying the notion of spontaneous, symmetric
interchange of information, amongst a collection of peer entities. No component system is
privileged with respect to its peers, and there is little or no centralized coordination. This
paradigm appeared as early as in (Powell, Bonn et al. 1988) where it is called multipoint
association. Multipeer interactions are the kind of interaction one might wish among
managers of a distributed database or a group of servers. Communication requirements may
be heavy in ordering and reliability requirements, and a notion of composition or membership
may be required (for example, to provide explicit control over who is currently in the group).
Again, the highly interactive nature of the multipeer style of interactions prevents per se the

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 39

number of participants in real applications from exceeding the small-scale threshold
(Veríssimo 2000).

Peer-to-Peer

The peer-to-peer interaction style is a form of multipeer interaction characterized by
opportunistic interactions. It has emerged in an Internet setting (Clark 2001), where many
systems have intermittent connections to the network. This form of interaction places a strong
emphasis on discovery protocols, since a peer entering the network has little information on
the existence of other peers and of the services they may be offering. Popular examples of this
form of interaction are instant messaging systems such as AIM, and the notorious file-sharing
systems Napster and Gnutella.

Another, more ambitious, example of peer-to-peer interaction is Freenet (Clarke, Sandberg et
al. 2000), a distributed file storage and retrieval system that addresses a number of reliability
and privacy failings of the Internet protocols. Indeed, while the Internet is often cited as an
example of a distributed, decentralized and robust architecture, this is only true to a limited
extent. The naming system used on the Internet constitutes a single point of failure, and the
common publication protocols are lacking certain dependability attributes.

Naming on the Internet is managed by the Domain Name Server (DNS), a hierarchical
distributed database which maps from symbolic names to numerical addresses. Though it is
distributed, the DNS is centrally controlled (there are a limited number of top level domains),
provides limited protection against malicious updates, and has even proven to be liable to fail
due to operator error during routine maintenance.

Publication systems such as the Web, while very popular, present several disadvantages from
a dependability point of view:

• No built-in mechanism for load balancing: techniques such as caching and mirroring
are not transparent to clients.

• Little privacy support: the publisher of a document can determine which clients have
requested the document, and when.

Freenet addresses these reliability and privacy problems by implementing a new layer of
routing above IP which abstracts from the location of information. It is an adaptive peer-to-
peer network of nodes that query one another to store and retrieve files. The files are named
by location-independent keys.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 40

Each Freenet node has some local storage that it makes available to the network for reading
and writing, and knows of the existence of a number of other nodes in the system. If it
receives a request for a file that it does not have locally, it will forward the request to the peer
node it thinks is most likely to have that file. When the file is found, it is passed back to the
requestor through the chain of proxies (each of which notes that the file is now likely to be
available from the requestor). Thus information will tend to migrate towards the nodes where
it is most often accessed.

The algorithms for routing requests are designed to be efficient while only requiring local
knowledge (which is necessary, since no node is privileged with respect to its peers). A
request is presumed to have failed if it has exceeded a certain number of hops. There is no
hierarchy or central point of failure. Freenet can be seen as a cooperative distributed file
system providing location independence and transparent lazy replication.

4.2.2.4 Data passing via a repository

Another form of interaction between component systems is based on the establishment of a
shared memory space that can be accessed by all interacting partners. The sender writes data
into the shared memory and it is up to the recipient to decide when to read this data
(information pull). To avoid the mutilation of data due to concurrency conflicts, specified
atomicity properties must be maintained by the repository (e.g., mutual exclusion for the
access of a record). Examples of this form of interaction include:

• Distributed filesystems such as NFS: no constraints on control propagation are
necessary for multiple readers. Constraints on control propagation to provide mutual
exclusion for multiple writers is assured by a locking protocol.

• AI-type blackboard architectures: a number of knowledge sources interact via a shared
data structure. The knowledge sources make changes to this blackboard that lead
incrementally to a solution to the problem. Control propagation is driven by the state
of the blackboard, which triggers activity of knowledge sources.

• Database architecture: data is contained within a number of collaborating component
systems. Control propagation to component systems is triggered by incoming requests.

• The temporal firewall model: a time-triggered protocol destined for hard real-time
systems. Central to the temporal firewall model is a global time base, available at
every node of the distributed system, and a shared data structure that resides in the
communication memory (Kopetz and Nossal 1997). We distinguish between an input
firewall and an output firewall. In an input firewall, the shared data structure at the

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 41

recipient’s site contains state information that must be periodically updated by the
producer at instants that have been established a priori. The temporal properties of the
data at the instant of update, e.g., the temporal accuracy of the data must be precisely
defined. In an output firewall, the shared memory must contain a temporally specified
data structure at periodic a priori defined output instants. At an output instant, the
output data is copied and sent to the recipient’s input firewall by the communication
system. The temporal firewall is a strict data-sharing connection interface without any
control signal crossing the firewall. Control error propagation from one component
system to another via a temporal firewall is thus impossible by design.

4.2.2.5 Mobile agents

Information communicated to a remote component may be interpreted by the latter as an
executable code segment that can be executed in the environment of the component system.
An example of this mechanism is a Java applet. A Java applet is allowed to execute in the
same process as a client’s Web browser. This mechanism poses formidable security
challenges, since one must ensure that the imported code segment does not violate the
established security policy.

4.2.3 Dependability attributes of interactions

A system may rely on a various non-functional characteristics of the interactions it has with
other component systems. For example, a braking system will depend on the time it takes for
a “brake” request to propagate to the wheel controllers.

4.2.3.1 Timing guarantees

For real-time systems, the temporal characteristics of an interaction will be important. The
timing properties of a client/server type interaction depend on the timing guarantees provided
by the communications infrastructure and on the time required by the server system to handle
the request. These timing guarantees can be decomposed into latency and jitter.

4.2.3.2 Delivery guarantees

The reliability of the communications infrastructure is an important factor in the
dependability of the overall DSoS. Some communication protocols may not provide delivery
guarantees concerning the loss of messages, or their order of delivery.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 42

4.2.3.3 Transactions

Transactions provide the capability of performing multiple actions encapsulated with certain
reliability guarantees. There are three candidates for a transactional interaction style —
atomic transactions, conversations and coordinated atomic actions — each providing different
guarantees (Veríssimo 2000). Atomic transactions are a well-known structuring mechanism
that are best suited to competitive interactions. Atomic transactions guarantee the properties
of atomicity, consistency, isolation and durability (ACID). The three major currently-
available distributed object environments (Corba, COM, and Enterprise Java Beans) all offer
transactional services (OFTA 2000).

Conversations (Campbell and Randell 1986) are traditionally used for cooperative systems
and employ coordinated exception handling for tolerating faults. Coordinated atomic actions
(or CA actions) (Xu, Randell et al. 1995; Xu, Randell et al. 1999) are a structuring
mechanism that integrates and extends conversations and atomic transactions. The former are
used to control cooperative interactions and to implement coordinated error recovery whilst
the latter are used to maintain the consistency of shared resources in the presence of failures
and competitive concurrency. Coordinated exception handling is supported by distributed
exception resolution algorithms (Xu, Romanovsky et al. 1998).

4.2.4 State persistence

We define the ground state of a node in a distributed system at a given level of abstraction as
a state where no task is active and where all communication channels are flushed, i.e., there
are no messages in transit (Ahuja, Kshemkalyani et al. 1990). Consider a node that contains a
number of concurrently executing tasks that exchange messages with each other and with the
environment of the node. Let us choose a level of abstraction that considers the execution of a
task as an atomic action. If the executions of the tasks are asynchronous, the situation
depicted in the upper section of Figure 3 can arise; at every point in real time, there is at least
one active task, thus, implying that there is no point in real time when the ground state of the
component system can be defined.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 43

Task A

Task B

Task C

Real time

Task A

Task B
Task C

Real timeGround state

Figure 3 — Task Executions: without (above), and with (below) ground state

In the lower part of Figure 3, there is an instant where no task is active and all the
communication channels are empty, i.e., where the system is in the ground state. If a
component system is in the ground state, then the internal state of the component system is
contained in its data structures and the program counter. The reintegration of a component
system after a failure is simplified if a component system periodically visits a ground state
that can be used as a reintegration point.

In many large legacy systems, it is not possible to come across an instant where the system is
in a ground state. If these systems are structured according to the object paradigm, where
methods and states are encapsulated in objects, it may be possible to declare a persistent state
for each object or at least for the objects that are visible at the LIFs. In some applications, it
might be sufficient to deal only with the persistent state that is visible from the LIF. In their
most recent versions, the CORBA Common Object Services (CosServices) specify several
services that are related to object persistency. The Persistent State Service (OMG 1999) for
instance allows the user to define the declared state of so called “storage objects” using an
extended version of IDL (the Persistent State Definition Language, PSDL). The code for these
storage objects is then generated automatically in the same way as stubs and skeletons are
generated from their IDL descriptions. The Externalization Service (OMG 2000) on the other
hand defines interfaces like the Streamable interface, which are to be implemented by the
application programmer in order to be able to store an object’s state. Furthermore, FT-
CORBA (OMG 2000), which is a specialized version of the CORBA specification targeting
fault-tolerant applications, defines a similar Checkpointable interface. The Checkpointable
interface has two methods, get_state() and set_state(), both of which are intended to be
implemented by the application programmer.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 44

4.3 Low-Level Interface Issues

Issues relating to the transport and the syntactic representation of information are considered
as low-level interface issues (LLII). In particular, the following topics are part of the LLII:

a) Issues of data representation (e.g., byte order)

b) Transport timing

c) Flow control

Although there are interdependencies between the HLII and the LLII, the HLII focus on the
semantic, pragmatic and — in real-time systems — the temporal aspects of the information
processing within a component system, while the LLII are concerned with the transport and
representation of the information. Real-time aspects are important at both levels: low-level
transport timing needs to be carefully considered to ensure high-level temporal properties.

In the following, we analyze the transport and timing of a single message between two
component systems A and B residing on different sites. These are represented in Figure 4 as
application components A and B. The application components interact through a network by
means of local communication components. A communication component may be, for
example, a hardware communication controller such as that used in the time-triggered
protocol (TTP) (Kopetz, Galla et al. 1999), a CORBA object request broker (ORB), or an
HTTP server.

site of Bsite of A

communication
component

communication
component

BL

application
component A

application
component B

BL BL

communication network

communication infrastructure connection system

Figure 4 — Transport model between two application components on different sites

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 45

Comparing Figure 4 with Figure 1, page 24, it is interesting to note that the communication
infrastructure, consisting of the two communication components and the intermediate
network, can be viewed as a sort of connection system, the conventions of which must be
adhered to at each extremity by application components A and B. CORBA provides an
example of such a connection system, in which the communication components are the object
request brokers (ORBs) and the common conventions are specified as interfaces through the
CORBA interface definition language (IDL).

Each application component of Figure 4 is interfaced across a boundary line to a
communication component that connects across another boundary line to the communication
network and, if needed, to an intermediate connection system (Figure 5).

site of Bsite of A

communication
component

communication
component

BL

application
component A

application
component B

BL BL

connection
system

BL

Figure 5 — Transport via an intermediate connection system

The communication components contain memory for the temporary storage, during
transmission and acquisition, of communicated data structures. The inclusion of such
communication memory in the transport model is justified by the following arguments:

• Time-to-Space Mapping: During the transmission of a message, data and control are

inextricably linked. In serial communication, for example, it takes some time to assemble

the arriving bits into the message data structure. The focus of interest in real-time systems

of systems is on the message data structures and the associated control signals that mark

the start and end of message transmission (and not on the sequence of the individual bits

of a message). We therefore need a communication memory to accumulate the message

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 46

data structure out of the incoming bit stream and to act as an information source for the

outgoing bit stream.

• Design of Existing Hardware Controllers: If we look at the design of existing hardware

interfaces, e.g., commercial communication controllers, we always find a memory block

associated with the communication controller. Such a memory block is either part of the

communication controller or is dynamically reserved for use by the communication

controller (e.g., a DMA area in the associated host computer).

• Expressive Power of the Model: The inclusion of a communication memory in the DSoS

connection model makes it possible to describe the mechanisms of different connection

types within the model. In the following section, we will classify connection types by the

type of data structure in the communication memory and by the source of the control

signals.

A unidirectional data flow takes place if the sending system publishes data in the shared
communication memory at the recipient’s site (i.e., if application component A transfers the
data to the communication memory at B). The data is made available at a given instant. It is
up to the recipient to decide when to access this data after the instant of its publication.

A unidirectional control flow takes place if the sending system sends a control message to the
receiving system. After accepting the signal, the receiving system checks a shared
communication memory at the recipient’s site to identify the signal and then performs the
intended actions. An example of such a unidirectional control flow is the raising of an
interrupt after a new message has arrived in the communication memory of the recipient.

4.3.1 Transport timing across the interface

The timing of a unidirectional message send and receive operation across the basic
communication interface is shown in Figure 6 and Figure 7. We describe this timing by taking
the position of the omniscient observer with the absolute reference clock z that can record the
occurrence of the significant events and can assign corresponding absolute timestamps
z(event). It is thus possible to express the duration of relevant intervals in the metric of the
physical second within our model. At e1 the application component starts writing a data
structure into the send buffer of the communication memory and signals the communication
component to start transmitting at e2. The communication component has to wait until e3
before it can start the transmit operation (e.g., because the channel does not become free

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 47

before e3). At e4, the transmission of the message is started at the sender. At e5, the
transmission is completed at the receiver.

Application
component

writes data into
communication

memory

Application
component

signals ready to
transmit

Communication
component waits for

permission to transmit

Communication
component

transmits the
message

Timez(e1) z(e2) z(e3) z(e5)z(e4)

Figure 6 — Timing of a Message Send Operation

The timing of the receive operation is shown in Figure 7. At e6, the start of a new frame
arrives at the communication boundary line. Sometime later at e7, the communication
component starts the update of the communication memory. This update is completed at e8.
During the interval <e7,e8> the communication controller must have write access to the
memory and any concurrent reading operation will be faulted. At e8 the communication
component signals the application component the arrival of a new message. This data
structure is read by the application component during the interval <e9,e10>. At e10 the
transmission is completed, and the message has been delivered to the application component.

Start of frame
(SOF) arrives at
communication

component

Update of
communication
memory started

Update of
communication

memory terminated;
message arrival

signaled to application
component

Application
component

accesses data
from

communication
memory

Timez(e6) z(e7) z(e8) z(e9)

Figure 7 — Timing of a Message-Receive Operation

4.3.2 Flow control

Flow control is concerned with the control of the speed of information flow between a sender
and a recipient across a connection in order to ensure that the recipient can keep up with the
sender. In any communication scenario, it is normally the recipient, rather than the sender,
that determines the maximum speed of communication. In the following, two types of flow
control are distinguished: explicit flow control and implicit flow control.

Explicit flow control: In explicit flow control, the recipient sends, after the successful arrival
of a message, an explicit acknowledgment message to the sender, informing the sender that

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 48

the recipient is now ready to accept the next message. Explicit flow control is based on the
sometimes overlooked assumption that the sender must be under the control of the recipient,
i.e., that the recipient can exert back pressure on the sender to control the rate of transmission
(back-pressure flow control). The most important protocol class with explicit flow control is
the well-known class of event-triggered Positive-Acknowledgment-or-Retransmission (PAR)
protocols. This protocol class relies on the following principles:

a) The client at the sender’s site initiates the communication at an arbitrary instant.

b) The recipient has the authority to delay the sender via explicit flow control across the bi-
directional communication channel.

c) A communication error is detected by the sender when the expected acknowledgment
signal does not arrive in the specified time window. The recipient is not informed when a
communication error has been detected by the sender.

d) Time redundancy is used to correct a communication error, thereby increasing the
protocol latency in case of errors.

Explicit flow control protocols are widely used in distributed systems. Such protocols differ,
among other attributes, by the point in space where the acknowledgement message originates.
If we assume that a message is sent from application component A to application component
B in Figure 4 (page 44), then we can distinguish between the following four possibilities:

a) The acknowledgement message is sent by the communication component at site A. This is
called a best-effort datagram service. Whenever the network is congested or the recipient
B is unable to accept the message, the message is discarded.

b) The communication component at site B sends the acknowledgement message. The arrival
of the acknowledgement message at the sender informs the latter that the message has
correctly arrived at site B. Communication memory management is under the control of
the communication component of the recipient B.

c) The acknowledgement message is sent after the acceptance of the message by the
application component B. This ensures to the sender that the recipient is alive and
accepted the message. This alternative is used in CSP (Hoare 1985).

d) The recipient B sends the acknowledgement message after it has processed the message.
This is the semantics of the Ada rendezvous mechanism. This alternative corresponds to
the implementation of an end-to-end protocol (Saltzer, Reed et al. 1984) between sender
and recipient. It gives the highest assurance, but the lowest concurrency.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 49

Implicit flow control: In implicit flow control, the sender and recipient agree a priori, i.e.,
before the communication is started, on the transmission rate and the instants when messages
are going to be sent. This requires the availability of a global time base. The sender commits
itself to send a message only at the agreed instants, and the recipient commits itself to accept
all messages sent by the sender, as long as the sender fulfills its obligation. No
acknowledgment messages are exchanged during run time. Error detection is the
responsibility of the recipient, which knows (by looking at its global clock) when an expected
message fails to arrive. In implicit flow control, the number of messages that must be
delivered by the communication system is always constant. Communication is unidirectional
because there is no need for a return channel from the recipient to the sender. Thus, implicit
flow control is well suited to multicast communication. Publish/subscribe protocols and time-
triggered protocols (such as TTP (Kopetz, Galla et al. 1999) are based on implicit flow
control.

As already indicated, a prerequisite for implicit flow control is the availability of a global time
base at sender and recipient. Implicit flow-control is best suited for periodic traffic patterns.

The following table (Table 1) compares the characteristics of explicit and implicit flow
control:

 Explicit Flow

Control
Implicit Flow
Control

Best suited for sporadic traffic periodic traffic

Control flow bi-directional unidirectional

Multicast topology difficult simple

Error detection at sender at recipient

Error detection latency large small

Interface complexity higher lower

Table 1 — Characteristics of explicit and implicit flow control

4.3.2.1 Management of communication memory

Existing communication protocols differ in the way they manage the memory for outgoing
and incoming messages. We can identify two ways by which communication memory is
managed:

Dequeue/enqueue: If the transmitted information is event information, an exactly-once

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 50

semantics must be implemented by the communication protocol, because the reception of
such information is non-idempotent. Event information is information on the state change of a
variable. This requires a strict synchronization of the sender and recipient, i.e., every message
sent must be eventually consumed. The message data structures in the communication
memory are queues, where the sender enqueues a new message and the recipient dequeues
this message. Enqueue/dequeue protocols require explicit flow control and consequently a bi-
directional communication channel, even if only a unidirectional data transfer takes place.
Multicast communication is difficult to implement with enqueue/dequeue protocols. Many of
the explicit flow-control protocols use the enqueue/dequeue model. The enqueue/dequeue
model is well suited for systems that have a point-to-point topology and implement
information push.

Copy/update-in-place: If the transmitted information contains state information, then the
sender can copy a message out of a single send buffer that is updated either periodically or
whenever a state change occurs, and the recipient can update-in-place the old version of a
message by the new version. The processing of sender and recipient does not have to be
strictly synchronized, i.e., the recipient is free to decide when to read the state information, it
can read it never, once, or many times, because state information is idempotent. The
copy/update-in-place model matches well with implicit flow control. This model is well
suited for systems that implement a multipoint topology and the information pull model
(Deline 1999), e.g., reading a shared variable or a shared file.

4.3.3 Basic DSoS transport mechanisms

The following two transport mechanisms, event messages and periodic state messages, form
the basis of the DSoS conceptual model for the transmission of a message data structure from
a sender to a recipient. For a more detailed discussion of the various combinations of
information types (event information, state information) and control methods (external
control, autonomous control) refer to (Kopetz 1997)

4.3.3.1 Event message

An event-triggered (ET) message (or for short, event message) combines a unidirectional data
flow with a bi-directional control flow. Since an ET message contains event information, a
strict synchronization between sender and recipient is required. The memory data structure is
thus a queue. As soon as the message data structure containing the event information is
available in a communication memory at the recipient’s site, the communication component
sends a signal to the receiving system to inform the receiving system that a new message data

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 51

structure is available (information push). Since there is only a finite buffer space, the recipient
must when appropriate send a control handshake signal back to the sender in order to inform
the latter that the message has been consumed and that buffer space has been made available
again (back pressure). There are many different protocols governing the information exchange
across an event-triggered (ET) connection.

ET messages are used, for instance, in client-server protocols.

4.3.3.2 Periodic state message

A periodic state message sequence (or a time-triggered (TT) message) is characterized by a
periodic unidirectional data flow into a shared memory data structure in the communication
memory. Flow control is implicit. The recipient accesses this data structure based on its local
schedule (information pull). Since a TT message contains state information, a new version of
a state message updates-in-place the current version of the state message and no strict
synchronization between sender and recipient is required. It is up to the recipient to decide
when to read the message, how often to read the message, or not to read it at all. An access to
a TT message interface is similar to the access of a variable in memory.

The following table (Table 2) compares the characteristics of these two transport mechanisms.

 Event Message State Message

Information event
information

state information

Flow Control explicit implicit

Communication
Memory

message queue shared variable

Synchronization strict loose

Interaction type information push information pull

Main usage for client-server
protocols

real-time state
variables

Table 2 — Characteristics of the transport mechanisms:
Event Message and State Message

From the point of view of coupling across a connection, the state-message model results in
the minimum coupling between sender and recipient.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 52

4.3.4 Integration of event- and time-triggered operation

The DSoS conceptual model distinguishes between three different types of interfaces, as
described in more detail above (Section 4.1): the service interface, the diagnostic and
management interface, and the configuration planning interface. These interfaces serve
different functions, have different operational characteristics, provide access to different
views of a system and, in large systems, may connect to different management domains. From
the point of view of composability of services, only the characteristics of the service interface
are relevant.

In real-time systems, the service interface can be time-triggered (TT), while the other two
interfaces can be event-triggered (ET). In order to provide access to these interfaces on a
single physical communication channel, the operation of event-triggered and time-triggered
services must be integrated in such a way that the characteristic service parameters of the
time-triggered interface are maintained (see also Section 4.3.3). These characteristic service
parameters relate to the temporal properties of known delay and minimal jitter.

There exist three different alternatives for the integration of ET and TT services, as depicted
in Table 3. The first alternative, the provision of a basic ET service at the transport layer and
the implementation of the TT service on top of the ET layer is implemented in a number of
industrial CAN systems that are used for real-time control. In order to reduce the jitter at the
critical instant, i.e., when all nodes access the network simultaneously, these systems are
normally operated with a very low bandwidth utilization. However, even under these
circumstances it is not possible to guarantee a small jitter, which is important in control
applications. Another alternative is the implementation of the ET service on top of the TT
service. This alternative provides temporal composability and the required jitter guarantee at
the transport level. It is, however, not possible to globally share the bandwidth for the ET
traffic. The third alternative is a combination of ET and TT media access protocols. In this
alternative, which is implemented in the FIP protocol, the timeline is partitioned in two
alternating intervals for the TT traffic and the ET traffic. In the TT interval media access is
controlled by a TT protocol and in the ET interval media access is controlled by an ET
protocol control. The advantages of temporal predictability for the TT traffic and global
bandwidth sharing of the ET traffic is bought by an increase in protocol complexity and a loss
of temporal composability of the ET traffic.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 53

Characteristic TT on top of ET ET on top of TT ET and TT in

parallel

Basic Service TT operation ET operation one slot TT,

another slot ET

Media access TT protocol ET protocol ET and TT

protocol

Global sharing of

bandwidth

yes no no for TT

yes for ET

Temporal

composability

difficult, since

global bandwidth

allocation

yes yes for TT part,

no for ET part

Jitter large (critical

instant)

small small for TT,

large for ET

Examples CAN TTA FIP

Table 3: Alternatives for the Integration of ET and TT Services

For embedded real-time control systems, DSoS has selected the middle alternative of Table 3,
ET on top of TT, as the preferred alternative, because it supports temporal composability for
the ET and TT traffic. In this alternative, event message channels are constructed on top of the
basic time-triggered communication service by assigning an a priori specified number of
bytes of selected time-triggered messages to the event-triggered transport service. These
periodically transmitted bytes form a dedicated communication channel for the transmission
of the dynamically generated event information. In order to implement the event semantics
(see Section 2.3) at the sender and receiver, two message queues must be provided in the
CNIs: the sender queue at the sender’s CNI and the receiver queue at the receiver’s CNI. The
sender pushes a newly produced event-message on the sender queue, while the receiver must
check the receiver queue to pull and consume the event message. An alternative design could
produce an interrupt whenever a new event message arrives at the receiver, but such a design
is not recommended since it violates the principle of providing an information pull interface
at the receiver and could interfere with the principle of stability of prior services (by
providing more interrupts than a node can handle).

At the conceptual level, four interfaces are provided at every node. An input and output
interface for state messages (update-in-place on input, no consumption on output) and an

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 54

input and output interface for event messages (input queue and output queue) as depicted in
Figure 8. State messages and event messages are stored in the memory element of the DSoS
interface model.

 Push

 Pu l l

 H ost A
St ate

Mess a g e
St ate

Mess a g e

Pull

Push

 H ost B

T T
Co ntrol

Eve nts Eve nts

Figure 8: Model TT-ET Interface

In most real-time architectures, the basic communication service is a broadcast service (e.g.,
in CAN, TTP) that connects the n nodes of a cluster. Every transmitted event message thus
generates (n-1) event messages at the receivers. To handle these message showers, two
additional services should be provided by the middleware to avoid a queue overflow at the
receiver: a filter service and a garbage collection service. The filter service selects the
incoming event messages according to filtering criteria established by the receiver and accepts
only those event messages that pass the filter. The garbage collection service eliminates
decayed event message from the receiver queue based on the age of the message. A maximum
queue-storage duration must be statically assigned to each event message for this purpose.
After this duration has elapsed, the message is eliminated from the receiver queue. The event-
message channels are used in the TTA to implement the non-time-critical DM and CP
services. It is possible to implement widely-used event-based protocols, such as TCP/IP or
CAN, on the TTA event channels.

Event message channels should not be used for time-critical or safety-critical functions. In
case of a rare-event peak-load scenario, the event-message service may be delayed or stopped
in order to maintain the safety-critical time-triggered service. It follows that the host tasks
servicing the event channels can be scheduled according to the “best-effort” paradigm. Care
must be taken that any software interaction between the event-service and the safety-critical
time-triggered service inside the application software of the host is fully understood and no
negative consequences on the replica determinism of the time-triggered service can occur.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 55

5 TOWARDS FORMALIZATION

Formalization of SoSs developed according to the DSoS conceptual model requires the
identification and/or development of formal techniques for description and validation of
SoSs3. This section presents some preliminary ideas about how to proceed towards these
objectives. A fuller treatment will be presented in the final version of the DSoS conceptual
model (deliverable CSDA1), in response to feedback from the other workpackages.

According to the DSoS conceptual model, linking interfaces (LIFs) of systems and, when they
exist, connection systems between such interfaces provide the means by which systems are
linked together into systems of systems. Therefore, connection systems and component
system LIFs are critically important to the dependability of a SoS. In addition, of course, the
dependability of component systems themselves is critical. The LIFs, connection systems and
component systems of a SoS must be described in a way that allows the intended
dependability of the SoS to be validated.

Section 5.1 identifies features of formal description and reasoning techniques that are relevant
to the formal validation of SoS dependability properties.

Section 5.2 outlines the architecture description language (ADL) that is proposed for the
DSoS project in IC2(2001), and summarizes its extensibility.

Section 5.3 summarizes OMG IDL (the interface definition language defined by the Object
Modeling Group), and discusses its ability to describe changing interfaces.

Section 5.4 discusses techniques for the formal description of interactions between
component systems of a SoS, and quickly focuses on the suitability of the process algebra
CSP for describing interactions. Suitability is partly determined by the amenability to formal
validation of systems described using CSP.

Evidence for that suitability is provided in Section 5.5, which describes a CSP model of the
CORBA General Inter-ORB Protocol (GIOP), together with initial validation results obtained
using the model checker FDR2. Section 5.6 reviews known attempts to formalize Coordinated
Atomic (CA) actions.

3 Note that we do not consider formalisation of the DSoS conceptual model itself.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 56

5.1 Formal Validation of SoS Dependability

This section attempts to identify major characteristics of formal validation techniques, in
particular those that influence their suitability for dependability validation of SoSs. Clearly,
these characteristics are determined by the DSoS validation context: what properties are to be
validated, and of what systems?

Section 5.1.1 outlines the DSoS validation context. Section Error! Reference source not
found. describes the high-level activities that formal validation of SoS dependability
involves. Sections 5.1.3 and 5.1.4 list various characteristics of SoSs and dependability
properties that we consider to be relevant to description/validation.

As an aside, note that we use the term ‘validation’ rather than ‘verification’. The difference
between these terms is the implied balance between reliance on assumptions and formal
reasoning. Validation relies more on assumptions, and less on formal reasoning, than
verification. It does not matter which term we use; it only matters that all the assumptions are
identified and deemed acceptable.

5.1.1 DSoS validation context

The DSoS Validation context is the dependability validation of systems of systems.

Recall that the dependability of a system is its ability to deliver a service that can justifiably
be trusted, where the service is the intended behaviour of the system. So dependability has
two aspects: ‘intended service’ and ‘trustworthiness’.

SoSs are systems built by the integration of existing complete component systems.
Furthermore, these existing component systems are typically non-trivial and outside the
control of the SoS designer.

Note that some component systems may be designed by the SoS designer, specifically for the
purpose of integrating the existing component systems. Such ‘integration’ components can be
expected to be under the control of the SoS designer.

5.1.2 Validation activities

In general, formal validation of a system relies on:

1) formal descriptions of the system and of the desired system properties;

2) formal reasoning to show that the described system satisfies the described properties.

In the context of DSoS, formal validation of the dependability of a SoS relies on:

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 57

1) formal descriptions:

a) of the SoS;

b) of the intended services of the SoS (functional properties);

c) of the acceptance criteria for trustworthiness (non-functional properties);

2) formal reasoning:

a) to show that the described SoS provides the described intended services;

b) to show that the described SoS service provision is trustworthy (according to the
described criteria).

5.1.3 Characteristics of SoSs and implications for description/validation

Here we identify characteristics of SoSs that are relevant to description/validation, either
because they affect the suitability of ADLs or IDLs for describing SoSs and their interfaces,
or because they affect formal validation of SoSs thus described. For each characteristic, we
identify its implications for the capabilities of (a) IDLs and ADLs (when used to describe
SoSs), and (b) formal validation techniques used in the DSoS context.

To help clarify the discussion, consider the example SoS depicted in Figure 9It has
component systems A, C, D and E, and connection system B between A and C. The arrows
represent the flow of information across connections. (Note that connection systems might
reasonably be considered to be component systems themselves, though they are introduced by
the SoS designer and are therefore likely to be much more controllable than are legacy
component systems.)

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 58

A C

D

E

B

CD

Figure 9. A system-of-systems (dotted system is an abstraction of C and D)

5.1.3.1 SoS hierarchical structure

Formal description and reasoning techniques generally benefit greatly from the ability to
describe and reason about systems in a way that corresponds to the system architecture. A
system architecture provides a structured way to understand, and validate, system behaviours.
The characteristic feature of SoS architectures is their hierarchical nature. Architecture
description languages rely heavily on hierarchical description techniques, and thereby provide
a good opportunity for validation activities to exploit SoS hierarchy. The obvious strategy is
to prove SoS-level properties by proving an appropriate set of properties of the component
systems – we may call these ‘component-level properties’. (We discuss the existence and
discovery of an appropriate set of component-level properties in Section 5.1.4.2.) Once one
has found a particular formal validation technique that can exploit system structure
(particularly SoS hierarchy), the question arises whether exploitation can be automated, at
least in part. This can be achieved by automating one or more of the following tasks:

1) generate formal descriptions of architectural components (from ADL/IDL descriptions of
the SoS and its interfaces);

2) generate formal descriptions of an appropriate set of component-level properties (from
SoS-level properties);

3) formally validate that the components satisfy the identified component-level properties.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 59

5.1.3.2 Non-controllable component systems

An important feature of SoSs is their reliance on component systems that are outside the
sphere of control of the SoS engineers. Such component systems may change their
functionality or reliability (availability/performance) without warning; a DSoS is required to
cope with such behaviour.

ADLs, IDLs and formal description/validation techniques applied to SoSs must be able to
describe/validate SoSs designed to cope with component systems not controllable by the SoS
engineers. In particular, these techniques must be able to describe/validate systems that
employ dependability mechanisms, such as those described in IC2: CA Actions and
Wrappers.

We anticipate that redundancy will often be used to cope with possible change of services
provided by component systems, and of their trustworthiness. Another strategy is to track
advertized service/trustworthiness changes, either for complete component systems or
individual interfaces. The ability to track such changes necessitates corresponding flexibility
of ADLs/IDLs.

5.1.3.3 SoS lifecycle

It is often advantageous to build a system model in the design phase of a system, and develop
that model throughout the lifetime of the system. Maintaining a model in this way is advisable
in order that an up-to-date system description is available for dependability validation
throughout the SoS lifecycle. For example, where safety properties are concerned, it is
typically necessary to maintain a safety case while the system remains in service.

Frequently, SoSs evolve by the inclusion of extra component systems that satisfy some
compositional property, also satisfied by the SoS or one of its component systems. In such
cases, it is advantageous if the validation techniques can exploit compositionality, allowing
the SoS-level property of any future system (thus evolved) to be validated by simply
validating the compositional property of the new components.

5.1.3.4 Complexity of SoSs

One reason for the complexity of SoSs is that they attempt to combine the behaviours of
component systems to provide emergent SoS-level functionality. Component systems may
interact in complex ways. Further complexity results from the requirement to cope with run-
time errors in components and connection systems, in order to ensure SoS dependability.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 60

The likely complexity of SoS behaviour strongly indicates the need for validation techniques
to include largeness avoidance and tolerance strategies to avoid the need to construct large
models of system behaviour, and tolerate such a need.

5.1.4 Characteristics of SoS properties and implications for
description/validation

Here we identify characteristics of desirable SoS properties that are relevant to description/
validation, either because they affect the suitability of ADLs or IDLs for describing SoSs and
their interfaces, or because they affect formal validation of SoSs thus described. For each
characteristic, we identify its implications for the capabilities of (a) IDLs and ADLs (when
used to describe SoSs), and (b) formal validation techniques used in the DSoS context..

5.1.4.1 Types of properties

Recall that dependability means trustworthy delivery of intended services. So validation of
functionality properties and availability/reliability/performance properties is required.

5.1.4.2 Decomposability of properties

For any SoS, we can expect that some properties will be decomposable into necessary and
sufficient independent properties of its parts (the component systems, connection systems and
connections). We call such properties decomposable.

In principle, all desired properties of a SoS can be decomposed into (‘pushed down to’)
sufficient, independent properties of its parts4. However, some properties may not be
decomposable into independent properties of its parts that are both necessary and sufficient.
For example, consider the system depicted in figure 2, a two-place buffer built from two one-
place buffers A and B.

4 In the extreme, one can decompose any SoS-level property into the property FALSE for each part. Then, it is

trivially the case that if FALSE holds then the SoS-level property is true.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 61

A B

Figure 10: A two-place buffer with two different component one-place buffers

Suppose we wish to check the property that the system always transfers data in and out again
in less than 10 seconds. We can choose the necessary and sufficient properties: A takes x<10
seconds to transfer the data and B takes <10-x seconds, but these are not independent. In fact,
we cannot find properties of the delays across the (possibly different) one-place buffers A and
B that are necessary and sufficient, yet independent of each other. We might choose sufficient
independent properties, but would lose necessity (e.g., A takes at most 4 seconds to transfer
its data, and B takes less than 6 seconds, or (simplest) A and B each take less than 5 seconds).

A very useful validation strategy for decomposable SoS-level properties is the validation of
the necessary and sufficient independent component properties. By definition, these are
sufficient to imply the SoS-level property. The necessity of the component properties means
that the validation effort is focussed precisely on the SoS-level property desired.

Notice that the context of SoS validation is likely to be such that component systems are
outside the sphere of control of SoS engineers. This reduces the relevance of property
decomposability, since decomposition of a SoS-level property may lead to component
properties that are not satisfied by the available component systems. On the other hand, in
many cases it will be possible to employ wrappers around component systems (see Section 4
of IC2 (2001)), which enable the use of non-ideal component systems by changing the
demands made on them by the SoS.

Possible strategies for validating a non-decomposable SoS-level property include:

1. Map the SoS-level property to some sufficient and independent (so not necessary)
component properties, and try to validate these component properties, perhaps using some
simple technique. If unsuccessful then try to validate successively less restrictive, but still
sufficient, component properties and/or use more sophisticated techniques. Continue
iterating until the SoS-level property is validated or we choose to abandon the attempt.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 62

2. Map the SoS-level property to some necessary and sufficient (so not independent)
component properties, and use some technique to validate these properties together, rather
than in separate steps.

A good example of the systematic decomposition of a high-level property into a set of low-
level properties occurs in the rely/guarantee paradigm (Misra and Chandy 1981), (Jones 1981,
June), (Jones 1983), (Collette and Jones 2000). This paradigm decomposes a high-level
property into a set of low-level ‘rely/guarantee’ properties, each of which is of the form “if
rely(cond) then guarantee(prop)”. These properties mean that if ‘cond’ is true, then ‘prop’ is
also true. A properly constructed set of rely/guarantee properties will together imply the high-
level property. Steps are: (1) decompose the high-level property into a set of rely/guarantee
properties of components (with simple consistency conditions), (2) check these rely-guarantee
properties.

5.1.5 Abstraction

Roughly speaking, abstraction is a procedure whereby one or more particular types of
information about an entity are deliberately ignored, in order to postpone consideration of
some aspect(s) of that information. A comprehensive discussion of abstraction and related
issues appears in Abstraction, Encapsulation and Information Hiding
(http://www.toa.com/pub/abstraction.txt). It is common to speak of information at a given
level of abstraction, i.e., the information that remains after the information of the type(s)
ignored by the given abstraction is removed.

Within the DSoS Project, we consider abstraction of information about systems, including
SoSs. In this context, there are various types of abstraction, including:

1. architecture abstraction
The information ignored regards the distinctions between some component systems (this
corresponds to treating those component systems together as a single system). For
example, one might ignore the distinction between components C and D in Figure 9and so
treat them as a single, combined system (dotted system CD in the figure).

2. data abstraction
The information ignored regards the data values stored by component systems and/or
communicated between them or between the SoS and its environment. For example, one
might choose to abstract away from the value of an integer output, only recording whether
the value is even or odd.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 63

3. communication abstraction
The information ignored regards the means by which communications are achieved,
between component systems or between the SoS and its environment. For example, one
might abstract away from the details of a communication protocol, retaining only the
information regarding the information transferred by a successful run of that protocol
(e.g., ignore ACKs).

Of course, the usefulness of an abstraction depends upon its purpose. Here, we consider
abstractions for the purpose of assisting the modeling of SoSs, particularly in order to
facilitate validation of dependability.

5.2 Architecture Description

5.2.1 Proposed UML-based ADL

Architecture Description Languages (ADLs) are notations enabling the rigorous specification
of the structure and behaviour of systems (Medvidovic and Taylor 2000). Several ADLs
proposed in recent years are all based on the same principle: specifying the structure of
systems using the following basic concepts: components, connectors and configurations
(described below).

The DSoS report “Architecture and Design: Initial Results on Architectures and
Dependability Mechanisms for Dependable SoSs” (2001) proposes an ADL defined in
relation to standard UML elements. The proposed ADL is being developed by the definition
of a set of core extensible language constructs for the specification of components, connectors
and configurations. The intention is that these extensible constructs will enable a variety of
ADLs to be mapped into UML.

The definition of the proposed DSoS ADL environment is based on UML for a number of
good reasons, detailed in (2001). One of the most important reasons is the prevalence of UML
as a notation – it is widely used by Industry and is therefore likely to minimize resistance by
Industry to the take-up of the emerging DSoS methodology.

5.2.2 Components, connectors and configurations

It is now accepted by the vast majority of the software architecture community that the
description of a system architecture should be based on Components, Connectors and
Configurations. These terms are discussed in detail in Chapter 1 of the DSoS State of the Art
Survey (2000). Briefly:

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 64

 Components abstractly characterize units of computation or data stores.
In general, the specification of a component gives the behavioural specification of the
component together with the component’s interfacing points with other architectural
elements.

 Connectors abstractly characterize composition patterns among components.
A connector thus prescribes the interaction protocol that takes place among the
components that are composed through it.

 Configurations define the structures of systems by composing collections of component
instances through bindings via connector instances. A system’s software architecture is
then defined as a configuration together with the component and connector types that are
instantiated within the configuration.

5.2.3 Extensibility of the proposed ADL

Extensibility is a major consideration in the design of the proposed ADL, as evidenced by its
definition using core extensible language constructs. This should enable its use for rigorous
architectural description of a wide range of SoSs, since these constructs can be extended to
provide particular descriptive abilities necessary for particular systems. It is harder to
anticipate all possible architectural features of a system than it is to provide the flexibility to
extend an ADL to cope with particular features as the need arises, and not providing this
flexibility would unnecessarily constrain the types of systems that can be described (and
therefore that can be validated).

The proposed ADL is based on UML, which in turn is meant to be a standard base for the
development of a family of languages, called UML profiles. Profiles are defined using UML
standard extension mechanisms (e.g., stereotypes, constraints, etc.). Those mechanisms can be
used to extend the definitions of the base ADL elements, as needed.

5.3 Interface Description

This section summarizes OMG IDL and discusses its strengths and weaknesses with respect
to the provision of suitable capabilities for describing the interfaces of component systems of
a system of systems.

5.3.1 Summary of OMG IDL

Establishing a communication between two subsystems requires that all properties match. If
we focus on the data properties there are a number of different aspects:

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 65

• Representation of data

• Structure of data

• Typing of data

• Meaning of data

In order to support the communication among heterogeneous systems the Object Management
Group (OMG) has defined a semiformal Interface Definition Language (IDL) to avoid data
property mismatches at the representation layer and structure layer. The syntax of this
language is similar to the programming language C and so are the basic data types. The
following list contains some of the types available in OMG IDL:

• boolean: may have two values only (TRUE and FALSE)

• char: 8 bits value for characters

• octet: 8 bits unsigned value (is not subject of conversions)

• short and unsigned short: 16 bits integer value

• long and unsigned long: 32 bits integer value

• long long and unsigned long long: 64 bits integer value

• float: IEEE single-precision floating point

• double: IEEE double-precision floating point

• long double: IEEE double-extended floating point

Additionally to these basic types it is possible to define user-defined types like struct or
union, or use several instances by using sequence or array.

In order to avoid the restriction that static typing imposes, two additional types exist in OMG
IDL: any and DynAny. When the any-type is used for a method any predefined type in the
IDL-file can be used. The DynAny-type allows the use of types not predefined in the IDL-file.

In OMG IDL a method may have a valid return value or raise/signal an exception. This
mechanism for reporting errors is supported by a number of programming-languages natively
(e.g., C++, Java). Other languages provide mechanisms to emulate this behaviour. In real-
time systems, exceptions are not widely used because of their interrupt-like nature.

Attributes in conjunction with the associated methods are combined as objects. It is important
to mention that objects can only be declared but not defined, i.e., only parameters (input- and

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 66

output-parameters) and results of methods (regular result or an exception) are stated, but the
algorithms cannot be described.

It must be stressed that OMG IDL defines the system appearance of the exchanged data and
operations but not the meaning associated with the structures. It is a background assumption
that the client has an informal understanding of the meaning. A formalization of this meaning
is an important open issue.

The OMG standard defines language mappings from OMG IDL to C, C++, Java, Smalltalk,
COBOL, and Ada. For Java even a reverse mapping is defined (Java to OMG IDL). Although
not defined in an OMG standard there exist additional language mappings for some other
programming languages like Perl, Common Lisp, Eiffel, or Python. Thus it is possible to
compose a system from parts that may be written in different programming languages.

Different computer architectures may use a different representation of data (e.g., byte order or
different character-sets). The Common Data Representation (CDR) defines representations
for all data types available in OMG IDL. Thus the receiver of a message is able to convert the
message into its preferred representation. This strategy minimizes the number of format
conversions when messages are exchanged within an architecture. This allows the integration
of different computer architectures to be transparent to the user. A syntactic property
mismatch as defined in chapter 2.3.2 can’t occur.

OMG IDL supports synchronous interfaces and asynchronous interfaces. The synchronous
interface allows a client to wait for a result or to continue immediately (in which case no
result may be retrieved). The asynchronous interface allows an event-triggered (callback) or a
time-triggered (polling) retrieval of the result. The different types of flow-control provide the
flexibility to choose the interface most suitable for the application.

CORBA provides two ways of using a method of another object: The Static Invocation
Interface (SII) and the Dynamic Invocation Interface (DII).

The SII can be used like procedures or functions in most programming languages. Although
this interface is restricted to methods known at compile-time, it provides some advantages. If
one abstracts from the temporal properties, one need not be aware if the function or procedure
is defined locally in a library or if it is a CORBA-method, which will call an object on a
remote location. Furthermore, this interface provides type checking at compile-time. A static
invocation requires two steps:

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 67

1. The object providing the required method must be identified. This can be done by
simply knowing the reference to the object or by using the CORBA “Naming Service”
or “Trading Service”.

2. Then the request is invoked and the results are received.

The DII allows more flexibility by allowing a client to use methods of objects that were
designed after compilation of the client. Thus calling a method requires four steps:

1. The object providing the required method must be identified. This step is the same as
the first step in the SII.

2. The interface definition must be found out. For this purpose CORBA provides the
service “Interface Repository” where the interface definition of objects can be
registered.

3. The invocation is constructed.

4. The request is invoked and the results are received. This step is similar to the second
step in the SII.

5.3.2 Extensibility of OMG IDL

For an SoS to cope with changing component interfaces, an IDL used to describe those
interfaces must have an introspection mechanism that provides information on the syntax of a
new interface, and a mechanism for dynamically constructing requests and responses against
this interface. In CORBA, these are provided by the Interface Repository and the DII and DSI
modules.

There are two approaches to making a syntactic change to an existing interface without
breaking backward compatibility: (1) dynamic/latent typing, where clients ignore attributes
that they don’t understand; and (2) static typing, where new clients bind to a new interface
that inherits from the old interface. The CORBA approach includes direct provision for the
second approach, but the first approach can be achieved by use of data types such as strings
and Anys.

CORBA also provides for signalling of a service change. A client realises it has a stale object
reference when it receives an exception, either raised by the remote ORB to signal that the
object whose invocation was requested no longer existed, or raised by the remote application.
Leasing is also provided by CORBA, where object references automatically expire after a
certain time. A client can be recompiled to support a new interface, or alternatively it can
obtain a syntactic description of the new interface from the Interface Repository and dispatch

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 68

requests against that interface using the Dynamic Invocation Interface. The client obtains an
object reference for the new service by using the naming or trading service.

5.4 Interaction Description

This section focuses on the formal description of the interactions between component systems
of a SoS for the purpose of formal validation of SoS dependability properties.

5.4.1 Formal validation techniques

Formal validation techniques fall into two major categories, which we refer to as theorem
proving and model-checking techniques:

1. In theorem proving techniques a logic (e.g., the HOL logic (Gordon and Melham 1993)) is
defined, and a model of the system to be validated is expressed using this logic.
Conjectures are then generated that represent the satisfaction, by the system, of the desired
properties. A theorem prover (e.g., Isobelle/HOL (Paulson 1994)is then used to prove
these conjectures, thus formally proving that the properties hold of the system (under the
assumption that the system and properties are represented correctly).

2. In model-checking techniques a model of the system is constructed. The modelling
language typically either (a) employs a sequential imperative programming language,
together with a shared-variable computational model (e.g, Promela (Holzmann 1993),
SMV (McMillan 1993)); or (b) is a process algebra (e.g., CCS (Milner), CSP (Hoare
1978), (Roscoe 1998)). In case (a), system properties are typically expressed as logical
expressions using some sort of temporal logic over execution paths of the system. In case
(b), system properties are usually expressed as refinements between a model of the
property and the system model (when using CSP), or as bisimulations (when using CCS).
In all cases, a model-checker is then used to formally check the properties of the system
(under the assumption that the system and properties are represented correctly).

Theorem provers typically require a large amount of expertise if they are to be used
effectively. Model-checkers typically require less expertise, but expertise is still highly
desirable in all but the most straightforward of application domains.

We focus this discussion on model checking using the process algebra CSP (Hoare 1978), in
particular the version of CSP described in (Roscoe 1998). This version of CSP (strictly, its
machine-readable form CSPm (Scattergood 1998)) is supported by the model-checker FDR2
(1992-99). The interested reader is referred to (2001) for details regarding the use of
PROMELA and SPIN in the DSoS Project.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 69

5.4.2 Modeling systems using CSP

The process algebra CSP is well suited to the formal description of SoSs. In general, CSP
models consist of a number of processes composed using process operators. These operators
include choice operators (which model the ability of a process to behave in alternative ways,
either deterministically or non-deterministically) and parallel operators (which model a
process as a set of component processes executing in parallel and interacting over one or more
channels).

It is very natural to model component systems and connection systems of a SoS as CSP
processes, and model the SoS itself as a parallel combination of these processes. A
component system will have some interface(s) through which it is expected, by the SoS
designer, to communicate with other component systems and with the environment of the
SoS. Models of these interfaces would form part of the component system models.

5.4.3 Validation by compositional reasoning

In the context of CSP, compositionality means that if an implementation process IMPL is a
refinement of a specification process SPEC, and a system that contains SPEC is a refinement
of another specification process CSPEC, then the containing system, except with SPEC
replaced by IMPL, is a refinement of CSPEC.

In CSP, compositionality can be expressed as follows:

CSPEC [M= C[SPEC] /\ SPEC [M= IMPL then CSPEC [M= C[IMPL]

where [M= represents refinement in semantic model M (for example, P [T= Q means P is
traces refined by Q, i.e., all the traces of Q are traces of P) and C[.] represents the given
process operating in context C. A CSP context is effectively a function, defined using any
CSP operators, from one or more CSP processes to a CSP process.

The compositionality of CSP is very useful for splitting validation into a collection of simpler
validation steps. In particular, a traces refinement SPEC [T= P1 || P2 can be validated by
checking SPEC [T= P1 and SPEC [T= P2 separately. (Note that this is because P [T= P || P is
true for all processes P; the corresponding properties are not true in the stable failures and
failures/divergences semantic models of CSP (Roscoe 1998)).

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 70

5.5 CSP Models of CORBA Protocols

This section presents some CSP models of a CORBA middleware protocol (GIOP) and
describes the formal validation activities that have been performed using the models. This
work demonstrates the potential to use CSP and FDR2 (a model-checker for CSP) for
validating dependability properties of real protocols that are likely to be used in SoSs.

5.5.1 Common object services and CORBA facilities

The Common Object Request Broker Architecture (CORBA) is the Object Management
Group’s (OMG’s) middleware for enabling the provision of services between distributed,
heterogeneous objected-oriented systems.

CORBA supplies developers with a basic suite of Common Object Services (COS). The COS
include naming services, event and time services, transaction and concurrency services, and a
basic security service. These are ‘low-level services’ which facilitate the development of
objects independently of the application domain.

In addition, CORBA provides its user community with an evolving set of Common Facilities
and Domain Facilities. The former are facilities that one would expect to be useful to any IT-
based business domains; they include facilities for Systems Management and User
Interfacing. The latter are business-domain specific facilities, including facilities for
electronic commerce, accounting, medical and healthcare, and telecommunications.

5.5.2 ORBs and GIOP

The General Inter-ORB Protocol (GIOP) is the CORBA protocol by which the CORBA
Object Request Brokers (ORBs) communicate method invocations on behalf of the CORBA
objects that they host. In keeping with the CORBA doctrine for architecture and vendor
neutrality, GIOP is a transport-neutral protocol, i.e., it is designed to run over any connection-
oriented transport-level protocol that meets a minimum set of requirements. The GIOP
protocol makes no assumptions about how different vendors’ ORBs are implemented, or
about their runtime environment.

The ‘base-line’ transport-level protocol of GIOP is the TCP/IP protocol suite; the particular
mapping of GIOP to TCP/IP is called the Internet Inter-ORB Protocol (IIOP). An ORB must
support IIOP in order for its vendor to claim compliance with the CORBA standard.
However, ORBs may support other mappings of GIOP to ‘environment-specific’ or
proprietary protocols.Such mappings are called Environment Specific IOPs (ESIOPs). One of

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 71

the most important ESIOPs is the DCE-ESIOP, designed to facilitate communications
between CORBA-compliant and DCE-compliant systems.

5.5.3 The CSP modeling of GIOP

5.5.3.1 Modeling context

The CSP GIOP modeling presented in an accompanying report owes much to the research
reported in (Kamel and Leue November 1998). In that research, the GIOP protocol was
modeled in PROMELA, and basic properties verified of the system using the Spin model
checker (Holzmann 1997).

The aim of our CSP modeling is twofold: firstly, to demonstrate that CSP and FDR are
sufficiently advanced to model and verify complex object interactions via GIOP; secondly, to
demonstrate the use of CSP Data Independence techniques to formally extrapolate the results
of the modeling – which is necessarily finite-state – to arbitrarily large systems. The latter is
not easily achievable in PROMELA/Spin. We did not expect our modeling of the GIOP
protocol to reveal any hitherto unknown significant design flaws or holes – given that
CORBA is popular and widely used, it is likely that, by now, any problems that do exist are
already known and/or are of a highly pathological nature. Even so, it sometimes happens that
formal validation discovers an error; it is often beneficial to formally validate in order, one
hopes, to confirm expectations of correct behaviour.

For the purposes of realism, and for brevity, it is expedient that we make assumptions about
the underlying transport-level protocol – for example, addressing information is necessarily
transport-specific. Our modeling assumes that the underlying protocols are TCP/IP – so, in
effect, we are modeling the IIOP mapping of GIOP.

There is plenty of scope for further refinement of the models presented here – for example,
the incorporation of TCP/IP idiosyncrasies, message fragmentation, and different threading
models.

5.5.3.2 Overview of the model

For this deliverable, we have modelled basic ORB processing of GIOP messages.

The OMG allows vendors considerable leeway in the way in which they implement ORBs.
This is reflected in our models. We have endeavoured to design a simple, but ‘fair’ ORB that
will guarantee that all invocation requests are eventually serviced under non-pathological
conditions. Those conditions are detailed in the annotations of the CSP scripts.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 72

Our base case model is of a two-ORB CORBA environment in which up to five objects may
be instantiated on either machine, and those objects can relocate at will. (Object relocation is
defined in the annotations of the GIOP1.csp, see below.)

By introducing the concept of object relocation early on, we were able to resort to the Data
Independence theory of (Lazic and Roscoe July 1998) in order to extrapolate our results for
an arbitrary number of objects (five is the threshold cardinality of objects in our models).

Without free object relocation, we would have had to resort to more advanced data
independence arguments, such as D.I. Induction (Creese and Roscoe June 2000) with no
guarantee of success. However, free object relocation can lead to pathological cases in which
a server object persistently re-locates and a (prospective) client ORB cannot ‘catch up’ with
it. This anomaly was described in (Kamel and Leue November 1998). In that study, the
authors proposed a solution based on constraining the number of times an object is allowed to
relocate. We propose an alternative solution that imposes no constraints on the number of
relocations. This solution relies on the explicit ‘fairness’ that has been built into our ORBs.
We have not, however, formally verified our proposed solution (i.e., through CSP/FDR).

Finally, we have described how the results of certain 2-ORB CSP models (such as those we
present in this report) can, in principle, be extrapolated to arbitrary n-ORB implementations
by resorting to simple compositionality arguments only. Such an argument, however, would
necessitate a significant weakening of our ORB functionality: client objects themselves would
have to re-send requests to relocated objects, rather than rely on the ORBs to automatically do
this for them. Such a weakening of the ORBs would, among other things, mean that we could
not legitimately impose our ‘persistent object-relocation’ solution without, potentially,
introducing deadlock into the CORBA environment.

5.5.3.3 Running the CSP scripts

The GIOP modelling is composed of three CSPM scripts:

 GIOP1.csp – the definition of the GIOP message datatype;

 GIOP2.csp – the model of the TCP/IP communication layer;

 GIOP3.csp – the model of an ORB’s processing of the GIOP protocol.

GIOP3.csp is the top-level script that is loaded into FDR. This script instantiates certain data
independent types (primarily the objects) whose threshold cardinalities can only be calculated
by analysis of the implementation and specification models present in that script.

The assertions in GIOP3.csp are designed to prove two properties:

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 73

 that our ORB implementations cannot, in themselves, introduce deadlock into the
CORBA environment;

 that method invocations are ‘fairly’ processed by the ORBs in transport-failure-free
conditions, and that methods are processed once-only.

The GIOP3.csp script was run through FDR version 2.66 on a Dell Precision 420 machine
running Red Hat Linux 7.0. All the assertions passed. The Data Independence theory of Lasić
and Roscoe allow us to formally extrapolate the assertions to an arbitrary number of objects
(but not an arbitrary number of ORBs).

5.5.3.4 Data independence thresholds

Here we describe calculation of the thresholds on the cardinality of objects, MaxNoOfObjects,
and the cardinality of the Request Identifiers nametype, request_IDs. These thresholds are
calculated from a semantic analysis of the CORBA_ENVIRONMENT, SPEC_3_1 and
SPEC_3_2 models (presented in the GIOP3.csp script) according to Theorem 15.2.3 of
(Roscoe 1998), as follows:

 CORBA_ENVIRONMENT, SPEC_3_1 and SPEC_3_2 are Data Independent in the object
type (i.e., {1.. MaxNoOfObjects}) and in the request_IDs type. (A formal description of
what it means for a CSP process to be Data-Independent in a particular type can be found
in Section 15.2.2 of (Roscoe 1998).)

 SPEC_3_1 and SPEC_3_2 both satisfy Norm (see Section 15.2.2 of (Roscoe 1998) for the
definition of Norm).

 Section 15.2.2 of (Roscoe 1998) defines WImpl to be the maximum number of values of the
D.I. type that the implementation (in this case CORBA_ENVIRONMENT) ever has to
store for future use. For the objects and for the request identifiers, this is 4 (the ORB in
the role of ‘client’ stores one of each value, in the role of ‘server’ it stores one of each
value, and there are two ORBs in CORBA_ENVIRONMENT).

 WSpec is a specification’s equivalent of WImpl. For both types, WSpec is 0 in SPEC_3_1 and
in SPEC_3_2. (Both specifications involve a single input of both types before recursing.)

 Section 15.2.2 of (Roscoe 1998) defines L?
Impl to be the largest number of values of the

D.I. type that can be input in any single visible event of the implementation. For the
objects, L?

Impl is 1 (the user_invoke!this? event in the ORB in the role of client, and,
implicitly, on the receipt of a Request message by the ORB in the role of server). For the

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 74

request identifiers, too, L?
Impl is 1 (implicitly, on the receipt of a Request message by the

ORB in the role of server).

 LSpec is a specification’s equivalent of L?
Impl. For both SPEC_3_1 and SPEC_3_2, LSpec is 1

for both the object and request identifier types (via the send!host_machine?_... input).

 Section 15.2.2 of (Roscoe 1998) defines L|~|
Impl to be the largest number of values of the

D.I. type that can be non-deterministically chosen in any single non-deterministic choice
in the implementation over the type. As CORBA_ENVIRONMENT has no non-
determinism, this is trivially 0 for both the objects and request identifiers.

Theorem 15.2.4 of (Roscoe 1998), then states that the threshold value of the types in the
traces and failures models are given by:

WSpec + WImpl + max(LSpec,L?
Impl,L|~|

Impl)

That is, 0+4+max(1,1,0) = 5. This means that GIOP3.csp’s deadlock freedom test and the
assertions involving CORBA_ENVIRONMENT, SPEC_3_1 and SPEC_3_2, if true for
#objects=5 and #request identifiers=5, are true for any number (>=5) of objects and request
identifiers.

5.6 Modelling CA-Actions

The Coordinated Atomic (CA) action concept is an approach to structuring complex
concurrent activities in a distributed environment, aimed at supporting fault-tolerance in
object-oriented systems.

Several models have been proposed for formalising the CA action concept with the intention
either to give a more complete and rigorous description of the concept or to verify systems
designed using CA actions.

These are four approaches falling into the first category.

• The concept of Dependable Multiparty Interactions has many similarities with that of
CA actions, and is formally specified using Temporal Logic of Actions TLA (Zorzo
1999). There were several earlier attempts to specify the CA action semantics using
TLA (for example, the one reported in (Schwier, Henke et al. 1997)).

• The COALA framework (Vachon 2000) was proposed to allow system developers to
model complex distributed/concurrent systems. Within this work a formalization of
the CA action concept is developed using CO-OPN/2: an object-oriented language
based on Petri nets and partial order-sorted algebraic specifications.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 75

• The ERT model (ERT stands for extraction, refusals and traces) is used for
formalising the CA action concept (Koutny and Pappalardo 1998). Refusals and traces
are terms that come from semantic models of CSP; term extraction refers to a specific
technique used to relate systems specified at different levels of abstraction.

• A mathematical framework, based on Timed CSP, for representing the use of CA
actions in real-time safety-critical systems is proposed in (Veloudis and Nissanke
2000). It allows the interactions between concurrently functioning pieces of equipment
to be modelled – and their behaviour to be reasoned about – in an abstract way. The
framework models dynamic system structuring using CA actions and explicitly uses
events representing synchronization between items and the control system to allow the
action context to be changed dynamically. Although the framework was not developed
for dealing with erroneously behaving action participants, it helps gain a better
understanding of the CA action concept and can be used in developing general models
incorporating mechanisms supporting system safety.

The following research belongs to the second category.

• A formal approach is used to model and verify a safety-critical system designed using
CA actions in (Xu, Randell et al. 1999). To model-check the system controlling a
fault-tolerant Production Cell, the state transition system corresponding to a CA action
based design is expressed in SMV (Symbolic Model Verifier) and the properties of the
system to be analysed are expressed in CTL.

Currently, we are working on the modelling of CA actions using the most recent version of
the ERT model (Burton, Koutny et al. 2001). We expect to improve both the precision and
generality of the CA action model and to prepare tools that will allow compositional
reasoning about designs based on CA actions.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 77

6 SUMMARY AND FUTURE WORK

In this deliverable, we have presented a revised version of the DSoS conceptual model, and
illustrated some of the concepts using a series of examples. The revised Section 1 positions
the objectives of the document.

The taxonomy that we have presented in Section 2 attempts to summarize the large number of
different classificatory dimensions that could be of use for characterizing and comparing
different systems of systems.

General DSoS concepts were introduced in Sections 3 and 4. With respect to the previous
version of the conceptual model, extensive work has been carried out to improve consistency
of the concepts and the corresponding definitions, and to widen the scope of the types of SoS
that they embrace. Indeed, as indicated in Section 1.2, one of the greatest challenges of the
conceptual model is to provide useful definitions that cover the wide range of systems
considered.

Section 5 gives our initial views on formalization.

Several aspects need to be developed further in future revisions of the conceptual model. For
example:

• The taxonomy presented in Section 2 needs to be tested against examples of systems of

systems, and appropriately extended.

• Whereas the current conceptual model has several times discussed faults that need to be

taken into account in dependable systems of systems, an appropriate fault model has yet to

be explicitly defined. The fault model needs to cover classic faults in distributed systems,

together with specific SoS fault types like dynamic mismatch.

• One of the major objectives of the DSoS Project is to investigate how to build dependable

systems of systems out of (undependable) legacy component systems. The dependability

enhancement will be provided by special connection systems that perform error detection

and reconfiguration or fault masking. This topic is covered in Work Package 2

(Architecture and Design) and the appropriate fundamental concepts (e.g., wrappers for

error confinement, CA Actions) will be included in the final version of the conceptual

model.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 79

ANNEX 1. MODELS OF TIME

In the following paragraphs we develop further the models of time that are part of the
conceptual model of the DSoS Project.

Events and States: The flow of real time can be modeled by a directed timeline that extends
from the past into the future (Whitrow 1990). A cut of the timeline is an instant. Any
occurrence that happens at an instant is called an event. There can be many events happening
at a single instant. Instants are totally ordered, events are only partially ordered. Information
that describes an event is called event information. Event information is non-idempotent and
requires exactly-once semantics when transmitted to a consumer. The present instant, now, is
a very special instant that separates the past from the future (the presented model of time is
based on Newtonian physics and disregards relativistic effects). An interval on the timeline is
defined by two instants, the start event; and the terminating event of the interval. The
duration of the interval is the time of the terminating event minus the time of the start event,
measured in some metric (see below). Any property of an object that remains valid during a
finite duration is called a state attribute and the corresponding information state information.
State information is idempotent and requires an at-least once semantics when transmitted to a
consumer. A change of state is an event. An observation is an event that records the state of
an object at a particular instant, the point of observation. An event observation can be
expressed by the atomic triple:

<Name of the observed event, attributes of the event, time of the event>

A trigger is an event that causes the start of some action, e.g., the execution of a task or the
transmission of a message. Depending on the triggering mechanism for the start of
communication and processing activities in each node of a distributed computer system, two
distinctly different approaches to the design of real-time computer applications can be
identified (Kopetz 1993; Tisato and DePaoli 1995): the event-triggered and the time-triggered
approach. In the event-triggered (ET) approach, all communication and processing activities
are initiated whenever a significant change of state, i.e., an event other than the regular event
of a clock tick, is noted. In the time-triggered (TT) approach, all communication and
processing activities are initiated at predetermined instants. While ET systems are flexible, TT
systems are temporally predictable.

Physical Clock: A (physical) clock is a device for measuring time. It contains a counter, and a
physical oscillation mechanism that periodically generates an event to increase the counter. A
clock partitions the time line into a sequence of nearly equally spaced intervals, called the

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 80

granules of the clock, which are bounded by special periodic events, the ticks of the clock.
Whenever an observer perceives the occurrence of an event e, she/he will instantaneously
record the current state of the clock (the current granule) as the time of occurrence of this
event e, and, will generate a timestamp for e. A Clock (event) denotes the timestamp
generated by the use of a given clock to timestamp an event. The granularity of any digital
clock leads to a digitalization error in time measurement. Since any two clocks will have
slightly different physical oscillation mechanisms, the time-references generated by two
clocks will drift apart, if the clocks are not periodically resynchronized. Even if the clocks are
properly synchronized, there is always the possibility that an external event is observed by
two clocks with a tick difference. This tick difference, which is unavoidable in a distributed
system, can cause the loss of replica determinism (Poledna 1995) of two replicated systems.

Dense time: Assume a set of events {E} that are of interest in a particular context. This set
{E} could be the ticks of all clocks, or the events of sending and receiving messages of the
nodes of a distributed system. If these events are allowed to occur at any instant of the
timeline, then we call the time base dense. To arrive at a consistent view among a set of nodes
about the order of the events that occur on a dense time base of a distributed system, the
nodes must execute an agreement protocol. The first phase of an agreement protocol requires
an information interchange among the nodes with the goal that every node acquires the
differing local views about the state of the observation of every other node. At the end of this
first phase, every node possesses exactly the same information as every other node. In the
second phase of the agreement protocol, each node applies a deterministic algorithm to this
consistent information to reach the same conclusion—the commonly agreed value. In the
fault-free case, an agreement algorithm requires an additional round of information exchange
as well as the resources for executing the agreement algorithm (see also (Kopetz 1997)).
Agreement algorithms are costly, both in terms of communication requirements, processing
requirements, and — worst of all — in terms of the additional delay they introduce into a
control loop. It is therefore expedient to look for solutions to the ordering problem that do not
require these additional overheads.

Sparse Time: If the occurrence of significant events that are to be observed is restricted to
some active intervals of duration ε with an interval of silence of duration ∆ between any two
active intervals, then, we call the time base ε/∆-sparse, or simply sparse for short (Kopetz
1992). If a system is based on a sparse time base, there are time intervals during which no
significant event is allowed to occur. If the intervals ε and ∆ are properly chosen (see, e.g.,
(Kopetz 1997), then, it is possible to establish a consistent order of the significant events
among a set of properly synchronized nodes without the execution of an agreement protocol.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 81

It is evident that the occurrences of events can only be restricted if the given system has the
authority to control these events, i.e., these events are in the sphere of control of the computer
system (Davies 1979). For example, within a distributed computing system the sending of
messages can be restricted to some intervals of the timeline and can be forbidden at some
other intervals. The occurrence of events outside the sphere of control of the computer system
cannot be restricted. These external events are based on a dense time base.

If there is a global time available among a set of DSoS component systems, we assume that
the macrotick granularity of this global time base is a negative power-of-two of the physical
second. Considering the reasonableness condition, the achieved precision determines which
negative power-of-two of the second is selected for the macrotick granularity. By restricting
the macrotick granularities to the negative powers-of-two of the full second it is ensured

• that a consistent time base for the measurement of events in the different component
systems of a distributed system is established and

• that a full second tick can be generated by a simple binary counter that counts the
macroticks of the global time base.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 83

ANNEX 2. GLOSSARY

This glossary contains an alphabetized list of all the terms for which explicit definitions are
given above.

Actuation (Sensing) Operation: The production (recording) by a system at a physical output
(input) interface of a single value change at an instant or of a temporally-controlled
sequence of value changes during a duration.

Architectural style: a set of rules and conventions governing the interactions between the
components of a system.

Behaviour: The temporal sequence of send operations of a system in relation to its previous
receive operations, and any internal state that it retains.

Boundary Line: A connection between at least two interfaces with matching properties.

Connection System: A new system with at least two interfaces that is introduced between
interfaces of the connected component systems in order to resolve property mismatches
among these systems (which will typically be legacy systems), to coordinate multicast
communication, and/or to introduce emerging services.

Connection: A link between the interfaces of two or more interacting systems.

Declared State: At a given instant, the values assigned to a declared data structure that can be
accessed via an interface and that synthesizes all relevant effects of previous receive
operations up to the given instant.

Dependability: The dependability of a system is the ability to deliver a service that can
justifiably be trusted, where the service is the intended behaviour of the system.

Duration: A section of the timeline.

Error Containment Region: A subsystem of a computer system that is encapsulated by
error-detection interfaces such that there is a high probability (the error containment
coverage) that the consequences of an error that occurs within this subsystem will not
propagate outside this subsystem without being detected.

Error: An error is that part of the system state that may cause a subsequent failure.

Event Message: A message that contains only event observations.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 84

Event Observation: An event observation records the occurrence of an event. An event is a
significant happening, e.g., an important difference between a state observation
immediately before the happening and the state observation immediately after the
happening.

Failure: A failure is an event that occurs at the instant when the actual behaviour of a system
starts to deviate from the intended behaviour.

Fault Containment Region: A set of components that is considered to fail (a) as an atomic
unit, and (b) in a statistically independent way with respect to other fault containment
regions.

Fault Tolerance: Methods and techniques aimed at providing the intended system behaviour
in spite of faults.

Fault: A fault is the adjudged or hypothesized cause of an error.

Image: A representation of a state variable at the receiver.

Input Interface: An interface at which information is consumed from the environment of the
system.

Instant: A cut of the timeline.

Interaction: A sequence of message exchanges between connected interfaces.

Interface: A point of interaction between a system and its environment.

Legacy System: An existing system that provides a service to an organization or set of users.

Linking Connection: A connection between two or more existing systems that is introduced
in order to incorporate this system into a system of systems with new emergent services.

Linking Interface: An interface of a component system through which it is connected to
other component systems within a given system of systems.

Local Interface: An interface of a component system that is not a linking interface within a
given system of systems.

Message Receive Instant: The instant when the receiving of a message terminates at the
receiver.

Message Send Instant: The instant when the sending of a message starts at the sender.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 85

Message: A data structure that is formed for the purpose of communication among computer
systems.

Output Interface: An interface of a system at which information is produced for the
environment of the system.

Periodic State Message: A state message that is sent periodically at a priori known instants.
These instants are common knowledge to the sender and the receivers.

Properties of an Interface: The set of attributes associated with an interface.

Property Mismatch: A disagreement among connected interfaces in one or more of their
properties.

Protocol: The set of rules that specifies the interactions between two or more component
systems across connected interfaces.

Send (Receive) Operation: The sending (receiving) of a message at an interface.

Service Interface: This is the interface that provides the intended service to the environment,
namely the systems with which it interacts.

Service Specification: The specification of the set of intended behaviours of a system.

State Message: A message that contains only state observations.

State Observation: A tuple <Name, tobs, Value> consisting of the name of the state variable,
the instant when the state variable has been observed (tobs), and the observed value of
the state variable.

State of a System: At a given instant, the values assigned to an internal data structure of a
system that synthesizes all cumulative effects of all receive operations at all input
interfaces between the startup of the system and this given instant.

State variable: A state variable is a relevant variable, either in the environment or in the
computer system, whose value may change as time progresses.

System: An entity that is capable of interacting with its environment and is sensitive to the
progression of time.

Dependable Systems of Systems IC1-Revised Version of Conceptual Model

 86

Temporal Accuracy: An image a temporally accurate representation of a state variable at
instant t, if the duration between the time-of-observation of the state variable and the
instant t is less than the accuracy interval dacc, an application-specific parameter
associated with the dynamics of the given state variable.

Temporal composability: The characteristic that ensures that the temporal properties of a
component system are not influenced by the integration of the component system into a
system of systems.

The Configuration Planning (CP) Interface: The CP interface is used during the integration
or reconfiguration phase to connect a component system to other component systems of
an system of systems.

The Diagnostic and Management (DM) Interface: The DM interface provides a
communication channel to the internals of the component system for the purpose of
diagnosis and management.

Dependable Systems of Systems Glossary

 87

References

(1992-99). Failures-Divergence Refinement: FDR2 User Manual, Formal Systems (Europe)
Ltd.

(2000). State of the Art Survey,. Newcastle upon Tyne, University of Newcastle upon Tyne.

(2001). Architecture and Design: Initial Results on Architectures and Dependable
Mechanisms for Dependable SoSs. Newcastle upon Tyne, University of Newcastle upon
Tyne.

Ahuja, M., A. D. Kshemkalyani, et al. (1990). A Basic Unit of Computation in a Distributed
System. 10th IEEE Distributed Computer Systems Conference, IEEE Press.

Allen, R. J. and D. Garlan (July 1997). "A Formal Basis for Architectural Connection." ACM
Transactions on Software Engineering and Methodology.

Brownbridge, D. R., L. F. Marshall, et al. (1982). "The Newcastle Connection, or - UNIXes
of the World Unite!" Software Practice and Experience 12(12): 1147-1162.

Burton, J., M. Koutny, et al. (2001). Implementing Communicating Processes in the Event of
Interface Difference. ICACSD'01, Newcastle upon Tyne, U.K.

Campbell, R. H. and B. Randell (1986). "Error Recovery in Asynchronous Systems." IEEE
Trans. Software Engineering SE-12(8): 811-826.

CAN (1990). Controller Area Network CAN, an In-Vehicle Serial Communication Protocol.
SAE Handbook 1992, SAE Press. SAE J1583: 20.341-20.355.

Caprile, C. and P. Tonella (1999). Nomen est omen: Analyzing the Language of Function
Identifiers. Sixth Working Conference on Reverse Engineering, IEEE Press.

Clark, D. (2001). "Face-to-Face with Peer-to-Peer Networking." Computer 34(1): 18-21.

Clarke, I., O. Sandberg, et al. (2000). Freenet: A Distributed Anonymous Information Storage
and Retrieval System. ICSI Workshop on Design Issues in Anonymity and Unobservability,
Berkeley, CA, International Computer Science Institute.

Collette , P. and C. B. Jones (2000). Enhancing the Tractability of Rely/Guarantee
Specifications in the Development of Interfering Operations. Proof, Language and Interaction.
M. Tofte, MIT Press: 277-307.

Creese, S. J. and A. W. Roscoe (June 2000). Data independent induction over structured
networks. In International Conference on Parallel and Distributed Processing Techniques and
Applications. PDPTA '00, Las Vegas, USA.

Deline, R. (1999). Resolving Packaging Mismatch. Computer Science Department.
Pittsburgh, Carnegie Mellon University: 178.

Dependable Systems of Systems Glossary

 88

Forman, I. R., M. H. Conner, et al. (1985). "Release-to-release binary compatibility in SOM."
ACM Sigplan Notices, Proceedings of OOPSLA 1995 30(10): 426-438.

Garlan, D., R. Allen, et al. (1995). Architectural Mismatch or Why it's hard to build systems
out of existing parts. Proc. ICSE 17, Seattle.

Gaudel, M.-C. (1994). Formal Specification techniques (invited survey). Proc. 16th IEEE-
ACM International Conference on Software Engineering (ICSE'16), Sorrente.

Gordon, M. J. C. and T. F. Melham (1993). Introduction to HOL: A theorem proving
environment for higher order logic., Cambridge Univ. Press.

Hauswirth, M. and M. Jazayeri (1999). A Component and Communication Model for Push
Systems. Joint 7th European Software Engineering Conference (ESEC) and 7th ACM
SIGSOFT Int. Symp. on the Foundations of Software Engineering (FSE-7), Toulouse, France,
ACM.

Hauzeur, B. M. (1986). "A Model for Naming, Addressing, and Routing." ACM Transactions
of Office Information Systems 4(4): 293-311.

Hayakawa, S. I. (1990). Language in Thought and Action, Harvest Original, San Diego.

Hoare, C. A. R. (1978). "Communicating Sequential Processes." Comm. ACM 21(8): 666--
677.

Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice Hall.

Holzmann, G. (1993). "Design and validation of protocols: a tutorial." Computer Networks
and ISDN Systems(25): 981-1017.

Holzmann, G. (1997). The model checker SPIN. IEEE Transactions on Software Engineering.

Jones, C. B. (1981, June). Development Methods for Computer Programs including a Notion
of Interference. Programming Research Group Technical Monograph 25. Oxford, Oxford
University.

Jones, C. B. (1983). Specification and Design of (Parallel) Programs. Proceedings of IFIP'83,
North-Holland: 321-332.

Kamel, M. and S. Leue (November 1998). Validation of remote object invocation and object
migration in CORBA GIOP using Promela/Spin. Proceedings of the 4th International SPIN
Workshop. Paris, France, Ecole Nationale Supérieure de la Télécommunication.

Kopetz, H. (1992). Sparse Time versus Dense Time in Distributed Real-Time Systems. Proc.
14th Int. Conf. on Distributed Computing Systems, Yokohama, Japan, IEEE Press.

Kopetz, H. (1993). "Should Responsive Systems be Event-Triggered or Time-Triggered?"
IEICE Trans. on Information and Systems (Special Issue on Responsive Computer Systems).

Dependable Systems of Systems Glossary

 89

Kopetz, H. (1997). Real Time Systems: Design Principles for Distributed Embedded
Applications. Boston, Kluwer Academic Publishers.

Kopetz, H. (2000). Software Engineering for Real-Time: A Roadmap. Software Engineering
Conference 2000, Limmerick, Ireland, IEEE Press.

Kopetz, H., T. Galla, et al. (1999). Specification of the TTP/C Protocol. TTTech, Vienna,
Austria, http://www.ttpforum.org.

Kopetz, H. and K. Kim (1990). Temporal Uncertainties in Interactions among Real-Time
Objects. Proc. 9th Symp. on Reliable Distributed Systems, Huntsville, AL, USA, IEEE
Computer Society Press.

Kopetz, H. and R. Nossal (1997). Temporal Firewalls in Large Distributed Real-Time
Systems. Proceedings of IEEE Workshop on Future Trends in Distributed Computing, Tunis,
Tunesia, IEEE Press.

Kopetz, H. and W. Ochsenreiter (1987). "Clock Synchronisation in Distributed Real-Time
Systems." IEEE Trans. Computers 36(8): 933-940.

Koutny, M. and G. Pappalardo (1998). The ERT Model of Fault-Tolerant Computing and Its
Application to a Formalisation of Coordinated Atomic Actions. Newcastle upon Tyne,
Department of Computing Science, University of Newcastle upon Tyne.

Laprie, J. C., Ed. (1992). Dependability: Basic concepts and terminology — in English,
French, German, Italian and Japanese. Dependable Computing and Fault Tolerance. Vienna,
Austria, Springer-Verlag.

Lazic, R. and A. W. Roscoe (July 1998). Verifying Determinism of Concurrent Systems
Which Use Unbounded Arrays., Oxford University Computing Laboratory.

Lee, E. A. (1999). Embedded Software--An Agenda for Research, University of California,
Berkely.

McMillan, K. L. (1993). Symbolic Model Checking., Kluwer Academic Publishers,.

Medvidovic, N. and R. N. Taylor (2000). "A Classification and comparison Framework for
Software Architecture Description Languages." IEEE Transactions on Software Engineering
26(1)(Jan. 2000): 70-93.

Milner, R. A Calculus of Communicating Systems. LNCS 92, Springer-Verlag.

Misra, J. and K. M. Chandy (1981). "Proofs of Networks of Processes." IEEE Trans. Software
Eng. 7: 417--426.

OFTA (2000). Software Architecture and Component Re-use. Paris, Masson.

OMG (1999). CORBA Persistent State Service V2.0, Joint Revised Submission, Object
Management Group.

Dependable Systems of Systems Glossary

 90

OMG (2000). CORBA Externalization Service V1.0, Object Management Group.

OMG (2000). CORBAServices: Common Object Service Specification: Event Service
Specification, Object Management Group.

OMG (2000). CORBAServices: Common Object Service Specification: Notification Service
Specification, Object Management Group.

OMG (2000). Fault Tolerant CORBA Specification V1.0, Object Management Group.

OSF (1992). Introduction to OSF DCE, Open System Fondation. Englewood Cliffs, N.J,
Prentice Hall.

Paulson, L. C. (1994). Isabelle -- A Generic Theorem Prover. . .LNCS 828, Springer Verlag,.

Poledna, S. (1995). Fault-Tolerant Real-Time Systems, The Problem of Replica Determinism.
Hingham, Mass, USA, Kluwer Academic Publishers.

Powell, D., G. Bonn, et al. (1988). The Delta-4 Approach to Dependability in Open
Distributed Computing Systems. 18th IEEE Int. Symp. on Fault-Tolerant Computing Systems
(FTCS-18), Tokyo, Japan, IEEE Computer Society Press.

Radia, S. and J. Pachl (1993). Coherence in Naming in Distributed Computing Environments.
13th Int. Conference on Distr. Computing Systems, IEEE Press.

Roscoe, A. W. (1998). The theory and practice of concurrency, Prentice Hall.

Saltzer, J., D. P. Reed, et al. (1984). "End-to-End Arguments in System Design." ACM
Transactions on Computer Systems 2(4): 277-288.

Saltzer, J. H. (1978). Naming and Binding of Objects. Operating Systems: An Advanced
Course. New York, Springer Verlag: 1-105.

Scattergood, B. (1998). Tools for CSP and Timed CSP. Oxford, Oxford University.

Schwier, D., F. v. Henke, et al. (1997). Formalisation of the CA Action Concept Based on
Temporal Logic. DeVa - Design for Validation, ESPRIT LTR 20072. 2nd year: 3-15.

Siegel, J. (2000). CORBA 3--Fundamentals and Programming, OMG Press--John Wiley.

Szyperski, C. (1998). Component Software, Addison Wesley.

Tisato, F. and F. DePaoli (1995). On the Duality between Event-Driven and Time Driven
Models. Proc. of 13th. IFAC DCCS 1995, Toulouse France.

Vachon, J. (2000). COALA: a Design Language for Reliable Distributed Systems. Lausanne,
Switzerland, EPFL.

Dependable Systems of Systems Glossary

 91

Veloudis, S. and N. Nissanke (2000). Modelling Coordinated Atomic Actions in Timed CSP.
Formal Techniques in Real-Time and Fault-Tolerant Systems. M. Joseph, Springer: 228-239.

Veríssimo, P. (2000). Topological Model. Malicious and Accidental-Fault Tolerance for
Internet Applications: Reference Model and Use Cases, LAAS-CNRS: 67-74.

Vigotsky, L. S. (1962). Thought and Language. Boston, Mass., MIT Press.

Whitrow, G. J. (1990). The Natural Philosophy of Time. Oxford, Clarendon Press.

Xu, J., B. Randell, et al. (1995). Fault Tolerance in Concurrent Object-Oriented Software
through Coordinated Error Recovery. 25th Int. Symp. on Fault-Tolerant Computing (FTCS-
25), Pasadena, CA, USA, IEEE Computer Society Press.

Xu, J., B. Randell, et al. (1999). Rigorous Development of a Safety-Critical System Based on
Coordinated Atomic Actions. 29th Int. Symp. on Fault-Tolerant Computing (FTCS-29),
Madison, WI, USA, IEEE Computer Society Press.

Xu, J., A. Romanovsky, et al. (1998). Co-ordinated Exception Handling in Distributed Object
Systems: from Model to System Implementation. Proc. 18th IEEE International Conference
on Distributed Computing Systems, Amsterdam, Netherlands.

Zorzo, A. F. (1999). Multiparty Interaction in Dependable Distributed Systems (PhD Thesis).
Department of Computing Science. Newcastle upon Tyne, University of Newcastle upon
Tyne.

